]> git.proxmox.com Git - mirror_qemu.git/blame - fpu/softfloat-macros.h
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-2.9-20170403' into staging
[mirror_qemu.git] / fpu / softfloat-macros.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support macros
3 *
16017c48
PM
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
8d725fac 16 */
158142c2 17
a7d1ac78
PM
18/*
19===============================================================================
158142c2 20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
a7d1ac78 21Arithmetic Package, Release 2a.
158142c2
FB
22
23Written by John R. Hauser. This work was made possible in part by the
24International Computer Science Institute, located at Suite 600, 1947 Center
25Street, Berkeley, California 94704. Funding was partially provided by the
26National Science Foundation under grant MIP-9311980. The original version
27of this code was written as part of a project to build a fixed-point vector
28processor in collaboration with the University of California at Berkeley,
29overseen by Profs. Nelson Morgan and John Wawrzynek. More information
a7d1ac78 30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
158142c2
FB
31arithmetic/SoftFloat.html'.
32
a7d1ac78
PM
33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
158142c2
FB
38
39Derivative works are acceptable, even for commercial purposes, so long as
a7d1ac78
PM
40(1) they include prominent notice that the work is derivative, and (2) they
41include prominent notice akin to these four paragraphs for those parts of
42this code that are retained.
158142c2 43
a7d1ac78
PM
44===============================================================================
45*/
158142c2 46
16017c48
PM
47/* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78/* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
b3b4c7f3
AJ
82/*----------------------------------------------------------------------------
83| This macro tests for minimum version of the GNU C compiler.
84*----------------------------------------------------------------------------*/
85#if defined(__GNUC__) && defined(__GNUC_MINOR__)
86# define SOFTFLOAT_GNUC_PREREQ(maj, min) \
87 ((__GNUC__ << 16) + __GNUC_MINOR__ >= ((maj) << 16) + (min))
88#else
89# define SOFTFLOAT_GNUC_PREREQ(maj, min) 0
90#endif
91
92
158142c2
FB
93/*----------------------------------------------------------------------------
94| Shifts `a' right by the number of bits given in `count'. If any nonzero
95| bits are shifted off, they are ``jammed'' into the least significant bit of
96| the result by setting the least significant bit to 1. The value of `count'
97| can be arbitrarily large; in particular, if `count' is greater than 32, the
98| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
99| The result is stored in the location pointed to by `zPtr'.
100*----------------------------------------------------------------------------*/
101
07d792d2 102static inline void shift32RightJamming(uint32_t a, int count, uint32_t *zPtr)
158142c2 103{
bb98fe42 104 uint32_t z;
158142c2
FB
105
106 if ( count == 0 ) {
107 z = a;
108 }
109 else if ( count < 32 ) {
110 z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
111 }
112 else {
113 z = ( a != 0 );
114 }
115 *zPtr = z;
116
117}
118
119/*----------------------------------------------------------------------------
120| Shifts `a' right by the number of bits given in `count'. If any nonzero
121| bits are shifted off, they are ``jammed'' into the least significant bit of
122| the result by setting the least significant bit to 1. The value of `count'
123| can be arbitrarily large; in particular, if `count' is greater than 64, the
124| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
125| The result is stored in the location pointed to by `zPtr'.
126*----------------------------------------------------------------------------*/
127
07d792d2 128static inline void shift64RightJamming(uint64_t a, int count, uint64_t *zPtr)
158142c2 129{
bb98fe42 130 uint64_t z;
158142c2
FB
131
132 if ( count == 0 ) {
133 z = a;
134 }
135 else if ( count < 64 ) {
136 z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
137 }
138 else {
139 z = ( a != 0 );
140 }
141 *zPtr = z;
142
143}
144
145/*----------------------------------------------------------------------------
146| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
147| _plus_ the number of bits given in `count'. The shifted result is at most
148| 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
149| bits shifted off form a second 64-bit result as follows: The _last_ bit
150| shifted off is the most-significant bit of the extra result, and the other
151| 63 bits of the extra result are all zero if and only if _all_but_the_last_
152| bits shifted off were all zero. This extra result is stored in the location
153| pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
a7d1ac78
PM
154| (This routine makes more sense if `a0' and `a1' are considered to form a
155| fixed-point value with binary point between `a0' and `a1'. This fixed-point
156| value is shifted right by the number of bits given in `count', and the
157| integer part of the result is returned at the location pointed to by
158142c2
FB
158| `z0Ptr'. The fractional part of the result may be slightly corrupted as
159| described above, and is returned at the location pointed to by `z1Ptr'.)
160*----------------------------------------------------------------------------*/
161
a49db98d 162static inline void
158142c2 163 shift64ExtraRightJamming(
07d792d2 164 uint64_t a0, uint64_t a1, int count, uint64_t *z0Ptr, uint64_t *z1Ptr)
158142c2 165{
bb98fe42 166 uint64_t z0, z1;
8f506c70 167 int8_t negCount = ( - count ) & 63;
158142c2
FB
168
169 if ( count == 0 ) {
170 z1 = a1;
171 z0 = a0;
172 }
173 else if ( count < 64 ) {
174 z1 = ( a0<<negCount ) | ( a1 != 0 );
175 z0 = a0>>count;
176 }
177 else {
178 if ( count == 64 ) {
179 z1 = a0 | ( a1 != 0 );
180 }
181 else {
182 z1 = ( ( a0 | a1 ) != 0 );
183 }
184 z0 = 0;
185 }
186 *z1Ptr = z1;
187 *z0Ptr = z0;
188
189}
190
191/*----------------------------------------------------------------------------
192| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
193| number of bits given in `count'. Any bits shifted off are lost. The value
194| of `count' can be arbitrarily large; in particular, if `count' is greater
195| than 128, the result will be 0. The result is broken into two 64-bit pieces
196| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
197*----------------------------------------------------------------------------*/
198
a49db98d 199static inline void
158142c2 200 shift128Right(
07d792d2 201 uint64_t a0, uint64_t a1, int count, uint64_t *z0Ptr, uint64_t *z1Ptr)
158142c2 202{
bb98fe42 203 uint64_t z0, z1;
8f506c70 204 int8_t negCount = ( - count ) & 63;
158142c2
FB
205
206 if ( count == 0 ) {
207 z1 = a1;
208 z0 = a0;
209 }
210 else if ( count < 64 ) {
211 z1 = ( a0<<negCount ) | ( a1>>count );
212 z0 = a0>>count;
213 }
214 else {
4039736e 215 z1 = (count < 128) ? (a0 >> (count & 63)) : 0;
158142c2
FB
216 z0 = 0;
217 }
218 *z1Ptr = z1;
219 *z0Ptr = z0;
220
221}
222
223/*----------------------------------------------------------------------------
224| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
225| number of bits given in `count'. If any nonzero bits are shifted off, they
226| are ``jammed'' into the least significant bit of the result by setting the
227| least significant bit to 1. The value of `count' can be arbitrarily large;
228| in particular, if `count' is greater than 128, the result will be either
229| 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
230| nonzero. The result is broken into two 64-bit pieces which are stored at
231| the locations pointed to by `z0Ptr' and `z1Ptr'.
232*----------------------------------------------------------------------------*/
233
a49db98d 234static inline void
158142c2 235 shift128RightJamming(
07d792d2 236 uint64_t a0, uint64_t a1, int count, uint64_t *z0Ptr, uint64_t *z1Ptr)
158142c2 237{
bb98fe42 238 uint64_t z0, z1;
8f506c70 239 int8_t negCount = ( - count ) & 63;
158142c2
FB
240
241 if ( count == 0 ) {
242 z1 = a1;
243 z0 = a0;
244 }
245 else if ( count < 64 ) {
246 z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
247 z0 = a0>>count;
248 }
249 else {
250 if ( count == 64 ) {
251 z1 = a0 | ( a1 != 0 );
252 }
253 else if ( count < 128 ) {
254 z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
255 }
256 else {
257 z1 = ( ( a0 | a1 ) != 0 );
258 }
259 z0 = 0;
260 }
261 *z1Ptr = z1;
262 *z0Ptr = z0;
263
264}
265
266/*----------------------------------------------------------------------------
267| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
268| by 64 _plus_ the number of bits given in `count'. The shifted result is
269| at most 128 nonzero bits; these are broken into two 64-bit pieces which are
270| stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
271| off form a third 64-bit result as follows: The _last_ bit shifted off is
272| the most-significant bit of the extra result, and the other 63 bits of the
273| extra result are all zero if and only if _all_but_the_last_ bits shifted off
274| were all zero. This extra result is stored in the location pointed to by
275| `z2Ptr'. The value of `count' can be arbitrarily large.
276| (This routine makes more sense if `a0', `a1', and `a2' are considered
277| to form a fixed-point value with binary point between `a1' and `a2'. This
278| fixed-point value is shifted right by the number of bits given in `count',
279| and the integer part of the result is returned at the locations pointed to
280| by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
281| corrupted as described above, and is returned at the location pointed to by
282| `z2Ptr'.)
283*----------------------------------------------------------------------------*/
284
a49db98d 285static inline void
158142c2 286 shift128ExtraRightJamming(
bb98fe42
AF
287 uint64_t a0,
288 uint64_t a1,
289 uint64_t a2,
07d792d2 290 int count,
bb98fe42
AF
291 uint64_t *z0Ptr,
292 uint64_t *z1Ptr,
293 uint64_t *z2Ptr
158142c2
FB
294 )
295{
bb98fe42 296 uint64_t z0, z1, z2;
8f506c70 297 int8_t negCount = ( - count ) & 63;
158142c2
FB
298
299 if ( count == 0 ) {
300 z2 = a2;
301 z1 = a1;
302 z0 = a0;
303 }
304 else {
305 if ( count < 64 ) {
306 z2 = a1<<negCount;
307 z1 = ( a0<<negCount ) | ( a1>>count );
308 z0 = a0>>count;
309 }
310 else {
311 if ( count == 64 ) {
312 z2 = a1;
313 z1 = a0;
314 }
315 else {
316 a2 |= a1;
317 if ( count < 128 ) {
318 z2 = a0<<negCount;
319 z1 = a0>>( count & 63 );
320 }
321 else {
322 z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
323 z1 = 0;
324 }
325 }
326 z0 = 0;
327 }
328 z2 |= ( a2 != 0 );
329 }
330 *z2Ptr = z2;
331 *z1Ptr = z1;
332 *z0Ptr = z0;
333
334}
335
336/*----------------------------------------------------------------------------
337| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
338| number of bits given in `count'. Any bits shifted off are lost. The value
339| of `count' must be less than 64. The result is broken into two 64-bit
340| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
341*----------------------------------------------------------------------------*/
342
a49db98d 343static inline void
158142c2 344 shortShift128Left(
07d792d2 345 uint64_t a0, uint64_t a1, int count, uint64_t *z0Ptr, uint64_t *z1Ptr)
158142c2
FB
346{
347
348 *z1Ptr = a1<<count;
349 *z0Ptr =
350 ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
351
352}
353
354/*----------------------------------------------------------------------------
355| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
356| by the number of bits given in `count'. Any bits shifted off are lost.
357| The value of `count' must be less than 64. The result is broken into three
358| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
359| `z1Ptr', and `z2Ptr'.
360*----------------------------------------------------------------------------*/
361
a49db98d 362static inline void
158142c2 363 shortShift192Left(
bb98fe42
AF
364 uint64_t a0,
365 uint64_t a1,
366 uint64_t a2,
07d792d2 367 int count,
bb98fe42
AF
368 uint64_t *z0Ptr,
369 uint64_t *z1Ptr,
370 uint64_t *z2Ptr
158142c2
FB
371 )
372{
bb98fe42 373 uint64_t z0, z1, z2;
8f506c70 374 int8_t negCount;
158142c2
FB
375
376 z2 = a2<<count;
377 z1 = a1<<count;
378 z0 = a0<<count;
379 if ( 0 < count ) {
380 negCount = ( ( - count ) & 63 );
381 z1 |= a2>>negCount;
382 z0 |= a1>>negCount;
383 }
384 *z2Ptr = z2;
385 *z1Ptr = z1;
386 *z0Ptr = z0;
387
388}
389
390/*----------------------------------------------------------------------------
391| Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
392| value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
393| any carry out is lost. The result is broken into two 64-bit pieces which
394| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
395*----------------------------------------------------------------------------*/
396
a49db98d 397static inline void
158142c2 398 add128(
bb98fe42 399 uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1, uint64_t *z0Ptr, uint64_t *z1Ptr )
158142c2 400{
bb98fe42 401 uint64_t z1;
158142c2
FB
402
403 z1 = a1 + b1;
404 *z1Ptr = z1;
405 *z0Ptr = a0 + b0 + ( z1 < a1 );
406
407}
408
409/*----------------------------------------------------------------------------
410| Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
411| 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
412| modulo 2^192, so any carry out is lost. The result is broken into three
413| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
414| `z1Ptr', and `z2Ptr'.
415*----------------------------------------------------------------------------*/
416
a49db98d 417static inline void
158142c2 418 add192(
bb98fe42
AF
419 uint64_t a0,
420 uint64_t a1,
421 uint64_t a2,
422 uint64_t b0,
423 uint64_t b1,
424 uint64_t b2,
425 uint64_t *z0Ptr,
426 uint64_t *z1Ptr,
427 uint64_t *z2Ptr
158142c2
FB
428 )
429{
bb98fe42 430 uint64_t z0, z1, z2;
8f506c70 431 int8_t carry0, carry1;
158142c2
FB
432
433 z2 = a2 + b2;
434 carry1 = ( z2 < a2 );
435 z1 = a1 + b1;
436 carry0 = ( z1 < a1 );
437 z0 = a0 + b0;
438 z1 += carry1;
439 z0 += ( z1 < carry1 );
440 z0 += carry0;
441 *z2Ptr = z2;
442 *z1Ptr = z1;
443 *z0Ptr = z0;
444
445}
446
447/*----------------------------------------------------------------------------
448| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
449| 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
450| 2^128, so any borrow out (carry out) is lost. The result is broken into two
451| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
452| `z1Ptr'.
453*----------------------------------------------------------------------------*/
454
a49db98d 455static inline void
158142c2 456 sub128(
bb98fe42 457 uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1, uint64_t *z0Ptr, uint64_t *z1Ptr )
158142c2
FB
458{
459
460 *z1Ptr = a1 - b1;
461 *z0Ptr = a0 - b0 - ( a1 < b1 );
462
463}
464
465/*----------------------------------------------------------------------------
466| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
467| from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
468| Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
469| result is broken into three 64-bit pieces which are stored at the locations
470| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
471*----------------------------------------------------------------------------*/
472
a49db98d 473static inline void
158142c2 474 sub192(
bb98fe42
AF
475 uint64_t a0,
476 uint64_t a1,
477 uint64_t a2,
478 uint64_t b0,
479 uint64_t b1,
480 uint64_t b2,
481 uint64_t *z0Ptr,
482 uint64_t *z1Ptr,
483 uint64_t *z2Ptr
158142c2
FB
484 )
485{
bb98fe42 486 uint64_t z0, z1, z2;
8f506c70 487 int8_t borrow0, borrow1;
158142c2
FB
488
489 z2 = a2 - b2;
490 borrow1 = ( a2 < b2 );
491 z1 = a1 - b1;
492 borrow0 = ( a1 < b1 );
493 z0 = a0 - b0;
494 z0 -= ( z1 < borrow1 );
495 z1 -= borrow1;
496 z0 -= borrow0;
497 *z2Ptr = z2;
498 *z1Ptr = z1;
499 *z0Ptr = z0;
500
501}
502
503/*----------------------------------------------------------------------------
504| Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
505| into two 64-bit pieces which are stored at the locations pointed to by
506| `z0Ptr' and `z1Ptr'.
507*----------------------------------------------------------------------------*/
508
a49db98d 509static inline void mul64To128( uint64_t a, uint64_t b, uint64_t *z0Ptr, uint64_t *z1Ptr )
158142c2 510{
bb98fe42
AF
511 uint32_t aHigh, aLow, bHigh, bLow;
512 uint64_t z0, zMiddleA, zMiddleB, z1;
158142c2
FB
513
514 aLow = a;
515 aHigh = a>>32;
516 bLow = b;
517 bHigh = b>>32;
bb98fe42
AF
518 z1 = ( (uint64_t) aLow ) * bLow;
519 zMiddleA = ( (uint64_t) aLow ) * bHigh;
520 zMiddleB = ( (uint64_t) aHigh ) * bLow;
521 z0 = ( (uint64_t) aHigh ) * bHigh;
158142c2 522 zMiddleA += zMiddleB;
bb98fe42 523 z0 += ( ( (uint64_t) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
158142c2
FB
524 zMiddleA <<= 32;
525 z1 += zMiddleA;
526 z0 += ( z1 < zMiddleA );
527 *z1Ptr = z1;
528 *z0Ptr = z0;
529
530}
531
532/*----------------------------------------------------------------------------
533| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
534| `b' to obtain a 192-bit product. The product is broken into three 64-bit
535| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
536| `z2Ptr'.
537*----------------------------------------------------------------------------*/
538
a49db98d 539static inline void
158142c2 540 mul128By64To192(
bb98fe42
AF
541 uint64_t a0,
542 uint64_t a1,
543 uint64_t b,
544 uint64_t *z0Ptr,
545 uint64_t *z1Ptr,
546 uint64_t *z2Ptr
158142c2
FB
547 )
548{
bb98fe42 549 uint64_t z0, z1, z2, more1;
158142c2
FB
550
551 mul64To128( a1, b, &z1, &z2 );
552 mul64To128( a0, b, &z0, &more1 );
553 add128( z0, more1, 0, z1, &z0, &z1 );
554 *z2Ptr = z2;
555 *z1Ptr = z1;
556 *z0Ptr = z0;
557
558}
559
560/*----------------------------------------------------------------------------
561| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
562| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
563| product. The product is broken into four 64-bit pieces which are stored at
564| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
565*----------------------------------------------------------------------------*/
566
a49db98d 567static inline void
158142c2 568 mul128To256(
bb98fe42
AF
569 uint64_t a0,
570 uint64_t a1,
571 uint64_t b0,
572 uint64_t b1,
573 uint64_t *z0Ptr,
574 uint64_t *z1Ptr,
575 uint64_t *z2Ptr,
576 uint64_t *z3Ptr
158142c2
FB
577 )
578{
bb98fe42
AF
579 uint64_t z0, z1, z2, z3;
580 uint64_t more1, more2;
158142c2
FB
581
582 mul64To128( a1, b1, &z2, &z3 );
583 mul64To128( a1, b0, &z1, &more2 );
584 add128( z1, more2, 0, z2, &z1, &z2 );
585 mul64To128( a0, b0, &z0, &more1 );
586 add128( z0, more1, 0, z1, &z0, &z1 );
587 mul64To128( a0, b1, &more1, &more2 );
588 add128( more1, more2, 0, z2, &more1, &z2 );
589 add128( z0, z1, 0, more1, &z0, &z1 );
590 *z3Ptr = z3;
591 *z2Ptr = z2;
592 *z1Ptr = z1;
593 *z0Ptr = z0;
594
595}
596
597/*----------------------------------------------------------------------------
598| Returns an approximation to the 64-bit integer quotient obtained by dividing
599| `b' into the 128-bit value formed by concatenating `a0' and `a1'. The
600| divisor `b' must be at least 2^63. If q is the exact quotient truncated
601| toward zero, the approximation returned lies between q and q + 2 inclusive.
602| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
603| unsigned integer is returned.
604*----------------------------------------------------------------------------*/
605
bb98fe42 606static uint64_t estimateDiv128To64( uint64_t a0, uint64_t a1, uint64_t b )
158142c2 607{
bb98fe42
AF
608 uint64_t b0, b1;
609 uint64_t rem0, rem1, term0, term1;
610 uint64_t z;
158142c2
FB
611
612 if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
613 b0 = b>>32;
614 z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
615 mul64To128( b, z, &term0, &term1 );
616 sub128( a0, a1, term0, term1, &rem0, &rem1 );
bb98fe42 617 while ( ( (int64_t) rem0 ) < 0 ) {
158142c2
FB
618 z -= LIT64( 0x100000000 );
619 b1 = b<<32;
620 add128( rem0, rem1, b0, b1, &rem0, &rem1 );
621 }
622 rem0 = ( rem0<<32 ) | ( rem1>>32 );
623 z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
624 return z;
625
626}
627
628/*----------------------------------------------------------------------------
629| Returns an approximation to the square root of the 32-bit significand given
630| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
631| `aExp' (the least significant bit) is 1, the integer returned approximates
632| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
633| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
634| case, the approximation returned lies strictly within +/-2 of the exact
635| value.
636*----------------------------------------------------------------------------*/
637
0c48262d 638static uint32_t estimateSqrt32(int aExp, uint32_t a)
158142c2 639{
bb98fe42 640 static const uint16_t sqrtOddAdjustments[] = {
158142c2
FB
641 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
642 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
643 };
bb98fe42 644 static const uint16_t sqrtEvenAdjustments[] = {
158142c2
FB
645 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
646 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
647 };
8f506c70 648 int8_t index;
bb98fe42 649 uint32_t z;
158142c2
FB
650
651 index = ( a>>27 ) & 15;
652 if ( aExp & 1 ) {
3f4cb3d3 653 z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ (int)index ];
158142c2
FB
654 z = ( ( a / z )<<14 ) + ( z<<15 );
655 a >>= 1;
656 }
657 else {
3f4cb3d3 658 z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ (int)index ];
158142c2
FB
659 z = a / z + z;
660 z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
bb98fe42 661 if ( z <= a ) return (uint32_t) ( ( (int32_t) a )>>1 );
158142c2 662 }
bb98fe42 663 return ( (uint32_t) ( ( ( (uint64_t) a )<<31 ) / z ) ) + ( z>>1 );
158142c2
FB
664
665}
666
667/*----------------------------------------------------------------------------
668| Returns the number of leading 0 bits before the most-significant 1 bit of
669| `a'. If `a' is zero, 32 is returned.
670*----------------------------------------------------------------------------*/
671
8f506c70 672static int8_t countLeadingZeros32( uint32_t a )
158142c2 673{
b3b4c7f3
AJ
674#if SOFTFLOAT_GNUC_PREREQ(3, 4)
675 if (a) {
676 return __builtin_clz(a);
677 } else {
678 return 32;
679 }
680#else
8f506c70 681 static const int8_t countLeadingZerosHigh[] = {
158142c2
FB
682 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
683 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
684 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
685 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
686 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
687 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
688 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
689 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
690 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
691 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
692 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
693 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
694 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
695 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
696 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
697 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
698 };
8f506c70 699 int8_t shiftCount;
158142c2
FB
700
701 shiftCount = 0;
702 if ( a < 0x10000 ) {
703 shiftCount += 16;
704 a <<= 16;
705 }
706 if ( a < 0x1000000 ) {
707 shiftCount += 8;
708 a <<= 8;
709 }
710 shiftCount += countLeadingZerosHigh[ a>>24 ];
711 return shiftCount;
b3b4c7f3 712#endif
158142c2
FB
713}
714
715/*----------------------------------------------------------------------------
716| Returns the number of leading 0 bits before the most-significant 1 bit of
717| `a'. If `a' is zero, 64 is returned.
718*----------------------------------------------------------------------------*/
719
8f506c70 720static int8_t countLeadingZeros64( uint64_t a )
158142c2 721{
b3b4c7f3
AJ
722#if SOFTFLOAT_GNUC_PREREQ(3, 4)
723 if (a) {
724 return __builtin_clzll(a);
725 } else {
726 return 64;
727 }
728#else
8f506c70 729 int8_t shiftCount;
158142c2
FB
730
731 shiftCount = 0;
bb98fe42 732 if ( a < ( (uint64_t) 1 )<<32 ) {
158142c2
FB
733 shiftCount += 32;
734 }
735 else {
736 a >>= 32;
737 }
738 shiftCount += countLeadingZeros32( a );
739 return shiftCount;
b3b4c7f3 740#endif
158142c2
FB
741}
742
743/*----------------------------------------------------------------------------
744| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
745| is equal to the 128-bit value formed by concatenating `b0' and `b1'.
746| Otherwise, returns 0.
747*----------------------------------------------------------------------------*/
748
a49db98d 749static inline flag eq128( uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1 )
158142c2
FB
750{
751
752 return ( a0 == b0 ) && ( a1 == b1 );
753
754}
755
756/*----------------------------------------------------------------------------
757| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
758| than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
759| Otherwise, returns 0.
760*----------------------------------------------------------------------------*/
761
a49db98d 762static inline flag le128( uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1 )
158142c2
FB
763{
764
765 return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
766
767}
768
769/*----------------------------------------------------------------------------
770| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
771| than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
772| returns 0.
773*----------------------------------------------------------------------------*/
774
a49db98d 775static inline flag lt128( uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1 )
158142c2
FB
776{
777
778 return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
779
780}
781
782/*----------------------------------------------------------------------------
783| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
784| not equal to the 128-bit value formed by concatenating `b0' and `b1'.
785| Otherwise, returns 0.
786*----------------------------------------------------------------------------*/
787
a49db98d 788static inline flag ne128( uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1 )
158142c2
FB
789{
790
791 return ( a0 != b0 ) || ( a1 != b1 );
792
793}