]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/usb/wusbcore/crypto.c
usb: typec: wcove: Remove dependency on HW FSM
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / wusbcore / crypto.c
CommitLineData
5fd54ace 1// SPDX-License-Identifier: GPL-2.0
d59db761
IPG
2/*
3 * Ultra Wide Band
4 * AES-128 CCM Encryption
5 *
6 * Copyright (C) 2007 Intel Corporation
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 *
d59db761
IPG
9 * We don't do any encryption here; we use the Linux Kernel's AES-128
10 * crypto modules to construct keys and payload blocks in a way
11 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
12 * there.
13 *
14 * Thanks a zillion to John Keys for his help and clarifications over
15 * the designed-by-a-committee text.
16 *
17 * So the idea is that there is this basic Pseudo-Random-Function
18 * defined in WUSB1.0[6.5] which is the core of everything. It works
19 * by tweaking some blocks, AES crypting them and then xoring
20 * something else with them (this seems to be called CBC(AES) -- can
21 * you tell I know jack about crypto?). So we just funnel it into the
22 * Linux Crypto API.
23 *
24 * We leave a crypto test module so we can verify that vectors match,
25 * every now and then.
26 *
27 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
28 * am learning a lot...
29 *
30 * Conveniently, some data structures that need to be
31 * funneled through AES are...16 bytes in size!
32 */
33
ab1e6fa4 34#include <crypto/skcipher.h>
d59db761
IPG
35#include <linux/crypto.h>
36#include <linux/module.h>
37#include <linux/err.h>
38#include <linux/uwb.h>
5a0e3ad6 39#include <linux/slab.h>
d59db761
IPG
40#include <linux/usb/wusb.h>
41#include <linux/scatterlist.h>
d59db761 42
ef23db9c 43static int debug_crypto_verify;
d409f3bf
DV
44
45module_param(debug_crypto_verify, int, 0);
46MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
d59db761 47
e43ace89
DV
48static void wusb_key_dump(const void *buf, size_t len)
49{
50 print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1,
51 buf, len, 0);
52}
53
d59db761
IPG
54/*
55 * Block of data, as understood by AES-CCM
56 *
57 * The code assumes this structure is nothing but a 16 byte array
58 * (packed in a struct to avoid common mess ups that I usually do with
59 * arrays and enforcing type checking).
60 */
61struct aes_ccm_block {
62 u8 data[16];
63} __attribute__((packed));
64
65/*
66 * Counter-mode Blocks (WUSB1.0[6.4])
67 *
68 * According to CCM (or so it seems), for the purpose of calculating
69 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
70 * ... BN.
71 *
72 * B0 contains flags, the CCM nonce and l(m).
73 *
74 * B1 contains l(a), the MAC header, the encryption offset and padding.
75 *
76 * If EO is nonzero, additional blocks are built from payload bytes
1076e7a4 77 * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
d59db761
IPG
78 * padding is not xmitted.
79 */
80
81/* WUSB1.0[T6.4] */
82struct aes_ccm_b0 {
83 u8 flags; /* 0x59, per CCM spec */
84 struct aes_ccm_nonce ccm_nonce;
85 __be16 lm;
86} __attribute__((packed));
87
88/* WUSB1.0[T6.5] */
89struct aes_ccm_b1 {
90 __be16 la;
91 u8 mac_header[10];
92 __le16 eo;
93 u8 security_reserved; /* This is always zero */
94 u8 padding; /* 0 */
95} __attribute__((packed));
96
97/*
98 * Encryption Blocks (WUSB1.0[6.4.4])
99 *
100 * CCM uses Ax blocks to generate a keystream with which the MIC and
101 * the message's payload are encoded. A0 always encrypts/decrypts the
af901ca1 102 * MIC. Ax (x>0) are used for the successive payload blocks.
d59db761
IPG
103 *
104 * The x is the counter, and is increased for each block.
105 */
106struct aes_ccm_a {
107 u8 flags; /* 0x01, per CCM spec */
108 struct aes_ccm_nonce ccm_nonce;
109 __be16 counter; /* Value of x */
110} __attribute__((packed));
111
112static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
113 size_t size)
114{
115 u8 *bo = _bo;
116 const u8 *bi1 = _bi1, *bi2 = _bi2;
117 size_t itr;
118 for (itr = 0; itr < size; itr++)
119 bo[itr] = bi1[itr] ^ bi2[itr];
120}
121
a19b882c
AL
122/* Scratch space for MAC calculations. */
123struct wusb_mac_scratch {
124 struct aes_ccm_b0 b0;
125 struct aes_ccm_b1 b1;
126 struct aes_ccm_a ax;
127};
128
d59db761
IPG
129/*
130 * CC-MAC function WUSB1.0[6.5]
131 *
132 * Take a data string and produce the encrypted CBC Counter-mode MIC
133 *
134 * Note the names for most function arguments are made to (more or
135 * less) match those used in the pseudo-function definition given in
136 * WUSB1.0[6.5].
137 *
138 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
139 *
140 * @tfm_aes: AES cipher handle (initialized)
141 *
142 * @mic: buffer for placing the computed MIC (Message Integrity
143 * Code). This is exactly 8 bytes, and we expect the buffer to
144 * be at least eight bytes in length.
145 *
146 * @key: 128 bit symmetric key
147 *
148 * @n: CCM nonce
149 *
150 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
151 * we use exactly 14 bytes).
152 *
153 * @b: data stream to be processed; cannot be a global or const local
154 * (will confuse the scatterlists)
155 *
156 * @blen: size of b...
157 *
158 * Still not very clear how this is done, but looks like this: we
159 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
160 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
161 * take the payload and divide it in blocks (16 bytes), xor them with
162 * the previous crypto result (16 bytes) and crypt it, repeat the next
163 * block with the output of the previous one, rinse wash (I guess this
164 * is what AES CBC mode means...but I truly have no idea). So we use
165 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
166 * Vector) is 16 bytes and is set to zero, so
167 *
168 * See rfc3610. Linux crypto has a CBC implementation, but the
169 * documentation is scarce, to say the least, and the example code is
170 * so intricated that is difficult to understand how things work. Most
171 * of this is guess work -- bite me.
172 *
173 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
174 * using the 14 bytes of @a to fill up
175 * b1.{mac_header,e0,security_reserved,padding}.
176 *
25985edc 177 * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
d59db761
IPG
178 * l(m) is orthogonal, they bear no relationship, so it is not
179 * in conflict with the parameter's relation that
180 * WUSB1.0[6.4.2]) defines.
181 *
182 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
183 * first errata released on 2005/07.
184 *
185 * NOTE: we need to clean IV to zero at each invocation to make sure
186 * we start with a fresh empty Initial Vector, so that the CBC
187 * works ok.
188 *
189 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
190 * what sg[4] is for. Maybe there is a smarter way to do this.
191 */
ab1e6fa4 192static int wusb_ccm_mac(struct crypto_skcipher *tfm_cbc,
a19b882c
AL
193 struct crypto_cipher *tfm_aes,
194 struct wusb_mac_scratch *scratch,
195 void *mic,
d59db761
IPG
196 const struct aes_ccm_nonce *n,
197 const struct aes_ccm_label *a, const void *b,
198 size_t blen)
199{
200 int result = 0;
ab1e6fa4 201 SKCIPHER_REQUEST_ON_STACK(req, tfm_cbc);
d59db761 202 struct scatterlist sg[4], sg_dst;
ab1e6fa4
HX
203 void *dst_buf;
204 size_t dst_size;
ab1e6fa4 205 u8 iv[crypto_skcipher_ivsize(tfm_cbc)];
d59db761
IPG
206 size_t zero_padding;
207
d59db761
IPG
208 /*
209 * These checks should be compile time optimized out
210 * ensure @a fills b1's mac_header and following fields
211 */
a19b882c
AL
212 WARN_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la));
213 WARN_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block));
214 WARN_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block));
215 WARN_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block));
d59db761
IPG
216
217 result = -ENOMEM;
d59db761
IPG
218 zero_padding = blen % sizeof(struct aes_ccm_block);
219 if (zero_padding)
220 zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
a19b882c
AL
221 dst_size = blen + sizeof(scratch->b0) + sizeof(scratch->b1) +
222 zero_padding;
d59db761 223 dst_buf = kzalloc(dst_size, GFP_KERNEL);
90b61386 224 if (!dst_buf)
d59db761 225 goto error_dst_buf;
d59db761 226
ab1e6fa4 227 memset(iv, 0, sizeof(iv));
d59db761
IPG
228
229 /* Setup B0 */
a19b882c
AL
230 scratch->b0.flags = 0x59; /* Format B0 */
231 scratch->b0.ccm_nonce = *n;
232 scratch->b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
d59db761
IPG
233
234 /* Setup B1
235 *
236 * The WUSB spec is anything but clear! WUSB1.0[6.5]
237 * says that to initialize B1 from A with 'l(a) = blen +
238 * 14'--after clarification, it means to use A's contents
239 * for MAC Header, EO, sec reserved and padding.
240 */
a19b882c
AL
241 scratch->b1.la = cpu_to_be16(blen + 14);
242 memcpy(&scratch->b1.mac_header, a, sizeof(*a));
d59db761 243
d59db761 244 sg_init_table(sg, ARRAY_SIZE(sg));
a19b882c
AL
245 sg_set_buf(&sg[0], &scratch->b0, sizeof(scratch->b0));
246 sg_set_buf(&sg[1], &scratch->b1, sizeof(scratch->b1));
d59db761
IPG
247 sg_set_buf(&sg[2], b, blen);
248 /* 0 if well behaved :) */
620f1a63 249 sg_set_page(&sg[3], ZERO_PAGE(0), zero_padding, 0);
d59db761
IPG
250 sg_init_one(&sg_dst, dst_buf, dst_size);
251
ab1e6fa4
HX
252 skcipher_request_set_tfm(req, tfm_cbc);
253 skcipher_request_set_callback(req, 0, NULL, NULL);
254 skcipher_request_set_crypt(req, sg, &sg_dst, dst_size, iv);
255 result = crypto_skcipher_encrypt(req);
256 skcipher_request_zero(req);
d59db761
IPG
257 if (result < 0) {
258 printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
259 result);
260 goto error_cbc_crypt;
261 }
d59db761
IPG
262
263 /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
264 * The procedure is to AES crypt the A0 block and XOR the MIC
25985edc 265 * Tag against it; we only do the first 8 bytes and place it
d59db761
IPG
266 * directly in the destination buffer.
267 *
268 * POS Crypto API: size is assumed to be AES's block size.
269 * Thanks for documenting it -- tip taken from airo.c
270 */
a19b882c
AL
271 scratch->ax.flags = 0x01; /* as per WUSB 1.0 spec */
272 scratch->ax.ccm_nonce = *n;
273 scratch->ax.counter = 0;
274 crypto_cipher_encrypt_one(tfm_aes, (void *)&scratch->ax,
275 (void *)&scratch->ax);
276 bytewise_xor(mic, &scratch->ax, iv, 8);
d59db761
IPG
277 result = 8;
278error_cbc_crypt:
279 kfree(dst_buf);
280error_dst_buf:
d59db761
IPG
281 return result;
282}
283
284/*
285 * WUSB Pseudo Random Function (WUSB1.0[6.5])
286 *
287 * @b: buffer to the source data; cannot be a global or const local
288 * (will confuse the scatterlists)
289 */
290ssize_t wusb_prf(void *out, size_t out_size,
291 const u8 key[16], const struct aes_ccm_nonce *_n,
292 const struct aes_ccm_label *a,
293 const void *b, size_t blen, size_t len)
294{
295 ssize_t result, bytes = 0, bitr;
296 struct aes_ccm_nonce n = *_n;
ab1e6fa4 297 struct crypto_skcipher *tfm_cbc;
d59db761 298 struct crypto_cipher *tfm_aes;
a19b882c 299 struct wusb_mac_scratch *scratch;
d59db761
IPG
300 u64 sfn = 0;
301 __le64 sfn_le;
302
ab1e6fa4 303 tfm_cbc = crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
d59db761
IPG
304 if (IS_ERR(tfm_cbc)) {
305 result = PTR_ERR(tfm_cbc);
306 printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
307 goto error_alloc_cbc;
308 }
ab1e6fa4 309 result = crypto_skcipher_setkey(tfm_cbc, key, 16);
d59db761
IPG
310 if (result < 0) {
311 printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
312 goto error_setkey_cbc;
313 }
314
315 tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
316 if (IS_ERR(tfm_aes)) {
317 result = PTR_ERR(tfm_aes);
318 printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
319 goto error_alloc_aes;
320 }
321 result = crypto_cipher_setkey(tfm_aes, key, 16);
322 if (result < 0) {
323 printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
324 goto error_setkey_aes;
325 }
a19b882c 326 scratch = kmalloc(sizeof(*scratch), GFP_KERNEL);
1ee1710c
WY
327 if (!scratch) {
328 result = -ENOMEM;
a19b882c 329 goto error_alloc_scratch;
1ee1710c 330 }
d59db761
IPG
331
332 for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
333 sfn_le = cpu_to_le64(sfn++);
334 memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
a19b882c 335 result = wusb_ccm_mac(tfm_cbc, tfm_aes, scratch, out + bytes,
d59db761
IPG
336 &n, a, b, blen);
337 if (result < 0)
338 goto error_ccm_mac;
339 bytes += result;
340 }
341 result = bytes;
a19b882c
AL
342
343 kfree(scratch);
344error_alloc_scratch:
d59db761
IPG
345error_ccm_mac:
346error_setkey_aes:
347 crypto_free_cipher(tfm_aes);
348error_alloc_aes:
349error_setkey_cbc:
ab1e6fa4 350 crypto_free_skcipher(tfm_cbc);
d59db761 351error_alloc_cbc:
d59db761
IPG
352 return result;
353}
354
355/* WUSB1.0[A.2] test vectors */
356static const u8 stv_hsmic_key[16] = {
357 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
358 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
359};
360
361static const struct aes_ccm_nonce stv_hsmic_n = {
362 .sfn = { 0 },
363 .tkid = { 0x76, 0x98, 0x01, },
364 .dest_addr = { .data = { 0xbe, 0x00 } },
365 .src_addr = { .data = { 0x76, 0x98 } },
366};
367
368/*
369 * Out-of-band MIC Generation verification code
370 *
371 */
372static int wusb_oob_mic_verify(void)
373{
374 int result;
375 u8 mic[8];
376 /* WUSB1.0[A.2] test vectors
377 *
378 * Need to keep it in the local stack as GCC 4.1.3something
379 * messes up and generates noise.
380 */
381 struct usb_handshake stv_hsmic_hs = {
382 .bMessageNumber = 2,
383 .bStatus = 00,
384 .tTKID = { 0x76, 0x98, 0x01 },
385 .bReserved = 00,
386 .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
387 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
388 0x3c, 0x3d, 0x3e, 0x3f },
389 .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
390 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
391 0x2c, 0x2d, 0x2e, 0x2f },
392 .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
06acefde 393 0x14, 0x7b },
d59db761
IPG
394 };
395 size_t hs_size;
396
397 result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
398 if (result < 0)
399 printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
400 else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
401 printk(KERN_ERR "E: OOB MIC test: "
402 "mismatch between MIC result and WUSB1.0[A2]\n");
403 hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
404 printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
e43ace89 405 wusb_key_dump(&stv_hsmic_hs, hs_size);
d59db761
IPG
406 printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
407 sizeof(stv_hsmic_n));
e43ace89 408 wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
d59db761 409 printk(KERN_ERR "E: MIC out:\n");
e43ace89 410 wusb_key_dump(mic, sizeof(mic));
d59db761 411 printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
e43ace89 412 wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
d59db761
IPG
413 result = -EINVAL;
414 } else
415 result = 0;
416 return result;
417}
418
419/*
420 * Test vectors for Key derivation
421 *
422 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
423 * (errata corrected in 2005/07).
424 */
425static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
426 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
427 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
428};
429
430static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
431 .sfn = { 0 },
432 .tkid = { 0x76, 0x98, 0x01, },
433 .dest_addr = { .data = { 0xbe, 0x00 } },
434 .src_addr = { .data = { 0x76, 0x98 } },
435};
436
437static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
438 .kck = {
439 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
440 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
441 },
442 .ptk = {
443 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
444 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
445 }
446};
447
448/*
449 * Performa a test to make sure we match the vectors defined in
450 * WUSB1.0[A.1](Errata2006/12)
451 */
452static int wusb_key_derive_verify(void)
453{
454 int result = 0;
455 struct wusb_keydvt_out keydvt_out;
456 /* These come from WUSB1.0[A.1] + 2006/12 errata
457 * NOTE: can't make this const or global -- somehow it seems
458 * the scatterlists for crypto get confused and we get
459 * bad data. There is no doc on this... */
460 struct wusb_keydvt_in stv_keydvt_in_a1 = {
461 .hnonce = {
462 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
463 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
464 },
465 .dnonce = {
466 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
467 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
468 }
469 };
470
471 result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
472 &stv_keydvt_in_a1);
473 if (result < 0)
474 printk(KERN_ERR "E: WUSB key derivation test: "
475 "derivation failed: %d\n", result);
476 if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
477 printk(KERN_ERR "E: WUSB key derivation test: "
478 "mismatch between key derivation result "
479 "and WUSB1.0[A1] Errata 2006/12\n");
e43ace89
DV
480 printk(KERN_ERR "E: keydvt in: key\n");
481 wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
482 printk(KERN_ERR "E: keydvt in: nonce\n");
06acefde 483 wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
e43ace89
DV
484 printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
485 wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
d59db761 486 printk(KERN_ERR "E: keydvt out: KCK\n");
e43ace89 487 wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
d59db761 488 printk(KERN_ERR "E: keydvt out: PTK\n");
e43ace89 489 wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
d59db761
IPG
490 result = -EINVAL;
491 } else
492 result = 0;
493 return result;
494}
495
496/*
497 * Initialize crypto system
498 *
499 * FIXME: we do nothing now, other than verifying. Later on we'll
500 * cache the encryption stuff, so that's why we have a separate init.
501 */
502int wusb_crypto_init(void)
503{
504 int result;
505
d409f3bf
DV
506 if (debug_crypto_verify) {
507 result = wusb_key_derive_verify();
508 if (result < 0)
509 return result;
510 return wusb_oob_mic_verify();
511 }
512 return 0;
d59db761
IPG
513}
514
515void wusb_crypto_exit(void)
516{
517 /* FIXME: free cached crypto transforms */
518}