]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
protect exec-all.h frm multiple inclusion (Glauber Costa)
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
d5a8f07c 21#ifdef _WIN32
4fddf62a 22#define WIN32_LEAN_AND_MEAN
d5a8f07c
FB
23#include <windows.h>
24#else
a98d49b1 25#include <sys/types.h>
d5a8f07c
FB
26#include <sys/mman.h>
27#endif
54936004
FB
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31#include <string.h>
32#include <errno.h>
33#include <unistd.h>
34#include <inttypes.h>
35
6180a181
FB
36#include "cpu.h"
37#include "exec-all.h"
ca10f867 38#include "qemu-common.h"
b67d9a52 39#include "tcg.h"
b3c7724c 40#include "hw/hw.h"
74576198 41#include "osdep.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
65#define MMAP_AREA_START 0x00000000
66#define MMAP_AREA_END 0xa8000000
fd6ce8f6 67
108c49b8
FB
68#if defined(TARGET_SPARC64)
69#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
70#elif defined(TARGET_SPARC)
71#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
72#elif defined(TARGET_ALPHA)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
74#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
75#elif defined(TARGET_PPC64)
76#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
77#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
78#define TARGET_PHYS_ADDR_SPACE_BITS 42
79#elif defined(TARGET_I386) && !defined(USE_KQEMU)
80#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
81#else
82/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
83#define TARGET_PHYS_ADDR_SPACE_BITS 32
84#endif
85
bdaf78e0 86static TranslationBlock *tbs;
26a5f13b 87int code_gen_max_blocks;
9fa3e853 88TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 89static int nb_tbs;
eb51d102
FB
90/* any access to the tbs or the page table must use this lock */
91spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 92
141ac468
BS
93#if defined(__arm__) || defined(__sparc_v9__)
94/* The prologue must be reachable with a direct jump. ARM and Sparc64
95 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
96 section close to code segment. */
97#define code_gen_section \
98 __attribute__((__section__(".gen_code"))) \
99 __attribute__((aligned (32)))
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
110uint8_t *code_gen_ptr;
111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
00f82b8a 113ram_addr_t phys_ram_size;
9fa3e853
FB
114int phys_ram_fd;
115uint8_t *phys_ram_base;
1ccde1cb 116uint8_t *phys_ram_dirty;
74576198 117static int in_migration;
e9a1ab19 118static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 119#endif
9fa3e853 120
6a00d601
FB
121CPUState *first_cpu;
122/* current CPU in the current thread. It is only valid inside
123 cpu_exec() */
5fafdf24 124CPUState *cpu_single_env;
2e70f6ef 125/* 0 = Do not count executed instructions.
bf20dc07 126 1 = Precise instruction counting.
2e70f6ef
PB
127 2 = Adaptive rate instruction counting. */
128int use_icount = 0;
129/* Current instruction counter. While executing translated code this may
130 include some instructions that have not yet been executed. */
131int64_t qemu_icount;
6a00d601 132
54936004 133typedef struct PageDesc {
92e873b9 134 /* list of TBs intersecting this ram page */
fd6ce8f6 135 TranslationBlock *first_tb;
9fa3e853
FB
136 /* in order to optimize self modifying code, we count the number
137 of lookups we do to a given page to use a bitmap */
138 unsigned int code_write_count;
139 uint8_t *code_bitmap;
140#if defined(CONFIG_USER_ONLY)
141 unsigned long flags;
142#endif
54936004
FB
143} PageDesc;
144
92e873b9 145typedef struct PhysPageDesc {
0f459d16 146 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 147 ram_addr_t phys_offset;
92e873b9
FB
148} PhysPageDesc;
149
54936004 150#define L2_BITS 10
bedb69ea
JM
151#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
152/* XXX: this is a temporary hack for alpha target.
153 * In the future, this is to be replaced by a multi-level table
154 * to actually be able to handle the complete 64 bits address space.
155 */
156#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
157#else
03875444 158#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 159#endif
54936004
FB
160
161#define L1_SIZE (1 << L1_BITS)
162#define L2_SIZE (1 << L2_BITS)
163
83fb7adf
FB
164unsigned long qemu_real_host_page_size;
165unsigned long qemu_host_page_bits;
166unsigned long qemu_host_page_size;
167unsigned long qemu_host_page_mask;
54936004 168
92e873b9 169/* XXX: for system emulation, it could just be an array */
54936004 170static PageDesc *l1_map[L1_SIZE];
bdaf78e0 171static PhysPageDesc **l1_phys_map;
54936004 172
e2eef170
PB
173#if !defined(CONFIG_USER_ONLY)
174static void io_mem_init(void);
175
33417e70 176/* io memory support */
33417e70
FB
177CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
178CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 179void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 180static int io_mem_nb;
6658ffb8
PB
181static int io_mem_watch;
182#endif
33417e70 183
34865134 184/* log support */
d9b630fd 185static const char *logfilename = "/tmp/qemu.log";
34865134
FB
186FILE *logfile;
187int loglevel;
e735b91c 188static int log_append = 0;
34865134 189
e3db7226
FB
190/* statistics */
191static int tlb_flush_count;
192static int tb_flush_count;
193static int tb_phys_invalidate_count;
194
db7b5426
BS
195#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
196typedef struct subpage_t {
197 target_phys_addr_t base;
3ee89922
BS
198 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
199 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
200 void *opaque[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
201} subpage_t;
202
7cb69cae
FB
203#ifdef _WIN32
204static void map_exec(void *addr, long size)
205{
206 DWORD old_protect;
207 VirtualProtect(addr, size,
208 PAGE_EXECUTE_READWRITE, &old_protect);
209
210}
211#else
212static void map_exec(void *addr, long size)
213{
4369415f 214 unsigned long start, end, page_size;
7cb69cae 215
4369415f 216 page_size = getpagesize();
7cb69cae 217 start = (unsigned long)addr;
4369415f 218 start &= ~(page_size - 1);
7cb69cae
FB
219
220 end = (unsigned long)addr + size;
4369415f
FB
221 end += page_size - 1;
222 end &= ~(page_size - 1);
7cb69cae
FB
223
224 mprotect((void *)start, end - start,
225 PROT_READ | PROT_WRITE | PROT_EXEC);
226}
227#endif
228
b346ff46 229static void page_init(void)
54936004 230{
83fb7adf 231 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 232 TARGET_PAGE_SIZE */
67b915a5 233#ifdef _WIN32
d5a8f07c
FB
234 {
235 SYSTEM_INFO system_info;
236 DWORD old_protect;
3b46e624 237
d5a8f07c
FB
238 GetSystemInfo(&system_info);
239 qemu_real_host_page_size = system_info.dwPageSize;
d5a8f07c 240 }
67b915a5 241#else
83fb7adf 242 qemu_real_host_page_size = getpagesize();
67b915a5 243#endif
83fb7adf
FB
244 if (qemu_host_page_size == 0)
245 qemu_host_page_size = qemu_real_host_page_size;
246 if (qemu_host_page_size < TARGET_PAGE_SIZE)
247 qemu_host_page_size = TARGET_PAGE_SIZE;
248 qemu_host_page_bits = 0;
249 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
250 qemu_host_page_bits++;
251 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
252 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
253 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
254
255#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
256 {
257 long long startaddr, endaddr;
258 FILE *f;
259 int n;
260
c8a706fe 261 mmap_lock();
0776590d 262 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
263 f = fopen("/proc/self/maps", "r");
264 if (f) {
265 do {
266 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
267 if (n == 2) {
e0b8d65a
BS
268 startaddr = MIN(startaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 endaddr = MIN(endaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 272 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
273 TARGET_PAGE_ALIGN(endaddr),
274 PAGE_RESERVED);
275 }
276 } while (!feof(f));
277 fclose(f);
278 }
c8a706fe 279 mmap_unlock();
50a9569b
AZ
280 }
281#endif
54936004
FB
282}
283
434929bf 284static inline PageDesc **page_l1_map(target_ulong index)
54936004 285{
17e2377a
PB
286#if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
d8173e0f 289 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
290 return NULL;
291#endif
434929bf
AL
292 return &l1_map[index >> L2_BITS];
293}
294
295static inline PageDesc *page_find_alloc(target_ulong index)
296{
297 PageDesc **lp, *p;
298 lp = page_l1_map(index);
299 if (!lp)
300 return NULL;
301
54936004
FB
302 p = *lp;
303 if (!p) {
304 /* allocate if not found */
17e2377a
PB
305#if defined(CONFIG_USER_ONLY)
306 unsigned long addr;
307 size_t len = sizeof(PageDesc) * L2_SIZE;
308 /* Don't use qemu_malloc because it may recurse. */
309 p = mmap(0, len, PROT_READ | PROT_WRITE,
310 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 311 *lp = p;
17e2377a
PB
312 addr = h2g(p);
313 if (addr == (target_ulong)addr) {
314 page_set_flags(addr & TARGET_PAGE_MASK,
315 TARGET_PAGE_ALIGN(addr + len),
316 PAGE_RESERVED);
317 }
318#else
319 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
320 *lp = p;
321#endif
54936004
FB
322 }
323 return p + (index & (L2_SIZE - 1));
324}
325
00f82b8a 326static inline PageDesc *page_find(target_ulong index)
54936004 327{
434929bf
AL
328 PageDesc **lp, *p;
329 lp = page_l1_map(index);
330 if (!lp)
331 return NULL;
54936004 332
434929bf 333 p = *lp;
54936004
FB
334 if (!p)
335 return 0;
fd6ce8f6
FB
336 return p + (index & (L2_SIZE - 1));
337}
338
108c49b8 339static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 340{
108c49b8 341 void **lp, **p;
e3f4e2a4 342 PhysPageDesc *pd;
92e873b9 343
108c49b8
FB
344 p = (void **)l1_phys_map;
345#if TARGET_PHYS_ADDR_SPACE_BITS > 32
346
347#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
348#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
349#endif
350 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
351 p = *lp;
352 if (!p) {
353 /* allocate if not found */
108c49b8
FB
354 if (!alloc)
355 return NULL;
356 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
357 memset(p, 0, sizeof(void *) * L1_SIZE);
358 *lp = p;
359 }
360#endif
361 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
362 pd = *lp;
363 if (!pd) {
364 int i;
108c49b8
FB
365 /* allocate if not found */
366 if (!alloc)
367 return NULL;
e3f4e2a4
PB
368 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
369 *lp = pd;
370 for (i = 0; i < L2_SIZE; i++)
371 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 372 }
e3f4e2a4 373 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
374}
375
108c49b8 376static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 377{
108c49b8 378 return phys_page_find_alloc(index, 0);
92e873b9
FB
379}
380
9fa3e853 381#if !defined(CONFIG_USER_ONLY)
6a00d601 382static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 383static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 384 target_ulong vaddr);
c8a706fe
PB
385#define mmap_lock() do { } while(0)
386#define mmap_unlock() do { } while(0)
9fa3e853 387#endif
fd6ce8f6 388
4369415f
FB
389#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
390
391#if defined(CONFIG_USER_ONLY)
392/* Currently it is not recommanded to allocate big chunks of data in
393 user mode. It will change when a dedicated libc will be used */
394#define USE_STATIC_CODE_GEN_BUFFER
395#endif
396
397#ifdef USE_STATIC_CODE_GEN_BUFFER
398static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
399#endif
400
8fcd3692 401static void code_gen_alloc(unsigned long tb_size)
26a5f13b 402{
4369415f
FB
403#ifdef USE_STATIC_CODE_GEN_BUFFER
404 code_gen_buffer = static_code_gen_buffer;
405 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
406 map_exec(code_gen_buffer, code_gen_buffer_size);
407#else
26a5f13b
FB
408 code_gen_buffer_size = tb_size;
409 if (code_gen_buffer_size == 0) {
4369415f
FB
410#if defined(CONFIG_USER_ONLY)
411 /* in user mode, phys_ram_size is not meaningful */
412 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
413#else
26a5f13b 414 /* XXX: needs ajustments */
174a9a1f 415 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
4369415f 416#endif
26a5f13b
FB
417 }
418 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
419 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
420 /* The code gen buffer location may have constraints depending on
421 the host cpu and OS */
422#if defined(__linux__)
423 {
424 int flags;
141ac468
BS
425 void *start = NULL;
426
26a5f13b
FB
427 flags = MAP_PRIVATE | MAP_ANONYMOUS;
428#if defined(__x86_64__)
429 flags |= MAP_32BIT;
430 /* Cannot map more than that */
431 if (code_gen_buffer_size > (800 * 1024 * 1024))
432 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
433#elif defined(__sparc_v9__)
434 // Map the buffer below 2G, so we can use direct calls and branches
435 flags |= MAP_FIXED;
436 start = (void *) 0x60000000UL;
437 if (code_gen_buffer_size > (512 * 1024 * 1024))
438 code_gen_buffer_size = (512 * 1024 * 1024);
26a5f13b 439#endif
141ac468
BS
440 code_gen_buffer = mmap(start, code_gen_buffer_size,
441 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
442 flags, -1, 0);
443 if (code_gen_buffer == MAP_FAILED) {
444 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
445 exit(1);
446 }
447 }
06e67a82
AL
448#elif defined(__FreeBSD__)
449 {
450 int flags;
451 void *addr = NULL;
452 flags = MAP_PRIVATE | MAP_ANONYMOUS;
453#if defined(__x86_64__)
454 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
455 * 0x40000000 is free */
456 flags |= MAP_FIXED;
457 addr = (void *)0x40000000;
458 /* Cannot map more than that */
459 if (code_gen_buffer_size > (800 * 1024 * 1024))
460 code_gen_buffer_size = (800 * 1024 * 1024);
461#endif
462 code_gen_buffer = mmap(addr, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
468 }
469 }
26a5f13b
FB
470#else
471 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
472 if (!code_gen_buffer) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
474 exit(1);
475 }
476 map_exec(code_gen_buffer, code_gen_buffer_size);
477#endif
4369415f 478#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
479 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
480 code_gen_buffer_max_size = code_gen_buffer_size -
481 code_gen_max_block_size();
482 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
483 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
484}
485
486/* Must be called before using the QEMU cpus. 'tb_size' is the size
487 (in bytes) allocated to the translation buffer. Zero means default
488 size. */
489void cpu_exec_init_all(unsigned long tb_size)
490{
26a5f13b
FB
491 cpu_gen_init();
492 code_gen_alloc(tb_size);
493 code_gen_ptr = code_gen_buffer;
4369415f 494 page_init();
e2eef170 495#if !defined(CONFIG_USER_ONLY)
26a5f13b 496 io_mem_init();
e2eef170 497#endif
26a5f13b
FB
498}
499
9656f324
PB
500#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
501
502#define CPU_COMMON_SAVE_VERSION 1
503
504static void cpu_common_save(QEMUFile *f, void *opaque)
505{
506 CPUState *env = opaque;
507
508 qemu_put_be32s(f, &env->halted);
509 qemu_put_be32s(f, &env->interrupt_request);
510}
511
512static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
513{
514 CPUState *env = opaque;
515
516 if (version_id != CPU_COMMON_SAVE_VERSION)
517 return -EINVAL;
518
519 qemu_get_be32s(f, &env->halted);
75f482ae 520 qemu_get_be32s(f, &env->interrupt_request);
9656f324
PB
521 tlb_flush(env, 1);
522
523 return 0;
524}
525#endif
526
6a00d601 527void cpu_exec_init(CPUState *env)
fd6ce8f6 528{
6a00d601
FB
529 CPUState **penv;
530 int cpu_index;
531
6a00d601
FB
532 env->next_cpu = NULL;
533 penv = &first_cpu;
534 cpu_index = 0;
535 while (*penv != NULL) {
536 penv = (CPUState **)&(*penv)->next_cpu;
537 cpu_index++;
538 }
539 env->cpu_index = cpu_index;
6658ffb8 540 env->nb_watchpoints = 0;
6a00d601 541 *penv = env;
b3c7724c 542#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
543 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
544 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
545 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
546 cpu_save, cpu_load, env);
547#endif
fd6ce8f6
FB
548}
549
9fa3e853
FB
550static inline void invalidate_page_bitmap(PageDesc *p)
551{
552 if (p->code_bitmap) {
59817ccb 553 qemu_free(p->code_bitmap);
9fa3e853
FB
554 p->code_bitmap = NULL;
555 }
556 p->code_write_count = 0;
557}
558
fd6ce8f6
FB
559/* set to NULL all the 'first_tb' fields in all PageDescs */
560static void page_flush_tb(void)
561{
562 int i, j;
563 PageDesc *p;
564
565 for(i = 0; i < L1_SIZE; i++) {
566 p = l1_map[i];
567 if (p) {
9fa3e853
FB
568 for(j = 0; j < L2_SIZE; j++) {
569 p->first_tb = NULL;
570 invalidate_page_bitmap(p);
571 p++;
572 }
fd6ce8f6
FB
573 }
574 }
575}
576
577/* flush all the translation blocks */
d4e8164f 578/* XXX: tb_flush is currently not thread safe */
6a00d601 579void tb_flush(CPUState *env1)
fd6ce8f6 580{
6a00d601 581 CPUState *env;
0124311e 582#if defined(DEBUG_FLUSH)
ab3d1727
BS
583 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
584 (unsigned long)(code_gen_ptr - code_gen_buffer),
585 nb_tbs, nb_tbs > 0 ?
586 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 587#endif
26a5f13b 588 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
589 cpu_abort(env1, "Internal error: code buffer overflow\n");
590
fd6ce8f6 591 nb_tbs = 0;
3b46e624 592
6a00d601
FB
593 for(env = first_cpu; env != NULL; env = env->next_cpu) {
594 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
595 }
9fa3e853 596
8a8a608f 597 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 598 page_flush_tb();
9fa3e853 599
fd6ce8f6 600 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
601 /* XXX: flush processor icache at this point if cache flush is
602 expensive */
e3db7226 603 tb_flush_count++;
fd6ce8f6
FB
604}
605
606#ifdef DEBUG_TB_CHECK
607
bc98a7ef 608static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
609{
610 TranslationBlock *tb;
611 int i;
612 address &= TARGET_PAGE_MASK;
99773bd4
PB
613 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
614 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
615 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
616 address >= tb->pc + tb->size)) {
617 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 618 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
619 }
620 }
621 }
622}
623
624/* verify that all the pages have correct rights for code */
625static void tb_page_check(void)
626{
627 TranslationBlock *tb;
628 int i, flags1, flags2;
3b46e624 629
99773bd4
PB
630 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
631 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
632 flags1 = page_get_flags(tb->pc);
633 flags2 = page_get_flags(tb->pc + tb->size - 1);
634 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
635 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 636 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
637 }
638 }
639 }
640}
641
bdaf78e0 642static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
643{
644 TranslationBlock *tb1;
645 unsigned int n1;
646
647 /* suppress any remaining jumps to this TB */
648 tb1 = tb->jmp_first;
649 for(;;) {
650 n1 = (long)tb1 & 3;
651 tb1 = (TranslationBlock *)((long)tb1 & ~3);
652 if (n1 == 2)
653 break;
654 tb1 = tb1->jmp_next[n1];
655 }
656 /* check end of list */
657 if (tb1 != tb) {
658 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
659 }
660}
661
fd6ce8f6
FB
662#endif
663
664/* invalidate one TB */
665static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
666 int next_offset)
667{
668 TranslationBlock *tb1;
669 for(;;) {
670 tb1 = *ptb;
671 if (tb1 == tb) {
672 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
673 break;
674 }
675 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
676 }
677}
678
9fa3e853
FB
679static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
680{
681 TranslationBlock *tb1;
682 unsigned int n1;
683
684 for(;;) {
685 tb1 = *ptb;
686 n1 = (long)tb1 & 3;
687 tb1 = (TranslationBlock *)((long)tb1 & ~3);
688 if (tb1 == tb) {
689 *ptb = tb1->page_next[n1];
690 break;
691 }
692 ptb = &tb1->page_next[n1];
693 }
694}
695
d4e8164f
FB
696static inline void tb_jmp_remove(TranslationBlock *tb, int n)
697{
698 TranslationBlock *tb1, **ptb;
699 unsigned int n1;
700
701 ptb = &tb->jmp_next[n];
702 tb1 = *ptb;
703 if (tb1) {
704 /* find tb(n) in circular list */
705 for(;;) {
706 tb1 = *ptb;
707 n1 = (long)tb1 & 3;
708 tb1 = (TranslationBlock *)((long)tb1 & ~3);
709 if (n1 == n && tb1 == tb)
710 break;
711 if (n1 == 2) {
712 ptb = &tb1->jmp_first;
713 } else {
714 ptb = &tb1->jmp_next[n1];
715 }
716 }
717 /* now we can suppress tb(n) from the list */
718 *ptb = tb->jmp_next[n];
719
720 tb->jmp_next[n] = NULL;
721 }
722}
723
724/* reset the jump entry 'n' of a TB so that it is not chained to
725 another TB */
726static inline void tb_reset_jump(TranslationBlock *tb, int n)
727{
728 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
729}
730
2e70f6ef 731void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 732{
6a00d601 733 CPUState *env;
8a40a180 734 PageDesc *p;
d4e8164f 735 unsigned int h, n1;
00f82b8a 736 target_phys_addr_t phys_pc;
8a40a180 737 TranslationBlock *tb1, *tb2;
3b46e624 738
8a40a180
FB
739 /* remove the TB from the hash list */
740 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
741 h = tb_phys_hash_func(phys_pc);
5fafdf24 742 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
743 offsetof(TranslationBlock, phys_hash_next));
744
745 /* remove the TB from the page list */
746 if (tb->page_addr[0] != page_addr) {
747 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
748 tb_page_remove(&p->first_tb, tb);
749 invalidate_page_bitmap(p);
750 }
751 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
752 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
753 tb_page_remove(&p->first_tb, tb);
754 invalidate_page_bitmap(p);
755 }
756
36bdbe54 757 tb_invalidated_flag = 1;
59817ccb 758
fd6ce8f6 759 /* remove the TB from the hash list */
8a40a180 760 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
761 for(env = first_cpu; env != NULL; env = env->next_cpu) {
762 if (env->tb_jmp_cache[h] == tb)
763 env->tb_jmp_cache[h] = NULL;
764 }
d4e8164f
FB
765
766 /* suppress this TB from the two jump lists */
767 tb_jmp_remove(tb, 0);
768 tb_jmp_remove(tb, 1);
769
770 /* suppress any remaining jumps to this TB */
771 tb1 = tb->jmp_first;
772 for(;;) {
773 n1 = (long)tb1 & 3;
774 if (n1 == 2)
775 break;
776 tb1 = (TranslationBlock *)((long)tb1 & ~3);
777 tb2 = tb1->jmp_next[n1];
778 tb_reset_jump(tb1, n1);
779 tb1->jmp_next[n1] = NULL;
780 tb1 = tb2;
781 }
782 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 783
e3db7226 784 tb_phys_invalidate_count++;
9fa3e853
FB
785}
786
787static inline void set_bits(uint8_t *tab, int start, int len)
788{
789 int end, mask, end1;
790
791 end = start + len;
792 tab += start >> 3;
793 mask = 0xff << (start & 7);
794 if ((start & ~7) == (end & ~7)) {
795 if (start < end) {
796 mask &= ~(0xff << (end & 7));
797 *tab |= mask;
798 }
799 } else {
800 *tab++ |= mask;
801 start = (start + 8) & ~7;
802 end1 = end & ~7;
803 while (start < end1) {
804 *tab++ = 0xff;
805 start += 8;
806 }
807 if (start < end) {
808 mask = ~(0xff << (end & 7));
809 *tab |= mask;
810 }
811 }
812}
813
814static void build_page_bitmap(PageDesc *p)
815{
816 int n, tb_start, tb_end;
817 TranslationBlock *tb;
3b46e624 818
b2a7081a 819 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
820 if (!p->code_bitmap)
821 return;
9fa3e853
FB
822
823 tb = p->first_tb;
824 while (tb != NULL) {
825 n = (long)tb & 3;
826 tb = (TranslationBlock *)((long)tb & ~3);
827 /* NOTE: this is subtle as a TB may span two physical pages */
828 if (n == 0) {
829 /* NOTE: tb_end may be after the end of the page, but
830 it is not a problem */
831 tb_start = tb->pc & ~TARGET_PAGE_MASK;
832 tb_end = tb_start + tb->size;
833 if (tb_end > TARGET_PAGE_SIZE)
834 tb_end = TARGET_PAGE_SIZE;
835 } else {
836 tb_start = 0;
837 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
838 }
839 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
840 tb = tb->page_next[n];
841 }
842}
843
2e70f6ef
PB
844TranslationBlock *tb_gen_code(CPUState *env,
845 target_ulong pc, target_ulong cs_base,
846 int flags, int cflags)
d720b93d
FB
847{
848 TranslationBlock *tb;
849 uint8_t *tc_ptr;
850 target_ulong phys_pc, phys_page2, virt_page2;
851 int code_gen_size;
852
c27004ec
FB
853 phys_pc = get_phys_addr_code(env, pc);
854 tb = tb_alloc(pc);
d720b93d
FB
855 if (!tb) {
856 /* flush must be done */
857 tb_flush(env);
858 /* cannot fail at this point */
c27004ec 859 tb = tb_alloc(pc);
2e70f6ef
PB
860 /* Don't forget to invalidate previous TB info. */
861 tb_invalidated_flag = 1;
d720b93d
FB
862 }
863 tc_ptr = code_gen_ptr;
864 tb->tc_ptr = tc_ptr;
865 tb->cs_base = cs_base;
866 tb->flags = flags;
867 tb->cflags = cflags;
d07bde88 868 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 869 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 870
d720b93d 871 /* check next page if needed */
c27004ec 872 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 873 phys_page2 = -1;
c27004ec 874 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
875 phys_page2 = get_phys_addr_code(env, virt_page2);
876 }
877 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 878 return tb;
d720b93d 879}
3b46e624 880
9fa3e853
FB
881/* invalidate all TBs which intersect with the target physical page
882 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
883 the same physical page. 'is_cpu_write_access' should be true if called
884 from a real cpu write access: the virtual CPU will exit the current
885 TB if code is modified inside this TB. */
00f82b8a 886void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
887 int is_cpu_write_access)
888{
889 int n, current_tb_modified, current_tb_not_found, current_flags;
d720b93d 890 CPUState *env = cpu_single_env;
9fa3e853 891 PageDesc *p;
ea1c1802 892 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
9fa3e853 893 target_ulong tb_start, tb_end;
d720b93d 894 target_ulong current_pc, current_cs_base;
9fa3e853
FB
895
896 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 897 if (!p)
9fa3e853 898 return;
5fafdf24 899 if (!p->code_bitmap &&
d720b93d
FB
900 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
901 is_cpu_write_access) {
9fa3e853
FB
902 /* build code bitmap */
903 build_page_bitmap(p);
904 }
905
906 /* we remove all the TBs in the range [start, end[ */
907 /* XXX: see if in some cases it could be faster to invalidate all the code */
d720b93d
FB
908 current_tb_not_found = is_cpu_write_access;
909 current_tb_modified = 0;
910 current_tb = NULL; /* avoid warning */
911 current_pc = 0; /* avoid warning */
912 current_cs_base = 0; /* avoid warning */
913 current_flags = 0; /* avoid warning */
9fa3e853
FB
914 tb = p->first_tb;
915 while (tb != NULL) {
916 n = (long)tb & 3;
917 tb = (TranslationBlock *)((long)tb & ~3);
918 tb_next = tb->page_next[n];
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
924 tb_end = tb_start + tb->size;
925 } else {
926 tb_start = tb->page_addr[1];
927 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
928 }
929 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
930#ifdef TARGET_HAS_PRECISE_SMC
931 if (current_tb_not_found) {
932 current_tb_not_found = 0;
933 current_tb = NULL;
2e70f6ef 934 if (env->mem_io_pc) {
d720b93d 935 /* now we have a real cpu fault */
2e70f6ef 936 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
937 }
938 }
939 if (current_tb == tb &&
2e70f6ef 940 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
941 /* If we are modifying the current TB, we must stop
942 its execution. We could be more precise by checking
943 that the modification is after the current PC, but it
944 would require a specialized function to partially
945 restore the CPU state */
3b46e624 946
d720b93d 947 current_tb_modified = 1;
5fafdf24 948 cpu_restore_state(current_tb, env,
2e70f6ef 949 env->mem_io_pc, NULL);
d720b93d
FB
950#if defined(TARGET_I386)
951 current_flags = env->hflags;
952 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
953 current_cs_base = (target_ulong)env->segs[R_CS].base;
954 current_pc = current_cs_base + env->eip;
955#else
956#error unsupported CPU
957#endif
958 }
959#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
960 /* we need to do that to handle the case where a signal
961 occurs while doing tb_phys_invalidate() */
962 saved_tb = NULL;
963 if (env) {
964 saved_tb = env->current_tb;
965 env->current_tb = NULL;
966 }
9fa3e853 967 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
968 if (env) {
969 env->current_tb = saved_tb;
970 if (env->interrupt_request && env->current_tb)
971 cpu_interrupt(env, env->interrupt_request);
972 }
9fa3e853
FB
973 }
974 tb = tb_next;
975 }
976#if !defined(CONFIG_USER_ONLY)
977 /* if no code remaining, no need to continue to use slow writes */
978 if (!p->first_tb) {
979 invalidate_page_bitmap(p);
d720b93d 980 if (is_cpu_write_access) {
2e70f6ef 981 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
982 }
983 }
984#endif
985#ifdef TARGET_HAS_PRECISE_SMC
986 if (current_tb_modified) {
987 /* we generate a block containing just the instruction
988 modifying the memory. It will ensure that it cannot modify
989 itself */
ea1c1802 990 env->current_tb = NULL;
2e70f6ef 991 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 992 cpu_resume_from_signal(env, NULL);
9fa3e853 993 }
fd6ce8f6 994#endif
9fa3e853 995}
fd6ce8f6 996
9fa3e853 997/* len must be <= 8 and start must be a multiple of len */
00f82b8a 998static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
999{
1000 PageDesc *p;
1001 int offset, b;
59817ccb 1002#if 0
a4193c8a
FB
1003 if (1) {
1004 if (loglevel) {
5fafdf24 1005 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
2e70f6ef 1006 cpu_single_env->mem_io_vaddr, len,
5fafdf24 1007 cpu_single_env->eip,
a4193c8a
FB
1008 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1009 }
59817ccb
FB
1010 }
1011#endif
9fa3e853 1012 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1013 if (!p)
9fa3e853
FB
1014 return;
1015 if (p->code_bitmap) {
1016 offset = start & ~TARGET_PAGE_MASK;
1017 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1018 if (b & ((1 << len) - 1))
1019 goto do_invalidate;
1020 } else {
1021 do_invalidate:
d720b93d 1022 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1023 }
1024}
1025
9fa3e853 1026#if !defined(CONFIG_SOFTMMU)
00f82b8a 1027static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1028 unsigned long pc, void *puc)
9fa3e853 1029{
d720b93d
FB
1030 int n, current_flags, current_tb_modified;
1031 target_ulong current_pc, current_cs_base;
9fa3e853 1032 PageDesc *p;
d720b93d
FB
1033 TranslationBlock *tb, *current_tb;
1034#ifdef TARGET_HAS_PRECISE_SMC
1035 CPUState *env = cpu_single_env;
1036#endif
9fa3e853
FB
1037
1038 addr &= TARGET_PAGE_MASK;
1039 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1040 if (!p)
9fa3e853
FB
1041 return;
1042 tb = p->first_tb;
d720b93d
FB
1043 current_tb_modified = 0;
1044 current_tb = NULL;
1045 current_pc = 0; /* avoid warning */
1046 current_cs_base = 0; /* avoid warning */
1047 current_flags = 0; /* avoid warning */
1048#ifdef TARGET_HAS_PRECISE_SMC
1049 if (tb && pc != 0) {
1050 current_tb = tb_find_pc(pc);
1051 }
1052#endif
9fa3e853
FB
1053 while (tb != NULL) {
1054 n = (long)tb & 3;
1055 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1056#ifdef TARGET_HAS_PRECISE_SMC
1057 if (current_tb == tb &&
2e70f6ef 1058 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1059 /* If we are modifying the current TB, we must stop
1060 its execution. We could be more precise by checking
1061 that the modification is after the current PC, but it
1062 would require a specialized function to partially
1063 restore the CPU state */
3b46e624 1064
d720b93d
FB
1065 current_tb_modified = 1;
1066 cpu_restore_state(current_tb, env, pc, puc);
1067#if defined(TARGET_I386)
1068 current_flags = env->hflags;
1069 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1070 current_cs_base = (target_ulong)env->segs[R_CS].base;
1071 current_pc = current_cs_base + env->eip;
1072#else
1073#error unsupported CPU
1074#endif
1075 }
1076#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1077 tb_phys_invalidate(tb, addr);
1078 tb = tb->page_next[n];
1079 }
fd6ce8f6 1080 p->first_tb = NULL;
d720b93d
FB
1081#ifdef TARGET_HAS_PRECISE_SMC
1082 if (current_tb_modified) {
1083 /* we generate a block containing just the instruction
1084 modifying the memory. It will ensure that it cannot modify
1085 itself */
ea1c1802 1086 env->current_tb = NULL;
2e70f6ef 1087 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1088 cpu_resume_from_signal(env, puc);
1089 }
1090#endif
fd6ce8f6 1091}
9fa3e853 1092#endif
fd6ce8f6
FB
1093
1094/* add the tb in the target page and protect it if necessary */
5fafdf24 1095static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1096 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1097{
1098 PageDesc *p;
9fa3e853
FB
1099 TranslationBlock *last_first_tb;
1100
1101 tb->page_addr[n] = page_addr;
3a7d929e 1102 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1103 tb->page_next[n] = p->first_tb;
1104 last_first_tb = p->first_tb;
1105 p->first_tb = (TranslationBlock *)((long)tb | n);
1106 invalidate_page_bitmap(p);
fd6ce8f6 1107
107db443 1108#if defined(TARGET_HAS_SMC) || 1
d720b93d 1109
9fa3e853 1110#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1111 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1112 target_ulong addr;
1113 PageDesc *p2;
9fa3e853
FB
1114 int prot;
1115
fd6ce8f6
FB
1116 /* force the host page as non writable (writes will have a
1117 page fault + mprotect overhead) */
53a5960a 1118 page_addr &= qemu_host_page_mask;
fd6ce8f6 1119 prot = 0;
53a5960a
PB
1120 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1121 addr += TARGET_PAGE_SIZE) {
1122
1123 p2 = page_find (addr >> TARGET_PAGE_BITS);
1124 if (!p2)
1125 continue;
1126 prot |= p2->flags;
1127 p2->flags &= ~PAGE_WRITE;
1128 page_get_flags(addr);
1129 }
5fafdf24 1130 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1131 (prot & PAGE_BITS) & ~PAGE_WRITE);
1132#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1133 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1134 page_addr);
fd6ce8f6 1135#endif
fd6ce8f6 1136 }
9fa3e853
FB
1137#else
1138 /* if some code is already present, then the pages are already
1139 protected. So we handle the case where only the first TB is
1140 allocated in a physical page */
1141 if (!last_first_tb) {
6a00d601 1142 tlb_protect_code(page_addr);
9fa3e853
FB
1143 }
1144#endif
d720b93d
FB
1145
1146#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1147}
1148
1149/* Allocate a new translation block. Flush the translation buffer if
1150 too many translation blocks or too much generated code. */
c27004ec 1151TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1152{
1153 TranslationBlock *tb;
fd6ce8f6 1154
26a5f13b
FB
1155 if (nb_tbs >= code_gen_max_blocks ||
1156 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1157 return NULL;
fd6ce8f6
FB
1158 tb = &tbs[nb_tbs++];
1159 tb->pc = pc;
b448f2f3 1160 tb->cflags = 0;
d4e8164f
FB
1161 return tb;
1162}
1163
2e70f6ef
PB
1164void tb_free(TranslationBlock *tb)
1165{
bf20dc07 1166 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1167 Ignore the hard cases and just back up if this TB happens to
1168 be the last one generated. */
1169 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1170 code_gen_ptr = tb->tc_ptr;
1171 nb_tbs--;
1172 }
1173}
1174
9fa3e853
FB
1175/* add a new TB and link it to the physical page tables. phys_page2 is
1176 (-1) to indicate that only one page contains the TB. */
5fafdf24 1177void tb_link_phys(TranslationBlock *tb,
9fa3e853 1178 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1179{
9fa3e853
FB
1180 unsigned int h;
1181 TranslationBlock **ptb;
1182
c8a706fe
PB
1183 /* Grab the mmap lock to stop another thread invalidating this TB
1184 before we are done. */
1185 mmap_lock();
9fa3e853
FB
1186 /* add in the physical hash table */
1187 h = tb_phys_hash_func(phys_pc);
1188 ptb = &tb_phys_hash[h];
1189 tb->phys_hash_next = *ptb;
1190 *ptb = tb;
fd6ce8f6
FB
1191
1192 /* add in the page list */
9fa3e853
FB
1193 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1194 if (phys_page2 != -1)
1195 tb_alloc_page(tb, 1, phys_page2);
1196 else
1197 tb->page_addr[1] = -1;
9fa3e853 1198
d4e8164f
FB
1199 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1200 tb->jmp_next[0] = NULL;
1201 tb->jmp_next[1] = NULL;
1202
1203 /* init original jump addresses */
1204 if (tb->tb_next_offset[0] != 0xffff)
1205 tb_reset_jump(tb, 0);
1206 if (tb->tb_next_offset[1] != 0xffff)
1207 tb_reset_jump(tb, 1);
8a40a180
FB
1208
1209#ifdef DEBUG_TB_CHECK
1210 tb_page_check();
1211#endif
c8a706fe 1212 mmap_unlock();
fd6ce8f6
FB
1213}
1214
9fa3e853
FB
1215/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1216 tb[1].tc_ptr. Return NULL if not found */
1217TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1218{
9fa3e853
FB
1219 int m_min, m_max, m;
1220 unsigned long v;
1221 TranslationBlock *tb;
a513fe19
FB
1222
1223 if (nb_tbs <= 0)
1224 return NULL;
1225 if (tc_ptr < (unsigned long)code_gen_buffer ||
1226 tc_ptr >= (unsigned long)code_gen_ptr)
1227 return NULL;
1228 /* binary search (cf Knuth) */
1229 m_min = 0;
1230 m_max = nb_tbs - 1;
1231 while (m_min <= m_max) {
1232 m = (m_min + m_max) >> 1;
1233 tb = &tbs[m];
1234 v = (unsigned long)tb->tc_ptr;
1235 if (v == tc_ptr)
1236 return tb;
1237 else if (tc_ptr < v) {
1238 m_max = m - 1;
1239 } else {
1240 m_min = m + 1;
1241 }
5fafdf24 1242 }
a513fe19
FB
1243 return &tbs[m_max];
1244}
7501267e 1245
ea041c0e
FB
1246static void tb_reset_jump_recursive(TranslationBlock *tb);
1247
1248static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1249{
1250 TranslationBlock *tb1, *tb_next, **ptb;
1251 unsigned int n1;
1252
1253 tb1 = tb->jmp_next[n];
1254 if (tb1 != NULL) {
1255 /* find head of list */
1256 for(;;) {
1257 n1 = (long)tb1 & 3;
1258 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1259 if (n1 == 2)
1260 break;
1261 tb1 = tb1->jmp_next[n1];
1262 }
1263 /* we are now sure now that tb jumps to tb1 */
1264 tb_next = tb1;
1265
1266 /* remove tb from the jmp_first list */
1267 ptb = &tb_next->jmp_first;
1268 for(;;) {
1269 tb1 = *ptb;
1270 n1 = (long)tb1 & 3;
1271 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1272 if (n1 == n && tb1 == tb)
1273 break;
1274 ptb = &tb1->jmp_next[n1];
1275 }
1276 *ptb = tb->jmp_next[n];
1277 tb->jmp_next[n] = NULL;
3b46e624 1278
ea041c0e
FB
1279 /* suppress the jump to next tb in generated code */
1280 tb_reset_jump(tb, n);
1281
0124311e 1282 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1283 tb_reset_jump_recursive(tb_next);
1284 }
1285}
1286
1287static void tb_reset_jump_recursive(TranslationBlock *tb)
1288{
1289 tb_reset_jump_recursive2(tb, 0);
1290 tb_reset_jump_recursive2(tb, 1);
1291}
1292
1fddef4b 1293#if defined(TARGET_HAS_ICE)
d720b93d
FB
1294static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1295{
9b3c35e0
JM
1296 target_phys_addr_t addr;
1297 target_ulong pd;
c2f07f81
PB
1298 ram_addr_t ram_addr;
1299 PhysPageDesc *p;
d720b93d 1300
c2f07f81
PB
1301 addr = cpu_get_phys_page_debug(env, pc);
1302 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1303 if (!p) {
1304 pd = IO_MEM_UNASSIGNED;
1305 } else {
1306 pd = p->phys_offset;
1307 }
1308 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1309 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1310}
c27004ec 1311#endif
d720b93d 1312
6658ffb8 1313/* Add a watchpoint. */
0f459d16 1314int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
6658ffb8
PB
1315{
1316 int i;
1317
1318 for (i = 0; i < env->nb_watchpoints; i++) {
1319 if (addr == env->watchpoint[i].vaddr)
1320 return 0;
1321 }
1322 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1323 return -1;
1324
1325 i = env->nb_watchpoints++;
1326 env->watchpoint[i].vaddr = addr;
0f459d16 1327 env->watchpoint[i].type = type;
6658ffb8
PB
1328 tlb_flush_page(env, addr);
1329 /* FIXME: This flush is needed because of the hack to make memory ops
1330 terminate the TB. It can be removed once the proper IO trap and
1331 re-execute bits are in. */
1332 tb_flush(env);
1333 return i;
1334}
1335
1336/* Remove a watchpoint. */
1337int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1338{
1339 int i;
1340
1341 for (i = 0; i < env->nb_watchpoints; i++) {
1342 if (addr == env->watchpoint[i].vaddr) {
1343 env->nb_watchpoints--;
1344 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1345 tlb_flush_page(env, addr);
1346 return 0;
1347 }
1348 }
1349 return -1;
1350}
1351
7d03f82f
EI
1352/* Remove all watchpoints. */
1353void cpu_watchpoint_remove_all(CPUState *env) {
1354 int i;
1355
1356 for (i = 0; i < env->nb_watchpoints; i++) {
1357 tlb_flush_page(env, env->watchpoint[i].vaddr);
1358 }
1359 env->nb_watchpoints = 0;
1360}
1361
c33a346e
FB
1362/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1363 breakpoint is reached */
2e12669a 1364int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
4c3a88a2 1365{
1fddef4b 1366#if defined(TARGET_HAS_ICE)
4c3a88a2 1367 int i;
3b46e624 1368
4c3a88a2
FB
1369 for(i = 0; i < env->nb_breakpoints; i++) {
1370 if (env->breakpoints[i] == pc)
1371 return 0;
1372 }
1373
1374 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1375 return -1;
1376 env->breakpoints[env->nb_breakpoints++] = pc;
3b46e624 1377
d720b93d 1378 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1379 return 0;
1380#else
1381 return -1;
1382#endif
1383}
1384
7d03f82f
EI
1385/* remove all breakpoints */
1386void cpu_breakpoint_remove_all(CPUState *env) {
1387#if defined(TARGET_HAS_ICE)
1388 int i;
1389 for(i = 0; i < env->nb_breakpoints; i++) {
1390 breakpoint_invalidate(env, env->breakpoints[i]);
1391 }
1392 env->nb_breakpoints = 0;
1393#endif
1394}
1395
4c3a88a2 1396/* remove a breakpoint */
2e12669a 1397int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
4c3a88a2 1398{
1fddef4b 1399#if defined(TARGET_HAS_ICE)
4c3a88a2
FB
1400 int i;
1401 for(i = 0; i < env->nb_breakpoints; i++) {
1402 if (env->breakpoints[i] == pc)
1403 goto found;
1404 }
1405 return -1;
1406 found:
4c3a88a2 1407 env->nb_breakpoints--;
1fddef4b
FB
1408 if (i < env->nb_breakpoints)
1409 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
d720b93d
FB
1410
1411 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1412 return 0;
1413#else
1414 return -1;
1415#endif
1416}
1417
c33a346e
FB
1418/* enable or disable single step mode. EXCP_DEBUG is returned by the
1419 CPU loop after each instruction */
1420void cpu_single_step(CPUState *env, int enabled)
1421{
1fddef4b 1422#if defined(TARGET_HAS_ICE)
c33a346e
FB
1423 if (env->singlestep_enabled != enabled) {
1424 env->singlestep_enabled = enabled;
1425 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1426 /* XXX: only flush what is necessary */
0124311e 1427 tb_flush(env);
c33a346e
FB
1428 }
1429#endif
1430}
1431
34865134
FB
1432/* enable or disable low levels log */
1433void cpu_set_log(int log_flags)
1434{
1435 loglevel = log_flags;
1436 if (loglevel && !logfile) {
11fcfab4 1437 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1438 if (!logfile) {
1439 perror(logfilename);
1440 _exit(1);
1441 }
9fa3e853
FB
1442#if !defined(CONFIG_SOFTMMU)
1443 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1444 {
b55266b5 1445 static char logfile_buf[4096];
9fa3e853
FB
1446 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1447 }
1448#else
34865134 1449 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1450#endif
e735b91c
PB
1451 log_append = 1;
1452 }
1453 if (!loglevel && logfile) {
1454 fclose(logfile);
1455 logfile = NULL;
34865134
FB
1456 }
1457}
1458
1459void cpu_set_log_filename(const char *filename)
1460{
1461 logfilename = strdup(filename);
e735b91c
PB
1462 if (logfile) {
1463 fclose(logfile);
1464 logfile = NULL;
1465 }
1466 cpu_set_log(loglevel);
34865134 1467}
c33a346e 1468
0124311e 1469/* mask must never be zero, except for A20 change call */
68a79315 1470void cpu_interrupt(CPUState *env, int mask)
ea041c0e 1471{
d5975363 1472#if !defined(USE_NPTL)
ea041c0e 1473 TranslationBlock *tb;
15a51156 1474 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
d5975363 1475#endif
2e70f6ef 1476 int old_mask;
59817ccb 1477
2e70f6ef 1478 old_mask = env->interrupt_request;
d5975363 1479 /* FIXME: This is probably not threadsafe. A different thread could
bf20dc07 1480 be in the middle of a read-modify-write operation. */
68a79315 1481 env->interrupt_request |= mask;
d5975363
PB
1482#if defined(USE_NPTL)
1483 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1484 problem and hope the cpu will stop of its own accord. For userspace
1485 emulation this often isn't actually as bad as it sounds. Often
1486 signals are used primarily to interrupt blocking syscalls. */
1487#else
2e70f6ef 1488 if (use_icount) {
266910c4 1489 env->icount_decr.u16.high = 0xffff;
2e70f6ef
PB
1490#ifndef CONFIG_USER_ONLY
1491 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1492 an async event happened and we need to process it. */
1493 if (!can_do_io(env)
1494 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1495 cpu_abort(env, "Raised interrupt while not in I/O function");
1496 }
1497#endif
1498 } else {
1499 tb = env->current_tb;
1500 /* if the cpu is currently executing code, we must unlink it and
1501 all the potentially executing TB */
1502 if (tb && !testandset(&interrupt_lock)) {
1503 env->current_tb = NULL;
1504 tb_reset_jump_recursive(tb);
1505 resetlock(&interrupt_lock);
1506 }
ea041c0e 1507 }
d5975363 1508#endif
ea041c0e
FB
1509}
1510
b54ad049
FB
1511void cpu_reset_interrupt(CPUState *env, int mask)
1512{
1513 env->interrupt_request &= ~mask;
1514}
1515
c7cd6a37 1516const CPULogItem cpu_log_items[] = {
5fafdf24 1517 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1518 "show generated host assembly code for each compiled TB" },
1519 { CPU_LOG_TB_IN_ASM, "in_asm",
1520 "show target assembly code for each compiled TB" },
5fafdf24 1521 { CPU_LOG_TB_OP, "op",
57fec1fe 1522 "show micro ops for each compiled TB" },
f193c797 1523 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1524 "show micro ops "
1525#ifdef TARGET_I386
1526 "before eflags optimization and "
f193c797 1527#endif
e01a1157 1528 "after liveness analysis" },
f193c797
FB
1529 { CPU_LOG_INT, "int",
1530 "show interrupts/exceptions in short format" },
1531 { CPU_LOG_EXEC, "exec",
1532 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1533 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1534 "show CPU state before block translation" },
f193c797
FB
1535#ifdef TARGET_I386
1536 { CPU_LOG_PCALL, "pcall",
1537 "show protected mode far calls/returns/exceptions" },
1538#endif
8e3a9fd2 1539#ifdef DEBUG_IOPORT
fd872598
FB
1540 { CPU_LOG_IOPORT, "ioport",
1541 "show all i/o ports accesses" },
8e3a9fd2 1542#endif
f193c797
FB
1543 { 0, NULL, NULL },
1544};
1545
1546static int cmp1(const char *s1, int n, const char *s2)
1547{
1548 if (strlen(s2) != n)
1549 return 0;
1550 return memcmp(s1, s2, n) == 0;
1551}
3b46e624 1552
f193c797
FB
1553/* takes a comma separated list of log masks. Return 0 if error. */
1554int cpu_str_to_log_mask(const char *str)
1555{
c7cd6a37 1556 const CPULogItem *item;
f193c797
FB
1557 int mask;
1558 const char *p, *p1;
1559
1560 p = str;
1561 mask = 0;
1562 for(;;) {
1563 p1 = strchr(p, ',');
1564 if (!p1)
1565 p1 = p + strlen(p);
8e3a9fd2
FB
1566 if(cmp1(p,p1-p,"all")) {
1567 for(item = cpu_log_items; item->mask != 0; item++) {
1568 mask |= item->mask;
1569 }
1570 } else {
f193c797
FB
1571 for(item = cpu_log_items; item->mask != 0; item++) {
1572 if (cmp1(p, p1 - p, item->name))
1573 goto found;
1574 }
1575 return 0;
8e3a9fd2 1576 }
f193c797
FB
1577 found:
1578 mask |= item->mask;
1579 if (*p1 != ',')
1580 break;
1581 p = p1 + 1;
1582 }
1583 return mask;
1584}
ea041c0e 1585
7501267e
FB
1586void cpu_abort(CPUState *env, const char *fmt, ...)
1587{
1588 va_list ap;
493ae1f0 1589 va_list ap2;
7501267e
FB
1590
1591 va_start(ap, fmt);
493ae1f0 1592 va_copy(ap2, ap);
7501267e
FB
1593 fprintf(stderr, "qemu: fatal: ");
1594 vfprintf(stderr, fmt, ap);
1595 fprintf(stderr, "\n");
1596#ifdef TARGET_I386
7fe48483
FB
1597 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1598#else
1599 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1600#endif
924edcae 1601 if (logfile) {
f9373291 1602 fprintf(logfile, "qemu: fatal: ");
493ae1f0 1603 vfprintf(logfile, fmt, ap2);
f9373291
JM
1604 fprintf(logfile, "\n");
1605#ifdef TARGET_I386
1606 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1607#else
1608 cpu_dump_state(env, logfile, fprintf, 0);
1609#endif
924edcae
AZ
1610 fflush(logfile);
1611 fclose(logfile);
1612 }
493ae1f0 1613 va_end(ap2);
f9373291 1614 va_end(ap);
7501267e
FB
1615 abort();
1616}
1617
c5be9f08
TS
1618CPUState *cpu_copy(CPUState *env)
1619{
01ba9816 1620 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1621 /* preserve chaining and index */
1622 CPUState *next_cpu = new_env->next_cpu;
1623 int cpu_index = new_env->cpu_index;
1624 memcpy(new_env, env, sizeof(CPUState));
1625 new_env->next_cpu = next_cpu;
1626 new_env->cpu_index = cpu_index;
1627 return new_env;
1628}
1629
0124311e
FB
1630#if !defined(CONFIG_USER_ONLY)
1631
5c751e99
EI
1632static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1633{
1634 unsigned int i;
1635
1636 /* Discard jump cache entries for any tb which might potentially
1637 overlap the flushed page. */
1638 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1639 memset (&env->tb_jmp_cache[i], 0,
1640 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1641
1642 i = tb_jmp_cache_hash_page(addr);
1643 memset (&env->tb_jmp_cache[i], 0,
1644 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1645}
1646
ee8b7021
FB
1647/* NOTE: if flush_global is true, also flush global entries (not
1648 implemented yet) */
1649void tlb_flush(CPUState *env, int flush_global)
33417e70 1650{
33417e70 1651 int i;
0124311e 1652
9fa3e853
FB
1653#if defined(DEBUG_TLB)
1654 printf("tlb_flush:\n");
1655#endif
0124311e
FB
1656 /* must reset current TB so that interrupts cannot modify the
1657 links while we are modifying them */
1658 env->current_tb = NULL;
1659
33417e70 1660 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1661 env->tlb_table[0][i].addr_read = -1;
1662 env->tlb_table[0][i].addr_write = -1;
1663 env->tlb_table[0][i].addr_code = -1;
1664 env->tlb_table[1][i].addr_read = -1;
1665 env->tlb_table[1][i].addr_write = -1;
1666 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1667#if (NB_MMU_MODES >= 3)
1668 env->tlb_table[2][i].addr_read = -1;
1669 env->tlb_table[2][i].addr_write = -1;
1670 env->tlb_table[2][i].addr_code = -1;
1671#if (NB_MMU_MODES == 4)
1672 env->tlb_table[3][i].addr_read = -1;
1673 env->tlb_table[3][i].addr_write = -1;
1674 env->tlb_table[3][i].addr_code = -1;
1675#endif
1676#endif
33417e70 1677 }
9fa3e853 1678
8a40a180 1679 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1680
0a962c02
FB
1681#ifdef USE_KQEMU
1682 if (env->kqemu_enabled) {
1683 kqemu_flush(env, flush_global);
1684 }
9fa3e853 1685#endif
e3db7226 1686 tlb_flush_count++;
33417e70
FB
1687}
1688
274da6b2 1689static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1690{
5fafdf24 1691 if (addr == (tlb_entry->addr_read &
84b7b8e7 1692 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1693 addr == (tlb_entry->addr_write &
84b7b8e7 1694 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1695 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1696 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1697 tlb_entry->addr_read = -1;
1698 tlb_entry->addr_write = -1;
1699 tlb_entry->addr_code = -1;
1700 }
61382a50
FB
1701}
1702
2e12669a 1703void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1704{
8a40a180 1705 int i;
0124311e 1706
9fa3e853 1707#if defined(DEBUG_TLB)
108c49b8 1708 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1709#endif
0124311e
FB
1710 /* must reset current TB so that interrupts cannot modify the
1711 links while we are modifying them */
1712 env->current_tb = NULL;
61382a50
FB
1713
1714 addr &= TARGET_PAGE_MASK;
1715 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1716 tlb_flush_entry(&env->tlb_table[0][i], addr);
1717 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1718#if (NB_MMU_MODES >= 3)
1719 tlb_flush_entry(&env->tlb_table[2][i], addr);
1720#if (NB_MMU_MODES == 4)
1721 tlb_flush_entry(&env->tlb_table[3][i], addr);
1722#endif
1723#endif
0124311e 1724
5c751e99 1725 tlb_flush_jmp_cache(env, addr);
9fa3e853 1726
0a962c02
FB
1727#ifdef USE_KQEMU
1728 if (env->kqemu_enabled) {
1729 kqemu_flush_page(env, addr);
1730 }
1731#endif
9fa3e853
FB
1732}
1733
9fa3e853
FB
1734/* update the TLBs so that writes to code in the virtual page 'addr'
1735 can be detected */
6a00d601 1736static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1737{
5fafdf24 1738 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1739 ram_addr + TARGET_PAGE_SIZE,
1740 CODE_DIRTY_FLAG);
9fa3e853
FB
1741}
1742
9fa3e853 1743/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1744 tested for self modifying code */
5fafdf24 1745static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1746 target_ulong vaddr)
9fa3e853 1747{
3a7d929e 1748 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1749}
1750
5fafdf24 1751static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1752 unsigned long start, unsigned long length)
1753{
1754 unsigned long addr;
84b7b8e7
FB
1755 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1756 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1757 if ((addr - start) < length) {
0f459d16 1758 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1759 }
1760 }
1761}
1762
3a7d929e 1763void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1764 int dirty_flags)
1ccde1cb
FB
1765{
1766 CPUState *env;
4f2ac237 1767 unsigned long length, start1;
0a962c02
FB
1768 int i, mask, len;
1769 uint8_t *p;
1ccde1cb
FB
1770
1771 start &= TARGET_PAGE_MASK;
1772 end = TARGET_PAGE_ALIGN(end);
1773
1774 length = end - start;
1775 if (length == 0)
1776 return;
0a962c02 1777 len = length >> TARGET_PAGE_BITS;
3a7d929e 1778#ifdef USE_KQEMU
6a00d601
FB
1779 /* XXX: should not depend on cpu context */
1780 env = first_cpu;
3a7d929e 1781 if (env->kqemu_enabled) {
f23db169
FB
1782 ram_addr_t addr;
1783 addr = start;
1784 for(i = 0; i < len; i++) {
1785 kqemu_set_notdirty(env, addr);
1786 addr += TARGET_PAGE_SIZE;
1787 }
3a7d929e
FB
1788 }
1789#endif
f23db169
FB
1790 mask = ~dirty_flags;
1791 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1792 for(i = 0; i < len; i++)
1793 p[i] &= mask;
1794
1ccde1cb
FB
1795 /* we modify the TLB cache so that the dirty bit will be set again
1796 when accessing the range */
59817ccb 1797 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1798 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1799 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1800 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1801 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1802 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1803#if (NB_MMU_MODES >= 3)
1804 for(i = 0; i < CPU_TLB_SIZE; i++)
1805 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1806#if (NB_MMU_MODES == 4)
1807 for(i = 0; i < CPU_TLB_SIZE; i++)
1808 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1809#endif
1810#endif
6a00d601 1811 }
1ccde1cb
FB
1812}
1813
74576198
AL
1814int cpu_physical_memory_set_dirty_tracking(int enable)
1815{
1816 in_migration = enable;
1817 return 0;
1818}
1819
1820int cpu_physical_memory_get_dirty_tracking(void)
1821{
1822 return in_migration;
1823}
1824
3a7d929e
FB
1825static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1826{
1827 ram_addr_t ram_addr;
1828
84b7b8e7 1829 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1830 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1831 tlb_entry->addend - (unsigned long)phys_ram_base;
1832 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1833 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1834 }
1835 }
1836}
1837
1838/* update the TLB according to the current state of the dirty bits */
1839void cpu_tlb_update_dirty(CPUState *env)
1840{
1841 int i;
1842 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1843 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1844 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1845 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1846#if (NB_MMU_MODES >= 3)
1847 for(i = 0; i < CPU_TLB_SIZE; i++)
1848 tlb_update_dirty(&env->tlb_table[2][i]);
1849#if (NB_MMU_MODES == 4)
1850 for(i = 0; i < CPU_TLB_SIZE; i++)
1851 tlb_update_dirty(&env->tlb_table[3][i]);
1852#endif
1853#endif
3a7d929e
FB
1854}
1855
0f459d16 1856static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1857{
0f459d16
PB
1858 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1859 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1860}
1861
0f459d16
PB
1862/* update the TLB corresponding to virtual page vaddr
1863 so that it is no longer dirty */
1864static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1865{
1ccde1cb
FB
1866 int i;
1867
0f459d16 1868 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1869 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1870 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1871 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1872#if (NB_MMU_MODES >= 3)
0f459d16 1873 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1874#if (NB_MMU_MODES == 4)
0f459d16 1875 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1876#endif
1877#endif
9fa3e853
FB
1878}
1879
59817ccb
FB
1880/* add a new TLB entry. At most one entry for a given virtual address
1881 is permitted. Return 0 if OK or 2 if the page could not be mapped
1882 (can only happen in non SOFTMMU mode for I/O pages or pages
1883 conflicting with the host address space). */
5fafdf24
TS
1884int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1885 target_phys_addr_t paddr, int prot,
6ebbf390 1886 int mmu_idx, int is_softmmu)
9fa3e853 1887{
92e873b9 1888 PhysPageDesc *p;
4f2ac237 1889 unsigned long pd;
9fa3e853 1890 unsigned int index;
4f2ac237 1891 target_ulong address;
0f459d16 1892 target_ulong code_address;
108c49b8 1893 target_phys_addr_t addend;
9fa3e853 1894 int ret;
84b7b8e7 1895 CPUTLBEntry *te;
6658ffb8 1896 int i;
0f459d16 1897 target_phys_addr_t iotlb;
9fa3e853 1898
92e873b9 1899 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1900 if (!p) {
1901 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1902 } else {
1903 pd = p->phys_offset;
9fa3e853
FB
1904 }
1905#if defined(DEBUG_TLB)
6ebbf390
JM
1906 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1907 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1908#endif
1909
1910 ret = 0;
0f459d16
PB
1911 address = vaddr;
1912 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1913 /* IO memory case (romd handled later) */
1914 address |= TLB_MMIO;
1915 }
1916 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1917 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1918 /* Normal RAM. */
1919 iotlb = pd & TARGET_PAGE_MASK;
1920 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1921 iotlb |= IO_MEM_NOTDIRTY;
1922 else
1923 iotlb |= IO_MEM_ROM;
1924 } else {
1925 /* IO handlers are currently passed a phsical address.
1926 It would be nice to pass an offset from the base address
1927 of that region. This would avoid having to special case RAM,
1928 and avoid full address decoding in every device.
1929 We can't use the high bits of pd for this because
1930 IO_MEM_ROMD uses these as a ram address. */
1931 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1932 }
1933
1934 code_address = address;
1935 /* Make accesses to pages with watchpoints go via the
1936 watchpoint trap routines. */
1937 for (i = 0; i < env->nb_watchpoints; i++) {
1938 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1939 iotlb = io_mem_watch + paddr;
1940 /* TODO: The memory case can be optimized by not trapping
1941 reads of pages with a write breakpoint. */
1942 address |= TLB_MMIO;
6658ffb8 1943 }
0f459d16 1944 }
d79acba4 1945
0f459d16
PB
1946 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1947 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1948 te = &env->tlb_table[mmu_idx][index];
1949 te->addend = addend - vaddr;
1950 if (prot & PAGE_READ) {
1951 te->addr_read = address;
1952 } else {
1953 te->addr_read = -1;
1954 }
5c751e99 1955
0f459d16
PB
1956 if (prot & PAGE_EXEC) {
1957 te->addr_code = code_address;
1958 } else {
1959 te->addr_code = -1;
1960 }
1961 if (prot & PAGE_WRITE) {
1962 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1963 (pd & IO_MEM_ROMD)) {
1964 /* Write access calls the I/O callback. */
1965 te->addr_write = address | TLB_MMIO;
1966 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1967 !cpu_physical_memory_is_dirty(pd)) {
1968 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 1969 } else {
0f459d16 1970 te->addr_write = address;
9fa3e853 1971 }
0f459d16
PB
1972 } else {
1973 te->addr_write = -1;
9fa3e853 1974 }
9fa3e853
FB
1975 return ret;
1976}
1977
0124311e
FB
1978#else
1979
ee8b7021 1980void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
1981{
1982}
1983
2e12669a 1984void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
1985{
1986}
1987
5fafdf24
TS
1988int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1989 target_phys_addr_t paddr, int prot,
6ebbf390 1990 int mmu_idx, int is_softmmu)
9fa3e853
FB
1991{
1992 return 0;
1993}
0124311e 1994
9fa3e853
FB
1995/* dump memory mappings */
1996void page_dump(FILE *f)
33417e70 1997{
9fa3e853
FB
1998 unsigned long start, end;
1999 int i, j, prot, prot1;
2000 PageDesc *p;
33417e70 2001
9fa3e853
FB
2002 fprintf(f, "%-8s %-8s %-8s %s\n",
2003 "start", "end", "size", "prot");
2004 start = -1;
2005 end = -1;
2006 prot = 0;
2007 for(i = 0; i <= L1_SIZE; i++) {
2008 if (i < L1_SIZE)
2009 p = l1_map[i];
2010 else
2011 p = NULL;
2012 for(j = 0;j < L2_SIZE; j++) {
2013 if (!p)
2014 prot1 = 0;
2015 else
2016 prot1 = p[j].flags;
2017 if (prot1 != prot) {
2018 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2019 if (start != -1) {
2020 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 2021 start, end, end - start,
9fa3e853
FB
2022 prot & PAGE_READ ? 'r' : '-',
2023 prot & PAGE_WRITE ? 'w' : '-',
2024 prot & PAGE_EXEC ? 'x' : '-');
2025 }
2026 if (prot1 != 0)
2027 start = end;
2028 else
2029 start = -1;
2030 prot = prot1;
2031 }
2032 if (!p)
2033 break;
2034 }
33417e70 2035 }
33417e70
FB
2036}
2037
53a5960a 2038int page_get_flags(target_ulong address)
33417e70 2039{
9fa3e853
FB
2040 PageDesc *p;
2041
2042 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2043 if (!p)
9fa3e853
FB
2044 return 0;
2045 return p->flags;
2046}
2047
2048/* modify the flags of a page and invalidate the code if
2049 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2050 depending on PAGE_WRITE */
53a5960a 2051void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2052{
2053 PageDesc *p;
53a5960a 2054 target_ulong addr;
9fa3e853 2055
c8a706fe 2056 /* mmap_lock should already be held. */
9fa3e853
FB
2057 start = start & TARGET_PAGE_MASK;
2058 end = TARGET_PAGE_ALIGN(end);
2059 if (flags & PAGE_WRITE)
2060 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2061 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2062 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2063 /* We may be called for host regions that are outside guest
2064 address space. */
2065 if (!p)
2066 return;
9fa3e853
FB
2067 /* if the write protection is set, then we invalidate the code
2068 inside */
5fafdf24 2069 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2070 (flags & PAGE_WRITE) &&
2071 p->first_tb) {
d720b93d 2072 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2073 }
2074 p->flags = flags;
2075 }
33417e70
FB
2076}
2077
3d97b40b
TS
2078int page_check_range(target_ulong start, target_ulong len, int flags)
2079{
2080 PageDesc *p;
2081 target_ulong end;
2082 target_ulong addr;
2083
2084 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2085 start = start & TARGET_PAGE_MASK;
2086
2087 if( end < start )
2088 /* we've wrapped around */
2089 return -1;
2090 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2091 p = page_find(addr >> TARGET_PAGE_BITS);
2092 if( !p )
2093 return -1;
2094 if( !(p->flags & PAGE_VALID) )
2095 return -1;
2096
dae3270c 2097 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2098 return -1;
dae3270c
FB
2099 if (flags & PAGE_WRITE) {
2100 if (!(p->flags & PAGE_WRITE_ORG))
2101 return -1;
2102 /* unprotect the page if it was put read-only because it
2103 contains translated code */
2104 if (!(p->flags & PAGE_WRITE)) {
2105 if (!page_unprotect(addr, 0, NULL))
2106 return -1;
2107 }
2108 return 0;
2109 }
3d97b40b
TS
2110 }
2111 return 0;
2112}
2113
9fa3e853
FB
2114/* called from signal handler: invalidate the code and unprotect the
2115 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2116int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2117{
2118 unsigned int page_index, prot, pindex;
2119 PageDesc *p, *p1;
53a5960a 2120 target_ulong host_start, host_end, addr;
9fa3e853 2121
c8a706fe
PB
2122 /* Technically this isn't safe inside a signal handler. However we
2123 know this only ever happens in a synchronous SEGV handler, so in
2124 practice it seems to be ok. */
2125 mmap_lock();
2126
83fb7adf 2127 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2128 page_index = host_start >> TARGET_PAGE_BITS;
2129 p1 = page_find(page_index);
c8a706fe
PB
2130 if (!p1) {
2131 mmap_unlock();
9fa3e853 2132 return 0;
c8a706fe 2133 }
83fb7adf 2134 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2135 p = p1;
2136 prot = 0;
2137 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2138 prot |= p->flags;
2139 p++;
2140 }
2141 /* if the page was really writable, then we change its
2142 protection back to writable */
2143 if (prot & PAGE_WRITE_ORG) {
2144 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2145 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2146 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2147 (prot & PAGE_BITS) | PAGE_WRITE);
2148 p1[pindex].flags |= PAGE_WRITE;
2149 /* and since the content will be modified, we must invalidate
2150 the corresponding translated code. */
d720b93d 2151 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2152#ifdef DEBUG_TB_CHECK
2153 tb_invalidate_check(address);
2154#endif
c8a706fe 2155 mmap_unlock();
9fa3e853
FB
2156 return 1;
2157 }
2158 }
c8a706fe 2159 mmap_unlock();
9fa3e853
FB
2160 return 0;
2161}
2162
6a00d601
FB
2163static inline void tlb_set_dirty(CPUState *env,
2164 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2165{
2166}
9fa3e853
FB
2167#endif /* defined(CONFIG_USER_ONLY) */
2168
e2eef170 2169#if !defined(CONFIG_USER_ONLY)
db7b5426 2170static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a
AJ
2171 ram_addr_t memory);
2172static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2173 ram_addr_t orig_memory);
db7b5426
BS
2174#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2175 need_subpage) \
2176 do { \
2177 if (addr > start_addr) \
2178 start_addr2 = 0; \
2179 else { \
2180 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2181 if (start_addr2 > 0) \
2182 need_subpage = 1; \
2183 } \
2184 \
49e9fba2 2185 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2186 end_addr2 = TARGET_PAGE_SIZE - 1; \
2187 else { \
2188 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2189 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2190 need_subpage = 1; \
2191 } \
2192 } while (0)
2193
33417e70
FB
2194/* register physical memory. 'size' must be a multiple of the target
2195 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2196 io memory page */
5fafdf24 2197void cpu_register_physical_memory(target_phys_addr_t start_addr,
00f82b8a
AJ
2198 ram_addr_t size,
2199 ram_addr_t phys_offset)
33417e70 2200{
108c49b8 2201 target_phys_addr_t addr, end_addr;
92e873b9 2202 PhysPageDesc *p;
9d42037b 2203 CPUState *env;
00f82b8a 2204 ram_addr_t orig_size = size;
db7b5426 2205 void *subpage;
33417e70 2206
da260249
FB
2207#ifdef USE_KQEMU
2208 /* XXX: should not depend on cpu context */
2209 env = first_cpu;
2210 if (env->kqemu_enabled) {
2211 kqemu_set_phys_mem(start_addr, size, phys_offset);
2212 }
2213#endif
5fd386f6 2214 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2215 end_addr = start_addr + (target_phys_addr_t)size;
2216 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2217 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2218 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2219 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2220 target_phys_addr_t start_addr2, end_addr2;
2221 int need_subpage = 0;
2222
2223 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2224 need_subpage);
4254fab8 2225 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2226 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2227 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2228 &p->phys_offset, orig_memory);
2229 } else {
2230 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2231 >> IO_MEM_SHIFT];
2232 }
2233 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2234 } else {
2235 p->phys_offset = phys_offset;
2236 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2237 (phys_offset & IO_MEM_ROMD))
2238 phys_offset += TARGET_PAGE_SIZE;
2239 }
2240 } else {
2241 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2242 p->phys_offset = phys_offset;
2243 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2244 (phys_offset & IO_MEM_ROMD))
2245 phys_offset += TARGET_PAGE_SIZE;
2246 else {
2247 target_phys_addr_t start_addr2, end_addr2;
2248 int need_subpage = 0;
2249
2250 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2251 end_addr2, need_subpage);
2252
4254fab8 2253 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2254 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2255 &p->phys_offset, IO_MEM_UNASSIGNED);
2256 subpage_register(subpage, start_addr2, end_addr2,
2257 phys_offset);
2258 }
2259 }
2260 }
33417e70 2261 }
3b46e624 2262
9d42037b
FB
2263 /* since each CPU stores ram addresses in its TLB cache, we must
2264 reset the modified entries */
2265 /* XXX: slow ! */
2266 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2267 tlb_flush(env, 1);
2268 }
33417e70
FB
2269}
2270
ba863458 2271/* XXX: temporary until new memory mapping API */
00f82b8a 2272ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2273{
2274 PhysPageDesc *p;
2275
2276 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2277 if (!p)
2278 return IO_MEM_UNASSIGNED;
2279 return p->phys_offset;
2280}
2281
e9a1ab19 2282/* XXX: better than nothing */
00f82b8a 2283ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2284{
2285 ram_addr_t addr;
7fb4fdcf 2286 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
012a7045 2287 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
ed441467 2288 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2289 abort();
2290 }
2291 addr = phys_ram_alloc_offset;
2292 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2293 return addr;
2294}
2295
2296void qemu_ram_free(ram_addr_t addr)
2297{
2298}
2299
a4193c8a 2300static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2301{
67d3b957 2302#ifdef DEBUG_UNASSIGNED
ab3d1727 2303 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2304#endif
e18231a3
BS
2305#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2306 do_unassigned_access(addr, 0, 0, 0, 1);
2307#endif
2308 return 0;
2309}
2310
2311static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2312{
2313#ifdef DEBUG_UNASSIGNED
2314 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2315#endif
2316#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2317 do_unassigned_access(addr, 0, 0, 0, 2);
2318#endif
2319 return 0;
2320}
2321
2322static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2323{
2324#ifdef DEBUG_UNASSIGNED
2325 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2326#endif
2327#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2328 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2329#endif
33417e70
FB
2330 return 0;
2331}
2332
a4193c8a 2333static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2334{
67d3b957 2335#ifdef DEBUG_UNASSIGNED
ab3d1727 2336 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2337#endif
e18231a3
BS
2338#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2339 do_unassigned_access(addr, 1, 0, 0, 1);
2340#endif
2341}
2342
2343static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2344{
2345#ifdef DEBUG_UNASSIGNED
2346 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2347#endif
2348#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2349 do_unassigned_access(addr, 1, 0, 0, 2);
2350#endif
2351}
2352
2353static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2354{
2355#ifdef DEBUG_UNASSIGNED
2356 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2357#endif
2358#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2359 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2360#endif
33417e70
FB
2361}
2362
2363static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2364 unassigned_mem_readb,
e18231a3
BS
2365 unassigned_mem_readw,
2366 unassigned_mem_readl,
33417e70
FB
2367};
2368
2369static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2370 unassigned_mem_writeb,
e18231a3
BS
2371 unassigned_mem_writew,
2372 unassigned_mem_writel,
33417e70
FB
2373};
2374
0f459d16
PB
2375static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2376 uint32_t val)
9fa3e853 2377{
3a7d929e 2378 int dirty_flags;
3a7d929e
FB
2379 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2380 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2381#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2382 tb_invalidate_phys_page_fast(ram_addr, 1);
2383 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2384#endif
3a7d929e 2385 }
0f459d16 2386 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2387#ifdef USE_KQEMU
2388 if (cpu_single_env->kqemu_enabled &&
2389 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2390 kqemu_modify_page(cpu_single_env, ram_addr);
2391#endif
f23db169
FB
2392 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2393 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2394 /* we remove the notdirty callback only if the code has been
2395 flushed */
2396 if (dirty_flags == 0xff)
2e70f6ef 2397 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2398}
2399
0f459d16
PB
2400static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2401 uint32_t val)
9fa3e853 2402{
3a7d929e 2403 int dirty_flags;
3a7d929e
FB
2404 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2405 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2406#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2407 tb_invalidate_phys_page_fast(ram_addr, 2);
2408 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2409#endif
3a7d929e 2410 }
0f459d16 2411 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2412#ifdef USE_KQEMU
2413 if (cpu_single_env->kqemu_enabled &&
2414 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2415 kqemu_modify_page(cpu_single_env, ram_addr);
2416#endif
f23db169
FB
2417 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2418 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2419 /* we remove the notdirty callback only if the code has been
2420 flushed */
2421 if (dirty_flags == 0xff)
2e70f6ef 2422 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2423}
2424
0f459d16
PB
2425static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2426 uint32_t val)
9fa3e853 2427{
3a7d929e 2428 int dirty_flags;
3a7d929e
FB
2429 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2430 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2431#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2432 tb_invalidate_phys_page_fast(ram_addr, 4);
2433 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2434#endif
3a7d929e 2435 }
0f459d16 2436 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2437#ifdef USE_KQEMU
2438 if (cpu_single_env->kqemu_enabled &&
2439 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2440 kqemu_modify_page(cpu_single_env, ram_addr);
2441#endif
f23db169
FB
2442 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2443 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2444 /* we remove the notdirty callback only if the code has been
2445 flushed */
2446 if (dirty_flags == 0xff)
2e70f6ef 2447 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2448}
2449
3a7d929e 2450static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2451 NULL, /* never used */
2452 NULL, /* never used */
2453 NULL, /* never used */
2454};
2455
1ccde1cb
FB
2456static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2457 notdirty_mem_writeb,
2458 notdirty_mem_writew,
2459 notdirty_mem_writel,
2460};
2461
0f459d16
PB
2462/* Generate a debug exception if a watchpoint has been hit. */
2463static void check_watchpoint(int offset, int flags)
2464{
2465 CPUState *env = cpu_single_env;
2466 target_ulong vaddr;
2467 int i;
2468
2e70f6ef 2469 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
0f459d16
PB
2470 for (i = 0; i < env->nb_watchpoints; i++) {
2471 if (vaddr == env->watchpoint[i].vaddr
2472 && (env->watchpoint[i].type & flags)) {
2473 env->watchpoint_hit = i + 1;
2474 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2475 break;
2476 }
2477 }
2478}
2479
6658ffb8
PB
2480/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2481 so these check for a hit then pass through to the normal out-of-line
2482 phys routines. */
2483static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2484{
0f459d16 2485 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
6658ffb8
PB
2486 return ldub_phys(addr);
2487}
2488
2489static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2490{
0f459d16 2491 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
6658ffb8
PB
2492 return lduw_phys(addr);
2493}
2494
2495static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2496{
0f459d16 2497 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
6658ffb8
PB
2498 return ldl_phys(addr);
2499}
2500
6658ffb8
PB
2501static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2502 uint32_t val)
2503{
0f459d16 2504 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
6658ffb8
PB
2505 stb_phys(addr, val);
2506}
2507
2508static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2509 uint32_t val)
2510{
0f459d16 2511 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
6658ffb8
PB
2512 stw_phys(addr, val);
2513}
2514
2515static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2516 uint32_t val)
2517{
0f459d16 2518 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
6658ffb8
PB
2519 stl_phys(addr, val);
2520}
2521
2522static CPUReadMemoryFunc *watch_mem_read[3] = {
2523 watch_mem_readb,
2524 watch_mem_readw,
2525 watch_mem_readl,
2526};
2527
2528static CPUWriteMemoryFunc *watch_mem_write[3] = {
2529 watch_mem_writeb,
2530 watch_mem_writew,
2531 watch_mem_writel,
2532};
6658ffb8 2533
db7b5426
BS
2534static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2535 unsigned int len)
2536{
db7b5426
BS
2537 uint32_t ret;
2538 unsigned int idx;
2539
2540 idx = SUBPAGE_IDX(addr - mmio->base);
2541#if defined(DEBUG_SUBPAGE)
2542 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2543 mmio, len, addr, idx);
2544#endif
3ee89922 2545 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
db7b5426
BS
2546
2547 return ret;
2548}
2549
2550static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2551 uint32_t value, unsigned int len)
2552{
db7b5426
BS
2553 unsigned int idx;
2554
2555 idx = SUBPAGE_IDX(addr - mmio->base);
2556#if defined(DEBUG_SUBPAGE)
2557 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2558 mmio, len, addr, idx, value);
2559#endif
3ee89922 2560 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
db7b5426
BS
2561}
2562
2563static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2564{
2565#if defined(DEBUG_SUBPAGE)
2566 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2567#endif
2568
2569 return subpage_readlen(opaque, addr, 0);
2570}
2571
2572static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2573 uint32_t value)
2574{
2575#if defined(DEBUG_SUBPAGE)
2576 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2577#endif
2578 subpage_writelen(opaque, addr, value, 0);
2579}
2580
2581static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2582{
2583#if defined(DEBUG_SUBPAGE)
2584 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2585#endif
2586
2587 return subpage_readlen(opaque, addr, 1);
2588}
2589
2590static void subpage_writew (void *opaque, target_phys_addr_t addr,
2591 uint32_t value)
2592{
2593#if defined(DEBUG_SUBPAGE)
2594 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2595#endif
2596 subpage_writelen(opaque, addr, value, 1);
2597}
2598
2599static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2600{
2601#if defined(DEBUG_SUBPAGE)
2602 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2603#endif
2604
2605 return subpage_readlen(opaque, addr, 2);
2606}
2607
2608static void subpage_writel (void *opaque,
2609 target_phys_addr_t addr, uint32_t value)
2610{
2611#if defined(DEBUG_SUBPAGE)
2612 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2613#endif
2614 subpage_writelen(opaque, addr, value, 2);
2615}
2616
2617static CPUReadMemoryFunc *subpage_read[] = {
2618 &subpage_readb,
2619 &subpage_readw,
2620 &subpage_readl,
2621};
2622
2623static CPUWriteMemoryFunc *subpage_write[] = {
2624 &subpage_writeb,
2625 &subpage_writew,
2626 &subpage_writel,
2627};
2628
2629static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a 2630 ram_addr_t memory)
db7b5426
BS
2631{
2632 int idx, eidx;
4254fab8 2633 unsigned int i;
db7b5426
BS
2634
2635 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2636 return -1;
2637 idx = SUBPAGE_IDX(start);
2638 eidx = SUBPAGE_IDX(end);
2639#if defined(DEBUG_SUBPAGE)
2640 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2641 mmio, start, end, idx, eidx, memory);
2642#endif
2643 memory >>= IO_MEM_SHIFT;
2644 for (; idx <= eidx; idx++) {
4254fab8 2645 for (i = 0; i < 4; i++) {
3ee89922
BS
2646 if (io_mem_read[memory][i]) {
2647 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2648 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2649 }
2650 if (io_mem_write[memory][i]) {
2651 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2652 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2653 }
4254fab8 2654 }
db7b5426
BS
2655 }
2656
2657 return 0;
2658}
2659
00f82b8a
AJ
2660static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2661 ram_addr_t orig_memory)
db7b5426
BS
2662{
2663 subpage_t *mmio;
2664 int subpage_memory;
2665
2666 mmio = qemu_mallocz(sizeof(subpage_t));
2667 if (mmio != NULL) {
2668 mmio->base = base;
2669 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2670#if defined(DEBUG_SUBPAGE)
2671 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2672 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2673#endif
2674 *phys = subpage_memory | IO_MEM_SUBPAGE;
2675 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2676 }
2677
2678 return mmio;
2679}
2680
33417e70
FB
2681static void io_mem_init(void)
2682{
3a7d929e 2683 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2684 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2685 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2686 io_mem_nb = 5;
2687
0f459d16 2688 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2689 watch_mem_write, NULL);
1ccde1cb 2690 /* alloc dirty bits array */
0a962c02 2691 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2692 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2693}
2694
2695/* mem_read and mem_write are arrays of functions containing the
2696 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2697 2). Functions can be omitted with a NULL function pointer. The
2698 registered functions may be modified dynamically later.
2699 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2700 modified. If it is zero, a new io zone is allocated. The return
2701 value can be used with cpu_register_physical_memory(). (-1) is
2702 returned if error. */
33417e70
FB
2703int cpu_register_io_memory(int io_index,
2704 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2705 CPUWriteMemoryFunc **mem_write,
2706 void *opaque)
33417e70 2707{
4254fab8 2708 int i, subwidth = 0;
33417e70
FB
2709
2710 if (io_index <= 0) {
b5ff1b31 2711 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2712 return -1;
2713 io_index = io_mem_nb++;
2714 } else {
2715 if (io_index >= IO_MEM_NB_ENTRIES)
2716 return -1;
2717 }
b5ff1b31 2718
33417e70 2719 for(i = 0;i < 3; i++) {
4254fab8
BS
2720 if (!mem_read[i] || !mem_write[i])
2721 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2722 io_mem_read[io_index][i] = mem_read[i];
2723 io_mem_write[io_index][i] = mem_write[i];
2724 }
a4193c8a 2725 io_mem_opaque[io_index] = opaque;
4254fab8 2726 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2727}
61382a50 2728
8926b517
FB
2729CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2730{
2731 return io_mem_write[io_index >> IO_MEM_SHIFT];
2732}
2733
2734CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2735{
2736 return io_mem_read[io_index >> IO_MEM_SHIFT];
2737}
2738
e2eef170
PB
2739#endif /* !defined(CONFIG_USER_ONLY) */
2740
13eb76e0
FB
2741/* physical memory access (slow version, mainly for debug) */
2742#if defined(CONFIG_USER_ONLY)
5fafdf24 2743void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2744 int len, int is_write)
2745{
2746 int l, flags;
2747 target_ulong page;
53a5960a 2748 void * p;
13eb76e0
FB
2749
2750 while (len > 0) {
2751 page = addr & TARGET_PAGE_MASK;
2752 l = (page + TARGET_PAGE_SIZE) - addr;
2753 if (l > len)
2754 l = len;
2755 flags = page_get_flags(page);
2756 if (!(flags & PAGE_VALID))
2757 return;
2758 if (is_write) {
2759 if (!(flags & PAGE_WRITE))
2760 return;
579a97f7 2761 /* XXX: this code should not depend on lock_user */
72fb7daa 2762 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2763 /* FIXME - should this return an error rather than just fail? */
2764 return;
72fb7daa
AJ
2765 memcpy(p, buf, l);
2766 unlock_user(p, addr, l);
13eb76e0
FB
2767 } else {
2768 if (!(flags & PAGE_READ))
2769 return;
579a97f7 2770 /* XXX: this code should not depend on lock_user */
72fb7daa 2771 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2772 /* FIXME - should this return an error rather than just fail? */
2773 return;
72fb7daa 2774 memcpy(buf, p, l);
5b257578 2775 unlock_user(p, addr, 0);
13eb76e0
FB
2776 }
2777 len -= l;
2778 buf += l;
2779 addr += l;
2780 }
2781}
8df1cd07 2782
13eb76e0 2783#else
5fafdf24 2784void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2785 int len, int is_write)
2786{
2787 int l, io_index;
2788 uint8_t *ptr;
2789 uint32_t val;
2e12669a
FB
2790 target_phys_addr_t page;
2791 unsigned long pd;
92e873b9 2792 PhysPageDesc *p;
3b46e624 2793
13eb76e0
FB
2794 while (len > 0) {
2795 page = addr & TARGET_PAGE_MASK;
2796 l = (page + TARGET_PAGE_SIZE) - addr;
2797 if (l > len)
2798 l = len;
92e873b9 2799 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2800 if (!p) {
2801 pd = IO_MEM_UNASSIGNED;
2802 } else {
2803 pd = p->phys_offset;
2804 }
3b46e624 2805
13eb76e0 2806 if (is_write) {
3a7d929e 2807 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2808 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
6a00d601
FB
2809 /* XXX: could force cpu_single_env to NULL to avoid
2810 potential bugs */
13eb76e0 2811 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2812 /* 32 bit write access */
c27004ec 2813 val = ldl_p(buf);
a4193c8a 2814 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2815 l = 4;
2816 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2817 /* 16 bit write access */
c27004ec 2818 val = lduw_p(buf);
a4193c8a 2819 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2820 l = 2;
2821 } else {
1c213d19 2822 /* 8 bit write access */
c27004ec 2823 val = ldub_p(buf);
a4193c8a 2824 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2825 l = 1;
2826 }
2827 } else {
b448f2f3
FB
2828 unsigned long addr1;
2829 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2830 /* RAM case */
b448f2f3 2831 ptr = phys_ram_base + addr1;
13eb76e0 2832 memcpy(ptr, buf, l);
3a7d929e
FB
2833 if (!cpu_physical_memory_is_dirty(addr1)) {
2834 /* invalidate code */
2835 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2836 /* set dirty bit */
5fafdf24 2837 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2838 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2839 }
13eb76e0
FB
2840 }
2841 } else {
5fafdf24 2842 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2843 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2844 /* I/O case */
2845 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2846 if (l >= 4 && ((addr & 3) == 0)) {
2847 /* 32 bit read access */
a4193c8a 2848 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2849 stl_p(buf, val);
13eb76e0
FB
2850 l = 4;
2851 } else if (l >= 2 && ((addr & 1) == 0)) {
2852 /* 16 bit read access */
a4193c8a 2853 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2854 stw_p(buf, val);
13eb76e0
FB
2855 l = 2;
2856 } else {
1c213d19 2857 /* 8 bit read access */
a4193c8a 2858 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2859 stb_p(buf, val);
13eb76e0
FB
2860 l = 1;
2861 }
2862 } else {
2863 /* RAM case */
5fafdf24 2864 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2865 (addr & ~TARGET_PAGE_MASK);
2866 memcpy(buf, ptr, l);
2867 }
2868 }
2869 len -= l;
2870 buf += l;
2871 addr += l;
2872 }
2873}
8df1cd07 2874
d0ecd2aa 2875/* used for ROM loading : can write in RAM and ROM */
5fafdf24 2876void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
2877 const uint8_t *buf, int len)
2878{
2879 int l;
2880 uint8_t *ptr;
2881 target_phys_addr_t page;
2882 unsigned long pd;
2883 PhysPageDesc *p;
3b46e624 2884
d0ecd2aa
FB
2885 while (len > 0) {
2886 page = addr & TARGET_PAGE_MASK;
2887 l = (page + TARGET_PAGE_SIZE) - addr;
2888 if (l > len)
2889 l = len;
2890 p = phys_page_find(page >> TARGET_PAGE_BITS);
2891 if (!p) {
2892 pd = IO_MEM_UNASSIGNED;
2893 } else {
2894 pd = p->phys_offset;
2895 }
3b46e624 2896
d0ecd2aa 2897 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
2898 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2899 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
2900 /* do nothing */
2901 } else {
2902 unsigned long addr1;
2903 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2904 /* ROM/RAM case */
2905 ptr = phys_ram_base + addr1;
2906 memcpy(ptr, buf, l);
2907 }
2908 len -= l;
2909 buf += l;
2910 addr += l;
2911 }
2912}
2913
2914
8df1cd07
FB
2915/* warning: addr must be aligned */
2916uint32_t ldl_phys(target_phys_addr_t addr)
2917{
2918 int io_index;
2919 uint8_t *ptr;
2920 uint32_t val;
2921 unsigned long pd;
2922 PhysPageDesc *p;
2923
2924 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2925 if (!p) {
2926 pd = IO_MEM_UNASSIGNED;
2927 } else {
2928 pd = p->phys_offset;
2929 }
3b46e624 2930
5fafdf24 2931 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2932 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
2933 /* I/O case */
2934 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2935 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2936 } else {
2937 /* RAM case */
5fafdf24 2938 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
2939 (addr & ~TARGET_PAGE_MASK);
2940 val = ldl_p(ptr);
2941 }
2942 return val;
2943}
2944
84b7b8e7
FB
2945/* warning: addr must be aligned */
2946uint64_t ldq_phys(target_phys_addr_t addr)
2947{
2948 int io_index;
2949 uint8_t *ptr;
2950 uint64_t val;
2951 unsigned long pd;
2952 PhysPageDesc *p;
2953
2954 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2955 if (!p) {
2956 pd = IO_MEM_UNASSIGNED;
2957 } else {
2958 pd = p->phys_offset;
2959 }
3b46e624 2960
2a4188a3
FB
2961 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2962 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
2963 /* I/O case */
2964 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2965#ifdef TARGET_WORDS_BIGENDIAN
2966 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2967 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2968#else
2969 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2970 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2971#endif
2972 } else {
2973 /* RAM case */
5fafdf24 2974 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
2975 (addr & ~TARGET_PAGE_MASK);
2976 val = ldq_p(ptr);
2977 }
2978 return val;
2979}
2980
aab33094
FB
2981/* XXX: optimize */
2982uint32_t ldub_phys(target_phys_addr_t addr)
2983{
2984 uint8_t val;
2985 cpu_physical_memory_read(addr, &val, 1);
2986 return val;
2987}
2988
2989/* XXX: optimize */
2990uint32_t lduw_phys(target_phys_addr_t addr)
2991{
2992 uint16_t val;
2993 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2994 return tswap16(val);
2995}
2996
8df1cd07
FB
2997/* warning: addr must be aligned. The ram page is not masked as dirty
2998 and the code inside is not invalidated. It is useful if the dirty
2999 bits are used to track modified PTEs */
3000void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3001{
3002 int io_index;
3003 uint8_t *ptr;
3004 unsigned long pd;
3005 PhysPageDesc *p;
3006
3007 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3008 if (!p) {
3009 pd = IO_MEM_UNASSIGNED;
3010 } else {
3011 pd = p->phys_offset;
3012 }
3b46e624 3013
3a7d929e 3014 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3015 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3016 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3017 } else {
74576198
AL
3018 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3019 ptr = phys_ram_base + addr1;
8df1cd07 3020 stl_p(ptr, val);
74576198
AL
3021
3022 if (unlikely(in_migration)) {
3023 if (!cpu_physical_memory_is_dirty(addr1)) {
3024 /* invalidate code */
3025 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3026 /* set dirty bit */
3027 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3028 (0xff & ~CODE_DIRTY_FLAG);
3029 }
3030 }
8df1cd07
FB
3031 }
3032}
3033
bc98a7ef
JM
3034void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3035{
3036 int io_index;
3037 uint8_t *ptr;
3038 unsigned long pd;
3039 PhysPageDesc *p;
3040
3041 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3042 if (!p) {
3043 pd = IO_MEM_UNASSIGNED;
3044 } else {
3045 pd = p->phys_offset;
3046 }
3b46e624 3047
bc98a7ef
JM
3048 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3049 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3050#ifdef TARGET_WORDS_BIGENDIAN
3051 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3052 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3053#else
3054 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3055 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3056#endif
3057 } else {
5fafdf24 3058 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3059 (addr & ~TARGET_PAGE_MASK);
3060 stq_p(ptr, val);
3061 }
3062}
3063
8df1cd07 3064/* warning: addr must be aligned */
8df1cd07
FB
3065void stl_phys(target_phys_addr_t addr, uint32_t val)
3066{
3067 int io_index;
3068 uint8_t *ptr;
3069 unsigned long pd;
3070 PhysPageDesc *p;
3071
3072 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3073 if (!p) {
3074 pd = IO_MEM_UNASSIGNED;
3075 } else {
3076 pd = p->phys_offset;
3077 }
3b46e624 3078
3a7d929e 3079 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3080 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3081 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3082 } else {
3083 unsigned long addr1;
3084 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3085 /* RAM case */
3086 ptr = phys_ram_base + addr1;
3087 stl_p(ptr, val);
3a7d929e
FB
3088 if (!cpu_physical_memory_is_dirty(addr1)) {
3089 /* invalidate code */
3090 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3091 /* set dirty bit */
f23db169
FB
3092 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3093 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3094 }
8df1cd07
FB
3095 }
3096}
3097
aab33094
FB
3098/* XXX: optimize */
3099void stb_phys(target_phys_addr_t addr, uint32_t val)
3100{
3101 uint8_t v = val;
3102 cpu_physical_memory_write(addr, &v, 1);
3103}
3104
3105/* XXX: optimize */
3106void stw_phys(target_phys_addr_t addr, uint32_t val)
3107{
3108 uint16_t v = tswap16(val);
3109 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3110}
3111
3112/* XXX: optimize */
3113void stq_phys(target_phys_addr_t addr, uint64_t val)
3114{
3115 val = tswap64(val);
3116 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3117}
3118
13eb76e0
FB
3119#endif
3120
3121/* virtual memory access for debug */
5fafdf24 3122int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3123 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3124{
3125 int l;
9b3c35e0
JM
3126 target_phys_addr_t phys_addr;
3127 target_ulong page;
13eb76e0
FB
3128
3129 while (len > 0) {
3130 page = addr & TARGET_PAGE_MASK;
3131 phys_addr = cpu_get_phys_page_debug(env, page);
3132 /* if no physical page mapped, return an error */
3133 if (phys_addr == -1)
3134 return -1;
3135 l = (page + TARGET_PAGE_SIZE) - addr;
3136 if (l > len)
3137 l = len;
5fafdf24 3138 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 3139 buf, l, is_write);
13eb76e0
FB
3140 len -= l;
3141 buf += l;
3142 addr += l;
3143 }
3144 return 0;
3145}
3146
2e70f6ef
PB
3147/* in deterministic execution mode, instructions doing device I/Os
3148 must be at the end of the TB */
3149void cpu_io_recompile(CPUState *env, void *retaddr)
3150{
3151 TranslationBlock *tb;
3152 uint32_t n, cflags;
3153 target_ulong pc, cs_base;
3154 uint64_t flags;
3155
3156 tb = tb_find_pc((unsigned long)retaddr);
3157 if (!tb) {
3158 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3159 retaddr);
3160 }
3161 n = env->icount_decr.u16.low + tb->icount;
3162 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3163 /* Calculate how many instructions had been executed before the fault
bf20dc07 3164 occurred. */
2e70f6ef
PB
3165 n = n - env->icount_decr.u16.low;
3166 /* Generate a new TB ending on the I/O insn. */
3167 n++;
3168 /* On MIPS and SH, delay slot instructions can only be restarted if
3169 they were already the first instruction in the TB. If this is not
bf20dc07 3170 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3171 branch. */
3172#if defined(TARGET_MIPS)
3173 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3174 env->active_tc.PC -= 4;
3175 env->icount_decr.u16.low++;
3176 env->hflags &= ~MIPS_HFLAG_BMASK;
3177 }
3178#elif defined(TARGET_SH4)
3179 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3180 && n > 1) {
3181 env->pc -= 2;
3182 env->icount_decr.u16.low++;
3183 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3184 }
3185#endif
3186 /* This should never happen. */
3187 if (n > CF_COUNT_MASK)
3188 cpu_abort(env, "TB too big during recompile");
3189
3190 cflags = n | CF_LAST_IO;
3191 pc = tb->pc;
3192 cs_base = tb->cs_base;
3193 flags = tb->flags;
3194 tb_phys_invalidate(tb, -1);
3195 /* FIXME: In theory this could raise an exception. In practice
3196 we have already translated the block once so it's probably ok. */
3197 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3198 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3199 the first in the TB) then we end up generating a whole new TB and
3200 repeating the fault, which is horribly inefficient.
3201 Better would be to execute just this insn uncached, or generate a
3202 second new TB. */
3203 cpu_resume_from_signal(env, NULL);
3204}
3205
e3db7226
FB
3206void dump_exec_info(FILE *f,
3207 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3208{
3209 int i, target_code_size, max_target_code_size;
3210 int direct_jmp_count, direct_jmp2_count, cross_page;
3211 TranslationBlock *tb;
3b46e624 3212
e3db7226
FB
3213 target_code_size = 0;
3214 max_target_code_size = 0;
3215 cross_page = 0;
3216 direct_jmp_count = 0;
3217 direct_jmp2_count = 0;
3218 for(i = 0; i < nb_tbs; i++) {
3219 tb = &tbs[i];
3220 target_code_size += tb->size;
3221 if (tb->size > max_target_code_size)
3222 max_target_code_size = tb->size;
3223 if (tb->page_addr[1] != -1)
3224 cross_page++;
3225 if (tb->tb_next_offset[0] != 0xffff) {
3226 direct_jmp_count++;
3227 if (tb->tb_next_offset[1] != 0xffff) {
3228 direct_jmp2_count++;
3229 }
3230 }
3231 }
3232 /* XXX: avoid using doubles ? */
57fec1fe 3233 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3234 cpu_fprintf(f, "gen code size %ld/%ld\n",
3235 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3236 cpu_fprintf(f, "TB count %d/%d\n",
3237 nb_tbs, code_gen_max_blocks);
5fafdf24 3238 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3239 nb_tbs ? target_code_size / nb_tbs : 0,
3240 max_target_code_size);
5fafdf24 3241 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3242 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3243 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3244 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3245 cross_page,
e3db7226
FB
3246 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3247 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3248 direct_jmp_count,
e3db7226
FB
3249 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3250 direct_jmp2_count,
3251 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3252 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3253 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3254 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3255 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3256 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3257}
3258
5fafdf24 3259#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3260
3261#define MMUSUFFIX _cmmu
3262#define GETPC() NULL
3263#define env cpu_single_env
b769d8fe 3264#define SOFTMMU_CODE_ACCESS
61382a50
FB
3265
3266#define SHIFT 0
3267#include "softmmu_template.h"
3268
3269#define SHIFT 1
3270#include "softmmu_template.h"
3271
3272#define SHIFT 2
3273#include "softmmu_template.h"
3274
3275#define SHIFT 3
3276#include "softmmu_template.h"
3277
3278#undef env
3279
3280#endif