]> git.proxmox.com Git - mirror_qemu.git/blame - fpu/softfloat-specialize.h
include/fpu/softfloat: add some float16 constants
[mirror_qemu.git] / fpu / softfloat-specialize.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
16017c48
PM
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
12 *
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
8d725fac 16 */
158142c2 17
a7d1ac78
PM
18/*
19===============================================================================
158142c2 20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
a7d1ac78 21Arithmetic Package, Release 2a.
158142c2
FB
22
23Written by John R. Hauser. This work was made possible in part by the
24International Computer Science Institute, located at Suite 600, 1947 Center
25Street, Berkeley, California 94704. Funding was partially provided by the
26National Science Foundation under grant MIP-9311980. The original version
27of this code was written as part of a project to build a fixed-point vector
28processor in collaboration with the University of California at Berkeley,
29overseen by Profs. Nelson Morgan and John Wawrzynek. More information
a7d1ac78 30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
158142c2
FB
31arithmetic/SoftFloat.html'.
32
a7d1ac78
PM
33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
158142c2
FB
38
39Derivative works are acceptable, even for commercial purposes, so long as
a7d1ac78
PM
40(1) they include prominent notice that the work is derivative, and (2) they
41include prominent notice akin to these four paragraphs for those parts of
42this code that are retained.
158142c2 43
a7d1ac78
PM
44===============================================================================
45*/
158142c2 46
16017c48
PM
47/* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
53 *
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
56 *
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
60 *
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
64 *
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
76 */
77
78/* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
80 */
81
213ff4e6
MF
82#if defined(TARGET_XTENSA)
83/* Define for architectures which deviate from IEEE in not supporting
84 * signaling NaNs (so all NaNs are treated as quiet).
85 */
86#define NO_SIGNALING_NANS 1
87#endif
88
789ec7ce
PB
89/*----------------------------------------------------------------------------
90| The pattern for a default generated half-precision NaN.
91*----------------------------------------------------------------------------*/
af39bc8c
AM
92float16 float16_default_nan(float_status *status)
93{
789ec7ce 94#if defined(TARGET_ARM)
af39bc8c 95 return const_float16(0x7E00);
789ec7ce 96#else
af39bc8c
AM
97 if (status->snan_bit_is_one) {
98 return const_float16(0x7DFF);
99 } else {
a7c04d54
AM
100#if defined(TARGET_MIPS)
101 return const_float16(0x7E00);
102#else
af39bc8c 103 return const_float16(0xFE00);
a7c04d54 104#endif
af39bc8c 105 }
789ec7ce 106#endif
af39bc8c 107}
789ec7ce
PB
108
109/*----------------------------------------------------------------------------
110| The pattern for a default generated single-precision NaN.
111*----------------------------------------------------------------------------*/
af39bc8c
AM
112float32 float32_default_nan(float_status *status)
113{
e5b0cbe8 114#if defined(TARGET_SPARC) || defined(TARGET_M68K)
af39bc8c 115 return const_float32(0x7FFFFFFF);
b81fe822 116#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
996a729f 117 defined(TARGET_XTENSA) || defined(TARGET_S390X) || defined(TARGET_TRICORE)
af39bc8c 118 return const_float32(0x7FC00000);
005fa38d
RH
119#elif defined(TARGET_HPPA)
120 return const_float32(0x7FA00000);
789ec7ce 121#else
af39bc8c
AM
122 if (status->snan_bit_is_one) {
123 return const_float32(0x7FBFFFFF);
124 } else {
a7c04d54
AM
125#if defined(TARGET_MIPS)
126 return const_float32(0x7FC00000);
127#else
af39bc8c 128 return const_float32(0xFFC00000);
a7c04d54 129#endif
af39bc8c 130 }
789ec7ce 131#endif
af39bc8c 132}
789ec7ce
PB
133
134/*----------------------------------------------------------------------------
135| The pattern for a default generated double-precision NaN.
136*----------------------------------------------------------------------------*/
af39bc8c
AM
137float64 float64_default_nan(float_status *status)
138{
e5b0cbe8 139#if defined(TARGET_SPARC) || defined(TARGET_M68K)
af39bc8c 140 return const_float64(LIT64(0x7FFFFFFFFFFFFFFF));
2daea9c1
AJ
141#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
142 defined(TARGET_S390X)
af39bc8c 143 return const_float64(LIT64(0x7FF8000000000000));
005fa38d
RH
144#elif defined(TARGET_HPPA)
145 return const_float64(LIT64(0x7FF4000000000000));
789ec7ce 146#else
af39bc8c
AM
147 if (status->snan_bit_is_one) {
148 return const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
149 } else {
a7c04d54
AM
150#if defined(TARGET_MIPS)
151 return const_float64(LIT64(0x7FF8000000000000));
152#else
af39bc8c 153 return const_float64(LIT64(0xFFF8000000000000));
a7c04d54 154#endif
af39bc8c 155 }
789ec7ce 156#endif
af39bc8c 157}
789ec7ce
PB
158
159/*----------------------------------------------------------------------------
160| The pattern for a default generated extended double-precision NaN.
161*----------------------------------------------------------------------------*/
af39bc8c
AM
162floatx80 floatx80_default_nan(float_status *status)
163{
164 floatx80 r;
e5b0cbe8
LV
165#if defined(TARGET_M68K)
166 r.low = LIT64(0xFFFFFFFFFFFFFFFF);
167 r.high = 0x7FFF;
168#else
af39bc8c
AM
169 if (status->snan_bit_is_one) {
170 r.low = LIT64(0xBFFFFFFFFFFFFFFF);
171 r.high = 0x7FFF;
172 } else {
173 r.low = LIT64(0xC000000000000000);
174 r.high = 0xFFFF;
175 }
e5b0cbe8 176#endif
af39bc8c
AM
177 return r;
178}
789ec7ce
PB
179
180/*----------------------------------------------------------------------------
af39bc8c 181| The pattern for a default generated quadruple-precision NaN.
789ec7ce 182*----------------------------------------------------------------------------*/
af39bc8c
AM
183float128 float128_default_nan(float_status *status)
184{
185 float128 r;
186
187 if (status->snan_bit_is_one) {
188 r.low = LIT64(0xFFFFFFFFFFFFFFFF);
189 r.high = LIT64(0x7FFF7FFFFFFFFFFF);
190 } else {
191 r.low = LIT64(0x0000000000000000);
5d51eaea 192#if defined(TARGET_S390X) || defined(TARGET_PPC)
af39bc8c 193 r.high = LIT64(0x7FFF800000000000);
789ec7ce 194#else
af39bc8c 195 r.high = LIT64(0xFFFF800000000000);
789ec7ce 196#endif
af39bc8c
AM
197 }
198 return r;
199}
789ec7ce 200
158142c2
FB
201/*----------------------------------------------------------------------------
202| Raises the exceptions specified by `flags'. Floating-point traps can be
203| defined here if desired. It is currently not possible for such a trap
204| to substitute a result value. If traps are not implemented, this routine
205| should be simply `float_exception_flags |= flags;'.
206*----------------------------------------------------------------------------*/
207
dfd60767 208void float_raise(uint8_t flags, float_status *status)
158142c2 209{
a2f2d288 210 status->float_exception_flags |= flags;
158142c2
FB
211}
212
213/*----------------------------------------------------------------------------
214| Internal canonical NaN format.
215*----------------------------------------------------------------------------*/
216typedef struct {
217 flag sign;
bb98fe42 218 uint64_t high, low;
158142c2
FB
219} commonNaNT;
220
213ff4e6 221#ifdef NO_SIGNALING_NANS
af39bc8c 222int float16_is_quiet_nan(float16 a_, float_status *status)
213ff4e6
MF
223{
224 return float16_is_any_nan(a_);
225}
226
af39bc8c 227int float16_is_signaling_nan(float16 a_, float_status *status)
213ff4e6
MF
228{
229 return 0;
230}
231#else
bb4d4bb3
PM
232/*----------------------------------------------------------------------------
233| Returns 1 if the half-precision floating-point value `a' is a quiet
234| NaN; otherwise returns 0.
235*----------------------------------------------------------------------------*/
236
af39bc8c 237int float16_is_quiet_nan(float16 a_, float_status *status)
bb4d4bb3
PM
238{
239 uint16_t a = float16_val(a_);
af39bc8c
AM
240 if (status->snan_bit_is_one) {
241 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
242 } else {
243 return ((a & ~0x8000) >= 0x7C80);
244 }
bb4d4bb3
PM
245}
246
247/*----------------------------------------------------------------------------
248| Returns 1 if the half-precision floating-point value `a' is a signaling
249| NaN; otherwise returns 0.
250*----------------------------------------------------------------------------*/
251
af39bc8c 252int float16_is_signaling_nan(float16 a_, float_status *status)
bb4d4bb3
PM
253{
254 uint16_t a = float16_val(a_);
af39bc8c
AM
255 if (status->snan_bit_is_one) {
256 return ((a & ~0x8000) >= 0x7C80);
257 } else {
258 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
259 }
bb4d4bb3 260}
213ff4e6 261#endif
bb4d4bb3
PM
262
263/*----------------------------------------------------------------------------
264| Returns a quiet NaN if the half-precision floating point value `a' is a
265| signaling NaN; otherwise returns `a'.
266*----------------------------------------------------------------------------*/
af39bc8c 267float16 float16_maybe_silence_nan(float16 a_, float_status *status)
bb4d4bb3 268{
af39bc8c
AM
269 if (float16_is_signaling_nan(a_, status)) {
270 if (status->snan_bit_is_one) {
271 return float16_default_nan(status);
272 } else {
273 uint16_t a = float16_val(a_);
274 a |= (1 << 9);
275 return make_float16(a);
276 }
bb4d4bb3
PM
277 }
278 return a_;
279}
280
f591e1be
PM
281/*----------------------------------------------------------------------------
282| Returns the result of converting the half-precision floating-point NaN
283| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
284| exception is raised.
285*----------------------------------------------------------------------------*/
286
e5a41ffa 287static commonNaNT float16ToCommonNaN(float16 a, float_status *status)
f591e1be
PM
288{
289 commonNaNT z;
290
af39bc8c 291 if (float16_is_signaling_nan(a, status)) {
ff32e16e
PM
292 float_raise(float_flag_invalid, status);
293 }
f591e1be
PM
294 z.sign = float16_val(a) >> 15;
295 z.low = 0;
a59eaea6 296 z.high = ((uint64_t) float16_val(a)) << 54;
f591e1be
PM
297 return z;
298}
299
600e30d2
PM
300/*----------------------------------------------------------------------------
301| Returns the result of converting the canonical NaN `a' to the half-
302| precision floating-point format.
303*----------------------------------------------------------------------------*/
304
e5a41ffa 305static float16 commonNaNToFloat16(commonNaNT a, float_status *status)
600e30d2 306{
a59eaea6 307 uint16_t mantissa = a.high >> 54;
600e30d2 308
a2f2d288 309 if (status->default_nan_mode) {
af39bc8c 310 return float16_default_nan(status);
600e30d2
PM
311 }
312
313 if (mantissa) {
314 return make_float16(((((uint16_t) a.sign) << 15)
315 | (0x1F << 10) | mantissa));
316 } else {
af39bc8c 317 return float16_default_nan(status);
600e30d2
PM
318 }
319}
320
213ff4e6 321#ifdef NO_SIGNALING_NANS
af39bc8c 322int float32_is_quiet_nan(float32 a_, float_status *status)
213ff4e6
MF
323{
324 return float32_is_any_nan(a_);
325}
326
af39bc8c 327int float32_is_signaling_nan(float32 a_, float_status *status)
213ff4e6
MF
328{
329 return 0;
330}
331#else
158142c2 332/*----------------------------------------------------------------------------
5a6932d5
TS
333| Returns 1 if the single-precision floating-point value `a' is a quiet
334| NaN; otherwise returns 0.
158142c2
FB
335*----------------------------------------------------------------------------*/
336
af39bc8c 337int float32_is_quiet_nan(float32 a_, float_status *status)
158142c2 338{
f090c9d4 339 uint32_t a = float32_val(a_);
af39bc8c
AM
340 if (status->snan_bit_is_one) {
341 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
342 } else {
343 return ((uint32_t)(a << 1) >= 0xFF800000);
344 }
158142c2
FB
345}
346
347/*----------------------------------------------------------------------------
348| Returns 1 if the single-precision floating-point value `a' is a signaling
349| NaN; otherwise returns 0.
350*----------------------------------------------------------------------------*/
351
af39bc8c 352int float32_is_signaling_nan(float32 a_, float_status *status)
158142c2 353{
f090c9d4 354 uint32_t a = float32_val(a_);
af39bc8c
AM
355 if (status->snan_bit_is_one) {
356 return ((uint32_t)(a << 1) >= 0xFF800000);
357 } else {
358 return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
359 }
158142c2 360}
213ff4e6 361#endif
158142c2 362
b408dbde
PM
363/*----------------------------------------------------------------------------
364| Returns a quiet NaN if the single-precision floating point value `a' is a
365| signaling NaN; otherwise returns `a'.
366*----------------------------------------------------------------------------*/
367
af39bc8c 368float32 float32_maybe_silence_nan(float32 a_, float_status *status)
b408dbde 369{
af39bc8c
AM
370 if (float32_is_signaling_nan(a_, status)) {
371 if (status->snan_bit_is_one) {
005fa38d
RH
372#ifdef TARGET_HPPA
373 uint32_t a = float32_val(a_);
374 a &= ~0x00400000;
375 a |= 0x00200000;
376 return make_float32(a);
377#else
af39bc8c 378 return float32_default_nan(status);
005fa38d 379#endif
af39bc8c
AM
380 } else {
381 uint32_t a = float32_val(a_);
382 a |= (1 << 22);
383 return make_float32(a);
384 }
b408dbde
PM
385 }
386 return a_;
387}
388
158142c2
FB
389/*----------------------------------------------------------------------------
390| Returns the result of converting the single-precision floating-point NaN
391| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
392| exception is raised.
393*----------------------------------------------------------------------------*/
394
e5a41ffa 395static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
158142c2
FB
396{
397 commonNaNT z;
398
af39bc8c 399 if (float32_is_signaling_nan(a, status)) {
ff32e16e
PM
400 float_raise(float_flag_invalid, status);
401 }
a59eaea6 402 z.sign = float32_val(a) >> 31;
158142c2 403 z.low = 0;
a59eaea6 404 z.high = ((uint64_t)float32_val(a)) << 41;
158142c2 405 return z;
158142c2
FB
406}
407
408/*----------------------------------------------------------------------------
409| Returns the result of converting the canonical NaN `a' to the single-
410| precision floating-point format.
411*----------------------------------------------------------------------------*/
412
e5a41ffa 413static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
158142c2 414{
a59eaea6 415 uint32_t mantissa = a.high >> 41;
bcd4d9af 416
a2f2d288 417 if (status->default_nan_mode) {
af39bc8c 418 return float32_default_nan(status);
bcd4d9af
CL
419 }
420
af39bc8c 421 if (mantissa) {
85016c98 422 return make_float32(
a59eaea6 423 (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
af39bc8c
AM
424 } else {
425 return float32_default_nan(status);
426 }
158142c2
FB
427}
428
354f211b
PM
429/*----------------------------------------------------------------------------
430| Select which NaN to propagate for a two-input operation.
431| IEEE754 doesn't specify all the details of this, so the
432| algorithm is target-specific.
433| The routine is passed various bits of information about the
434| two NaNs and should return 0 to select NaN a and 1 for NaN b.
435| Note that signalling NaNs are always squashed to quiet NaNs
1f398e08
AJ
436| by the caller, by calling floatXX_maybe_silence_nan() before
437| returning them.
354f211b
PM
438|
439| aIsLargerSignificand is only valid if both a and b are NaNs
440| of some kind, and is true if a has the larger significand,
441| or if both a and b have the same significand but a is
442| positive but b is negative. It is only needed for the x87
443| tie-break rule.
444*----------------------------------------------------------------------------*/
445
011da610
PM
446#if defined(TARGET_ARM)
447static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
448 flag aIsLargerSignificand)
449{
450 /* ARM mandated NaN propagation rules: take the first of:
451 * 1. A if it is signaling
452 * 2. B if it is signaling
453 * 3. A (quiet)
454 * 4. B (quiet)
455 * A signaling NaN is always quietened before returning it.
456 */
457 if (aIsSNaN) {
458 return 0;
459 } else if (bIsSNaN) {
460 return 1;
461 } else if (aIsQNaN) {
462 return 0;
463 } else {
464 return 1;
465 }
466}
005fa38d 467#elif defined(TARGET_MIPS) || defined(TARGET_HPPA)
084d19ba
AJ
468static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
469 flag aIsLargerSignificand)
470{
471 /* According to MIPS specifications, if one of the two operands is
472 * a sNaN, a new qNaN has to be generated. This is done in
473 * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
474 * says: "When possible, this QNaN result is one of the operand QNaN
475 * values." In practice it seems that most implementations choose
476 * the first operand if both operands are qNaN. In short this gives
477 * the following rules:
478 * 1. A if it is signaling
479 * 2. B if it is signaling
480 * 3. A (quiet)
481 * 4. B (quiet)
482 * A signaling NaN is always silenced before returning it.
483 */
484 if (aIsSNaN) {
485 return 0;
486 } else if (bIsSNaN) {
487 return 1;
488 } else if (aIsQNaN) {
489 return 0;
490 } else {
491 return 1;
492 }
493}
b81fe822 494#elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
e024e881
AJ
495static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
496 flag aIsLargerSignificand)
497{
498 /* PowerPC propagation rules:
499 * 1. A if it sNaN or qNaN
500 * 2. B if it sNaN or qNaN
501 * A signaling NaN is always silenced before returning it.
502 */
503 if (aIsSNaN || aIsQNaN) {
504 return 0;
505 } else {
506 return 1;
507 }
508}
e5b0cbe8
LV
509#elif defined(TARGET_M68K)
510static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
511 flag aIsLargerSignificand)
512{
513 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
514 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
515 * If either operand, but not both operands, of an operation is a
516 * nonsignaling NaN, then that NaN is returned as the result. If both
517 * operands are nonsignaling NaNs, then the destination operand
518 * nonsignaling NaN is returned as the result.
519 * If either operand to an operation is a signaling NaN (SNaN), then the
520 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
521 * is set in the FPCR ENABLE byte, then the exception is taken and the
522 * destination is not modified. If the SNaN exception enable bit is not
523 * set, setting the SNaN bit in the operand to a one converts the SNaN to
524 * a nonsignaling NaN. The operation then continues as described in the
525 * preceding paragraph for nonsignaling NaNs.
526 */
527 if (aIsQNaN || aIsSNaN) { /* a is the destination operand */
528 return 0; /* return the destination operand */
529 } else {
530 return 1; /* return b */
531 }
532}
011da610 533#else
354f211b
PM
534static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
535 flag aIsLargerSignificand)
536{
537 /* This implements x87 NaN propagation rules:
538 * SNaN + QNaN => return the QNaN
539 * two SNaNs => return the one with the larger significand, silenced
540 * two QNaNs => return the one with the larger significand
541 * SNaN and a non-NaN => return the SNaN, silenced
542 * QNaN and a non-NaN => return the QNaN
543 *
544 * If we get down to comparing significands and they are the same,
545 * return the NaN with the positive sign bit (if any).
546 */
547 if (aIsSNaN) {
548 if (bIsSNaN) {
549 return aIsLargerSignificand ? 0 : 1;
550 }
551 return bIsQNaN ? 1 : 0;
a59eaea6
AM
552 } else if (aIsQNaN) {
553 if (bIsSNaN || !bIsQNaN) {
354f211b 554 return 0;
a59eaea6 555 } else {
354f211b
PM
556 return aIsLargerSignificand ? 0 : 1;
557 }
558 } else {
559 return 1;
560 }
561}
011da610 562#endif
354f211b 563
369be8f6
PM
564/*----------------------------------------------------------------------------
565| Select which NaN to propagate for a three-input operation.
566| For the moment we assume that no CPU needs the 'larger significand'
567| information.
568| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
569*----------------------------------------------------------------------------*/
570#if defined(TARGET_ARM)
571static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
e5a41ffa
PM
572 flag cIsQNaN, flag cIsSNaN, flag infzero,
573 float_status *status)
369be8f6
PM
574{
575 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
576 * the default NaN
577 */
578 if (infzero && cIsQNaN) {
ff32e16e 579 float_raise(float_flag_invalid, status);
369be8f6
PM
580 return 3;
581 }
582
583 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
584 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
585 */
586 if (cIsSNaN) {
587 return 2;
588 } else if (aIsSNaN) {
589 return 0;
590 } else if (bIsSNaN) {
591 return 1;
592 } else if (cIsQNaN) {
593 return 2;
594 } else if (aIsQNaN) {
595 return 0;
596 } else {
597 return 1;
598 }
599}
bbc1dede
AJ
600#elif defined(TARGET_MIPS)
601static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
e5a41ffa
PM
602 flag cIsQNaN, flag cIsSNaN, flag infzero,
603 float_status *status)
bbc1dede
AJ
604{
605 /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
606 * the default NaN
607 */
608 if (infzero) {
ff32e16e 609 float_raise(float_flag_invalid, status);
bbc1dede
AJ
610 return 3;
611 }
612
c27644f0
AM
613 if (status->snan_bit_is_one) {
614 /* Prefer sNaN over qNaN, in the a, b, c order. */
615 if (aIsSNaN) {
616 return 0;
617 } else if (bIsSNaN) {
618 return 1;
619 } else if (cIsSNaN) {
620 return 2;
621 } else if (aIsQNaN) {
622 return 0;
623 } else if (bIsQNaN) {
624 return 1;
625 } else {
626 return 2;
627 }
bbc1dede 628 } else {
c27644f0
AM
629 /* Prefer sNaN over qNaN, in the c, a, b order. */
630 if (cIsSNaN) {
631 return 2;
632 } else if (aIsSNaN) {
633 return 0;
634 } else if (bIsSNaN) {
635 return 1;
636 } else if (cIsQNaN) {
637 return 2;
638 } else if (aIsQNaN) {
639 return 0;
640 } else {
641 return 1;
642 }
bbc1dede
AJ
643 }
644}
369be8f6
PM
645#elif defined(TARGET_PPC)
646static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
e5a41ffa
PM
647 flag cIsQNaN, flag cIsSNaN, flag infzero,
648 float_status *status)
369be8f6
PM
649{
650 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
651 * to return an input NaN if we have one (ie c) rather than generating
652 * a default NaN
653 */
654 if (infzero) {
ff32e16e 655 float_raise(float_flag_invalid, status);
369be8f6
PM
656 return 2;
657 }
658
659 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
660 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
661 */
662 if (aIsSNaN || aIsQNaN) {
663 return 0;
664 } else if (cIsSNaN || cIsQNaN) {
665 return 2;
666 } else {
667 return 1;
668 }
669}
670#else
671/* A default implementation: prefer a to b to c.
672 * This is unlikely to actually match any real implementation.
673 */
674static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
e5a41ffa
PM
675 flag cIsQNaN, flag cIsSNaN, flag infzero,
676 float_status *status)
369be8f6
PM
677{
678 if (aIsSNaN || aIsQNaN) {
679 return 0;
680 } else if (bIsSNaN || bIsQNaN) {
681 return 1;
682 } else {
683 return 2;
684 }
685}
686#endif
687
158142c2
FB
688/*----------------------------------------------------------------------------
689| Takes two single-precision floating-point values `a' and `b', one of which
690| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
691| signaling NaN, the invalid exception is raised.
692*----------------------------------------------------------------------------*/
693
e5a41ffa 694static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
158142c2 695{
d735d695
AJ
696 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
697 flag aIsLargerSignificand;
bb98fe42 698 uint32_t av, bv;
158142c2 699
af39bc8c
AM
700 aIsQuietNaN = float32_is_quiet_nan(a, status);
701 aIsSignalingNaN = float32_is_signaling_nan(a, status);
702 bIsQuietNaN = float32_is_quiet_nan(b, status);
703 bIsSignalingNaN = float32_is_signaling_nan(b, status);
f090c9d4
PB
704 av = float32_val(a);
705 bv = float32_val(b);
1f398e08 706
ff32e16e
PM
707 if (aIsSignalingNaN | bIsSignalingNaN) {
708 float_raise(float_flag_invalid, status);
709 }
354f211b 710
af39bc8c
AM
711 if (status->default_nan_mode) {
712 return float32_default_nan(status);
713 }
10201602 714
a59eaea6 715 if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
354f211b 716 aIsLargerSignificand = 0;
a59eaea6 717 } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
354f211b
PM
718 aIsLargerSignificand = 1;
719 } else {
720 aIsLargerSignificand = (av < bv) ? 1 : 0;
158142c2 721 }
354f211b 722
d735d695 723 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 724 aIsLargerSignificand)) {
af39bc8c 725 return float32_maybe_silence_nan(b, status);
354f211b 726 } else {
af39bc8c 727 return float32_maybe_silence_nan(a, status);
158142c2 728 }
158142c2
FB
729}
730
369be8f6
PM
731/*----------------------------------------------------------------------------
732| Takes three single-precision floating-point values `a', `b' and `c', one of
733| which is a NaN, and returns the appropriate NaN result. If any of `a',
734| `b' or `c' is a signaling NaN, the invalid exception is raised.
735| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
736| obviously c is a NaN, and whether to propagate c or some other NaN is
737| implementation defined).
738*----------------------------------------------------------------------------*/
739
740static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
e5a41ffa
PM
741 float32 c, flag infzero,
742 float_status *status)
369be8f6
PM
743{
744 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
745 cIsQuietNaN, cIsSignalingNaN;
746 int which;
747
af39bc8c
AM
748 aIsQuietNaN = float32_is_quiet_nan(a, status);
749 aIsSignalingNaN = float32_is_signaling_nan(a, status);
750 bIsQuietNaN = float32_is_quiet_nan(b, status);
751 bIsSignalingNaN = float32_is_signaling_nan(b, status);
752 cIsQuietNaN = float32_is_quiet_nan(c, status);
753 cIsSignalingNaN = float32_is_signaling_nan(c, status);
369be8f6
PM
754
755 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
ff32e16e 756 float_raise(float_flag_invalid, status);
369be8f6
PM
757 }
758
759 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
760 bIsQuietNaN, bIsSignalingNaN,
ff32e16e 761 cIsQuietNaN, cIsSignalingNaN, infzero, status);
369be8f6 762
a2f2d288 763 if (status->default_nan_mode) {
369be8f6
PM
764 /* Note that this check is after pickNaNMulAdd so that function
765 * has an opportunity to set the Invalid flag.
766 */
af39bc8c 767 return float32_default_nan(status);
369be8f6
PM
768 }
769
770 switch (which) {
771 case 0:
af39bc8c 772 return float32_maybe_silence_nan(a, status);
369be8f6 773 case 1:
af39bc8c 774 return float32_maybe_silence_nan(b, status);
369be8f6 775 case 2:
af39bc8c 776 return float32_maybe_silence_nan(c, status);
369be8f6
PM
777 case 3:
778 default:
af39bc8c 779 return float32_default_nan(status);
369be8f6
PM
780 }
781}
782
213ff4e6 783#ifdef NO_SIGNALING_NANS
af39bc8c 784int float64_is_quiet_nan(float64 a_, float_status *status)
213ff4e6
MF
785{
786 return float64_is_any_nan(a_);
787}
788
af39bc8c 789int float64_is_signaling_nan(float64 a_, float_status *status)
213ff4e6
MF
790{
791 return 0;
792}
793#else
158142c2 794/*----------------------------------------------------------------------------
5a6932d5
TS
795| Returns 1 if the double-precision floating-point value `a' is a quiet
796| NaN; otherwise returns 0.
158142c2
FB
797*----------------------------------------------------------------------------*/
798
af39bc8c 799int float64_is_quiet_nan(float64 a_, float_status *status)
158142c2 800{
bb98fe42 801 uint64_t a = float64_val(a_);
af39bc8c
AM
802 if (status->snan_bit_is_one) {
803 return (((a >> 51) & 0xFFF) == 0xFFE)
804 && (a & 0x0007FFFFFFFFFFFFULL);
805 } else {
806 return ((a << 1) >= 0xFFF0000000000000ULL);
807 }
158142c2
FB
808}
809
810/*----------------------------------------------------------------------------
811| Returns 1 if the double-precision floating-point value `a' is a signaling
812| NaN; otherwise returns 0.
813*----------------------------------------------------------------------------*/
814
af39bc8c 815int float64_is_signaling_nan(float64 a_, float_status *status)
158142c2 816{
bb98fe42 817 uint64_t a = float64_val(a_);
af39bc8c
AM
818 if (status->snan_bit_is_one) {
819 return ((a << 1) >= 0xFFF0000000000000ULL);
820 } else {
821 return (((a >> 51) & 0xFFF) == 0xFFE)
822 && (a & LIT64(0x0007FFFFFFFFFFFF));
823 }
158142c2 824}
213ff4e6 825#endif
158142c2 826
b408dbde
PM
827/*----------------------------------------------------------------------------
828| Returns a quiet NaN if the double-precision floating point value `a' is a
829| signaling NaN; otherwise returns `a'.
830*----------------------------------------------------------------------------*/
831
af39bc8c 832float64 float64_maybe_silence_nan(float64 a_, float_status *status)
b408dbde 833{
af39bc8c
AM
834 if (float64_is_signaling_nan(a_, status)) {
835 if (status->snan_bit_is_one) {
005fa38d
RH
836#ifdef TARGET_HPPA
837 uint64_t a = float64_val(a_);
838 a &= ~0x0008000000000000ULL;
839 a |= 0x0004000000000000ULL;
840 return make_float64(a);
841#else
af39bc8c 842 return float64_default_nan(status);
005fa38d 843#endif
af39bc8c
AM
844 } else {
845 uint64_t a = float64_val(a_);
846 a |= LIT64(0x0008000000000000);
847 return make_float64(a);
848 }
b408dbde
PM
849 }
850 return a_;
851}
852
158142c2
FB
853/*----------------------------------------------------------------------------
854| Returns the result of converting the double-precision floating-point NaN
855| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
856| exception is raised.
857*----------------------------------------------------------------------------*/
858
e5a41ffa 859static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
158142c2
FB
860{
861 commonNaNT z;
862
af39bc8c 863 if (float64_is_signaling_nan(a, status)) {
ff32e16e
PM
864 float_raise(float_flag_invalid, status);
865 }
a59eaea6 866 z.sign = float64_val(a) >> 63;
158142c2 867 z.low = 0;
a59eaea6 868 z.high = float64_val(a) << 12;
158142c2 869 return z;
158142c2
FB
870}
871
872/*----------------------------------------------------------------------------
873| Returns the result of converting the canonical NaN `a' to the double-
874| precision floating-point format.
875*----------------------------------------------------------------------------*/
876
e5a41ffa 877static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
158142c2 878{
a59eaea6 879 uint64_t mantissa = a.high >> 12;
85016c98 880
a2f2d288 881 if (status->default_nan_mode) {
af39bc8c 882 return float64_default_nan(status);
bcd4d9af
CL
883 }
884
af39bc8c 885 if (mantissa) {
85016c98 886 return make_float64(
a59eaea6
AM
887 (((uint64_t) a.sign) << 63)
888 | LIT64(0x7FF0000000000000)
889 | (a.high >> 12));
af39bc8c
AM
890 } else {
891 return float64_default_nan(status);
892 }
158142c2
FB
893}
894
895/*----------------------------------------------------------------------------
896| Takes two double-precision floating-point values `a' and `b', one of which
897| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
898| signaling NaN, the invalid exception is raised.
899*----------------------------------------------------------------------------*/
900
e5a41ffa 901static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
158142c2 902{
d735d695
AJ
903 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
904 flag aIsLargerSignificand;
bb98fe42 905 uint64_t av, bv;
158142c2 906
af39bc8c
AM
907 aIsQuietNaN = float64_is_quiet_nan(a, status);
908 aIsSignalingNaN = float64_is_signaling_nan(a, status);
909 bIsQuietNaN = float64_is_quiet_nan(b, status);
910 bIsSignalingNaN = float64_is_signaling_nan(b, status);
f090c9d4
PB
911 av = float64_val(a);
912 bv = float64_val(b);
1f398e08 913
ff32e16e
PM
914 if (aIsSignalingNaN | bIsSignalingNaN) {
915 float_raise(float_flag_invalid, status);
916 }
354f211b 917
af39bc8c
AM
918 if (status->default_nan_mode) {
919 return float64_default_nan(status);
920 }
10201602 921
a59eaea6 922 if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
354f211b 923 aIsLargerSignificand = 0;
a59eaea6 924 } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
354f211b
PM
925 aIsLargerSignificand = 1;
926 } else {
927 aIsLargerSignificand = (av < bv) ? 1 : 0;
158142c2 928 }
354f211b 929
d735d695 930 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 931 aIsLargerSignificand)) {
af39bc8c 932 return float64_maybe_silence_nan(b, status);
354f211b 933 } else {
af39bc8c 934 return float64_maybe_silence_nan(a, status);
158142c2 935 }
158142c2
FB
936}
937
369be8f6
PM
938/*----------------------------------------------------------------------------
939| Takes three double-precision floating-point values `a', `b' and `c', one of
940| which is a NaN, and returns the appropriate NaN result. If any of `a',
941| `b' or `c' is a signaling NaN, the invalid exception is raised.
942| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
943| obviously c is a NaN, and whether to propagate c or some other NaN is
944| implementation defined).
945*----------------------------------------------------------------------------*/
946
947static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
e5a41ffa
PM
948 float64 c, flag infzero,
949 float_status *status)
369be8f6
PM
950{
951 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
952 cIsQuietNaN, cIsSignalingNaN;
953 int which;
954
af39bc8c
AM
955 aIsQuietNaN = float64_is_quiet_nan(a, status);
956 aIsSignalingNaN = float64_is_signaling_nan(a, status);
957 bIsQuietNaN = float64_is_quiet_nan(b, status);
958 bIsSignalingNaN = float64_is_signaling_nan(b, status);
959 cIsQuietNaN = float64_is_quiet_nan(c, status);
960 cIsSignalingNaN = float64_is_signaling_nan(c, status);
369be8f6
PM
961
962 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
ff32e16e 963 float_raise(float_flag_invalid, status);
369be8f6
PM
964 }
965
966 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
967 bIsQuietNaN, bIsSignalingNaN,
ff32e16e 968 cIsQuietNaN, cIsSignalingNaN, infzero, status);
369be8f6 969
a2f2d288 970 if (status->default_nan_mode) {
369be8f6
PM
971 /* Note that this check is after pickNaNMulAdd so that function
972 * has an opportunity to set the Invalid flag.
973 */
af39bc8c 974 return float64_default_nan(status);
369be8f6
PM
975 }
976
977 switch (which) {
978 case 0:
af39bc8c 979 return float64_maybe_silence_nan(a, status);
369be8f6 980 case 1:
af39bc8c 981 return float64_maybe_silence_nan(b, status);
369be8f6 982 case 2:
af39bc8c 983 return float64_maybe_silence_nan(c, status);
369be8f6
PM
984 case 3:
985 default:
af39bc8c 986 return float64_default_nan(status);
369be8f6
PM
987 }
988}
989
213ff4e6 990#ifdef NO_SIGNALING_NANS
af39bc8c 991int floatx80_is_quiet_nan(floatx80 a_, float_status *status)
213ff4e6
MF
992{
993 return floatx80_is_any_nan(a_);
994}
995
af39bc8c 996int floatx80_is_signaling_nan(floatx80 a_, float_status *status)
213ff4e6
MF
997{
998 return 0;
999}
1000#else
158142c2
FB
1001/*----------------------------------------------------------------------------
1002| Returns 1 if the extended double-precision floating-point value `a' is a
de4af5f7
AJ
1003| quiet NaN; otherwise returns 0. This slightly differs from the same
1004| function for other types as floatx80 has an explicit bit.
158142c2
FB
1005*----------------------------------------------------------------------------*/
1006
af39bc8c 1007int floatx80_is_quiet_nan(floatx80 a, float_status *status)
158142c2 1008{
af39bc8c
AM
1009 if (status->snan_bit_is_one) {
1010 uint64_t aLow;
158142c2 1011
af39bc8c
AM
1012 aLow = a.low & ~0x4000000000000000ULL;
1013 return ((a.high & 0x7FFF) == 0x7FFF)
1014 && (aLow << 1)
1015 && (a.low == aLow);
1016 } else {
1017 return ((a.high & 0x7FFF) == 0x7FFF)
1018 && (LIT64(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
1019 }
158142c2
FB
1020}
1021
1022/*----------------------------------------------------------------------------
1023| Returns 1 if the extended double-precision floating-point value `a' is a
de4af5f7
AJ
1024| signaling NaN; otherwise returns 0. This slightly differs from the same
1025| function for other types as floatx80 has an explicit bit.
158142c2
FB
1026*----------------------------------------------------------------------------*/
1027
af39bc8c 1028int floatx80_is_signaling_nan(floatx80 a, float_status *status)
158142c2 1029{
af39bc8c
AM
1030 if (status->snan_bit_is_one) {
1031 return ((a.high & 0x7FFF) == 0x7FFF)
1032 && ((a.low << 1) >= 0x8000000000000000ULL);
1033 } else {
1034 uint64_t aLow;
158142c2 1035
af39bc8c
AM
1036 aLow = a.low & ~LIT64(0x4000000000000000);
1037 return ((a.high & 0x7FFF) == 0x7FFF)
1038 && (uint64_t)(aLow << 1)
1039 && (a.low == aLow);
1040 }
158142c2 1041}
213ff4e6 1042#endif
158142c2 1043
f6a7d92a
AJ
1044/*----------------------------------------------------------------------------
1045| Returns a quiet NaN if the extended double-precision floating point value
1046| `a' is a signaling NaN; otherwise returns `a'.
1047*----------------------------------------------------------------------------*/
1048
af39bc8c 1049floatx80 floatx80_maybe_silence_nan(floatx80 a, float_status *status)
f6a7d92a 1050{
af39bc8c
AM
1051 if (floatx80_is_signaling_nan(a, status)) {
1052 if (status->snan_bit_is_one) {
1053 a = floatx80_default_nan(status);
1054 } else {
1055 a.low |= LIT64(0xC000000000000000);
1056 return a;
1057 }
f6a7d92a
AJ
1058 }
1059 return a;
1060}
1061
158142c2
FB
1062/*----------------------------------------------------------------------------
1063| Returns the result of converting the extended double-precision floating-
1064| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
1065| invalid exception is raised.
1066*----------------------------------------------------------------------------*/
1067
e5a41ffa 1068static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
158142c2 1069{
af39bc8c 1070 floatx80 dflt;
158142c2
FB
1071 commonNaNT z;
1072
af39bc8c 1073 if (floatx80_is_signaling_nan(a, status)) {
ff32e16e
PM
1074 float_raise(float_flag_invalid, status);
1075 }
a59eaea6 1076 if (a.low >> 63) {
e2f42204
AJ
1077 z.sign = a.high >> 15;
1078 z.low = 0;
1079 z.high = a.low << 1;
1080 } else {
af39bc8c
AM
1081 dflt = floatx80_default_nan(status);
1082 z.sign = dflt.high >> 15;
e2f42204 1083 z.low = 0;
af39bc8c 1084 z.high = dflt.low << 1;
e2f42204 1085 }
158142c2 1086 return z;
158142c2
FB
1087}
1088
1089/*----------------------------------------------------------------------------
1090| Returns the result of converting the canonical NaN `a' to the extended
1091| double-precision floating-point format.
1092*----------------------------------------------------------------------------*/
1093
e5a41ffa 1094static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
158142c2
FB
1095{
1096 floatx80 z;
1097
a2f2d288 1098 if (status->default_nan_mode) {
af39bc8c 1099 return floatx80_default_nan(status);
bcd4d9af
CL
1100 }
1101
e2f42204 1102 if (a.high >> 1) {
a59eaea6
AM
1103 z.low = LIT64(0x8000000000000000) | a.high >> 1;
1104 z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
e2f42204 1105 } else {
af39bc8c 1106 z = floatx80_default_nan(status);
e2f42204 1107 }
158142c2 1108 return z;
158142c2
FB
1109}
1110
1111/*----------------------------------------------------------------------------
1112| Takes two extended double-precision floating-point values `a' and `b', one
1113| of which is a NaN, and returns the appropriate NaN result. If either `a' or
1114| `b' is a signaling NaN, the invalid exception is raised.
1115*----------------------------------------------------------------------------*/
1116
e5a41ffa
PM
1117static floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b,
1118 float_status *status)
158142c2 1119{
d735d695
AJ
1120 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1121 flag aIsLargerSignificand;
158142c2 1122
af39bc8c
AM
1123 aIsQuietNaN = floatx80_is_quiet_nan(a, status);
1124 aIsSignalingNaN = floatx80_is_signaling_nan(a, status);
1125 bIsQuietNaN = floatx80_is_quiet_nan(b, status);
1126 bIsSignalingNaN = floatx80_is_signaling_nan(b, status);
1f398e08 1127
ff32e16e
PM
1128 if (aIsSignalingNaN | bIsSignalingNaN) {
1129 float_raise(float_flag_invalid, status);
1130 }
354f211b 1131
a2f2d288 1132 if (status->default_nan_mode) {
af39bc8c 1133 return floatx80_default_nan(status);
10201602
AJ
1134 }
1135
354f211b
PM
1136 if (a.low < b.low) {
1137 aIsLargerSignificand = 0;
1138 } else if (b.low < a.low) {
1139 aIsLargerSignificand = 1;
1140 } else {
1141 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
158142c2 1142 }
354f211b 1143
d735d695 1144 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 1145 aIsLargerSignificand)) {
af39bc8c 1146 return floatx80_maybe_silence_nan(b, status);
354f211b 1147 } else {
af39bc8c 1148 return floatx80_maybe_silence_nan(a, status);
158142c2 1149 }
158142c2
FB
1150}
1151
213ff4e6 1152#ifdef NO_SIGNALING_NANS
af39bc8c 1153int float128_is_quiet_nan(float128 a_, float_status *status)
213ff4e6
MF
1154{
1155 return float128_is_any_nan(a_);
1156}
1157
af39bc8c 1158int float128_is_signaling_nan(float128 a_, float_status *status)
213ff4e6
MF
1159{
1160 return 0;
1161}
1162#else
158142c2 1163/*----------------------------------------------------------------------------
5a6932d5
TS
1164| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1165| NaN; otherwise returns 0.
158142c2
FB
1166*----------------------------------------------------------------------------*/
1167
af39bc8c 1168int float128_is_quiet_nan(float128 a, float_status *status)
158142c2 1169{
af39bc8c
AM
1170 if (status->snan_bit_is_one) {
1171 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1172 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1173 } else {
1174 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1175 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1176 }
158142c2
FB
1177}
1178
1179/*----------------------------------------------------------------------------
1180| Returns 1 if the quadruple-precision floating-point value `a' is a
1181| signaling NaN; otherwise returns 0.
1182*----------------------------------------------------------------------------*/
1183
af39bc8c 1184int float128_is_signaling_nan(float128 a, float_status *status)
158142c2 1185{
af39bc8c
AM
1186 if (status->snan_bit_is_one) {
1187 return ((a.high << 1) >= 0xFFFF000000000000ULL)
1188 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1189 } else {
1190 return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1191 && (a.low || (a.high & LIT64(0x00007FFFFFFFFFFF)));
1192 }
158142c2 1193}
213ff4e6 1194#endif
158142c2 1195
f6a7d92a
AJ
1196/*----------------------------------------------------------------------------
1197| Returns a quiet NaN if the quadruple-precision floating point value `a' is
1198| a signaling NaN; otherwise returns `a'.
1199*----------------------------------------------------------------------------*/
1200
af39bc8c 1201float128 float128_maybe_silence_nan(float128 a, float_status *status)
f6a7d92a 1202{
af39bc8c
AM
1203 if (float128_is_signaling_nan(a, status)) {
1204 if (status->snan_bit_is_one) {
1205 a = float128_default_nan(status);
1206 } else {
1207 a.high |= LIT64(0x0000800000000000);
1208 return a;
1209 }
f6a7d92a
AJ
1210 }
1211 return a;
1212}
1213
158142c2
FB
1214/*----------------------------------------------------------------------------
1215| Returns the result of converting the quadruple-precision floating-point NaN
1216| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
1217| exception is raised.
1218*----------------------------------------------------------------------------*/
1219
e5a41ffa 1220static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
158142c2
FB
1221{
1222 commonNaNT z;
1223
af39bc8c 1224 if (float128_is_signaling_nan(a, status)) {
ff32e16e
PM
1225 float_raise(float_flag_invalid, status);
1226 }
a59eaea6
AM
1227 z.sign = a.high >> 63;
1228 shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
158142c2 1229 return z;
158142c2
FB
1230}
1231
1232/*----------------------------------------------------------------------------
1233| Returns the result of converting the canonical NaN `a' to the quadruple-
1234| precision floating-point format.
1235*----------------------------------------------------------------------------*/
1236
e5a41ffa 1237static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
158142c2
FB
1238{
1239 float128 z;
1240
a2f2d288 1241 if (status->default_nan_mode) {
af39bc8c 1242 return float128_default_nan(status);
bcd4d9af
CL
1243 }
1244
a59eaea6
AM
1245 shift128Right(a.high, a.low, 16, &z.high, &z.low);
1246 z.high |= (((uint64_t)a.sign) << 63) | LIT64(0x7FFF000000000000);
158142c2 1247 return z;
158142c2
FB
1248}
1249
1250/*----------------------------------------------------------------------------
1251| Takes two quadruple-precision floating-point values `a' and `b', one of
1252| which is a NaN, and returns the appropriate NaN result. If either `a' or
1253| `b' is a signaling NaN, the invalid exception is raised.
1254*----------------------------------------------------------------------------*/
1255
e5a41ffa
PM
1256static float128 propagateFloat128NaN(float128 a, float128 b,
1257 float_status *status)
158142c2 1258{
d735d695
AJ
1259 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1260 flag aIsLargerSignificand;
158142c2 1261
af39bc8c
AM
1262 aIsQuietNaN = float128_is_quiet_nan(a, status);
1263 aIsSignalingNaN = float128_is_signaling_nan(a, status);
1264 bIsQuietNaN = float128_is_quiet_nan(b, status);
1265 bIsSignalingNaN = float128_is_signaling_nan(b, status);
1f398e08 1266
ff32e16e
PM
1267 if (aIsSignalingNaN | bIsSignalingNaN) {
1268 float_raise(float_flag_invalid, status);
1269 }
354f211b 1270
a2f2d288 1271 if (status->default_nan_mode) {
af39bc8c 1272 return float128_default_nan(status);
10201602
AJ
1273 }
1274
a59eaea6 1275 if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
354f211b 1276 aIsLargerSignificand = 0;
a59eaea6 1277 } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
354f211b
PM
1278 aIsLargerSignificand = 1;
1279 } else {
1280 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
158142c2 1281 }
354f211b 1282
d735d695 1283 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 1284 aIsLargerSignificand)) {
af39bc8c 1285 return float128_maybe_silence_nan(b, status);
354f211b 1286 } else {
af39bc8c 1287 return float128_maybe_silence_nan(a, status);
158142c2 1288 }
158142c2 1289}