]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Fix slirp compilation failure when using a newer gcc
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
d5a8f07c
FB
21#ifdef _WIN32
22#include <windows.h>
23#else
a98d49b1 24#include <sys/types.h>
d5a8f07c
FB
25#include <sys/mman.h>
26#endif
54936004
FB
27#include <stdlib.h>
28#include <stdio.h>
29#include <stdarg.h>
30#include <string.h>
31#include <errno.h>
32#include <unistd.h>
33#include <inttypes.h>
34
6180a181
FB
35#include "cpu.h"
36#include "exec-all.h"
53a5960a
PB
37#if defined(CONFIG_USER_ONLY)
38#include <qemu.h>
39#endif
54936004 40
fd6ce8f6 41//#define DEBUG_TB_INVALIDATE
66e85a21 42//#define DEBUG_FLUSH
9fa3e853 43//#define DEBUG_TLB
67d3b957 44//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
45
46/* make various TB consistency checks */
5fafdf24
TS
47//#define DEBUG_TB_CHECK
48//#define DEBUG_TLB_CHECK
fd6ce8f6 49
1196be37 50//#define DEBUG_IOPORT
db7b5426 51//#define DEBUG_SUBPAGE
1196be37 52
99773bd4
PB
53#if !defined(CONFIG_USER_ONLY)
54/* TB consistency checks only implemented for usermode emulation. */
55#undef DEBUG_TB_CHECK
56#endif
57
fd6ce8f6
FB
58/* threshold to flush the translated code buffer */
59#define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
60
9fa3e853
FB
61#define SMC_BITMAP_USE_THRESHOLD 10
62
63#define MMAP_AREA_START 0x00000000
64#define MMAP_AREA_END 0xa8000000
fd6ce8f6 65
108c49b8
FB
66#if defined(TARGET_SPARC64)
67#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
68#elif defined(TARGET_SPARC)
69#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
70#elif defined(TARGET_ALPHA)
71#define TARGET_PHYS_ADDR_SPACE_BITS 42
72#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
73#elif defined(TARGET_PPC64)
74#define TARGET_PHYS_ADDR_SPACE_BITS 42
75#else
76/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
77#define TARGET_PHYS_ADDR_SPACE_BITS 32
78#endif
79
fd6ce8f6 80TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
9fa3e853 81TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
fd6ce8f6 82int nb_tbs;
eb51d102
FB
83/* any access to the tbs or the page table must use this lock */
84spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 85
b8076a74 86uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
fd6ce8f6
FB
87uint8_t *code_gen_ptr;
88
9fa3e853
FB
89int phys_ram_size;
90int phys_ram_fd;
91uint8_t *phys_ram_base;
1ccde1cb 92uint8_t *phys_ram_dirty;
e9a1ab19 93static ram_addr_t phys_ram_alloc_offset = 0;
9fa3e853 94
6a00d601
FB
95CPUState *first_cpu;
96/* current CPU in the current thread. It is only valid inside
97 cpu_exec() */
5fafdf24 98CPUState *cpu_single_env;
6a00d601 99
54936004 100typedef struct PageDesc {
92e873b9 101 /* list of TBs intersecting this ram page */
fd6ce8f6 102 TranslationBlock *first_tb;
9fa3e853
FB
103 /* in order to optimize self modifying code, we count the number
104 of lookups we do to a given page to use a bitmap */
105 unsigned int code_write_count;
106 uint8_t *code_bitmap;
107#if defined(CONFIG_USER_ONLY)
108 unsigned long flags;
109#endif
54936004
FB
110} PageDesc;
111
92e873b9
FB
112typedef struct PhysPageDesc {
113 /* offset in host memory of the page + io_index in the low 12 bits */
e04f40b5 114 uint32_t phys_offset;
92e873b9
FB
115} PhysPageDesc;
116
54936004 117#define L2_BITS 10
bedb69ea
JM
118#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
119/* XXX: this is a temporary hack for alpha target.
120 * In the future, this is to be replaced by a multi-level table
121 * to actually be able to handle the complete 64 bits address space.
122 */
123#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
124#else
54936004 125#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 126#endif
54936004
FB
127
128#define L1_SIZE (1 << L1_BITS)
129#define L2_SIZE (1 << L2_BITS)
130
33417e70 131static void io_mem_init(void);
fd6ce8f6 132
83fb7adf
FB
133unsigned long qemu_real_host_page_size;
134unsigned long qemu_host_page_bits;
135unsigned long qemu_host_page_size;
136unsigned long qemu_host_page_mask;
54936004 137
92e873b9 138/* XXX: for system emulation, it could just be an array */
54936004 139static PageDesc *l1_map[L1_SIZE];
0a962c02 140PhysPageDesc **l1_phys_map;
54936004 141
33417e70 142/* io memory support */
33417e70
FB
143CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
144CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 145void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 146static int io_mem_nb;
6658ffb8
PB
147#if defined(CONFIG_SOFTMMU)
148static int io_mem_watch;
149#endif
33417e70 150
34865134
FB
151/* log support */
152char *logfilename = "/tmp/qemu.log";
153FILE *logfile;
154int loglevel;
e735b91c 155static int log_append = 0;
34865134 156
e3db7226
FB
157/* statistics */
158static int tlb_flush_count;
159static int tb_flush_count;
160static int tb_phys_invalidate_count;
161
db7b5426
BS
162#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
163typedef struct subpage_t {
164 target_phys_addr_t base;
165 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE];
166 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE];
167 void *opaque[TARGET_PAGE_SIZE];
168} subpage_t;
169
b346ff46 170static void page_init(void)
54936004 171{
83fb7adf 172 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 173 TARGET_PAGE_SIZE */
67b915a5 174#ifdef _WIN32
d5a8f07c
FB
175 {
176 SYSTEM_INFO system_info;
177 DWORD old_protect;
3b46e624 178
d5a8f07c
FB
179 GetSystemInfo(&system_info);
180 qemu_real_host_page_size = system_info.dwPageSize;
3b46e624 181
d5a8f07c
FB
182 VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
183 PAGE_EXECUTE_READWRITE, &old_protect);
184 }
67b915a5 185#else
83fb7adf 186 qemu_real_host_page_size = getpagesize();
d5a8f07c
FB
187 {
188 unsigned long start, end;
189
190 start = (unsigned long)code_gen_buffer;
191 start &= ~(qemu_real_host_page_size - 1);
3b46e624 192
d5a8f07c
FB
193 end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
194 end += qemu_real_host_page_size - 1;
195 end &= ~(qemu_real_host_page_size - 1);
3b46e624 196
5fafdf24 197 mprotect((void *)start, end - start,
d5a8f07c
FB
198 PROT_READ | PROT_WRITE | PROT_EXEC);
199 }
67b915a5 200#endif
d5a8f07c 201
83fb7adf
FB
202 if (qemu_host_page_size == 0)
203 qemu_host_page_size = qemu_real_host_page_size;
204 if (qemu_host_page_size < TARGET_PAGE_SIZE)
205 qemu_host_page_size = TARGET_PAGE_SIZE;
206 qemu_host_page_bits = 0;
207 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
208 qemu_host_page_bits++;
209 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
210 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
211 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
54936004
FB
212}
213
fd6ce8f6 214static inline PageDesc *page_find_alloc(unsigned int index)
54936004 215{
54936004
FB
216 PageDesc **lp, *p;
217
54936004
FB
218 lp = &l1_map[index >> L2_BITS];
219 p = *lp;
220 if (!p) {
221 /* allocate if not found */
59817ccb 222 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
fd6ce8f6 223 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
54936004
FB
224 *lp = p;
225 }
226 return p + (index & (L2_SIZE - 1));
227}
228
fd6ce8f6 229static inline PageDesc *page_find(unsigned int index)
54936004 230{
54936004
FB
231 PageDesc *p;
232
54936004
FB
233 p = l1_map[index >> L2_BITS];
234 if (!p)
235 return 0;
fd6ce8f6
FB
236 return p + (index & (L2_SIZE - 1));
237}
238
108c49b8 239static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 240{
108c49b8 241 void **lp, **p;
e3f4e2a4 242 PhysPageDesc *pd;
92e873b9 243
108c49b8
FB
244 p = (void **)l1_phys_map;
245#if TARGET_PHYS_ADDR_SPACE_BITS > 32
246
247#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
248#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
249#endif
250 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
251 p = *lp;
252 if (!p) {
253 /* allocate if not found */
108c49b8
FB
254 if (!alloc)
255 return NULL;
256 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
257 memset(p, 0, sizeof(void *) * L1_SIZE);
258 *lp = p;
259 }
260#endif
261 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
262 pd = *lp;
263 if (!pd) {
264 int i;
108c49b8
FB
265 /* allocate if not found */
266 if (!alloc)
267 return NULL;
e3f4e2a4
PB
268 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
269 *lp = pd;
270 for (i = 0; i < L2_SIZE; i++)
271 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 272 }
e3f4e2a4 273 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
274}
275
108c49b8 276static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 277{
108c49b8 278 return phys_page_find_alloc(index, 0);
92e873b9
FB
279}
280
9fa3e853 281#if !defined(CONFIG_USER_ONLY)
6a00d601 282static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 283static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 284 target_ulong vaddr);
9fa3e853 285#endif
fd6ce8f6 286
6a00d601 287void cpu_exec_init(CPUState *env)
fd6ce8f6 288{
6a00d601
FB
289 CPUState **penv;
290 int cpu_index;
291
fd6ce8f6
FB
292 if (!code_gen_ptr) {
293 code_gen_ptr = code_gen_buffer;
b346ff46 294 page_init();
33417e70 295 io_mem_init();
fd6ce8f6 296 }
6a00d601
FB
297 env->next_cpu = NULL;
298 penv = &first_cpu;
299 cpu_index = 0;
300 while (*penv != NULL) {
301 penv = (CPUState **)&(*penv)->next_cpu;
302 cpu_index++;
303 }
304 env->cpu_index = cpu_index;
6658ffb8 305 env->nb_watchpoints = 0;
6a00d601 306 *penv = env;
fd6ce8f6
FB
307}
308
9fa3e853
FB
309static inline void invalidate_page_bitmap(PageDesc *p)
310{
311 if (p->code_bitmap) {
59817ccb 312 qemu_free(p->code_bitmap);
9fa3e853
FB
313 p->code_bitmap = NULL;
314 }
315 p->code_write_count = 0;
316}
317
fd6ce8f6
FB
318/* set to NULL all the 'first_tb' fields in all PageDescs */
319static void page_flush_tb(void)
320{
321 int i, j;
322 PageDesc *p;
323
324 for(i = 0; i < L1_SIZE; i++) {
325 p = l1_map[i];
326 if (p) {
9fa3e853
FB
327 for(j = 0; j < L2_SIZE; j++) {
328 p->first_tb = NULL;
329 invalidate_page_bitmap(p);
330 p++;
331 }
fd6ce8f6
FB
332 }
333 }
334}
335
336/* flush all the translation blocks */
d4e8164f 337/* XXX: tb_flush is currently not thread safe */
6a00d601 338void tb_flush(CPUState *env1)
fd6ce8f6 339{
6a00d601 340 CPUState *env;
0124311e 341#if defined(DEBUG_FLUSH)
5fafdf24
TS
342 printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
343 code_gen_ptr - code_gen_buffer,
344 nb_tbs,
0124311e 345 nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
fd6ce8f6
FB
346#endif
347 nb_tbs = 0;
3b46e624 348
6a00d601
FB
349 for(env = first_cpu; env != NULL; env = env->next_cpu) {
350 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
351 }
9fa3e853 352
8a8a608f 353 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 354 page_flush_tb();
9fa3e853 355
fd6ce8f6 356 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
357 /* XXX: flush processor icache at this point if cache flush is
358 expensive */
e3db7226 359 tb_flush_count++;
fd6ce8f6
FB
360}
361
362#ifdef DEBUG_TB_CHECK
363
bc98a7ef 364static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
365{
366 TranslationBlock *tb;
367 int i;
368 address &= TARGET_PAGE_MASK;
99773bd4
PB
369 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
370 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
371 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
372 address >= tb->pc + tb->size)) {
373 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 374 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
375 }
376 }
377 }
378}
379
380/* verify that all the pages have correct rights for code */
381static void tb_page_check(void)
382{
383 TranslationBlock *tb;
384 int i, flags1, flags2;
3b46e624 385
99773bd4
PB
386 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
387 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
388 flags1 = page_get_flags(tb->pc);
389 flags2 = page_get_flags(tb->pc + tb->size - 1);
390 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
391 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 392 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
393 }
394 }
395 }
396}
397
d4e8164f
FB
398void tb_jmp_check(TranslationBlock *tb)
399{
400 TranslationBlock *tb1;
401 unsigned int n1;
402
403 /* suppress any remaining jumps to this TB */
404 tb1 = tb->jmp_first;
405 for(;;) {
406 n1 = (long)tb1 & 3;
407 tb1 = (TranslationBlock *)((long)tb1 & ~3);
408 if (n1 == 2)
409 break;
410 tb1 = tb1->jmp_next[n1];
411 }
412 /* check end of list */
413 if (tb1 != tb) {
414 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
415 }
416}
417
fd6ce8f6
FB
418#endif
419
420/* invalidate one TB */
421static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
422 int next_offset)
423{
424 TranslationBlock *tb1;
425 for(;;) {
426 tb1 = *ptb;
427 if (tb1 == tb) {
428 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
429 break;
430 }
431 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
432 }
433}
434
9fa3e853
FB
435static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
436{
437 TranslationBlock *tb1;
438 unsigned int n1;
439
440 for(;;) {
441 tb1 = *ptb;
442 n1 = (long)tb1 & 3;
443 tb1 = (TranslationBlock *)((long)tb1 & ~3);
444 if (tb1 == tb) {
445 *ptb = tb1->page_next[n1];
446 break;
447 }
448 ptb = &tb1->page_next[n1];
449 }
450}
451
d4e8164f
FB
452static inline void tb_jmp_remove(TranslationBlock *tb, int n)
453{
454 TranslationBlock *tb1, **ptb;
455 unsigned int n1;
456
457 ptb = &tb->jmp_next[n];
458 tb1 = *ptb;
459 if (tb1) {
460 /* find tb(n) in circular list */
461 for(;;) {
462 tb1 = *ptb;
463 n1 = (long)tb1 & 3;
464 tb1 = (TranslationBlock *)((long)tb1 & ~3);
465 if (n1 == n && tb1 == tb)
466 break;
467 if (n1 == 2) {
468 ptb = &tb1->jmp_first;
469 } else {
470 ptb = &tb1->jmp_next[n1];
471 }
472 }
473 /* now we can suppress tb(n) from the list */
474 *ptb = tb->jmp_next[n];
475
476 tb->jmp_next[n] = NULL;
477 }
478}
479
480/* reset the jump entry 'n' of a TB so that it is not chained to
481 another TB */
482static inline void tb_reset_jump(TranslationBlock *tb, int n)
483{
484 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
485}
486
8a40a180 487static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
fd6ce8f6 488{
6a00d601 489 CPUState *env;
8a40a180 490 PageDesc *p;
d4e8164f 491 unsigned int h, n1;
8a40a180
FB
492 target_ulong phys_pc;
493 TranslationBlock *tb1, *tb2;
3b46e624 494
8a40a180
FB
495 /* remove the TB from the hash list */
496 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
497 h = tb_phys_hash_func(phys_pc);
5fafdf24 498 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
499 offsetof(TranslationBlock, phys_hash_next));
500
501 /* remove the TB from the page list */
502 if (tb->page_addr[0] != page_addr) {
503 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
504 tb_page_remove(&p->first_tb, tb);
505 invalidate_page_bitmap(p);
506 }
507 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
508 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
509 tb_page_remove(&p->first_tb, tb);
510 invalidate_page_bitmap(p);
511 }
512
36bdbe54 513 tb_invalidated_flag = 1;
59817ccb 514
fd6ce8f6 515 /* remove the TB from the hash list */
8a40a180 516 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
517 for(env = first_cpu; env != NULL; env = env->next_cpu) {
518 if (env->tb_jmp_cache[h] == tb)
519 env->tb_jmp_cache[h] = NULL;
520 }
d4e8164f
FB
521
522 /* suppress this TB from the two jump lists */
523 tb_jmp_remove(tb, 0);
524 tb_jmp_remove(tb, 1);
525
526 /* suppress any remaining jumps to this TB */
527 tb1 = tb->jmp_first;
528 for(;;) {
529 n1 = (long)tb1 & 3;
530 if (n1 == 2)
531 break;
532 tb1 = (TranslationBlock *)((long)tb1 & ~3);
533 tb2 = tb1->jmp_next[n1];
534 tb_reset_jump(tb1, n1);
535 tb1->jmp_next[n1] = NULL;
536 tb1 = tb2;
537 }
538 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 539
e3db7226 540 tb_phys_invalidate_count++;
9fa3e853
FB
541}
542
543static inline void set_bits(uint8_t *tab, int start, int len)
544{
545 int end, mask, end1;
546
547 end = start + len;
548 tab += start >> 3;
549 mask = 0xff << (start & 7);
550 if ((start & ~7) == (end & ~7)) {
551 if (start < end) {
552 mask &= ~(0xff << (end & 7));
553 *tab |= mask;
554 }
555 } else {
556 *tab++ |= mask;
557 start = (start + 8) & ~7;
558 end1 = end & ~7;
559 while (start < end1) {
560 *tab++ = 0xff;
561 start += 8;
562 }
563 if (start < end) {
564 mask = ~(0xff << (end & 7));
565 *tab |= mask;
566 }
567 }
568}
569
570static void build_page_bitmap(PageDesc *p)
571{
572 int n, tb_start, tb_end;
573 TranslationBlock *tb;
3b46e624 574
59817ccb 575 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
576 if (!p->code_bitmap)
577 return;
578 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
579
580 tb = p->first_tb;
581 while (tb != NULL) {
582 n = (long)tb & 3;
583 tb = (TranslationBlock *)((long)tb & ~3);
584 /* NOTE: this is subtle as a TB may span two physical pages */
585 if (n == 0) {
586 /* NOTE: tb_end may be after the end of the page, but
587 it is not a problem */
588 tb_start = tb->pc & ~TARGET_PAGE_MASK;
589 tb_end = tb_start + tb->size;
590 if (tb_end > TARGET_PAGE_SIZE)
591 tb_end = TARGET_PAGE_SIZE;
592 } else {
593 tb_start = 0;
594 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
595 }
596 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
597 tb = tb->page_next[n];
598 }
599}
600
d720b93d
FB
601#ifdef TARGET_HAS_PRECISE_SMC
602
5fafdf24 603static void tb_gen_code(CPUState *env,
d720b93d
FB
604 target_ulong pc, target_ulong cs_base, int flags,
605 int cflags)
606{
607 TranslationBlock *tb;
608 uint8_t *tc_ptr;
609 target_ulong phys_pc, phys_page2, virt_page2;
610 int code_gen_size;
611
c27004ec
FB
612 phys_pc = get_phys_addr_code(env, pc);
613 tb = tb_alloc(pc);
d720b93d
FB
614 if (!tb) {
615 /* flush must be done */
616 tb_flush(env);
617 /* cannot fail at this point */
c27004ec 618 tb = tb_alloc(pc);
d720b93d
FB
619 }
620 tc_ptr = code_gen_ptr;
621 tb->tc_ptr = tc_ptr;
622 tb->cs_base = cs_base;
623 tb->flags = flags;
624 tb->cflags = cflags;
625 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
626 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 627
d720b93d 628 /* check next page if needed */
c27004ec 629 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 630 phys_page2 = -1;
c27004ec 631 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
632 phys_page2 = get_phys_addr_code(env, virt_page2);
633 }
634 tb_link_phys(tb, phys_pc, phys_page2);
635}
636#endif
3b46e624 637
9fa3e853
FB
638/* invalidate all TBs which intersect with the target physical page
639 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
640 the same physical page. 'is_cpu_write_access' should be true if called
641 from a real cpu write access: the virtual CPU will exit the current
642 TB if code is modified inside this TB. */
5fafdf24 643void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
d720b93d
FB
644 int is_cpu_write_access)
645{
646 int n, current_tb_modified, current_tb_not_found, current_flags;
d720b93d 647 CPUState *env = cpu_single_env;
9fa3e853 648 PageDesc *p;
ea1c1802 649 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
9fa3e853 650 target_ulong tb_start, tb_end;
d720b93d 651 target_ulong current_pc, current_cs_base;
9fa3e853
FB
652
653 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 654 if (!p)
9fa3e853 655 return;
5fafdf24 656 if (!p->code_bitmap &&
d720b93d
FB
657 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
658 is_cpu_write_access) {
9fa3e853
FB
659 /* build code bitmap */
660 build_page_bitmap(p);
661 }
662
663 /* we remove all the TBs in the range [start, end[ */
664 /* XXX: see if in some cases it could be faster to invalidate all the code */
d720b93d
FB
665 current_tb_not_found = is_cpu_write_access;
666 current_tb_modified = 0;
667 current_tb = NULL; /* avoid warning */
668 current_pc = 0; /* avoid warning */
669 current_cs_base = 0; /* avoid warning */
670 current_flags = 0; /* avoid warning */
9fa3e853
FB
671 tb = p->first_tb;
672 while (tb != NULL) {
673 n = (long)tb & 3;
674 tb = (TranslationBlock *)((long)tb & ~3);
675 tb_next = tb->page_next[n];
676 /* NOTE: this is subtle as a TB may span two physical pages */
677 if (n == 0) {
678 /* NOTE: tb_end may be after the end of the page, but
679 it is not a problem */
680 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
681 tb_end = tb_start + tb->size;
682 } else {
683 tb_start = tb->page_addr[1];
684 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
685 }
686 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
687#ifdef TARGET_HAS_PRECISE_SMC
688 if (current_tb_not_found) {
689 current_tb_not_found = 0;
690 current_tb = NULL;
691 if (env->mem_write_pc) {
692 /* now we have a real cpu fault */
693 current_tb = tb_find_pc(env->mem_write_pc);
694 }
695 }
696 if (current_tb == tb &&
697 !(current_tb->cflags & CF_SINGLE_INSN)) {
698 /* If we are modifying the current TB, we must stop
699 its execution. We could be more precise by checking
700 that the modification is after the current PC, but it
701 would require a specialized function to partially
702 restore the CPU state */
3b46e624 703
d720b93d 704 current_tb_modified = 1;
5fafdf24 705 cpu_restore_state(current_tb, env,
d720b93d
FB
706 env->mem_write_pc, NULL);
707#if defined(TARGET_I386)
708 current_flags = env->hflags;
709 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
710 current_cs_base = (target_ulong)env->segs[R_CS].base;
711 current_pc = current_cs_base + env->eip;
712#else
713#error unsupported CPU
714#endif
715 }
716#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
717 /* we need to do that to handle the case where a signal
718 occurs while doing tb_phys_invalidate() */
719 saved_tb = NULL;
720 if (env) {
721 saved_tb = env->current_tb;
722 env->current_tb = NULL;
723 }
9fa3e853 724 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
725 if (env) {
726 env->current_tb = saved_tb;
727 if (env->interrupt_request && env->current_tb)
728 cpu_interrupt(env, env->interrupt_request);
729 }
9fa3e853
FB
730 }
731 tb = tb_next;
732 }
733#if !defined(CONFIG_USER_ONLY)
734 /* if no code remaining, no need to continue to use slow writes */
735 if (!p->first_tb) {
736 invalidate_page_bitmap(p);
d720b93d
FB
737 if (is_cpu_write_access) {
738 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
739 }
740 }
741#endif
742#ifdef TARGET_HAS_PRECISE_SMC
743 if (current_tb_modified) {
744 /* we generate a block containing just the instruction
745 modifying the memory. It will ensure that it cannot modify
746 itself */
ea1c1802 747 env->current_tb = NULL;
5fafdf24 748 tb_gen_code(env, current_pc, current_cs_base, current_flags,
d720b93d
FB
749 CF_SINGLE_INSN);
750 cpu_resume_from_signal(env, NULL);
9fa3e853 751 }
fd6ce8f6 752#endif
9fa3e853 753}
fd6ce8f6 754
9fa3e853 755/* len must be <= 8 and start must be a multiple of len */
d720b93d 756static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
9fa3e853
FB
757{
758 PageDesc *p;
759 int offset, b;
59817ccb 760#if 0
a4193c8a
FB
761 if (1) {
762 if (loglevel) {
5fafdf24
TS
763 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
764 cpu_single_env->mem_write_vaddr, len,
765 cpu_single_env->eip,
a4193c8a
FB
766 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
767 }
59817ccb
FB
768 }
769#endif
9fa3e853 770 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 771 if (!p)
9fa3e853
FB
772 return;
773 if (p->code_bitmap) {
774 offset = start & ~TARGET_PAGE_MASK;
775 b = p->code_bitmap[offset >> 3] >> (offset & 7);
776 if (b & ((1 << len) - 1))
777 goto do_invalidate;
778 } else {
779 do_invalidate:
d720b93d 780 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
781 }
782}
783
9fa3e853 784#if !defined(CONFIG_SOFTMMU)
5fafdf24 785static void tb_invalidate_phys_page(target_ulong addr,
d720b93d 786 unsigned long pc, void *puc)
9fa3e853 787{
d720b93d
FB
788 int n, current_flags, current_tb_modified;
789 target_ulong current_pc, current_cs_base;
9fa3e853 790 PageDesc *p;
d720b93d
FB
791 TranslationBlock *tb, *current_tb;
792#ifdef TARGET_HAS_PRECISE_SMC
793 CPUState *env = cpu_single_env;
794#endif
9fa3e853
FB
795
796 addr &= TARGET_PAGE_MASK;
797 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 798 if (!p)
9fa3e853
FB
799 return;
800 tb = p->first_tb;
d720b93d
FB
801 current_tb_modified = 0;
802 current_tb = NULL;
803 current_pc = 0; /* avoid warning */
804 current_cs_base = 0; /* avoid warning */
805 current_flags = 0; /* avoid warning */
806#ifdef TARGET_HAS_PRECISE_SMC
807 if (tb && pc != 0) {
808 current_tb = tb_find_pc(pc);
809 }
810#endif
9fa3e853
FB
811 while (tb != NULL) {
812 n = (long)tb & 3;
813 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
814#ifdef TARGET_HAS_PRECISE_SMC
815 if (current_tb == tb &&
816 !(current_tb->cflags & CF_SINGLE_INSN)) {
817 /* If we are modifying the current TB, we must stop
818 its execution. We could be more precise by checking
819 that the modification is after the current PC, but it
820 would require a specialized function to partially
821 restore the CPU state */
3b46e624 822
d720b93d
FB
823 current_tb_modified = 1;
824 cpu_restore_state(current_tb, env, pc, puc);
825#if defined(TARGET_I386)
826 current_flags = env->hflags;
827 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
828 current_cs_base = (target_ulong)env->segs[R_CS].base;
829 current_pc = current_cs_base + env->eip;
830#else
831#error unsupported CPU
832#endif
833 }
834#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
835 tb_phys_invalidate(tb, addr);
836 tb = tb->page_next[n];
837 }
fd6ce8f6 838 p->first_tb = NULL;
d720b93d
FB
839#ifdef TARGET_HAS_PRECISE_SMC
840 if (current_tb_modified) {
841 /* we generate a block containing just the instruction
842 modifying the memory. It will ensure that it cannot modify
843 itself */
ea1c1802 844 env->current_tb = NULL;
5fafdf24 845 tb_gen_code(env, current_pc, current_cs_base, current_flags,
d720b93d
FB
846 CF_SINGLE_INSN);
847 cpu_resume_from_signal(env, puc);
848 }
849#endif
fd6ce8f6 850}
9fa3e853 851#endif
fd6ce8f6
FB
852
853/* add the tb in the target page and protect it if necessary */
5fafdf24 854static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 855 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
856{
857 PageDesc *p;
9fa3e853
FB
858 TranslationBlock *last_first_tb;
859
860 tb->page_addr[n] = page_addr;
3a7d929e 861 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
862 tb->page_next[n] = p->first_tb;
863 last_first_tb = p->first_tb;
864 p->first_tb = (TranslationBlock *)((long)tb | n);
865 invalidate_page_bitmap(p);
fd6ce8f6 866
107db443 867#if defined(TARGET_HAS_SMC) || 1
d720b93d 868
9fa3e853 869#if defined(CONFIG_USER_ONLY)
fd6ce8f6 870 if (p->flags & PAGE_WRITE) {
53a5960a
PB
871 target_ulong addr;
872 PageDesc *p2;
9fa3e853
FB
873 int prot;
874
fd6ce8f6
FB
875 /* force the host page as non writable (writes will have a
876 page fault + mprotect overhead) */
53a5960a 877 page_addr &= qemu_host_page_mask;
fd6ce8f6 878 prot = 0;
53a5960a
PB
879 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
880 addr += TARGET_PAGE_SIZE) {
881
882 p2 = page_find (addr >> TARGET_PAGE_BITS);
883 if (!p2)
884 continue;
885 prot |= p2->flags;
886 p2->flags &= ~PAGE_WRITE;
887 page_get_flags(addr);
888 }
5fafdf24 889 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
890 (prot & PAGE_BITS) & ~PAGE_WRITE);
891#ifdef DEBUG_TB_INVALIDATE
5fafdf24 892 printf("protecting code page: 0x%08lx\n",
53a5960a 893 page_addr);
fd6ce8f6 894#endif
fd6ce8f6 895 }
9fa3e853
FB
896#else
897 /* if some code is already present, then the pages are already
898 protected. So we handle the case where only the first TB is
899 allocated in a physical page */
900 if (!last_first_tb) {
6a00d601 901 tlb_protect_code(page_addr);
9fa3e853
FB
902 }
903#endif
d720b93d
FB
904
905#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
906}
907
908/* Allocate a new translation block. Flush the translation buffer if
909 too many translation blocks or too much generated code. */
c27004ec 910TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
911{
912 TranslationBlock *tb;
fd6ce8f6 913
5fafdf24 914 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
fd6ce8f6 915 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
d4e8164f 916 return NULL;
fd6ce8f6
FB
917 tb = &tbs[nb_tbs++];
918 tb->pc = pc;
b448f2f3 919 tb->cflags = 0;
d4e8164f
FB
920 return tb;
921}
922
9fa3e853
FB
923/* add a new TB and link it to the physical page tables. phys_page2 is
924 (-1) to indicate that only one page contains the TB. */
5fafdf24 925void tb_link_phys(TranslationBlock *tb,
9fa3e853 926 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 927{
9fa3e853
FB
928 unsigned int h;
929 TranslationBlock **ptb;
930
931 /* add in the physical hash table */
932 h = tb_phys_hash_func(phys_pc);
933 ptb = &tb_phys_hash[h];
934 tb->phys_hash_next = *ptb;
935 *ptb = tb;
fd6ce8f6
FB
936
937 /* add in the page list */
9fa3e853
FB
938 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
939 if (phys_page2 != -1)
940 tb_alloc_page(tb, 1, phys_page2);
941 else
942 tb->page_addr[1] = -1;
9fa3e853 943
d4e8164f
FB
944 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
945 tb->jmp_next[0] = NULL;
946 tb->jmp_next[1] = NULL;
b448f2f3
FB
947#ifdef USE_CODE_COPY
948 tb->cflags &= ~CF_FP_USED;
949 if (tb->cflags & CF_TB_FP_USED)
950 tb->cflags |= CF_FP_USED;
951#endif
d4e8164f
FB
952
953 /* init original jump addresses */
954 if (tb->tb_next_offset[0] != 0xffff)
955 tb_reset_jump(tb, 0);
956 if (tb->tb_next_offset[1] != 0xffff)
957 tb_reset_jump(tb, 1);
8a40a180
FB
958
959#ifdef DEBUG_TB_CHECK
960 tb_page_check();
961#endif
fd6ce8f6
FB
962}
963
9fa3e853
FB
964/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
965 tb[1].tc_ptr. Return NULL if not found */
966TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 967{
9fa3e853
FB
968 int m_min, m_max, m;
969 unsigned long v;
970 TranslationBlock *tb;
a513fe19
FB
971
972 if (nb_tbs <= 0)
973 return NULL;
974 if (tc_ptr < (unsigned long)code_gen_buffer ||
975 tc_ptr >= (unsigned long)code_gen_ptr)
976 return NULL;
977 /* binary search (cf Knuth) */
978 m_min = 0;
979 m_max = nb_tbs - 1;
980 while (m_min <= m_max) {
981 m = (m_min + m_max) >> 1;
982 tb = &tbs[m];
983 v = (unsigned long)tb->tc_ptr;
984 if (v == tc_ptr)
985 return tb;
986 else if (tc_ptr < v) {
987 m_max = m - 1;
988 } else {
989 m_min = m + 1;
990 }
5fafdf24 991 }
a513fe19
FB
992 return &tbs[m_max];
993}
7501267e 994
ea041c0e
FB
995static void tb_reset_jump_recursive(TranslationBlock *tb);
996
997static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
998{
999 TranslationBlock *tb1, *tb_next, **ptb;
1000 unsigned int n1;
1001
1002 tb1 = tb->jmp_next[n];
1003 if (tb1 != NULL) {
1004 /* find head of list */
1005 for(;;) {
1006 n1 = (long)tb1 & 3;
1007 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1008 if (n1 == 2)
1009 break;
1010 tb1 = tb1->jmp_next[n1];
1011 }
1012 /* we are now sure now that tb jumps to tb1 */
1013 tb_next = tb1;
1014
1015 /* remove tb from the jmp_first list */
1016 ptb = &tb_next->jmp_first;
1017 for(;;) {
1018 tb1 = *ptb;
1019 n1 = (long)tb1 & 3;
1020 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1021 if (n1 == n && tb1 == tb)
1022 break;
1023 ptb = &tb1->jmp_next[n1];
1024 }
1025 *ptb = tb->jmp_next[n];
1026 tb->jmp_next[n] = NULL;
3b46e624 1027
ea041c0e
FB
1028 /* suppress the jump to next tb in generated code */
1029 tb_reset_jump(tb, n);
1030
0124311e 1031 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1032 tb_reset_jump_recursive(tb_next);
1033 }
1034}
1035
1036static void tb_reset_jump_recursive(TranslationBlock *tb)
1037{
1038 tb_reset_jump_recursive2(tb, 0);
1039 tb_reset_jump_recursive2(tb, 1);
1040}
1041
1fddef4b 1042#if defined(TARGET_HAS_ICE)
d720b93d
FB
1043static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1044{
9b3c35e0
JM
1045 target_phys_addr_t addr;
1046 target_ulong pd;
c2f07f81
PB
1047 ram_addr_t ram_addr;
1048 PhysPageDesc *p;
d720b93d 1049
c2f07f81
PB
1050 addr = cpu_get_phys_page_debug(env, pc);
1051 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1052 if (!p) {
1053 pd = IO_MEM_UNASSIGNED;
1054 } else {
1055 pd = p->phys_offset;
1056 }
1057 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1058 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1059}
c27004ec 1060#endif
d720b93d 1061
6658ffb8
PB
1062/* Add a watchpoint. */
1063int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
1064{
1065 int i;
1066
1067 for (i = 0; i < env->nb_watchpoints; i++) {
1068 if (addr == env->watchpoint[i].vaddr)
1069 return 0;
1070 }
1071 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1072 return -1;
1073
1074 i = env->nb_watchpoints++;
1075 env->watchpoint[i].vaddr = addr;
1076 tlb_flush_page(env, addr);
1077 /* FIXME: This flush is needed because of the hack to make memory ops
1078 terminate the TB. It can be removed once the proper IO trap and
1079 re-execute bits are in. */
1080 tb_flush(env);
1081 return i;
1082}
1083
1084/* Remove a watchpoint. */
1085int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1086{
1087 int i;
1088
1089 for (i = 0; i < env->nb_watchpoints; i++) {
1090 if (addr == env->watchpoint[i].vaddr) {
1091 env->nb_watchpoints--;
1092 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1093 tlb_flush_page(env, addr);
1094 return 0;
1095 }
1096 }
1097 return -1;
1098}
1099
c33a346e
FB
1100/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1101 breakpoint is reached */
2e12669a 1102int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
4c3a88a2 1103{
1fddef4b 1104#if defined(TARGET_HAS_ICE)
4c3a88a2 1105 int i;
3b46e624 1106
4c3a88a2
FB
1107 for(i = 0; i < env->nb_breakpoints; i++) {
1108 if (env->breakpoints[i] == pc)
1109 return 0;
1110 }
1111
1112 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1113 return -1;
1114 env->breakpoints[env->nb_breakpoints++] = pc;
3b46e624 1115
d720b93d 1116 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1117 return 0;
1118#else
1119 return -1;
1120#endif
1121}
1122
1123/* remove a breakpoint */
2e12669a 1124int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
4c3a88a2 1125{
1fddef4b 1126#if defined(TARGET_HAS_ICE)
4c3a88a2
FB
1127 int i;
1128 for(i = 0; i < env->nb_breakpoints; i++) {
1129 if (env->breakpoints[i] == pc)
1130 goto found;
1131 }
1132 return -1;
1133 found:
4c3a88a2 1134 env->nb_breakpoints--;
1fddef4b
FB
1135 if (i < env->nb_breakpoints)
1136 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
d720b93d
FB
1137
1138 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1139 return 0;
1140#else
1141 return -1;
1142#endif
1143}
1144
c33a346e
FB
1145/* enable or disable single step mode. EXCP_DEBUG is returned by the
1146 CPU loop after each instruction */
1147void cpu_single_step(CPUState *env, int enabled)
1148{
1fddef4b 1149#if defined(TARGET_HAS_ICE)
c33a346e
FB
1150 if (env->singlestep_enabled != enabled) {
1151 env->singlestep_enabled = enabled;
1152 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1153 /* XXX: only flush what is necessary */
0124311e 1154 tb_flush(env);
c33a346e
FB
1155 }
1156#endif
1157}
1158
34865134
FB
1159/* enable or disable low levels log */
1160void cpu_set_log(int log_flags)
1161{
1162 loglevel = log_flags;
1163 if (loglevel && !logfile) {
11fcfab4 1164 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1165 if (!logfile) {
1166 perror(logfilename);
1167 _exit(1);
1168 }
9fa3e853
FB
1169#if !defined(CONFIG_SOFTMMU)
1170 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1171 {
1172 static uint8_t logfile_buf[4096];
1173 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1174 }
1175#else
34865134 1176 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1177#endif
e735b91c
PB
1178 log_append = 1;
1179 }
1180 if (!loglevel && logfile) {
1181 fclose(logfile);
1182 logfile = NULL;
34865134
FB
1183 }
1184}
1185
1186void cpu_set_log_filename(const char *filename)
1187{
1188 logfilename = strdup(filename);
e735b91c
PB
1189 if (logfile) {
1190 fclose(logfile);
1191 logfile = NULL;
1192 }
1193 cpu_set_log(loglevel);
34865134 1194}
c33a346e 1195
0124311e 1196/* mask must never be zero, except for A20 change call */
68a79315 1197void cpu_interrupt(CPUState *env, int mask)
ea041c0e
FB
1198{
1199 TranslationBlock *tb;
ee8b7021 1200 static int interrupt_lock;
59817ccb 1201
68a79315 1202 env->interrupt_request |= mask;
ea041c0e
FB
1203 /* if the cpu is currently executing code, we must unlink it and
1204 all the potentially executing TB */
1205 tb = env->current_tb;
ee8b7021
FB
1206 if (tb && !testandset(&interrupt_lock)) {
1207 env->current_tb = NULL;
ea041c0e 1208 tb_reset_jump_recursive(tb);
ee8b7021 1209 interrupt_lock = 0;
ea041c0e
FB
1210 }
1211}
1212
b54ad049
FB
1213void cpu_reset_interrupt(CPUState *env, int mask)
1214{
1215 env->interrupt_request &= ~mask;
1216}
1217
f193c797 1218CPULogItem cpu_log_items[] = {
5fafdf24 1219 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1220 "show generated host assembly code for each compiled TB" },
1221 { CPU_LOG_TB_IN_ASM, "in_asm",
1222 "show target assembly code for each compiled TB" },
5fafdf24 1223 { CPU_LOG_TB_OP, "op",
f193c797
FB
1224 "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
1225#ifdef TARGET_I386
1226 { CPU_LOG_TB_OP_OPT, "op_opt",
1227 "show micro ops after optimization for each compiled TB" },
1228#endif
1229 { CPU_LOG_INT, "int",
1230 "show interrupts/exceptions in short format" },
1231 { CPU_LOG_EXEC, "exec",
1232 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1233 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1234 "show CPU state before block translation" },
f193c797
FB
1235#ifdef TARGET_I386
1236 { CPU_LOG_PCALL, "pcall",
1237 "show protected mode far calls/returns/exceptions" },
1238#endif
8e3a9fd2 1239#ifdef DEBUG_IOPORT
fd872598
FB
1240 { CPU_LOG_IOPORT, "ioport",
1241 "show all i/o ports accesses" },
8e3a9fd2 1242#endif
f193c797
FB
1243 { 0, NULL, NULL },
1244};
1245
1246static int cmp1(const char *s1, int n, const char *s2)
1247{
1248 if (strlen(s2) != n)
1249 return 0;
1250 return memcmp(s1, s2, n) == 0;
1251}
3b46e624 1252
f193c797
FB
1253/* takes a comma separated list of log masks. Return 0 if error. */
1254int cpu_str_to_log_mask(const char *str)
1255{
1256 CPULogItem *item;
1257 int mask;
1258 const char *p, *p1;
1259
1260 p = str;
1261 mask = 0;
1262 for(;;) {
1263 p1 = strchr(p, ',');
1264 if (!p1)
1265 p1 = p + strlen(p);
8e3a9fd2
FB
1266 if(cmp1(p,p1-p,"all")) {
1267 for(item = cpu_log_items; item->mask != 0; item++) {
1268 mask |= item->mask;
1269 }
1270 } else {
f193c797
FB
1271 for(item = cpu_log_items; item->mask != 0; item++) {
1272 if (cmp1(p, p1 - p, item->name))
1273 goto found;
1274 }
1275 return 0;
8e3a9fd2 1276 }
f193c797
FB
1277 found:
1278 mask |= item->mask;
1279 if (*p1 != ',')
1280 break;
1281 p = p1 + 1;
1282 }
1283 return mask;
1284}
ea041c0e 1285
7501267e
FB
1286void cpu_abort(CPUState *env, const char *fmt, ...)
1287{
1288 va_list ap;
1289
1290 va_start(ap, fmt);
1291 fprintf(stderr, "qemu: fatal: ");
1292 vfprintf(stderr, fmt, ap);
1293 fprintf(stderr, "\n");
1294#ifdef TARGET_I386
0573fbfc
TS
1295 if(env->intercept & INTERCEPT_SVM_MASK) {
1296 /* most probably the virtual machine should not
1297 be shut down but rather caught by the VMM */
1298 vmexit(SVM_EXIT_SHUTDOWN, 0);
1299 }
7fe48483
FB
1300 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1301#else
1302 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1303#endif
924edcae 1304 if (logfile) {
f9373291
JM
1305 fprintf(logfile, "qemu: fatal: ");
1306 vfprintf(logfile, fmt, ap);
1307 fprintf(logfile, "\n");
1308#ifdef TARGET_I386
1309 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1310#else
1311 cpu_dump_state(env, logfile, fprintf, 0);
1312#endif
924edcae
AZ
1313 fflush(logfile);
1314 fclose(logfile);
1315 }
f9373291 1316 va_end(ap);
7501267e
FB
1317 abort();
1318}
1319
c5be9f08
TS
1320CPUState *cpu_copy(CPUState *env)
1321{
1322 CPUState *new_env = cpu_init();
1323 /* preserve chaining and index */
1324 CPUState *next_cpu = new_env->next_cpu;
1325 int cpu_index = new_env->cpu_index;
1326 memcpy(new_env, env, sizeof(CPUState));
1327 new_env->next_cpu = next_cpu;
1328 new_env->cpu_index = cpu_index;
1329 return new_env;
1330}
1331
0124311e
FB
1332#if !defined(CONFIG_USER_ONLY)
1333
ee8b7021
FB
1334/* NOTE: if flush_global is true, also flush global entries (not
1335 implemented yet) */
1336void tlb_flush(CPUState *env, int flush_global)
33417e70 1337{
33417e70 1338 int i;
0124311e 1339
9fa3e853
FB
1340#if defined(DEBUG_TLB)
1341 printf("tlb_flush:\n");
1342#endif
0124311e
FB
1343 /* must reset current TB so that interrupts cannot modify the
1344 links while we are modifying them */
1345 env->current_tb = NULL;
1346
33417e70 1347 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1348 env->tlb_table[0][i].addr_read = -1;
1349 env->tlb_table[0][i].addr_write = -1;
1350 env->tlb_table[0][i].addr_code = -1;
1351 env->tlb_table[1][i].addr_read = -1;
1352 env->tlb_table[1][i].addr_write = -1;
1353 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1354#if (NB_MMU_MODES >= 3)
1355 env->tlb_table[2][i].addr_read = -1;
1356 env->tlb_table[2][i].addr_write = -1;
1357 env->tlb_table[2][i].addr_code = -1;
1358#if (NB_MMU_MODES == 4)
1359 env->tlb_table[3][i].addr_read = -1;
1360 env->tlb_table[3][i].addr_write = -1;
1361 env->tlb_table[3][i].addr_code = -1;
1362#endif
1363#endif
33417e70 1364 }
9fa3e853 1365
8a40a180 1366 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853
FB
1367
1368#if !defined(CONFIG_SOFTMMU)
1369 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
0a962c02
FB
1370#endif
1371#ifdef USE_KQEMU
1372 if (env->kqemu_enabled) {
1373 kqemu_flush(env, flush_global);
1374 }
9fa3e853 1375#endif
e3db7226 1376 tlb_flush_count++;
33417e70
FB
1377}
1378
274da6b2 1379static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1380{
5fafdf24 1381 if (addr == (tlb_entry->addr_read &
84b7b8e7 1382 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1383 addr == (tlb_entry->addr_write &
84b7b8e7 1384 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1385 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1386 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1387 tlb_entry->addr_read = -1;
1388 tlb_entry->addr_write = -1;
1389 tlb_entry->addr_code = -1;
1390 }
61382a50
FB
1391}
1392
2e12669a 1393void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1394{
8a40a180 1395 int i;
9fa3e853 1396 TranslationBlock *tb;
0124311e 1397
9fa3e853 1398#if defined(DEBUG_TLB)
108c49b8 1399 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1400#endif
0124311e
FB
1401 /* must reset current TB so that interrupts cannot modify the
1402 links while we are modifying them */
1403 env->current_tb = NULL;
61382a50
FB
1404
1405 addr &= TARGET_PAGE_MASK;
1406 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1407 tlb_flush_entry(&env->tlb_table[0][i], addr);
1408 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1409#if (NB_MMU_MODES >= 3)
1410 tlb_flush_entry(&env->tlb_table[2][i], addr);
1411#if (NB_MMU_MODES == 4)
1412 tlb_flush_entry(&env->tlb_table[3][i], addr);
1413#endif
1414#endif
0124311e 1415
b362e5e0
PB
1416 /* Discard jump cache entries for any tb which might potentially
1417 overlap the flushed page. */
1418 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1419 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1420
1421 i = tb_jmp_cache_hash_page(addr);
1422 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
9fa3e853 1423
0124311e 1424#if !defined(CONFIG_SOFTMMU)
9fa3e853 1425 if (addr < MMAP_AREA_END)
0124311e 1426 munmap((void *)addr, TARGET_PAGE_SIZE);
61382a50 1427#endif
0a962c02
FB
1428#ifdef USE_KQEMU
1429 if (env->kqemu_enabled) {
1430 kqemu_flush_page(env, addr);
1431 }
1432#endif
9fa3e853
FB
1433}
1434
9fa3e853
FB
1435/* update the TLBs so that writes to code in the virtual page 'addr'
1436 can be detected */
6a00d601 1437static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1438{
5fafdf24 1439 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1440 ram_addr + TARGET_PAGE_SIZE,
1441 CODE_DIRTY_FLAG);
9fa3e853
FB
1442}
1443
9fa3e853 1444/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1445 tested for self modifying code */
5fafdf24 1446static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1447 target_ulong vaddr)
9fa3e853 1448{
3a7d929e 1449 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1450}
1451
5fafdf24 1452static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1453 unsigned long start, unsigned long length)
1454{
1455 unsigned long addr;
84b7b8e7
FB
1456 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1457 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1458 if ((addr - start) < length) {
84b7b8e7 1459 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1ccde1cb
FB
1460 }
1461 }
1462}
1463
3a7d929e 1464void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1465 int dirty_flags)
1ccde1cb
FB
1466{
1467 CPUState *env;
4f2ac237 1468 unsigned long length, start1;
0a962c02
FB
1469 int i, mask, len;
1470 uint8_t *p;
1ccde1cb
FB
1471
1472 start &= TARGET_PAGE_MASK;
1473 end = TARGET_PAGE_ALIGN(end);
1474
1475 length = end - start;
1476 if (length == 0)
1477 return;
0a962c02 1478 len = length >> TARGET_PAGE_BITS;
3a7d929e 1479#ifdef USE_KQEMU
6a00d601
FB
1480 /* XXX: should not depend on cpu context */
1481 env = first_cpu;
3a7d929e 1482 if (env->kqemu_enabled) {
f23db169
FB
1483 ram_addr_t addr;
1484 addr = start;
1485 for(i = 0; i < len; i++) {
1486 kqemu_set_notdirty(env, addr);
1487 addr += TARGET_PAGE_SIZE;
1488 }
3a7d929e
FB
1489 }
1490#endif
f23db169
FB
1491 mask = ~dirty_flags;
1492 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1493 for(i = 0; i < len; i++)
1494 p[i] &= mask;
1495
1ccde1cb
FB
1496 /* we modify the TLB cache so that the dirty bit will be set again
1497 when accessing the range */
59817ccb 1498 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1499 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1500 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1501 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1502 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1503 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1504#if (NB_MMU_MODES >= 3)
1505 for(i = 0; i < CPU_TLB_SIZE; i++)
1506 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1507#if (NB_MMU_MODES == 4)
1508 for(i = 0; i < CPU_TLB_SIZE; i++)
1509 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1510#endif
1511#endif
6a00d601 1512 }
59817ccb
FB
1513
1514#if !defined(CONFIG_SOFTMMU)
1515 /* XXX: this is expensive */
1516 {
1517 VirtPageDesc *p;
1518 int j;
1519 target_ulong addr;
1520
1521 for(i = 0; i < L1_SIZE; i++) {
1522 p = l1_virt_map[i];
1523 if (p) {
1524 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1525 for(j = 0; j < L2_SIZE; j++) {
1526 if (p->valid_tag == virt_valid_tag &&
1527 p->phys_addr >= start && p->phys_addr < end &&
1528 (p->prot & PROT_WRITE)) {
1529 if (addr < MMAP_AREA_END) {
5fafdf24 1530 mprotect((void *)addr, TARGET_PAGE_SIZE,
59817ccb
FB
1531 p->prot & ~PROT_WRITE);
1532 }
1533 }
1534 addr += TARGET_PAGE_SIZE;
1535 p++;
1536 }
1537 }
1538 }
1539 }
1540#endif
1ccde1cb
FB
1541}
1542
3a7d929e
FB
1543static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1544{
1545 ram_addr_t ram_addr;
1546
84b7b8e7 1547 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1548 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1549 tlb_entry->addend - (unsigned long)phys_ram_base;
1550 if (!cpu_physical_memory_is_dirty(ram_addr)) {
84b7b8e7 1551 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
3a7d929e
FB
1552 }
1553 }
1554}
1555
1556/* update the TLB according to the current state of the dirty bits */
1557void cpu_tlb_update_dirty(CPUState *env)
1558{
1559 int i;
1560 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1561 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1562 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1563 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1564#if (NB_MMU_MODES >= 3)
1565 for(i = 0; i < CPU_TLB_SIZE; i++)
1566 tlb_update_dirty(&env->tlb_table[2][i]);
1567#if (NB_MMU_MODES == 4)
1568 for(i = 0; i < CPU_TLB_SIZE; i++)
1569 tlb_update_dirty(&env->tlb_table[3][i]);
1570#endif
1571#endif
3a7d929e
FB
1572}
1573
5fafdf24 1574static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
108c49b8 1575 unsigned long start)
1ccde1cb
FB
1576{
1577 unsigned long addr;
84b7b8e7
FB
1578 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1579 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1580 if (addr == start) {
84b7b8e7 1581 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1ccde1cb
FB
1582 }
1583 }
1584}
1585
1586/* update the TLB corresponding to virtual page vaddr and phys addr
1587 addr so that it is no longer dirty */
6a00d601
FB
1588static inline void tlb_set_dirty(CPUState *env,
1589 unsigned long addr, target_ulong vaddr)
1ccde1cb 1590{
1ccde1cb
FB
1591 int i;
1592
1ccde1cb
FB
1593 addr &= TARGET_PAGE_MASK;
1594 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1595 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1596 tlb_set_dirty1(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1597#if (NB_MMU_MODES >= 3)
1598 tlb_set_dirty1(&env->tlb_table[2][i], addr);
1599#if (NB_MMU_MODES == 4)
1600 tlb_set_dirty1(&env->tlb_table[3][i], addr);
1601#endif
1602#endif
9fa3e853
FB
1603}
1604
59817ccb
FB
1605/* add a new TLB entry. At most one entry for a given virtual address
1606 is permitted. Return 0 if OK or 2 if the page could not be mapped
1607 (can only happen in non SOFTMMU mode for I/O pages or pages
1608 conflicting with the host address space). */
5fafdf24
TS
1609int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1610 target_phys_addr_t paddr, int prot,
6ebbf390 1611 int mmu_idx, int is_softmmu)
9fa3e853 1612{
92e873b9 1613 PhysPageDesc *p;
4f2ac237 1614 unsigned long pd;
9fa3e853 1615 unsigned int index;
4f2ac237 1616 target_ulong address;
108c49b8 1617 target_phys_addr_t addend;
9fa3e853 1618 int ret;
84b7b8e7 1619 CPUTLBEntry *te;
6658ffb8 1620 int i;
9fa3e853 1621
92e873b9 1622 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1623 if (!p) {
1624 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1625 } else {
1626 pd = p->phys_offset;
9fa3e853
FB
1627 }
1628#if defined(DEBUG_TLB)
6ebbf390
JM
1629 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1630 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1631#endif
1632
1633 ret = 0;
1634#if !defined(CONFIG_SOFTMMU)
5fafdf24 1635 if (is_softmmu)
9fa3e853
FB
1636#endif
1637 {
2a4188a3 1638 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
9fa3e853
FB
1639 /* IO memory case */
1640 address = vaddr | pd;
1641 addend = paddr;
1642 } else {
1643 /* standard memory */
1644 address = vaddr;
1645 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1646 }
6658ffb8
PB
1647
1648 /* Make accesses to pages with watchpoints go via the
1649 watchpoint trap routines. */
1650 for (i = 0; i < env->nb_watchpoints; i++) {
1651 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1652 if (address & ~TARGET_PAGE_MASK) {
d79acba4 1653 env->watchpoint[i].addend = 0;
6658ffb8
PB
1654 address = vaddr | io_mem_watch;
1655 } else {
d79acba4
AZ
1656 env->watchpoint[i].addend = pd - paddr +
1657 (unsigned long) phys_ram_base;
6658ffb8
PB
1658 /* TODO: Figure out how to make read watchpoints coexist
1659 with code. */
1660 pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
1661 }
1662 }
1663 }
d79acba4 1664
90f18422 1665 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
9fa3e853 1666 addend -= vaddr;
6ebbf390 1667 te = &env->tlb_table[mmu_idx][index];
84b7b8e7 1668 te->addend = addend;
67b915a5 1669 if (prot & PAGE_READ) {
84b7b8e7
FB
1670 te->addr_read = address;
1671 } else {
1672 te->addr_read = -1;
1673 }
1674 if (prot & PAGE_EXEC) {
1675 te->addr_code = address;
9fa3e853 1676 } else {
84b7b8e7 1677 te->addr_code = -1;
9fa3e853 1678 }
67b915a5 1679 if (prot & PAGE_WRITE) {
5fafdf24 1680 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
856074ec
FB
1681 (pd & IO_MEM_ROMD)) {
1682 /* write access calls the I/O callback */
5fafdf24 1683 te->addr_write = vaddr |
856074ec 1684 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
5fafdf24 1685 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1ccde1cb 1686 !cpu_physical_memory_is_dirty(pd)) {
84b7b8e7 1687 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
9fa3e853 1688 } else {
84b7b8e7 1689 te->addr_write = address;
9fa3e853
FB
1690 }
1691 } else {
84b7b8e7 1692 te->addr_write = -1;
9fa3e853
FB
1693 }
1694 }
1695#if !defined(CONFIG_SOFTMMU)
1696 else {
1697 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1698 /* IO access: no mapping is done as it will be handled by the
1699 soft MMU */
1700 if (!(env->hflags & HF_SOFTMMU_MASK))
1701 ret = 2;
1702 } else {
1703 void *map_addr;
59817ccb
FB
1704
1705 if (vaddr >= MMAP_AREA_END) {
1706 ret = 2;
1707 } else {
1708 if (prot & PROT_WRITE) {
5fafdf24 1709 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
d720b93d 1710#if defined(TARGET_HAS_SMC) || 1
59817ccb 1711 first_tb ||
d720b93d 1712#endif
5fafdf24 1713 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
59817ccb
FB
1714 !cpu_physical_memory_is_dirty(pd))) {
1715 /* ROM: we do as if code was inside */
1716 /* if code is present, we only map as read only and save the
1717 original mapping */
1718 VirtPageDesc *vp;
3b46e624 1719
90f18422 1720 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
59817ccb
FB
1721 vp->phys_addr = pd;
1722 vp->prot = prot;
1723 vp->valid_tag = virt_valid_tag;
1724 prot &= ~PAGE_WRITE;
1725 }
1726 }
5fafdf24 1727 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
59817ccb
FB
1728 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1729 if (map_addr == MAP_FAILED) {
1730 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1731 paddr, vaddr);
9fa3e853 1732 }
9fa3e853
FB
1733 }
1734 }
1735 }
1736#endif
1737 return ret;
1738}
1739
1740/* called from signal handler: invalidate the code and unprotect the
1741 page. Return TRUE if the fault was succesfully handled. */
53a5960a 1742int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
9fa3e853
FB
1743{
1744#if !defined(CONFIG_SOFTMMU)
1745 VirtPageDesc *vp;
1746
1747#if defined(DEBUG_TLB)
1748 printf("page_unprotect: addr=0x%08x\n", addr);
1749#endif
1750 addr &= TARGET_PAGE_MASK;
59817ccb
FB
1751
1752 /* if it is not mapped, no need to worry here */
1753 if (addr >= MMAP_AREA_END)
1754 return 0;
9fa3e853
FB
1755 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1756 if (!vp)
1757 return 0;
1758 /* NOTE: in this case, validate_tag is _not_ tested as it
1759 validates only the code TLB */
1760 if (vp->valid_tag != virt_valid_tag)
1761 return 0;
1762 if (!(vp->prot & PAGE_WRITE))
1763 return 0;
1764#if defined(DEBUG_TLB)
5fafdf24 1765 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
9fa3e853
FB
1766 addr, vp->phys_addr, vp->prot);
1767#endif
59817ccb
FB
1768 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1769 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1770 (unsigned long)addr, vp->prot);
d720b93d 1771 /* set the dirty bit */
0a962c02 1772 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
d720b93d
FB
1773 /* flush the code inside */
1774 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
9fa3e853
FB
1775 return 1;
1776#else
1777 return 0;
1778#endif
33417e70
FB
1779}
1780
0124311e
FB
1781#else
1782
ee8b7021 1783void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
1784{
1785}
1786
2e12669a 1787void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
1788{
1789}
1790
5fafdf24
TS
1791int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1792 target_phys_addr_t paddr, int prot,
6ebbf390 1793 int mmu_idx, int is_softmmu)
9fa3e853
FB
1794{
1795 return 0;
1796}
0124311e 1797
9fa3e853
FB
1798/* dump memory mappings */
1799void page_dump(FILE *f)
33417e70 1800{
9fa3e853
FB
1801 unsigned long start, end;
1802 int i, j, prot, prot1;
1803 PageDesc *p;
33417e70 1804
9fa3e853
FB
1805 fprintf(f, "%-8s %-8s %-8s %s\n",
1806 "start", "end", "size", "prot");
1807 start = -1;
1808 end = -1;
1809 prot = 0;
1810 for(i = 0; i <= L1_SIZE; i++) {
1811 if (i < L1_SIZE)
1812 p = l1_map[i];
1813 else
1814 p = NULL;
1815 for(j = 0;j < L2_SIZE; j++) {
1816 if (!p)
1817 prot1 = 0;
1818 else
1819 prot1 = p[j].flags;
1820 if (prot1 != prot) {
1821 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1822 if (start != -1) {
1823 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 1824 start, end, end - start,
9fa3e853
FB
1825 prot & PAGE_READ ? 'r' : '-',
1826 prot & PAGE_WRITE ? 'w' : '-',
1827 prot & PAGE_EXEC ? 'x' : '-');
1828 }
1829 if (prot1 != 0)
1830 start = end;
1831 else
1832 start = -1;
1833 prot = prot1;
1834 }
1835 if (!p)
1836 break;
1837 }
33417e70 1838 }
33417e70
FB
1839}
1840
53a5960a 1841int page_get_flags(target_ulong address)
33417e70 1842{
9fa3e853
FB
1843 PageDesc *p;
1844
1845 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 1846 if (!p)
9fa3e853
FB
1847 return 0;
1848 return p->flags;
1849}
1850
1851/* modify the flags of a page and invalidate the code if
1852 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1853 depending on PAGE_WRITE */
53a5960a 1854void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
1855{
1856 PageDesc *p;
53a5960a 1857 target_ulong addr;
9fa3e853
FB
1858
1859 start = start & TARGET_PAGE_MASK;
1860 end = TARGET_PAGE_ALIGN(end);
1861 if (flags & PAGE_WRITE)
1862 flags |= PAGE_WRITE_ORG;
1863 spin_lock(&tb_lock);
1864 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1865 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1866 /* if the write protection is set, then we invalidate the code
1867 inside */
5fafdf24 1868 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
1869 (flags & PAGE_WRITE) &&
1870 p->first_tb) {
d720b93d 1871 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
1872 }
1873 p->flags = flags;
1874 }
1875 spin_unlock(&tb_lock);
33417e70
FB
1876}
1877
9fa3e853
FB
1878/* called from signal handler: invalidate the code and unprotect the
1879 page. Return TRUE if the fault was succesfully handled. */
53a5960a 1880int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
1881{
1882 unsigned int page_index, prot, pindex;
1883 PageDesc *p, *p1;
53a5960a 1884 target_ulong host_start, host_end, addr;
9fa3e853 1885
83fb7adf 1886 host_start = address & qemu_host_page_mask;
9fa3e853
FB
1887 page_index = host_start >> TARGET_PAGE_BITS;
1888 p1 = page_find(page_index);
1889 if (!p1)
1890 return 0;
83fb7adf 1891 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
1892 p = p1;
1893 prot = 0;
1894 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1895 prot |= p->flags;
1896 p++;
1897 }
1898 /* if the page was really writable, then we change its
1899 protection back to writable */
1900 if (prot & PAGE_WRITE_ORG) {
1901 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1902 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 1903 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
1904 (prot & PAGE_BITS) | PAGE_WRITE);
1905 p1[pindex].flags |= PAGE_WRITE;
1906 /* and since the content will be modified, we must invalidate
1907 the corresponding translated code. */
d720b93d 1908 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
1909#ifdef DEBUG_TB_CHECK
1910 tb_invalidate_check(address);
1911#endif
1912 return 1;
1913 }
1914 }
1915 return 0;
1916}
1917
1918/* call this function when system calls directly modify a memory area */
53a5960a
PB
1919/* ??? This should be redundant now we have lock_user. */
1920void page_unprotect_range(target_ulong data, target_ulong data_size)
9fa3e853 1921{
53a5960a 1922 target_ulong start, end, addr;
9fa3e853 1923
53a5960a 1924 start = data;
9fa3e853
FB
1925 end = start + data_size;
1926 start &= TARGET_PAGE_MASK;
1927 end = TARGET_PAGE_ALIGN(end);
1928 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
d720b93d 1929 page_unprotect(addr, 0, NULL);
9fa3e853
FB
1930 }
1931}
1932
6a00d601
FB
1933static inline void tlb_set_dirty(CPUState *env,
1934 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
1935{
1936}
9fa3e853
FB
1937#endif /* defined(CONFIG_USER_ONLY) */
1938
db7b5426
BS
1939static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1940 int memory);
1941static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
1942 int orig_memory);
1943#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
1944 need_subpage) \
1945 do { \
1946 if (addr > start_addr) \
1947 start_addr2 = 0; \
1948 else { \
1949 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
1950 if (start_addr2 > 0) \
1951 need_subpage = 1; \
1952 } \
1953 \
49e9fba2 1954 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
1955 end_addr2 = TARGET_PAGE_SIZE - 1; \
1956 else { \
1957 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
1958 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
1959 need_subpage = 1; \
1960 } \
1961 } while (0)
1962
33417e70
FB
1963/* register physical memory. 'size' must be a multiple of the target
1964 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
1965 io memory page */
5fafdf24 1966void cpu_register_physical_memory(target_phys_addr_t start_addr,
2e12669a
FB
1967 unsigned long size,
1968 unsigned long phys_offset)
33417e70 1969{
108c49b8 1970 target_phys_addr_t addr, end_addr;
92e873b9 1971 PhysPageDesc *p;
9d42037b 1972 CPUState *env;
db7b5426
BS
1973 unsigned long orig_size = size;
1974 void *subpage;
33417e70 1975
5fd386f6 1976 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
1977 end_addr = start_addr + (target_phys_addr_t)size;
1978 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
1979 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1980 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
1981 unsigned long orig_memory = p->phys_offset;
1982 target_phys_addr_t start_addr2, end_addr2;
1983 int need_subpage = 0;
1984
1985 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
1986 need_subpage);
1987 if (need_subpage) {
1988 if (!(orig_memory & IO_MEM_SUBPAGE)) {
1989 subpage = subpage_init((addr & TARGET_PAGE_MASK),
1990 &p->phys_offset, orig_memory);
1991 } else {
1992 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
1993 >> IO_MEM_SHIFT];
1994 }
1995 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
1996 } else {
1997 p->phys_offset = phys_offset;
1998 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
1999 (phys_offset & IO_MEM_ROMD))
2000 phys_offset += TARGET_PAGE_SIZE;
2001 }
2002 } else {
2003 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2004 p->phys_offset = phys_offset;
2005 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2006 (phys_offset & IO_MEM_ROMD))
2007 phys_offset += TARGET_PAGE_SIZE;
2008 else {
2009 target_phys_addr_t start_addr2, end_addr2;
2010 int need_subpage = 0;
2011
2012 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2013 end_addr2, need_subpage);
2014
2015 if (need_subpage) {
2016 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2017 &p->phys_offset, IO_MEM_UNASSIGNED);
2018 subpage_register(subpage, start_addr2, end_addr2,
2019 phys_offset);
2020 }
2021 }
2022 }
33417e70 2023 }
3b46e624 2024
9d42037b
FB
2025 /* since each CPU stores ram addresses in its TLB cache, we must
2026 reset the modified entries */
2027 /* XXX: slow ! */
2028 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2029 tlb_flush(env, 1);
2030 }
33417e70
FB
2031}
2032
ba863458
FB
2033/* XXX: temporary until new memory mapping API */
2034uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2035{
2036 PhysPageDesc *p;
2037
2038 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2039 if (!p)
2040 return IO_MEM_UNASSIGNED;
2041 return p->phys_offset;
2042}
2043
e9a1ab19
FB
2044/* XXX: better than nothing */
2045ram_addr_t qemu_ram_alloc(unsigned int size)
2046{
2047 ram_addr_t addr;
2048 if ((phys_ram_alloc_offset + size) >= phys_ram_size) {
5fafdf24 2049 fprintf(stderr, "Not enough memory (requested_size = %u, max memory = %d)\n",
e9a1ab19
FB
2050 size, phys_ram_size);
2051 abort();
2052 }
2053 addr = phys_ram_alloc_offset;
2054 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2055 return addr;
2056}
2057
2058void qemu_ram_free(ram_addr_t addr)
2059{
2060}
2061
a4193c8a 2062static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2063{
67d3b957 2064#ifdef DEBUG_UNASSIGNED
6c36d3fa 2065 printf("Unassigned mem read " TARGET_FMT_lx "\n", addr);
b4f0a316
BS
2066#endif
2067#ifdef TARGET_SPARC
6c36d3fa 2068 do_unassigned_access(addr, 0, 0, 0);
f1ccf904
TS
2069#elif TARGET_CRIS
2070 do_unassigned_access(addr, 0, 0, 0);
67d3b957 2071#endif
33417e70
FB
2072 return 0;
2073}
2074
a4193c8a 2075static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2076{
67d3b957 2077#ifdef DEBUG_UNASSIGNED
6c36d3fa 2078 printf("Unassigned mem write " TARGET_FMT_lx " = 0x%x\n", addr, val);
67d3b957 2079#endif
b4f0a316 2080#ifdef TARGET_SPARC
6c36d3fa 2081 do_unassigned_access(addr, 1, 0, 0);
f1ccf904
TS
2082#elif TARGET_CRIS
2083 do_unassigned_access(addr, 1, 0, 0);
b4f0a316 2084#endif
33417e70
FB
2085}
2086
2087static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2088 unassigned_mem_readb,
2089 unassigned_mem_readb,
2090 unassigned_mem_readb,
2091};
2092
2093static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2094 unassigned_mem_writeb,
2095 unassigned_mem_writeb,
2096 unassigned_mem_writeb,
2097};
2098
3a7d929e 2099static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
9fa3e853 2100{
3a7d929e
FB
2101 unsigned long ram_addr;
2102 int dirty_flags;
2103 ram_addr = addr - (unsigned long)phys_ram_base;
2104 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2105 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2106#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2107 tb_invalidate_phys_page_fast(ram_addr, 1);
2108 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2109#endif
3a7d929e 2110 }
c27004ec 2111 stb_p((uint8_t *)(long)addr, val);
f32fc648
FB
2112#ifdef USE_KQEMU
2113 if (cpu_single_env->kqemu_enabled &&
2114 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2115 kqemu_modify_page(cpu_single_env, ram_addr);
2116#endif
f23db169
FB
2117 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2118 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2119 /* we remove the notdirty callback only if the code has been
2120 flushed */
2121 if (dirty_flags == 0xff)
6a00d601 2122 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
9fa3e853
FB
2123}
2124
3a7d929e 2125static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
9fa3e853 2126{
3a7d929e
FB
2127 unsigned long ram_addr;
2128 int dirty_flags;
2129 ram_addr = addr - (unsigned long)phys_ram_base;
2130 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2131 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2132#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2133 tb_invalidate_phys_page_fast(ram_addr, 2);
2134 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2135#endif
3a7d929e 2136 }
c27004ec 2137 stw_p((uint8_t *)(long)addr, val);
f32fc648
FB
2138#ifdef USE_KQEMU
2139 if (cpu_single_env->kqemu_enabled &&
2140 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2141 kqemu_modify_page(cpu_single_env, ram_addr);
2142#endif
f23db169
FB
2143 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2144 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2145 /* we remove the notdirty callback only if the code has been
2146 flushed */
2147 if (dirty_flags == 0xff)
6a00d601 2148 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
9fa3e853
FB
2149}
2150
3a7d929e 2151static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
9fa3e853 2152{
3a7d929e
FB
2153 unsigned long ram_addr;
2154 int dirty_flags;
2155 ram_addr = addr - (unsigned long)phys_ram_base;
2156 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2157 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2158#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2159 tb_invalidate_phys_page_fast(ram_addr, 4);
2160 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2161#endif
3a7d929e 2162 }
c27004ec 2163 stl_p((uint8_t *)(long)addr, val);
f32fc648
FB
2164#ifdef USE_KQEMU
2165 if (cpu_single_env->kqemu_enabled &&
2166 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2167 kqemu_modify_page(cpu_single_env, ram_addr);
2168#endif
f23db169
FB
2169 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2170 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2171 /* we remove the notdirty callback only if the code has been
2172 flushed */
2173 if (dirty_flags == 0xff)
6a00d601 2174 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
9fa3e853
FB
2175}
2176
3a7d929e 2177static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2178 NULL, /* never used */
2179 NULL, /* never used */
2180 NULL, /* never used */
2181};
2182
1ccde1cb
FB
2183static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2184 notdirty_mem_writeb,
2185 notdirty_mem_writew,
2186 notdirty_mem_writel,
2187};
2188
6658ffb8
PB
2189#if defined(CONFIG_SOFTMMU)
2190/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2191 so these check for a hit then pass through to the normal out-of-line
2192 phys routines. */
2193static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2194{
2195 return ldub_phys(addr);
2196}
2197
2198static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2199{
2200 return lduw_phys(addr);
2201}
2202
2203static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2204{
2205 return ldl_phys(addr);
2206}
2207
2208/* Generate a debug exception if a watchpoint has been hit.
2209 Returns the real physical address of the access. addr will be a host
d79acba4 2210 address in case of a RAM location. */
6658ffb8
PB
2211static target_ulong check_watchpoint(target_phys_addr_t addr)
2212{
2213 CPUState *env = cpu_single_env;
2214 target_ulong watch;
2215 target_ulong retaddr;
2216 int i;
2217
2218 retaddr = addr;
2219 for (i = 0; i < env->nb_watchpoints; i++) {
2220 watch = env->watchpoint[i].vaddr;
2221 if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
d79acba4 2222 retaddr = addr - env->watchpoint[i].addend;
6658ffb8
PB
2223 if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
2224 cpu_single_env->watchpoint_hit = i + 1;
2225 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
2226 break;
2227 }
2228 }
2229 }
2230 return retaddr;
2231}
2232
2233static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2234 uint32_t val)
2235{
2236 addr = check_watchpoint(addr);
2237 stb_phys(addr, val);
2238}
2239
2240static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2241 uint32_t val)
2242{
2243 addr = check_watchpoint(addr);
2244 stw_phys(addr, val);
2245}
2246
2247static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2248 uint32_t val)
2249{
2250 addr = check_watchpoint(addr);
2251 stl_phys(addr, val);
2252}
2253
2254static CPUReadMemoryFunc *watch_mem_read[3] = {
2255 watch_mem_readb,
2256 watch_mem_readw,
2257 watch_mem_readl,
2258};
2259
2260static CPUWriteMemoryFunc *watch_mem_write[3] = {
2261 watch_mem_writeb,
2262 watch_mem_writew,
2263 watch_mem_writel,
2264};
2265#endif
2266
db7b5426
BS
2267static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2268 unsigned int len)
2269{
2270 CPUReadMemoryFunc **mem_read;
2271 uint32_t ret;
2272 unsigned int idx;
2273
2274 idx = SUBPAGE_IDX(addr - mmio->base);
2275#if defined(DEBUG_SUBPAGE)
2276 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2277 mmio, len, addr, idx);
2278#endif
2279 mem_read = mmio->mem_read[idx];
2280 ret = (*mem_read[len])(mmio->opaque[idx], addr);
2281
2282 return ret;
2283}
2284
2285static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2286 uint32_t value, unsigned int len)
2287{
2288 CPUWriteMemoryFunc **mem_write;
2289 unsigned int idx;
2290
2291 idx = SUBPAGE_IDX(addr - mmio->base);
2292#if defined(DEBUG_SUBPAGE)
2293 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2294 mmio, len, addr, idx, value);
2295#endif
2296 mem_write = mmio->mem_write[idx];
2297 (*mem_write[len])(mmio->opaque[idx], addr, value);
2298}
2299
2300static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2301{
2302#if defined(DEBUG_SUBPAGE)
2303 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2304#endif
2305
2306 return subpage_readlen(opaque, addr, 0);
2307}
2308
2309static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2310 uint32_t value)
2311{
2312#if defined(DEBUG_SUBPAGE)
2313 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2314#endif
2315 subpage_writelen(opaque, addr, value, 0);
2316}
2317
2318static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2319{
2320#if defined(DEBUG_SUBPAGE)
2321 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2322#endif
2323
2324 return subpage_readlen(opaque, addr, 1);
2325}
2326
2327static void subpage_writew (void *opaque, target_phys_addr_t addr,
2328 uint32_t value)
2329{
2330#if defined(DEBUG_SUBPAGE)
2331 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2332#endif
2333 subpage_writelen(opaque, addr, value, 1);
2334}
2335
2336static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2337{
2338#if defined(DEBUG_SUBPAGE)
2339 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2340#endif
2341
2342 return subpage_readlen(opaque, addr, 2);
2343}
2344
2345static void subpage_writel (void *opaque,
2346 target_phys_addr_t addr, uint32_t value)
2347{
2348#if defined(DEBUG_SUBPAGE)
2349 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2350#endif
2351 subpage_writelen(opaque, addr, value, 2);
2352}
2353
2354static CPUReadMemoryFunc *subpage_read[] = {
2355 &subpage_readb,
2356 &subpage_readw,
2357 &subpage_readl,
2358};
2359
2360static CPUWriteMemoryFunc *subpage_write[] = {
2361 &subpage_writeb,
2362 &subpage_writew,
2363 &subpage_writel,
2364};
2365
2366static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2367 int memory)
2368{
2369 int idx, eidx;
2370
2371 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2372 return -1;
2373 idx = SUBPAGE_IDX(start);
2374 eidx = SUBPAGE_IDX(end);
2375#if defined(DEBUG_SUBPAGE)
2376 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2377 mmio, start, end, idx, eidx, memory);
2378#endif
2379 memory >>= IO_MEM_SHIFT;
2380 for (; idx <= eidx; idx++) {
2381 mmio->mem_read[idx] = io_mem_read[memory];
2382 mmio->mem_write[idx] = io_mem_write[memory];
2383 mmio->opaque[idx] = io_mem_opaque[memory];
2384 }
2385
2386 return 0;
2387}
2388
2389static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
2390 int orig_memory)
2391{
2392 subpage_t *mmio;
2393 int subpage_memory;
2394
2395 mmio = qemu_mallocz(sizeof(subpage_t));
2396 if (mmio != NULL) {
2397 mmio->base = base;
2398 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2399#if defined(DEBUG_SUBPAGE)
2400 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2401 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2402#endif
2403 *phys = subpage_memory | IO_MEM_SUBPAGE;
2404 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2405 }
2406
2407 return mmio;
2408}
2409
33417e70
FB
2410static void io_mem_init(void)
2411{
3a7d929e 2412 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2413 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2414 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2415 io_mem_nb = 5;
2416
6658ffb8
PB
2417#if defined(CONFIG_SOFTMMU)
2418 io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
2419 watch_mem_write, NULL);
2420#endif
1ccde1cb 2421 /* alloc dirty bits array */
0a962c02 2422 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2423 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2424}
2425
2426/* mem_read and mem_write are arrays of functions containing the
2427 function to access byte (index 0), word (index 1) and dword (index
2428 2). All functions must be supplied. If io_index is non zero, the
2429 corresponding io zone is modified. If it is zero, a new io zone is
2430 allocated. The return value can be used with
2431 cpu_register_physical_memory(). (-1) is returned if error. */
2432int cpu_register_io_memory(int io_index,
2433 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2434 CPUWriteMemoryFunc **mem_write,
2435 void *opaque)
33417e70
FB
2436{
2437 int i;
2438
2439 if (io_index <= 0) {
b5ff1b31 2440 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2441 return -1;
2442 io_index = io_mem_nb++;
2443 } else {
2444 if (io_index >= IO_MEM_NB_ENTRIES)
2445 return -1;
2446 }
b5ff1b31 2447
33417e70
FB
2448 for(i = 0;i < 3; i++) {
2449 io_mem_read[io_index][i] = mem_read[i];
2450 io_mem_write[io_index][i] = mem_write[i];
2451 }
a4193c8a 2452 io_mem_opaque[io_index] = opaque;
33417e70
FB
2453 return io_index << IO_MEM_SHIFT;
2454}
61382a50 2455
8926b517
FB
2456CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2457{
2458 return io_mem_write[io_index >> IO_MEM_SHIFT];
2459}
2460
2461CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2462{
2463 return io_mem_read[io_index >> IO_MEM_SHIFT];
2464}
2465
13eb76e0
FB
2466/* physical memory access (slow version, mainly for debug) */
2467#if defined(CONFIG_USER_ONLY)
5fafdf24 2468void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2469 int len, int is_write)
2470{
2471 int l, flags;
2472 target_ulong page;
53a5960a 2473 void * p;
13eb76e0
FB
2474
2475 while (len > 0) {
2476 page = addr & TARGET_PAGE_MASK;
2477 l = (page + TARGET_PAGE_SIZE) - addr;
2478 if (l > len)
2479 l = len;
2480 flags = page_get_flags(page);
2481 if (!(flags & PAGE_VALID))
2482 return;
2483 if (is_write) {
2484 if (!(flags & PAGE_WRITE))
2485 return;
53a5960a
PB
2486 p = lock_user(addr, len, 0);
2487 memcpy(p, buf, len);
2488 unlock_user(p, addr, len);
13eb76e0
FB
2489 } else {
2490 if (!(flags & PAGE_READ))
2491 return;
53a5960a
PB
2492 p = lock_user(addr, len, 1);
2493 memcpy(buf, p, len);
2494 unlock_user(p, addr, 0);
13eb76e0
FB
2495 }
2496 len -= l;
2497 buf += l;
2498 addr += l;
2499 }
2500}
8df1cd07 2501
13eb76e0 2502#else
5fafdf24 2503void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2504 int len, int is_write)
2505{
2506 int l, io_index;
2507 uint8_t *ptr;
2508 uint32_t val;
2e12669a
FB
2509 target_phys_addr_t page;
2510 unsigned long pd;
92e873b9 2511 PhysPageDesc *p;
3b46e624 2512
13eb76e0
FB
2513 while (len > 0) {
2514 page = addr & TARGET_PAGE_MASK;
2515 l = (page + TARGET_PAGE_SIZE) - addr;
2516 if (l > len)
2517 l = len;
92e873b9 2518 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2519 if (!p) {
2520 pd = IO_MEM_UNASSIGNED;
2521 } else {
2522 pd = p->phys_offset;
2523 }
3b46e624 2524
13eb76e0 2525 if (is_write) {
3a7d929e 2526 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2527 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
6a00d601
FB
2528 /* XXX: could force cpu_single_env to NULL to avoid
2529 potential bugs */
13eb76e0 2530 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2531 /* 32 bit write access */
c27004ec 2532 val = ldl_p(buf);
a4193c8a 2533 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2534 l = 4;
2535 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2536 /* 16 bit write access */
c27004ec 2537 val = lduw_p(buf);
a4193c8a 2538 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2539 l = 2;
2540 } else {
1c213d19 2541 /* 8 bit write access */
c27004ec 2542 val = ldub_p(buf);
a4193c8a 2543 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2544 l = 1;
2545 }
2546 } else {
b448f2f3
FB
2547 unsigned long addr1;
2548 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2549 /* RAM case */
b448f2f3 2550 ptr = phys_ram_base + addr1;
13eb76e0 2551 memcpy(ptr, buf, l);
3a7d929e
FB
2552 if (!cpu_physical_memory_is_dirty(addr1)) {
2553 /* invalidate code */
2554 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2555 /* set dirty bit */
5fafdf24 2556 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2557 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2558 }
13eb76e0
FB
2559 }
2560 } else {
5fafdf24 2561 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2562 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2563 /* I/O case */
2564 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2565 if (l >= 4 && ((addr & 3) == 0)) {
2566 /* 32 bit read access */
a4193c8a 2567 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2568 stl_p(buf, val);
13eb76e0
FB
2569 l = 4;
2570 } else if (l >= 2 && ((addr & 1) == 0)) {
2571 /* 16 bit read access */
a4193c8a 2572 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2573 stw_p(buf, val);
13eb76e0
FB
2574 l = 2;
2575 } else {
1c213d19 2576 /* 8 bit read access */
a4193c8a 2577 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2578 stb_p(buf, val);
13eb76e0
FB
2579 l = 1;
2580 }
2581 } else {
2582 /* RAM case */
5fafdf24 2583 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2584 (addr & ~TARGET_PAGE_MASK);
2585 memcpy(buf, ptr, l);
2586 }
2587 }
2588 len -= l;
2589 buf += l;
2590 addr += l;
2591 }
2592}
8df1cd07 2593
d0ecd2aa 2594/* used for ROM loading : can write in RAM and ROM */
5fafdf24 2595void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
2596 const uint8_t *buf, int len)
2597{
2598 int l;
2599 uint8_t *ptr;
2600 target_phys_addr_t page;
2601 unsigned long pd;
2602 PhysPageDesc *p;
3b46e624 2603
d0ecd2aa
FB
2604 while (len > 0) {
2605 page = addr & TARGET_PAGE_MASK;
2606 l = (page + TARGET_PAGE_SIZE) - addr;
2607 if (l > len)
2608 l = len;
2609 p = phys_page_find(page >> TARGET_PAGE_BITS);
2610 if (!p) {
2611 pd = IO_MEM_UNASSIGNED;
2612 } else {
2613 pd = p->phys_offset;
2614 }
3b46e624 2615
d0ecd2aa 2616 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
2617 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2618 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
2619 /* do nothing */
2620 } else {
2621 unsigned long addr1;
2622 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2623 /* ROM/RAM case */
2624 ptr = phys_ram_base + addr1;
2625 memcpy(ptr, buf, l);
2626 }
2627 len -= l;
2628 buf += l;
2629 addr += l;
2630 }
2631}
2632
2633
8df1cd07
FB
2634/* warning: addr must be aligned */
2635uint32_t ldl_phys(target_phys_addr_t addr)
2636{
2637 int io_index;
2638 uint8_t *ptr;
2639 uint32_t val;
2640 unsigned long pd;
2641 PhysPageDesc *p;
2642
2643 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2644 if (!p) {
2645 pd = IO_MEM_UNASSIGNED;
2646 } else {
2647 pd = p->phys_offset;
2648 }
3b46e624 2649
5fafdf24 2650 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2651 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
2652 /* I/O case */
2653 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2654 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2655 } else {
2656 /* RAM case */
5fafdf24 2657 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
2658 (addr & ~TARGET_PAGE_MASK);
2659 val = ldl_p(ptr);
2660 }
2661 return val;
2662}
2663
84b7b8e7
FB
2664/* warning: addr must be aligned */
2665uint64_t ldq_phys(target_phys_addr_t addr)
2666{
2667 int io_index;
2668 uint8_t *ptr;
2669 uint64_t val;
2670 unsigned long pd;
2671 PhysPageDesc *p;
2672
2673 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2674 if (!p) {
2675 pd = IO_MEM_UNASSIGNED;
2676 } else {
2677 pd = p->phys_offset;
2678 }
3b46e624 2679
2a4188a3
FB
2680 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2681 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
2682 /* I/O case */
2683 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2684#ifdef TARGET_WORDS_BIGENDIAN
2685 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2686 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2687#else
2688 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2689 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2690#endif
2691 } else {
2692 /* RAM case */
5fafdf24 2693 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
2694 (addr & ~TARGET_PAGE_MASK);
2695 val = ldq_p(ptr);
2696 }
2697 return val;
2698}
2699
aab33094
FB
2700/* XXX: optimize */
2701uint32_t ldub_phys(target_phys_addr_t addr)
2702{
2703 uint8_t val;
2704 cpu_physical_memory_read(addr, &val, 1);
2705 return val;
2706}
2707
2708/* XXX: optimize */
2709uint32_t lduw_phys(target_phys_addr_t addr)
2710{
2711 uint16_t val;
2712 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2713 return tswap16(val);
2714}
2715
8df1cd07
FB
2716/* warning: addr must be aligned. The ram page is not masked as dirty
2717 and the code inside is not invalidated. It is useful if the dirty
2718 bits are used to track modified PTEs */
2719void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2720{
2721 int io_index;
2722 uint8_t *ptr;
2723 unsigned long pd;
2724 PhysPageDesc *p;
2725
2726 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2727 if (!p) {
2728 pd = IO_MEM_UNASSIGNED;
2729 } else {
2730 pd = p->phys_offset;
2731 }
3b46e624 2732
3a7d929e 2733 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
2734 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2735 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2736 } else {
5fafdf24 2737 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
2738 (addr & ~TARGET_PAGE_MASK);
2739 stl_p(ptr, val);
2740 }
2741}
2742
bc98a7ef
JM
2743void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2744{
2745 int io_index;
2746 uint8_t *ptr;
2747 unsigned long pd;
2748 PhysPageDesc *p;
2749
2750 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2751 if (!p) {
2752 pd = IO_MEM_UNASSIGNED;
2753 } else {
2754 pd = p->phys_offset;
2755 }
3b46e624 2756
bc98a7ef
JM
2757 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2758 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2759#ifdef TARGET_WORDS_BIGENDIAN
2760 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2761 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2762#else
2763 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2764 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2765#endif
2766 } else {
5fafdf24 2767 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
2768 (addr & ~TARGET_PAGE_MASK);
2769 stq_p(ptr, val);
2770 }
2771}
2772
8df1cd07 2773/* warning: addr must be aligned */
8df1cd07
FB
2774void stl_phys(target_phys_addr_t addr, uint32_t val)
2775{
2776 int io_index;
2777 uint8_t *ptr;
2778 unsigned long pd;
2779 PhysPageDesc *p;
2780
2781 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2782 if (!p) {
2783 pd = IO_MEM_UNASSIGNED;
2784 } else {
2785 pd = p->phys_offset;
2786 }
3b46e624 2787
3a7d929e 2788 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
2789 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2790 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2791 } else {
2792 unsigned long addr1;
2793 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2794 /* RAM case */
2795 ptr = phys_ram_base + addr1;
2796 stl_p(ptr, val);
3a7d929e
FB
2797 if (!cpu_physical_memory_is_dirty(addr1)) {
2798 /* invalidate code */
2799 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2800 /* set dirty bit */
f23db169
FB
2801 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2802 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2803 }
8df1cd07
FB
2804 }
2805}
2806
aab33094
FB
2807/* XXX: optimize */
2808void stb_phys(target_phys_addr_t addr, uint32_t val)
2809{
2810 uint8_t v = val;
2811 cpu_physical_memory_write(addr, &v, 1);
2812}
2813
2814/* XXX: optimize */
2815void stw_phys(target_phys_addr_t addr, uint32_t val)
2816{
2817 uint16_t v = tswap16(val);
2818 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2819}
2820
2821/* XXX: optimize */
2822void stq_phys(target_phys_addr_t addr, uint64_t val)
2823{
2824 val = tswap64(val);
2825 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2826}
2827
13eb76e0
FB
2828#endif
2829
2830/* virtual memory access for debug */
5fafdf24 2831int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 2832 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2833{
2834 int l;
9b3c35e0
JM
2835 target_phys_addr_t phys_addr;
2836 target_ulong page;
13eb76e0
FB
2837
2838 while (len > 0) {
2839 page = addr & TARGET_PAGE_MASK;
2840 phys_addr = cpu_get_phys_page_debug(env, page);
2841 /* if no physical page mapped, return an error */
2842 if (phys_addr == -1)
2843 return -1;
2844 l = (page + TARGET_PAGE_SIZE) - addr;
2845 if (l > len)
2846 l = len;
5fafdf24 2847 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 2848 buf, l, is_write);
13eb76e0
FB
2849 len -= l;
2850 buf += l;
2851 addr += l;
2852 }
2853 return 0;
2854}
2855
e3db7226
FB
2856void dump_exec_info(FILE *f,
2857 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2858{
2859 int i, target_code_size, max_target_code_size;
2860 int direct_jmp_count, direct_jmp2_count, cross_page;
2861 TranslationBlock *tb;
3b46e624 2862
e3db7226
FB
2863 target_code_size = 0;
2864 max_target_code_size = 0;
2865 cross_page = 0;
2866 direct_jmp_count = 0;
2867 direct_jmp2_count = 0;
2868 for(i = 0; i < nb_tbs; i++) {
2869 tb = &tbs[i];
2870 target_code_size += tb->size;
2871 if (tb->size > max_target_code_size)
2872 max_target_code_size = tb->size;
2873 if (tb->page_addr[1] != -1)
2874 cross_page++;
2875 if (tb->tb_next_offset[0] != 0xffff) {
2876 direct_jmp_count++;
2877 if (tb->tb_next_offset[1] != 0xffff) {
2878 direct_jmp2_count++;
2879 }
2880 }
2881 }
2882 /* XXX: avoid using doubles ? */
2883 cpu_fprintf(f, "TB count %d\n", nb_tbs);
5fafdf24 2884 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
2885 nb_tbs ? target_code_size / nb_tbs : 0,
2886 max_target_code_size);
5fafdf24 2887 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
2888 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2889 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
2890 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2891 cross_page,
e3db7226
FB
2892 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2893 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 2894 direct_jmp_count,
e3db7226
FB
2895 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2896 direct_jmp2_count,
2897 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2898 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2899 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2900 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2901}
2902
5fafdf24 2903#if !defined(CONFIG_USER_ONLY)
61382a50
FB
2904
2905#define MMUSUFFIX _cmmu
2906#define GETPC() NULL
2907#define env cpu_single_env
b769d8fe 2908#define SOFTMMU_CODE_ACCESS
61382a50
FB
2909
2910#define SHIFT 0
2911#include "softmmu_template.h"
2912
2913#define SHIFT 1
2914#include "softmmu_template.h"
2915
2916#define SHIFT 2
2917#include "softmmu_template.h"
2918
2919#define SHIFT 3
2920#include "softmmu_template.h"
2921
2922#undef env
2923
2924#endif