]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/virt/fsl_hypervisor.c
UBUNTU: [Config] CONFIG_SND_SOC_MAX98927=m
[mirror_ubuntu-artful-kernel.git] / drivers / virt / fsl_hypervisor.c
CommitLineData
6db71994
TT
1/*
2 * Freescale Hypervisor Management Driver
3
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Author: Timur Tabi <timur@freescale.com>
6 *
7 * This file is licensed under the terms of the GNU General Public License
8 * version 2. This program is licensed "as is" without any warranty of any
9 * kind, whether express or implied.
10 *
11 * The Freescale hypervisor management driver provides several services to
12 * drivers and applications related to the Freescale hypervisor:
13 *
14 * 1. An ioctl interface for querying and managing partitions.
15 *
16 * 2. A file interface to reading incoming doorbells.
17 *
18 * 3. An interrupt handler for shutting down the partition upon receiving the
19 * shutdown doorbell from a manager partition.
20 *
21 * 4. A kernel interface for receiving callbacks when a managed partition
22 * shuts down.
23 */
24
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/types.h>
29#include <linux/err.h>
30#include <linux/fs.h>
31#include <linux/miscdevice.h>
32#include <linux/mm.h>
33#include <linux/pagemap.h>
34#include <linux/slab.h>
35#include <linux/poll.h>
36#include <linux/of.h>
5af50730 37#include <linux/of_irq.h>
6db71994
TT
38#include <linux/reboot.h>
39#include <linux/uaccess.h>
40#include <linux/notifier.h>
f1f4ee01 41#include <linux/interrupt.h>
6db71994
TT
42
43#include <linux/io.h>
44#include <asm/fsl_hcalls.h>
45
46#include <linux/fsl_hypervisor.h>
47
48static BLOCKING_NOTIFIER_HEAD(failover_subscribers);
49
50/*
51 * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART
52 *
53 * Restart a running partition
54 */
55static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p)
56{
57 struct fsl_hv_ioctl_restart param;
58
59 /* Get the parameters from the user */
60 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_restart)))
61 return -EFAULT;
62
63 param.ret = fh_partition_restart(param.partition);
64
65 if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
66 return -EFAULT;
67
68 return 0;
69}
70
71/*
72 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS
73 *
74 * Query the status of a partition
75 */
76static long ioctl_status(struct fsl_hv_ioctl_status __user *p)
77{
78 struct fsl_hv_ioctl_status param;
79 u32 status;
80
81 /* Get the parameters from the user */
82 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_status)))
83 return -EFAULT;
84
85 param.ret = fh_partition_get_status(param.partition, &status);
86 if (!param.ret)
87 param.status = status;
88
89 if (copy_to_user(p, &param, sizeof(struct fsl_hv_ioctl_status)))
90 return -EFAULT;
91
92 return 0;
93}
94
95/*
96 * Ioctl interface for FSL_HV_IOCTL_PARTITION_START
97 *
98 * Start a stopped partition.
99 */
100static long ioctl_start(struct fsl_hv_ioctl_start __user *p)
101{
102 struct fsl_hv_ioctl_start param;
103
104 /* Get the parameters from the user */
105 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_start)))
106 return -EFAULT;
107
108 param.ret = fh_partition_start(param.partition, param.entry_point,
109 param.load);
110
111 if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
112 return -EFAULT;
113
114 return 0;
115}
116
117/*
118 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP
119 *
120 * Stop a running partition
121 */
122static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p)
123{
124 struct fsl_hv_ioctl_stop param;
125
126 /* Get the parameters from the user */
127 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_stop)))
128 return -EFAULT;
129
130 param.ret = fh_partition_stop(param.partition);
131
132 if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
133 return -EFAULT;
134
135 return 0;
136}
137
138/*
139 * Ioctl interface for FSL_HV_IOCTL_MEMCPY
140 *
141 * The FH_MEMCPY hypercall takes an array of address/address/size structures
142 * to represent the data being copied. As a convenience to the user, this
143 * ioctl takes a user-create buffer and a pointer to a guest physically
144 * contiguous buffer in the remote partition, and creates the
145 * address/address/size array for the hypercall.
146 */
147static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p)
148{
149 struct fsl_hv_ioctl_memcpy param;
150
151 struct page **pages = NULL;
152 void *sg_list_unaligned = NULL;
153 struct fh_sg_list *sg_list = NULL;
154
155 unsigned int num_pages;
156 unsigned long lb_offset; /* Offset within a page of the local buffer */
157
158 unsigned int i;
159 long ret = 0;
160 int num_pinned; /* return value from get_user_pages() */
161 phys_addr_t remote_paddr; /* The next address in the remote buffer */
162 uint32_t count; /* The number of bytes left to copy */
163
164 /* Get the parameters from the user */
165 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_memcpy)))
166 return -EFAULT;
167
168 /*
169 * One partition must be local, the other must be remote. In other
170 * words, if source and target are both -1, or are both not -1, then
171 * return an error.
172 */
173 if ((param.source == -1) == (param.target == -1))
174 return -EINVAL;
175
176 /*
177 * The array of pages returned by get_user_pages() covers only
178 * page-aligned memory. Since the user buffer is probably not
179 * page-aligned, we need to handle the discrepancy.
180 *
181 * We calculate the offset within a page of the S/G list, and make
182 * adjustments accordingly. This will result in a page list that looks
183 * like this:
184 *
185 * ---- <-- first page starts before the buffer
186 * | |
187 * |////|-> ----
188 * |////| | |
189 * ---- | |
190 * | |
191 * ---- | |
192 * |////| | |
193 * |////| | |
194 * |////| | |
195 * ---- | |
196 * | |
197 * ---- | |
198 * |////| | |
199 * |////| | |
200 * |////| | |
201 * ---- | |
202 * | |
203 * ---- | |
204 * |////| | |
205 * |////|-> ----
206 * | | <-- last page ends after the buffer
207 * ----
208 *
209 * The distance between the start of the first page and the start of the
210 * buffer is lb_offset. The hashed (///) areas are the parts of the
211 * page list that contain the actual buffer.
212 *
213 * The advantage of this approach is that the number of pages is
214 * equal to the number of entries in the S/G list that we give to the
215 * hypervisor.
216 */
217 lb_offset = param.local_vaddr & (PAGE_SIZE - 1);
218 num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
219
220 /* Allocate the buffers we need */
221
222 /*
223 * 'pages' is an array of struct page pointers that's initialized by
224 * get_user_pages().
225 */
226 pages = kzalloc(num_pages * sizeof(struct page *), GFP_KERNEL);
227 if (!pages) {
228 pr_debug("fsl-hv: could not allocate page list\n");
229 return -ENOMEM;
230 }
231
232 /*
233 * sg_list is the list of fh_sg_list objects that we pass to the
234 * hypervisor.
235 */
236 sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) +
237 sizeof(struct fh_sg_list) - 1, GFP_KERNEL);
238 if (!sg_list_unaligned) {
239 pr_debug("fsl-hv: could not allocate S/G list\n");
240 ret = -ENOMEM;
241 goto exit;
242 }
243 sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list));
244
245 /* Get the physical addresses of the source buffer */
3d88936f
LS
246 num_pinned = get_user_pages_unlocked(param.local_vaddr - lb_offset,
247 num_pages, pages, (param.source == -1) ? 0 : FOLL_WRITE);
6db71994
TT
248
249 if (num_pinned != num_pages) {
250 /* get_user_pages() failed */
251 pr_debug("fsl-hv: could not lock source buffer\n");
252 ret = (num_pinned < 0) ? num_pinned : -EFAULT;
253 goto exit;
254 }
255
256 /*
257 * Build the fh_sg_list[] array. The first page is special
258 * because it's misaligned.
259 */
260 if (param.source == -1) {
261 sg_list[0].source = page_to_phys(pages[0]) + lb_offset;
262 sg_list[0].target = param.remote_paddr;
263 } else {
264 sg_list[0].source = param.remote_paddr;
265 sg_list[0].target = page_to_phys(pages[0]) + lb_offset;
266 }
267 sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset);
268
269 remote_paddr = param.remote_paddr + sg_list[0].size;
270 count = param.count - sg_list[0].size;
271
272 for (i = 1; i < num_pages; i++) {
273 if (param.source == -1) {
274 /* local to remote */
275 sg_list[i].source = page_to_phys(pages[i]);
276 sg_list[i].target = remote_paddr;
277 } else {
278 /* remote to local */
279 sg_list[i].source = remote_paddr;
280 sg_list[i].target = page_to_phys(pages[i]);
281 }
282 sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE);
283
284 remote_paddr += sg_list[i].size;
285 count -= sg_list[i].size;
286 }
287
288 param.ret = fh_partition_memcpy(param.source, param.target,
289 virt_to_phys(sg_list), num_pages);
290
291exit:
292 if (pages) {
293 for (i = 0; i < num_pages; i++)
294 if (pages[i])
295 put_page(pages[i]);
296 }
297
298 kfree(sg_list_unaligned);
299 kfree(pages);
300
301 if (!ret)
302 if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
303 return -EFAULT;
304
305 return ret;
306}
307
308/*
309 * Ioctl interface for FSL_HV_IOCTL_DOORBELL
310 *
311 * Ring a doorbell
312 */
313static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p)
314{
315 struct fsl_hv_ioctl_doorbell param;
316
317 /* Get the parameters from the user. */
318 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_doorbell)))
319 return -EFAULT;
320
321 param.ret = ev_doorbell_send(param.doorbell);
322
323 if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
324 return -EFAULT;
325
326 return 0;
327}
328
329static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set)
330{
331 struct fsl_hv_ioctl_prop param;
332 char __user *upath, *upropname;
333 void __user *upropval;
334 char *path = NULL, *propname = NULL;
335 void *propval = NULL;
336 int ret = 0;
337
338 /* Get the parameters from the user. */
339 if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_prop)))
340 return -EFAULT;
341
342 upath = (char __user *)(uintptr_t)param.path;
343 upropname = (char __user *)(uintptr_t)param.propname;
344 upropval = (void __user *)(uintptr_t)param.propval;
345
346 path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN);
347 if (IS_ERR(path)) {
348 ret = PTR_ERR(path);
349 goto out;
350 }
351
352 propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN);
353 if (IS_ERR(propname)) {
354 ret = PTR_ERR(propname);
355 goto out;
356 }
357
358 if (param.proplen > FH_DTPROP_MAX_PROPLEN) {
359 ret = -EINVAL;
360 goto out;
361 }
362
363 propval = kmalloc(param.proplen, GFP_KERNEL);
364 if (!propval) {
365 ret = -ENOMEM;
366 goto out;
367 }
368
369 if (set) {
370 if (copy_from_user(propval, upropval, param.proplen)) {
371 ret = -EFAULT;
372 goto out;
373 }
374
375 param.ret = fh_partition_set_dtprop(param.handle,
376 virt_to_phys(path),
377 virt_to_phys(propname),
378 virt_to_phys(propval),
379 param.proplen);
380 } else {
381 param.ret = fh_partition_get_dtprop(param.handle,
382 virt_to_phys(path),
383 virt_to_phys(propname),
384 virt_to_phys(propval),
385 &param.proplen);
386
387 if (param.ret == 0) {
388 if (copy_to_user(upropval, propval, param.proplen) ||
389 put_user(param.proplen, &p->proplen)) {
390 ret = -EFAULT;
391 goto out;
392 }
393 }
394 }
395
396 if (put_user(param.ret, &p->ret))
397 ret = -EFAULT;
398
399out:
400 kfree(path);
401 kfree(propval);
402 kfree(propname);
403
404 return ret;
405}
406
407/*
408 * Ioctl main entry point
409 */
410static long fsl_hv_ioctl(struct file *file, unsigned int cmd,
411 unsigned long argaddr)
412{
413 void __user *arg = (void __user *)argaddr;
414 long ret;
415
416 switch (cmd) {
417 case FSL_HV_IOCTL_PARTITION_RESTART:
418 ret = ioctl_restart(arg);
419 break;
420 case FSL_HV_IOCTL_PARTITION_GET_STATUS:
421 ret = ioctl_status(arg);
422 break;
423 case FSL_HV_IOCTL_PARTITION_START:
424 ret = ioctl_start(arg);
425 break;
426 case FSL_HV_IOCTL_PARTITION_STOP:
427 ret = ioctl_stop(arg);
428 break;
429 case FSL_HV_IOCTL_MEMCPY:
430 ret = ioctl_memcpy(arg);
431 break;
432 case FSL_HV_IOCTL_DOORBELL:
433 ret = ioctl_doorbell(arg);
434 break;
435 case FSL_HV_IOCTL_GETPROP:
436 ret = ioctl_dtprop(arg, 0);
437 break;
438 case FSL_HV_IOCTL_SETPROP:
439 ret = ioctl_dtprop(arg, 1);
440 break;
441 default:
442 pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n",
443 _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd),
444 _IOC_SIZE(cmd));
445 return -ENOTTY;
446 }
447
448 return ret;
449}
450
451/* Linked list of processes that have us open */
452static struct list_head db_list;
453
454/* spinlock for db_list */
455static DEFINE_SPINLOCK(db_list_lock);
456
457/* The size of the doorbell event queue. This must be a power of two. */
458#define QSIZE 16
459
460/* Returns the next head/tail pointer, wrapping around the queue if necessary */
461#define nextp(x) (((x) + 1) & (QSIZE - 1))
462
463/* Per-open data structure */
464struct doorbell_queue {
465 struct list_head list;
466 spinlock_t lock;
467 wait_queue_head_t wait;
468 unsigned int head;
469 unsigned int tail;
470 uint32_t q[QSIZE];
471};
472
473/* Linked list of ISRs that we registered */
474struct list_head isr_list;
475
476/* Per-ISR data structure */
477struct doorbell_isr {
478 struct list_head list;
479 unsigned int irq;
480 uint32_t doorbell; /* The doorbell handle */
481 uint32_t partition; /* The partition handle, if used */
482};
483
484/*
485 * Add a doorbell to all of the doorbell queues
486 */
487static void fsl_hv_queue_doorbell(uint32_t doorbell)
488{
489 struct doorbell_queue *dbq;
490 unsigned long flags;
491
492 /* Prevent another core from modifying db_list */
493 spin_lock_irqsave(&db_list_lock, flags);
494
495 list_for_each_entry(dbq, &db_list, list) {
496 if (dbq->head != nextp(dbq->tail)) {
497 dbq->q[dbq->tail] = doorbell;
498 /*
499 * This memory barrier eliminates the need to grab
500 * the spinlock for dbq.
501 */
502 smp_wmb();
503 dbq->tail = nextp(dbq->tail);
504 wake_up_interruptible(&dbq->wait);
505 }
506 }
507
508 spin_unlock_irqrestore(&db_list_lock, flags);
509}
510
511/*
512 * Interrupt handler for all doorbells
513 *
514 * We use the same interrupt handler for all doorbells. Whenever a doorbell
515 * is rung, and we receive an interrupt, we just put the handle for that
516 * doorbell (passed to us as *data) into all of the queues.
517 */
518static irqreturn_t fsl_hv_isr(int irq, void *data)
519{
520 fsl_hv_queue_doorbell((uintptr_t) data);
521
522 return IRQ_HANDLED;
523}
524
525/*
526 * State change thread function
527 *
528 * The state change notification arrives in an interrupt, but we can't call
529 * blocking_notifier_call_chain() in an interrupt handler. We could call
530 * atomic_notifier_call_chain(), but that would require the clients' call-back
531 * function to run in interrupt context. Since we don't want to impose that
532 * restriction on the clients, we use a threaded IRQ to process the
533 * notification in kernel context.
534 */
535static irqreturn_t fsl_hv_state_change_thread(int irq, void *data)
536{
537 struct doorbell_isr *dbisr = data;
538
539 blocking_notifier_call_chain(&failover_subscribers, dbisr->partition,
540 NULL);
541
542 return IRQ_HANDLED;
543}
544
545/*
546 * Interrupt handler for state-change doorbells
547 */
548static irqreturn_t fsl_hv_state_change_isr(int irq, void *data)
549{
550 unsigned int status;
551 struct doorbell_isr *dbisr = data;
552 int ret;
553
554 /* It's still a doorbell, so add it to all the queues. */
555 fsl_hv_queue_doorbell(dbisr->doorbell);
556
557 /* Determine the new state, and if it's stopped, notify the clients. */
558 ret = fh_partition_get_status(dbisr->partition, &status);
559 if (!ret && (status == FH_PARTITION_STOPPED))
560 return IRQ_WAKE_THREAD;
561
562 return IRQ_HANDLED;
563}
564
565/*
566 * Returns a bitmask indicating whether a read will block
567 */
568static unsigned int fsl_hv_poll(struct file *filp, struct poll_table_struct *p)
569{
570 struct doorbell_queue *dbq = filp->private_data;
571 unsigned long flags;
572 unsigned int mask;
573
574 spin_lock_irqsave(&dbq->lock, flags);
575
576 poll_wait(filp, &dbq->wait, p);
577 mask = (dbq->head == dbq->tail) ? 0 : (POLLIN | POLLRDNORM);
578
579 spin_unlock_irqrestore(&dbq->lock, flags);
580
581 return mask;
582}
583
584/*
585 * Return the handles for any incoming doorbells
586 *
587 * If there are doorbell handles in the queue for this open instance, then
588 * return them to the caller as an array of 32-bit integers. Otherwise,
589 * block until there is at least one handle to return.
590 */
591static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len,
592 loff_t *off)
593{
594 struct doorbell_queue *dbq = filp->private_data;
595 uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */
596 unsigned long flags;
597 ssize_t count = 0;
598
599 /* Make sure we stop when the user buffer is full. */
600 while (len >= sizeof(uint32_t)) {
601 uint32_t dbell; /* Local copy of doorbell queue data */
602
603 spin_lock_irqsave(&dbq->lock, flags);
604
605 /*
606 * If the queue is empty, then either we're done or we need
607 * to block. If the application specified O_NONBLOCK, then
608 * we return the appropriate error code.
609 */
610 if (dbq->head == dbq->tail) {
611 spin_unlock_irqrestore(&dbq->lock, flags);
612 if (count)
613 break;
614 if (filp->f_flags & O_NONBLOCK)
615 return -EAGAIN;
616 if (wait_event_interruptible(dbq->wait,
617 dbq->head != dbq->tail))
618 return -ERESTARTSYS;
619 continue;
620 }
621
622 /*
623 * Even though we have an smp_wmb() in the ISR, the core
624 * might speculatively execute the "dbell = ..." below while
625 * it's evaluating the if-statement above. In that case, the
626 * value put into dbell could be stale if the core accepts the
627 * speculation. To prevent that, we need a read memory barrier
628 * here as well.
629 */
630 smp_rmb();
631
632 /* Copy the data to a temporary local buffer, because
633 * we can't call copy_to_user() from inside a spinlock
634 */
635 dbell = dbq->q[dbq->head];
636 dbq->head = nextp(dbq->head);
637
638 spin_unlock_irqrestore(&dbq->lock, flags);
639
640 if (put_user(dbell, p))
641 return -EFAULT;
642 p++;
643 count += sizeof(uint32_t);
644 len -= sizeof(uint32_t);
645 }
646
647 return count;
648}
649
650/*
651 * Open the driver and prepare for reading doorbells.
652 *
653 * Every time an application opens the driver, we create a doorbell queue
654 * for that file handle. This queue is used for any incoming doorbells.
655 */
656static int fsl_hv_open(struct inode *inode, struct file *filp)
657{
658 struct doorbell_queue *dbq;
659 unsigned long flags;
660 int ret = 0;
661
662 dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL);
663 if (!dbq) {
664 pr_err("fsl-hv: out of memory\n");
665 return -ENOMEM;
666 }
667
668 spin_lock_init(&dbq->lock);
669 init_waitqueue_head(&dbq->wait);
670
671 spin_lock_irqsave(&db_list_lock, flags);
672 list_add(&dbq->list, &db_list);
673 spin_unlock_irqrestore(&db_list_lock, flags);
674
675 filp->private_data = dbq;
676
677 return ret;
678}
679
680/*
681 * Close the driver
682 */
683static int fsl_hv_close(struct inode *inode, struct file *filp)
684{
685 struct doorbell_queue *dbq = filp->private_data;
686 unsigned long flags;
687
688 int ret = 0;
689
690 spin_lock_irqsave(&db_list_lock, flags);
691 list_del(&dbq->list);
692 spin_unlock_irqrestore(&db_list_lock, flags);
693
694 kfree(dbq);
695
696 return ret;
697}
698
699static const struct file_operations fsl_hv_fops = {
700 .owner = THIS_MODULE,
701 .open = fsl_hv_open,
702 .release = fsl_hv_close,
703 .poll = fsl_hv_poll,
704 .read = fsl_hv_read,
705 .unlocked_ioctl = fsl_hv_ioctl,
c031ab15 706 .compat_ioctl = fsl_hv_ioctl,
6db71994
TT
707};
708
709static struct miscdevice fsl_hv_misc_dev = {
710 MISC_DYNAMIC_MINOR,
711 "fsl-hv",
712 &fsl_hv_fops
713};
714
715static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data)
716{
717 orderly_poweroff(false);
718
719 return IRQ_HANDLED;
720}
721
722/*
723 * Returns the handle of the parent of the given node
724 *
725 * The handle is the value of the 'hv-handle' property
726 */
727static int get_parent_handle(struct device_node *np)
728{
729 struct device_node *parent;
730 const uint32_t *prop;
731 uint32_t handle;
732 int len;
733
734 parent = of_get_parent(np);
735 if (!parent)
736 /* It's not really possible for this to fail */
737 return -ENODEV;
738
739 /*
740 * The proper name for the handle property is "hv-handle", but some
741 * older versions of the hypervisor used "reg".
742 */
743 prop = of_get_property(parent, "hv-handle", &len);
744 if (!prop)
745 prop = of_get_property(parent, "reg", &len);
746
747 if (!prop || (len != sizeof(uint32_t))) {
748 /* This can happen only if the node is malformed */
749 of_node_put(parent);
750 return -ENODEV;
751 }
752
753 handle = be32_to_cpup(prop);
754 of_node_put(parent);
755
756 return handle;
757}
758
759/*
760 * Register a callback for failover events
761 *
762 * This function is called by device drivers to register their callback
763 * functions for fail-over events.
764 */
765int fsl_hv_failover_register(struct notifier_block *nb)
766{
767 return blocking_notifier_chain_register(&failover_subscribers, nb);
768}
769EXPORT_SYMBOL(fsl_hv_failover_register);
770
771/*
772 * Unregister a callback for failover events
773 */
774int fsl_hv_failover_unregister(struct notifier_block *nb)
775{
776 return blocking_notifier_chain_unregister(&failover_subscribers, nb);
777}
778EXPORT_SYMBOL(fsl_hv_failover_unregister);
779
780/*
781 * Return TRUE if we're running under FSL hypervisor
782 *
783 * This function checks to see if we're running under the Freescale
784 * hypervisor, and returns zero if we're not, or non-zero if we are.
785 *
786 * First, it checks if MSR[GS]==1, which means we're running under some
787 * hypervisor. Then it checks if there is a hypervisor node in the device
788 * tree. Currently, that means there needs to be a node in the root called
789 * "hypervisor" and which has a property named "fsl,hv-version".
790 */
791static int has_fsl_hypervisor(void)
792{
793 struct device_node *node;
794 int ret;
795
6db71994
TT
796 node = of_find_node_by_path("/hypervisor");
797 if (!node)
798 return 0;
799
800 ret = of_find_property(node, "fsl,hv-version", NULL) != NULL;
801
802 of_node_put(node);
803
804 return ret;
805}
806
807/*
808 * Freescale hypervisor management driver init
809 *
810 * This function is called when this module is loaded.
811 *
812 * Register ourselves as a miscellaneous driver. This will register the
813 * fops structure and create the right sysfs entries for udev.
814 */
815static int __init fsl_hypervisor_init(void)
816{
817 struct device_node *np;
818 struct doorbell_isr *dbisr, *n;
819 int ret;
820
821 pr_info("Freescale hypervisor management driver\n");
822
823 if (!has_fsl_hypervisor()) {
824 pr_info("fsl-hv: no hypervisor found\n");
825 return -ENODEV;
826 }
827
828 ret = misc_register(&fsl_hv_misc_dev);
829 if (ret) {
830 pr_err("fsl-hv: cannot register device\n");
831 return ret;
832 }
833
834 INIT_LIST_HEAD(&db_list);
835 INIT_LIST_HEAD(&isr_list);
836
837 for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") {
838 unsigned int irq;
839 const uint32_t *handle;
840
841 handle = of_get_property(np, "interrupts", NULL);
842 irq = irq_of_parse_and_map(np, 0);
843 if (!handle || (irq == NO_IRQ)) {
844 pr_err("fsl-hv: no 'interrupts' property in %s node\n",
845 np->full_name);
846 continue;
847 }
848
849 dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL);
850 if (!dbisr)
851 goto out_of_memory;
852
853 dbisr->irq = irq;
854 dbisr->doorbell = be32_to_cpup(handle);
855
856 if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) {
857 /* The shutdown doorbell gets its own ISR */
858 ret = request_irq(irq, fsl_hv_shutdown_isr, 0,
859 np->name, NULL);
860 } else if (of_device_is_compatible(np,
861 "fsl,hv-state-change-doorbell")) {
862 /*
863 * The state change doorbell triggers a notification if
864 * the state of the managed partition changes to
865 * "stopped". We need a separate interrupt handler for
866 * that, and we also need to know the handle of the
867 * target partition, not just the handle of the
868 * doorbell.
869 */
870 dbisr->partition = ret = get_parent_handle(np);
871 if (ret < 0) {
872 pr_err("fsl-hv: node %s has missing or "
873 "malformed parent\n", np->full_name);
874 kfree(dbisr);
875 continue;
876 }
877 ret = request_threaded_irq(irq, fsl_hv_state_change_isr,
878 fsl_hv_state_change_thread,
879 0, np->name, dbisr);
880 } else
881 ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr);
882
883 if (ret < 0) {
884 pr_err("fsl-hv: could not request irq %u for node %s\n",
885 irq, np->full_name);
886 kfree(dbisr);
887 continue;
888 }
889
890 list_add(&dbisr->list, &isr_list);
891
892 pr_info("fsl-hv: registered handler for doorbell %u\n",
893 dbisr->doorbell);
894 }
895
896 return 0;
897
898out_of_memory:
899 list_for_each_entry_safe(dbisr, n, &isr_list, list) {
900 free_irq(dbisr->irq, dbisr);
901 list_del(&dbisr->list);
902 kfree(dbisr);
903 }
904
905 misc_deregister(&fsl_hv_misc_dev);
906
907 return -ENOMEM;
908}
909
910/*
911 * Freescale hypervisor management driver termination
912 *
913 * This function is called when this driver is unloaded.
914 */
915static void __exit fsl_hypervisor_exit(void)
916{
917 struct doorbell_isr *dbisr, *n;
918
919 list_for_each_entry_safe(dbisr, n, &isr_list, list) {
920 free_irq(dbisr->irq, dbisr);
921 list_del(&dbisr->list);
922 kfree(dbisr);
923 }
924
925 misc_deregister(&fsl_hv_misc_dev);
926}
927
928module_init(fsl_hypervisor_init);
929module_exit(fsl_hypervisor_exit);
930
931MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
932MODULE_DESCRIPTION("Freescale hypervisor management driver");
933MODULE_LICENSE("GPL v2");