]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/xen/swiotlb-xen.c
Merge tag 'v3.12-rc5' into stable/for-linus-3.13
[mirror_ubuntu-bionic-kernel.git] / drivers / xen / swiotlb-xen.c
CommitLineData
b097186f
KRW
1/*
2 * Copyright 2010
3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4 *
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * PV guests under Xen are running in an non-contiguous memory architecture.
17 *
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
21 * operations).
22 *
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
33 *
34 */
35
283c0972
JP
36#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37
b097186f
KRW
38#include <linux/bootmem.h>
39#include <linux/dma-mapping.h>
63c9744b 40#include <linux/export.h>
b097186f
KRW
41#include <xen/swiotlb-xen.h>
42#include <xen/page.h>
43#include <xen/xen-ops.h>
f4b2f07b 44#include <xen/hvc-console.h>
2b2b614d 45
2b2b614d 46#include <trace/events/swiotlb.h>
b097186f
KRW
47/*
48 * Used to do a quick range check in swiotlb_tbl_unmap_single and
49 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
50 * API.
51 */
52
53static char *xen_io_tlb_start, *xen_io_tlb_end;
54static unsigned long xen_io_tlb_nslabs;
55/*
56 * Quick lookup value of the bus address of the IOTLB.
57 */
58
b8b0f559 59static u64 start_dma_addr;
b097186f
KRW
60
61static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
62{
6eab04a8 63 return phys_to_machine(XPADDR(paddr)).maddr;
b097186f
KRW
64}
65
66static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
67{
68 return machine_to_phys(XMADDR(baddr)).paddr;
69}
70
71static dma_addr_t xen_virt_to_bus(void *address)
72{
73 return xen_phys_to_bus(virt_to_phys(address));
74}
75
76static int check_pages_physically_contiguous(unsigned long pfn,
77 unsigned int offset,
78 size_t length)
79{
80 unsigned long next_mfn;
81 int i;
82 int nr_pages;
83
84 next_mfn = pfn_to_mfn(pfn);
85 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
86
87 for (i = 1; i < nr_pages; i++) {
88 if (pfn_to_mfn(++pfn) != ++next_mfn)
89 return 0;
90 }
91 return 1;
92}
93
94static int range_straddles_page_boundary(phys_addr_t p, size_t size)
95{
96 unsigned long pfn = PFN_DOWN(p);
97 unsigned int offset = p & ~PAGE_MASK;
98
99 if (offset + size <= PAGE_SIZE)
100 return 0;
101 if (check_pages_physically_contiguous(pfn, offset, size))
102 return 0;
103 return 1;
104}
105
106static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
107{
108 unsigned long mfn = PFN_DOWN(dma_addr);
109 unsigned long pfn = mfn_to_local_pfn(mfn);
110 phys_addr_t paddr;
111
112 /* If the address is outside our domain, it CAN
113 * have the same virtual address as another address
114 * in our domain. Therefore _only_ check address within our domain.
115 */
116 if (pfn_valid(pfn)) {
117 paddr = PFN_PHYS(pfn);
118 return paddr >= virt_to_phys(xen_io_tlb_start) &&
119 paddr < virt_to_phys(xen_io_tlb_end);
120 }
121 return 0;
122}
123
124static int max_dma_bits = 32;
125
126static int
127xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
128{
129 int i, rc;
130 int dma_bits;
131
132 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
133
134 i = 0;
135 do {
136 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
137
138 do {
139 rc = xen_create_contiguous_region(
140 (unsigned long)buf + (i << IO_TLB_SHIFT),
141 get_order(slabs << IO_TLB_SHIFT),
142 dma_bits);
143 } while (rc && dma_bits++ < max_dma_bits);
144 if (rc)
145 return rc;
146
147 i += slabs;
148 } while (i < nslabs);
149 return 0;
150}
1cef36a5
KRW
151static unsigned long xen_set_nslabs(unsigned long nr_tbl)
152{
153 if (!nr_tbl) {
154 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
155 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
156 } else
157 xen_io_tlb_nslabs = nr_tbl;
b097186f 158
1cef36a5
KRW
159 return xen_io_tlb_nslabs << IO_TLB_SHIFT;
160}
b097186f 161
5bab7864
KRW
162enum xen_swiotlb_err {
163 XEN_SWIOTLB_UNKNOWN = 0,
164 XEN_SWIOTLB_ENOMEM,
165 XEN_SWIOTLB_EFIXUP
166};
167
168static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
169{
170 switch (err) {
171 case XEN_SWIOTLB_ENOMEM:
172 return "Cannot allocate Xen-SWIOTLB buffer\n";
173 case XEN_SWIOTLB_EFIXUP:
174 return "Failed to get contiguous memory for DMA from Xen!\n"\
175 "You either: don't have the permissions, do not have"\
176 " enough free memory under 4GB, or the hypervisor memory"\
177 " is too fragmented!";
178 default:
179 break;
180 }
181 return "";
182}
b8277600 183int __ref xen_swiotlb_init(int verbose, bool early)
b097186f 184{
b8277600 185 unsigned long bytes, order;
f4b2f07b 186 int rc = -ENOMEM;
5bab7864 187 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
f4b2f07b 188 unsigned int repeat = 3;
5f98ecdb 189
1cef36a5 190 xen_io_tlb_nslabs = swiotlb_nr_tbl();
f4b2f07b 191retry:
1cef36a5 192 bytes = xen_set_nslabs(xen_io_tlb_nslabs);
b8277600 193 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
b097186f
KRW
194 /*
195 * Get IO TLB memory from any location.
196 */
b8277600
KRW
197 if (early)
198 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
199 else {
200#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
201#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
202 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
203 xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
204 if (xen_io_tlb_start)
205 break;
206 order--;
207 }
208 if (order != get_order(bytes)) {
283c0972
JP
209 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
210 (PAGE_SIZE << order) >> 20);
b8277600
KRW
211 xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
212 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
213 }
214 }
f4b2f07b 215 if (!xen_io_tlb_start) {
5bab7864 216 m_ret = XEN_SWIOTLB_ENOMEM;
f4b2f07b
KRW
217 goto error;
218 }
b097186f
KRW
219 xen_io_tlb_end = xen_io_tlb_start + bytes;
220 /*
221 * And replace that memory with pages under 4GB.
222 */
223 rc = xen_swiotlb_fixup(xen_io_tlb_start,
224 bytes,
225 xen_io_tlb_nslabs);
f4b2f07b 226 if (rc) {
b8277600
KRW
227 if (early)
228 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
229 else {
230 free_pages((unsigned long)xen_io_tlb_start, order);
231 xen_io_tlb_start = NULL;
232 }
5bab7864 233 m_ret = XEN_SWIOTLB_EFIXUP;
b097186f 234 goto error;
f4b2f07b 235 }
b097186f 236 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
c468bdee 237 if (early) {
ac2cbab2
YL
238 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
239 verbose))
240 panic("Cannot allocate SWIOTLB buffer");
c468bdee
KRW
241 rc = 0;
242 } else
b8277600
KRW
243 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
244 return rc;
b097186f 245error:
f4b2f07b
KRW
246 if (repeat--) {
247 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
248 (xen_io_tlb_nslabs >> 1));
283c0972
JP
249 pr_info("Lowering to %luMB\n",
250 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
f4b2f07b
KRW
251 goto retry;
252 }
283c0972 253 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
b8277600
KRW
254 if (early)
255 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
256 else
257 free_pages((unsigned long)xen_io_tlb_start, order);
258 return rc;
b097186f 259}
b097186f
KRW
260void *
261xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
baa676fc
AP
262 dma_addr_t *dma_handle, gfp_t flags,
263 struct dma_attrs *attrs)
b097186f
KRW
264{
265 void *ret;
266 int order = get_order(size);
267 u64 dma_mask = DMA_BIT_MASK(32);
268 unsigned long vstart;
6810df88
KRW
269 phys_addr_t phys;
270 dma_addr_t dev_addr;
b097186f
KRW
271
272 /*
273 * Ignore region specifiers - the kernel's ideas of
274 * pseudo-phys memory layout has nothing to do with the
275 * machine physical layout. We can't allocate highmem
276 * because we can't return a pointer to it.
277 */
278 flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
279
280 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
281 return ret;
282
283 vstart = __get_free_pages(flags, order);
284 ret = (void *)vstart;
285
6810df88
KRW
286 if (!ret)
287 return ret;
288
b097186f 289 if (hwdev && hwdev->coherent_dma_mask)
b5031ed1 290 dma_mask = dma_alloc_coherent_mask(hwdev, flags);
b097186f 291
6810df88
KRW
292 phys = virt_to_phys(ret);
293 dev_addr = xen_phys_to_bus(phys);
294 if (((dev_addr + size - 1 <= dma_mask)) &&
295 !range_straddles_page_boundary(phys, size))
296 *dma_handle = dev_addr;
297 else {
b097186f
KRW
298 if (xen_create_contiguous_region(vstart, order,
299 fls64(dma_mask)) != 0) {
300 free_pages(vstart, order);
301 return NULL;
302 }
b097186f
KRW
303 *dma_handle = virt_to_machine(ret).maddr;
304 }
6810df88 305 memset(ret, 0, size);
b097186f
KRW
306 return ret;
307}
308EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
309
310void
311xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
baa676fc 312 dma_addr_t dev_addr, struct dma_attrs *attrs)
b097186f
KRW
313{
314 int order = get_order(size);
6810df88
KRW
315 phys_addr_t phys;
316 u64 dma_mask = DMA_BIT_MASK(32);
b097186f
KRW
317
318 if (dma_release_from_coherent(hwdev, order, vaddr))
319 return;
320
6810df88
KRW
321 if (hwdev && hwdev->coherent_dma_mask)
322 dma_mask = hwdev->coherent_dma_mask;
323
324 phys = virt_to_phys(vaddr);
325
326 if (((dev_addr + size - 1 > dma_mask)) ||
327 range_straddles_page_boundary(phys, size))
328 xen_destroy_contiguous_region((unsigned long)vaddr, order);
329
b097186f
KRW
330 free_pages((unsigned long)vaddr, order);
331}
332EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
333
334
335/*
336 * Map a single buffer of the indicated size for DMA in streaming mode. The
337 * physical address to use is returned.
338 *
339 * Once the device is given the dma address, the device owns this memory until
340 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
341 */
342dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
343 unsigned long offset, size_t size,
344 enum dma_data_direction dir,
345 struct dma_attrs *attrs)
346{
e05ed4d1 347 phys_addr_t map, phys = page_to_phys(page) + offset;
b097186f 348 dma_addr_t dev_addr = xen_phys_to_bus(phys);
b097186f
KRW
349
350 BUG_ON(dir == DMA_NONE);
351 /*
352 * If the address happens to be in the device's DMA window,
353 * we can safely return the device addr and not worry about bounce
354 * buffering it.
355 */
356 if (dma_capable(dev, dev_addr, size) &&
357 !range_straddles_page_boundary(phys, size) && !swiotlb_force)
358 return dev_addr;
359
360 /*
361 * Oh well, have to allocate and map a bounce buffer.
362 */
2b2b614d
ZK
363 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
364
b097186f 365 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
e05ed4d1 366 if (map == SWIOTLB_MAP_ERROR)
b097186f
KRW
367 return DMA_ERROR_CODE;
368
e05ed4d1 369 dev_addr = xen_phys_to_bus(map);
b097186f
KRW
370
371 /*
372 * Ensure that the address returned is DMA'ble
373 */
ab2a47bd 374 if (!dma_capable(dev, dev_addr, size)) {
61ca08c3 375 swiotlb_tbl_unmap_single(dev, map, size, dir);
ab2a47bd
KRW
376 dev_addr = 0;
377 }
b097186f
KRW
378 return dev_addr;
379}
380EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
381
382/*
383 * Unmap a single streaming mode DMA translation. The dma_addr and size must
384 * match what was provided for in a previous xen_swiotlb_map_page call. All
385 * other usages are undefined.
386 *
387 * After this call, reads by the cpu to the buffer are guaranteed to see
388 * whatever the device wrote there.
389 */
390static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
391 size_t size, enum dma_data_direction dir)
392{
393 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
394
395 BUG_ON(dir == DMA_NONE);
396
397 /* NOTE: We use dev_addr here, not paddr! */
398 if (is_xen_swiotlb_buffer(dev_addr)) {
61ca08c3 399 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
b097186f
KRW
400 return;
401 }
402
403 if (dir != DMA_FROM_DEVICE)
404 return;
405
406 /*
407 * phys_to_virt doesn't work with hihgmem page but we could
408 * call dma_mark_clean() with hihgmem page here. However, we
409 * are fine since dma_mark_clean() is null on POWERPC. We can
410 * make dma_mark_clean() take a physical address if necessary.
411 */
412 dma_mark_clean(phys_to_virt(paddr), size);
413}
414
415void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
416 size_t size, enum dma_data_direction dir,
417 struct dma_attrs *attrs)
418{
419 xen_unmap_single(hwdev, dev_addr, size, dir);
420}
421EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
422
423/*
424 * Make physical memory consistent for a single streaming mode DMA translation
425 * after a transfer.
426 *
427 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
428 * using the cpu, yet do not wish to teardown the dma mapping, you must
429 * call this function before doing so. At the next point you give the dma
430 * address back to the card, you must first perform a
431 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
432 */
433static void
434xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
435 size_t size, enum dma_data_direction dir,
436 enum dma_sync_target target)
437{
438 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
439
440 BUG_ON(dir == DMA_NONE);
441
442 /* NOTE: We use dev_addr here, not paddr! */
443 if (is_xen_swiotlb_buffer(dev_addr)) {
fbfda893 444 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
b097186f
KRW
445 return;
446 }
447
448 if (dir != DMA_FROM_DEVICE)
449 return;
450
451 dma_mark_clean(phys_to_virt(paddr), size);
452}
453
454void
455xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
456 size_t size, enum dma_data_direction dir)
457{
458 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
459}
460EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
461
462void
463xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
464 size_t size, enum dma_data_direction dir)
465{
466 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
467}
468EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
469
470/*
471 * Map a set of buffers described by scatterlist in streaming mode for DMA.
472 * This is the scatter-gather version of the above xen_swiotlb_map_page
473 * interface. Here the scatter gather list elements are each tagged with the
474 * appropriate dma address and length. They are obtained via
475 * sg_dma_{address,length}(SG).
476 *
477 * NOTE: An implementation may be able to use a smaller number of
478 * DMA address/length pairs than there are SG table elements.
479 * (for example via virtual mapping capabilities)
480 * The routine returns the number of addr/length pairs actually
481 * used, at most nents.
482 *
483 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
484 * same here.
485 */
486int
487xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
488 int nelems, enum dma_data_direction dir,
489 struct dma_attrs *attrs)
490{
491 struct scatterlist *sg;
492 int i;
493
494 BUG_ON(dir == DMA_NONE);
495
496 for_each_sg(sgl, sg, nelems, i) {
497 phys_addr_t paddr = sg_phys(sg);
498 dma_addr_t dev_addr = xen_phys_to_bus(paddr);
499
500 if (swiotlb_force ||
501 !dma_capable(hwdev, dev_addr, sg->length) ||
502 range_straddles_page_boundary(paddr, sg->length)) {
e05ed4d1
AD
503 phys_addr_t map = swiotlb_tbl_map_single(hwdev,
504 start_dma_addr,
505 sg_phys(sg),
506 sg->length,
507 dir);
508 if (map == SWIOTLB_MAP_ERROR) {
b097186f
KRW
509 /* Don't panic here, we expect map_sg users
510 to do proper error handling. */
511 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
512 attrs);
781575cd 513 sg_dma_len(sgl) = 0;
b097186f
KRW
514 return DMA_ERROR_CODE;
515 }
e05ed4d1 516 sg->dma_address = xen_phys_to_bus(map);
b097186f
KRW
517 } else
518 sg->dma_address = dev_addr;
781575cd 519 sg_dma_len(sg) = sg->length;
b097186f
KRW
520 }
521 return nelems;
522}
523EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
524
b097186f
KRW
525/*
526 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
527 * concerning calls here are the same as for swiotlb_unmap_page() above.
528 */
529void
530xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
531 int nelems, enum dma_data_direction dir,
532 struct dma_attrs *attrs)
533{
534 struct scatterlist *sg;
535 int i;
536
537 BUG_ON(dir == DMA_NONE);
538
539 for_each_sg(sgl, sg, nelems, i)
781575cd 540 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
b097186f
KRW
541
542}
543EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
544
b097186f
KRW
545/*
546 * Make physical memory consistent for a set of streaming mode DMA translations
547 * after a transfer.
548 *
549 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
550 * and usage.
551 */
552static void
553xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
554 int nelems, enum dma_data_direction dir,
555 enum dma_sync_target target)
556{
557 struct scatterlist *sg;
558 int i;
559
560 for_each_sg(sgl, sg, nelems, i)
561 xen_swiotlb_sync_single(hwdev, sg->dma_address,
781575cd 562 sg_dma_len(sg), dir, target);
b097186f
KRW
563}
564
565void
566xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
567 int nelems, enum dma_data_direction dir)
568{
569 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
570}
571EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
572
573void
574xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
575 int nelems, enum dma_data_direction dir)
576{
577 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
578}
579EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
580
581int
582xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
583{
584 return !dma_addr;
585}
586EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
587
588/*
589 * Return whether the given device DMA address mask can be supported
590 * properly. For example, if your device can only drive the low 24-bits
591 * during bus mastering, then you would pass 0x00ffffff as the mask to
592 * this function.
593 */
594int
595xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
596{
597 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
598}
599EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);