]> git.proxmox.com Git - mirror_qemu.git/blame - fpu/softfloat-specialize.c.inc
Merge tag 'hppa-btlb-pull-request' of https://github.com/hdeller/qemu-hppa into staging
[mirror_qemu.git] / fpu / softfloat-specialize.c.inc
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
16017c48
PM
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
8d725fac 16 */
158142c2 17
a7d1ac78
PM
18/*
19===============================================================================
158142c2 20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
a7d1ac78 21Arithmetic Package, Release 2a.
158142c2
FB
22
23Written by John R. Hauser. This work was made possible in part by the
24International Computer Science Institute, located at Suite 600, 1947 Center
25Street, Berkeley, California 94704. Funding was partially provided by the
26National Science Foundation under grant MIP-9311980. The original version
27of this code was written as part of a project to build a fixed-point vector
28processor in collaboration with the University of California at Berkeley,
29overseen by Profs. Nelson Morgan and John Wawrzynek. More information
a7d1ac78 30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
158142c2
FB
31arithmetic/SoftFloat.html'.
32
a7d1ac78
PM
33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
158142c2
FB
38
39Derivative works are acceptable, even for commercial purposes, so long as
a7d1ac78
PM
40(1) they include prominent notice that the work is derivative, and (2) they
41include prominent notice akin to these four paragraphs for those parts of
42this code that are retained.
158142c2 43
a7d1ac78
PM
44===============================================================================
45*/
158142c2 46
16017c48
PM
47/* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78/* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
cc43c692
MF
82/*
83 * Define whether architecture deviates from IEEE in not supporting
213ff4e6
MF
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
cc43c692
MF
86static inline bool no_signaling_nans(float_status *status)
87{
03385dfd 88#if defined(TARGET_XTENSA)
cc43c692
MF
89 return status->no_signaling_nans;
90#else
91 return false;
213ff4e6 92#endif
cc43c692 93}
213ff4e6 94
03385dfd
RH
95/* Define how the architecture discriminates signaling NaNs.
96 * This done with the most significant bit of the fraction.
97 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
98 * the msb must be zero. MIPS is (so far) unique in supporting both the
99 * 2008 revision and backward compatibility with their original choice.
100 * Thus for MIPS we must make the choice at runtime.
101 */
c120391c 102static inline bool snan_bit_is_one(float_status *status)
03385dfd
RH
103{
104#if defined(TARGET_MIPS)
105 return status->snan_bit_is_one;
43692239 106#elif defined(TARGET_HPPA) || defined(TARGET_SH4)
03385dfd
RH
107 return 1;
108#else
109 return 0;
110#endif
111}
112
298b468e
RH
113/*----------------------------------------------------------------------------
114| For the deconstructed floating-point with fraction FRAC, return true
115| if the fraction represents a signalling NaN; otherwise false.
116*----------------------------------------------------------------------------*/
117
118static bool parts_is_snan_frac(uint64_t frac, float_status *status)
119{
cc43c692
MF
120 if (no_signaling_nans(status)) {
121 return false;
122 } else {
123 bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
124 return msb == snan_bit_is_one(status);
125 }
298b468e
RH
126}
127
f7e598e2
RH
128/*----------------------------------------------------------------------------
129| The pattern for a default generated deconstructed floating-point NaN.
130*----------------------------------------------------------------------------*/
131
0fc07cad 132static void parts64_default_nan(FloatParts64 *p, float_status *status)
f7e598e2
RH
133{
134 bool sign = 0;
135 uint64_t frac;
136
137#if defined(TARGET_SPARC) || defined(TARGET_M68K)
8fb3d902 138 /* !snan_bit_is_one, set all bits */
f7e598e2 139 frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
8fb3d902
RH
140#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
141 || defined(TARGET_MICROBLAZE)
142 /* !snan_bit_is_one, set sign and msb */
f7e598e2 143 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
8fb3d902 144 sign = 1;
f7e598e2 145#elif defined(TARGET_HPPA)
8fb3d902 146 /* snan_bit_is_one, set msb-1. */
f7e598e2 147 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
c0336c87
TS
148#elif defined(TARGET_HEXAGON)
149 sign = 1;
150 frac = ~0ULL;
f7e598e2 151#else
43692239
MA
152 /*
153 * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
154 * S390, SH4, TriCore, and Xtensa. Our other supported targets,
155 * CRIS, Nios2, and Tile, do not have floating-point.
8fb3d902 156 */
03385dfd 157 if (snan_bit_is_one(status)) {
8fb3d902 158 /* set all bits other than msb */
f7e598e2
RH
159 frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
160 } else {
8fb3d902 161 /* set msb */
f7e598e2 162 frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
f7e598e2
RH
163 }
164#endif
165
0fc07cad 166 *p = (FloatParts64) {
f7e598e2
RH
167 .cls = float_class_qnan,
168 .sign = sign,
169 .exp = INT_MAX,
170 .frac = frac
171 };
172}
173
e9034ea8
RH
174static void parts128_default_nan(FloatParts128 *p, float_status *status)
175{
176 /*
177 * Extrapolate from the choices made by parts64_default_nan to fill
178 * in the quad-floating format. If the low bit is set, assume we
179 * want to set all non-snan bits.
180 */
181 FloatParts64 p64;
182 parts64_default_nan(&p64, status);
183
184 *p = (FloatParts128) {
185 .cls = float_class_qnan,
186 .sign = p64.sign,
187 .exp = INT_MAX,
188 .frac_hi = p64.frac,
189 .frac_lo = -(p64.frac & 1)
190 };
191}
192
0bcfbcbe
RH
193/*----------------------------------------------------------------------------
194| Returns a quiet NaN from a signalling NaN for the deconstructed
195| floating-point parts.
196*----------------------------------------------------------------------------*/
197
92ff426d 198static uint64_t parts_silence_nan_frac(uint64_t frac, float_status *status)
0bcfbcbe 199{
cc43c692 200 g_assert(!no_signaling_nans(status));
a777d603
RH
201
202 /* The only snan_bit_is_one target without default_nan_mode is HPPA. */
03385dfd 203 if (snan_bit_is_one(status)) {
92ff426d
RH
204 frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
205 frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
0bcfbcbe 206 } else {
92ff426d 207 frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
0bcfbcbe 208 }
92ff426d
RH
209 return frac;
210}
211
212static void parts64_silence_nan(FloatParts64 *p, float_status *status)
213{
214 p->frac = parts_silence_nan_frac(p->frac, status);
215 p->cls = float_class_qnan;
0bcfbcbe
RH
216}
217
0018b1f4
RH
218static void parts128_silence_nan(FloatParts128 *p, float_status *status)
219{
220 p->frac_hi = parts_silence_nan_frac(p->frac_hi, status);
221 p->cls = float_class_qnan;
222}
223
789ec7ce
PB
224/*----------------------------------------------------------------------------
225| The pattern for a default generated extended double-precision NaN.
226*----------------------------------------------------------------------------*/
af39bc8c
AM
227floatx80 floatx80_default_nan(float_status *status)
228{
229 floatx80 r;
0218a16e
RH
230
231 /* None of the targets that have snan_bit_is_one use floatx80. */
232 assert(!snan_bit_is_one(status));
e5b0cbe8 233#if defined(TARGET_M68K)
f7e81a94 234 r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
e5b0cbe8
LV
235 r.high = 0x7FFF;
236#else
0218a16e 237 /* X86 */
f7e81a94 238 r.low = UINT64_C(0xC000000000000000);
0218a16e 239 r.high = 0xFFFF;
e5b0cbe8 240#endif
af39bc8c
AM
241 return r;
242}
789ec7ce 243
0f605c88
LV
244/*----------------------------------------------------------------------------
245| The pattern for a default generated extended double-precision inf.
246*----------------------------------------------------------------------------*/
247
248#define floatx80_infinity_high 0x7FFF
249#if defined(TARGET_M68K)
f7e81a94 250#define floatx80_infinity_low UINT64_C(0x0000000000000000)
0f605c88 251#else
f7e81a94 252#define floatx80_infinity_low UINT64_C(0x8000000000000000)
0f605c88
LV
253#endif
254
255const floatx80 floatx80_infinity
256 = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
257
bb4d4bb3
PM
258/*----------------------------------------------------------------------------
259| Returns 1 if the half-precision floating-point value `a' is a quiet
260| NaN; otherwise returns 0.
261*----------------------------------------------------------------------------*/
262
150c7a91 263bool float16_is_quiet_nan(float16 a_, float_status *status)
bb4d4bb3 264{
cc43c692
MF
265 if (no_signaling_nans(status)) {
266 return float16_is_any_nan(a_);
af39bc8c 267 } else {
cc43c692
MF
268 uint16_t a = float16_val(a_);
269 if (snan_bit_is_one(status)) {
270 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
271 } else {
272
273 return ((a >> 9) & 0x3F) == 0x3F;
274 }
af39bc8c 275 }
bb4d4bb3
PM
276}
277
5ebf5f4b
LZ
278/*----------------------------------------------------------------------------
279| Returns 1 if the bfloat16 value `a' is a quiet
280| NaN; otherwise returns 0.
281*----------------------------------------------------------------------------*/
282
283bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
284{
285 if (no_signaling_nans(status)) {
286 return bfloat16_is_any_nan(a_);
287 } else {
288 uint16_t a = a_;
289 if (snan_bit_is_one(status)) {
290 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
291 } else {
292 return ((a >> 6) & 0x1FF) == 0x1FF;
293 }
294 }
295}
296
bb4d4bb3
PM
297/*----------------------------------------------------------------------------
298| Returns 1 if the half-precision floating-point value `a' is a signaling
299| NaN; otherwise returns 0.
300*----------------------------------------------------------------------------*/
301
150c7a91 302bool float16_is_signaling_nan(float16 a_, float_status *status)
bb4d4bb3 303{
cc43c692
MF
304 if (no_signaling_nans(status)) {
305 return 0;
af39bc8c 306 } else {
cc43c692
MF
307 uint16_t a = float16_val(a_);
308 if (snan_bit_is_one(status)) {
309 return ((a >> 9) & 0x3F) == 0x3F;
310 } else {
311 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
312 }
af39bc8c 313 }
bca52234 314}
bb4d4bb3 315
5ebf5f4b
LZ
316/*----------------------------------------------------------------------------
317| Returns 1 if the bfloat16 value `a' is a signaling
318| NaN; otherwise returns 0.
319*----------------------------------------------------------------------------*/
320
321bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
322{
323 if (no_signaling_nans(status)) {
324 return 0;
325 } else {
326 uint16_t a = a_;
327 if (snan_bit_is_one(status)) {
328 return ((a >> 6) & 0x1FF) == 0x1FF;
329 } else {
330 return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
331 }
332 }
333}
334
158142c2 335/*----------------------------------------------------------------------------
5a6932d5
TS
336| Returns 1 if the single-precision floating-point value `a' is a quiet
337| NaN; otherwise returns 0.
158142c2
FB
338*----------------------------------------------------------------------------*/
339
150c7a91 340bool float32_is_quiet_nan(float32 a_, float_status *status)
158142c2 341{
cc43c692
MF
342 if (no_signaling_nans(status)) {
343 return float32_is_any_nan(a_);
af39bc8c 344 } else {
cc43c692
MF
345 uint32_t a = float32_val(a_);
346 if (snan_bit_is_one(status)) {
347 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
348 } else {
349 return ((uint32_t)(a << 1) >= 0xFF800000);
350 }
af39bc8c 351 }
158142c2
FB
352}
353
354/*----------------------------------------------------------------------------
355| Returns 1 if the single-precision floating-point value `a' is a signaling
356| NaN; otherwise returns 0.
357*----------------------------------------------------------------------------*/
358
150c7a91 359bool float32_is_signaling_nan(float32 a_, float_status *status)
158142c2 360{
cc43c692
MF
361 if (no_signaling_nans(status)) {
362 return 0;
af39bc8c 363 } else {
cc43c692
MF
364 uint32_t a = float32_val(a_);
365 if (snan_bit_is_one(status)) {
366 return ((uint32_t)(a << 1) >= 0xFF800000);
367 } else {
368 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
369 }
af39bc8c 370 }
bca52234 371}
158142c2 372
354f211b
PM
373/*----------------------------------------------------------------------------
374| Select which NaN to propagate for a two-input operation.
375| IEEE754 doesn't specify all the details of this, so the
376| algorithm is target-specific.
377| The routine is passed various bits of information about the
378| two NaNs and should return 0 to select NaN a and 1 for NaN b.
379| Note that signalling NaNs are always squashed to quiet NaNs
4885312f 380| by the caller, by calling floatXX_silence_nan() before
1f398e08 381| returning them.
354f211b
PM
382|
383| aIsLargerSignificand is only valid if both a and b are NaNs
384| of some kind, and is true if a has the larger significand,
385| or if both a and b have the same significand but a is
386| positive but b is negative. It is only needed for the x87
387| tie-break rule.
388*----------------------------------------------------------------------------*/
389
4f251cfd 390static int pickNaN(FloatClass a_cls, FloatClass b_cls,
913602e3 391 bool aIsLargerSignificand, float_status *status)
011da610 392{
63dd7bcb 393#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA) || \
f45fd24c 394 defined(TARGET_LOONGARCH64) || defined(TARGET_S390X)
13894527
AB
395 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
396 * the first of:
011da610
PM
397 * 1. A if it is signaling
398 * 2. B if it is signaling
399 * 3. A (quiet)
400 * 4. B (quiet)
401 * A signaling NaN is always quietened before returning it.
402 */
084d19ba
AJ
403 /* According to MIPS specifications, if one of the two operands is
404 * a sNaN, a new qNaN has to be generated. This is done in
4885312f 405 * floatXX_silence_nan(). For qNaN inputs the specifications
084d19ba
AJ
406 * says: "When possible, this QNaN result is one of the operand QNaN
407 * values." In practice it seems that most implementations choose
408 * the first operand if both operands are qNaN. In short this gives
409 * the following rules:
410 * 1. A if it is signaling
411 * 2. B if it is signaling
412 * 3. A (quiet)
413 * 4. B (quiet)
414 * A signaling NaN is always silenced before returning it.
415 */
4f251cfd 416 if (is_snan(a_cls)) {
084d19ba 417 return 0;
4f251cfd 418 } else if (is_snan(b_cls)) {
084d19ba 419 return 1;
4f251cfd 420 } else if (is_qnan(a_cls)) {
084d19ba
AJ
421 return 0;
422 } else {
423 return 1;
424 }
913602e3 425#elif defined(TARGET_PPC) || defined(TARGET_M68K)
e024e881
AJ
426 /* PowerPC propagation rules:
427 * 1. A if it sNaN or qNaN
428 * 2. B if it sNaN or qNaN
429 * A signaling NaN is always silenced before returning it.
430 */
e5b0cbe8
LV
431 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
432 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
433 * If either operand, but not both operands, of an operation is a
434 * nonsignaling NaN, then that NaN is returned as the result. If both
435 * operands are nonsignaling NaNs, then the destination operand
436 * nonsignaling NaN is returned as the result.
437 * If either operand to an operation is a signaling NaN (SNaN), then the
438 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
439 * is set in the FPCR ENABLE byte, then the exception is taken and the
440 * destination is not modified. If the SNaN exception enable bit is not
441 * set, setting the SNaN bit in the operand to a one converts the SNaN to
442 * a nonsignaling NaN. The operation then continues as described in the
443 * preceding paragraph for nonsignaling NaNs.
444 */
4f251cfd
RH
445 if (is_nan(a_cls)) {
446 return 0;
e5b0cbe8 447 } else {
4f251cfd 448 return 1;
e5b0cbe8 449 }
913602e3
MF
450#elif defined(TARGET_XTENSA)
451 /*
452 * Xtensa has two NaN propagation modes.
453 * Which one is active is controlled by float_status::use_first_nan.
454 */
455 if (status->use_first_nan) {
456 if (is_nan(a_cls)) {
457 return 0;
458 } else {
459 return 1;
460 }
461 } else {
462 if (is_nan(b_cls)) {
463 return 1;
464 } else {
465 return 0;
466 }
467 }
011da610 468#else
354f211b
PM
469 /* This implements x87 NaN propagation rules:
470 * SNaN + QNaN => return the QNaN
471 * two SNaNs => return the one with the larger significand, silenced
472 * two QNaNs => return the one with the larger significand
473 * SNaN and a non-NaN => return the SNaN, silenced
474 * QNaN and a non-NaN => return the QNaN
475 *
476 * If we get down to comparing significands and they are the same,
477 * return the NaN with the positive sign bit (if any).
478 */
4f251cfd
RH
479 if (is_snan(a_cls)) {
480 if (is_snan(b_cls)) {
354f211b
PM
481 return aIsLargerSignificand ? 0 : 1;
482 }
4f251cfd
RH
483 return is_qnan(b_cls) ? 1 : 0;
484 } else if (is_qnan(a_cls)) {
485 if (is_snan(b_cls) || !is_qnan(b_cls)) {
354f211b 486 return 0;
a59eaea6 487 } else {
354f211b
PM
488 return aIsLargerSignificand ? 0 : 1;
489 }
490 } else {
491 return 1;
492 }
011da610 493#endif
4f251cfd 494}
354f211b 495
369be8f6
PM
496/*----------------------------------------------------------------------------
497| Select which NaN to propagate for a three-input operation.
498| For the moment we assume that no CPU needs the 'larger significand'
499| information.
500| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
501*----------------------------------------------------------------------------*/
3bd2dec1
RH
502static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
503 bool infzero, float_status *status)
369be8f6 504{
3bd2dec1 505#if defined(TARGET_ARM)
369be8f6
PM
506 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
507 * the default NaN
508 */
3bd2dec1 509 if (infzero && is_qnan(c_cls)) {
bead3c9b 510 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
369be8f6
PM
511 return 3;
512 }
513
514 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
515 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
516 */
3bd2dec1 517 if (is_snan(c_cls)) {
369be8f6 518 return 2;
3bd2dec1 519 } else if (is_snan(a_cls)) {
369be8f6 520 return 0;
3bd2dec1 521 } else if (is_snan(b_cls)) {
369be8f6 522 return 1;
3bd2dec1 523 } else if (is_qnan(c_cls)) {
369be8f6 524 return 2;
3bd2dec1 525 } else if (is_qnan(a_cls)) {
369be8f6
PM
526 return 0;
527 } else {
528 return 1;
529 }
bbc1dede 530#elif defined(TARGET_MIPS)
03385dfd 531 if (snan_bit_is_one(status)) {
7ca96e1a
MM
532 /*
533 * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
534 * case sets InvalidOp and returns the default NaN
535 */
536 if (infzero) {
bead3c9b 537 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
7ca96e1a
MM
538 return 3;
539 }
c27644f0 540 /* Prefer sNaN over qNaN, in the a, b, c order. */
3bd2dec1 541 if (is_snan(a_cls)) {
c27644f0 542 return 0;
3bd2dec1 543 } else if (is_snan(b_cls)) {
c27644f0 544 return 1;
3bd2dec1 545 } else if (is_snan(c_cls)) {
c27644f0 546 return 2;
3bd2dec1 547 } else if (is_qnan(a_cls)) {
c27644f0 548 return 0;
3bd2dec1 549 } else if (is_qnan(b_cls)) {
c27644f0
AM
550 return 1;
551 } else {
552 return 2;
553 }
bbc1dede 554 } else {
7ca96e1a
MM
555 /*
556 * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
557 * case sets InvalidOp and returns the input value 'c'
558 */
559 if (infzero) {
bead3c9b 560 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
7ca96e1a
MM
561 return 2;
562 }
c27644f0 563 /* Prefer sNaN over qNaN, in the c, a, b order. */
3bd2dec1 564 if (is_snan(c_cls)) {
c27644f0 565 return 2;
3bd2dec1 566 } else if (is_snan(a_cls)) {
c27644f0 567 return 0;
3bd2dec1 568 } else if (is_snan(b_cls)) {
c27644f0 569 return 1;
3bd2dec1 570 } else if (is_qnan(c_cls)) {
c27644f0 571 return 2;
3bd2dec1 572 } else if (is_qnan(a_cls)) {
c27644f0
AM
573 return 0;
574 } else {
575 return 1;
576 }
bbc1dede 577 }
2344f98e
SG
578#elif defined(TARGET_LOONGARCH64)
579 /*
580 * For LoongArch systems that conform to IEEE754-2008, the (inf,zero,nan)
581 * case sets InvalidOp and returns the input value 'c'
582 */
583 if (infzero) {
584 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
585 return 2;
586 }
587 /* Prefer sNaN over qNaN, in the c, a, b order. */
588 if (is_snan(c_cls)) {
589 return 2;
590 } else if (is_snan(a_cls)) {
591 return 0;
592 } else if (is_snan(b_cls)) {
593 return 1;
594 } else if (is_qnan(c_cls)) {
595 return 2;
596 } else if (is_qnan(a_cls)) {
597 return 0;
598 } else {
599 return 1;
600 }
369be8f6 601#elif defined(TARGET_PPC)
369be8f6
PM
602 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
603 * to return an input NaN if we have one (ie c) rather than generating
604 * a default NaN
605 */
606 if (infzero) {
bead3c9b 607 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
369be8f6
PM
608 return 2;
609 }
610
611 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
612 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
613 */
3bd2dec1 614 if (is_nan(a_cls)) {
369be8f6 615 return 0;
3bd2dec1 616 } else if (is_nan(c_cls)) {
369be8f6
PM
617 return 2;
618 } else {
619 return 1;
620 }
3a7f7757
FC
621#elif defined(TARGET_RISCV)
622 /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
623 if (infzero) {
bead3c9b 624 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
3a7f7757
FC
625 }
626 return 3; /* default NaN */
fbcc38e4
MF
627#elif defined(TARGET_XTENSA)
628 /*
629 * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
630 * an input NaN if we have one (ie c).
631 */
632 if (infzero) {
bead3c9b 633 float_raise(float_flag_invalid | float_flag_invalid_imz, status);
fbcc38e4
MF
634 return 2;
635 }
636 if (status->use_first_nan) {
637 if (is_nan(a_cls)) {
638 return 0;
639 } else if (is_nan(b_cls)) {
640 return 1;
641 } else {
642 return 2;
643 }
644 } else {
645 if (is_nan(c_cls)) {
646 return 2;
647 } else if (is_nan(b_cls)) {
648 return 1;
649 } else {
650 return 0;
651 }
652 }
369be8f6 653#else
3bd2dec1
RH
654 /* A default implementation: prefer a to b to c.
655 * This is unlikely to actually match any real implementation.
656 */
657 if (is_nan(a_cls)) {
369be8f6 658 return 0;
3bd2dec1 659 } else if (is_nan(b_cls)) {
369be8f6
PM
660 return 1;
661 } else {
662 return 2;
663 }
369be8f6 664#endif
3bd2dec1 665}
369be8f6 666
158142c2 667/*----------------------------------------------------------------------------
5a6932d5
TS
668| Returns 1 if the double-precision floating-point value `a' is a quiet
669| NaN; otherwise returns 0.
158142c2
FB
670*----------------------------------------------------------------------------*/
671
150c7a91 672bool float64_is_quiet_nan(float64 a_, float_status *status)
158142c2 673{
cc43c692
MF
674 if (no_signaling_nans(status)) {
675 return float64_is_any_nan(a_);
af39bc8c 676 } else {
cc43c692
MF
677 uint64_t a = float64_val(a_);
678 if (snan_bit_is_one(status)) {
679 return (((a >> 51) & 0xFFF) == 0xFFE)
680 && (a & 0x0007FFFFFFFFFFFFULL);
681 } else {
682 return ((a << 1) >= 0xFFF0000000000000ULL);
683 }
af39bc8c 684 }
158142c2
FB
685}
686
687/*----------------------------------------------------------------------------
688| Returns 1 if the double-precision floating-point value `a' is a signaling
689| NaN; otherwise returns 0.
690*----------------------------------------------------------------------------*/
691
150c7a91 692bool float64_is_signaling_nan(float64 a_, float_status *status)
158142c2 693{
cc43c692
MF
694 if (no_signaling_nans(status)) {
695 return 0;
af39bc8c 696 } else {
cc43c692
MF
697 uint64_t a = float64_val(a_);
698 if (snan_bit_is_one(status)) {
699 return ((a << 1) >= 0xFFF0000000000000ULL);
700 } else {
701 return (((a >> 51) & 0xFFF) == 0xFFE)
702 && (a & UINT64_C(0x0007FFFFFFFFFFFF));
703 }
af39bc8c 704 }
bca52234 705}
158142c2 706
158142c2
FB
707/*----------------------------------------------------------------------------
708| Returns 1 if the extended double-precision floating-point value `a' is a
de4af5f7
AJ
709| quiet NaN; otherwise returns 0. This slightly differs from the same
710| function for other types as floatx80 has an explicit bit.
158142c2
FB
711*----------------------------------------------------------------------------*/
712
af39bc8c 713int floatx80_is_quiet_nan(floatx80 a, float_status *status)
158142c2 714{
cc43c692
MF
715 if (no_signaling_nans(status)) {
716 return floatx80_is_any_nan(a);
af39bc8c 717 } else {
cc43c692
MF
718 if (snan_bit_is_one(status)) {
719 uint64_t aLow;
720
721 aLow = a.low & ~0x4000000000000000ULL;
722 return ((a.high & 0x7FFF) == 0x7FFF)
723 && (aLow << 1)
724 && (a.low == aLow);
725 } else {
726 return ((a.high & 0x7FFF) == 0x7FFF)
727 && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
728 }
af39bc8c 729 }
158142c2
FB
730}
731
732/*----------------------------------------------------------------------------
733| Returns 1 if the extended double-precision floating-point value `a' is a
de4af5f7
AJ
734| signaling NaN; otherwise returns 0. This slightly differs from the same
735| function for other types as floatx80 has an explicit bit.
158142c2
FB
736*----------------------------------------------------------------------------*/
737
af39bc8c 738int floatx80_is_signaling_nan(floatx80 a, float_status *status)
158142c2 739{
cc43c692
MF
740 if (no_signaling_nans(status)) {
741 return 0;
af39bc8c 742 } else {
cc43c692
MF
743 if (snan_bit_is_one(status)) {
744 return ((a.high & 0x7FFF) == 0x7FFF)
745 && ((a.low << 1) >= 0x8000000000000000ULL);
746 } else {
747 uint64_t aLow;
158142c2 748
cc43c692
MF
749 aLow = a.low & ~UINT64_C(0x4000000000000000);
750 return ((a.high & 0x7FFF) == 0x7FFF)
751 && (uint64_t)(aLow << 1)
752 && (a.low == aLow);
753 }
af39bc8c 754 }
bca52234 755}
158142c2 756
d619bb98
RH
757/*----------------------------------------------------------------------------
758| Returns a quiet NaN from a signalling NaN for the extended double-precision
759| floating point value `a'.
760*----------------------------------------------------------------------------*/
761
762floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
763{
377ed926
RH
764 /* None of the targets that have snan_bit_is_one use floatx80. */
765 assert(!snan_bit_is_one(status));
f7e81a94 766 a.low |= UINT64_C(0xC000000000000000);
377ed926 767 return a;
d619bb98
RH
768}
769
158142c2
FB
770/*----------------------------------------------------------------------------
771| Takes two extended double-precision floating-point values `a' and `b', one
772| of which is a NaN, and returns the appropriate NaN result. If either `a' or
773| `b' is a signaling NaN, the invalid exception is raised.
774*----------------------------------------------------------------------------*/
775
88857aca 776floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
158142c2 777{
c120391c 778 bool aIsLargerSignificand;
4f251cfd
RH
779 FloatClass a_cls, b_cls;
780
781 /* This is not complete, but is good enough for pickNaN. */
782 a_cls = (!floatx80_is_any_nan(a)
783 ? float_class_normal
784 : floatx80_is_signaling_nan(a, status)
785 ? float_class_snan
786 : float_class_qnan);
787 b_cls = (!floatx80_is_any_nan(b)
788 ? float_class_normal
789 : floatx80_is_signaling_nan(b, status)
790 ? float_class_snan
791 : float_class_qnan);
792
793 if (is_snan(a_cls) || is_snan(b_cls)) {
ff32e16e
PM
794 float_raise(float_flag_invalid, status);
795 }
354f211b 796
a2f2d288 797 if (status->default_nan_mode) {
af39bc8c 798 return floatx80_default_nan(status);
10201602
AJ
799 }
800
354f211b
PM
801 if (a.low < b.low) {
802 aIsLargerSignificand = 0;
803 } else if (b.low < a.low) {
804 aIsLargerSignificand = 1;
805 } else {
806 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
158142c2 807 }
354f211b 808
913602e3 809 if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
4f251cfd 810 if (is_snan(b_cls)) {
4885312f
RH
811 return floatx80_silence_nan(b, status);
812 }
813 return b;
354f211b 814 } else {
4f251cfd 815 if (is_snan(a_cls)) {
4885312f
RH
816 return floatx80_silence_nan(a, status);
817 }
818 return a;
158142c2 819 }
158142c2
FB
820}
821
158142c2 822/*----------------------------------------------------------------------------
5a6932d5
TS
823| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
824| NaN; otherwise returns 0.
158142c2
FB
825*----------------------------------------------------------------------------*/
826
150c7a91 827bool float128_is_quiet_nan(float128 a, float_status *status)
158142c2 828{
cc43c692
MF
829 if (no_signaling_nans(status)) {
830 return float128_is_any_nan(a);
af39bc8c 831 } else {
cc43c692
MF
832 if (snan_bit_is_one(status)) {
833 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
834 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
835 } else {
836 return ((a.high << 1) >= 0xFFFF000000000000ULL)
837 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
838 }
af39bc8c 839 }
158142c2
FB
840}
841
842/*----------------------------------------------------------------------------
843| Returns 1 if the quadruple-precision floating-point value `a' is a
844| signaling NaN; otherwise returns 0.
845*----------------------------------------------------------------------------*/
846
150c7a91 847bool float128_is_signaling_nan(float128 a, float_status *status)
158142c2 848{
cc43c692
MF
849 if (no_signaling_nans(status)) {
850 return 0;
af39bc8c 851 } else {
cc43c692
MF
852 if (snan_bit_is_one(status)) {
853 return ((a.high << 1) >= 0xFFFF000000000000ULL)
854 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
855 } else {
856 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
857 && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
858 }
af39bc8c 859 }
bca52234 860}