]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Fix definition of EMX bit in cpuid (Jens Axboe).
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
d5a8f07c 21#ifdef _WIN32
4fddf62a 22#define WIN32_LEAN_AND_MEAN
d5a8f07c
FB
23#include <windows.h>
24#else
a98d49b1 25#include <sys/types.h>
d5a8f07c
FB
26#include <sys/mman.h>
27#endif
54936004
FB
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31#include <string.h>
32#include <errno.h>
33#include <unistd.h>
34#include <inttypes.h>
35
6180a181
FB
36#include "cpu.h"
37#include "exec-all.h"
ca10f867 38#include "qemu-common.h"
b67d9a52 39#include "tcg.h"
b3c7724c 40#include "hw/hw.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#endif
54936004 44
fd6ce8f6 45//#define DEBUG_TB_INVALIDATE
66e85a21 46//#define DEBUG_FLUSH
9fa3e853 47//#define DEBUG_TLB
67d3b957 48//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
49
50/* make various TB consistency checks */
5fafdf24
TS
51//#define DEBUG_TB_CHECK
52//#define DEBUG_TLB_CHECK
fd6ce8f6 53
1196be37 54//#define DEBUG_IOPORT
db7b5426 55//#define DEBUG_SUBPAGE
1196be37 56
99773bd4
PB
57#if !defined(CONFIG_USER_ONLY)
58/* TB consistency checks only implemented for usermode emulation. */
59#undef DEBUG_TB_CHECK
60#endif
61
9fa3e853
FB
62#define SMC_BITMAP_USE_THRESHOLD 10
63
64#define MMAP_AREA_START 0x00000000
65#define MMAP_AREA_END 0xa8000000
fd6ce8f6 66
108c49b8
FB
67#if defined(TARGET_SPARC64)
68#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
69#elif defined(TARGET_SPARC)
70#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
71#elif defined(TARGET_ALPHA)
72#define TARGET_PHYS_ADDR_SPACE_BITS 42
73#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
74#elif defined(TARGET_PPC64)
75#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
76#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
77#define TARGET_PHYS_ADDR_SPACE_BITS 42
78#elif defined(TARGET_I386) && !defined(USE_KQEMU)
79#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
80#else
81/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
82#define TARGET_PHYS_ADDR_SPACE_BITS 32
83#endif
84
fab94c0e 85TranslationBlock *tbs;
26a5f13b 86int code_gen_max_blocks;
9fa3e853 87TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
fd6ce8f6 88int nb_tbs;
eb51d102
FB
89/* any access to the tbs or the page table must use this lock */
90spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 91
141ac468
BS
92#if defined(__arm__) || defined(__sparc_v9__)
93/* The prologue must be reachable with a direct jump. ARM and Sparc64
94 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
95 section close to code segment. */
96#define code_gen_section \
97 __attribute__((__section__(".gen_code"))) \
98 __attribute__((aligned (32)))
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
26a5f13b
FB
105uint8_t *code_gen_buffer;
106unsigned long code_gen_buffer_size;
107/* threshold to flush the translated code buffer */
108unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
00f82b8a 112ram_addr_t phys_ram_size;
9fa3e853
FB
113int phys_ram_fd;
114uint8_t *phys_ram_base;
1ccde1cb 115uint8_t *phys_ram_dirty;
e9a1ab19 116static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 117#endif
9fa3e853 118
6a00d601
FB
119CPUState *first_cpu;
120/* current CPU in the current thread. It is only valid inside
121 cpu_exec() */
5fafdf24 122CPUState *cpu_single_env;
2e70f6ef 123/* 0 = Do not count executed instructions.
bf20dc07 124 1 = Precise instruction counting.
2e70f6ef
PB
125 2 = Adaptive rate instruction counting. */
126int use_icount = 0;
127/* Current instruction counter. While executing translated code this may
128 include some instructions that have not yet been executed. */
129int64_t qemu_icount;
6a00d601 130
54936004 131typedef struct PageDesc {
92e873b9 132 /* list of TBs intersecting this ram page */
fd6ce8f6 133 TranslationBlock *first_tb;
9fa3e853
FB
134 /* in order to optimize self modifying code, we count the number
135 of lookups we do to a given page to use a bitmap */
136 unsigned int code_write_count;
137 uint8_t *code_bitmap;
138#if defined(CONFIG_USER_ONLY)
139 unsigned long flags;
140#endif
54936004
FB
141} PageDesc;
142
92e873b9 143typedef struct PhysPageDesc {
0f459d16 144 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 145 ram_addr_t phys_offset;
92e873b9
FB
146} PhysPageDesc;
147
54936004 148#define L2_BITS 10
bedb69ea
JM
149#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
150/* XXX: this is a temporary hack for alpha target.
151 * In the future, this is to be replaced by a multi-level table
152 * to actually be able to handle the complete 64 bits address space.
153 */
154#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
155#else
03875444 156#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 157#endif
54936004
FB
158
159#define L1_SIZE (1 << L1_BITS)
160#define L2_SIZE (1 << L2_BITS)
161
83fb7adf
FB
162unsigned long qemu_real_host_page_size;
163unsigned long qemu_host_page_bits;
164unsigned long qemu_host_page_size;
165unsigned long qemu_host_page_mask;
54936004 166
92e873b9 167/* XXX: for system emulation, it could just be an array */
54936004 168static PageDesc *l1_map[L1_SIZE];
0a962c02 169PhysPageDesc **l1_phys_map;
54936004 170
e2eef170
PB
171#if !defined(CONFIG_USER_ONLY)
172static void io_mem_init(void);
173
33417e70 174/* io memory support */
33417e70
FB
175CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
176CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 177void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 178static int io_mem_nb;
6658ffb8
PB
179static int io_mem_watch;
180#endif
33417e70 181
34865134 182/* log support */
7ccfb2eb 183const char *logfilename = "/tmp/qemu.log";
34865134
FB
184FILE *logfile;
185int loglevel;
e735b91c 186static int log_append = 0;
34865134 187
e3db7226
FB
188/* statistics */
189static int tlb_flush_count;
190static int tb_flush_count;
191static int tb_phys_invalidate_count;
192
db7b5426
BS
193#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194typedef struct subpage_t {
195 target_phys_addr_t base;
3ee89922
BS
196 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
197 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
198 void *opaque[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
199} subpage_t;
200
7cb69cae
FB
201#ifdef _WIN32
202static void map_exec(void *addr, long size)
203{
204 DWORD old_protect;
205 VirtualProtect(addr, size,
206 PAGE_EXECUTE_READWRITE, &old_protect);
207
208}
209#else
210static void map_exec(void *addr, long size)
211{
4369415f 212 unsigned long start, end, page_size;
7cb69cae 213
4369415f 214 page_size = getpagesize();
7cb69cae 215 start = (unsigned long)addr;
4369415f 216 start &= ~(page_size - 1);
7cb69cae
FB
217
218 end = (unsigned long)addr + size;
4369415f
FB
219 end += page_size - 1;
220 end &= ~(page_size - 1);
7cb69cae
FB
221
222 mprotect((void *)start, end - start,
223 PROT_READ | PROT_WRITE | PROT_EXEC);
224}
225#endif
226
b346ff46 227static void page_init(void)
54936004 228{
83fb7adf 229 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 230 TARGET_PAGE_SIZE */
67b915a5 231#ifdef _WIN32
d5a8f07c
FB
232 {
233 SYSTEM_INFO system_info;
234 DWORD old_protect;
3b46e624 235
d5a8f07c
FB
236 GetSystemInfo(&system_info);
237 qemu_real_host_page_size = system_info.dwPageSize;
d5a8f07c 238 }
67b915a5 239#else
83fb7adf 240 qemu_real_host_page_size = getpagesize();
67b915a5 241#endif
83fb7adf
FB
242 if (qemu_host_page_size == 0)
243 qemu_host_page_size = qemu_real_host_page_size;
244 if (qemu_host_page_size < TARGET_PAGE_SIZE)
245 qemu_host_page_size = TARGET_PAGE_SIZE;
246 qemu_host_page_bits = 0;
247 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
248 qemu_host_page_bits++;
249 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
250 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
251 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
252
253#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
254 {
255 long long startaddr, endaddr;
256 FILE *f;
257 int n;
258
c8a706fe 259 mmap_lock();
0776590d 260 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
261 f = fopen("/proc/self/maps", "r");
262 if (f) {
263 do {
264 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
265 if (n == 2) {
e0b8d65a
BS
266 startaddr = MIN(startaddr,
267 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
268 endaddr = MIN(endaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 270 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
271 TARGET_PAGE_ALIGN(endaddr),
272 PAGE_RESERVED);
273 }
274 } while (!feof(f));
275 fclose(f);
276 }
c8a706fe 277 mmap_unlock();
50a9569b
AZ
278 }
279#endif
54936004
FB
280}
281
434929bf 282static inline PageDesc **page_l1_map(target_ulong index)
54936004 283{
17e2377a
PB
284#if TARGET_LONG_BITS > 32
285 /* Host memory outside guest VM. For 32-bit targets we have already
286 excluded high addresses. */
d8173e0f 287 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
288 return NULL;
289#endif
434929bf
AL
290 return &l1_map[index >> L2_BITS];
291}
292
293static inline PageDesc *page_find_alloc(target_ulong index)
294{
295 PageDesc **lp, *p;
296 lp = page_l1_map(index);
297 if (!lp)
298 return NULL;
299
54936004
FB
300 p = *lp;
301 if (!p) {
302 /* allocate if not found */
17e2377a
PB
303#if defined(CONFIG_USER_ONLY)
304 unsigned long addr;
305 size_t len = sizeof(PageDesc) * L2_SIZE;
306 /* Don't use qemu_malloc because it may recurse. */
307 p = mmap(0, len, PROT_READ | PROT_WRITE,
308 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 309 *lp = p;
17e2377a
PB
310 addr = h2g(p);
311 if (addr == (target_ulong)addr) {
312 page_set_flags(addr & TARGET_PAGE_MASK,
313 TARGET_PAGE_ALIGN(addr + len),
314 PAGE_RESERVED);
315 }
316#else
317 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
318 *lp = p;
319#endif
54936004
FB
320 }
321 return p + (index & (L2_SIZE - 1));
322}
323
00f82b8a 324static inline PageDesc *page_find(target_ulong index)
54936004 325{
434929bf
AL
326 PageDesc **lp, *p;
327 lp = page_l1_map(index);
328 if (!lp)
329 return NULL;
54936004 330
434929bf 331 p = *lp;
54936004
FB
332 if (!p)
333 return 0;
fd6ce8f6
FB
334 return p + (index & (L2_SIZE - 1));
335}
336
108c49b8 337static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 338{
108c49b8 339 void **lp, **p;
e3f4e2a4 340 PhysPageDesc *pd;
92e873b9 341
108c49b8
FB
342 p = (void **)l1_phys_map;
343#if TARGET_PHYS_ADDR_SPACE_BITS > 32
344
345#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
346#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
347#endif
348 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
349 p = *lp;
350 if (!p) {
351 /* allocate if not found */
108c49b8
FB
352 if (!alloc)
353 return NULL;
354 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
355 memset(p, 0, sizeof(void *) * L1_SIZE);
356 *lp = p;
357 }
358#endif
359 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
360 pd = *lp;
361 if (!pd) {
362 int i;
108c49b8
FB
363 /* allocate if not found */
364 if (!alloc)
365 return NULL;
e3f4e2a4
PB
366 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
367 *lp = pd;
368 for (i = 0; i < L2_SIZE; i++)
369 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 370 }
e3f4e2a4 371 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
372}
373
108c49b8 374static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 375{
108c49b8 376 return phys_page_find_alloc(index, 0);
92e873b9
FB
377}
378
9fa3e853 379#if !defined(CONFIG_USER_ONLY)
6a00d601 380static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 381static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 382 target_ulong vaddr);
c8a706fe
PB
383#define mmap_lock() do { } while(0)
384#define mmap_unlock() do { } while(0)
9fa3e853 385#endif
fd6ce8f6 386
4369415f
FB
387#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
388
389#if defined(CONFIG_USER_ONLY)
390/* Currently it is not recommanded to allocate big chunks of data in
391 user mode. It will change when a dedicated libc will be used */
392#define USE_STATIC_CODE_GEN_BUFFER
393#endif
394
395#ifdef USE_STATIC_CODE_GEN_BUFFER
396static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
397#endif
398
8fcd3692 399static void code_gen_alloc(unsigned long tb_size)
26a5f13b 400{
4369415f
FB
401#ifdef USE_STATIC_CODE_GEN_BUFFER
402 code_gen_buffer = static_code_gen_buffer;
403 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
404 map_exec(code_gen_buffer, code_gen_buffer_size);
405#else
26a5f13b
FB
406 code_gen_buffer_size = tb_size;
407 if (code_gen_buffer_size == 0) {
4369415f
FB
408#if defined(CONFIG_USER_ONLY)
409 /* in user mode, phys_ram_size is not meaningful */
410 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
411#else
26a5f13b 412 /* XXX: needs ajustments */
174a9a1f 413 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
4369415f 414#endif
26a5f13b
FB
415 }
416 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
417 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
418 /* The code gen buffer location may have constraints depending on
419 the host cpu and OS */
420#if defined(__linux__)
421 {
422 int flags;
141ac468
BS
423 void *start = NULL;
424
26a5f13b
FB
425 flags = MAP_PRIVATE | MAP_ANONYMOUS;
426#if defined(__x86_64__)
427 flags |= MAP_32BIT;
428 /* Cannot map more than that */
429 if (code_gen_buffer_size > (800 * 1024 * 1024))
430 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
431#elif defined(__sparc_v9__)
432 // Map the buffer below 2G, so we can use direct calls and branches
433 flags |= MAP_FIXED;
434 start = (void *) 0x60000000UL;
435 if (code_gen_buffer_size > (512 * 1024 * 1024))
436 code_gen_buffer_size = (512 * 1024 * 1024);
26a5f13b 437#endif
141ac468
BS
438 code_gen_buffer = mmap(start, code_gen_buffer_size,
439 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
440 flags, -1, 0);
441 if (code_gen_buffer == MAP_FAILED) {
442 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
443 exit(1);
444 }
445 }
446#else
447 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
448 if (!code_gen_buffer) {
449 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
450 exit(1);
451 }
452 map_exec(code_gen_buffer, code_gen_buffer_size);
453#endif
4369415f 454#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
455 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
456 code_gen_buffer_max_size = code_gen_buffer_size -
457 code_gen_max_block_size();
458 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
459 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
460}
461
462/* Must be called before using the QEMU cpus. 'tb_size' is the size
463 (in bytes) allocated to the translation buffer. Zero means default
464 size. */
465void cpu_exec_init_all(unsigned long tb_size)
466{
26a5f13b
FB
467 cpu_gen_init();
468 code_gen_alloc(tb_size);
469 code_gen_ptr = code_gen_buffer;
4369415f 470 page_init();
e2eef170 471#if !defined(CONFIG_USER_ONLY)
26a5f13b 472 io_mem_init();
e2eef170 473#endif
26a5f13b
FB
474}
475
9656f324
PB
476#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
477
478#define CPU_COMMON_SAVE_VERSION 1
479
480static void cpu_common_save(QEMUFile *f, void *opaque)
481{
482 CPUState *env = opaque;
483
484 qemu_put_be32s(f, &env->halted);
485 qemu_put_be32s(f, &env->interrupt_request);
486}
487
488static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
489{
490 CPUState *env = opaque;
491
492 if (version_id != CPU_COMMON_SAVE_VERSION)
493 return -EINVAL;
494
495 qemu_get_be32s(f, &env->halted);
75f482ae 496 qemu_get_be32s(f, &env->interrupt_request);
9656f324
PB
497 tlb_flush(env, 1);
498
499 return 0;
500}
501#endif
502
6a00d601 503void cpu_exec_init(CPUState *env)
fd6ce8f6 504{
6a00d601
FB
505 CPUState **penv;
506 int cpu_index;
507
6a00d601
FB
508 env->next_cpu = NULL;
509 penv = &first_cpu;
510 cpu_index = 0;
511 while (*penv != NULL) {
512 penv = (CPUState **)&(*penv)->next_cpu;
513 cpu_index++;
514 }
515 env->cpu_index = cpu_index;
6658ffb8 516 env->nb_watchpoints = 0;
6a00d601 517 *penv = env;
b3c7724c 518#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
519 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
520 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
521 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
522 cpu_save, cpu_load, env);
523#endif
fd6ce8f6
FB
524}
525
9fa3e853
FB
526static inline void invalidate_page_bitmap(PageDesc *p)
527{
528 if (p->code_bitmap) {
59817ccb 529 qemu_free(p->code_bitmap);
9fa3e853
FB
530 p->code_bitmap = NULL;
531 }
532 p->code_write_count = 0;
533}
534
fd6ce8f6
FB
535/* set to NULL all the 'first_tb' fields in all PageDescs */
536static void page_flush_tb(void)
537{
538 int i, j;
539 PageDesc *p;
540
541 for(i = 0; i < L1_SIZE; i++) {
542 p = l1_map[i];
543 if (p) {
9fa3e853
FB
544 for(j = 0; j < L2_SIZE; j++) {
545 p->first_tb = NULL;
546 invalidate_page_bitmap(p);
547 p++;
548 }
fd6ce8f6
FB
549 }
550 }
551}
552
553/* flush all the translation blocks */
d4e8164f 554/* XXX: tb_flush is currently not thread safe */
6a00d601 555void tb_flush(CPUState *env1)
fd6ce8f6 556{
6a00d601 557 CPUState *env;
0124311e 558#if defined(DEBUG_FLUSH)
ab3d1727
BS
559 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
560 (unsigned long)(code_gen_ptr - code_gen_buffer),
561 nb_tbs, nb_tbs > 0 ?
562 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 563#endif
26a5f13b 564 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
565 cpu_abort(env1, "Internal error: code buffer overflow\n");
566
fd6ce8f6 567 nb_tbs = 0;
3b46e624 568
6a00d601
FB
569 for(env = first_cpu; env != NULL; env = env->next_cpu) {
570 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
571 }
9fa3e853 572
8a8a608f 573 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 574 page_flush_tb();
9fa3e853 575
fd6ce8f6 576 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
577 /* XXX: flush processor icache at this point if cache flush is
578 expensive */
e3db7226 579 tb_flush_count++;
fd6ce8f6
FB
580}
581
582#ifdef DEBUG_TB_CHECK
583
bc98a7ef 584static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
585{
586 TranslationBlock *tb;
587 int i;
588 address &= TARGET_PAGE_MASK;
99773bd4
PB
589 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
590 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
591 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
592 address >= tb->pc + tb->size)) {
593 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 594 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
595 }
596 }
597 }
598}
599
600/* verify that all the pages have correct rights for code */
601static void tb_page_check(void)
602{
603 TranslationBlock *tb;
604 int i, flags1, flags2;
3b46e624 605
99773bd4
PB
606 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
607 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
608 flags1 = page_get_flags(tb->pc);
609 flags2 = page_get_flags(tb->pc + tb->size - 1);
610 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
611 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 612 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
613 }
614 }
615 }
616}
617
d4e8164f
FB
618void tb_jmp_check(TranslationBlock *tb)
619{
620 TranslationBlock *tb1;
621 unsigned int n1;
622
623 /* suppress any remaining jumps to this TB */
624 tb1 = tb->jmp_first;
625 for(;;) {
626 n1 = (long)tb1 & 3;
627 tb1 = (TranslationBlock *)((long)tb1 & ~3);
628 if (n1 == 2)
629 break;
630 tb1 = tb1->jmp_next[n1];
631 }
632 /* check end of list */
633 if (tb1 != tb) {
634 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
635 }
636}
637
fd6ce8f6
FB
638#endif
639
640/* invalidate one TB */
641static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
642 int next_offset)
643{
644 TranslationBlock *tb1;
645 for(;;) {
646 tb1 = *ptb;
647 if (tb1 == tb) {
648 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
649 break;
650 }
651 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
652 }
653}
654
9fa3e853
FB
655static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
656{
657 TranslationBlock *tb1;
658 unsigned int n1;
659
660 for(;;) {
661 tb1 = *ptb;
662 n1 = (long)tb1 & 3;
663 tb1 = (TranslationBlock *)((long)tb1 & ~3);
664 if (tb1 == tb) {
665 *ptb = tb1->page_next[n1];
666 break;
667 }
668 ptb = &tb1->page_next[n1];
669 }
670}
671
d4e8164f
FB
672static inline void tb_jmp_remove(TranslationBlock *tb, int n)
673{
674 TranslationBlock *tb1, **ptb;
675 unsigned int n1;
676
677 ptb = &tb->jmp_next[n];
678 tb1 = *ptb;
679 if (tb1) {
680 /* find tb(n) in circular list */
681 for(;;) {
682 tb1 = *ptb;
683 n1 = (long)tb1 & 3;
684 tb1 = (TranslationBlock *)((long)tb1 & ~3);
685 if (n1 == n && tb1 == tb)
686 break;
687 if (n1 == 2) {
688 ptb = &tb1->jmp_first;
689 } else {
690 ptb = &tb1->jmp_next[n1];
691 }
692 }
693 /* now we can suppress tb(n) from the list */
694 *ptb = tb->jmp_next[n];
695
696 tb->jmp_next[n] = NULL;
697 }
698}
699
700/* reset the jump entry 'n' of a TB so that it is not chained to
701 another TB */
702static inline void tb_reset_jump(TranslationBlock *tb, int n)
703{
704 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
705}
706
2e70f6ef 707void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 708{
6a00d601 709 CPUState *env;
8a40a180 710 PageDesc *p;
d4e8164f 711 unsigned int h, n1;
00f82b8a 712 target_phys_addr_t phys_pc;
8a40a180 713 TranslationBlock *tb1, *tb2;
3b46e624 714
8a40a180
FB
715 /* remove the TB from the hash list */
716 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
717 h = tb_phys_hash_func(phys_pc);
5fafdf24 718 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
719 offsetof(TranslationBlock, phys_hash_next));
720
721 /* remove the TB from the page list */
722 if (tb->page_addr[0] != page_addr) {
723 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
724 tb_page_remove(&p->first_tb, tb);
725 invalidate_page_bitmap(p);
726 }
727 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
728 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
729 tb_page_remove(&p->first_tb, tb);
730 invalidate_page_bitmap(p);
731 }
732
36bdbe54 733 tb_invalidated_flag = 1;
59817ccb 734
fd6ce8f6 735 /* remove the TB from the hash list */
8a40a180 736 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
737 for(env = first_cpu; env != NULL; env = env->next_cpu) {
738 if (env->tb_jmp_cache[h] == tb)
739 env->tb_jmp_cache[h] = NULL;
740 }
d4e8164f
FB
741
742 /* suppress this TB from the two jump lists */
743 tb_jmp_remove(tb, 0);
744 tb_jmp_remove(tb, 1);
745
746 /* suppress any remaining jumps to this TB */
747 tb1 = tb->jmp_first;
748 for(;;) {
749 n1 = (long)tb1 & 3;
750 if (n1 == 2)
751 break;
752 tb1 = (TranslationBlock *)((long)tb1 & ~3);
753 tb2 = tb1->jmp_next[n1];
754 tb_reset_jump(tb1, n1);
755 tb1->jmp_next[n1] = NULL;
756 tb1 = tb2;
757 }
758 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 759
e3db7226 760 tb_phys_invalidate_count++;
9fa3e853
FB
761}
762
763static inline void set_bits(uint8_t *tab, int start, int len)
764{
765 int end, mask, end1;
766
767 end = start + len;
768 tab += start >> 3;
769 mask = 0xff << (start & 7);
770 if ((start & ~7) == (end & ~7)) {
771 if (start < end) {
772 mask &= ~(0xff << (end & 7));
773 *tab |= mask;
774 }
775 } else {
776 *tab++ |= mask;
777 start = (start + 8) & ~7;
778 end1 = end & ~7;
779 while (start < end1) {
780 *tab++ = 0xff;
781 start += 8;
782 }
783 if (start < end) {
784 mask = ~(0xff << (end & 7));
785 *tab |= mask;
786 }
787 }
788}
789
790static void build_page_bitmap(PageDesc *p)
791{
792 int n, tb_start, tb_end;
793 TranslationBlock *tb;
3b46e624 794
b2a7081a 795 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
796 if (!p->code_bitmap)
797 return;
9fa3e853
FB
798
799 tb = p->first_tb;
800 while (tb != NULL) {
801 n = (long)tb & 3;
802 tb = (TranslationBlock *)((long)tb & ~3);
803 /* NOTE: this is subtle as a TB may span two physical pages */
804 if (n == 0) {
805 /* NOTE: tb_end may be after the end of the page, but
806 it is not a problem */
807 tb_start = tb->pc & ~TARGET_PAGE_MASK;
808 tb_end = tb_start + tb->size;
809 if (tb_end > TARGET_PAGE_SIZE)
810 tb_end = TARGET_PAGE_SIZE;
811 } else {
812 tb_start = 0;
813 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
814 }
815 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
816 tb = tb->page_next[n];
817 }
818}
819
2e70f6ef
PB
820TranslationBlock *tb_gen_code(CPUState *env,
821 target_ulong pc, target_ulong cs_base,
822 int flags, int cflags)
d720b93d
FB
823{
824 TranslationBlock *tb;
825 uint8_t *tc_ptr;
826 target_ulong phys_pc, phys_page2, virt_page2;
827 int code_gen_size;
828
c27004ec
FB
829 phys_pc = get_phys_addr_code(env, pc);
830 tb = tb_alloc(pc);
d720b93d
FB
831 if (!tb) {
832 /* flush must be done */
833 tb_flush(env);
834 /* cannot fail at this point */
c27004ec 835 tb = tb_alloc(pc);
2e70f6ef
PB
836 /* Don't forget to invalidate previous TB info. */
837 tb_invalidated_flag = 1;
d720b93d
FB
838 }
839 tc_ptr = code_gen_ptr;
840 tb->tc_ptr = tc_ptr;
841 tb->cs_base = cs_base;
842 tb->flags = flags;
843 tb->cflags = cflags;
d07bde88 844 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 845 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 846
d720b93d 847 /* check next page if needed */
c27004ec 848 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 849 phys_page2 = -1;
c27004ec 850 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
851 phys_page2 = get_phys_addr_code(env, virt_page2);
852 }
853 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 854 return tb;
d720b93d 855}
3b46e624 856
9fa3e853
FB
857/* invalidate all TBs which intersect with the target physical page
858 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
859 the same physical page. 'is_cpu_write_access' should be true if called
860 from a real cpu write access: the virtual CPU will exit the current
861 TB if code is modified inside this TB. */
00f82b8a 862void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
863 int is_cpu_write_access)
864{
865 int n, current_tb_modified, current_tb_not_found, current_flags;
d720b93d 866 CPUState *env = cpu_single_env;
9fa3e853 867 PageDesc *p;
ea1c1802 868 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
9fa3e853 869 target_ulong tb_start, tb_end;
d720b93d 870 target_ulong current_pc, current_cs_base;
9fa3e853
FB
871
872 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 873 if (!p)
9fa3e853 874 return;
5fafdf24 875 if (!p->code_bitmap &&
d720b93d
FB
876 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
877 is_cpu_write_access) {
9fa3e853
FB
878 /* build code bitmap */
879 build_page_bitmap(p);
880 }
881
882 /* we remove all the TBs in the range [start, end[ */
883 /* XXX: see if in some cases it could be faster to invalidate all the code */
d720b93d
FB
884 current_tb_not_found = is_cpu_write_access;
885 current_tb_modified = 0;
886 current_tb = NULL; /* avoid warning */
887 current_pc = 0; /* avoid warning */
888 current_cs_base = 0; /* avoid warning */
889 current_flags = 0; /* avoid warning */
9fa3e853
FB
890 tb = p->first_tb;
891 while (tb != NULL) {
892 n = (long)tb & 3;
893 tb = (TranslationBlock *)((long)tb & ~3);
894 tb_next = tb->page_next[n];
895 /* NOTE: this is subtle as a TB may span two physical pages */
896 if (n == 0) {
897 /* NOTE: tb_end may be after the end of the page, but
898 it is not a problem */
899 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
900 tb_end = tb_start + tb->size;
901 } else {
902 tb_start = tb->page_addr[1];
903 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
904 }
905 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
906#ifdef TARGET_HAS_PRECISE_SMC
907 if (current_tb_not_found) {
908 current_tb_not_found = 0;
909 current_tb = NULL;
2e70f6ef 910 if (env->mem_io_pc) {
d720b93d 911 /* now we have a real cpu fault */
2e70f6ef 912 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
913 }
914 }
915 if (current_tb == tb &&
2e70f6ef 916 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
917 /* If we are modifying the current TB, we must stop
918 its execution. We could be more precise by checking
919 that the modification is after the current PC, but it
920 would require a specialized function to partially
921 restore the CPU state */
3b46e624 922
d720b93d 923 current_tb_modified = 1;
5fafdf24 924 cpu_restore_state(current_tb, env,
2e70f6ef 925 env->mem_io_pc, NULL);
d720b93d
FB
926#if defined(TARGET_I386)
927 current_flags = env->hflags;
928 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
929 current_cs_base = (target_ulong)env->segs[R_CS].base;
930 current_pc = current_cs_base + env->eip;
931#else
932#error unsupported CPU
933#endif
934 }
935#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
936 /* we need to do that to handle the case where a signal
937 occurs while doing tb_phys_invalidate() */
938 saved_tb = NULL;
939 if (env) {
940 saved_tb = env->current_tb;
941 env->current_tb = NULL;
942 }
9fa3e853 943 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
944 if (env) {
945 env->current_tb = saved_tb;
946 if (env->interrupt_request && env->current_tb)
947 cpu_interrupt(env, env->interrupt_request);
948 }
9fa3e853
FB
949 }
950 tb = tb_next;
951 }
952#if !defined(CONFIG_USER_ONLY)
953 /* if no code remaining, no need to continue to use slow writes */
954 if (!p->first_tb) {
955 invalidate_page_bitmap(p);
d720b93d 956 if (is_cpu_write_access) {
2e70f6ef 957 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
958 }
959 }
960#endif
961#ifdef TARGET_HAS_PRECISE_SMC
962 if (current_tb_modified) {
963 /* we generate a block containing just the instruction
964 modifying the memory. It will ensure that it cannot modify
965 itself */
ea1c1802 966 env->current_tb = NULL;
2e70f6ef 967 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 968 cpu_resume_from_signal(env, NULL);
9fa3e853 969 }
fd6ce8f6 970#endif
9fa3e853 971}
fd6ce8f6 972
9fa3e853 973/* len must be <= 8 and start must be a multiple of len */
00f82b8a 974static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
975{
976 PageDesc *p;
977 int offset, b;
59817ccb 978#if 0
a4193c8a
FB
979 if (1) {
980 if (loglevel) {
5fafdf24 981 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
2e70f6ef 982 cpu_single_env->mem_io_vaddr, len,
5fafdf24 983 cpu_single_env->eip,
a4193c8a
FB
984 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
985 }
59817ccb
FB
986 }
987#endif
9fa3e853 988 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 989 if (!p)
9fa3e853
FB
990 return;
991 if (p->code_bitmap) {
992 offset = start & ~TARGET_PAGE_MASK;
993 b = p->code_bitmap[offset >> 3] >> (offset & 7);
994 if (b & ((1 << len) - 1))
995 goto do_invalidate;
996 } else {
997 do_invalidate:
d720b93d 998 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
999 }
1000}
1001
9fa3e853 1002#if !defined(CONFIG_SOFTMMU)
00f82b8a 1003static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1004 unsigned long pc, void *puc)
9fa3e853 1005{
d720b93d
FB
1006 int n, current_flags, current_tb_modified;
1007 target_ulong current_pc, current_cs_base;
9fa3e853 1008 PageDesc *p;
d720b93d
FB
1009 TranslationBlock *tb, *current_tb;
1010#ifdef TARGET_HAS_PRECISE_SMC
1011 CPUState *env = cpu_single_env;
1012#endif
9fa3e853
FB
1013
1014 addr &= TARGET_PAGE_MASK;
1015 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1016 if (!p)
9fa3e853
FB
1017 return;
1018 tb = p->first_tb;
d720b93d
FB
1019 current_tb_modified = 0;
1020 current_tb = NULL;
1021 current_pc = 0; /* avoid warning */
1022 current_cs_base = 0; /* avoid warning */
1023 current_flags = 0; /* avoid warning */
1024#ifdef TARGET_HAS_PRECISE_SMC
1025 if (tb && pc != 0) {
1026 current_tb = tb_find_pc(pc);
1027 }
1028#endif
9fa3e853
FB
1029 while (tb != NULL) {
1030 n = (long)tb & 3;
1031 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1032#ifdef TARGET_HAS_PRECISE_SMC
1033 if (current_tb == tb &&
2e70f6ef 1034 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1035 /* If we are modifying the current TB, we must stop
1036 its execution. We could be more precise by checking
1037 that the modification is after the current PC, but it
1038 would require a specialized function to partially
1039 restore the CPU state */
3b46e624 1040
d720b93d
FB
1041 current_tb_modified = 1;
1042 cpu_restore_state(current_tb, env, pc, puc);
1043#if defined(TARGET_I386)
1044 current_flags = env->hflags;
1045 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1046 current_cs_base = (target_ulong)env->segs[R_CS].base;
1047 current_pc = current_cs_base + env->eip;
1048#else
1049#error unsupported CPU
1050#endif
1051 }
1052#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1053 tb_phys_invalidate(tb, addr);
1054 tb = tb->page_next[n];
1055 }
fd6ce8f6 1056 p->first_tb = NULL;
d720b93d
FB
1057#ifdef TARGET_HAS_PRECISE_SMC
1058 if (current_tb_modified) {
1059 /* we generate a block containing just the instruction
1060 modifying the memory. It will ensure that it cannot modify
1061 itself */
ea1c1802 1062 env->current_tb = NULL;
2e70f6ef 1063 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1064 cpu_resume_from_signal(env, puc);
1065 }
1066#endif
fd6ce8f6 1067}
9fa3e853 1068#endif
fd6ce8f6
FB
1069
1070/* add the tb in the target page and protect it if necessary */
5fafdf24 1071static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1072 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1073{
1074 PageDesc *p;
9fa3e853
FB
1075 TranslationBlock *last_first_tb;
1076
1077 tb->page_addr[n] = page_addr;
3a7d929e 1078 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1079 tb->page_next[n] = p->first_tb;
1080 last_first_tb = p->first_tb;
1081 p->first_tb = (TranslationBlock *)((long)tb | n);
1082 invalidate_page_bitmap(p);
fd6ce8f6 1083
107db443 1084#if defined(TARGET_HAS_SMC) || 1
d720b93d 1085
9fa3e853 1086#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1087 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1088 target_ulong addr;
1089 PageDesc *p2;
9fa3e853
FB
1090 int prot;
1091
fd6ce8f6
FB
1092 /* force the host page as non writable (writes will have a
1093 page fault + mprotect overhead) */
53a5960a 1094 page_addr &= qemu_host_page_mask;
fd6ce8f6 1095 prot = 0;
53a5960a
PB
1096 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1097 addr += TARGET_PAGE_SIZE) {
1098
1099 p2 = page_find (addr >> TARGET_PAGE_BITS);
1100 if (!p2)
1101 continue;
1102 prot |= p2->flags;
1103 p2->flags &= ~PAGE_WRITE;
1104 page_get_flags(addr);
1105 }
5fafdf24 1106 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1107 (prot & PAGE_BITS) & ~PAGE_WRITE);
1108#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1109 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1110 page_addr);
fd6ce8f6 1111#endif
fd6ce8f6 1112 }
9fa3e853
FB
1113#else
1114 /* if some code is already present, then the pages are already
1115 protected. So we handle the case where only the first TB is
1116 allocated in a physical page */
1117 if (!last_first_tb) {
6a00d601 1118 tlb_protect_code(page_addr);
9fa3e853
FB
1119 }
1120#endif
d720b93d
FB
1121
1122#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1123}
1124
1125/* Allocate a new translation block. Flush the translation buffer if
1126 too many translation blocks or too much generated code. */
c27004ec 1127TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1128{
1129 TranslationBlock *tb;
fd6ce8f6 1130
26a5f13b
FB
1131 if (nb_tbs >= code_gen_max_blocks ||
1132 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1133 return NULL;
fd6ce8f6
FB
1134 tb = &tbs[nb_tbs++];
1135 tb->pc = pc;
b448f2f3 1136 tb->cflags = 0;
d4e8164f
FB
1137 return tb;
1138}
1139
2e70f6ef
PB
1140void tb_free(TranslationBlock *tb)
1141{
bf20dc07 1142 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1143 Ignore the hard cases and just back up if this TB happens to
1144 be the last one generated. */
1145 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1146 code_gen_ptr = tb->tc_ptr;
1147 nb_tbs--;
1148 }
1149}
1150
9fa3e853
FB
1151/* add a new TB and link it to the physical page tables. phys_page2 is
1152 (-1) to indicate that only one page contains the TB. */
5fafdf24 1153void tb_link_phys(TranslationBlock *tb,
9fa3e853 1154 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1155{
9fa3e853
FB
1156 unsigned int h;
1157 TranslationBlock **ptb;
1158
c8a706fe
PB
1159 /* Grab the mmap lock to stop another thread invalidating this TB
1160 before we are done. */
1161 mmap_lock();
9fa3e853
FB
1162 /* add in the physical hash table */
1163 h = tb_phys_hash_func(phys_pc);
1164 ptb = &tb_phys_hash[h];
1165 tb->phys_hash_next = *ptb;
1166 *ptb = tb;
fd6ce8f6
FB
1167
1168 /* add in the page list */
9fa3e853
FB
1169 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1170 if (phys_page2 != -1)
1171 tb_alloc_page(tb, 1, phys_page2);
1172 else
1173 tb->page_addr[1] = -1;
9fa3e853 1174
d4e8164f
FB
1175 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1176 tb->jmp_next[0] = NULL;
1177 tb->jmp_next[1] = NULL;
1178
1179 /* init original jump addresses */
1180 if (tb->tb_next_offset[0] != 0xffff)
1181 tb_reset_jump(tb, 0);
1182 if (tb->tb_next_offset[1] != 0xffff)
1183 tb_reset_jump(tb, 1);
8a40a180
FB
1184
1185#ifdef DEBUG_TB_CHECK
1186 tb_page_check();
1187#endif
c8a706fe 1188 mmap_unlock();
fd6ce8f6
FB
1189}
1190
9fa3e853
FB
1191/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1192 tb[1].tc_ptr. Return NULL if not found */
1193TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1194{
9fa3e853
FB
1195 int m_min, m_max, m;
1196 unsigned long v;
1197 TranslationBlock *tb;
a513fe19
FB
1198
1199 if (nb_tbs <= 0)
1200 return NULL;
1201 if (tc_ptr < (unsigned long)code_gen_buffer ||
1202 tc_ptr >= (unsigned long)code_gen_ptr)
1203 return NULL;
1204 /* binary search (cf Knuth) */
1205 m_min = 0;
1206 m_max = nb_tbs - 1;
1207 while (m_min <= m_max) {
1208 m = (m_min + m_max) >> 1;
1209 tb = &tbs[m];
1210 v = (unsigned long)tb->tc_ptr;
1211 if (v == tc_ptr)
1212 return tb;
1213 else if (tc_ptr < v) {
1214 m_max = m - 1;
1215 } else {
1216 m_min = m + 1;
1217 }
5fafdf24 1218 }
a513fe19
FB
1219 return &tbs[m_max];
1220}
7501267e 1221
ea041c0e
FB
1222static void tb_reset_jump_recursive(TranslationBlock *tb);
1223
1224static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1225{
1226 TranslationBlock *tb1, *tb_next, **ptb;
1227 unsigned int n1;
1228
1229 tb1 = tb->jmp_next[n];
1230 if (tb1 != NULL) {
1231 /* find head of list */
1232 for(;;) {
1233 n1 = (long)tb1 & 3;
1234 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1235 if (n1 == 2)
1236 break;
1237 tb1 = tb1->jmp_next[n1];
1238 }
1239 /* we are now sure now that tb jumps to tb1 */
1240 tb_next = tb1;
1241
1242 /* remove tb from the jmp_first list */
1243 ptb = &tb_next->jmp_first;
1244 for(;;) {
1245 tb1 = *ptb;
1246 n1 = (long)tb1 & 3;
1247 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1248 if (n1 == n && tb1 == tb)
1249 break;
1250 ptb = &tb1->jmp_next[n1];
1251 }
1252 *ptb = tb->jmp_next[n];
1253 tb->jmp_next[n] = NULL;
3b46e624 1254
ea041c0e
FB
1255 /* suppress the jump to next tb in generated code */
1256 tb_reset_jump(tb, n);
1257
0124311e 1258 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1259 tb_reset_jump_recursive(tb_next);
1260 }
1261}
1262
1263static void tb_reset_jump_recursive(TranslationBlock *tb)
1264{
1265 tb_reset_jump_recursive2(tb, 0);
1266 tb_reset_jump_recursive2(tb, 1);
1267}
1268
1fddef4b 1269#if defined(TARGET_HAS_ICE)
d720b93d
FB
1270static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1271{
9b3c35e0
JM
1272 target_phys_addr_t addr;
1273 target_ulong pd;
c2f07f81
PB
1274 ram_addr_t ram_addr;
1275 PhysPageDesc *p;
d720b93d 1276
c2f07f81
PB
1277 addr = cpu_get_phys_page_debug(env, pc);
1278 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1279 if (!p) {
1280 pd = IO_MEM_UNASSIGNED;
1281 } else {
1282 pd = p->phys_offset;
1283 }
1284 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1285 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1286}
c27004ec 1287#endif
d720b93d 1288
6658ffb8 1289/* Add a watchpoint. */
0f459d16 1290int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
6658ffb8
PB
1291{
1292 int i;
1293
1294 for (i = 0; i < env->nb_watchpoints; i++) {
1295 if (addr == env->watchpoint[i].vaddr)
1296 return 0;
1297 }
1298 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1299 return -1;
1300
1301 i = env->nb_watchpoints++;
1302 env->watchpoint[i].vaddr = addr;
0f459d16 1303 env->watchpoint[i].type = type;
6658ffb8
PB
1304 tlb_flush_page(env, addr);
1305 /* FIXME: This flush is needed because of the hack to make memory ops
1306 terminate the TB. It can be removed once the proper IO trap and
1307 re-execute bits are in. */
1308 tb_flush(env);
1309 return i;
1310}
1311
1312/* Remove a watchpoint. */
1313int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1314{
1315 int i;
1316
1317 for (i = 0; i < env->nb_watchpoints; i++) {
1318 if (addr == env->watchpoint[i].vaddr) {
1319 env->nb_watchpoints--;
1320 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1321 tlb_flush_page(env, addr);
1322 return 0;
1323 }
1324 }
1325 return -1;
1326}
1327
7d03f82f
EI
1328/* Remove all watchpoints. */
1329void cpu_watchpoint_remove_all(CPUState *env) {
1330 int i;
1331
1332 for (i = 0; i < env->nb_watchpoints; i++) {
1333 tlb_flush_page(env, env->watchpoint[i].vaddr);
1334 }
1335 env->nb_watchpoints = 0;
1336}
1337
c33a346e
FB
1338/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1339 breakpoint is reached */
2e12669a 1340int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
4c3a88a2 1341{
1fddef4b 1342#if defined(TARGET_HAS_ICE)
4c3a88a2 1343 int i;
3b46e624 1344
4c3a88a2
FB
1345 for(i = 0; i < env->nb_breakpoints; i++) {
1346 if (env->breakpoints[i] == pc)
1347 return 0;
1348 }
1349
1350 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1351 return -1;
1352 env->breakpoints[env->nb_breakpoints++] = pc;
3b46e624 1353
d720b93d 1354 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1355 return 0;
1356#else
1357 return -1;
1358#endif
1359}
1360
7d03f82f
EI
1361/* remove all breakpoints */
1362void cpu_breakpoint_remove_all(CPUState *env) {
1363#if defined(TARGET_HAS_ICE)
1364 int i;
1365 for(i = 0; i < env->nb_breakpoints; i++) {
1366 breakpoint_invalidate(env, env->breakpoints[i]);
1367 }
1368 env->nb_breakpoints = 0;
1369#endif
1370}
1371
4c3a88a2 1372/* remove a breakpoint */
2e12669a 1373int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
4c3a88a2 1374{
1fddef4b 1375#if defined(TARGET_HAS_ICE)
4c3a88a2
FB
1376 int i;
1377 for(i = 0; i < env->nb_breakpoints; i++) {
1378 if (env->breakpoints[i] == pc)
1379 goto found;
1380 }
1381 return -1;
1382 found:
4c3a88a2 1383 env->nb_breakpoints--;
1fddef4b
FB
1384 if (i < env->nb_breakpoints)
1385 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
d720b93d
FB
1386
1387 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1388 return 0;
1389#else
1390 return -1;
1391#endif
1392}
1393
c33a346e
FB
1394/* enable or disable single step mode. EXCP_DEBUG is returned by the
1395 CPU loop after each instruction */
1396void cpu_single_step(CPUState *env, int enabled)
1397{
1fddef4b 1398#if defined(TARGET_HAS_ICE)
c33a346e
FB
1399 if (env->singlestep_enabled != enabled) {
1400 env->singlestep_enabled = enabled;
1401 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1402 /* XXX: only flush what is necessary */
0124311e 1403 tb_flush(env);
c33a346e
FB
1404 }
1405#endif
1406}
1407
34865134
FB
1408/* enable or disable low levels log */
1409void cpu_set_log(int log_flags)
1410{
1411 loglevel = log_flags;
1412 if (loglevel && !logfile) {
11fcfab4 1413 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1414 if (!logfile) {
1415 perror(logfilename);
1416 _exit(1);
1417 }
9fa3e853
FB
1418#if !defined(CONFIG_SOFTMMU)
1419 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1420 {
b55266b5 1421 static char logfile_buf[4096];
9fa3e853
FB
1422 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1423 }
1424#else
34865134 1425 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1426#endif
e735b91c
PB
1427 log_append = 1;
1428 }
1429 if (!loglevel && logfile) {
1430 fclose(logfile);
1431 logfile = NULL;
34865134
FB
1432 }
1433}
1434
1435void cpu_set_log_filename(const char *filename)
1436{
1437 logfilename = strdup(filename);
e735b91c
PB
1438 if (logfile) {
1439 fclose(logfile);
1440 logfile = NULL;
1441 }
1442 cpu_set_log(loglevel);
34865134 1443}
c33a346e 1444
0124311e 1445/* mask must never be zero, except for A20 change call */
68a79315 1446void cpu_interrupt(CPUState *env, int mask)
ea041c0e 1447{
d5975363 1448#if !defined(USE_NPTL)
ea041c0e 1449 TranslationBlock *tb;
15a51156 1450 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
d5975363 1451#endif
2e70f6ef 1452 int old_mask;
59817ccb 1453
2e70f6ef 1454 old_mask = env->interrupt_request;
d5975363 1455 /* FIXME: This is probably not threadsafe. A different thread could
bf20dc07 1456 be in the middle of a read-modify-write operation. */
68a79315 1457 env->interrupt_request |= mask;
d5975363
PB
1458#if defined(USE_NPTL)
1459 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1460 problem and hope the cpu will stop of its own accord. For userspace
1461 emulation this often isn't actually as bad as it sounds. Often
1462 signals are used primarily to interrupt blocking syscalls. */
1463#else
2e70f6ef 1464 if (use_icount) {
266910c4 1465 env->icount_decr.u16.high = 0xffff;
2e70f6ef
PB
1466#ifndef CONFIG_USER_ONLY
1467 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1468 an async event happened and we need to process it. */
1469 if (!can_do_io(env)
1470 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1471 cpu_abort(env, "Raised interrupt while not in I/O function");
1472 }
1473#endif
1474 } else {
1475 tb = env->current_tb;
1476 /* if the cpu is currently executing code, we must unlink it and
1477 all the potentially executing TB */
1478 if (tb && !testandset(&interrupt_lock)) {
1479 env->current_tb = NULL;
1480 tb_reset_jump_recursive(tb);
1481 resetlock(&interrupt_lock);
1482 }
ea041c0e 1483 }
d5975363 1484#endif
ea041c0e
FB
1485}
1486
b54ad049
FB
1487void cpu_reset_interrupt(CPUState *env, int mask)
1488{
1489 env->interrupt_request &= ~mask;
1490}
1491
f193c797 1492CPULogItem cpu_log_items[] = {
5fafdf24 1493 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1494 "show generated host assembly code for each compiled TB" },
1495 { CPU_LOG_TB_IN_ASM, "in_asm",
1496 "show target assembly code for each compiled TB" },
5fafdf24 1497 { CPU_LOG_TB_OP, "op",
57fec1fe 1498 "show micro ops for each compiled TB" },
f193c797 1499 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1500 "show micro ops "
1501#ifdef TARGET_I386
1502 "before eflags optimization and "
f193c797 1503#endif
e01a1157 1504 "after liveness analysis" },
f193c797
FB
1505 { CPU_LOG_INT, "int",
1506 "show interrupts/exceptions in short format" },
1507 { CPU_LOG_EXEC, "exec",
1508 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1509 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1510 "show CPU state before block translation" },
f193c797
FB
1511#ifdef TARGET_I386
1512 { CPU_LOG_PCALL, "pcall",
1513 "show protected mode far calls/returns/exceptions" },
1514#endif
8e3a9fd2 1515#ifdef DEBUG_IOPORT
fd872598
FB
1516 { CPU_LOG_IOPORT, "ioport",
1517 "show all i/o ports accesses" },
8e3a9fd2 1518#endif
f193c797
FB
1519 { 0, NULL, NULL },
1520};
1521
1522static int cmp1(const char *s1, int n, const char *s2)
1523{
1524 if (strlen(s2) != n)
1525 return 0;
1526 return memcmp(s1, s2, n) == 0;
1527}
3b46e624 1528
f193c797
FB
1529/* takes a comma separated list of log masks. Return 0 if error. */
1530int cpu_str_to_log_mask(const char *str)
1531{
1532 CPULogItem *item;
1533 int mask;
1534 const char *p, *p1;
1535
1536 p = str;
1537 mask = 0;
1538 for(;;) {
1539 p1 = strchr(p, ',');
1540 if (!p1)
1541 p1 = p + strlen(p);
8e3a9fd2
FB
1542 if(cmp1(p,p1-p,"all")) {
1543 for(item = cpu_log_items; item->mask != 0; item++) {
1544 mask |= item->mask;
1545 }
1546 } else {
f193c797
FB
1547 for(item = cpu_log_items; item->mask != 0; item++) {
1548 if (cmp1(p, p1 - p, item->name))
1549 goto found;
1550 }
1551 return 0;
8e3a9fd2 1552 }
f193c797
FB
1553 found:
1554 mask |= item->mask;
1555 if (*p1 != ',')
1556 break;
1557 p = p1 + 1;
1558 }
1559 return mask;
1560}
ea041c0e 1561
7501267e
FB
1562void cpu_abort(CPUState *env, const char *fmt, ...)
1563{
1564 va_list ap;
493ae1f0 1565 va_list ap2;
7501267e
FB
1566
1567 va_start(ap, fmt);
493ae1f0 1568 va_copy(ap2, ap);
7501267e
FB
1569 fprintf(stderr, "qemu: fatal: ");
1570 vfprintf(stderr, fmt, ap);
1571 fprintf(stderr, "\n");
1572#ifdef TARGET_I386
7fe48483
FB
1573 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1574#else
1575 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1576#endif
924edcae 1577 if (logfile) {
f9373291 1578 fprintf(logfile, "qemu: fatal: ");
493ae1f0 1579 vfprintf(logfile, fmt, ap2);
f9373291
JM
1580 fprintf(logfile, "\n");
1581#ifdef TARGET_I386
1582 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1583#else
1584 cpu_dump_state(env, logfile, fprintf, 0);
1585#endif
924edcae
AZ
1586 fflush(logfile);
1587 fclose(logfile);
1588 }
493ae1f0 1589 va_end(ap2);
f9373291 1590 va_end(ap);
7501267e
FB
1591 abort();
1592}
1593
c5be9f08
TS
1594CPUState *cpu_copy(CPUState *env)
1595{
01ba9816 1596 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1597 /* preserve chaining and index */
1598 CPUState *next_cpu = new_env->next_cpu;
1599 int cpu_index = new_env->cpu_index;
1600 memcpy(new_env, env, sizeof(CPUState));
1601 new_env->next_cpu = next_cpu;
1602 new_env->cpu_index = cpu_index;
1603 return new_env;
1604}
1605
0124311e
FB
1606#if !defined(CONFIG_USER_ONLY)
1607
5c751e99
EI
1608static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1609{
1610 unsigned int i;
1611
1612 /* Discard jump cache entries for any tb which might potentially
1613 overlap the flushed page. */
1614 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1615 memset (&env->tb_jmp_cache[i], 0,
1616 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1617
1618 i = tb_jmp_cache_hash_page(addr);
1619 memset (&env->tb_jmp_cache[i], 0,
1620 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1621}
1622
ee8b7021
FB
1623/* NOTE: if flush_global is true, also flush global entries (not
1624 implemented yet) */
1625void tlb_flush(CPUState *env, int flush_global)
33417e70 1626{
33417e70 1627 int i;
0124311e 1628
9fa3e853
FB
1629#if defined(DEBUG_TLB)
1630 printf("tlb_flush:\n");
1631#endif
0124311e
FB
1632 /* must reset current TB so that interrupts cannot modify the
1633 links while we are modifying them */
1634 env->current_tb = NULL;
1635
33417e70 1636 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1637 env->tlb_table[0][i].addr_read = -1;
1638 env->tlb_table[0][i].addr_write = -1;
1639 env->tlb_table[0][i].addr_code = -1;
1640 env->tlb_table[1][i].addr_read = -1;
1641 env->tlb_table[1][i].addr_write = -1;
1642 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1643#if (NB_MMU_MODES >= 3)
1644 env->tlb_table[2][i].addr_read = -1;
1645 env->tlb_table[2][i].addr_write = -1;
1646 env->tlb_table[2][i].addr_code = -1;
1647#if (NB_MMU_MODES == 4)
1648 env->tlb_table[3][i].addr_read = -1;
1649 env->tlb_table[3][i].addr_write = -1;
1650 env->tlb_table[3][i].addr_code = -1;
1651#endif
1652#endif
33417e70 1653 }
9fa3e853 1654
8a40a180 1655 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1656
0a962c02
FB
1657#ifdef USE_KQEMU
1658 if (env->kqemu_enabled) {
1659 kqemu_flush(env, flush_global);
1660 }
9fa3e853 1661#endif
e3db7226 1662 tlb_flush_count++;
33417e70
FB
1663}
1664
274da6b2 1665static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1666{
5fafdf24 1667 if (addr == (tlb_entry->addr_read &
84b7b8e7 1668 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1669 addr == (tlb_entry->addr_write &
84b7b8e7 1670 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1671 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1672 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1673 tlb_entry->addr_read = -1;
1674 tlb_entry->addr_write = -1;
1675 tlb_entry->addr_code = -1;
1676 }
61382a50
FB
1677}
1678
2e12669a 1679void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1680{
8a40a180 1681 int i;
0124311e 1682
9fa3e853 1683#if defined(DEBUG_TLB)
108c49b8 1684 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1685#endif
0124311e
FB
1686 /* must reset current TB so that interrupts cannot modify the
1687 links while we are modifying them */
1688 env->current_tb = NULL;
61382a50
FB
1689
1690 addr &= TARGET_PAGE_MASK;
1691 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1692 tlb_flush_entry(&env->tlb_table[0][i], addr);
1693 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1694#if (NB_MMU_MODES >= 3)
1695 tlb_flush_entry(&env->tlb_table[2][i], addr);
1696#if (NB_MMU_MODES == 4)
1697 tlb_flush_entry(&env->tlb_table[3][i], addr);
1698#endif
1699#endif
0124311e 1700
5c751e99 1701 tlb_flush_jmp_cache(env, addr);
9fa3e853 1702
0a962c02
FB
1703#ifdef USE_KQEMU
1704 if (env->kqemu_enabled) {
1705 kqemu_flush_page(env, addr);
1706 }
1707#endif
9fa3e853
FB
1708}
1709
9fa3e853
FB
1710/* update the TLBs so that writes to code in the virtual page 'addr'
1711 can be detected */
6a00d601 1712static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1713{
5fafdf24 1714 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1715 ram_addr + TARGET_PAGE_SIZE,
1716 CODE_DIRTY_FLAG);
9fa3e853
FB
1717}
1718
9fa3e853 1719/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1720 tested for self modifying code */
5fafdf24 1721static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1722 target_ulong vaddr)
9fa3e853 1723{
3a7d929e 1724 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1725}
1726
5fafdf24 1727static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1728 unsigned long start, unsigned long length)
1729{
1730 unsigned long addr;
84b7b8e7
FB
1731 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1732 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1733 if ((addr - start) < length) {
0f459d16 1734 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1735 }
1736 }
1737}
1738
3a7d929e 1739void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1740 int dirty_flags)
1ccde1cb
FB
1741{
1742 CPUState *env;
4f2ac237 1743 unsigned long length, start1;
0a962c02
FB
1744 int i, mask, len;
1745 uint8_t *p;
1ccde1cb
FB
1746
1747 start &= TARGET_PAGE_MASK;
1748 end = TARGET_PAGE_ALIGN(end);
1749
1750 length = end - start;
1751 if (length == 0)
1752 return;
0a962c02 1753 len = length >> TARGET_PAGE_BITS;
3a7d929e 1754#ifdef USE_KQEMU
6a00d601
FB
1755 /* XXX: should not depend on cpu context */
1756 env = first_cpu;
3a7d929e 1757 if (env->kqemu_enabled) {
f23db169
FB
1758 ram_addr_t addr;
1759 addr = start;
1760 for(i = 0; i < len; i++) {
1761 kqemu_set_notdirty(env, addr);
1762 addr += TARGET_PAGE_SIZE;
1763 }
3a7d929e
FB
1764 }
1765#endif
f23db169
FB
1766 mask = ~dirty_flags;
1767 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1768 for(i = 0; i < len; i++)
1769 p[i] &= mask;
1770
1ccde1cb
FB
1771 /* we modify the TLB cache so that the dirty bit will be set again
1772 when accessing the range */
59817ccb 1773 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1774 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1775 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1776 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1777 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1778 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1779#if (NB_MMU_MODES >= 3)
1780 for(i = 0; i < CPU_TLB_SIZE; i++)
1781 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1782#if (NB_MMU_MODES == 4)
1783 for(i = 0; i < CPU_TLB_SIZE; i++)
1784 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1785#endif
1786#endif
6a00d601 1787 }
1ccde1cb
FB
1788}
1789
3a7d929e
FB
1790static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1791{
1792 ram_addr_t ram_addr;
1793
84b7b8e7 1794 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1795 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1796 tlb_entry->addend - (unsigned long)phys_ram_base;
1797 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1798 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1799 }
1800 }
1801}
1802
1803/* update the TLB according to the current state of the dirty bits */
1804void cpu_tlb_update_dirty(CPUState *env)
1805{
1806 int i;
1807 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1808 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1809 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1810 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1811#if (NB_MMU_MODES >= 3)
1812 for(i = 0; i < CPU_TLB_SIZE; i++)
1813 tlb_update_dirty(&env->tlb_table[2][i]);
1814#if (NB_MMU_MODES == 4)
1815 for(i = 0; i < CPU_TLB_SIZE; i++)
1816 tlb_update_dirty(&env->tlb_table[3][i]);
1817#endif
1818#endif
3a7d929e
FB
1819}
1820
0f459d16 1821static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1822{
0f459d16
PB
1823 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1824 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1825}
1826
0f459d16
PB
1827/* update the TLB corresponding to virtual page vaddr
1828 so that it is no longer dirty */
1829static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1830{
1ccde1cb
FB
1831 int i;
1832
0f459d16 1833 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1834 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1835 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1836 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1837#if (NB_MMU_MODES >= 3)
0f459d16 1838 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1839#if (NB_MMU_MODES == 4)
0f459d16 1840 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1841#endif
1842#endif
9fa3e853
FB
1843}
1844
59817ccb
FB
1845/* add a new TLB entry. At most one entry for a given virtual address
1846 is permitted. Return 0 if OK or 2 if the page could not be mapped
1847 (can only happen in non SOFTMMU mode for I/O pages or pages
1848 conflicting with the host address space). */
5fafdf24
TS
1849int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1850 target_phys_addr_t paddr, int prot,
6ebbf390 1851 int mmu_idx, int is_softmmu)
9fa3e853 1852{
92e873b9 1853 PhysPageDesc *p;
4f2ac237 1854 unsigned long pd;
9fa3e853 1855 unsigned int index;
4f2ac237 1856 target_ulong address;
0f459d16 1857 target_ulong code_address;
108c49b8 1858 target_phys_addr_t addend;
9fa3e853 1859 int ret;
84b7b8e7 1860 CPUTLBEntry *te;
6658ffb8 1861 int i;
0f459d16 1862 target_phys_addr_t iotlb;
9fa3e853 1863
92e873b9 1864 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1865 if (!p) {
1866 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1867 } else {
1868 pd = p->phys_offset;
9fa3e853
FB
1869 }
1870#if defined(DEBUG_TLB)
6ebbf390
JM
1871 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1872 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1873#endif
1874
1875 ret = 0;
0f459d16
PB
1876 address = vaddr;
1877 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1878 /* IO memory case (romd handled later) */
1879 address |= TLB_MMIO;
1880 }
1881 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1882 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1883 /* Normal RAM. */
1884 iotlb = pd & TARGET_PAGE_MASK;
1885 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1886 iotlb |= IO_MEM_NOTDIRTY;
1887 else
1888 iotlb |= IO_MEM_ROM;
1889 } else {
1890 /* IO handlers are currently passed a phsical address.
1891 It would be nice to pass an offset from the base address
1892 of that region. This would avoid having to special case RAM,
1893 and avoid full address decoding in every device.
1894 We can't use the high bits of pd for this because
1895 IO_MEM_ROMD uses these as a ram address. */
1896 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1897 }
1898
1899 code_address = address;
1900 /* Make accesses to pages with watchpoints go via the
1901 watchpoint trap routines. */
1902 for (i = 0; i < env->nb_watchpoints; i++) {
1903 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1904 iotlb = io_mem_watch + paddr;
1905 /* TODO: The memory case can be optimized by not trapping
1906 reads of pages with a write breakpoint. */
1907 address |= TLB_MMIO;
6658ffb8 1908 }
0f459d16 1909 }
d79acba4 1910
0f459d16
PB
1911 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1912 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1913 te = &env->tlb_table[mmu_idx][index];
1914 te->addend = addend - vaddr;
1915 if (prot & PAGE_READ) {
1916 te->addr_read = address;
1917 } else {
1918 te->addr_read = -1;
1919 }
5c751e99 1920
0f459d16
PB
1921 if (prot & PAGE_EXEC) {
1922 te->addr_code = code_address;
1923 } else {
1924 te->addr_code = -1;
1925 }
1926 if (prot & PAGE_WRITE) {
1927 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1928 (pd & IO_MEM_ROMD)) {
1929 /* Write access calls the I/O callback. */
1930 te->addr_write = address | TLB_MMIO;
1931 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1932 !cpu_physical_memory_is_dirty(pd)) {
1933 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 1934 } else {
0f459d16 1935 te->addr_write = address;
9fa3e853 1936 }
0f459d16
PB
1937 } else {
1938 te->addr_write = -1;
9fa3e853 1939 }
9fa3e853
FB
1940 return ret;
1941}
1942
0124311e
FB
1943#else
1944
ee8b7021 1945void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
1946{
1947}
1948
2e12669a 1949void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
1950{
1951}
1952
5fafdf24
TS
1953int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1954 target_phys_addr_t paddr, int prot,
6ebbf390 1955 int mmu_idx, int is_softmmu)
9fa3e853
FB
1956{
1957 return 0;
1958}
0124311e 1959
9fa3e853
FB
1960/* dump memory mappings */
1961void page_dump(FILE *f)
33417e70 1962{
9fa3e853
FB
1963 unsigned long start, end;
1964 int i, j, prot, prot1;
1965 PageDesc *p;
33417e70 1966
9fa3e853
FB
1967 fprintf(f, "%-8s %-8s %-8s %s\n",
1968 "start", "end", "size", "prot");
1969 start = -1;
1970 end = -1;
1971 prot = 0;
1972 for(i = 0; i <= L1_SIZE; i++) {
1973 if (i < L1_SIZE)
1974 p = l1_map[i];
1975 else
1976 p = NULL;
1977 for(j = 0;j < L2_SIZE; j++) {
1978 if (!p)
1979 prot1 = 0;
1980 else
1981 prot1 = p[j].flags;
1982 if (prot1 != prot) {
1983 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1984 if (start != -1) {
1985 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 1986 start, end, end - start,
9fa3e853
FB
1987 prot & PAGE_READ ? 'r' : '-',
1988 prot & PAGE_WRITE ? 'w' : '-',
1989 prot & PAGE_EXEC ? 'x' : '-');
1990 }
1991 if (prot1 != 0)
1992 start = end;
1993 else
1994 start = -1;
1995 prot = prot1;
1996 }
1997 if (!p)
1998 break;
1999 }
33417e70 2000 }
33417e70
FB
2001}
2002
53a5960a 2003int page_get_flags(target_ulong address)
33417e70 2004{
9fa3e853
FB
2005 PageDesc *p;
2006
2007 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2008 if (!p)
9fa3e853
FB
2009 return 0;
2010 return p->flags;
2011}
2012
2013/* modify the flags of a page and invalidate the code if
2014 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2015 depending on PAGE_WRITE */
53a5960a 2016void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2017{
2018 PageDesc *p;
53a5960a 2019 target_ulong addr;
9fa3e853 2020
c8a706fe 2021 /* mmap_lock should already be held. */
9fa3e853
FB
2022 start = start & TARGET_PAGE_MASK;
2023 end = TARGET_PAGE_ALIGN(end);
2024 if (flags & PAGE_WRITE)
2025 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2026 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2027 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2028 /* We may be called for host regions that are outside guest
2029 address space. */
2030 if (!p)
2031 return;
9fa3e853
FB
2032 /* if the write protection is set, then we invalidate the code
2033 inside */
5fafdf24 2034 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2035 (flags & PAGE_WRITE) &&
2036 p->first_tb) {
d720b93d 2037 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2038 }
2039 p->flags = flags;
2040 }
33417e70
FB
2041}
2042
3d97b40b
TS
2043int page_check_range(target_ulong start, target_ulong len, int flags)
2044{
2045 PageDesc *p;
2046 target_ulong end;
2047 target_ulong addr;
2048
2049 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2050 start = start & TARGET_PAGE_MASK;
2051
2052 if( end < start )
2053 /* we've wrapped around */
2054 return -1;
2055 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2056 p = page_find(addr >> TARGET_PAGE_BITS);
2057 if( !p )
2058 return -1;
2059 if( !(p->flags & PAGE_VALID) )
2060 return -1;
2061
dae3270c 2062 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2063 return -1;
dae3270c
FB
2064 if (flags & PAGE_WRITE) {
2065 if (!(p->flags & PAGE_WRITE_ORG))
2066 return -1;
2067 /* unprotect the page if it was put read-only because it
2068 contains translated code */
2069 if (!(p->flags & PAGE_WRITE)) {
2070 if (!page_unprotect(addr, 0, NULL))
2071 return -1;
2072 }
2073 return 0;
2074 }
3d97b40b
TS
2075 }
2076 return 0;
2077}
2078
9fa3e853
FB
2079/* called from signal handler: invalidate the code and unprotect the
2080 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2081int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2082{
2083 unsigned int page_index, prot, pindex;
2084 PageDesc *p, *p1;
53a5960a 2085 target_ulong host_start, host_end, addr;
9fa3e853 2086
c8a706fe
PB
2087 /* Technically this isn't safe inside a signal handler. However we
2088 know this only ever happens in a synchronous SEGV handler, so in
2089 practice it seems to be ok. */
2090 mmap_lock();
2091
83fb7adf 2092 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2093 page_index = host_start >> TARGET_PAGE_BITS;
2094 p1 = page_find(page_index);
c8a706fe
PB
2095 if (!p1) {
2096 mmap_unlock();
9fa3e853 2097 return 0;
c8a706fe 2098 }
83fb7adf 2099 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2100 p = p1;
2101 prot = 0;
2102 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2103 prot |= p->flags;
2104 p++;
2105 }
2106 /* if the page was really writable, then we change its
2107 protection back to writable */
2108 if (prot & PAGE_WRITE_ORG) {
2109 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2110 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2111 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2112 (prot & PAGE_BITS) | PAGE_WRITE);
2113 p1[pindex].flags |= PAGE_WRITE;
2114 /* and since the content will be modified, we must invalidate
2115 the corresponding translated code. */
d720b93d 2116 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2117#ifdef DEBUG_TB_CHECK
2118 tb_invalidate_check(address);
2119#endif
c8a706fe 2120 mmap_unlock();
9fa3e853
FB
2121 return 1;
2122 }
2123 }
c8a706fe 2124 mmap_unlock();
9fa3e853
FB
2125 return 0;
2126}
2127
6a00d601
FB
2128static inline void tlb_set_dirty(CPUState *env,
2129 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2130{
2131}
9fa3e853
FB
2132#endif /* defined(CONFIG_USER_ONLY) */
2133
e2eef170 2134#if !defined(CONFIG_USER_ONLY)
db7b5426 2135static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a
AJ
2136 ram_addr_t memory);
2137static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2138 ram_addr_t orig_memory);
db7b5426
BS
2139#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2140 need_subpage) \
2141 do { \
2142 if (addr > start_addr) \
2143 start_addr2 = 0; \
2144 else { \
2145 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2146 if (start_addr2 > 0) \
2147 need_subpage = 1; \
2148 } \
2149 \
49e9fba2 2150 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2151 end_addr2 = TARGET_PAGE_SIZE - 1; \
2152 else { \
2153 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2154 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2155 need_subpage = 1; \
2156 } \
2157 } while (0)
2158
33417e70
FB
2159/* register physical memory. 'size' must be a multiple of the target
2160 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2161 io memory page */
5fafdf24 2162void cpu_register_physical_memory(target_phys_addr_t start_addr,
00f82b8a
AJ
2163 ram_addr_t size,
2164 ram_addr_t phys_offset)
33417e70 2165{
108c49b8 2166 target_phys_addr_t addr, end_addr;
92e873b9 2167 PhysPageDesc *p;
9d42037b 2168 CPUState *env;
00f82b8a 2169 ram_addr_t orig_size = size;
db7b5426 2170 void *subpage;
33417e70 2171
da260249
FB
2172#ifdef USE_KQEMU
2173 /* XXX: should not depend on cpu context */
2174 env = first_cpu;
2175 if (env->kqemu_enabled) {
2176 kqemu_set_phys_mem(start_addr, size, phys_offset);
2177 }
2178#endif
5fd386f6 2179 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2180 end_addr = start_addr + (target_phys_addr_t)size;
2181 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2182 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2183 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2184 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2185 target_phys_addr_t start_addr2, end_addr2;
2186 int need_subpage = 0;
2187
2188 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2189 need_subpage);
4254fab8 2190 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2191 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2192 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2193 &p->phys_offset, orig_memory);
2194 } else {
2195 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2196 >> IO_MEM_SHIFT];
2197 }
2198 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2199 } else {
2200 p->phys_offset = phys_offset;
2201 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2202 (phys_offset & IO_MEM_ROMD))
2203 phys_offset += TARGET_PAGE_SIZE;
2204 }
2205 } else {
2206 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2207 p->phys_offset = phys_offset;
2208 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2209 (phys_offset & IO_MEM_ROMD))
2210 phys_offset += TARGET_PAGE_SIZE;
2211 else {
2212 target_phys_addr_t start_addr2, end_addr2;
2213 int need_subpage = 0;
2214
2215 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2216 end_addr2, need_subpage);
2217
4254fab8 2218 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2219 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2220 &p->phys_offset, IO_MEM_UNASSIGNED);
2221 subpage_register(subpage, start_addr2, end_addr2,
2222 phys_offset);
2223 }
2224 }
2225 }
33417e70 2226 }
3b46e624 2227
9d42037b
FB
2228 /* since each CPU stores ram addresses in its TLB cache, we must
2229 reset the modified entries */
2230 /* XXX: slow ! */
2231 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2232 tlb_flush(env, 1);
2233 }
33417e70
FB
2234}
2235
ba863458 2236/* XXX: temporary until new memory mapping API */
00f82b8a 2237ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2238{
2239 PhysPageDesc *p;
2240
2241 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2242 if (!p)
2243 return IO_MEM_UNASSIGNED;
2244 return p->phys_offset;
2245}
2246
e9a1ab19 2247/* XXX: better than nothing */
00f82b8a 2248ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2249{
2250 ram_addr_t addr;
7fb4fdcf 2251 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
ed441467
FB
2252 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 "\n",
2253 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2254 abort();
2255 }
2256 addr = phys_ram_alloc_offset;
2257 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2258 return addr;
2259}
2260
2261void qemu_ram_free(ram_addr_t addr)
2262{
2263}
2264
a4193c8a 2265static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2266{
67d3b957 2267#ifdef DEBUG_UNASSIGNED
ab3d1727 2268 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316
BS
2269#endif
2270#ifdef TARGET_SPARC
6c36d3fa 2271 do_unassigned_access(addr, 0, 0, 0);
eb38c52c 2272#elif defined(TARGET_CRIS)
f1ccf904 2273 do_unassigned_access(addr, 0, 0, 0);
67d3b957 2274#endif
33417e70
FB
2275 return 0;
2276}
2277
a4193c8a 2278static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2279{
67d3b957 2280#ifdef DEBUG_UNASSIGNED
ab3d1727 2281 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2282#endif
b4f0a316 2283#ifdef TARGET_SPARC
6c36d3fa 2284 do_unassigned_access(addr, 1, 0, 0);
eb38c52c 2285#elif defined(TARGET_CRIS)
f1ccf904 2286 do_unassigned_access(addr, 1, 0, 0);
b4f0a316 2287#endif
33417e70
FB
2288}
2289
2290static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2291 unassigned_mem_readb,
2292 unassigned_mem_readb,
2293 unassigned_mem_readb,
2294};
2295
2296static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2297 unassigned_mem_writeb,
2298 unassigned_mem_writeb,
2299 unassigned_mem_writeb,
2300};
2301
0f459d16
PB
2302static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2303 uint32_t val)
9fa3e853 2304{
3a7d929e 2305 int dirty_flags;
3a7d929e
FB
2306 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2307 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2308#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2309 tb_invalidate_phys_page_fast(ram_addr, 1);
2310 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2311#endif
3a7d929e 2312 }
0f459d16 2313 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2314#ifdef USE_KQEMU
2315 if (cpu_single_env->kqemu_enabled &&
2316 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2317 kqemu_modify_page(cpu_single_env, ram_addr);
2318#endif
f23db169
FB
2319 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2320 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2321 /* we remove the notdirty callback only if the code has been
2322 flushed */
2323 if (dirty_flags == 0xff)
2e70f6ef 2324 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2325}
2326
0f459d16
PB
2327static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2328 uint32_t val)
9fa3e853 2329{
3a7d929e 2330 int dirty_flags;
3a7d929e
FB
2331 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2332 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2333#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2334 tb_invalidate_phys_page_fast(ram_addr, 2);
2335 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2336#endif
3a7d929e 2337 }
0f459d16 2338 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2339#ifdef USE_KQEMU
2340 if (cpu_single_env->kqemu_enabled &&
2341 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2342 kqemu_modify_page(cpu_single_env, ram_addr);
2343#endif
f23db169
FB
2344 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2345 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2346 /* we remove the notdirty callback only if the code has been
2347 flushed */
2348 if (dirty_flags == 0xff)
2e70f6ef 2349 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2350}
2351
0f459d16
PB
2352static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2353 uint32_t val)
9fa3e853 2354{
3a7d929e 2355 int dirty_flags;
3a7d929e
FB
2356 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2357 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2358#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2359 tb_invalidate_phys_page_fast(ram_addr, 4);
2360 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2361#endif
3a7d929e 2362 }
0f459d16 2363 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2364#ifdef USE_KQEMU
2365 if (cpu_single_env->kqemu_enabled &&
2366 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2367 kqemu_modify_page(cpu_single_env, ram_addr);
2368#endif
f23db169
FB
2369 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2370 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2371 /* we remove the notdirty callback only if the code has been
2372 flushed */
2373 if (dirty_flags == 0xff)
2e70f6ef 2374 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2375}
2376
3a7d929e 2377static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2378 NULL, /* never used */
2379 NULL, /* never used */
2380 NULL, /* never used */
2381};
2382
1ccde1cb
FB
2383static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2384 notdirty_mem_writeb,
2385 notdirty_mem_writew,
2386 notdirty_mem_writel,
2387};
2388
0f459d16
PB
2389/* Generate a debug exception if a watchpoint has been hit. */
2390static void check_watchpoint(int offset, int flags)
2391{
2392 CPUState *env = cpu_single_env;
2393 target_ulong vaddr;
2394 int i;
2395
2e70f6ef 2396 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
0f459d16
PB
2397 for (i = 0; i < env->nb_watchpoints; i++) {
2398 if (vaddr == env->watchpoint[i].vaddr
2399 && (env->watchpoint[i].type & flags)) {
2400 env->watchpoint_hit = i + 1;
2401 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2402 break;
2403 }
2404 }
2405}
2406
6658ffb8
PB
2407/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2408 so these check for a hit then pass through to the normal out-of-line
2409 phys routines. */
2410static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2411{
0f459d16 2412 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
6658ffb8
PB
2413 return ldub_phys(addr);
2414}
2415
2416static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2417{
0f459d16 2418 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
6658ffb8
PB
2419 return lduw_phys(addr);
2420}
2421
2422static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2423{
0f459d16 2424 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
6658ffb8
PB
2425 return ldl_phys(addr);
2426}
2427
6658ffb8
PB
2428static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2429 uint32_t val)
2430{
0f459d16 2431 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
6658ffb8
PB
2432 stb_phys(addr, val);
2433}
2434
2435static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2436 uint32_t val)
2437{
0f459d16 2438 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
6658ffb8
PB
2439 stw_phys(addr, val);
2440}
2441
2442static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2443 uint32_t val)
2444{
0f459d16 2445 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
6658ffb8
PB
2446 stl_phys(addr, val);
2447}
2448
2449static CPUReadMemoryFunc *watch_mem_read[3] = {
2450 watch_mem_readb,
2451 watch_mem_readw,
2452 watch_mem_readl,
2453};
2454
2455static CPUWriteMemoryFunc *watch_mem_write[3] = {
2456 watch_mem_writeb,
2457 watch_mem_writew,
2458 watch_mem_writel,
2459};
6658ffb8 2460
db7b5426
BS
2461static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2462 unsigned int len)
2463{
db7b5426
BS
2464 uint32_t ret;
2465 unsigned int idx;
2466
2467 idx = SUBPAGE_IDX(addr - mmio->base);
2468#if defined(DEBUG_SUBPAGE)
2469 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2470 mmio, len, addr, idx);
2471#endif
3ee89922 2472 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
db7b5426
BS
2473
2474 return ret;
2475}
2476
2477static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2478 uint32_t value, unsigned int len)
2479{
db7b5426
BS
2480 unsigned int idx;
2481
2482 idx = SUBPAGE_IDX(addr - mmio->base);
2483#if defined(DEBUG_SUBPAGE)
2484 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2485 mmio, len, addr, idx, value);
2486#endif
3ee89922 2487 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
db7b5426
BS
2488}
2489
2490static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2491{
2492#if defined(DEBUG_SUBPAGE)
2493 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2494#endif
2495
2496 return subpage_readlen(opaque, addr, 0);
2497}
2498
2499static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2500 uint32_t value)
2501{
2502#if defined(DEBUG_SUBPAGE)
2503 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2504#endif
2505 subpage_writelen(opaque, addr, value, 0);
2506}
2507
2508static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2509{
2510#if defined(DEBUG_SUBPAGE)
2511 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2512#endif
2513
2514 return subpage_readlen(opaque, addr, 1);
2515}
2516
2517static void subpage_writew (void *opaque, target_phys_addr_t addr,
2518 uint32_t value)
2519{
2520#if defined(DEBUG_SUBPAGE)
2521 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2522#endif
2523 subpage_writelen(opaque, addr, value, 1);
2524}
2525
2526static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2527{
2528#if defined(DEBUG_SUBPAGE)
2529 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2530#endif
2531
2532 return subpage_readlen(opaque, addr, 2);
2533}
2534
2535static void subpage_writel (void *opaque,
2536 target_phys_addr_t addr, uint32_t value)
2537{
2538#if defined(DEBUG_SUBPAGE)
2539 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2540#endif
2541 subpage_writelen(opaque, addr, value, 2);
2542}
2543
2544static CPUReadMemoryFunc *subpage_read[] = {
2545 &subpage_readb,
2546 &subpage_readw,
2547 &subpage_readl,
2548};
2549
2550static CPUWriteMemoryFunc *subpage_write[] = {
2551 &subpage_writeb,
2552 &subpage_writew,
2553 &subpage_writel,
2554};
2555
2556static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a 2557 ram_addr_t memory)
db7b5426
BS
2558{
2559 int idx, eidx;
4254fab8 2560 unsigned int i;
db7b5426
BS
2561
2562 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2563 return -1;
2564 idx = SUBPAGE_IDX(start);
2565 eidx = SUBPAGE_IDX(end);
2566#if defined(DEBUG_SUBPAGE)
2567 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2568 mmio, start, end, idx, eidx, memory);
2569#endif
2570 memory >>= IO_MEM_SHIFT;
2571 for (; idx <= eidx; idx++) {
4254fab8 2572 for (i = 0; i < 4; i++) {
3ee89922
BS
2573 if (io_mem_read[memory][i]) {
2574 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2575 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2576 }
2577 if (io_mem_write[memory][i]) {
2578 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2579 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2580 }
4254fab8 2581 }
db7b5426
BS
2582 }
2583
2584 return 0;
2585}
2586
00f82b8a
AJ
2587static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2588 ram_addr_t orig_memory)
db7b5426
BS
2589{
2590 subpage_t *mmio;
2591 int subpage_memory;
2592
2593 mmio = qemu_mallocz(sizeof(subpage_t));
2594 if (mmio != NULL) {
2595 mmio->base = base;
2596 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2597#if defined(DEBUG_SUBPAGE)
2598 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2599 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2600#endif
2601 *phys = subpage_memory | IO_MEM_SUBPAGE;
2602 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2603 }
2604
2605 return mmio;
2606}
2607
33417e70
FB
2608static void io_mem_init(void)
2609{
3a7d929e 2610 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2611 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2612 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2613 io_mem_nb = 5;
2614
0f459d16 2615 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2616 watch_mem_write, NULL);
1ccde1cb 2617 /* alloc dirty bits array */
0a962c02 2618 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2619 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2620}
2621
2622/* mem_read and mem_write are arrays of functions containing the
2623 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2624 2). Functions can be omitted with a NULL function pointer. The
2625 registered functions may be modified dynamically later.
2626 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2627 modified. If it is zero, a new io zone is allocated. The return
2628 value can be used with cpu_register_physical_memory(). (-1) is
2629 returned if error. */
33417e70
FB
2630int cpu_register_io_memory(int io_index,
2631 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2632 CPUWriteMemoryFunc **mem_write,
2633 void *opaque)
33417e70 2634{
4254fab8 2635 int i, subwidth = 0;
33417e70
FB
2636
2637 if (io_index <= 0) {
b5ff1b31 2638 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2639 return -1;
2640 io_index = io_mem_nb++;
2641 } else {
2642 if (io_index >= IO_MEM_NB_ENTRIES)
2643 return -1;
2644 }
b5ff1b31 2645
33417e70 2646 for(i = 0;i < 3; i++) {
4254fab8
BS
2647 if (!mem_read[i] || !mem_write[i])
2648 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2649 io_mem_read[io_index][i] = mem_read[i];
2650 io_mem_write[io_index][i] = mem_write[i];
2651 }
a4193c8a 2652 io_mem_opaque[io_index] = opaque;
4254fab8 2653 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2654}
61382a50 2655
8926b517
FB
2656CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2657{
2658 return io_mem_write[io_index >> IO_MEM_SHIFT];
2659}
2660
2661CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2662{
2663 return io_mem_read[io_index >> IO_MEM_SHIFT];
2664}
2665
e2eef170
PB
2666#endif /* !defined(CONFIG_USER_ONLY) */
2667
13eb76e0
FB
2668/* physical memory access (slow version, mainly for debug) */
2669#if defined(CONFIG_USER_ONLY)
5fafdf24 2670void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2671 int len, int is_write)
2672{
2673 int l, flags;
2674 target_ulong page;
53a5960a 2675 void * p;
13eb76e0
FB
2676
2677 while (len > 0) {
2678 page = addr & TARGET_PAGE_MASK;
2679 l = (page + TARGET_PAGE_SIZE) - addr;
2680 if (l > len)
2681 l = len;
2682 flags = page_get_flags(page);
2683 if (!(flags & PAGE_VALID))
2684 return;
2685 if (is_write) {
2686 if (!(flags & PAGE_WRITE))
2687 return;
579a97f7 2688 /* XXX: this code should not depend on lock_user */
72fb7daa 2689 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2690 /* FIXME - should this return an error rather than just fail? */
2691 return;
72fb7daa
AJ
2692 memcpy(p, buf, l);
2693 unlock_user(p, addr, l);
13eb76e0
FB
2694 } else {
2695 if (!(flags & PAGE_READ))
2696 return;
579a97f7 2697 /* XXX: this code should not depend on lock_user */
72fb7daa 2698 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2699 /* FIXME - should this return an error rather than just fail? */
2700 return;
72fb7daa 2701 memcpy(buf, p, l);
5b257578 2702 unlock_user(p, addr, 0);
13eb76e0
FB
2703 }
2704 len -= l;
2705 buf += l;
2706 addr += l;
2707 }
2708}
8df1cd07 2709
13eb76e0 2710#else
5fafdf24 2711void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2712 int len, int is_write)
2713{
2714 int l, io_index;
2715 uint8_t *ptr;
2716 uint32_t val;
2e12669a
FB
2717 target_phys_addr_t page;
2718 unsigned long pd;
92e873b9 2719 PhysPageDesc *p;
3b46e624 2720
13eb76e0
FB
2721 while (len > 0) {
2722 page = addr & TARGET_PAGE_MASK;
2723 l = (page + TARGET_PAGE_SIZE) - addr;
2724 if (l > len)
2725 l = len;
92e873b9 2726 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2727 if (!p) {
2728 pd = IO_MEM_UNASSIGNED;
2729 } else {
2730 pd = p->phys_offset;
2731 }
3b46e624 2732
13eb76e0 2733 if (is_write) {
3a7d929e 2734 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2735 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
6a00d601
FB
2736 /* XXX: could force cpu_single_env to NULL to avoid
2737 potential bugs */
13eb76e0 2738 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2739 /* 32 bit write access */
c27004ec 2740 val = ldl_p(buf);
a4193c8a 2741 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2742 l = 4;
2743 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2744 /* 16 bit write access */
c27004ec 2745 val = lduw_p(buf);
a4193c8a 2746 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2747 l = 2;
2748 } else {
1c213d19 2749 /* 8 bit write access */
c27004ec 2750 val = ldub_p(buf);
a4193c8a 2751 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2752 l = 1;
2753 }
2754 } else {
b448f2f3
FB
2755 unsigned long addr1;
2756 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2757 /* RAM case */
b448f2f3 2758 ptr = phys_ram_base + addr1;
13eb76e0 2759 memcpy(ptr, buf, l);
3a7d929e
FB
2760 if (!cpu_physical_memory_is_dirty(addr1)) {
2761 /* invalidate code */
2762 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2763 /* set dirty bit */
5fafdf24 2764 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2765 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2766 }
13eb76e0
FB
2767 }
2768 } else {
5fafdf24 2769 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2770 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2771 /* I/O case */
2772 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2773 if (l >= 4 && ((addr & 3) == 0)) {
2774 /* 32 bit read access */
a4193c8a 2775 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2776 stl_p(buf, val);
13eb76e0
FB
2777 l = 4;
2778 } else if (l >= 2 && ((addr & 1) == 0)) {
2779 /* 16 bit read access */
a4193c8a 2780 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2781 stw_p(buf, val);
13eb76e0
FB
2782 l = 2;
2783 } else {
1c213d19 2784 /* 8 bit read access */
a4193c8a 2785 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2786 stb_p(buf, val);
13eb76e0
FB
2787 l = 1;
2788 }
2789 } else {
2790 /* RAM case */
5fafdf24 2791 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2792 (addr & ~TARGET_PAGE_MASK);
2793 memcpy(buf, ptr, l);
2794 }
2795 }
2796 len -= l;
2797 buf += l;
2798 addr += l;
2799 }
2800}
8df1cd07 2801
d0ecd2aa 2802/* used for ROM loading : can write in RAM and ROM */
5fafdf24 2803void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
2804 const uint8_t *buf, int len)
2805{
2806 int l;
2807 uint8_t *ptr;
2808 target_phys_addr_t page;
2809 unsigned long pd;
2810 PhysPageDesc *p;
3b46e624 2811
d0ecd2aa
FB
2812 while (len > 0) {
2813 page = addr & TARGET_PAGE_MASK;
2814 l = (page + TARGET_PAGE_SIZE) - addr;
2815 if (l > len)
2816 l = len;
2817 p = phys_page_find(page >> TARGET_PAGE_BITS);
2818 if (!p) {
2819 pd = IO_MEM_UNASSIGNED;
2820 } else {
2821 pd = p->phys_offset;
2822 }
3b46e624 2823
d0ecd2aa 2824 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
2825 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2826 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
2827 /* do nothing */
2828 } else {
2829 unsigned long addr1;
2830 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2831 /* ROM/RAM case */
2832 ptr = phys_ram_base + addr1;
2833 memcpy(ptr, buf, l);
2834 }
2835 len -= l;
2836 buf += l;
2837 addr += l;
2838 }
2839}
2840
2841
8df1cd07
FB
2842/* warning: addr must be aligned */
2843uint32_t ldl_phys(target_phys_addr_t addr)
2844{
2845 int io_index;
2846 uint8_t *ptr;
2847 uint32_t val;
2848 unsigned long pd;
2849 PhysPageDesc *p;
2850
2851 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2852 if (!p) {
2853 pd = IO_MEM_UNASSIGNED;
2854 } else {
2855 pd = p->phys_offset;
2856 }
3b46e624 2857
5fafdf24 2858 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2859 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
2860 /* I/O case */
2861 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2862 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2863 } else {
2864 /* RAM case */
5fafdf24 2865 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
2866 (addr & ~TARGET_PAGE_MASK);
2867 val = ldl_p(ptr);
2868 }
2869 return val;
2870}
2871
84b7b8e7
FB
2872/* warning: addr must be aligned */
2873uint64_t ldq_phys(target_phys_addr_t addr)
2874{
2875 int io_index;
2876 uint8_t *ptr;
2877 uint64_t val;
2878 unsigned long pd;
2879 PhysPageDesc *p;
2880
2881 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2882 if (!p) {
2883 pd = IO_MEM_UNASSIGNED;
2884 } else {
2885 pd = p->phys_offset;
2886 }
3b46e624 2887
2a4188a3
FB
2888 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2889 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
2890 /* I/O case */
2891 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2892#ifdef TARGET_WORDS_BIGENDIAN
2893 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2894 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2895#else
2896 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2897 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2898#endif
2899 } else {
2900 /* RAM case */
5fafdf24 2901 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
2902 (addr & ~TARGET_PAGE_MASK);
2903 val = ldq_p(ptr);
2904 }
2905 return val;
2906}
2907
aab33094
FB
2908/* XXX: optimize */
2909uint32_t ldub_phys(target_phys_addr_t addr)
2910{
2911 uint8_t val;
2912 cpu_physical_memory_read(addr, &val, 1);
2913 return val;
2914}
2915
2916/* XXX: optimize */
2917uint32_t lduw_phys(target_phys_addr_t addr)
2918{
2919 uint16_t val;
2920 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2921 return tswap16(val);
2922}
2923
8df1cd07
FB
2924/* warning: addr must be aligned. The ram page is not masked as dirty
2925 and the code inside is not invalidated. It is useful if the dirty
2926 bits are used to track modified PTEs */
2927void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2928{
2929 int io_index;
2930 uint8_t *ptr;
2931 unsigned long pd;
2932 PhysPageDesc *p;
2933
2934 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2935 if (!p) {
2936 pd = IO_MEM_UNASSIGNED;
2937 } else {
2938 pd = p->phys_offset;
2939 }
3b46e624 2940
3a7d929e 2941 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
2942 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2943 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2944 } else {
5fafdf24 2945 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
2946 (addr & ~TARGET_PAGE_MASK);
2947 stl_p(ptr, val);
2948 }
2949}
2950
bc98a7ef
JM
2951void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2952{
2953 int io_index;
2954 uint8_t *ptr;
2955 unsigned long pd;
2956 PhysPageDesc *p;
2957
2958 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2959 if (!p) {
2960 pd = IO_MEM_UNASSIGNED;
2961 } else {
2962 pd = p->phys_offset;
2963 }
3b46e624 2964
bc98a7ef
JM
2965 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2966 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2967#ifdef TARGET_WORDS_BIGENDIAN
2968 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2969 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2970#else
2971 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2972 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2973#endif
2974 } else {
5fafdf24 2975 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
2976 (addr & ~TARGET_PAGE_MASK);
2977 stq_p(ptr, val);
2978 }
2979}
2980
8df1cd07 2981/* warning: addr must be aligned */
8df1cd07
FB
2982void stl_phys(target_phys_addr_t addr, uint32_t val)
2983{
2984 int io_index;
2985 uint8_t *ptr;
2986 unsigned long pd;
2987 PhysPageDesc *p;
2988
2989 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2990 if (!p) {
2991 pd = IO_MEM_UNASSIGNED;
2992 } else {
2993 pd = p->phys_offset;
2994 }
3b46e624 2995
3a7d929e 2996 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
2997 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2998 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2999 } else {
3000 unsigned long addr1;
3001 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3002 /* RAM case */
3003 ptr = phys_ram_base + addr1;
3004 stl_p(ptr, val);
3a7d929e
FB
3005 if (!cpu_physical_memory_is_dirty(addr1)) {
3006 /* invalidate code */
3007 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3008 /* set dirty bit */
f23db169
FB
3009 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3010 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3011 }
8df1cd07
FB
3012 }
3013}
3014
aab33094
FB
3015/* XXX: optimize */
3016void stb_phys(target_phys_addr_t addr, uint32_t val)
3017{
3018 uint8_t v = val;
3019 cpu_physical_memory_write(addr, &v, 1);
3020}
3021
3022/* XXX: optimize */
3023void stw_phys(target_phys_addr_t addr, uint32_t val)
3024{
3025 uint16_t v = tswap16(val);
3026 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3027}
3028
3029/* XXX: optimize */
3030void stq_phys(target_phys_addr_t addr, uint64_t val)
3031{
3032 val = tswap64(val);
3033 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3034}
3035
13eb76e0
FB
3036#endif
3037
3038/* virtual memory access for debug */
5fafdf24 3039int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3040 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3041{
3042 int l;
9b3c35e0
JM
3043 target_phys_addr_t phys_addr;
3044 target_ulong page;
13eb76e0
FB
3045
3046 while (len > 0) {
3047 page = addr & TARGET_PAGE_MASK;
3048 phys_addr = cpu_get_phys_page_debug(env, page);
3049 /* if no physical page mapped, return an error */
3050 if (phys_addr == -1)
3051 return -1;
3052 l = (page + TARGET_PAGE_SIZE) - addr;
3053 if (l > len)
3054 l = len;
5fafdf24 3055 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 3056 buf, l, is_write);
13eb76e0
FB
3057 len -= l;
3058 buf += l;
3059 addr += l;
3060 }
3061 return 0;
3062}
3063
2e70f6ef
PB
3064/* in deterministic execution mode, instructions doing device I/Os
3065 must be at the end of the TB */
3066void cpu_io_recompile(CPUState *env, void *retaddr)
3067{
3068 TranslationBlock *tb;
3069 uint32_t n, cflags;
3070 target_ulong pc, cs_base;
3071 uint64_t flags;
3072
3073 tb = tb_find_pc((unsigned long)retaddr);
3074 if (!tb) {
3075 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3076 retaddr);
3077 }
3078 n = env->icount_decr.u16.low + tb->icount;
3079 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3080 /* Calculate how many instructions had been executed before the fault
bf20dc07 3081 occurred. */
2e70f6ef
PB
3082 n = n - env->icount_decr.u16.low;
3083 /* Generate a new TB ending on the I/O insn. */
3084 n++;
3085 /* On MIPS and SH, delay slot instructions can only be restarted if
3086 they were already the first instruction in the TB. If this is not
bf20dc07 3087 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3088 branch. */
3089#if defined(TARGET_MIPS)
3090 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3091 env->active_tc.PC -= 4;
3092 env->icount_decr.u16.low++;
3093 env->hflags &= ~MIPS_HFLAG_BMASK;
3094 }
3095#elif defined(TARGET_SH4)
3096 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3097 && n > 1) {
3098 env->pc -= 2;
3099 env->icount_decr.u16.low++;
3100 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3101 }
3102#endif
3103 /* This should never happen. */
3104 if (n > CF_COUNT_MASK)
3105 cpu_abort(env, "TB too big during recompile");
3106
3107 cflags = n | CF_LAST_IO;
3108 pc = tb->pc;
3109 cs_base = tb->cs_base;
3110 flags = tb->flags;
3111 tb_phys_invalidate(tb, -1);
3112 /* FIXME: In theory this could raise an exception. In practice
3113 we have already translated the block once so it's probably ok. */
3114 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3115 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3116 the first in the TB) then we end up generating a whole new TB and
3117 repeating the fault, which is horribly inefficient.
3118 Better would be to execute just this insn uncached, or generate a
3119 second new TB. */
3120 cpu_resume_from_signal(env, NULL);
3121}
3122
e3db7226
FB
3123void dump_exec_info(FILE *f,
3124 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3125{
3126 int i, target_code_size, max_target_code_size;
3127 int direct_jmp_count, direct_jmp2_count, cross_page;
3128 TranslationBlock *tb;
3b46e624 3129
e3db7226
FB
3130 target_code_size = 0;
3131 max_target_code_size = 0;
3132 cross_page = 0;
3133 direct_jmp_count = 0;
3134 direct_jmp2_count = 0;
3135 for(i = 0; i < nb_tbs; i++) {
3136 tb = &tbs[i];
3137 target_code_size += tb->size;
3138 if (tb->size > max_target_code_size)
3139 max_target_code_size = tb->size;
3140 if (tb->page_addr[1] != -1)
3141 cross_page++;
3142 if (tb->tb_next_offset[0] != 0xffff) {
3143 direct_jmp_count++;
3144 if (tb->tb_next_offset[1] != 0xffff) {
3145 direct_jmp2_count++;
3146 }
3147 }
3148 }
3149 /* XXX: avoid using doubles ? */
57fec1fe 3150 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3151 cpu_fprintf(f, "gen code size %ld/%ld\n",
3152 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3153 cpu_fprintf(f, "TB count %d/%d\n",
3154 nb_tbs, code_gen_max_blocks);
5fafdf24 3155 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3156 nb_tbs ? target_code_size / nb_tbs : 0,
3157 max_target_code_size);
5fafdf24 3158 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3159 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3160 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3161 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3162 cross_page,
e3db7226
FB
3163 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3164 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3165 direct_jmp_count,
e3db7226
FB
3166 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3167 direct_jmp2_count,
3168 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3169 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3170 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3171 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3172 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3173 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3174}
3175
5fafdf24 3176#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3177
3178#define MMUSUFFIX _cmmu
3179#define GETPC() NULL
3180#define env cpu_single_env
b769d8fe 3181#define SOFTMMU_CODE_ACCESS
61382a50
FB
3182
3183#define SHIFT 0
3184#include "softmmu_template.h"
3185
3186#define SHIFT 1
3187#include "softmmu_template.h"
3188
3189#define SHIFT 2
3190#include "softmmu_template.h"
3191
3192#define SHIFT 3
3193#include "softmmu_template.h"
3194
3195#undef env
3196
3197#endif