]> git.proxmox.com Git - mirror_qemu.git/blame - fpu/softfloat-specialize.h
mc146818rtc: convert PIO to new memory api read/write
[mirror_qemu.git] / fpu / softfloat-specialize.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
158142c2
FB
6
7/*============================================================================
8
9This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
10Arithmetic Package, Release 2b.
11
12Written by John R. Hauser. This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704. Funding was partially provided by the
15National Science Foundation under grant MIP-9311980. The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
789ec7ce
PB
38#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
39#define SNAN_BIT_IS_ONE 1
40#else
41#define SNAN_BIT_IS_ONE 0
42#endif
43
213ff4e6
MF
44#if defined(TARGET_XTENSA)
45/* Define for architectures which deviate from IEEE in not supporting
46 * signaling NaNs (so all NaNs are treated as quiet).
47 */
48#define NO_SIGNALING_NANS 1
49#endif
50
789ec7ce
PB
51/*----------------------------------------------------------------------------
52| The pattern for a default generated half-precision NaN.
53*----------------------------------------------------------------------------*/
54#if defined(TARGET_ARM)
55const float16 float16_default_nan = const_float16(0x7E00);
56#elif SNAN_BIT_IS_ONE
57const float16 float16_default_nan = const_float16(0x7DFF);
58#else
59const float16 float16_default_nan = const_float16(0xFE00);
60#endif
61
62/*----------------------------------------------------------------------------
63| The pattern for a default generated single-precision NaN.
64*----------------------------------------------------------------------------*/
65#if defined(TARGET_SPARC)
66const float32 float32_default_nan = const_float32(0x7FFFFFFF);
b81fe822
MF
67#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
68 defined(TARGET_XTENSA)
789ec7ce
PB
69const float32 float32_default_nan = const_float32(0x7FC00000);
70#elif SNAN_BIT_IS_ONE
71const float32 float32_default_nan = const_float32(0x7FBFFFFF);
72#else
73const float32 float32_default_nan = const_float32(0xFFC00000);
74#endif
75
76/*----------------------------------------------------------------------------
77| The pattern for a default generated double-precision NaN.
78*----------------------------------------------------------------------------*/
79#if defined(TARGET_SPARC)
80const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
81#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
82const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
83#elif SNAN_BIT_IS_ONE
84const float64 float64_default_nan = const_float64(LIT64( 0x7FF7FFFFFFFFFFFF ));
85#else
86const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
87#endif
88
89/*----------------------------------------------------------------------------
90| The pattern for a default generated extended double-precision NaN.
91*----------------------------------------------------------------------------*/
92#if SNAN_BIT_IS_ONE
93#define floatx80_default_nan_high 0x7FFF
94#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
95#else
96#define floatx80_default_nan_high 0xFFFF
97#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
98#endif
99
3bf7e40a
AK
100const floatx80 floatx80_default_nan
101 = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low);
789ec7ce
PB
102
103/*----------------------------------------------------------------------------
104| The pattern for a default generated quadruple-precision NaN. The `high' and
105| `low' values hold the most- and least-significant bits, respectively.
106*----------------------------------------------------------------------------*/
107#if SNAN_BIT_IS_ONE
108#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
109#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
110#else
111#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
112#define float128_default_nan_low LIT64( 0x0000000000000000 )
113#endif
114
3bf7e40a
AK
115const float128 float128_default_nan
116 = make_float128_init(float128_default_nan_high, float128_default_nan_low);
789ec7ce 117
158142c2
FB
118/*----------------------------------------------------------------------------
119| Raises the exceptions specified by `flags'. Floating-point traps can be
120| defined here if desired. It is currently not possible for such a trap
121| to substitute a result value. If traps are not implemented, this routine
122| should be simply `float_exception_flags |= flags;'.
123*----------------------------------------------------------------------------*/
124
125void float_raise( int8 flags STATUS_PARAM )
126{
158142c2 127 STATUS(float_exception_flags) |= flags;
158142c2
FB
128}
129
130/*----------------------------------------------------------------------------
131| Internal canonical NaN format.
132*----------------------------------------------------------------------------*/
133typedef struct {
134 flag sign;
bb98fe42 135 uint64_t high, low;
158142c2
FB
136} commonNaNT;
137
213ff4e6
MF
138#ifdef NO_SIGNALING_NANS
139int float16_is_quiet_nan(float16 a_)
140{
141 return float16_is_any_nan(a_);
142}
143
144int float16_is_signaling_nan(float16 a_)
145{
146 return 0;
147}
148#else
bb4d4bb3
PM
149/*----------------------------------------------------------------------------
150| Returns 1 if the half-precision floating-point value `a' is a quiet
151| NaN; otherwise returns 0.
152*----------------------------------------------------------------------------*/
153
154int float16_is_quiet_nan(float16 a_)
155{
156 uint16_t a = float16_val(a_);
157#if SNAN_BIT_IS_ONE
158 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
159#else
160 return ((a & ~0x8000) >= 0x7c80);
161#endif
162}
163
164/*----------------------------------------------------------------------------
165| Returns 1 if the half-precision floating-point value `a' is a signaling
166| NaN; otherwise returns 0.
167*----------------------------------------------------------------------------*/
168
169int float16_is_signaling_nan(float16 a_)
170{
171 uint16_t a = float16_val(a_);
172#if SNAN_BIT_IS_ONE
173 return ((a & ~0x8000) >= 0x7c80);
174#else
175 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
176#endif
177}
213ff4e6 178#endif
bb4d4bb3
PM
179
180/*----------------------------------------------------------------------------
181| Returns a quiet NaN if the half-precision floating point value `a' is a
182| signaling NaN; otherwise returns `a'.
183*----------------------------------------------------------------------------*/
184float16 float16_maybe_silence_nan(float16 a_)
185{
186 if (float16_is_signaling_nan(a_)) {
187#if SNAN_BIT_IS_ONE
d2fbca94 188# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
bb4d4bb3
PM
189 return float16_default_nan;
190# else
191# error Rules for silencing a signaling NaN are target-specific
192# endif
193#else
194 uint16_t a = float16_val(a_);
195 a |= (1 << 9);
196 return make_float16(a);
197#endif
198 }
199 return a_;
200}
201
f591e1be
PM
202/*----------------------------------------------------------------------------
203| Returns the result of converting the half-precision floating-point NaN
204| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
205| exception is raised.
206*----------------------------------------------------------------------------*/
207
208static commonNaNT float16ToCommonNaN( float16 a STATUS_PARAM )
209{
210 commonNaNT z;
211
212 if ( float16_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
213 z.sign = float16_val(a) >> 15;
214 z.low = 0;
bb98fe42 215 z.high = ((uint64_t) float16_val(a))<<54;
f591e1be
PM
216 return z;
217}
218
600e30d2
PM
219/*----------------------------------------------------------------------------
220| Returns the result of converting the canonical NaN `a' to the half-
221| precision floating-point format.
222*----------------------------------------------------------------------------*/
223
224static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM)
225{
226 uint16_t mantissa = a.high>>54;
227
228 if (STATUS(default_nan_mode)) {
229 return float16_default_nan;
230 }
231
232 if (mantissa) {
233 return make_float16(((((uint16_t) a.sign) << 15)
234 | (0x1F << 10) | mantissa));
235 } else {
236 return float16_default_nan;
237 }
238}
239
213ff4e6
MF
240#ifdef NO_SIGNALING_NANS
241int float32_is_quiet_nan(float32 a_)
242{
243 return float32_is_any_nan(a_);
244}
245
246int float32_is_signaling_nan(float32 a_)
247{
248 return 0;
249}
250#else
158142c2 251/*----------------------------------------------------------------------------
5a6932d5
TS
252| Returns 1 if the single-precision floating-point value `a' is a quiet
253| NaN; otherwise returns 0.
158142c2
FB
254*----------------------------------------------------------------------------*/
255
18569871 256int float32_is_quiet_nan( float32 a_ )
158142c2 257{
f090c9d4 258 uint32_t a = float32_val(a_);
5a6932d5 259#if SNAN_BIT_IS_ONE
b645bb48
TS
260 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
261#else
bb98fe42 262 return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
b645bb48 263#endif
158142c2
FB
264}
265
266/*----------------------------------------------------------------------------
267| Returns 1 if the single-precision floating-point value `a' is a signaling
268| NaN; otherwise returns 0.
269*----------------------------------------------------------------------------*/
270
f090c9d4 271int float32_is_signaling_nan( float32 a_ )
158142c2 272{
f090c9d4 273 uint32_t a = float32_val(a_);
5a6932d5 274#if SNAN_BIT_IS_ONE
bb98fe42 275 return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
b645bb48 276#else
158142c2 277 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
b645bb48 278#endif
158142c2 279}
213ff4e6 280#endif
158142c2 281
b408dbde
PM
282/*----------------------------------------------------------------------------
283| Returns a quiet NaN if the single-precision floating point value `a' is a
284| signaling NaN; otherwise returns `a'.
285*----------------------------------------------------------------------------*/
286
287float32 float32_maybe_silence_nan( float32 a_ )
288{
289 if (float32_is_signaling_nan(a_)) {
b408dbde 290#if SNAN_BIT_IS_ONE
d2fbca94 291# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
93ae1c6f
AJ
292 return float32_default_nan;
293# else
294# error Rules for silencing a signaling NaN are target-specific
295# endif
b408dbde 296#else
bb98fe42 297 uint32_t a = float32_val(a_);
b408dbde 298 a |= (1 << 22);
b408dbde 299 return make_float32(a);
93ae1c6f 300#endif
b408dbde
PM
301 }
302 return a_;
303}
304
158142c2
FB
305/*----------------------------------------------------------------------------
306| Returns the result of converting the single-precision floating-point NaN
307| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
308| exception is raised.
309*----------------------------------------------------------------------------*/
310
311static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
312{
313 commonNaNT z;
314
315 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
f090c9d4 316 z.sign = float32_val(a)>>31;
158142c2 317 z.low = 0;
bb98fe42 318 z.high = ( (uint64_t) float32_val(a) )<<41;
158142c2 319 return z;
158142c2
FB
320}
321
322/*----------------------------------------------------------------------------
323| Returns the result of converting the canonical NaN `a' to the single-
324| precision floating-point format.
325*----------------------------------------------------------------------------*/
326
bcd4d9af 327static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM)
158142c2 328{
bb98fe42 329 uint32_t mantissa = a.high>>41;
bcd4d9af
CL
330
331 if ( STATUS(default_nan_mode) ) {
332 return float32_default_nan;
333 }
334
85016c98
TS
335 if ( mantissa )
336 return make_float32(
bb98fe42 337 ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
85016c98
TS
338 else
339 return float32_default_nan;
158142c2
FB
340}
341
354f211b
PM
342/*----------------------------------------------------------------------------
343| Select which NaN to propagate for a two-input operation.
344| IEEE754 doesn't specify all the details of this, so the
345| algorithm is target-specific.
346| The routine is passed various bits of information about the
347| two NaNs and should return 0 to select NaN a and 1 for NaN b.
348| Note that signalling NaNs are always squashed to quiet NaNs
1f398e08
AJ
349| by the caller, by calling floatXX_maybe_silence_nan() before
350| returning them.
354f211b
PM
351|
352| aIsLargerSignificand is only valid if both a and b are NaNs
353| of some kind, and is true if a has the larger significand,
354| or if both a and b have the same significand but a is
355| positive but b is negative. It is only needed for the x87
356| tie-break rule.
357*----------------------------------------------------------------------------*/
358
011da610
PM
359#if defined(TARGET_ARM)
360static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
361 flag aIsLargerSignificand)
362{
363 /* ARM mandated NaN propagation rules: take the first of:
364 * 1. A if it is signaling
365 * 2. B if it is signaling
366 * 3. A (quiet)
367 * 4. B (quiet)
368 * A signaling NaN is always quietened before returning it.
369 */
370 if (aIsSNaN) {
371 return 0;
372 } else if (bIsSNaN) {
373 return 1;
374 } else if (aIsQNaN) {
375 return 0;
376 } else {
377 return 1;
378 }
379}
084d19ba
AJ
380#elif defined(TARGET_MIPS)
381static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
382 flag aIsLargerSignificand)
383{
384 /* According to MIPS specifications, if one of the two operands is
385 * a sNaN, a new qNaN has to be generated. This is done in
386 * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
387 * says: "When possible, this QNaN result is one of the operand QNaN
388 * values." In practice it seems that most implementations choose
389 * the first operand if both operands are qNaN. In short this gives
390 * the following rules:
391 * 1. A if it is signaling
392 * 2. B if it is signaling
393 * 3. A (quiet)
394 * 4. B (quiet)
395 * A signaling NaN is always silenced before returning it.
396 */
397 if (aIsSNaN) {
398 return 0;
399 } else if (bIsSNaN) {
400 return 1;
401 } else if (aIsQNaN) {
402 return 0;
403 } else {
404 return 1;
405 }
406}
b81fe822 407#elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
e024e881
AJ
408static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
409 flag aIsLargerSignificand)
410{
411 /* PowerPC propagation rules:
412 * 1. A if it sNaN or qNaN
413 * 2. B if it sNaN or qNaN
414 * A signaling NaN is always silenced before returning it.
415 */
416 if (aIsSNaN || aIsQNaN) {
417 return 0;
418 } else {
419 return 1;
420 }
421}
011da610 422#else
354f211b
PM
423static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
424 flag aIsLargerSignificand)
425{
426 /* This implements x87 NaN propagation rules:
427 * SNaN + QNaN => return the QNaN
428 * two SNaNs => return the one with the larger significand, silenced
429 * two QNaNs => return the one with the larger significand
430 * SNaN and a non-NaN => return the SNaN, silenced
431 * QNaN and a non-NaN => return the QNaN
432 *
433 * If we get down to comparing significands and they are the same,
434 * return the NaN with the positive sign bit (if any).
435 */
436 if (aIsSNaN) {
437 if (bIsSNaN) {
438 return aIsLargerSignificand ? 0 : 1;
439 }
440 return bIsQNaN ? 1 : 0;
441 }
442 else if (aIsQNaN) {
443 if (bIsSNaN || !bIsQNaN)
444 return 0;
445 else {
446 return aIsLargerSignificand ? 0 : 1;
447 }
448 } else {
449 return 1;
450 }
451}
011da610 452#endif
354f211b 453
369be8f6
PM
454/*----------------------------------------------------------------------------
455| Select which NaN to propagate for a three-input operation.
456| For the moment we assume that no CPU needs the 'larger significand'
457| information.
458| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
459*----------------------------------------------------------------------------*/
460#if defined(TARGET_ARM)
461static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
462 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
463{
464 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
465 * the default NaN
466 */
467 if (infzero && cIsQNaN) {
468 float_raise(float_flag_invalid STATUS_VAR);
469 return 3;
470 }
471
472 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
473 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
474 */
475 if (cIsSNaN) {
476 return 2;
477 } else if (aIsSNaN) {
478 return 0;
479 } else if (bIsSNaN) {
480 return 1;
481 } else if (cIsQNaN) {
482 return 2;
483 } else if (aIsQNaN) {
484 return 0;
485 } else {
486 return 1;
487 }
488}
489#elif defined(TARGET_PPC)
490static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
491 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
492{
493 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
494 * to return an input NaN if we have one (ie c) rather than generating
495 * a default NaN
496 */
497 if (infzero) {
498 float_raise(float_flag_invalid STATUS_VAR);
499 return 2;
500 }
501
502 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
503 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
504 */
505 if (aIsSNaN || aIsQNaN) {
506 return 0;
507 } else if (cIsSNaN || cIsQNaN) {
508 return 2;
509 } else {
510 return 1;
511 }
512}
513#else
514/* A default implementation: prefer a to b to c.
515 * This is unlikely to actually match any real implementation.
516 */
517static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
518 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
519{
520 if (aIsSNaN || aIsQNaN) {
521 return 0;
522 } else if (bIsSNaN || bIsQNaN) {
523 return 1;
524 } else {
525 return 2;
526 }
527}
528#endif
529
158142c2
FB
530/*----------------------------------------------------------------------------
531| Takes two single-precision floating-point values `a' and `b', one of which
532| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
533| signaling NaN, the invalid exception is raised.
534*----------------------------------------------------------------------------*/
535
536static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
537{
d735d695
AJ
538 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
539 flag aIsLargerSignificand;
bb98fe42 540 uint32_t av, bv;
158142c2 541
d735d695 542 aIsQuietNaN = float32_is_quiet_nan( a );
158142c2 543 aIsSignalingNaN = float32_is_signaling_nan( a );
d735d695 544 bIsQuietNaN = float32_is_quiet_nan( b );
158142c2 545 bIsSignalingNaN = float32_is_signaling_nan( b );
f090c9d4
PB
546 av = float32_val(a);
547 bv = float32_val(b);
1f398e08 548
158142c2 549 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
354f211b 550
10201602
AJ
551 if ( STATUS(default_nan_mode) )
552 return float32_default_nan;
553
bb98fe42 554 if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
354f211b 555 aIsLargerSignificand = 0;
bb98fe42 556 } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) {
354f211b
PM
557 aIsLargerSignificand = 1;
558 } else {
559 aIsLargerSignificand = (av < bv) ? 1 : 0;
158142c2 560 }
354f211b 561
d735d695 562 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 563 aIsLargerSignificand)) {
1f398e08 564 return float32_maybe_silence_nan(b);
354f211b 565 } else {
1f398e08 566 return float32_maybe_silence_nan(a);
158142c2 567 }
158142c2
FB
568}
569
369be8f6
PM
570/*----------------------------------------------------------------------------
571| Takes three single-precision floating-point values `a', `b' and `c', one of
572| which is a NaN, and returns the appropriate NaN result. If any of `a',
573| `b' or `c' is a signaling NaN, the invalid exception is raised.
574| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
575| obviously c is a NaN, and whether to propagate c or some other NaN is
576| implementation defined).
577*----------------------------------------------------------------------------*/
578
579static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
580 float32 c, flag infzero STATUS_PARAM)
581{
582 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
583 cIsQuietNaN, cIsSignalingNaN;
584 int which;
585
586 aIsQuietNaN = float32_is_quiet_nan(a);
587 aIsSignalingNaN = float32_is_signaling_nan(a);
588 bIsQuietNaN = float32_is_quiet_nan(b);
589 bIsSignalingNaN = float32_is_signaling_nan(b);
590 cIsQuietNaN = float32_is_quiet_nan(c);
591 cIsSignalingNaN = float32_is_signaling_nan(c);
592
593 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
594 float_raise(float_flag_invalid STATUS_VAR);
595 }
596
597 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
598 bIsQuietNaN, bIsSignalingNaN,
599 cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
600
601 if (STATUS(default_nan_mode)) {
602 /* Note that this check is after pickNaNMulAdd so that function
603 * has an opportunity to set the Invalid flag.
604 */
605 return float32_default_nan;
606 }
607
608 switch (which) {
609 case 0:
610 return float32_maybe_silence_nan(a);
611 case 1:
612 return float32_maybe_silence_nan(b);
613 case 2:
614 return float32_maybe_silence_nan(c);
615 case 3:
616 default:
617 return float32_default_nan;
618 }
619}
620
213ff4e6
MF
621#ifdef NO_SIGNALING_NANS
622int float64_is_quiet_nan(float64 a_)
623{
624 return float64_is_any_nan(a_);
625}
626
627int float64_is_signaling_nan(float64 a_)
628{
629 return 0;
630}
631#else
158142c2 632/*----------------------------------------------------------------------------
5a6932d5
TS
633| Returns 1 if the double-precision floating-point value `a' is a quiet
634| NaN; otherwise returns 0.
158142c2
FB
635*----------------------------------------------------------------------------*/
636
18569871 637int float64_is_quiet_nan( float64 a_ )
158142c2 638{
bb98fe42 639 uint64_t a = float64_val(a_);
5a6932d5 640#if SNAN_BIT_IS_ONE
b645bb48
TS
641 return
642 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
643 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
644#else
bb98fe42 645 return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
b645bb48 646#endif
158142c2
FB
647}
648
649/*----------------------------------------------------------------------------
650| Returns 1 if the double-precision floating-point value `a' is a signaling
651| NaN; otherwise returns 0.
652*----------------------------------------------------------------------------*/
653
f090c9d4 654int float64_is_signaling_nan( float64 a_ )
158142c2 655{
bb98fe42 656 uint64_t a = float64_val(a_);
5a6932d5 657#if SNAN_BIT_IS_ONE
bb98fe42 658 return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
b645bb48 659#else
158142c2
FB
660 return
661 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
662 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
b645bb48 663#endif
158142c2 664}
213ff4e6 665#endif
158142c2 666
b408dbde
PM
667/*----------------------------------------------------------------------------
668| Returns a quiet NaN if the double-precision floating point value `a' is a
669| signaling NaN; otherwise returns `a'.
670*----------------------------------------------------------------------------*/
671
672float64 float64_maybe_silence_nan( float64 a_ )
673{
674 if (float64_is_signaling_nan(a_)) {
b408dbde 675#if SNAN_BIT_IS_ONE
d2fbca94 676# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
93ae1c6f
AJ
677 return float64_default_nan;
678# else
679# error Rules for silencing a signaling NaN are target-specific
680# endif
b408dbde 681#else
bb98fe42 682 uint64_t a = float64_val(a_);
b408dbde 683 a |= LIT64( 0x0008000000000000 );
b408dbde 684 return make_float64(a);
93ae1c6f 685#endif
b408dbde
PM
686 }
687 return a_;
688}
689
158142c2
FB
690/*----------------------------------------------------------------------------
691| Returns the result of converting the double-precision floating-point NaN
692| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
693| exception is raised.
694*----------------------------------------------------------------------------*/
695
696static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
697{
698 commonNaNT z;
699
700 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
f090c9d4 701 z.sign = float64_val(a)>>63;
158142c2 702 z.low = 0;
f090c9d4 703 z.high = float64_val(a)<<12;
158142c2 704 return z;
158142c2
FB
705}
706
707/*----------------------------------------------------------------------------
708| Returns the result of converting the canonical NaN `a' to the double-
709| precision floating-point format.
710*----------------------------------------------------------------------------*/
711
bcd4d9af 712static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM)
158142c2 713{
bb98fe42 714 uint64_t mantissa = a.high>>12;
85016c98 715
bcd4d9af
CL
716 if ( STATUS(default_nan_mode) ) {
717 return float64_default_nan;
718 }
719
85016c98
TS
720 if ( mantissa )
721 return make_float64(
bb98fe42 722 ( ( (uint64_t) a.sign )<<63 )
85016c98
TS
723 | LIT64( 0x7FF0000000000000 )
724 | ( a.high>>12 ));
725 else
726 return float64_default_nan;
158142c2
FB
727}
728
729/*----------------------------------------------------------------------------
730| Takes two double-precision floating-point values `a' and `b', one of which
731| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
732| signaling NaN, the invalid exception is raised.
733*----------------------------------------------------------------------------*/
734
735static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
736{
d735d695
AJ
737 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
738 flag aIsLargerSignificand;
bb98fe42 739 uint64_t av, bv;
158142c2 740
d735d695 741 aIsQuietNaN = float64_is_quiet_nan( a );
158142c2 742 aIsSignalingNaN = float64_is_signaling_nan( a );
d735d695 743 bIsQuietNaN = float64_is_quiet_nan( b );
158142c2 744 bIsSignalingNaN = float64_is_signaling_nan( b );
f090c9d4
PB
745 av = float64_val(a);
746 bv = float64_val(b);
1f398e08 747
158142c2 748 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
354f211b 749
10201602
AJ
750 if ( STATUS(default_nan_mode) )
751 return float64_default_nan;
752
bb98fe42 753 if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
354f211b 754 aIsLargerSignificand = 0;
bb98fe42 755 } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) {
354f211b
PM
756 aIsLargerSignificand = 1;
757 } else {
758 aIsLargerSignificand = (av < bv) ? 1 : 0;
158142c2 759 }
354f211b 760
d735d695 761 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 762 aIsLargerSignificand)) {
1f398e08 763 return float64_maybe_silence_nan(b);
354f211b 764 } else {
1f398e08 765 return float64_maybe_silence_nan(a);
158142c2 766 }
158142c2
FB
767}
768
369be8f6
PM
769/*----------------------------------------------------------------------------
770| Takes three double-precision floating-point values `a', `b' and `c', one of
771| which is a NaN, and returns the appropriate NaN result. If any of `a',
772| `b' or `c' is a signaling NaN, the invalid exception is raised.
773| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
774| obviously c is a NaN, and whether to propagate c or some other NaN is
775| implementation defined).
776*----------------------------------------------------------------------------*/
777
778static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
779 float64 c, flag infzero STATUS_PARAM)
780{
781 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
782 cIsQuietNaN, cIsSignalingNaN;
783 int which;
784
785 aIsQuietNaN = float64_is_quiet_nan(a);
786 aIsSignalingNaN = float64_is_signaling_nan(a);
787 bIsQuietNaN = float64_is_quiet_nan(b);
788 bIsSignalingNaN = float64_is_signaling_nan(b);
789 cIsQuietNaN = float64_is_quiet_nan(c);
790 cIsSignalingNaN = float64_is_signaling_nan(c);
791
792 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
793 float_raise(float_flag_invalid STATUS_VAR);
794 }
795
796 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
797 bIsQuietNaN, bIsSignalingNaN,
798 cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
799
800 if (STATUS(default_nan_mode)) {
801 /* Note that this check is after pickNaNMulAdd so that function
802 * has an opportunity to set the Invalid flag.
803 */
804 return float64_default_nan;
805 }
806
807 switch (which) {
808 case 0:
809 return float64_maybe_silence_nan(a);
810 case 1:
811 return float64_maybe_silence_nan(b);
812 case 2:
813 return float64_maybe_silence_nan(c);
814 case 3:
815 default:
816 return float64_default_nan;
817 }
818}
819
213ff4e6
MF
820#ifdef NO_SIGNALING_NANS
821int floatx80_is_quiet_nan(floatx80 a_)
822{
823 return floatx80_is_any_nan(a_);
824}
825
826int floatx80_is_signaling_nan(floatx80 a_)
827{
828 return 0;
829}
830#else
158142c2
FB
831/*----------------------------------------------------------------------------
832| Returns 1 if the extended double-precision floating-point value `a' is a
de4af5f7
AJ
833| quiet NaN; otherwise returns 0. This slightly differs from the same
834| function for other types as floatx80 has an explicit bit.
158142c2
FB
835*----------------------------------------------------------------------------*/
836
18569871 837int floatx80_is_quiet_nan( floatx80 a )
158142c2 838{
5a6932d5 839#if SNAN_BIT_IS_ONE
bb98fe42 840 uint64_t aLow;
158142c2 841
5a6932d5
TS
842 aLow = a.low & ~ LIT64( 0x4000000000000000 );
843 return
844 ( ( a.high & 0x7FFF ) == 0x7FFF )
bb98fe42 845 && (uint64_t) ( aLow<<1 )
5a6932d5
TS
846 && ( a.low == aLow );
847#else
de4af5f7 848 return ( ( a.high & 0x7FFF ) == 0x7FFF )
bb98fe42 849 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
5a6932d5 850#endif
158142c2
FB
851}
852
853/*----------------------------------------------------------------------------
854| Returns 1 if the extended double-precision floating-point value `a' is a
de4af5f7
AJ
855| signaling NaN; otherwise returns 0. This slightly differs from the same
856| function for other types as floatx80 has an explicit bit.
158142c2
FB
857*----------------------------------------------------------------------------*/
858
750afe93 859int floatx80_is_signaling_nan( floatx80 a )
158142c2 860{
5a6932d5 861#if SNAN_BIT_IS_ONE
de4af5f7 862 return ( ( a.high & 0x7FFF ) == 0x7FFF )
bb98fe42 863 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
5a6932d5 864#else
bb98fe42 865 uint64_t aLow;
158142c2
FB
866
867 aLow = a.low & ~ LIT64( 0x4000000000000000 );
868 return
869 ( ( a.high & 0x7FFF ) == 0x7FFF )
bb98fe42 870 && (uint64_t) ( aLow<<1 )
158142c2 871 && ( a.low == aLow );
5a6932d5 872#endif
158142c2 873}
213ff4e6 874#endif
158142c2 875
f6a7d92a
AJ
876/*----------------------------------------------------------------------------
877| Returns a quiet NaN if the extended double-precision floating point value
878| `a' is a signaling NaN; otherwise returns `a'.
879*----------------------------------------------------------------------------*/
880
881floatx80 floatx80_maybe_silence_nan( floatx80 a )
882{
883 if (floatx80_is_signaling_nan(a)) {
884#if SNAN_BIT_IS_ONE
d2fbca94 885# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
f6a7d92a
AJ
886 a.low = floatx80_default_nan_low;
887 a.high = floatx80_default_nan_high;
888# else
889# error Rules for silencing a signaling NaN are target-specific
890# endif
891#else
892 a.low |= LIT64( 0xC000000000000000 );
893 return a;
894#endif
895 }
896 return a;
897}
898
158142c2
FB
899/*----------------------------------------------------------------------------
900| Returns the result of converting the extended double-precision floating-
901| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
902| invalid exception is raised.
903*----------------------------------------------------------------------------*/
904
905static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
906{
907 commonNaNT z;
908
909 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
e2f42204
AJ
910 if ( a.low >> 63 ) {
911 z.sign = a.high >> 15;
912 z.low = 0;
913 z.high = a.low << 1;
914 } else {
915 z.sign = floatx80_default_nan_high >> 15;
916 z.low = 0;
917 z.high = floatx80_default_nan_low << 1;
918 }
158142c2 919 return z;
158142c2
FB
920}
921
922/*----------------------------------------------------------------------------
923| Returns the result of converting the canonical NaN `a' to the extended
924| double-precision floating-point format.
925*----------------------------------------------------------------------------*/
926
bcd4d9af 927static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM)
158142c2
FB
928{
929 floatx80 z;
930
bcd4d9af
CL
931 if ( STATUS(default_nan_mode) ) {
932 z.low = floatx80_default_nan_low;
933 z.high = floatx80_default_nan_high;
934 return z;
935 }
936
e2f42204
AJ
937 if (a.high >> 1) {
938 z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
939 z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
940 } else {
85016c98 941 z.low = floatx80_default_nan_low;
e2f42204
AJ
942 z.high = floatx80_default_nan_high;
943 }
944
158142c2 945 return z;
158142c2
FB
946}
947
948/*----------------------------------------------------------------------------
949| Takes two extended double-precision floating-point values `a' and `b', one
950| of which is a NaN, and returns the appropriate NaN result. If either `a' or
951| `b' is a signaling NaN, the invalid exception is raised.
952*----------------------------------------------------------------------------*/
953
954static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
955{
d735d695
AJ
956 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
957 flag aIsLargerSignificand;
158142c2 958
d735d695 959 aIsQuietNaN = floatx80_is_quiet_nan( a );
158142c2 960 aIsSignalingNaN = floatx80_is_signaling_nan( a );
d735d695 961 bIsQuietNaN = floatx80_is_quiet_nan( b );
158142c2 962 bIsSignalingNaN = floatx80_is_signaling_nan( b );
1f398e08 963
158142c2 964 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
354f211b 965
10201602
AJ
966 if ( STATUS(default_nan_mode) ) {
967 a.low = floatx80_default_nan_low;
968 a.high = floatx80_default_nan_high;
969 return a;
970 }
971
354f211b
PM
972 if (a.low < b.low) {
973 aIsLargerSignificand = 0;
974 } else if (b.low < a.low) {
975 aIsLargerSignificand = 1;
976 } else {
977 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
158142c2 978 }
354f211b 979
d735d695 980 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 981 aIsLargerSignificand)) {
1f398e08 982 return floatx80_maybe_silence_nan(b);
354f211b 983 } else {
1f398e08 984 return floatx80_maybe_silence_nan(a);
158142c2 985 }
158142c2
FB
986}
987
213ff4e6
MF
988#ifdef NO_SIGNALING_NANS
989int float128_is_quiet_nan(float128 a_)
990{
991 return float128_is_any_nan(a_);
992}
993
994int float128_is_signaling_nan(float128 a_)
995{
996 return 0;
997}
998#else
158142c2 999/*----------------------------------------------------------------------------
5a6932d5
TS
1000| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1001| NaN; otherwise returns 0.
158142c2
FB
1002*----------------------------------------------------------------------------*/
1003
18569871 1004int float128_is_quiet_nan( float128 a )
158142c2 1005{
5a6932d5
TS
1006#if SNAN_BIT_IS_ONE
1007 return
1008 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
1009 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
1010#else
158142c2 1011 return
bb98fe42 1012 ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
158142c2 1013 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
5a6932d5 1014#endif
158142c2
FB
1015}
1016
1017/*----------------------------------------------------------------------------
1018| Returns 1 if the quadruple-precision floating-point value `a' is a
1019| signaling NaN; otherwise returns 0.
1020*----------------------------------------------------------------------------*/
1021
750afe93 1022int float128_is_signaling_nan( float128 a )
158142c2 1023{
5a6932d5
TS
1024#if SNAN_BIT_IS_ONE
1025 return
bb98fe42 1026 ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
5a6932d5
TS
1027 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
1028#else
158142c2
FB
1029 return
1030 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
1031 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
5a6932d5 1032#endif
158142c2 1033}
213ff4e6 1034#endif
158142c2 1035
f6a7d92a
AJ
1036/*----------------------------------------------------------------------------
1037| Returns a quiet NaN if the quadruple-precision floating point value `a' is
1038| a signaling NaN; otherwise returns `a'.
1039*----------------------------------------------------------------------------*/
1040
1041float128 float128_maybe_silence_nan( float128 a )
1042{
1043 if (float128_is_signaling_nan(a)) {
1044#if SNAN_BIT_IS_ONE
d2fbca94 1045# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
f6a7d92a
AJ
1046 a.low = float128_default_nan_low;
1047 a.high = float128_default_nan_high;
1048# else
1049# error Rules for silencing a signaling NaN are target-specific
1050# endif
1051#else
1052 a.high |= LIT64( 0x0000800000000000 );
1053 return a;
1054#endif
1055 }
1056 return a;
1057}
1058
158142c2
FB
1059/*----------------------------------------------------------------------------
1060| Returns the result of converting the quadruple-precision floating-point NaN
1061| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1062| exception is raised.
1063*----------------------------------------------------------------------------*/
1064
1065static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
1066{
1067 commonNaNT z;
1068
1069 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
1070 z.sign = a.high>>63;
1071 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
1072 return z;
158142c2
FB
1073}
1074
1075/*----------------------------------------------------------------------------
1076| Returns the result of converting the canonical NaN `a' to the quadruple-
1077| precision floating-point format.
1078*----------------------------------------------------------------------------*/
1079
bcd4d9af 1080static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM)
158142c2
FB
1081{
1082 float128 z;
1083
bcd4d9af
CL
1084 if ( STATUS(default_nan_mode) ) {
1085 z.low = float128_default_nan_low;
1086 z.high = float128_default_nan_high;
1087 return z;
1088 }
1089
158142c2 1090 shift128Right( a.high, a.low, 16, &z.high, &z.low );
bb98fe42 1091 z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
158142c2 1092 return z;
158142c2
FB
1093}
1094
1095/*----------------------------------------------------------------------------
1096| Takes two quadruple-precision floating-point values `a' and `b', one of
1097| which is a NaN, and returns the appropriate NaN result. If either `a' or
1098| `b' is a signaling NaN, the invalid exception is raised.
1099*----------------------------------------------------------------------------*/
1100
1101static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
1102{
d735d695
AJ
1103 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1104 flag aIsLargerSignificand;
158142c2 1105
d735d695 1106 aIsQuietNaN = float128_is_quiet_nan( a );
158142c2 1107 aIsSignalingNaN = float128_is_signaling_nan( a );
d735d695 1108 bIsQuietNaN = float128_is_quiet_nan( b );
158142c2 1109 bIsSignalingNaN = float128_is_signaling_nan( b );
1f398e08 1110
158142c2 1111 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
354f211b 1112
10201602
AJ
1113 if ( STATUS(default_nan_mode) ) {
1114 a.low = float128_default_nan_low;
1115 a.high = float128_default_nan_high;
1116 return a;
1117 }
1118
354f211b
PM
1119 if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
1120 aIsLargerSignificand = 0;
1121 } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
1122 aIsLargerSignificand = 1;
1123 } else {
1124 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
158142c2 1125 }
354f211b 1126
d735d695 1127 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 1128 aIsLargerSignificand)) {
1f398e08 1129 return float128_maybe_silence_nan(b);
354f211b 1130 } else {
1f398e08 1131 return float128_maybe_silence_nan(a);
158142c2 1132 }
158142c2
FB
1133}
1134