]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
experimental code copy support - CPU_INTERRUPT_EXITTB support
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
54936004
FB
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20#include <stdlib.h>
21#include <stdio.h>
22#include <stdarg.h>
23#include <string.h>
24#include <errno.h>
25#include <unistd.h>
26#include <inttypes.h>
fd6ce8f6 27#include <sys/mman.h>
54936004 28
ea041c0e 29#include "config.h"
6180a181
FB
30#include "cpu.h"
31#include "exec-all.h"
54936004 32
fd6ce8f6 33//#define DEBUG_TB_INVALIDATE
66e85a21 34//#define DEBUG_FLUSH
9fa3e853 35//#define DEBUG_TLB
fd6ce8f6
FB
36
37/* make various TB consistency checks */
38//#define DEBUG_TB_CHECK
98857888 39//#define DEBUG_TLB_CHECK
fd6ce8f6
FB
40
41/* threshold to flush the translated code buffer */
42#define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
43
9fa3e853
FB
44#define SMC_BITMAP_USE_THRESHOLD 10
45
46#define MMAP_AREA_START 0x00000000
47#define MMAP_AREA_END 0xa8000000
fd6ce8f6
FB
48
49TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
50TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
9fa3e853 51TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
fd6ce8f6 52int nb_tbs;
eb51d102
FB
53/* any access to the tbs or the page table must use this lock */
54spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6
FB
55
56uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
57uint8_t *code_gen_ptr;
58
9fa3e853
FB
59int phys_ram_size;
60int phys_ram_fd;
61uint8_t *phys_ram_base;
1ccde1cb 62uint8_t *phys_ram_dirty;
9fa3e853 63
54936004 64typedef struct PageDesc {
9fa3e853
FB
65 /* offset in memory of the page + io_index in the low 12 bits */
66 unsigned long phys_offset;
67 /* list of TBs intersecting this physical page */
fd6ce8f6 68 TranslationBlock *first_tb;
9fa3e853
FB
69 /* in order to optimize self modifying code, we count the number
70 of lookups we do to a given page to use a bitmap */
71 unsigned int code_write_count;
72 uint8_t *code_bitmap;
73#if defined(CONFIG_USER_ONLY)
74 unsigned long flags;
75#endif
54936004
FB
76} PageDesc;
77
9fa3e853
FB
78typedef struct VirtPageDesc {
79 /* physical address of code page. It is valid only if 'valid_tag'
80 matches 'virt_valid_tag' */
81 target_ulong phys_addr;
82 unsigned int valid_tag;
83#if !defined(CONFIG_SOFTMMU)
84 /* original page access rights. It is valid only if 'valid_tag'
85 matches 'virt_valid_tag' */
86 unsigned int prot;
87#endif
88} VirtPageDesc;
89
54936004
FB
90#define L2_BITS 10
91#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
92
93#define L1_SIZE (1 << L1_BITS)
94#define L2_SIZE (1 << L2_BITS)
95
33417e70 96static void io_mem_init(void);
fd6ce8f6 97
54936004
FB
98unsigned long real_host_page_size;
99unsigned long host_page_bits;
100unsigned long host_page_size;
101unsigned long host_page_mask;
102
103static PageDesc *l1_map[L1_SIZE];
104
9fa3e853
FB
105#if !defined(CONFIG_USER_ONLY)
106static VirtPageDesc *l1_virt_map[L1_SIZE];
107static unsigned int virt_valid_tag;
108#endif
109
33417e70 110/* io memory support */
33417e70
FB
111CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
112CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
113static int io_mem_nb;
114
34865134
FB
115/* log support */
116char *logfilename = "/tmp/qemu.log";
117FILE *logfile;
118int loglevel;
119
b346ff46 120static void page_init(void)
54936004
FB
121{
122 /* NOTE: we can always suppose that host_page_size >=
123 TARGET_PAGE_SIZE */
124 real_host_page_size = getpagesize();
125 if (host_page_size == 0)
126 host_page_size = real_host_page_size;
127 if (host_page_size < TARGET_PAGE_SIZE)
128 host_page_size = TARGET_PAGE_SIZE;
129 host_page_bits = 0;
130 while ((1 << host_page_bits) < host_page_size)
131 host_page_bits++;
132 host_page_mask = ~(host_page_size - 1);
9fa3e853
FB
133#if !defined(CONFIG_USER_ONLY)
134 virt_valid_tag = 1;
135#endif
54936004
FB
136}
137
fd6ce8f6 138static inline PageDesc *page_find_alloc(unsigned int index)
54936004 139{
54936004
FB
140 PageDesc **lp, *p;
141
54936004
FB
142 lp = &l1_map[index >> L2_BITS];
143 p = *lp;
144 if (!p) {
145 /* allocate if not found */
146 p = malloc(sizeof(PageDesc) * L2_SIZE);
fd6ce8f6 147 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
54936004
FB
148 *lp = p;
149 }
150 return p + (index & (L2_SIZE - 1));
151}
152
fd6ce8f6 153static inline PageDesc *page_find(unsigned int index)
54936004 154{
54936004
FB
155 PageDesc *p;
156
54936004
FB
157 p = l1_map[index >> L2_BITS];
158 if (!p)
159 return 0;
fd6ce8f6
FB
160 return p + (index & (L2_SIZE - 1));
161}
162
9fa3e853
FB
163#if !defined(CONFIG_USER_ONLY)
164static void tlb_protect_code(CPUState *env, uint32_t addr);
165static void tlb_unprotect_code(CPUState *env, uint32_t addr);
1ccde1cb 166static void tlb_unprotect_code_phys(CPUState *env, uint32_t phys_addr, target_ulong vaddr);
9fa3e853
FB
167
168static inline VirtPageDesc *virt_page_find_alloc(unsigned int index)
fd6ce8f6 169{
9fa3e853 170 VirtPageDesc **lp, *p;
fd6ce8f6 171
9fa3e853
FB
172 lp = &l1_virt_map[index >> L2_BITS];
173 p = *lp;
174 if (!p) {
175 /* allocate if not found */
176 p = malloc(sizeof(VirtPageDesc) * L2_SIZE);
177 memset(p, 0, sizeof(VirtPageDesc) * L2_SIZE);
178 *lp = p;
179 }
180 return p + (index & (L2_SIZE - 1));
181}
182
183static inline VirtPageDesc *virt_page_find(unsigned int index)
184{
185 VirtPageDesc *p;
186
187 p = l1_virt_map[index >> L2_BITS];
fd6ce8f6
FB
188 if (!p)
189 return 0;
9fa3e853 190 return p + (index & (L2_SIZE - 1));
54936004
FB
191}
192
9fa3e853 193static void virt_page_flush(void)
54936004 194{
9fa3e853
FB
195 int i, j;
196 VirtPageDesc *p;
197
198 virt_valid_tag++;
199
200 if (virt_valid_tag == 0) {
201 virt_valid_tag = 1;
202 for(i = 0; i < L1_SIZE; i++) {
203 p = l1_virt_map[i];
204 if (p) {
205 for(j = 0; j < L2_SIZE; j++)
206 p[j].valid_tag = 0;
207 }
fd6ce8f6 208 }
54936004
FB
209 }
210}
9fa3e853
FB
211#else
212static void virt_page_flush(void)
213{
214}
215#endif
fd6ce8f6 216
b346ff46 217void cpu_exec_init(void)
fd6ce8f6
FB
218{
219 if (!code_gen_ptr) {
220 code_gen_ptr = code_gen_buffer;
b346ff46 221 page_init();
33417e70 222 io_mem_init();
fd6ce8f6
FB
223 }
224}
225
9fa3e853
FB
226static inline void invalidate_page_bitmap(PageDesc *p)
227{
228 if (p->code_bitmap) {
229 free(p->code_bitmap);
230 p->code_bitmap = NULL;
231 }
232 p->code_write_count = 0;
233}
234
fd6ce8f6
FB
235/* set to NULL all the 'first_tb' fields in all PageDescs */
236static void page_flush_tb(void)
237{
238 int i, j;
239 PageDesc *p;
240
241 for(i = 0; i < L1_SIZE; i++) {
242 p = l1_map[i];
243 if (p) {
9fa3e853
FB
244 for(j = 0; j < L2_SIZE; j++) {
245 p->first_tb = NULL;
246 invalidate_page_bitmap(p);
247 p++;
248 }
fd6ce8f6
FB
249 }
250 }
251}
252
253/* flush all the translation blocks */
d4e8164f 254/* XXX: tb_flush is currently not thread safe */
0124311e 255void tb_flush(CPUState *env)
fd6ce8f6
FB
256{
257 int i;
0124311e 258#if defined(DEBUG_FLUSH)
fd6ce8f6
FB
259 printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
260 code_gen_ptr - code_gen_buffer,
261 nb_tbs,
0124311e 262 nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
fd6ce8f6
FB
263#endif
264 nb_tbs = 0;
265 for(i = 0;i < CODE_GEN_HASH_SIZE; i++)
266 tb_hash[i] = NULL;
9fa3e853
FB
267 virt_page_flush();
268
269 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++)
270 tb_phys_hash[i] = NULL;
fd6ce8f6 271 page_flush_tb();
9fa3e853 272
fd6ce8f6 273 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
274 /* XXX: flush processor icache at this point if cache flush is
275 expensive */
fd6ce8f6
FB
276}
277
278#ifdef DEBUG_TB_CHECK
279
280static void tb_invalidate_check(unsigned long address)
281{
282 TranslationBlock *tb;
283 int i;
284 address &= TARGET_PAGE_MASK;
285 for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
286 for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
287 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
288 address >= tb->pc + tb->size)) {
289 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
290 address, tb->pc, tb->size);
291 }
292 }
293 }
294}
295
296/* verify that all the pages have correct rights for code */
297static void tb_page_check(void)
298{
299 TranslationBlock *tb;
300 int i, flags1, flags2;
301
302 for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
303 for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
304 flags1 = page_get_flags(tb->pc);
305 flags2 = page_get_flags(tb->pc + tb->size - 1);
306 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
307 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
308 tb->pc, tb->size, flags1, flags2);
309 }
310 }
311 }
312}
313
d4e8164f
FB
314void tb_jmp_check(TranslationBlock *tb)
315{
316 TranslationBlock *tb1;
317 unsigned int n1;
318
319 /* suppress any remaining jumps to this TB */
320 tb1 = tb->jmp_first;
321 for(;;) {
322 n1 = (long)tb1 & 3;
323 tb1 = (TranslationBlock *)((long)tb1 & ~3);
324 if (n1 == 2)
325 break;
326 tb1 = tb1->jmp_next[n1];
327 }
328 /* check end of list */
329 if (tb1 != tb) {
330 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
331 }
332}
333
fd6ce8f6
FB
334#endif
335
336/* invalidate one TB */
337static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
338 int next_offset)
339{
340 TranslationBlock *tb1;
341 for(;;) {
342 tb1 = *ptb;
343 if (tb1 == tb) {
344 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
345 break;
346 }
347 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
348 }
349}
350
9fa3e853
FB
351static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
352{
353 TranslationBlock *tb1;
354 unsigned int n1;
355
356 for(;;) {
357 tb1 = *ptb;
358 n1 = (long)tb1 & 3;
359 tb1 = (TranslationBlock *)((long)tb1 & ~3);
360 if (tb1 == tb) {
361 *ptb = tb1->page_next[n1];
362 break;
363 }
364 ptb = &tb1->page_next[n1];
365 }
366}
367
d4e8164f
FB
368static inline void tb_jmp_remove(TranslationBlock *tb, int n)
369{
370 TranslationBlock *tb1, **ptb;
371 unsigned int n1;
372
373 ptb = &tb->jmp_next[n];
374 tb1 = *ptb;
375 if (tb1) {
376 /* find tb(n) in circular list */
377 for(;;) {
378 tb1 = *ptb;
379 n1 = (long)tb1 & 3;
380 tb1 = (TranslationBlock *)((long)tb1 & ~3);
381 if (n1 == n && tb1 == tb)
382 break;
383 if (n1 == 2) {
384 ptb = &tb1->jmp_first;
385 } else {
386 ptb = &tb1->jmp_next[n1];
387 }
388 }
389 /* now we can suppress tb(n) from the list */
390 *ptb = tb->jmp_next[n];
391
392 tb->jmp_next[n] = NULL;
393 }
394}
395
396/* reset the jump entry 'n' of a TB so that it is not chained to
397 another TB */
398static inline void tb_reset_jump(TranslationBlock *tb, int n)
399{
400 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
401}
402
9fa3e853 403static inline void tb_invalidate(TranslationBlock *tb)
fd6ce8f6 404{
d4e8164f 405 unsigned int h, n1;
9fa3e853 406 TranslationBlock *tb1, *tb2, **ptb;
d4e8164f 407
36bdbe54
FB
408 tb_invalidated_flag = 1;
409
fd6ce8f6
FB
410 /* remove the TB from the hash list */
411 h = tb_hash_func(tb->pc);
9fa3e853
FB
412 ptb = &tb_hash[h];
413 for(;;) {
414 tb1 = *ptb;
415 /* NOTE: the TB is not necessarily linked in the hash. It
416 indicates that it is not currently used */
417 if (tb1 == NULL)
418 return;
419 if (tb1 == tb) {
420 *ptb = tb1->hash_next;
421 break;
422 }
423 ptb = &tb1->hash_next;
fd6ce8f6 424 }
d4e8164f
FB
425
426 /* suppress this TB from the two jump lists */
427 tb_jmp_remove(tb, 0);
428 tb_jmp_remove(tb, 1);
429
430 /* suppress any remaining jumps to this TB */
431 tb1 = tb->jmp_first;
432 for(;;) {
433 n1 = (long)tb1 & 3;
434 if (n1 == 2)
435 break;
436 tb1 = (TranslationBlock *)((long)tb1 & ~3);
437 tb2 = tb1->jmp_next[n1];
438 tb_reset_jump(tb1, n1);
439 tb1->jmp_next[n1] = NULL;
440 tb1 = tb2;
441 }
442 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
fd6ce8f6
FB
443}
444
9fa3e853 445static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
fd6ce8f6 446{
fd6ce8f6 447 PageDesc *p;
9fa3e853
FB
448 unsigned int h;
449 target_ulong phys_pc;
450
451 /* remove the TB from the hash list */
452 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
453 h = tb_phys_hash_func(phys_pc);
454 tb_remove(&tb_phys_hash[h], tb,
455 offsetof(TranslationBlock, phys_hash_next));
456
457 /* remove the TB from the page list */
458 if (tb->page_addr[0] != page_addr) {
459 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
460 tb_page_remove(&p->first_tb, tb);
461 invalidate_page_bitmap(p);
462 }
463 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
464 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
465 tb_page_remove(&p->first_tb, tb);
466 invalidate_page_bitmap(p);
467 }
468
469 tb_invalidate(tb);
470}
471
472static inline void set_bits(uint8_t *tab, int start, int len)
473{
474 int end, mask, end1;
475
476 end = start + len;
477 tab += start >> 3;
478 mask = 0xff << (start & 7);
479 if ((start & ~7) == (end & ~7)) {
480 if (start < end) {
481 mask &= ~(0xff << (end & 7));
482 *tab |= mask;
483 }
484 } else {
485 *tab++ |= mask;
486 start = (start + 8) & ~7;
487 end1 = end & ~7;
488 while (start < end1) {
489 *tab++ = 0xff;
490 start += 8;
491 }
492 if (start < end) {
493 mask = ~(0xff << (end & 7));
494 *tab |= mask;
495 }
496 }
497}
498
499static void build_page_bitmap(PageDesc *p)
500{
501 int n, tb_start, tb_end;
502 TranslationBlock *tb;
503
504 p->code_bitmap = malloc(TARGET_PAGE_SIZE / 8);
505 if (!p->code_bitmap)
506 return;
507 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
508
509 tb = p->first_tb;
510 while (tb != NULL) {
511 n = (long)tb & 3;
512 tb = (TranslationBlock *)((long)tb & ~3);
513 /* NOTE: this is subtle as a TB may span two physical pages */
514 if (n == 0) {
515 /* NOTE: tb_end may be after the end of the page, but
516 it is not a problem */
517 tb_start = tb->pc & ~TARGET_PAGE_MASK;
518 tb_end = tb_start + tb->size;
519 if (tb_end > TARGET_PAGE_SIZE)
520 tb_end = TARGET_PAGE_SIZE;
521 } else {
522 tb_start = 0;
523 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
524 }
525 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
526 tb = tb->page_next[n];
527 }
528}
529
530/* invalidate all TBs which intersect with the target physical page
531 starting in range [start;end[. NOTE: start and end must refer to
1ccde1cb
FB
532 the same physical page. 'vaddr' is a virtual address referencing
533 the physical page of code. It is only used an a hint if there is no
534 code left. */
535static void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
536 target_ulong vaddr)
9fa3e853
FB
537{
538 int n;
539 PageDesc *p;
540 TranslationBlock *tb, *tb_next;
541 target_ulong tb_start, tb_end;
542
543 p = page_find(start >> TARGET_PAGE_BITS);
544 if (!p)
545 return;
546 if (!p->code_bitmap &&
547 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
548 /* build code bitmap */
549 build_page_bitmap(p);
550 }
551
552 /* we remove all the TBs in the range [start, end[ */
553 /* XXX: see if in some cases it could be faster to invalidate all the code */
554 tb = p->first_tb;
555 while (tb != NULL) {
556 n = (long)tb & 3;
557 tb = (TranslationBlock *)((long)tb & ~3);
558 tb_next = tb->page_next[n];
559 /* NOTE: this is subtle as a TB may span two physical pages */
560 if (n == 0) {
561 /* NOTE: tb_end may be after the end of the page, but
562 it is not a problem */
563 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
564 tb_end = tb_start + tb->size;
565 } else {
566 tb_start = tb->page_addr[1];
567 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
568 }
569 if (!(tb_end <= start || tb_start >= end)) {
570 tb_phys_invalidate(tb, -1);
571 }
572 tb = tb_next;
573 }
574#if !defined(CONFIG_USER_ONLY)
575 /* if no code remaining, no need to continue to use slow writes */
576 if (!p->first_tb) {
577 invalidate_page_bitmap(p);
1ccde1cb 578 tlb_unprotect_code_phys(cpu_single_env, start, vaddr);
9fa3e853 579 }
fd6ce8f6 580#endif
9fa3e853 581}
fd6ce8f6 582
9fa3e853 583/* len must be <= 8 and start must be a multiple of len */
1ccde1cb 584static inline void tb_invalidate_phys_page_fast(target_ulong start, int len, target_ulong vaddr)
9fa3e853
FB
585{
586 PageDesc *p;
587 int offset, b;
588
589 p = page_find(start >> TARGET_PAGE_BITS);
590 if (!p)
591 return;
592 if (p->code_bitmap) {
593 offset = start & ~TARGET_PAGE_MASK;
594 b = p->code_bitmap[offset >> 3] >> (offset & 7);
595 if (b & ((1 << len) - 1))
596 goto do_invalidate;
597 } else {
598 do_invalidate:
1ccde1cb 599 tb_invalidate_phys_page_range(start, start + len, vaddr);
9fa3e853
FB
600 }
601}
602
603/* invalidate all TBs which intersect with the target virtual page
604 starting in range [start;end[. This function is usually used when
605 the target processor flushes its I-cache. NOTE: start and end must
606 refer to the same physical page */
607void tb_invalidate_page_range(target_ulong start, target_ulong end)
608{
609 int n;
610 PageDesc *p;
611 TranslationBlock *tb, *tb_next;
612 target_ulong pc;
613 target_ulong phys_start;
614
615#if !defined(CONFIG_USER_ONLY)
616 {
617 VirtPageDesc *vp;
618 vp = virt_page_find(start >> TARGET_PAGE_BITS);
619 if (!vp)
620 return;
621 if (vp->valid_tag != virt_valid_tag)
622 return;
623 phys_start = vp->phys_addr + (start & ~TARGET_PAGE_MASK);
624 }
625#else
626 phys_start = start;
627#endif
628 p = page_find(phys_start >> TARGET_PAGE_BITS);
629 if (!p)
fd6ce8f6 630 return;
9fa3e853
FB
631 /* we remove all the TBs in the range [start, end[ */
632 /* XXX: see if in some cases it could be faster to invalidate all the code */
fd6ce8f6 633 tb = p->first_tb;
fd6ce8f6 634 while (tb != NULL) {
9fa3e853
FB
635 n = (long)tb & 3;
636 tb = (TranslationBlock *)((long)tb & ~3);
637 tb_next = tb->page_next[n];
638 pc = tb->pc;
639 if (!((pc + tb->size) <= start || pc >= end)) {
640 tb_phys_invalidate(tb, -1);
641 }
fd6ce8f6
FB
642 tb = tb_next;
643 }
9fa3e853
FB
644#if !defined(CONFIG_USER_ONLY)
645 /* if no code remaining, no need to continue to use slow writes */
646 if (!p->first_tb)
647 tlb_unprotect_code(cpu_single_env, start);
648#endif
649}
650
651#if !defined(CONFIG_SOFTMMU)
652static void tb_invalidate_phys_page(target_ulong addr)
653{
654 int n;
655 PageDesc *p;
656 TranslationBlock *tb;
657
658 addr &= TARGET_PAGE_MASK;
659 p = page_find(addr >> TARGET_PAGE_BITS);
660 if (!p)
661 return;
662 tb = p->first_tb;
663 while (tb != NULL) {
664 n = (long)tb & 3;
665 tb = (TranslationBlock *)((long)tb & ~3);
666 tb_phys_invalidate(tb, addr);
667 tb = tb->page_next[n];
668 }
fd6ce8f6
FB
669 p->first_tb = NULL;
670}
9fa3e853 671#endif
fd6ce8f6
FB
672
673/* add the tb in the target page and protect it if necessary */
9fa3e853
FB
674static inline void tb_alloc_page(TranslationBlock *tb,
675 unsigned int n, unsigned int page_addr)
fd6ce8f6
FB
676{
677 PageDesc *p;
9fa3e853
FB
678 TranslationBlock *last_first_tb;
679
680 tb->page_addr[n] = page_addr;
681 p = page_find(page_addr >> TARGET_PAGE_BITS);
682 tb->page_next[n] = p->first_tb;
683 last_first_tb = p->first_tb;
684 p->first_tb = (TranslationBlock *)((long)tb | n);
685 invalidate_page_bitmap(p);
fd6ce8f6 686
9fa3e853 687#if defined(CONFIG_USER_ONLY)
fd6ce8f6 688 if (p->flags & PAGE_WRITE) {
9fa3e853
FB
689 unsigned long host_start, host_end, addr;
690 int prot;
691
fd6ce8f6
FB
692 /* force the host page as non writable (writes will have a
693 page fault + mprotect overhead) */
fd6ce8f6
FB
694 host_start = page_addr & host_page_mask;
695 host_end = host_start + host_page_size;
696 prot = 0;
697 for(addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE)
698 prot |= page_get_flags(addr);
699 mprotect((void *)host_start, host_page_size,
700 (prot & PAGE_BITS) & ~PAGE_WRITE);
701#ifdef DEBUG_TB_INVALIDATE
702 printf("protecting code page: 0x%08lx\n",
703 host_start);
704#endif
705 p->flags &= ~PAGE_WRITE;
fd6ce8f6 706 }
9fa3e853
FB
707#else
708 /* if some code is already present, then the pages are already
709 protected. So we handle the case where only the first TB is
710 allocated in a physical page */
711 if (!last_first_tb) {
712 target_ulong virt_addr;
713
714 virt_addr = (tb->pc & TARGET_PAGE_MASK) + (n << TARGET_PAGE_BITS);
715 tlb_protect_code(cpu_single_env, virt_addr);
716 }
717#endif
fd6ce8f6
FB
718}
719
720/* Allocate a new translation block. Flush the translation buffer if
721 too many translation blocks or too much generated code. */
d4e8164f 722TranslationBlock *tb_alloc(unsigned long pc)
fd6ce8f6
FB
723{
724 TranslationBlock *tb;
fd6ce8f6
FB
725
726 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
727 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
d4e8164f 728 return NULL;
fd6ce8f6
FB
729 tb = &tbs[nb_tbs++];
730 tb->pc = pc;
d4e8164f
FB
731 return tb;
732}
733
9fa3e853
FB
734/* add a new TB and link it to the physical page tables. phys_page2 is
735 (-1) to indicate that only one page contains the TB. */
736void tb_link_phys(TranslationBlock *tb,
737 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 738{
9fa3e853
FB
739 unsigned int h;
740 TranslationBlock **ptb;
741
742 /* add in the physical hash table */
743 h = tb_phys_hash_func(phys_pc);
744 ptb = &tb_phys_hash[h];
745 tb->phys_hash_next = *ptb;
746 *ptb = tb;
fd6ce8f6
FB
747
748 /* add in the page list */
9fa3e853
FB
749 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
750 if (phys_page2 != -1)
751 tb_alloc_page(tb, 1, phys_page2);
752 else
753 tb->page_addr[1] = -1;
61382a50
FB
754#ifdef DEBUG_TB_CHECK
755 tb_page_check();
756#endif
9fa3e853
FB
757}
758
759/* link the tb with the other TBs */
760void tb_link(TranslationBlock *tb)
761{
762#if !defined(CONFIG_USER_ONLY)
763 {
764 VirtPageDesc *vp;
765 target_ulong addr;
766
767 /* save the code memory mappings (needed to invalidate the code) */
768 addr = tb->pc & TARGET_PAGE_MASK;
769 vp = virt_page_find_alloc(addr >> TARGET_PAGE_BITS);
98857888
FB
770#ifdef DEBUG_TLB_CHECK
771 if (vp->valid_tag == virt_valid_tag &&
772 vp->phys_addr != tb->page_addr[0]) {
773 printf("Error tb addr=0x%x phys=0x%x vp->phys_addr=0x%x\n",
774 addr, tb->page_addr[0], vp->phys_addr);
775 }
776#endif
9fa3e853
FB
777 vp->phys_addr = tb->page_addr[0];
778 vp->valid_tag = virt_valid_tag;
779
780 if (tb->page_addr[1] != -1) {
781 addr += TARGET_PAGE_SIZE;
782 vp = virt_page_find_alloc(addr >> TARGET_PAGE_BITS);
98857888
FB
783#ifdef DEBUG_TLB_CHECK
784 if (vp->valid_tag == virt_valid_tag &&
785 vp->phys_addr != tb->page_addr[1]) {
786 printf("Error tb addr=0x%x phys=0x%x vp->phys_addr=0x%x\n",
787 addr, tb->page_addr[1], vp->phys_addr);
788 }
789#endif
9fa3e853
FB
790 vp->phys_addr = tb->page_addr[1];
791 vp->valid_tag = virt_valid_tag;
792 }
793 }
794#endif
795
d4e8164f
FB
796 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
797 tb->jmp_next[0] = NULL;
798 tb->jmp_next[1] = NULL;
799
800 /* init original jump addresses */
801 if (tb->tb_next_offset[0] != 0xffff)
802 tb_reset_jump(tb, 0);
803 if (tb->tb_next_offset[1] != 0xffff)
804 tb_reset_jump(tb, 1);
fd6ce8f6
FB
805}
806
9fa3e853
FB
807/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
808 tb[1].tc_ptr. Return NULL if not found */
809TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 810{
9fa3e853
FB
811 int m_min, m_max, m;
812 unsigned long v;
813 TranslationBlock *tb;
a513fe19
FB
814
815 if (nb_tbs <= 0)
816 return NULL;
817 if (tc_ptr < (unsigned long)code_gen_buffer ||
818 tc_ptr >= (unsigned long)code_gen_ptr)
819 return NULL;
820 /* binary search (cf Knuth) */
821 m_min = 0;
822 m_max = nb_tbs - 1;
823 while (m_min <= m_max) {
824 m = (m_min + m_max) >> 1;
825 tb = &tbs[m];
826 v = (unsigned long)tb->tc_ptr;
827 if (v == tc_ptr)
828 return tb;
829 else if (tc_ptr < v) {
830 m_max = m - 1;
831 } else {
832 m_min = m + 1;
833 }
834 }
835 return &tbs[m_max];
836}
7501267e 837
ea041c0e
FB
838static void tb_reset_jump_recursive(TranslationBlock *tb);
839
840static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
841{
842 TranslationBlock *tb1, *tb_next, **ptb;
843 unsigned int n1;
844
845 tb1 = tb->jmp_next[n];
846 if (tb1 != NULL) {
847 /* find head of list */
848 for(;;) {
849 n1 = (long)tb1 & 3;
850 tb1 = (TranslationBlock *)((long)tb1 & ~3);
851 if (n1 == 2)
852 break;
853 tb1 = tb1->jmp_next[n1];
854 }
855 /* we are now sure now that tb jumps to tb1 */
856 tb_next = tb1;
857
858 /* remove tb from the jmp_first list */
859 ptb = &tb_next->jmp_first;
860 for(;;) {
861 tb1 = *ptb;
862 n1 = (long)tb1 & 3;
863 tb1 = (TranslationBlock *)((long)tb1 & ~3);
864 if (n1 == n && tb1 == tb)
865 break;
866 ptb = &tb1->jmp_next[n1];
867 }
868 *ptb = tb->jmp_next[n];
869 tb->jmp_next[n] = NULL;
870
871 /* suppress the jump to next tb in generated code */
872 tb_reset_jump(tb, n);
873
0124311e 874 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
875 tb_reset_jump_recursive(tb_next);
876 }
877}
878
879static void tb_reset_jump_recursive(TranslationBlock *tb)
880{
881 tb_reset_jump_recursive2(tb, 0);
882 tb_reset_jump_recursive2(tb, 1);
883}
884
c33a346e
FB
885/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
886 breakpoint is reached */
4c3a88a2
FB
887int cpu_breakpoint_insert(CPUState *env, uint32_t pc)
888{
889#if defined(TARGET_I386)
890 int i;
891
892 for(i = 0; i < env->nb_breakpoints; i++) {
893 if (env->breakpoints[i] == pc)
894 return 0;
895 }
896
897 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
898 return -1;
899 env->breakpoints[env->nb_breakpoints++] = pc;
9fa3e853 900 tb_invalidate_page_range(pc, pc + 1);
4c3a88a2
FB
901 return 0;
902#else
903 return -1;
904#endif
905}
906
907/* remove a breakpoint */
908int cpu_breakpoint_remove(CPUState *env, uint32_t pc)
909{
910#if defined(TARGET_I386)
911 int i;
912 for(i = 0; i < env->nb_breakpoints; i++) {
913 if (env->breakpoints[i] == pc)
914 goto found;
915 }
916 return -1;
917 found:
918 memmove(&env->breakpoints[i], &env->breakpoints[i + 1],
919 (env->nb_breakpoints - (i + 1)) * sizeof(env->breakpoints[0]));
920 env->nb_breakpoints--;
9fa3e853 921 tb_invalidate_page_range(pc, pc + 1);
4c3a88a2
FB
922 return 0;
923#else
924 return -1;
925#endif
926}
927
c33a346e
FB
928/* enable or disable single step mode. EXCP_DEBUG is returned by the
929 CPU loop after each instruction */
930void cpu_single_step(CPUState *env, int enabled)
931{
932#if defined(TARGET_I386)
933 if (env->singlestep_enabled != enabled) {
934 env->singlestep_enabled = enabled;
935 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 936 /* XXX: only flush what is necessary */
0124311e 937 tb_flush(env);
c33a346e
FB
938 }
939#endif
940}
941
34865134
FB
942/* enable or disable low levels log */
943void cpu_set_log(int log_flags)
944{
945 loglevel = log_flags;
946 if (loglevel && !logfile) {
947 logfile = fopen(logfilename, "w");
948 if (!logfile) {
949 perror(logfilename);
950 _exit(1);
951 }
9fa3e853
FB
952#if !defined(CONFIG_SOFTMMU)
953 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
954 {
955 static uint8_t logfile_buf[4096];
956 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
957 }
958#else
34865134 959 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 960#endif
34865134
FB
961 }
962}
963
964void cpu_set_log_filename(const char *filename)
965{
966 logfilename = strdup(filename);
967}
c33a346e 968
0124311e 969/* mask must never be zero, except for A20 change call */
68a79315 970void cpu_interrupt(CPUState *env, int mask)
ea041c0e
FB
971{
972 TranslationBlock *tb;
ee8b7021 973 static int interrupt_lock;
68a79315
FB
974
975 env->interrupt_request |= mask;
ea041c0e
FB
976 /* if the cpu is currently executing code, we must unlink it and
977 all the potentially executing TB */
978 tb = env->current_tb;
ee8b7021
FB
979 if (tb && !testandset(&interrupt_lock)) {
980 env->current_tb = NULL;
ea041c0e 981 tb_reset_jump_recursive(tb);
ee8b7021 982 interrupt_lock = 0;
ea041c0e
FB
983 }
984}
985
986
7501267e
FB
987void cpu_abort(CPUState *env, const char *fmt, ...)
988{
989 va_list ap;
990
991 va_start(ap, fmt);
992 fprintf(stderr, "qemu: fatal: ");
993 vfprintf(stderr, fmt, ap);
994 fprintf(stderr, "\n");
995#ifdef TARGET_I386
996 cpu_x86_dump_state(env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
997#endif
998 va_end(ap);
999 abort();
1000}
1001
0124311e
FB
1002#if !defined(CONFIG_USER_ONLY)
1003
ee8b7021
FB
1004/* NOTE: if flush_global is true, also flush global entries (not
1005 implemented yet) */
1006void tlb_flush(CPUState *env, int flush_global)
33417e70 1007{
33417e70 1008 int i;
0124311e 1009
9fa3e853
FB
1010#if defined(DEBUG_TLB)
1011 printf("tlb_flush:\n");
1012#endif
0124311e
FB
1013 /* must reset current TB so that interrupts cannot modify the
1014 links while we are modifying them */
1015 env->current_tb = NULL;
1016
33417e70
FB
1017 for(i = 0; i < CPU_TLB_SIZE; i++) {
1018 env->tlb_read[0][i].address = -1;
1019 env->tlb_write[0][i].address = -1;
1020 env->tlb_read[1][i].address = -1;
1021 env->tlb_write[1][i].address = -1;
1022 }
9fa3e853
FB
1023
1024 virt_page_flush();
1025 for(i = 0;i < CODE_GEN_HASH_SIZE; i++)
1026 tb_hash[i] = NULL;
1027
1028#if !defined(CONFIG_SOFTMMU)
1029 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
1030#endif
33417e70
FB
1031}
1032
61382a50
FB
1033static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, uint32_t addr)
1034{
1035 if (addr == (tlb_entry->address &
1036 (TARGET_PAGE_MASK | TLB_INVALID_MASK)))
1037 tlb_entry->address = -1;
1038}
1039
33417e70
FB
1040void tlb_flush_page(CPUState *env, uint32_t addr)
1041{
9fa3e853
FB
1042 int i, n;
1043 VirtPageDesc *vp;
1044 PageDesc *p;
1045 TranslationBlock *tb;
0124311e 1046
9fa3e853
FB
1047#if defined(DEBUG_TLB)
1048 printf("tlb_flush_page: 0x%08x\n", addr);
1049#endif
0124311e
FB
1050 /* must reset current TB so that interrupts cannot modify the
1051 links while we are modifying them */
1052 env->current_tb = NULL;
61382a50
FB
1053
1054 addr &= TARGET_PAGE_MASK;
1055 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1056 tlb_flush_entry(&env->tlb_read[0][i], addr);
1057 tlb_flush_entry(&env->tlb_write[0][i], addr);
1058 tlb_flush_entry(&env->tlb_read[1][i], addr);
1059 tlb_flush_entry(&env->tlb_write[1][i], addr);
0124311e 1060
9fa3e853
FB
1061 /* remove from the virtual pc hash table all the TB at this
1062 virtual address */
1063
1064 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1065 if (vp && vp->valid_tag == virt_valid_tag) {
1066 p = page_find(vp->phys_addr >> TARGET_PAGE_BITS);
1067 if (p) {
1068 /* we remove all the links to the TBs in this virtual page */
1069 tb = p->first_tb;
1070 while (tb != NULL) {
1071 n = (long)tb & 3;
1072 tb = (TranslationBlock *)((long)tb & ~3);
1073 if ((tb->pc & TARGET_PAGE_MASK) == addr ||
1074 ((tb->pc + tb->size - 1) & TARGET_PAGE_MASK) == addr) {
1075 tb_invalidate(tb);
1076 }
1077 tb = tb->page_next[n];
1078 }
1079 }
98857888 1080 vp->valid_tag = 0;
9fa3e853
FB
1081 }
1082
0124311e 1083#if !defined(CONFIG_SOFTMMU)
9fa3e853 1084 if (addr < MMAP_AREA_END)
0124311e 1085 munmap((void *)addr, TARGET_PAGE_SIZE);
61382a50 1086#endif
9fa3e853
FB
1087}
1088
1089static inline void tlb_protect_code1(CPUTLBEntry *tlb_entry, uint32_t addr)
1090{
1091 if (addr == (tlb_entry->address &
1092 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) &&
98857888
FB
1093 (tlb_entry->address & ~TARGET_PAGE_MASK) != IO_MEM_CODE &&
1094 (tlb_entry->address & ~TARGET_PAGE_MASK) != IO_MEM_ROM) {
1ccde1cb 1095 tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_CODE;
9fa3e853
FB
1096 }
1097}
1098
1099/* update the TLBs so that writes to code in the virtual page 'addr'
1100 can be detected */
1101static void tlb_protect_code(CPUState *env, uint32_t addr)
1102{
1103 int i;
1104
1105 addr &= TARGET_PAGE_MASK;
1106 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1107 tlb_protect_code1(&env->tlb_write[0][i], addr);
1108 tlb_protect_code1(&env->tlb_write[1][i], addr);
1109#if !defined(CONFIG_SOFTMMU)
1110 /* NOTE: as we generated the code for this page, it is already at
1111 least readable */
1112 if (addr < MMAP_AREA_END)
1113 mprotect((void *)addr, TARGET_PAGE_SIZE, PROT_READ);
1114#endif
1115}
1116
1117static inline void tlb_unprotect_code1(CPUTLBEntry *tlb_entry, uint32_t addr)
1118{
1119 if (addr == (tlb_entry->address &
1120 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) &&
1121 (tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_CODE) {
1ccde1cb 1122 tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
0124311e 1123 }
61382a50
FB
1124}
1125
9fa3e853
FB
1126/* update the TLB so that writes in virtual page 'addr' are no longer
1127 tested self modifying code */
1128static void tlb_unprotect_code(CPUState *env, uint32_t addr)
61382a50 1129{
33417e70
FB
1130 int i;
1131
61382a50 1132 addr &= TARGET_PAGE_MASK;
33417e70 1133 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
9fa3e853
FB
1134 tlb_unprotect_code1(&env->tlb_write[0][i], addr);
1135 tlb_unprotect_code1(&env->tlb_write[1][i], addr);
1136}
1137
1138static inline void tlb_unprotect_code2(CPUTLBEntry *tlb_entry,
1139 uint32_t phys_addr)
1140{
1141 if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_CODE &&
1142 ((tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend) == phys_addr) {
1ccde1cb 1143 tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
9fa3e853
FB
1144 }
1145}
1146
1147/* update the TLB so that writes in physical page 'phys_addr' are no longer
1148 tested self modifying code */
1ccde1cb 1149static void tlb_unprotect_code_phys(CPUState *env, uint32_t phys_addr, target_ulong vaddr)
9fa3e853
FB
1150{
1151 int i;
1152
1153 phys_addr &= TARGET_PAGE_MASK;
1ccde1cb
FB
1154 phys_addr += (long)phys_ram_base;
1155 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1156 tlb_unprotect_code2(&env->tlb_write[0][i], phys_addr);
1157 tlb_unprotect_code2(&env->tlb_write[1][i], phys_addr);
1158}
1159
1160static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1161 unsigned long start, unsigned long length)
1162{
1163 unsigned long addr;
1164 if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1165 addr = (tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend;
1166 if ((addr - start) < length) {
1167 tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1168 }
1169 }
1170}
1171
1172void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end)
1173{
1174 CPUState *env;
1175 target_ulong length;
1176 int i;
1177
1178 start &= TARGET_PAGE_MASK;
1179 end = TARGET_PAGE_ALIGN(end);
1180
1181 length = end - start;
1182 if (length == 0)
1183 return;
1184 memset(phys_ram_dirty + (start >> TARGET_PAGE_BITS), 0, length >> TARGET_PAGE_BITS);
1185
1186 env = cpu_single_env;
1187 /* we modify the TLB cache so that the dirty bit will be set again
1188 when accessing the range */
1189 start += (unsigned long)phys_ram_base;
9fa3e853 1190 for(i = 0; i < CPU_TLB_SIZE; i++)
1ccde1cb 1191 tlb_reset_dirty_range(&env->tlb_write[0][i], start, length);
9fa3e853 1192 for(i = 0; i < CPU_TLB_SIZE; i++)
1ccde1cb
FB
1193 tlb_reset_dirty_range(&env->tlb_write[1][i], start, length);
1194}
1195
1196static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
1197 unsigned long start)
1198{
1199 unsigned long addr;
1200 if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1201 addr = (tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend;
1202 if (addr == start) {
1203 tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_RAM;
1204 }
1205 }
1206}
1207
1208/* update the TLB corresponding to virtual page vaddr and phys addr
1209 addr so that it is no longer dirty */
1210static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr)
1211{
1212 CPUState *env = cpu_single_env;
1213 int i;
1214
1215 phys_ram_dirty[(addr - (unsigned long)phys_ram_base) >> TARGET_PAGE_BITS] = 1;
1216
1217 addr &= TARGET_PAGE_MASK;
1218 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1219 tlb_set_dirty1(&env->tlb_write[0][i], addr);
1220 tlb_set_dirty1(&env->tlb_write[1][i], addr);
9fa3e853
FB
1221}
1222
98857888 1223/* add a new TLB entry. At most one entry for a given virtual
9fa3e853
FB
1224 address is permitted. */
1225int tlb_set_page(CPUState *env, uint32_t vaddr, uint32_t paddr, int prot,
1226 int is_user, int is_softmmu)
1227{
1228 PageDesc *p;
1229 target_ulong pd;
1230 TranslationBlock *first_tb;
1231 unsigned int index;
1232 target_ulong address, addend;
1233 int ret;
1234
1235 p = page_find(paddr >> TARGET_PAGE_BITS);
1236 if (!p) {
1237 pd = IO_MEM_UNASSIGNED;
1238 first_tb = NULL;
1239 } else {
1240 pd = p->phys_offset;
1241 first_tb = p->first_tb;
1242 }
1243#if defined(DEBUG_TLB)
1244 printf("tlb_set_page: vaddr=0x%08x paddr=0x%08x prot=%x u=%d c=%d smmu=%d pd=0x%08x\n",
1245 vaddr, paddr, prot, is_user, (first_tb != NULL), is_softmmu, pd);
1246#endif
1247
1248 ret = 0;
1249#if !defined(CONFIG_SOFTMMU)
1250 if (is_softmmu)
1251#endif
1252 {
1253 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1254 /* IO memory case */
1255 address = vaddr | pd;
1256 addend = paddr;
1257 } else {
1258 /* standard memory */
1259 address = vaddr;
1260 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1261 }
1262
1263 index = (vaddr >> 12) & (CPU_TLB_SIZE - 1);
1264 addend -= vaddr;
1265 if (prot & PROT_READ) {
1266 env->tlb_read[is_user][index].address = address;
1267 env->tlb_read[is_user][index].addend = addend;
1268 } else {
1269 env->tlb_read[is_user][index].address = -1;
1270 env->tlb_read[is_user][index].addend = -1;
1271 }
1272 if (prot & PROT_WRITE) {
1273 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM) {
1274 /* ROM: access is ignored (same as unassigned) */
1275 env->tlb_write[is_user][index].address = vaddr | IO_MEM_ROM;
1ccde1cb 1276 env->tlb_write[is_user][index].addend = addend;
9fa3e853
FB
1277 } else if (first_tb) {
1278 /* if code is present, we use a specific memory
1279 handler. It works only for physical memory access */
1280 env->tlb_write[is_user][index].address = vaddr | IO_MEM_CODE;
1ccde1cb
FB
1281 env->tlb_write[is_user][index].addend = addend;
1282 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1283 !cpu_physical_memory_is_dirty(pd)) {
1284 env->tlb_write[is_user][index].address = vaddr | IO_MEM_NOTDIRTY;
1285 env->tlb_write[is_user][index].addend = addend;
9fa3e853
FB
1286 } else {
1287 env->tlb_write[is_user][index].address = address;
1288 env->tlb_write[is_user][index].addend = addend;
1289 }
1290 } else {
1291 env->tlb_write[is_user][index].address = -1;
1292 env->tlb_write[is_user][index].addend = -1;
1293 }
1294 }
1295#if !defined(CONFIG_SOFTMMU)
1296 else {
1297 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1298 /* IO access: no mapping is done as it will be handled by the
1299 soft MMU */
1300 if (!(env->hflags & HF_SOFTMMU_MASK))
1301 ret = 2;
1302 } else {
1303 void *map_addr;
1304 if (prot & PROT_WRITE) {
1305 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || first_tb) {
1306 /* ROM: we do as if code was inside */
1307 /* if code is present, we only map as read only and save the
1308 original mapping */
1309 VirtPageDesc *vp;
1310
1311 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS);
1312 vp->phys_addr = pd;
1313 vp->prot = prot;
1314 vp->valid_tag = virt_valid_tag;
1315 prot &= ~PAGE_WRITE;
1316 }
1317 }
1318 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1319 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1320 if (map_addr == MAP_FAILED) {
1321 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1322 paddr, vaddr);
1323 }
1324 }
1325 }
1326#endif
1327 return ret;
1328}
1329
1330/* called from signal handler: invalidate the code and unprotect the
1331 page. Return TRUE if the fault was succesfully handled. */
1332int page_unprotect(unsigned long addr)
1333{
1334#if !defined(CONFIG_SOFTMMU)
1335 VirtPageDesc *vp;
1336
1337#if defined(DEBUG_TLB)
1338 printf("page_unprotect: addr=0x%08x\n", addr);
1339#endif
1340 addr &= TARGET_PAGE_MASK;
1341 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1342 if (!vp)
1343 return 0;
1344 /* NOTE: in this case, validate_tag is _not_ tested as it
1345 validates only the code TLB */
1346 if (vp->valid_tag != virt_valid_tag)
1347 return 0;
1348 if (!(vp->prot & PAGE_WRITE))
1349 return 0;
1350#if defined(DEBUG_TLB)
1351 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1352 addr, vp->phys_addr, vp->prot);
1353#endif
1354 tb_invalidate_phys_page(vp->phys_addr);
1355 mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot);
1356 return 1;
1357#else
1358 return 0;
1359#endif
33417e70
FB
1360}
1361
0124311e
FB
1362#else
1363
ee8b7021 1364void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
1365{
1366}
1367
1368void tlb_flush_page(CPUState *env, uint32_t addr)
1369{
1370}
1371
1372void tlb_flush_page_write(CPUState *env, uint32_t addr)
1373{
1374}
1375
9fa3e853
FB
1376int tlb_set_page(CPUState *env, uint32_t vaddr, uint32_t paddr, int prot,
1377 int is_user, int is_softmmu)
1378{
1379 return 0;
1380}
0124311e 1381
9fa3e853
FB
1382/* dump memory mappings */
1383void page_dump(FILE *f)
33417e70 1384{
9fa3e853
FB
1385 unsigned long start, end;
1386 int i, j, prot, prot1;
1387 PageDesc *p;
33417e70 1388
9fa3e853
FB
1389 fprintf(f, "%-8s %-8s %-8s %s\n",
1390 "start", "end", "size", "prot");
1391 start = -1;
1392 end = -1;
1393 prot = 0;
1394 for(i = 0; i <= L1_SIZE; i++) {
1395 if (i < L1_SIZE)
1396 p = l1_map[i];
1397 else
1398 p = NULL;
1399 for(j = 0;j < L2_SIZE; j++) {
1400 if (!p)
1401 prot1 = 0;
1402 else
1403 prot1 = p[j].flags;
1404 if (prot1 != prot) {
1405 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1406 if (start != -1) {
1407 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1408 start, end, end - start,
1409 prot & PAGE_READ ? 'r' : '-',
1410 prot & PAGE_WRITE ? 'w' : '-',
1411 prot & PAGE_EXEC ? 'x' : '-');
1412 }
1413 if (prot1 != 0)
1414 start = end;
1415 else
1416 start = -1;
1417 prot = prot1;
1418 }
1419 if (!p)
1420 break;
1421 }
33417e70 1422 }
33417e70
FB
1423}
1424
9fa3e853 1425int page_get_flags(unsigned long address)
33417e70 1426{
9fa3e853
FB
1427 PageDesc *p;
1428
1429 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 1430 if (!p)
9fa3e853
FB
1431 return 0;
1432 return p->flags;
1433}
1434
1435/* modify the flags of a page and invalidate the code if
1436 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1437 depending on PAGE_WRITE */
1438void page_set_flags(unsigned long start, unsigned long end, int flags)
1439{
1440 PageDesc *p;
1441 unsigned long addr;
1442
1443 start = start & TARGET_PAGE_MASK;
1444 end = TARGET_PAGE_ALIGN(end);
1445 if (flags & PAGE_WRITE)
1446 flags |= PAGE_WRITE_ORG;
1447 spin_lock(&tb_lock);
1448 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1449 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1450 /* if the write protection is set, then we invalidate the code
1451 inside */
1452 if (!(p->flags & PAGE_WRITE) &&
1453 (flags & PAGE_WRITE) &&
1454 p->first_tb) {
1455 tb_invalidate_phys_page(addr);
1456 }
1457 p->flags = flags;
1458 }
1459 spin_unlock(&tb_lock);
33417e70
FB
1460}
1461
9fa3e853
FB
1462/* called from signal handler: invalidate the code and unprotect the
1463 page. Return TRUE if the fault was succesfully handled. */
1464int page_unprotect(unsigned long address)
1465{
1466 unsigned int page_index, prot, pindex;
1467 PageDesc *p, *p1;
1468 unsigned long host_start, host_end, addr;
1469
1470 host_start = address & host_page_mask;
1471 page_index = host_start >> TARGET_PAGE_BITS;
1472 p1 = page_find(page_index);
1473 if (!p1)
1474 return 0;
1475 host_end = host_start + host_page_size;
1476 p = p1;
1477 prot = 0;
1478 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1479 prot |= p->flags;
1480 p++;
1481 }
1482 /* if the page was really writable, then we change its
1483 protection back to writable */
1484 if (prot & PAGE_WRITE_ORG) {
1485 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1486 if (!(p1[pindex].flags & PAGE_WRITE)) {
1487 mprotect((void *)host_start, host_page_size,
1488 (prot & PAGE_BITS) | PAGE_WRITE);
1489 p1[pindex].flags |= PAGE_WRITE;
1490 /* and since the content will be modified, we must invalidate
1491 the corresponding translated code. */
1492 tb_invalidate_phys_page(address);
1493#ifdef DEBUG_TB_CHECK
1494 tb_invalidate_check(address);
1495#endif
1496 return 1;
1497 }
1498 }
1499 return 0;
1500}
1501
1502/* call this function when system calls directly modify a memory area */
1503void page_unprotect_range(uint8_t *data, unsigned long data_size)
1504{
1505 unsigned long start, end, addr;
1506
1507 start = (unsigned long)data;
1508 end = start + data_size;
1509 start &= TARGET_PAGE_MASK;
1510 end = TARGET_PAGE_ALIGN(end);
1511 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1512 page_unprotect(addr);
1513 }
1514}
1515
1ccde1cb
FB
1516static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr)
1517{
1518}
1519
9fa3e853
FB
1520#endif /* defined(CONFIG_USER_ONLY) */
1521
33417e70
FB
1522/* register physical memory. 'size' must be a multiple of the target
1523 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
1524 io memory page */
1525void cpu_register_physical_memory(unsigned long start_addr, unsigned long size,
1526 long phys_offset)
1527{
1528 unsigned long addr, end_addr;
9fa3e853 1529 PageDesc *p;
33417e70
FB
1530
1531 end_addr = start_addr + size;
1532 for(addr = start_addr; addr < end_addr; addr += TARGET_PAGE_SIZE) {
9fa3e853
FB
1533 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1534 p->phys_offset = phys_offset;
1535 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
33417e70
FB
1536 phys_offset += TARGET_PAGE_SIZE;
1537 }
1538}
1539
1540static uint32_t unassigned_mem_readb(uint32_t addr)
1541{
1542 return 0;
1543}
1544
1ccde1cb 1545static void unassigned_mem_writeb(uint32_t addr, uint32_t val, uint32_t vaddr)
33417e70
FB
1546{
1547}
1548
1549static CPUReadMemoryFunc *unassigned_mem_read[3] = {
1550 unassigned_mem_readb,
1551 unassigned_mem_readb,
1552 unassigned_mem_readb,
1553};
1554
1555static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
1556 unassigned_mem_writeb,
1557 unassigned_mem_writeb,
1558 unassigned_mem_writeb,
1559};
1560
9fa3e853
FB
1561/* self modifying code support in soft mmu mode : writing to a page
1562 containing code comes to these functions */
1563
1ccde1cb 1564static void code_mem_writeb(uint32_t addr, uint32_t val, uint32_t vaddr)
9fa3e853 1565{
1ccde1cb
FB
1566 unsigned long phys_addr;
1567
1568 phys_addr = addr - (long)phys_ram_base;
9fa3e853 1569#if !defined(CONFIG_USER_ONLY)
1ccde1cb 1570 tb_invalidate_phys_page_fast(phys_addr, 1, vaddr);
9fa3e853 1571#endif
1ccde1cb
FB
1572 stb_raw((uint8_t *)addr, val);
1573 phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
9fa3e853
FB
1574}
1575
1ccde1cb 1576static void code_mem_writew(uint32_t addr, uint32_t val, uint32_t vaddr)
9fa3e853 1577{
1ccde1cb
FB
1578 unsigned long phys_addr;
1579
1580 phys_addr = addr - (long)phys_ram_base;
9fa3e853 1581#if !defined(CONFIG_USER_ONLY)
1ccde1cb 1582 tb_invalidate_phys_page_fast(phys_addr, 2, vaddr);
9fa3e853 1583#endif
1ccde1cb
FB
1584 stw_raw((uint8_t *)addr, val);
1585 phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
9fa3e853
FB
1586}
1587
1ccde1cb 1588static void code_mem_writel(uint32_t addr, uint32_t val, uint32_t vaddr)
9fa3e853 1589{
1ccde1cb
FB
1590 unsigned long phys_addr;
1591
1592 phys_addr = addr - (long)phys_ram_base;
9fa3e853 1593#if !defined(CONFIG_USER_ONLY)
1ccde1cb 1594 tb_invalidate_phys_page_fast(phys_addr, 4, vaddr);
9fa3e853 1595#endif
1ccde1cb
FB
1596 stl_raw((uint8_t *)addr, val);
1597 phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
9fa3e853
FB
1598}
1599
1600static CPUReadMemoryFunc *code_mem_read[3] = {
1601 NULL, /* never used */
1602 NULL, /* never used */
1603 NULL, /* never used */
1604};
1605
1606static CPUWriteMemoryFunc *code_mem_write[3] = {
1607 code_mem_writeb,
1608 code_mem_writew,
1609 code_mem_writel,
1610};
33417e70 1611
1ccde1cb
FB
1612static void notdirty_mem_writeb(uint32_t addr, uint32_t val, uint32_t vaddr)
1613{
1614 stb_raw((uint8_t *)addr, val);
1615 tlb_set_dirty(addr, vaddr);
1616}
1617
1618static void notdirty_mem_writew(uint32_t addr, uint32_t val, uint32_t vaddr)
1619{
1620 stw_raw((uint8_t *)addr, val);
1621 tlb_set_dirty(addr, vaddr);
1622}
1623
1624static void notdirty_mem_writel(uint32_t addr, uint32_t val, uint32_t vaddr)
1625{
1626 stl_raw((uint8_t *)addr, val);
1627 tlb_set_dirty(addr, vaddr);
1628}
1629
1630static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
1631 notdirty_mem_writeb,
1632 notdirty_mem_writew,
1633 notdirty_mem_writel,
1634};
1635
33417e70
FB
1636static void io_mem_init(void)
1637{
9fa3e853
FB
1638 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, code_mem_read, unassigned_mem_write);
1639 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write);
1640 cpu_register_io_memory(IO_MEM_CODE >> IO_MEM_SHIFT, code_mem_read, code_mem_write);
1ccde1cb
FB
1641 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, code_mem_read, notdirty_mem_write);
1642 io_mem_nb = 5;
1643
1644 /* alloc dirty bits array */
1645 phys_ram_dirty = malloc(phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
1646}
1647
1648/* mem_read and mem_write are arrays of functions containing the
1649 function to access byte (index 0), word (index 1) and dword (index
1650 2). All functions must be supplied. If io_index is non zero, the
1651 corresponding io zone is modified. If it is zero, a new io zone is
1652 allocated. The return value can be used with
1653 cpu_register_physical_memory(). (-1) is returned if error. */
1654int cpu_register_io_memory(int io_index,
1655 CPUReadMemoryFunc **mem_read,
1656 CPUWriteMemoryFunc **mem_write)
1657{
1658 int i;
1659
1660 if (io_index <= 0) {
1661 if (io_index >= IO_MEM_NB_ENTRIES)
1662 return -1;
1663 io_index = io_mem_nb++;
1664 } else {
1665 if (io_index >= IO_MEM_NB_ENTRIES)
1666 return -1;
1667 }
1668
1669 for(i = 0;i < 3; i++) {
1670 io_mem_read[io_index][i] = mem_read[i];
1671 io_mem_write[io_index][i] = mem_write[i];
1672 }
1673 return io_index << IO_MEM_SHIFT;
1674}
61382a50 1675
13eb76e0
FB
1676/* physical memory access (slow version, mainly for debug) */
1677#if defined(CONFIG_USER_ONLY)
1678void cpu_physical_memory_rw(CPUState *env, uint8_t *buf, target_ulong addr,
1679 int len, int is_write)
1680{
1681 int l, flags;
1682 target_ulong page;
1683
1684 while (len > 0) {
1685 page = addr & TARGET_PAGE_MASK;
1686 l = (page + TARGET_PAGE_SIZE) - addr;
1687 if (l > len)
1688 l = len;
1689 flags = page_get_flags(page);
1690 if (!(flags & PAGE_VALID))
1691 return;
1692 if (is_write) {
1693 if (!(flags & PAGE_WRITE))
1694 return;
1695 memcpy((uint8_t *)addr, buf, len);
1696 } else {
1697 if (!(flags & PAGE_READ))
1698 return;
1699 memcpy(buf, (uint8_t *)addr, len);
1700 }
1701 len -= l;
1702 buf += l;
1703 addr += l;
1704 }
1705}
1706#else
1707void cpu_physical_memory_rw(CPUState *env, uint8_t *buf, target_ulong addr,
1708 int len, int is_write)
1709{
1710 int l, io_index;
1711 uint8_t *ptr;
1712 uint32_t val;
1713 target_ulong page, pd;
1714 PageDesc *p;
1715
1716 while (len > 0) {
1717 page = addr & TARGET_PAGE_MASK;
1718 l = (page + TARGET_PAGE_SIZE) - addr;
1719 if (l > len)
1720 l = len;
1721 p = page_find(page >> TARGET_PAGE_BITS);
1722 if (!p) {
1723 pd = IO_MEM_UNASSIGNED;
1724 } else {
1725 pd = p->phys_offset;
1726 }
1727
1728 if (is_write) {
1729 if ((pd & ~TARGET_PAGE_MASK) != 0) {
1730 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
1731 if (l >= 4 && ((addr & 3) == 0)) {
1732 /* 32 bit read access */
1733 val = ldl_raw(buf);
1ccde1cb 1734 io_mem_write[io_index][2](addr, val, 0);
13eb76e0
FB
1735 l = 4;
1736 } else if (l >= 2 && ((addr & 1) == 0)) {
1737 /* 16 bit read access */
1738 val = lduw_raw(buf);
1ccde1cb 1739 io_mem_write[io_index][1](addr, val, 0);
13eb76e0
FB
1740 l = 2;
1741 } else {
1742 /* 8 bit access */
1743 val = ldub_raw(buf);
1ccde1cb 1744 io_mem_write[io_index][0](addr, val, 0);
13eb76e0
FB
1745 l = 1;
1746 }
1747 } else {
1748 /* RAM case */
1749 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
1750 (addr & ~TARGET_PAGE_MASK);
1751 memcpy(ptr, buf, l);
1752 }
1753 } else {
1754 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
1755 (pd & ~TARGET_PAGE_MASK) != IO_MEM_CODE) {
1756 /* I/O case */
1757 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
1758 if (l >= 4 && ((addr & 3) == 0)) {
1759 /* 32 bit read access */
1760 val = io_mem_read[io_index][2](addr);
1761 stl_raw(buf, val);
1762 l = 4;
1763 } else if (l >= 2 && ((addr & 1) == 0)) {
1764 /* 16 bit read access */
1765 val = io_mem_read[io_index][1](addr);
1766 stw_raw(buf, val);
1767 l = 2;
1768 } else {
1769 /* 8 bit access */
1770 val = io_mem_read[io_index][0](addr);
1771 stb_raw(buf, val);
1772 l = 1;
1773 }
1774 } else {
1775 /* RAM case */
1776 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
1777 (addr & ~TARGET_PAGE_MASK);
1778 memcpy(buf, ptr, l);
1779 }
1780 }
1781 len -= l;
1782 buf += l;
1783 addr += l;
1784 }
1785}
1786#endif
1787
1788/* virtual memory access for debug */
1789int cpu_memory_rw_debug(CPUState *env,
1790 uint8_t *buf, target_ulong addr, int len, int is_write)
1791{
1792 int l;
1793 target_ulong page, phys_addr;
1794
1795 while (len > 0) {
1796 page = addr & TARGET_PAGE_MASK;
1797 phys_addr = cpu_get_phys_page_debug(env, page);
1798 /* if no physical page mapped, return an error */
1799 if (phys_addr == -1)
1800 return -1;
1801 l = (page + TARGET_PAGE_SIZE) - addr;
1802 if (l > len)
1803 l = len;
1804 cpu_physical_memory_rw(env, buf,
1805 phys_addr + (addr & ~TARGET_PAGE_MASK), l,
1806 is_write);
1807 len -= l;
1808 buf += l;
1809 addr += l;
1810 }
1811 return 0;
1812}
1813
61382a50
FB
1814#if !defined(CONFIG_USER_ONLY)
1815
1816#define MMUSUFFIX _cmmu
1817#define GETPC() NULL
1818#define env cpu_single_env
1819
1820#define SHIFT 0
1821#include "softmmu_template.h"
1822
1823#define SHIFT 1
1824#include "softmmu_template.h"
1825
1826#define SHIFT 2
1827#include "softmmu_template.h"
1828
1829#define SHIFT 3
1830#include "softmmu_template.h"
1831
1832#undef env
1833
1834#endif