]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
fixed refresh logic (initial patch by Igor Kovalenko)
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
54936004
FB
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
d5a8f07c
FB
21#ifdef _WIN32
22#include <windows.h>
23#else
a98d49b1 24#include <sys/types.h>
d5a8f07c
FB
25#include <sys/mman.h>
26#endif
54936004
FB
27#include <stdlib.h>
28#include <stdio.h>
29#include <stdarg.h>
30#include <string.h>
31#include <errno.h>
32#include <unistd.h>
33#include <inttypes.h>
34
6180a181
FB
35#include "cpu.h"
36#include "exec-all.h"
53a5960a
PB
37#if defined(CONFIG_USER_ONLY)
38#include <qemu.h>
39#endif
54936004 40
fd6ce8f6 41//#define DEBUG_TB_INVALIDATE
66e85a21 42//#define DEBUG_FLUSH
9fa3e853 43//#define DEBUG_TLB
fd6ce8f6
FB
44
45/* make various TB consistency checks */
46//#define DEBUG_TB_CHECK
98857888 47//#define DEBUG_TLB_CHECK
fd6ce8f6 48
99773bd4
PB
49#if !defined(CONFIG_USER_ONLY)
50/* TB consistency checks only implemented for usermode emulation. */
51#undef DEBUG_TB_CHECK
52#endif
53
fd6ce8f6
FB
54/* threshold to flush the translated code buffer */
55#define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
56
9fa3e853
FB
57#define SMC_BITMAP_USE_THRESHOLD 10
58
59#define MMAP_AREA_START 0x00000000
60#define MMAP_AREA_END 0xa8000000
fd6ce8f6 61
108c49b8
FB
62#if defined(TARGET_SPARC64)
63#define TARGET_PHYS_ADDR_SPACE_BITS 41
64#elif defined(TARGET_PPC64)
65#define TARGET_PHYS_ADDR_SPACE_BITS 42
66#else
67/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
68#define TARGET_PHYS_ADDR_SPACE_BITS 32
69#endif
70
fd6ce8f6 71TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
9fa3e853 72TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
fd6ce8f6 73int nb_tbs;
eb51d102
FB
74/* any access to the tbs or the page table must use this lock */
75spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 76
b8076a74 77uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
fd6ce8f6
FB
78uint8_t *code_gen_ptr;
79
9fa3e853
FB
80int phys_ram_size;
81int phys_ram_fd;
82uint8_t *phys_ram_base;
1ccde1cb 83uint8_t *phys_ram_dirty;
9fa3e853 84
6a00d601
FB
85CPUState *first_cpu;
86/* current CPU in the current thread. It is only valid inside
87 cpu_exec() */
88CPUState *cpu_single_env;
89
54936004 90typedef struct PageDesc {
92e873b9 91 /* list of TBs intersecting this ram page */
fd6ce8f6 92 TranslationBlock *first_tb;
9fa3e853
FB
93 /* in order to optimize self modifying code, we count the number
94 of lookups we do to a given page to use a bitmap */
95 unsigned int code_write_count;
96 uint8_t *code_bitmap;
97#if defined(CONFIG_USER_ONLY)
98 unsigned long flags;
99#endif
54936004
FB
100} PageDesc;
101
92e873b9
FB
102typedef struct PhysPageDesc {
103 /* offset in host memory of the page + io_index in the low 12 bits */
e04f40b5 104 uint32_t phys_offset;
92e873b9
FB
105} PhysPageDesc;
106
54936004
FB
107#define L2_BITS 10
108#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
109
110#define L1_SIZE (1 << L1_BITS)
111#define L2_SIZE (1 << L2_BITS)
112
33417e70 113static void io_mem_init(void);
fd6ce8f6 114
83fb7adf
FB
115unsigned long qemu_real_host_page_size;
116unsigned long qemu_host_page_bits;
117unsigned long qemu_host_page_size;
118unsigned long qemu_host_page_mask;
54936004 119
92e873b9 120/* XXX: for system emulation, it could just be an array */
54936004 121static PageDesc *l1_map[L1_SIZE];
0a962c02 122PhysPageDesc **l1_phys_map;
54936004 123
33417e70 124/* io memory support */
33417e70
FB
125CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
126CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 127void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70
FB
128static int io_mem_nb;
129
34865134
FB
130/* log support */
131char *logfilename = "/tmp/qemu.log";
132FILE *logfile;
133int loglevel;
134
e3db7226
FB
135/* statistics */
136static int tlb_flush_count;
137static int tb_flush_count;
138static int tb_phys_invalidate_count;
139
b346ff46 140static void page_init(void)
54936004 141{
83fb7adf 142 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 143 TARGET_PAGE_SIZE */
67b915a5 144#ifdef _WIN32
d5a8f07c
FB
145 {
146 SYSTEM_INFO system_info;
147 DWORD old_protect;
148
149 GetSystemInfo(&system_info);
150 qemu_real_host_page_size = system_info.dwPageSize;
151
152 VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
153 PAGE_EXECUTE_READWRITE, &old_protect);
154 }
67b915a5 155#else
83fb7adf 156 qemu_real_host_page_size = getpagesize();
d5a8f07c
FB
157 {
158 unsigned long start, end;
159
160 start = (unsigned long)code_gen_buffer;
161 start &= ~(qemu_real_host_page_size - 1);
162
163 end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
164 end += qemu_real_host_page_size - 1;
165 end &= ~(qemu_real_host_page_size - 1);
166
167 mprotect((void *)start, end - start,
168 PROT_READ | PROT_WRITE | PROT_EXEC);
169 }
67b915a5 170#endif
d5a8f07c 171
83fb7adf
FB
172 if (qemu_host_page_size == 0)
173 qemu_host_page_size = qemu_real_host_page_size;
174 if (qemu_host_page_size < TARGET_PAGE_SIZE)
175 qemu_host_page_size = TARGET_PAGE_SIZE;
176 qemu_host_page_bits = 0;
177 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
178 qemu_host_page_bits++;
179 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
180 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
181 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
54936004
FB
182}
183
fd6ce8f6 184static inline PageDesc *page_find_alloc(unsigned int index)
54936004 185{
54936004
FB
186 PageDesc **lp, *p;
187
54936004
FB
188 lp = &l1_map[index >> L2_BITS];
189 p = *lp;
190 if (!p) {
191 /* allocate if not found */
59817ccb 192 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
fd6ce8f6 193 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
54936004
FB
194 *lp = p;
195 }
196 return p + (index & (L2_SIZE - 1));
197}
198
fd6ce8f6 199static inline PageDesc *page_find(unsigned int index)
54936004 200{
54936004
FB
201 PageDesc *p;
202
54936004
FB
203 p = l1_map[index >> L2_BITS];
204 if (!p)
205 return 0;
fd6ce8f6
FB
206 return p + (index & (L2_SIZE - 1));
207}
208
108c49b8 209static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 210{
108c49b8 211 void **lp, **p;
e3f4e2a4 212 PhysPageDesc *pd;
92e873b9 213
108c49b8
FB
214 p = (void **)l1_phys_map;
215#if TARGET_PHYS_ADDR_SPACE_BITS > 32
216
217#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
218#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
219#endif
220 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
221 p = *lp;
222 if (!p) {
223 /* allocate if not found */
108c49b8
FB
224 if (!alloc)
225 return NULL;
226 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
227 memset(p, 0, sizeof(void *) * L1_SIZE);
228 *lp = p;
229 }
230#endif
231 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
232 pd = *lp;
233 if (!pd) {
234 int i;
108c49b8
FB
235 /* allocate if not found */
236 if (!alloc)
237 return NULL;
e3f4e2a4
PB
238 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
239 *lp = pd;
240 for (i = 0; i < L2_SIZE; i++)
241 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 242 }
e3f4e2a4 243 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
244}
245
108c49b8 246static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 247{
108c49b8 248 return phys_page_find_alloc(index, 0);
92e873b9
FB
249}
250
9fa3e853 251#if !defined(CONFIG_USER_ONLY)
6a00d601 252static void tlb_protect_code(ram_addr_t ram_addr);
3a7d929e
FB
253static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
254 target_ulong vaddr);
9fa3e853 255#endif
fd6ce8f6 256
6a00d601 257void cpu_exec_init(CPUState *env)
fd6ce8f6 258{
6a00d601
FB
259 CPUState **penv;
260 int cpu_index;
261
fd6ce8f6
FB
262 if (!code_gen_ptr) {
263 code_gen_ptr = code_gen_buffer;
b346ff46 264 page_init();
33417e70 265 io_mem_init();
fd6ce8f6 266 }
6a00d601
FB
267 env->next_cpu = NULL;
268 penv = &first_cpu;
269 cpu_index = 0;
270 while (*penv != NULL) {
271 penv = (CPUState **)&(*penv)->next_cpu;
272 cpu_index++;
273 }
274 env->cpu_index = cpu_index;
275 *penv = env;
fd6ce8f6
FB
276}
277
9fa3e853
FB
278static inline void invalidate_page_bitmap(PageDesc *p)
279{
280 if (p->code_bitmap) {
59817ccb 281 qemu_free(p->code_bitmap);
9fa3e853
FB
282 p->code_bitmap = NULL;
283 }
284 p->code_write_count = 0;
285}
286
fd6ce8f6
FB
287/* set to NULL all the 'first_tb' fields in all PageDescs */
288static void page_flush_tb(void)
289{
290 int i, j;
291 PageDesc *p;
292
293 for(i = 0; i < L1_SIZE; i++) {
294 p = l1_map[i];
295 if (p) {
9fa3e853
FB
296 for(j = 0; j < L2_SIZE; j++) {
297 p->first_tb = NULL;
298 invalidate_page_bitmap(p);
299 p++;
300 }
fd6ce8f6
FB
301 }
302 }
303}
304
305/* flush all the translation blocks */
d4e8164f 306/* XXX: tb_flush is currently not thread safe */
6a00d601 307void tb_flush(CPUState *env1)
fd6ce8f6 308{
6a00d601 309 CPUState *env;
0124311e 310#if defined(DEBUG_FLUSH)
fd6ce8f6
FB
311 printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
312 code_gen_ptr - code_gen_buffer,
313 nb_tbs,
0124311e 314 nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
fd6ce8f6
FB
315#endif
316 nb_tbs = 0;
6a00d601
FB
317
318 for(env = first_cpu; env != NULL; env = env->next_cpu) {
319 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
320 }
9fa3e853 321
8a8a608f 322 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 323 page_flush_tb();
9fa3e853 324
fd6ce8f6 325 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
326 /* XXX: flush processor icache at this point if cache flush is
327 expensive */
e3db7226 328 tb_flush_count++;
fd6ce8f6
FB
329}
330
331#ifdef DEBUG_TB_CHECK
332
333static void tb_invalidate_check(unsigned long address)
334{
335 TranslationBlock *tb;
336 int i;
337 address &= TARGET_PAGE_MASK;
99773bd4
PB
338 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
339 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
340 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
341 address >= tb->pc + tb->size)) {
342 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 343 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
344 }
345 }
346 }
347}
348
349/* verify that all the pages have correct rights for code */
350static void tb_page_check(void)
351{
352 TranslationBlock *tb;
353 int i, flags1, flags2;
354
99773bd4
PB
355 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
356 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
357 flags1 = page_get_flags(tb->pc);
358 flags2 = page_get_flags(tb->pc + tb->size - 1);
359 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
360 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 361 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
362 }
363 }
364 }
365}
366
d4e8164f
FB
367void tb_jmp_check(TranslationBlock *tb)
368{
369 TranslationBlock *tb1;
370 unsigned int n1;
371
372 /* suppress any remaining jumps to this TB */
373 tb1 = tb->jmp_first;
374 for(;;) {
375 n1 = (long)tb1 & 3;
376 tb1 = (TranslationBlock *)((long)tb1 & ~3);
377 if (n1 == 2)
378 break;
379 tb1 = tb1->jmp_next[n1];
380 }
381 /* check end of list */
382 if (tb1 != tb) {
383 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
384 }
385}
386
fd6ce8f6
FB
387#endif
388
389/* invalidate one TB */
390static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
391 int next_offset)
392{
393 TranslationBlock *tb1;
394 for(;;) {
395 tb1 = *ptb;
396 if (tb1 == tb) {
397 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
398 break;
399 }
400 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
401 }
402}
403
9fa3e853
FB
404static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
405{
406 TranslationBlock *tb1;
407 unsigned int n1;
408
409 for(;;) {
410 tb1 = *ptb;
411 n1 = (long)tb1 & 3;
412 tb1 = (TranslationBlock *)((long)tb1 & ~3);
413 if (tb1 == tb) {
414 *ptb = tb1->page_next[n1];
415 break;
416 }
417 ptb = &tb1->page_next[n1];
418 }
419}
420
d4e8164f
FB
421static inline void tb_jmp_remove(TranslationBlock *tb, int n)
422{
423 TranslationBlock *tb1, **ptb;
424 unsigned int n1;
425
426 ptb = &tb->jmp_next[n];
427 tb1 = *ptb;
428 if (tb1) {
429 /* find tb(n) in circular list */
430 for(;;) {
431 tb1 = *ptb;
432 n1 = (long)tb1 & 3;
433 tb1 = (TranslationBlock *)((long)tb1 & ~3);
434 if (n1 == n && tb1 == tb)
435 break;
436 if (n1 == 2) {
437 ptb = &tb1->jmp_first;
438 } else {
439 ptb = &tb1->jmp_next[n1];
440 }
441 }
442 /* now we can suppress tb(n) from the list */
443 *ptb = tb->jmp_next[n];
444
445 tb->jmp_next[n] = NULL;
446 }
447}
448
449/* reset the jump entry 'n' of a TB so that it is not chained to
450 another TB */
451static inline void tb_reset_jump(TranslationBlock *tb, int n)
452{
453 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
454}
455
8a40a180 456static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
fd6ce8f6 457{
6a00d601 458 CPUState *env;
8a40a180 459 PageDesc *p;
d4e8164f 460 unsigned int h, n1;
8a40a180
FB
461 target_ulong phys_pc;
462 TranslationBlock *tb1, *tb2;
d4e8164f 463
8a40a180
FB
464 /* remove the TB from the hash list */
465 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
466 h = tb_phys_hash_func(phys_pc);
467 tb_remove(&tb_phys_hash[h], tb,
468 offsetof(TranslationBlock, phys_hash_next));
469
470 /* remove the TB from the page list */
471 if (tb->page_addr[0] != page_addr) {
472 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
473 tb_page_remove(&p->first_tb, tb);
474 invalidate_page_bitmap(p);
475 }
476 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
477 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
478 tb_page_remove(&p->first_tb, tb);
479 invalidate_page_bitmap(p);
480 }
481
36bdbe54 482 tb_invalidated_flag = 1;
59817ccb 483
fd6ce8f6 484 /* remove the TB from the hash list */
8a40a180 485 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
486 for(env = first_cpu; env != NULL; env = env->next_cpu) {
487 if (env->tb_jmp_cache[h] == tb)
488 env->tb_jmp_cache[h] = NULL;
489 }
d4e8164f
FB
490
491 /* suppress this TB from the two jump lists */
492 tb_jmp_remove(tb, 0);
493 tb_jmp_remove(tb, 1);
494
495 /* suppress any remaining jumps to this TB */
496 tb1 = tb->jmp_first;
497 for(;;) {
498 n1 = (long)tb1 & 3;
499 if (n1 == 2)
500 break;
501 tb1 = (TranslationBlock *)((long)tb1 & ~3);
502 tb2 = tb1->jmp_next[n1];
503 tb_reset_jump(tb1, n1);
504 tb1->jmp_next[n1] = NULL;
505 tb1 = tb2;
506 }
507 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 508
e3db7226 509 tb_phys_invalidate_count++;
9fa3e853
FB
510}
511
512static inline void set_bits(uint8_t *tab, int start, int len)
513{
514 int end, mask, end1;
515
516 end = start + len;
517 tab += start >> 3;
518 mask = 0xff << (start & 7);
519 if ((start & ~7) == (end & ~7)) {
520 if (start < end) {
521 mask &= ~(0xff << (end & 7));
522 *tab |= mask;
523 }
524 } else {
525 *tab++ |= mask;
526 start = (start + 8) & ~7;
527 end1 = end & ~7;
528 while (start < end1) {
529 *tab++ = 0xff;
530 start += 8;
531 }
532 if (start < end) {
533 mask = ~(0xff << (end & 7));
534 *tab |= mask;
535 }
536 }
537}
538
539static void build_page_bitmap(PageDesc *p)
540{
541 int n, tb_start, tb_end;
542 TranslationBlock *tb;
543
59817ccb 544 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
545 if (!p->code_bitmap)
546 return;
547 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
548
549 tb = p->first_tb;
550 while (tb != NULL) {
551 n = (long)tb & 3;
552 tb = (TranslationBlock *)((long)tb & ~3);
553 /* NOTE: this is subtle as a TB may span two physical pages */
554 if (n == 0) {
555 /* NOTE: tb_end may be after the end of the page, but
556 it is not a problem */
557 tb_start = tb->pc & ~TARGET_PAGE_MASK;
558 tb_end = tb_start + tb->size;
559 if (tb_end > TARGET_PAGE_SIZE)
560 tb_end = TARGET_PAGE_SIZE;
561 } else {
562 tb_start = 0;
563 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
564 }
565 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
566 tb = tb->page_next[n];
567 }
568}
569
d720b93d
FB
570#ifdef TARGET_HAS_PRECISE_SMC
571
572static void tb_gen_code(CPUState *env,
573 target_ulong pc, target_ulong cs_base, int flags,
574 int cflags)
575{
576 TranslationBlock *tb;
577 uint8_t *tc_ptr;
578 target_ulong phys_pc, phys_page2, virt_page2;
579 int code_gen_size;
580
c27004ec
FB
581 phys_pc = get_phys_addr_code(env, pc);
582 tb = tb_alloc(pc);
d720b93d
FB
583 if (!tb) {
584 /* flush must be done */
585 tb_flush(env);
586 /* cannot fail at this point */
c27004ec 587 tb = tb_alloc(pc);
d720b93d
FB
588 }
589 tc_ptr = code_gen_ptr;
590 tb->tc_ptr = tc_ptr;
591 tb->cs_base = cs_base;
592 tb->flags = flags;
593 tb->cflags = cflags;
594 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
595 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
596
597 /* check next page if needed */
c27004ec 598 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 599 phys_page2 = -1;
c27004ec 600 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
601 phys_page2 = get_phys_addr_code(env, virt_page2);
602 }
603 tb_link_phys(tb, phys_pc, phys_page2);
604}
605#endif
606
9fa3e853
FB
607/* invalidate all TBs which intersect with the target physical page
608 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
609 the same physical page. 'is_cpu_write_access' should be true if called
610 from a real cpu write access: the virtual CPU will exit the current
611 TB if code is modified inside this TB. */
612void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
613 int is_cpu_write_access)
614{
615 int n, current_tb_modified, current_tb_not_found, current_flags;
d720b93d 616 CPUState *env = cpu_single_env;
9fa3e853 617 PageDesc *p;
ea1c1802 618 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
9fa3e853 619 target_ulong tb_start, tb_end;
d720b93d 620 target_ulong current_pc, current_cs_base;
9fa3e853
FB
621
622 p = page_find(start >> TARGET_PAGE_BITS);
623 if (!p)
624 return;
625 if (!p->code_bitmap &&
d720b93d
FB
626 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
627 is_cpu_write_access) {
9fa3e853
FB
628 /* build code bitmap */
629 build_page_bitmap(p);
630 }
631
632 /* we remove all the TBs in the range [start, end[ */
633 /* XXX: see if in some cases it could be faster to invalidate all the code */
d720b93d
FB
634 current_tb_not_found = is_cpu_write_access;
635 current_tb_modified = 0;
636 current_tb = NULL; /* avoid warning */
637 current_pc = 0; /* avoid warning */
638 current_cs_base = 0; /* avoid warning */
639 current_flags = 0; /* avoid warning */
9fa3e853
FB
640 tb = p->first_tb;
641 while (tb != NULL) {
642 n = (long)tb & 3;
643 tb = (TranslationBlock *)((long)tb & ~3);
644 tb_next = tb->page_next[n];
645 /* NOTE: this is subtle as a TB may span two physical pages */
646 if (n == 0) {
647 /* NOTE: tb_end may be after the end of the page, but
648 it is not a problem */
649 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
650 tb_end = tb_start + tb->size;
651 } else {
652 tb_start = tb->page_addr[1];
653 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
654 }
655 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
656#ifdef TARGET_HAS_PRECISE_SMC
657 if (current_tb_not_found) {
658 current_tb_not_found = 0;
659 current_tb = NULL;
660 if (env->mem_write_pc) {
661 /* now we have a real cpu fault */
662 current_tb = tb_find_pc(env->mem_write_pc);
663 }
664 }
665 if (current_tb == tb &&
666 !(current_tb->cflags & CF_SINGLE_INSN)) {
667 /* If we are modifying the current TB, we must stop
668 its execution. We could be more precise by checking
669 that the modification is after the current PC, but it
670 would require a specialized function to partially
671 restore the CPU state */
672
673 current_tb_modified = 1;
674 cpu_restore_state(current_tb, env,
675 env->mem_write_pc, NULL);
676#if defined(TARGET_I386)
677 current_flags = env->hflags;
678 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
679 current_cs_base = (target_ulong)env->segs[R_CS].base;
680 current_pc = current_cs_base + env->eip;
681#else
682#error unsupported CPU
683#endif
684 }
685#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
686 /* we need to do that to handle the case where a signal
687 occurs while doing tb_phys_invalidate() */
688 saved_tb = NULL;
689 if (env) {
690 saved_tb = env->current_tb;
691 env->current_tb = NULL;
692 }
9fa3e853 693 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
694 if (env) {
695 env->current_tb = saved_tb;
696 if (env->interrupt_request && env->current_tb)
697 cpu_interrupt(env, env->interrupt_request);
698 }
9fa3e853
FB
699 }
700 tb = tb_next;
701 }
702#if !defined(CONFIG_USER_ONLY)
703 /* if no code remaining, no need to continue to use slow writes */
704 if (!p->first_tb) {
705 invalidate_page_bitmap(p);
d720b93d
FB
706 if (is_cpu_write_access) {
707 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
708 }
709 }
710#endif
711#ifdef TARGET_HAS_PRECISE_SMC
712 if (current_tb_modified) {
713 /* we generate a block containing just the instruction
714 modifying the memory. It will ensure that it cannot modify
715 itself */
ea1c1802 716 env->current_tb = NULL;
d720b93d
FB
717 tb_gen_code(env, current_pc, current_cs_base, current_flags,
718 CF_SINGLE_INSN);
719 cpu_resume_from_signal(env, NULL);
9fa3e853 720 }
fd6ce8f6 721#endif
9fa3e853 722}
fd6ce8f6 723
9fa3e853 724/* len must be <= 8 and start must be a multiple of len */
d720b93d 725static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
9fa3e853
FB
726{
727 PageDesc *p;
728 int offset, b;
59817ccb 729#if 0
a4193c8a
FB
730 if (1) {
731 if (loglevel) {
732 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
733 cpu_single_env->mem_write_vaddr, len,
734 cpu_single_env->eip,
735 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
736 }
59817ccb
FB
737 }
738#endif
9fa3e853
FB
739 p = page_find(start >> TARGET_PAGE_BITS);
740 if (!p)
741 return;
742 if (p->code_bitmap) {
743 offset = start & ~TARGET_PAGE_MASK;
744 b = p->code_bitmap[offset >> 3] >> (offset & 7);
745 if (b & ((1 << len) - 1))
746 goto do_invalidate;
747 } else {
748 do_invalidate:
d720b93d 749 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
750 }
751}
752
9fa3e853 753#if !defined(CONFIG_SOFTMMU)
d720b93d
FB
754static void tb_invalidate_phys_page(target_ulong addr,
755 unsigned long pc, void *puc)
9fa3e853 756{
d720b93d
FB
757 int n, current_flags, current_tb_modified;
758 target_ulong current_pc, current_cs_base;
9fa3e853 759 PageDesc *p;
d720b93d
FB
760 TranslationBlock *tb, *current_tb;
761#ifdef TARGET_HAS_PRECISE_SMC
762 CPUState *env = cpu_single_env;
763#endif
9fa3e853
FB
764
765 addr &= TARGET_PAGE_MASK;
766 p = page_find(addr >> TARGET_PAGE_BITS);
767 if (!p)
768 return;
769 tb = p->first_tb;
d720b93d
FB
770 current_tb_modified = 0;
771 current_tb = NULL;
772 current_pc = 0; /* avoid warning */
773 current_cs_base = 0; /* avoid warning */
774 current_flags = 0; /* avoid warning */
775#ifdef TARGET_HAS_PRECISE_SMC
776 if (tb && pc != 0) {
777 current_tb = tb_find_pc(pc);
778 }
779#endif
9fa3e853
FB
780 while (tb != NULL) {
781 n = (long)tb & 3;
782 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
783#ifdef TARGET_HAS_PRECISE_SMC
784 if (current_tb == tb &&
785 !(current_tb->cflags & CF_SINGLE_INSN)) {
786 /* If we are modifying the current TB, we must stop
787 its execution. We could be more precise by checking
788 that the modification is after the current PC, but it
789 would require a specialized function to partially
790 restore the CPU state */
791
792 current_tb_modified = 1;
793 cpu_restore_state(current_tb, env, pc, puc);
794#if defined(TARGET_I386)
795 current_flags = env->hflags;
796 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
797 current_cs_base = (target_ulong)env->segs[R_CS].base;
798 current_pc = current_cs_base + env->eip;
799#else
800#error unsupported CPU
801#endif
802 }
803#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
804 tb_phys_invalidate(tb, addr);
805 tb = tb->page_next[n];
806 }
fd6ce8f6 807 p->first_tb = NULL;
d720b93d
FB
808#ifdef TARGET_HAS_PRECISE_SMC
809 if (current_tb_modified) {
810 /* we generate a block containing just the instruction
811 modifying the memory. It will ensure that it cannot modify
812 itself */
ea1c1802 813 env->current_tb = NULL;
d720b93d
FB
814 tb_gen_code(env, current_pc, current_cs_base, current_flags,
815 CF_SINGLE_INSN);
816 cpu_resume_from_signal(env, puc);
817 }
818#endif
fd6ce8f6 819}
9fa3e853 820#endif
fd6ce8f6
FB
821
822/* add the tb in the target page and protect it if necessary */
9fa3e853 823static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 824 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
825{
826 PageDesc *p;
9fa3e853
FB
827 TranslationBlock *last_first_tb;
828
829 tb->page_addr[n] = page_addr;
3a7d929e 830 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
831 tb->page_next[n] = p->first_tb;
832 last_first_tb = p->first_tb;
833 p->first_tb = (TranslationBlock *)((long)tb | n);
834 invalidate_page_bitmap(p);
fd6ce8f6 835
107db443 836#if defined(TARGET_HAS_SMC) || 1
d720b93d 837
9fa3e853 838#if defined(CONFIG_USER_ONLY)
fd6ce8f6 839 if (p->flags & PAGE_WRITE) {
53a5960a
PB
840 target_ulong addr;
841 PageDesc *p2;
9fa3e853
FB
842 int prot;
843
fd6ce8f6
FB
844 /* force the host page as non writable (writes will have a
845 page fault + mprotect overhead) */
53a5960a 846 page_addr &= qemu_host_page_mask;
fd6ce8f6 847 prot = 0;
53a5960a
PB
848 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
849 addr += TARGET_PAGE_SIZE) {
850
851 p2 = page_find (addr >> TARGET_PAGE_BITS);
852 if (!p2)
853 continue;
854 prot |= p2->flags;
855 p2->flags &= ~PAGE_WRITE;
856 page_get_flags(addr);
857 }
858 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
859 (prot & PAGE_BITS) & ~PAGE_WRITE);
860#ifdef DEBUG_TB_INVALIDATE
861 printf("protecting code page: 0x%08lx\n",
53a5960a 862 page_addr);
fd6ce8f6 863#endif
fd6ce8f6 864 }
9fa3e853
FB
865#else
866 /* if some code is already present, then the pages are already
867 protected. So we handle the case where only the first TB is
868 allocated in a physical page */
869 if (!last_first_tb) {
6a00d601 870 tlb_protect_code(page_addr);
9fa3e853
FB
871 }
872#endif
d720b93d
FB
873
874#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
875}
876
877/* Allocate a new translation block. Flush the translation buffer if
878 too many translation blocks or too much generated code. */
c27004ec 879TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
880{
881 TranslationBlock *tb;
fd6ce8f6
FB
882
883 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
884 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
d4e8164f 885 return NULL;
fd6ce8f6
FB
886 tb = &tbs[nb_tbs++];
887 tb->pc = pc;
b448f2f3 888 tb->cflags = 0;
d4e8164f
FB
889 return tb;
890}
891
9fa3e853
FB
892/* add a new TB and link it to the physical page tables. phys_page2 is
893 (-1) to indicate that only one page contains the TB. */
894void tb_link_phys(TranslationBlock *tb,
895 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 896{
9fa3e853
FB
897 unsigned int h;
898 TranslationBlock **ptb;
899
900 /* add in the physical hash table */
901 h = tb_phys_hash_func(phys_pc);
902 ptb = &tb_phys_hash[h];
903 tb->phys_hash_next = *ptb;
904 *ptb = tb;
fd6ce8f6
FB
905
906 /* add in the page list */
9fa3e853
FB
907 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
908 if (phys_page2 != -1)
909 tb_alloc_page(tb, 1, phys_page2);
910 else
911 tb->page_addr[1] = -1;
9fa3e853 912
d4e8164f
FB
913 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
914 tb->jmp_next[0] = NULL;
915 tb->jmp_next[1] = NULL;
b448f2f3
FB
916#ifdef USE_CODE_COPY
917 tb->cflags &= ~CF_FP_USED;
918 if (tb->cflags & CF_TB_FP_USED)
919 tb->cflags |= CF_FP_USED;
920#endif
d4e8164f
FB
921
922 /* init original jump addresses */
923 if (tb->tb_next_offset[0] != 0xffff)
924 tb_reset_jump(tb, 0);
925 if (tb->tb_next_offset[1] != 0xffff)
926 tb_reset_jump(tb, 1);
8a40a180
FB
927
928#ifdef DEBUG_TB_CHECK
929 tb_page_check();
930#endif
fd6ce8f6
FB
931}
932
9fa3e853
FB
933/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
934 tb[1].tc_ptr. Return NULL if not found */
935TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 936{
9fa3e853
FB
937 int m_min, m_max, m;
938 unsigned long v;
939 TranslationBlock *tb;
a513fe19
FB
940
941 if (nb_tbs <= 0)
942 return NULL;
943 if (tc_ptr < (unsigned long)code_gen_buffer ||
944 tc_ptr >= (unsigned long)code_gen_ptr)
945 return NULL;
946 /* binary search (cf Knuth) */
947 m_min = 0;
948 m_max = nb_tbs - 1;
949 while (m_min <= m_max) {
950 m = (m_min + m_max) >> 1;
951 tb = &tbs[m];
952 v = (unsigned long)tb->tc_ptr;
953 if (v == tc_ptr)
954 return tb;
955 else if (tc_ptr < v) {
956 m_max = m - 1;
957 } else {
958 m_min = m + 1;
959 }
960 }
961 return &tbs[m_max];
962}
7501267e 963
ea041c0e
FB
964static void tb_reset_jump_recursive(TranslationBlock *tb);
965
966static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
967{
968 TranslationBlock *tb1, *tb_next, **ptb;
969 unsigned int n1;
970
971 tb1 = tb->jmp_next[n];
972 if (tb1 != NULL) {
973 /* find head of list */
974 for(;;) {
975 n1 = (long)tb1 & 3;
976 tb1 = (TranslationBlock *)((long)tb1 & ~3);
977 if (n1 == 2)
978 break;
979 tb1 = tb1->jmp_next[n1];
980 }
981 /* we are now sure now that tb jumps to tb1 */
982 tb_next = tb1;
983
984 /* remove tb from the jmp_first list */
985 ptb = &tb_next->jmp_first;
986 for(;;) {
987 tb1 = *ptb;
988 n1 = (long)tb1 & 3;
989 tb1 = (TranslationBlock *)((long)tb1 & ~3);
990 if (n1 == n && tb1 == tb)
991 break;
992 ptb = &tb1->jmp_next[n1];
993 }
994 *ptb = tb->jmp_next[n];
995 tb->jmp_next[n] = NULL;
996
997 /* suppress the jump to next tb in generated code */
998 tb_reset_jump(tb, n);
999
0124311e 1000 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1001 tb_reset_jump_recursive(tb_next);
1002 }
1003}
1004
1005static void tb_reset_jump_recursive(TranslationBlock *tb)
1006{
1007 tb_reset_jump_recursive2(tb, 0);
1008 tb_reset_jump_recursive2(tb, 1);
1009}
1010
1fddef4b 1011#if defined(TARGET_HAS_ICE)
d720b93d
FB
1012static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1013{
c2f07f81
PB
1014 target_ulong addr, pd;
1015 ram_addr_t ram_addr;
1016 PhysPageDesc *p;
d720b93d 1017
c2f07f81
PB
1018 addr = cpu_get_phys_page_debug(env, pc);
1019 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1020 if (!p) {
1021 pd = IO_MEM_UNASSIGNED;
1022 } else {
1023 pd = p->phys_offset;
1024 }
1025 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1026 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1027}
c27004ec 1028#endif
d720b93d 1029
c33a346e
FB
1030/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1031 breakpoint is reached */
2e12669a 1032int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
4c3a88a2 1033{
1fddef4b 1034#if defined(TARGET_HAS_ICE)
4c3a88a2 1035 int i;
d720b93d 1036
4c3a88a2
FB
1037 for(i = 0; i < env->nb_breakpoints; i++) {
1038 if (env->breakpoints[i] == pc)
1039 return 0;
1040 }
1041
1042 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1043 return -1;
1044 env->breakpoints[env->nb_breakpoints++] = pc;
d720b93d
FB
1045
1046 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1047 return 0;
1048#else
1049 return -1;
1050#endif
1051}
1052
1053/* remove a breakpoint */
2e12669a 1054int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
4c3a88a2 1055{
1fddef4b 1056#if defined(TARGET_HAS_ICE)
4c3a88a2
FB
1057 int i;
1058 for(i = 0; i < env->nb_breakpoints; i++) {
1059 if (env->breakpoints[i] == pc)
1060 goto found;
1061 }
1062 return -1;
1063 found:
4c3a88a2 1064 env->nb_breakpoints--;
1fddef4b
FB
1065 if (i < env->nb_breakpoints)
1066 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
d720b93d
FB
1067
1068 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1069 return 0;
1070#else
1071 return -1;
1072#endif
1073}
1074
c33a346e
FB
1075/* enable or disable single step mode. EXCP_DEBUG is returned by the
1076 CPU loop after each instruction */
1077void cpu_single_step(CPUState *env, int enabled)
1078{
1fddef4b 1079#if defined(TARGET_HAS_ICE)
c33a346e
FB
1080 if (env->singlestep_enabled != enabled) {
1081 env->singlestep_enabled = enabled;
1082 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1083 /* XXX: only flush what is necessary */
0124311e 1084 tb_flush(env);
c33a346e
FB
1085 }
1086#endif
1087}
1088
34865134
FB
1089/* enable or disable low levels log */
1090void cpu_set_log(int log_flags)
1091{
1092 loglevel = log_flags;
1093 if (loglevel && !logfile) {
1094 logfile = fopen(logfilename, "w");
1095 if (!logfile) {
1096 perror(logfilename);
1097 _exit(1);
1098 }
9fa3e853
FB
1099#if !defined(CONFIG_SOFTMMU)
1100 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1101 {
1102 static uint8_t logfile_buf[4096];
1103 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1104 }
1105#else
34865134 1106 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1107#endif
34865134
FB
1108 }
1109}
1110
1111void cpu_set_log_filename(const char *filename)
1112{
1113 logfilename = strdup(filename);
1114}
c33a346e 1115
0124311e 1116/* mask must never be zero, except for A20 change call */
68a79315 1117void cpu_interrupt(CPUState *env, int mask)
ea041c0e
FB
1118{
1119 TranslationBlock *tb;
ee8b7021 1120 static int interrupt_lock;
59817ccb 1121
68a79315 1122 env->interrupt_request |= mask;
ea041c0e
FB
1123 /* if the cpu is currently executing code, we must unlink it and
1124 all the potentially executing TB */
1125 tb = env->current_tb;
ee8b7021
FB
1126 if (tb && !testandset(&interrupt_lock)) {
1127 env->current_tb = NULL;
ea041c0e 1128 tb_reset_jump_recursive(tb);
ee8b7021 1129 interrupt_lock = 0;
ea041c0e
FB
1130 }
1131}
1132
b54ad049
FB
1133void cpu_reset_interrupt(CPUState *env, int mask)
1134{
1135 env->interrupt_request &= ~mask;
1136}
1137
f193c797
FB
1138CPULogItem cpu_log_items[] = {
1139 { CPU_LOG_TB_OUT_ASM, "out_asm",
1140 "show generated host assembly code for each compiled TB" },
1141 { CPU_LOG_TB_IN_ASM, "in_asm",
1142 "show target assembly code for each compiled TB" },
1143 { CPU_LOG_TB_OP, "op",
1144 "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
1145#ifdef TARGET_I386
1146 { CPU_LOG_TB_OP_OPT, "op_opt",
1147 "show micro ops after optimization for each compiled TB" },
1148#endif
1149 { CPU_LOG_INT, "int",
1150 "show interrupts/exceptions in short format" },
1151 { CPU_LOG_EXEC, "exec",
1152 "show trace before each executed TB (lots of logs)" },
9fddaa0c
FB
1153 { CPU_LOG_TB_CPU, "cpu",
1154 "show CPU state before bloc translation" },
f193c797
FB
1155#ifdef TARGET_I386
1156 { CPU_LOG_PCALL, "pcall",
1157 "show protected mode far calls/returns/exceptions" },
1158#endif
8e3a9fd2 1159#ifdef DEBUG_IOPORT
fd872598
FB
1160 { CPU_LOG_IOPORT, "ioport",
1161 "show all i/o ports accesses" },
8e3a9fd2 1162#endif
f193c797
FB
1163 { 0, NULL, NULL },
1164};
1165
1166static int cmp1(const char *s1, int n, const char *s2)
1167{
1168 if (strlen(s2) != n)
1169 return 0;
1170 return memcmp(s1, s2, n) == 0;
1171}
1172
1173/* takes a comma separated list of log masks. Return 0 if error. */
1174int cpu_str_to_log_mask(const char *str)
1175{
1176 CPULogItem *item;
1177 int mask;
1178 const char *p, *p1;
1179
1180 p = str;
1181 mask = 0;
1182 for(;;) {
1183 p1 = strchr(p, ',');
1184 if (!p1)
1185 p1 = p + strlen(p);
8e3a9fd2
FB
1186 if(cmp1(p,p1-p,"all")) {
1187 for(item = cpu_log_items; item->mask != 0; item++) {
1188 mask |= item->mask;
1189 }
1190 } else {
f193c797
FB
1191 for(item = cpu_log_items; item->mask != 0; item++) {
1192 if (cmp1(p, p1 - p, item->name))
1193 goto found;
1194 }
1195 return 0;
8e3a9fd2 1196 }
f193c797
FB
1197 found:
1198 mask |= item->mask;
1199 if (*p1 != ',')
1200 break;
1201 p = p1 + 1;
1202 }
1203 return mask;
1204}
ea041c0e 1205
7501267e
FB
1206void cpu_abort(CPUState *env, const char *fmt, ...)
1207{
1208 va_list ap;
1209
1210 va_start(ap, fmt);
1211 fprintf(stderr, "qemu: fatal: ");
1212 vfprintf(stderr, fmt, ap);
1213 fprintf(stderr, "\n");
1214#ifdef TARGET_I386
7fe48483
FB
1215 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1216#else
1217 cpu_dump_state(env, stderr, fprintf, 0);
7501267e
FB
1218#endif
1219 va_end(ap);
1220 abort();
1221}
1222
0124311e
FB
1223#if !defined(CONFIG_USER_ONLY)
1224
ee8b7021
FB
1225/* NOTE: if flush_global is true, also flush global entries (not
1226 implemented yet) */
1227void tlb_flush(CPUState *env, int flush_global)
33417e70 1228{
33417e70 1229 int i;
0124311e 1230
9fa3e853
FB
1231#if defined(DEBUG_TLB)
1232 printf("tlb_flush:\n");
1233#endif
0124311e
FB
1234 /* must reset current TB so that interrupts cannot modify the
1235 links while we are modifying them */
1236 env->current_tb = NULL;
1237
33417e70 1238 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1239 env->tlb_table[0][i].addr_read = -1;
1240 env->tlb_table[0][i].addr_write = -1;
1241 env->tlb_table[0][i].addr_code = -1;
1242 env->tlb_table[1][i].addr_read = -1;
1243 env->tlb_table[1][i].addr_write = -1;
1244 env->tlb_table[1][i].addr_code = -1;
33417e70 1245 }
9fa3e853 1246
8a40a180 1247 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853
FB
1248
1249#if !defined(CONFIG_SOFTMMU)
1250 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
0a962c02
FB
1251#endif
1252#ifdef USE_KQEMU
1253 if (env->kqemu_enabled) {
1254 kqemu_flush(env, flush_global);
1255 }
9fa3e853 1256#endif
e3db7226 1257 tlb_flush_count++;
33417e70
FB
1258}
1259
274da6b2 1260static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1261{
84b7b8e7
FB
1262 if (addr == (tlb_entry->addr_read &
1263 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1264 addr == (tlb_entry->addr_write &
1265 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1266 addr == (tlb_entry->addr_code &
1267 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1268 tlb_entry->addr_read = -1;
1269 tlb_entry->addr_write = -1;
1270 tlb_entry->addr_code = -1;
1271 }
61382a50
FB
1272}
1273
2e12669a 1274void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1275{
8a40a180 1276 int i;
9fa3e853 1277 TranslationBlock *tb;
0124311e 1278
9fa3e853 1279#if defined(DEBUG_TLB)
108c49b8 1280 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1281#endif
0124311e
FB
1282 /* must reset current TB so that interrupts cannot modify the
1283 links while we are modifying them */
1284 env->current_tb = NULL;
61382a50
FB
1285
1286 addr &= TARGET_PAGE_MASK;
1287 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1288 tlb_flush_entry(&env->tlb_table[0][i], addr);
1289 tlb_flush_entry(&env->tlb_table[1][i], addr);
0124311e 1290
8a40a180
FB
1291 for(i = 0; i < TB_JMP_CACHE_SIZE; i++) {
1292 tb = env->tb_jmp_cache[i];
1293 if (tb &&
1294 ((tb->pc & TARGET_PAGE_MASK) == addr ||
1295 ((tb->pc + tb->size - 1) & TARGET_PAGE_MASK) == addr)) {
1296 env->tb_jmp_cache[i] = NULL;
9fa3e853
FB
1297 }
1298 }
1299
0124311e 1300#if !defined(CONFIG_SOFTMMU)
9fa3e853 1301 if (addr < MMAP_AREA_END)
0124311e 1302 munmap((void *)addr, TARGET_PAGE_SIZE);
61382a50 1303#endif
0a962c02
FB
1304#ifdef USE_KQEMU
1305 if (env->kqemu_enabled) {
1306 kqemu_flush_page(env, addr);
1307 }
1308#endif
9fa3e853
FB
1309}
1310
9fa3e853
FB
1311/* update the TLBs so that writes to code in the virtual page 'addr'
1312 can be detected */
6a00d601 1313static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1314{
6a00d601
FB
1315 cpu_physical_memory_reset_dirty(ram_addr,
1316 ram_addr + TARGET_PAGE_SIZE,
1317 CODE_DIRTY_FLAG);
9fa3e853
FB
1318}
1319
9fa3e853 1320/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e
FB
1321 tested for self modifying code */
1322static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1323 target_ulong vaddr)
9fa3e853 1324{
3a7d929e 1325 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1326}
1327
1328static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1329 unsigned long start, unsigned long length)
1330{
1331 unsigned long addr;
84b7b8e7
FB
1332 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1333 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1334 if ((addr - start) < length) {
84b7b8e7 1335 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1ccde1cb
FB
1336 }
1337 }
1338}
1339
3a7d929e 1340void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1341 int dirty_flags)
1ccde1cb
FB
1342{
1343 CPUState *env;
4f2ac237 1344 unsigned long length, start1;
0a962c02
FB
1345 int i, mask, len;
1346 uint8_t *p;
1ccde1cb
FB
1347
1348 start &= TARGET_PAGE_MASK;
1349 end = TARGET_PAGE_ALIGN(end);
1350
1351 length = end - start;
1352 if (length == 0)
1353 return;
0a962c02 1354 len = length >> TARGET_PAGE_BITS;
3a7d929e 1355#ifdef USE_KQEMU
6a00d601
FB
1356 /* XXX: should not depend on cpu context */
1357 env = first_cpu;
3a7d929e 1358 if (env->kqemu_enabled) {
f23db169
FB
1359 ram_addr_t addr;
1360 addr = start;
1361 for(i = 0; i < len; i++) {
1362 kqemu_set_notdirty(env, addr);
1363 addr += TARGET_PAGE_SIZE;
1364 }
3a7d929e
FB
1365 }
1366#endif
f23db169
FB
1367 mask = ~dirty_flags;
1368 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1369 for(i = 0; i < len; i++)
1370 p[i] &= mask;
1371
1ccde1cb
FB
1372 /* we modify the TLB cache so that the dirty bit will be set again
1373 when accessing the range */
59817ccb 1374 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1375 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1376 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1377 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1378 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1379 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6a00d601 1380 }
59817ccb
FB
1381
1382#if !defined(CONFIG_SOFTMMU)
1383 /* XXX: this is expensive */
1384 {
1385 VirtPageDesc *p;
1386 int j;
1387 target_ulong addr;
1388
1389 for(i = 0; i < L1_SIZE; i++) {
1390 p = l1_virt_map[i];
1391 if (p) {
1392 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1393 for(j = 0; j < L2_SIZE; j++) {
1394 if (p->valid_tag == virt_valid_tag &&
1395 p->phys_addr >= start && p->phys_addr < end &&
1396 (p->prot & PROT_WRITE)) {
1397 if (addr < MMAP_AREA_END) {
1398 mprotect((void *)addr, TARGET_PAGE_SIZE,
1399 p->prot & ~PROT_WRITE);
1400 }
1401 }
1402 addr += TARGET_PAGE_SIZE;
1403 p++;
1404 }
1405 }
1406 }
1407 }
1408#endif
1ccde1cb
FB
1409}
1410
3a7d929e
FB
1411static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1412{
1413 ram_addr_t ram_addr;
1414
84b7b8e7
FB
1415 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1416 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1417 tlb_entry->addend - (unsigned long)phys_ram_base;
1418 if (!cpu_physical_memory_is_dirty(ram_addr)) {
84b7b8e7 1419 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
3a7d929e
FB
1420 }
1421 }
1422}
1423
1424/* update the TLB according to the current state of the dirty bits */
1425void cpu_tlb_update_dirty(CPUState *env)
1426{
1427 int i;
1428 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1429 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1430 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1431 tlb_update_dirty(&env->tlb_table[1][i]);
3a7d929e
FB
1432}
1433
1ccde1cb 1434static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
108c49b8 1435 unsigned long start)
1ccde1cb
FB
1436{
1437 unsigned long addr;
84b7b8e7
FB
1438 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1439 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1440 if (addr == start) {
84b7b8e7 1441 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1ccde1cb
FB
1442 }
1443 }
1444}
1445
1446/* update the TLB corresponding to virtual page vaddr and phys addr
1447 addr so that it is no longer dirty */
6a00d601
FB
1448static inline void tlb_set_dirty(CPUState *env,
1449 unsigned long addr, target_ulong vaddr)
1ccde1cb 1450{
1ccde1cb
FB
1451 int i;
1452
1ccde1cb
FB
1453 addr &= TARGET_PAGE_MASK;
1454 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1455 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1456 tlb_set_dirty1(&env->tlb_table[1][i], addr);
9fa3e853
FB
1457}
1458
59817ccb
FB
1459/* add a new TLB entry. At most one entry for a given virtual address
1460 is permitted. Return 0 if OK or 2 if the page could not be mapped
1461 (can only happen in non SOFTMMU mode for I/O pages or pages
1462 conflicting with the host address space). */
84b7b8e7
FB
1463int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1464 target_phys_addr_t paddr, int prot,
1465 int is_user, int is_softmmu)
9fa3e853 1466{
92e873b9 1467 PhysPageDesc *p;
4f2ac237 1468 unsigned long pd;
9fa3e853 1469 unsigned int index;
4f2ac237 1470 target_ulong address;
108c49b8 1471 target_phys_addr_t addend;
9fa3e853 1472 int ret;
84b7b8e7 1473 CPUTLBEntry *te;
9fa3e853 1474
92e873b9 1475 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1476 if (!p) {
1477 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1478 } else {
1479 pd = p->phys_offset;
9fa3e853
FB
1480 }
1481#if defined(DEBUG_TLB)
3a7d929e 1482 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x u=%d smmu=%d pd=0x%08lx\n",
84b7b8e7 1483 vaddr, (int)paddr, prot, is_user, is_softmmu, pd);
9fa3e853
FB
1484#endif
1485
1486 ret = 0;
1487#if !defined(CONFIG_SOFTMMU)
1488 if (is_softmmu)
1489#endif
1490 {
2a4188a3 1491 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
9fa3e853
FB
1492 /* IO memory case */
1493 address = vaddr | pd;
1494 addend = paddr;
1495 } else {
1496 /* standard memory */
1497 address = vaddr;
1498 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1499 }
1500
90f18422 1501 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
9fa3e853 1502 addend -= vaddr;
84b7b8e7
FB
1503 te = &env->tlb_table[is_user][index];
1504 te->addend = addend;
67b915a5 1505 if (prot & PAGE_READ) {
84b7b8e7
FB
1506 te->addr_read = address;
1507 } else {
1508 te->addr_read = -1;
1509 }
1510 if (prot & PAGE_EXEC) {
1511 te->addr_code = address;
9fa3e853 1512 } else {
84b7b8e7 1513 te->addr_code = -1;
9fa3e853 1514 }
67b915a5 1515 if (prot & PAGE_WRITE) {
856074ec
FB
1516 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1517 (pd & IO_MEM_ROMD)) {
1518 /* write access calls the I/O callback */
1519 te->addr_write = vaddr |
1520 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
3a7d929e 1521 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1ccde1cb 1522 !cpu_physical_memory_is_dirty(pd)) {
84b7b8e7 1523 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
9fa3e853 1524 } else {
84b7b8e7 1525 te->addr_write = address;
9fa3e853
FB
1526 }
1527 } else {
84b7b8e7 1528 te->addr_write = -1;
9fa3e853
FB
1529 }
1530 }
1531#if !defined(CONFIG_SOFTMMU)
1532 else {
1533 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1534 /* IO access: no mapping is done as it will be handled by the
1535 soft MMU */
1536 if (!(env->hflags & HF_SOFTMMU_MASK))
1537 ret = 2;
1538 } else {
1539 void *map_addr;
59817ccb
FB
1540
1541 if (vaddr >= MMAP_AREA_END) {
1542 ret = 2;
1543 } else {
1544 if (prot & PROT_WRITE) {
1545 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
d720b93d 1546#if defined(TARGET_HAS_SMC) || 1
59817ccb 1547 first_tb ||
d720b93d 1548#endif
59817ccb
FB
1549 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1550 !cpu_physical_memory_is_dirty(pd))) {
1551 /* ROM: we do as if code was inside */
1552 /* if code is present, we only map as read only and save the
1553 original mapping */
1554 VirtPageDesc *vp;
1555
90f18422 1556 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
59817ccb
FB
1557 vp->phys_addr = pd;
1558 vp->prot = prot;
1559 vp->valid_tag = virt_valid_tag;
1560 prot &= ~PAGE_WRITE;
1561 }
1562 }
1563 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1564 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1565 if (map_addr == MAP_FAILED) {
1566 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1567 paddr, vaddr);
9fa3e853 1568 }
9fa3e853
FB
1569 }
1570 }
1571 }
1572#endif
1573 return ret;
1574}
1575
1576/* called from signal handler: invalidate the code and unprotect the
1577 page. Return TRUE if the fault was succesfully handled. */
53a5960a 1578int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
9fa3e853
FB
1579{
1580#if !defined(CONFIG_SOFTMMU)
1581 VirtPageDesc *vp;
1582
1583#if defined(DEBUG_TLB)
1584 printf("page_unprotect: addr=0x%08x\n", addr);
1585#endif
1586 addr &= TARGET_PAGE_MASK;
59817ccb
FB
1587
1588 /* if it is not mapped, no need to worry here */
1589 if (addr >= MMAP_AREA_END)
1590 return 0;
9fa3e853
FB
1591 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1592 if (!vp)
1593 return 0;
1594 /* NOTE: in this case, validate_tag is _not_ tested as it
1595 validates only the code TLB */
1596 if (vp->valid_tag != virt_valid_tag)
1597 return 0;
1598 if (!(vp->prot & PAGE_WRITE))
1599 return 0;
1600#if defined(DEBUG_TLB)
1601 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1602 addr, vp->phys_addr, vp->prot);
1603#endif
59817ccb
FB
1604 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1605 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1606 (unsigned long)addr, vp->prot);
d720b93d 1607 /* set the dirty bit */
0a962c02 1608 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
d720b93d
FB
1609 /* flush the code inside */
1610 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
9fa3e853
FB
1611 return 1;
1612#else
1613 return 0;
1614#endif
33417e70
FB
1615}
1616
0124311e
FB
1617#else
1618
ee8b7021 1619void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
1620{
1621}
1622
2e12669a 1623void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
1624{
1625}
1626
84b7b8e7
FB
1627int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1628 target_phys_addr_t paddr, int prot,
1629 int is_user, int is_softmmu)
9fa3e853
FB
1630{
1631 return 0;
1632}
0124311e 1633
9fa3e853
FB
1634/* dump memory mappings */
1635void page_dump(FILE *f)
33417e70 1636{
9fa3e853
FB
1637 unsigned long start, end;
1638 int i, j, prot, prot1;
1639 PageDesc *p;
33417e70 1640
9fa3e853
FB
1641 fprintf(f, "%-8s %-8s %-8s %s\n",
1642 "start", "end", "size", "prot");
1643 start = -1;
1644 end = -1;
1645 prot = 0;
1646 for(i = 0; i <= L1_SIZE; i++) {
1647 if (i < L1_SIZE)
1648 p = l1_map[i];
1649 else
1650 p = NULL;
1651 for(j = 0;j < L2_SIZE; j++) {
1652 if (!p)
1653 prot1 = 0;
1654 else
1655 prot1 = p[j].flags;
1656 if (prot1 != prot) {
1657 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1658 if (start != -1) {
1659 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1660 start, end, end - start,
1661 prot & PAGE_READ ? 'r' : '-',
1662 prot & PAGE_WRITE ? 'w' : '-',
1663 prot & PAGE_EXEC ? 'x' : '-');
1664 }
1665 if (prot1 != 0)
1666 start = end;
1667 else
1668 start = -1;
1669 prot = prot1;
1670 }
1671 if (!p)
1672 break;
1673 }
33417e70 1674 }
33417e70
FB
1675}
1676
53a5960a 1677int page_get_flags(target_ulong address)
33417e70 1678{
9fa3e853
FB
1679 PageDesc *p;
1680
1681 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 1682 if (!p)
9fa3e853
FB
1683 return 0;
1684 return p->flags;
1685}
1686
1687/* modify the flags of a page and invalidate the code if
1688 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1689 depending on PAGE_WRITE */
53a5960a 1690void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
1691{
1692 PageDesc *p;
53a5960a 1693 target_ulong addr;
9fa3e853
FB
1694
1695 start = start & TARGET_PAGE_MASK;
1696 end = TARGET_PAGE_ALIGN(end);
1697 if (flags & PAGE_WRITE)
1698 flags |= PAGE_WRITE_ORG;
1699 spin_lock(&tb_lock);
1700 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1701 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1702 /* if the write protection is set, then we invalidate the code
1703 inside */
1704 if (!(p->flags & PAGE_WRITE) &&
1705 (flags & PAGE_WRITE) &&
1706 p->first_tb) {
d720b93d 1707 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
1708 }
1709 p->flags = flags;
1710 }
1711 spin_unlock(&tb_lock);
33417e70
FB
1712}
1713
9fa3e853
FB
1714/* called from signal handler: invalidate the code and unprotect the
1715 page. Return TRUE if the fault was succesfully handled. */
53a5960a 1716int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
1717{
1718 unsigned int page_index, prot, pindex;
1719 PageDesc *p, *p1;
53a5960a 1720 target_ulong host_start, host_end, addr;
9fa3e853 1721
83fb7adf 1722 host_start = address & qemu_host_page_mask;
9fa3e853
FB
1723 page_index = host_start >> TARGET_PAGE_BITS;
1724 p1 = page_find(page_index);
1725 if (!p1)
1726 return 0;
83fb7adf 1727 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
1728 p = p1;
1729 prot = 0;
1730 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1731 prot |= p->flags;
1732 p++;
1733 }
1734 /* if the page was really writable, then we change its
1735 protection back to writable */
1736 if (prot & PAGE_WRITE_ORG) {
1737 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1738 if (!(p1[pindex].flags & PAGE_WRITE)) {
53a5960a 1739 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
1740 (prot & PAGE_BITS) | PAGE_WRITE);
1741 p1[pindex].flags |= PAGE_WRITE;
1742 /* and since the content will be modified, we must invalidate
1743 the corresponding translated code. */
d720b93d 1744 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
1745#ifdef DEBUG_TB_CHECK
1746 tb_invalidate_check(address);
1747#endif
1748 return 1;
1749 }
1750 }
1751 return 0;
1752}
1753
1754/* call this function when system calls directly modify a memory area */
53a5960a
PB
1755/* ??? This should be redundant now we have lock_user. */
1756void page_unprotect_range(target_ulong data, target_ulong data_size)
9fa3e853 1757{
53a5960a 1758 target_ulong start, end, addr;
9fa3e853 1759
53a5960a 1760 start = data;
9fa3e853
FB
1761 end = start + data_size;
1762 start &= TARGET_PAGE_MASK;
1763 end = TARGET_PAGE_ALIGN(end);
1764 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
d720b93d 1765 page_unprotect(addr, 0, NULL);
9fa3e853
FB
1766 }
1767}
1768
6a00d601
FB
1769static inline void tlb_set_dirty(CPUState *env,
1770 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
1771{
1772}
9fa3e853
FB
1773#endif /* defined(CONFIG_USER_ONLY) */
1774
33417e70
FB
1775/* register physical memory. 'size' must be a multiple of the target
1776 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
1777 io memory page */
2e12669a
FB
1778void cpu_register_physical_memory(target_phys_addr_t start_addr,
1779 unsigned long size,
1780 unsigned long phys_offset)
33417e70 1781{
108c49b8 1782 target_phys_addr_t addr, end_addr;
92e873b9 1783 PhysPageDesc *p;
9d42037b 1784 CPUState *env;
33417e70 1785
5fd386f6 1786 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
33417e70 1787 end_addr = start_addr + size;
5fd386f6 1788 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
108c49b8 1789 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1790 p->phys_offset = phys_offset;
2a4188a3
FB
1791 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
1792 (phys_offset & IO_MEM_ROMD))
33417e70
FB
1793 phys_offset += TARGET_PAGE_SIZE;
1794 }
9d42037b
FB
1795
1796 /* since each CPU stores ram addresses in its TLB cache, we must
1797 reset the modified entries */
1798 /* XXX: slow ! */
1799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1800 tlb_flush(env, 1);
1801 }
33417e70
FB
1802}
1803
a4193c8a 1804static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70
FB
1805{
1806 return 0;
1807}
1808
a4193c8a 1809static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70
FB
1810{
1811}
1812
1813static CPUReadMemoryFunc *unassigned_mem_read[3] = {
1814 unassigned_mem_readb,
1815 unassigned_mem_readb,
1816 unassigned_mem_readb,
1817};
1818
1819static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
1820 unassigned_mem_writeb,
1821 unassigned_mem_writeb,
1822 unassigned_mem_writeb,
1823};
1824
3a7d929e 1825static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
9fa3e853 1826{
3a7d929e
FB
1827 unsigned long ram_addr;
1828 int dirty_flags;
1829 ram_addr = addr - (unsigned long)phys_ram_base;
1830 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
1831 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 1832#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
1833 tb_invalidate_phys_page_fast(ram_addr, 1);
1834 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 1835#endif
3a7d929e 1836 }
c27004ec 1837 stb_p((uint8_t *)(long)addr, val);
f32fc648
FB
1838#ifdef USE_KQEMU
1839 if (cpu_single_env->kqemu_enabled &&
1840 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
1841 kqemu_modify_page(cpu_single_env, ram_addr);
1842#endif
f23db169
FB
1843 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1844 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
1845 /* we remove the notdirty callback only if the code has been
1846 flushed */
1847 if (dirty_flags == 0xff)
6a00d601 1848 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
9fa3e853
FB
1849}
1850
3a7d929e 1851static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
9fa3e853 1852{
3a7d929e
FB
1853 unsigned long ram_addr;
1854 int dirty_flags;
1855 ram_addr = addr - (unsigned long)phys_ram_base;
1856 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
1857 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 1858#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
1859 tb_invalidate_phys_page_fast(ram_addr, 2);
1860 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 1861#endif
3a7d929e 1862 }
c27004ec 1863 stw_p((uint8_t *)(long)addr, val);
f32fc648
FB
1864#ifdef USE_KQEMU
1865 if (cpu_single_env->kqemu_enabled &&
1866 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
1867 kqemu_modify_page(cpu_single_env, ram_addr);
1868#endif
f23db169
FB
1869 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1870 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
1871 /* we remove the notdirty callback only if the code has been
1872 flushed */
1873 if (dirty_flags == 0xff)
6a00d601 1874 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
9fa3e853
FB
1875}
1876
3a7d929e 1877static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
9fa3e853 1878{
3a7d929e
FB
1879 unsigned long ram_addr;
1880 int dirty_flags;
1881 ram_addr = addr - (unsigned long)phys_ram_base;
1882 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
1883 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 1884#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
1885 tb_invalidate_phys_page_fast(ram_addr, 4);
1886 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 1887#endif
3a7d929e 1888 }
c27004ec 1889 stl_p((uint8_t *)(long)addr, val);
f32fc648
FB
1890#ifdef USE_KQEMU
1891 if (cpu_single_env->kqemu_enabled &&
1892 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
1893 kqemu_modify_page(cpu_single_env, ram_addr);
1894#endif
f23db169
FB
1895 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1896 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
1897 /* we remove the notdirty callback only if the code has been
1898 flushed */
1899 if (dirty_flags == 0xff)
6a00d601 1900 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
9fa3e853
FB
1901}
1902
3a7d929e 1903static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
1904 NULL, /* never used */
1905 NULL, /* never used */
1906 NULL, /* never used */
1907};
1908
1ccde1cb
FB
1909static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
1910 notdirty_mem_writeb,
1911 notdirty_mem_writew,
1912 notdirty_mem_writel,
1913};
1914
33417e70
FB
1915static void io_mem_init(void)
1916{
3a7d929e 1917 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 1918 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 1919 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
1920 io_mem_nb = 5;
1921
1922 /* alloc dirty bits array */
0a962c02 1923 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 1924 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
1925}
1926
1927/* mem_read and mem_write are arrays of functions containing the
1928 function to access byte (index 0), word (index 1) and dword (index
1929 2). All functions must be supplied. If io_index is non zero, the
1930 corresponding io zone is modified. If it is zero, a new io zone is
1931 allocated. The return value can be used with
1932 cpu_register_physical_memory(). (-1) is returned if error. */
1933int cpu_register_io_memory(int io_index,
1934 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
1935 CPUWriteMemoryFunc **mem_write,
1936 void *opaque)
33417e70
FB
1937{
1938 int i;
1939
1940 if (io_index <= 0) {
b5ff1b31 1941 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
1942 return -1;
1943 io_index = io_mem_nb++;
1944 } else {
1945 if (io_index >= IO_MEM_NB_ENTRIES)
1946 return -1;
1947 }
b5ff1b31 1948
33417e70
FB
1949 for(i = 0;i < 3; i++) {
1950 io_mem_read[io_index][i] = mem_read[i];
1951 io_mem_write[io_index][i] = mem_write[i];
1952 }
a4193c8a 1953 io_mem_opaque[io_index] = opaque;
33417e70
FB
1954 return io_index << IO_MEM_SHIFT;
1955}
61382a50 1956
8926b517
FB
1957CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
1958{
1959 return io_mem_write[io_index >> IO_MEM_SHIFT];
1960}
1961
1962CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
1963{
1964 return io_mem_read[io_index >> IO_MEM_SHIFT];
1965}
1966
13eb76e0
FB
1967/* physical memory access (slow version, mainly for debug) */
1968#if defined(CONFIG_USER_ONLY)
2e12669a 1969void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
1970 int len, int is_write)
1971{
1972 int l, flags;
1973 target_ulong page;
53a5960a 1974 void * p;
13eb76e0
FB
1975
1976 while (len > 0) {
1977 page = addr & TARGET_PAGE_MASK;
1978 l = (page + TARGET_PAGE_SIZE) - addr;
1979 if (l > len)
1980 l = len;
1981 flags = page_get_flags(page);
1982 if (!(flags & PAGE_VALID))
1983 return;
1984 if (is_write) {
1985 if (!(flags & PAGE_WRITE))
1986 return;
53a5960a
PB
1987 p = lock_user(addr, len, 0);
1988 memcpy(p, buf, len);
1989 unlock_user(p, addr, len);
13eb76e0
FB
1990 } else {
1991 if (!(flags & PAGE_READ))
1992 return;
53a5960a
PB
1993 p = lock_user(addr, len, 1);
1994 memcpy(buf, p, len);
1995 unlock_user(p, addr, 0);
13eb76e0
FB
1996 }
1997 len -= l;
1998 buf += l;
1999 addr += l;
2000 }
2001}
8df1cd07 2002
13eb76e0 2003#else
2e12669a 2004void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2005 int len, int is_write)
2006{
2007 int l, io_index;
2008 uint8_t *ptr;
2009 uint32_t val;
2e12669a
FB
2010 target_phys_addr_t page;
2011 unsigned long pd;
92e873b9 2012 PhysPageDesc *p;
13eb76e0
FB
2013
2014 while (len > 0) {
2015 page = addr & TARGET_PAGE_MASK;
2016 l = (page + TARGET_PAGE_SIZE) - addr;
2017 if (l > len)
2018 l = len;
92e873b9 2019 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2020 if (!p) {
2021 pd = IO_MEM_UNASSIGNED;
2022 } else {
2023 pd = p->phys_offset;
2024 }
2025
2026 if (is_write) {
3a7d929e 2027 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2028 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
6a00d601
FB
2029 /* XXX: could force cpu_single_env to NULL to avoid
2030 potential bugs */
13eb76e0 2031 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2032 /* 32 bit write access */
c27004ec 2033 val = ldl_p(buf);
a4193c8a 2034 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2035 l = 4;
2036 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2037 /* 16 bit write access */
c27004ec 2038 val = lduw_p(buf);
a4193c8a 2039 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2040 l = 2;
2041 } else {
1c213d19 2042 /* 8 bit write access */
c27004ec 2043 val = ldub_p(buf);
a4193c8a 2044 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2045 l = 1;
2046 }
2047 } else {
b448f2f3
FB
2048 unsigned long addr1;
2049 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2050 /* RAM case */
b448f2f3 2051 ptr = phys_ram_base + addr1;
13eb76e0 2052 memcpy(ptr, buf, l);
3a7d929e
FB
2053 if (!cpu_physical_memory_is_dirty(addr1)) {
2054 /* invalidate code */
2055 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2056 /* set dirty bit */
f23db169
FB
2057 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2058 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2059 }
13eb76e0
FB
2060 }
2061 } else {
2a4188a3
FB
2062 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2063 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2064 /* I/O case */
2065 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2066 if (l >= 4 && ((addr & 3) == 0)) {
2067 /* 32 bit read access */
a4193c8a 2068 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2069 stl_p(buf, val);
13eb76e0
FB
2070 l = 4;
2071 } else if (l >= 2 && ((addr & 1) == 0)) {
2072 /* 16 bit read access */
a4193c8a 2073 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2074 stw_p(buf, val);
13eb76e0
FB
2075 l = 2;
2076 } else {
1c213d19 2077 /* 8 bit read access */
a4193c8a 2078 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2079 stb_p(buf, val);
13eb76e0
FB
2080 l = 1;
2081 }
2082 } else {
2083 /* RAM case */
2084 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2085 (addr & ~TARGET_PAGE_MASK);
2086 memcpy(buf, ptr, l);
2087 }
2088 }
2089 len -= l;
2090 buf += l;
2091 addr += l;
2092 }
2093}
8df1cd07 2094
d0ecd2aa
FB
2095/* used for ROM loading : can write in RAM and ROM */
2096void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2097 const uint8_t *buf, int len)
2098{
2099 int l;
2100 uint8_t *ptr;
2101 target_phys_addr_t page;
2102 unsigned long pd;
2103 PhysPageDesc *p;
2104
2105 while (len > 0) {
2106 page = addr & TARGET_PAGE_MASK;
2107 l = (page + TARGET_PAGE_SIZE) - addr;
2108 if (l > len)
2109 l = len;
2110 p = phys_page_find(page >> TARGET_PAGE_BITS);
2111 if (!p) {
2112 pd = IO_MEM_UNASSIGNED;
2113 } else {
2114 pd = p->phys_offset;
2115 }
2116
2117 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
2118 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2119 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
2120 /* do nothing */
2121 } else {
2122 unsigned long addr1;
2123 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2124 /* ROM/RAM case */
2125 ptr = phys_ram_base + addr1;
2126 memcpy(ptr, buf, l);
2127 }
2128 len -= l;
2129 buf += l;
2130 addr += l;
2131 }
2132}
2133
2134
8df1cd07
FB
2135/* warning: addr must be aligned */
2136uint32_t ldl_phys(target_phys_addr_t addr)
2137{
2138 int io_index;
2139 uint8_t *ptr;
2140 uint32_t val;
2141 unsigned long pd;
2142 PhysPageDesc *p;
2143
2144 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2145 if (!p) {
2146 pd = IO_MEM_UNASSIGNED;
2147 } else {
2148 pd = p->phys_offset;
2149 }
2150
2a4188a3
FB
2151 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2152 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
2153 /* I/O case */
2154 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2155 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2156 } else {
2157 /* RAM case */
2158 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2159 (addr & ~TARGET_PAGE_MASK);
2160 val = ldl_p(ptr);
2161 }
2162 return val;
2163}
2164
84b7b8e7
FB
2165/* warning: addr must be aligned */
2166uint64_t ldq_phys(target_phys_addr_t addr)
2167{
2168 int io_index;
2169 uint8_t *ptr;
2170 uint64_t val;
2171 unsigned long pd;
2172 PhysPageDesc *p;
2173
2174 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2175 if (!p) {
2176 pd = IO_MEM_UNASSIGNED;
2177 } else {
2178 pd = p->phys_offset;
2179 }
2180
2a4188a3
FB
2181 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2182 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
2183 /* I/O case */
2184 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2185#ifdef TARGET_WORDS_BIGENDIAN
2186 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2187 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2188#else
2189 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2190 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2191#endif
2192 } else {
2193 /* RAM case */
2194 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2195 (addr & ~TARGET_PAGE_MASK);
2196 val = ldq_p(ptr);
2197 }
2198 return val;
2199}
2200
aab33094
FB
2201/* XXX: optimize */
2202uint32_t ldub_phys(target_phys_addr_t addr)
2203{
2204 uint8_t val;
2205 cpu_physical_memory_read(addr, &val, 1);
2206 return val;
2207}
2208
2209/* XXX: optimize */
2210uint32_t lduw_phys(target_phys_addr_t addr)
2211{
2212 uint16_t val;
2213 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2214 return tswap16(val);
2215}
2216
8df1cd07
FB
2217/* warning: addr must be aligned. The ram page is not masked as dirty
2218 and the code inside is not invalidated. It is useful if the dirty
2219 bits are used to track modified PTEs */
2220void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2221{
2222 int io_index;
2223 uint8_t *ptr;
2224 unsigned long pd;
2225 PhysPageDesc *p;
2226
2227 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2228 if (!p) {
2229 pd = IO_MEM_UNASSIGNED;
2230 } else {
2231 pd = p->phys_offset;
2232 }
2233
3a7d929e 2234 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
2235 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2236 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2237 } else {
2238 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2239 (addr & ~TARGET_PAGE_MASK);
2240 stl_p(ptr, val);
2241 }
2242}
2243
2244/* warning: addr must be aligned */
8df1cd07
FB
2245void stl_phys(target_phys_addr_t addr, uint32_t val)
2246{
2247 int io_index;
2248 uint8_t *ptr;
2249 unsigned long pd;
2250 PhysPageDesc *p;
2251
2252 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2253 if (!p) {
2254 pd = IO_MEM_UNASSIGNED;
2255 } else {
2256 pd = p->phys_offset;
2257 }
2258
3a7d929e 2259 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
2260 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2261 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2262 } else {
2263 unsigned long addr1;
2264 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2265 /* RAM case */
2266 ptr = phys_ram_base + addr1;
2267 stl_p(ptr, val);
3a7d929e
FB
2268 if (!cpu_physical_memory_is_dirty(addr1)) {
2269 /* invalidate code */
2270 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2271 /* set dirty bit */
f23db169
FB
2272 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2273 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2274 }
8df1cd07
FB
2275 }
2276}
2277
aab33094
FB
2278/* XXX: optimize */
2279void stb_phys(target_phys_addr_t addr, uint32_t val)
2280{
2281 uint8_t v = val;
2282 cpu_physical_memory_write(addr, &v, 1);
2283}
2284
2285/* XXX: optimize */
2286void stw_phys(target_phys_addr_t addr, uint32_t val)
2287{
2288 uint16_t v = tswap16(val);
2289 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2290}
2291
2292/* XXX: optimize */
2293void stq_phys(target_phys_addr_t addr, uint64_t val)
2294{
2295 val = tswap64(val);
2296 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2297}
2298
13eb76e0
FB
2299#endif
2300
2301/* virtual memory access for debug */
b448f2f3
FB
2302int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2303 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2304{
2305 int l;
2306 target_ulong page, phys_addr;
2307
2308 while (len > 0) {
2309 page = addr & TARGET_PAGE_MASK;
2310 phys_addr = cpu_get_phys_page_debug(env, page);
2311 /* if no physical page mapped, return an error */
2312 if (phys_addr == -1)
2313 return -1;
2314 l = (page + TARGET_PAGE_SIZE) - addr;
2315 if (l > len)
2316 l = len;
b448f2f3
FB
2317 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2318 buf, l, is_write);
13eb76e0
FB
2319 len -= l;
2320 buf += l;
2321 addr += l;
2322 }
2323 return 0;
2324}
2325
e3db7226
FB
2326void dump_exec_info(FILE *f,
2327 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2328{
2329 int i, target_code_size, max_target_code_size;
2330 int direct_jmp_count, direct_jmp2_count, cross_page;
2331 TranslationBlock *tb;
2332
2333 target_code_size = 0;
2334 max_target_code_size = 0;
2335 cross_page = 0;
2336 direct_jmp_count = 0;
2337 direct_jmp2_count = 0;
2338 for(i = 0; i < nb_tbs; i++) {
2339 tb = &tbs[i];
2340 target_code_size += tb->size;
2341 if (tb->size > max_target_code_size)
2342 max_target_code_size = tb->size;
2343 if (tb->page_addr[1] != -1)
2344 cross_page++;
2345 if (tb->tb_next_offset[0] != 0xffff) {
2346 direct_jmp_count++;
2347 if (tb->tb_next_offset[1] != 0xffff) {
2348 direct_jmp2_count++;
2349 }
2350 }
2351 }
2352 /* XXX: avoid using doubles ? */
2353 cpu_fprintf(f, "TB count %d\n", nb_tbs);
2354 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
2355 nb_tbs ? target_code_size / nb_tbs : 0,
2356 max_target_code_size);
2357 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
2358 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2359 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
2360 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2361 cross_page,
2362 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2363 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
2364 direct_jmp_count,
2365 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2366 direct_jmp2_count,
2367 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2368 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2369 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2370 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2371}
2372
61382a50
FB
2373#if !defined(CONFIG_USER_ONLY)
2374
2375#define MMUSUFFIX _cmmu
2376#define GETPC() NULL
2377#define env cpu_single_env
b769d8fe 2378#define SOFTMMU_CODE_ACCESS
61382a50
FB
2379
2380#define SHIFT 0
2381#include "softmmu_template.h"
2382
2383#define SHIFT 1
2384#include "softmmu_template.h"
2385
2386#define SHIFT 2
2387#include "softmmu_template.h"
2388
2389#define SHIFT 3
2390#include "softmmu_template.h"
2391
2392#undef env
2393
2394#endif