]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - fs/aio.c
Merge tag 'audit-pr-20211216' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoor...
[mirror_ubuntu-kernels.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
e1bdd5f2 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/slab.h>
32#include <linux/timer.h>
33#include <linux/aio.h>
34#include <linux/highmem.h>
35#include <linux/workqueue.h>
36#include <linux/security.h>
9c3060be 37#include <linux/eventfd.h>
cfb1e33e 38#include <linux/blkdev.h>
9d85cba7 39#include <linux/compat.h>
36bc08cc
GZ
40#include <linux/migrate.h>
41#include <linux/ramfs.h>
723be6e3 42#include <linux/percpu-refcount.h>
71ad7490 43#include <linux/mount.h>
52db59df 44#include <linux/pseudo_fs.h>
1da177e4 45
7c0f6ba6 46#include <linux/uaccess.h>
a538e3ff 47#include <linux/nospec.h>
1da177e4 48
68d70d03
AV
49#include "internal.h"
50
f3a2752a
CH
51#define KIOCB_KEY 0
52
4e179bca
KO
53#define AIO_RING_MAGIC 0xa10a10a1
54#define AIO_RING_COMPAT_FEATURES 1
55#define AIO_RING_INCOMPAT_FEATURES 0
56struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
fa8a53c3
BL
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
4e179bca
KO
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
241cb28e 69 struct io_event io_events[];
4e179bca
KO
70}; /* 128 bytes + ring size */
71
a79d40e9
JA
72/*
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
75 */
76#define AIO_PLUG_THRESHOLD 2
77
4e179bca 78#define AIO_RING_PAGES 8
4e179bca 79
db446a08 80struct kioctx_table {
d0264c01
TH
81 struct rcu_head rcu;
82 unsigned nr;
83 struct kioctx __rcu *table[];
db446a08
BL
84};
85
e1bdd5f2
KO
86struct kioctx_cpu {
87 unsigned reqs_available;
88};
89
dc48e56d
JA
90struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
93};
94
4e179bca 95struct kioctx {
723be6e3 96 struct percpu_ref users;
36f55889 97 atomic_t dead;
4e179bca 98
e34ecee2
KO
99 struct percpu_ref reqs;
100
4e179bca 101 unsigned long user_id;
4e179bca 102
e1bdd5f2
KO
103 struct __percpu kioctx_cpu *cpu;
104
105 /*
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
108 */
109 unsigned req_batch;
3e845ce0
KO
110 /*
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
113 *
58c85dc2 114 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
115 * aio_setup_ring())
116 */
4e179bca
KO
117 unsigned max_reqs;
118
58c85dc2
KO
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
4e179bca 121
58c85dc2
KO
122 unsigned long mmap_base;
123 unsigned long mmap_size;
124
125 struct page **ring_pages;
126 long nr_pages;
127
f729863a 128 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 129
e02ba72a
AP
130 /*
131 * signals when all in-flight requests are done
132 */
dc48e56d 133 struct ctx_rq_wait *rq_wait;
e02ba72a 134
4e23bcae 135 struct {
34e83fc6
KO
136 /*
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
141 *
142 * We batch accesses to it with a percpu version.
34e83fc6
KO
143 */
144 atomic_t reqs_available;
4e23bcae
KO
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
151
58c85dc2
KO
152 struct {
153 struct mutex ring_lock;
4e23bcae
KO
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
58c85dc2
KO
156
157 struct {
158 unsigned tail;
d856f32a 159 unsigned completed_events;
58c85dc2 160 spinlock_t completion_lock;
4e23bcae 161 } ____cacheline_aligned_in_smp;
58c85dc2
KO
162
163 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 164 struct file *aio_ring_file;
db446a08
BL
165
166 unsigned id;
4e179bca
KO
167};
168
84c4e1f8
LT
169/*
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172 */
a3c0d439 173struct fsync_iocb {
a3c0d439 174 struct file *file;
84c4e1f8 175 struct work_struct work;
a3c0d439 176 bool datasync;
530f32fc 177 struct cred *creds;
a3c0d439
CH
178};
179
bfe4037e
CH
180struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
bfe4037e 184 bool cancelled;
363bee27
EB
185 bool work_scheduled;
186 bool work_need_resched;
bfe4037e
CH
187 struct wait_queue_entry wait;
188 struct work_struct work;
189};
190
84c4e1f8
LT
191/*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
04b2fa9f 197struct aio_kiocb {
54843f87 198 union {
84c4e1f8 199 struct file *ki_filp;
54843f87 200 struct kiocb rw;
a3c0d439 201 struct fsync_iocb fsync;
bfe4037e 202 struct poll_iocb poll;
54843f87 203 };
04b2fa9f
CH
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
a9339b78 208 struct io_event ki_res;
04b2fa9f
CH
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
9018ccc4 212 refcount_t ki_refcnt;
04b2fa9f
CH
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219};
220
1da177e4 221/*------ sysctl variables----*/
d55b5fda
ZB
222static DEFINE_SPINLOCK(aio_nr_lock);
223unsigned long aio_nr; /* current system wide number of aio requests */
224unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
225/*----end sysctl variables---*/
226
e18b890b
CL
227static struct kmem_cache *kiocb_cachep;
228static struct kmem_cache *kioctx_cachep;
1da177e4 229
71ad7490
BL
230static struct vfsmount *aio_mnt;
231
232static const struct file_operations aio_ring_fops;
233static const struct address_space_operations aio_ctx_aops;
234
235static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
236{
71ad7490 237 struct file *file;
71ad7490 238 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
239 if (IS_ERR(inode))
240 return ERR_CAST(inode);
71ad7490
BL
241
242 inode->i_mapping->a_ops = &aio_ctx_aops;
243 inode->i_mapping->private_data = ctx;
244 inode->i_size = PAGE_SIZE * nr_pages;
245
d93aa9d8
AV
246 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
247 O_RDWR, &aio_ring_fops);
c9c554f2 248 if (IS_ERR(file))
71ad7490 249 iput(inode);
71ad7490
BL
250 return file;
251}
252
52db59df 253static int aio_init_fs_context(struct fs_context *fc)
71ad7490 254{
52db59df
DH
255 if (!init_pseudo(fc, AIO_RING_MAGIC))
256 return -ENOMEM;
257 fc->s_iflags |= SB_I_NOEXEC;
258 return 0;
71ad7490
BL
259}
260
1da177e4
LT
261/* aio_setup
262 * Creates the slab caches used by the aio routines, panic on
263 * failure as this is done early during the boot sequence.
264 */
265static int __init aio_setup(void)
266{
71ad7490
BL
267 static struct file_system_type aio_fs = {
268 .name = "aio",
52db59df 269 .init_fs_context = aio_init_fs_context,
71ad7490
BL
270 .kill_sb = kill_anon_super,
271 };
272 aio_mnt = kern_mount(&aio_fs);
273 if (IS_ERR(aio_mnt))
274 panic("Failed to create aio fs mount.");
275
04b2fa9f 276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
278 return 0;
279}
385773e0 280__initcall(aio_setup);
1da177e4 281
5e9ae2e5
BL
282static void put_aio_ring_file(struct kioctx *ctx)
283{
284 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
285 struct address_space *i_mapping;
286
5e9ae2e5 287 if (aio_ring_file) {
45063097 288 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
289
290 /* Prevent further access to the kioctx from migratepages */
45063097 291 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
292 spin_lock(&i_mapping->private_lock);
293 i_mapping->private_data = NULL;
5e9ae2e5 294 ctx->aio_ring_file = NULL;
de04e769 295 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
296
297 fput(aio_ring_file);
298 }
299}
300
1da177e4
LT
301static void aio_free_ring(struct kioctx *ctx)
302{
36bc08cc 303 int i;
1da177e4 304
fa8a53c3
BL
305 /* Disconnect the kiotx from the ring file. This prevents future
306 * accesses to the kioctx from page migration.
307 */
308 put_aio_ring_file(ctx);
309
36bc08cc 310 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 311 struct page *page;
36bc08cc
GZ
312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 page_count(ctx->ring_pages[i]));
8e321fef
BL
314 page = ctx->ring_pages[i];
315 if (!page)
316 continue;
317 ctx->ring_pages[i] = NULL;
318 put_page(page);
36bc08cc 319 }
1da177e4 320
ddb8c45b 321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 322 kfree(ctx->ring_pages);
ddb8c45b
SL
323 ctx->ring_pages = NULL;
324 }
36bc08cc
GZ
325}
326
14d07113 327static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 328{
5477e70a 329 struct file *file = vma->vm_file;
e4a0d3e7
PE
330 struct mm_struct *mm = vma->vm_mm;
331 struct kioctx_table *table;
b2edffdd 332 int i, res = -EINVAL;
e4a0d3e7
PE
333
334 spin_lock(&mm->ioctx_lock);
335 rcu_read_lock();
336 table = rcu_dereference(mm->ioctx_table);
337 for (i = 0; i < table->nr; i++) {
338 struct kioctx *ctx;
339
d0264c01 340 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 341 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
342 if (!atomic_read(&ctx->dead)) {
343 ctx->user_id = ctx->mmap_base = vma->vm_start;
344 res = 0;
345 }
e4a0d3e7
PE
346 break;
347 }
348 }
349
350 rcu_read_unlock();
351 spin_unlock(&mm->ioctx_lock);
b2edffdd 352 return res;
e4a0d3e7
PE
353}
354
5477e70a
ON
355static const struct vm_operations_struct aio_ring_vm_ops = {
356 .mremap = aio_ring_mremap,
357#if IS_ENABLED(CONFIG_MMU)
358 .fault = filemap_fault,
359 .map_pages = filemap_map_pages,
360 .page_mkwrite = filemap_page_mkwrite,
361#endif
362};
363
364static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
365{
366 vma->vm_flags |= VM_DONTEXPAND;
367 vma->vm_ops = &aio_ring_vm_ops;
368 return 0;
369}
370
36bc08cc
GZ
371static const struct file_operations aio_ring_fops = {
372 .mmap = aio_ring_mmap,
373};
374
0c45355f 375#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
376static int aio_migratepage(struct address_space *mapping, struct page *new,
377 struct page *old, enum migrate_mode mode)
378{
5e9ae2e5 379 struct kioctx *ctx;
36bc08cc 380 unsigned long flags;
fa8a53c3 381 pgoff_t idx;
36bc08cc
GZ
382 int rc;
383
2916ecc0
JG
384 /*
385 * We cannot support the _NO_COPY case here, because copy needs to
386 * happen under the ctx->completion_lock. That does not work with the
387 * migration workflow of MIGRATE_SYNC_NO_COPY.
388 */
389 if (mode == MIGRATE_SYNC_NO_COPY)
390 return -EINVAL;
391
8e321fef
BL
392 rc = 0;
393
fa8a53c3 394 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
395 spin_lock(&mapping->private_lock);
396 ctx = mapping->private_data;
fa8a53c3
BL
397 if (!ctx) {
398 rc = -EINVAL;
399 goto out;
400 }
401
402 /* The ring_lock mutex. The prevents aio_read_events() from writing
403 * to the ring's head, and prevents page migration from mucking in
404 * a partially initialized kiotx.
405 */
406 if (!mutex_trylock(&ctx->ring_lock)) {
407 rc = -EAGAIN;
408 goto out;
409 }
410
411 idx = old->index;
412 if (idx < (pgoff_t)ctx->nr_pages) {
413 /* Make sure the old page hasn't already been changed */
414 if (ctx->ring_pages[idx] != old)
415 rc = -EAGAIN;
8e321fef
BL
416 } else
417 rc = -EINVAL;
8e321fef
BL
418
419 if (rc != 0)
fa8a53c3 420 goto out_unlock;
8e321fef 421
36bc08cc
GZ
422 /* Writeback must be complete */
423 BUG_ON(PageWriteback(old));
8e321fef 424 get_page(new);
36bc08cc 425
37109694 426 rc = migrate_page_move_mapping(mapping, new, old, 1);
36bc08cc 427 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 428 put_page(new);
fa8a53c3 429 goto out_unlock;
36bc08cc
GZ
430 }
431
fa8a53c3
BL
432 /* Take completion_lock to prevent other writes to the ring buffer
433 * while the old page is copied to the new. This prevents new
434 * events from being lost.
5e9ae2e5 435 */
fa8a53c3
BL
436 spin_lock_irqsave(&ctx->completion_lock, flags);
437 migrate_page_copy(new, old);
438 BUG_ON(ctx->ring_pages[idx] != old);
439 ctx->ring_pages[idx] = new;
440 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 441
fa8a53c3
BL
442 /* The old page is no longer accessible. */
443 put_page(old);
8e321fef 444
fa8a53c3
BL
445out_unlock:
446 mutex_unlock(&ctx->ring_lock);
447out:
448 spin_unlock(&mapping->private_lock);
36bc08cc 449 return rc;
1da177e4 450}
0c45355f 451#endif
1da177e4 452
36bc08cc 453static const struct address_space_operations aio_ctx_aops = {
835f252c 454 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 455#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 456 .migratepage = aio_migratepage,
0c45355f 457#endif
36bc08cc
GZ
458};
459
2a8a9867 460static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
461{
462 struct aio_ring *ring;
41003a7b 463 struct mm_struct *mm = current->mm;
3dc9acb6 464 unsigned long size, unused;
1da177e4 465 int nr_pages;
36bc08cc
GZ
466 int i;
467 struct file *file;
1da177e4
LT
468
469 /* Compensate for the ring buffer's head/tail overlap entry */
470 nr_events += 2; /* 1 is required, 2 for good luck */
471
472 size = sizeof(struct aio_ring);
473 size += sizeof(struct io_event) * nr_events;
1da177e4 474
36bc08cc 475 nr_pages = PFN_UP(size);
1da177e4
LT
476 if (nr_pages < 0)
477 return -EINVAL;
478
71ad7490 479 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
480 if (IS_ERR(file)) {
481 ctx->aio_ring_file = NULL;
fa8a53c3 482 return -ENOMEM;
36bc08cc
GZ
483 }
484
3dc9acb6
LT
485 ctx->aio_ring_file = file;
486 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
487 / sizeof(struct io_event);
488
489 ctx->ring_pages = ctx->internal_pages;
490 if (nr_pages > AIO_RING_PAGES) {
491 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
492 GFP_KERNEL);
493 if (!ctx->ring_pages) {
494 put_aio_ring_file(ctx);
495 return -ENOMEM;
496 }
497 }
498
36bc08cc
GZ
499 for (i = 0; i < nr_pages; i++) {
500 struct page *page;
45063097 501 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
502 i, GFP_HIGHUSER | __GFP_ZERO);
503 if (!page)
504 break;
505 pr_debug("pid(%d) page[%d]->count=%d\n",
506 current->pid, i, page_count(page));
507 SetPageUptodate(page);
36bc08cc 508 unlock_page(page);
3dc9acb6
LT
509
510 ctx->ring_pages[i] = page;
36bc08cc 511 }
3dc9acb6 512 ctx->nr_pages = i;
1da177e4 513
3dc9acb6
LT
514 if (unlikely(i != nr_pages)) {
515 aio_free_ring(ctx);
fa8a53c3 516 return -ENOMEM;
1da177e4
LT
517 }
518
58c85dc2
KO
519 ctx->mmap_size = nr_pages * PAGE_SIZE;
520 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 521
d8ed45c5 522 if (mmap_write_lock_killable(mm)) {
013373e8
MH
523 ctx->mmap_size = 0;
524 aio_free_ring(ctx);
525 return -EINTR;
526 }
527
45e55300
PC
528 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
529 PROT_READ | PROT_WRITE,
530 MAP_SHARED, 0, &unused, NULL);
d8ed45c5 531 mmap_write_unlock(mm);
58c85dc2 532 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 533 ctx->mmap_size = 0;
1da177e4 534 aio_free_ring(ctx);
fa8a53c3 535 return -ENOMEM;
1da177e4
LT
536 }
537
58c85dc2 538 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 539
58c85dc2
KO
540 ctx->user_id = ctx->mmap_base;
541 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 542
58c85dc2 543 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 544 ring->nr = nr_events; /* user copy */
db446a08 545 ring->id = ~0U;
1da177e4
LT
546 ring->head = ring->tail = 0;
547 ring->magic = AIO_RING_MAGIC;
548 ring->compat_features = AIO_RING_COMPAT_FEATURES;
549 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
550 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 551 kunmap_atomic(ring);
58c85dc2 552 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
553
554 return 0;
555}
556
1da177e4
LT
557#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
558#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
559#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
560
04b2fa9f 561void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 562{
54843f87 563 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
564 struct kioctx *ctx = req->ki_ctx;
565 unsigned long flags;
566
75321b50
CH
567 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
568 return;
0460fef2 569
75321b50
CH
570 spin_lock_irqsave(&ctx->ctx_lock, flags);
571 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 572 req->ki_cancel = cancel;
0460fef2
KO
573 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
574}
575EXPORT_SYMBOL(kiocb_set_cancel_fn);
576
a6d7cff4
TH
577/*
578 * free_ioctx() should be RCU delayed to synchronize against the RCU
579 * protected lookup_ioctx() and also needs process context to call
f729863a 580 * aio_free_ring(). Use rcu_work.
a6d7cff4 581 */
e34ecee2 582static void free_ioctx(struct work_struct *work)
36f55889 583{
f729863a
TH
584 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
585 free_rwork);
e34ecee2 586 pr_debug("freeing %p\n", ctx);
e1bdd5f2 587
e34ecee2 588 aio_free_ring(ctx);
e1bdd5f2 589 free_percpu(ctx->cpu);
9a1049da
TH
590 percpu_ref_exit(&ctx->reqs);
591 percpu_ref_exit(&ctx->users);
36f55889
KO
592 kmem_cache_free(kioctx_cachep, ctx);
593}
594
e34ecee2
KO
595static void free_ioctx_reqs(struct percpu_ref *ref)
596{
597 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
598
e02ba72a 599 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
600 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
601 complete(&ctx->rq_wait->comp);
e02ba72a 602
a6d7cff4 603 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
604 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
605 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
606}
607
36f55889
KO
608/*
609 * When this function runs, the kioctx has been removed from the "hash table"
610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
611 * now it's safe to cancel any that need to be.
612 */
e34ecee2 613static void free_ioctx_users(struct percpu_ref *ref)
36f55889 614{
e34ecee2 615 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 616 struct aio_kiocb *req;
36f55889
KO
617
618 spin_lock_irq(&ctx->ctx_lock);
619
620 while (!list_empty(&ctx->active_reqs)) {
621 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 622 struct aio_kiocb, ki_list);
888933f8 623 req->ki_cancel(&req->rw);
4faa9996 624 list_del_init(&req->ki_list);
36f55889
KO
625 }
626
627 spin_unlock_irq(&ctx->ctx_lock);
628
e34ecee2
KO
629 percpu_ref_kill(&ctx->reqs);
630 percpu_ref_put(&ctx->reqs);
36f55889
KO
631}
632
db446a08
BL
633static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
634{
635 unsigned i, new_nr;
636 struct kioctx_table *table, *old;
637 struct aio_ring *ring;
638
639 spin_lock(&mm->ioctx_lock);
855ef0de 640 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
641
642 while (1) {
643 if (table)
644 for (i = 0; i < table->nr; i++)
d0264c01 645 if (!rcu_access_pointer(table->table[i])) {
db446a08 646 ctx->id = i;
d0264c01 647 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
648 spin_unlock(&mm->ioctx_lock);
649
fa8a53c3
BL
650 /* While kioctx setup is in progress,
651 * we are protected from page migration
652 * changes ring_pages by ->ring_lock.
653 */
db446a08
BL
654 ring = kmap_atomic(ctx->ring_pages[0]);
655 ring->id = ctx->id;
656 kunmap_atomic(ring);
657 return 0;
658 }
659
660 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
661 spin_unlock(&mm->ioctx_lock);
662
6446c4fb 663 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
db446a08
BL
664 if (!table)
665 return -ENOMEM;
666
667 table->nr = new_nr;
668
669 spin_lock(&mm->ioctx_lock);
855ef0de 670 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
671
672 if (!old) {
673 rcu_assign_pointer(mm->ioctx_table, table);
674 } else if (table->nr > old->nr) {
675 memcpy(table->table, old->table,
676 old->nr * sizeof(struct kioctx *));
677
678 rcu_assign_pointer(mm->ioctx_table, table);
679 kfree_rcu(old, rcu);
680 } else {
681 kfree(table);
682 table = old;
683 }
684 }
685}
686
e34ecee2
KO
687static void aio_nr_sub(unsigned nr)
688{
689 spin_lock(&aio_nr_lock);
690 if (WARN_ON(aio_nr - nr > aio_nr))
691 aio_nr = 0;
692 else
693 aio_nr -= nr;
694 spin_unlock(&aio_nr_lock);
695}
696
1da177e4
LT
697/* ioctx_alloc
698 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
699 */
700static struct kioctx *ioctx_alloc(unsigned nr_events)
701{
41003a7b 702 struct mm_struct *mm = current->mm;
1da177e4 703 struct kioctx *ctx;
e23754f8 704 int err = -ENOMEM;
1da177e4 705
2a8a9867
MFO
706 /*
707 * Store the original nr_events -- what userspace passed to io_setup(),
708 * for counting against the global limit -- before it changes.
709 */
710 unsigned int max_reqs = nr_events;
711
e1bdd5f2
KO
712 /*
713 * We keep track of the number of available ringbuffer slots, to prevent
714 * overflow (reqs_available), and we also use percpu counters for this.
715 *
716 * So since up to half the slots might be on other cpu's percpu counters
717 * and unavailable, double nr_events so userspace sees what they
718 * expected: additionally, we move req_batch slots to/from percpu
719 * counters at a time, so make sure that isn't 0:
720 */
721 nr_events = max(nr_events, num_possible_cpus() * 4);
722 nr_events *= 2;
723
1da177e4 724 /* Prevent overflows */
08397acd 725 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
726 pr_debug("ENOMEM: nr_events too high\n");
727 return ERR_PTR(-EINVAL);
728 }
729
2a8a9867 730 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
731 return ERR_PTR(-EAGAIN);
732
c3762229 733 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
734 if (!ctx)
735 return ERR_PTR(-ENOMEM);
736
2a8a9867 737 ctx->max_reqs = max_reqs;
1da177e4 738
1da177e4 739 spin_lock_init(&ctx->ctx_lock);
0460fef2 740 spin_lock_init(&ctx->completion_lock);
58c85dc2 741 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
742 /* Protect against page migration throughout kiotx setup by keeping
743 * the ring_lock mutex held until setup is complete. */
744 mutex_lock(&ctx->ring_lock);
1da177e4
LT
745 init_waitqueue_head(&ctx->wait);
746
747 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 748
2aad2a86 749 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
750 goto err;
751
2aad2a86 752 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
753 goto err;
754
e1bdd5f2
KO
755 ctx->cpu = alloc_percpu(struct kioctx_cpu);
756 if (!ctx->cpu)
e34ecee2 757 goto err;
1da177e4 758
2a8a9867 759 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 760 if (err < 0)
e34ecee2 761 goto err;
e1bdd5f2 762
34e83fc6 763 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 764 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
765 if (ctx->req_batch < 1)
766 ctx->req_batch = 1;
34e83fc6 767
1da177e4 768 /* limit the number of system wide aios */
9fa1cb39 769 spin_lock(&aio_nr_lock);
2a8a9867
MFO
770 if (aio_nr + ctx->max_reqs > aio_max_nr ||
771 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 772 spin_unlock(&aio_nr_lock);
e34ecee2 773 err = -EAGAIN;
d1b94327 774 goto err_ctx;
2dd542b7
AV
775 }
776 aio_nr += ctx->max_reqs;
9fa1cb39 777 spin_unlock(&aio_nr_lock);
1da177e4 778
1881686f
BL
779 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
780 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 781
da90382c
BL
782 err = ioctx_add_table(ctx, mm);
783 if (err)
e34ecee2 784 goto err_cleanup;
da90382c 785
fa8a53c3
BL
786 /* Release the ring_lock mutex now that all setup is complete. */
787 mutex_unlock(&ctx->ring_lock);
788
caf4167a 789 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 790 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
791 return ctx;
792
e34ecee2
KO
793err_cleanup:
794 aio_nr_sub(ctx->max_reqs);
d1b94327 795err_ctx:
deeb8525
AV
796 atomic_set(&ctx->dead, 1);
797 if (ctx->mmap_size)
798 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 799 aio_free_ring(ctx);
e34ecee2 800err:
fa8a53c3 801 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 802 free_percpu(ctx->cpu);
9a1049da
TH
803 percpu_ref_exit(&ctx->reqs);
804 percpu_ref_exit(&ctx->users);
1da177e4 805 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 806 pr_debug("error allocating ioctx %d\n", err);
e23754f8 807 return ERR_PTR(err);
1da177e4
LT
808}
809
36f55889
KO
810/* kill_ioctx
811 * Cancels all outstanding aio requests on an aio context. Used
812 * when the processes owning a context have all exited to encourage
813 * the rapid destruction of the kioctx.
814 */
fb2d4483 815static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 816 struct ctx_rq_wait *wait)
36f55889 817{
fa88b6f8 818 struct kioctx_table *table;
db446a08 819
b2edffdd
AV
820 spin_lock(&mm->ioctx_lock);
821 if (atomic_xchg(&ctx->dead, 1)) {
822 spin_unlock(&mm->ioctx_lock);
fa88b6f8 823 return -EINVAL;
b2edffdd 824 }
db446a08 825
855ef0de 826 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
827 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
828 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 829 spin_unlock(&mm->ioctx_lock);
4fcc712f 830
a6d7cff4 831 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 832 wake_up_all(&ctx->wait);
4fcc712f 833
fa88b6f8
BL
834 /*
835 * It'd be more correct to do this in free_ioctx(), after all
836 * the outstanding kiocbs have finished - but by then io_destroy
837 * has already returned, so io_setup() could potentially return
838 * -EAGAIN with no ioctxs actually in use (as far as userspace
839 * could tell).
840 */
841 aio_nr_sub(ctx->max_reqs);
4fcc712f 842
fa88b6f8
BL
843 if (ctx->mmap_size)
844 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 845
dc48e56d 846 ctx->rq_wait = wait;
fa88b6f8
BL
847 percpu_ref_kill(&ctx->users);
848 return 0;
1da177e4
LT
849}
850
36f55889
KO
851/*
852 * exit_aio: called when the last user of mm goes away. At this point, there is
853 * no way for any new requests to be submited or any of the io_* syscalls to be
854 * called on the context.
855 *
856 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
857 * them.
1da177e4 858 */
fc9b52cd 859void exit_aio(struct mm_struct *mm)
1da177e4 860{
4b70ac5f 861 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
862 struct ctx_rq_wait wait;
863 int i, skipped;
db446a08 864
4b70ac5f
ON
865 if (!table)
866 return;
db446a08 867
dc48e56d
JA
868 atomic_set(&wait.count, table->nr);
869 init_completion(&wait.comp);
870
871 skipped = 0;
4b70ac5f 872 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
873 struct kioctx *ctx =
874 rcu_dereference_protected(table->table[i], true);
abf137dd 875
dc48e56d
JA
876 if (!ctx) {
877 skipped++;
4b70ac5f 878 continue;
dc48e56d
JA
879 }
880
936af157 881 /*
4b70ac5f
ON
882 * We don't need to bother with munmap() here - exit_mmap(mm)
883 * is coming and it'll unmap everything. And we simply can't,
884 * this is not necessarily our ->mm.
885 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
886 * that it needs to unmap the area, just set it to 0.
936af157 887 */
58c85dc2 888 ctx->mmap_size = 0;
dc48e56d
JA
889 kill_ioctx(mm, ctx, &wait);
890 }
36f55889 891
dc48e56d 892 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 893 /* Wait until all IO for the context are done. */
dc48e56d 894 wait_for_completion(&wait.comp);
1da177e4 895 }
4b70ac5f
ON
896
897 RCU_INIT_POINTER(mm->ioctx_table, NULL);
898 kfree(table);
1da177e4
LT
899}
900
e1bdd5f2
KO
901static void put_reqs_available(struct kioctx *ctx, unsigned nr)
902{
903 struct kioctx_cpu *kcpu;
263782c1 904 unsigned long flags;
e1bdd5f2 905
263782c1 906 local_irq_save(flags);
be6fb451 907 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 908 kcpu->reqs_available += nr;
263782c1 909
e1bdd5f2
KO
910 while (kcpu->reqs_available >= ctx->req_batch * 2) {
911 kcpu->reqs_available -= ctx->req_batch;
912 atomic_add(ctx->req_batch, &ctx->reqs_available);
913 }
914
263782c1 915 local_irq_restore(flags);
e1bdd5f2
KO
916}
917
432c7997 918static bool __get_reqs_available(struct kioctx *ctx)
e1bdd5f2
KO
919{
920 struct kioctx_cpu *kcpu;
921 bool ret = false;
263782c1 922 unsigned long flags;
e1bdd5f2 923
263782c1 924 local_irq_save(flags);
be6fb451 925 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
926 if (!kcpu->reqs_available) {
927 int old, avail = atomic_read(&ctx->reqs_available);
928
929 do {
930 if (avail < ctx->req_batch)
931 goto out;
932
933 old = avail;
934 avail = atomic_cmpxchg(&ctx->reqs_available,
935 avail, avail - ctx->req_batch);
936 } while (avail != old);
937
938 kcpu->reqs_available += ctx->req_batch;
939 }
940
941 ret = true;
942 kcpu->reqs_available--;
943out:
263782c1 944 local_irq_restore(flags);
e1bdd5f2
KO
945 return ret;
946}
947
d856f32a
BL
948/* refill_reqs_available
949 * Updates the reqs_available reference counts used for tracking the
950 * number of free slots in the completion ring. This can be called
951 * from aio_complete() (to optimistically update reqs_available) or
952 * from aio_get_req() (the we're out of events case). It must be
953 * called holding ctx->completion_lock.
954 */
955static void refill_reqs_available(struct kioctx *ctx, unsigned head,
956 unsigned tail)
957{
958 unsigned events_in_ring, completed;
959
960 /* Clamp head since userland can write to it. */
961 head %= ctx->nr_events;
962 if (head <= tail)
963 events_in_ring = tail - head;
964 else
965 events_in_ring = ctx->nr_events - (head - tail);
966
967 completed = ctx->completed_events;
968 if (events_in_ring < completed)
969 completed -= events_in_ring;
970 else
971 completed = 0;
972
973 if (!completed)
974 return;
975
976 ctx->completed_events -= completed;
977 put_reqs_available(ctx, completed);
978}
979
980/* user_refill_reqs_available
981 * Called to refill reqs_available when aio_get_req() encounters an
982 * out of space in the completion ring.
983 */
984static void user_refill_reqs_available(struct kioctx *ctx)
985{
986 spin_lock_irq(&ctx->completion_lock);
987 if (ctx->completed_events) {
988 struct aio_ring *ring;
989 unsigned head;
990
991 /* Access of ring->head may race with aio_read_events_ring()
992 * here, but that's okay since whether we read the old version
993 * or the new version, and either will be valid. The important
994 * part is that head cannot pass tail since we prevent
995 * aio_complete() from updating tail by holding
996 * ctx->completion_lock. Even if head is invalid, the check
997 * against ctx->completed_events below will make sure we do the
998 * safe/right thing.
999 */
1000 ring = kmap_atomic(ctx->ring_pages[0]);
1001 head = ring->head;
1002 kunmap_atomic(ring);
1003
1004 refill_reqs_available(ctx, head, ctx->tail);
1005 }
1006
1007 spin_unlock_irq(&ctx->completion_lock);
1008}
1009
432c7997
CH
1010static bool get_reqs_available(struct kioctx *ctx)
1011{
1012 if (__get_reqs_available(ctx))
1013 return true;
1014 user_refill_reqs_available(ctx);
1015 return __get_reqs_available(ctx);
1016}
1017
1da177e4 1018/* aio_get_req
57282d8f
KO
1019 * Allocate a slot for an aio request.
1020 * Returns NULL if no requests are free.
b53119f1
LT
1021 *
1022 * The refcount is initialized to 2 - one for the async op completion,
1023 * one for the synchronous code that does this.
1da177e4 1024 */
04b2fa9f 1025static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1026{
04b2fa9f 1027 struct aio_kiocb *req;
a1c8eae7 1028
2bc4ca9b 1029 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1da177e4 1030 if (unlikely(!req))
432c7997 1031 return NULL;
1da177e4 1032
fa0ca2ae 1033 if (unlikely(!get_reqs_available(ctx))) {
6af1c849 1034 kmem_cache_free(kiocb_cachep, req);
fa0ca2ae
AV
1035 return NULL;
1036 }
1037
e34ecee2 1038 percpu_ref_get(&ctx->reqs);
2bc4ca9b 1039 req->ki_ctx = ctx;
75321b50 1040 INIT_LIST_HEAD(&req->ki_list);
b53119f1 1041 refcount_set(&req->ki_refcnt, 2);
2bc4ca9b 1042 req->ki_eventfd = NULL;
080d676d 1043 return req;
1da177e4
LT
1044}
1045
d5470b59 1046static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1047{
db446a08 1048 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1049 struct mm_struct *mm = current->mm;
65c24491 1050 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1051 struct kioctx_table *table;
1052 unsigned id;
1053
1054 if (get_user(id, &ring->id))
1055 return NULL;
1da177e4 1056
abf137dd 1057 rcu_read_lock();
db446a08 1058 table = rcu_dereference(mm->ioctx_table);
abf137dd 1059
db446a08
BL
1060 if (!table || id >= table->nr)
1061 goto out;
1da177e4 1062
a538e3ff 1063 id = array_index_nospec(id, table->nr);
d0264c01 1064 ctx = rcu_dereference(table->table[id]);
f30d704f 1065 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1066 if (percpu_ref_tryget_live(&ctx->users))
1067 ret = ctx;
db446a08
BL
1068 }
1069out:
abf137dd 1070 rcu_read_unlock();
65c24491 1071 return ret;
1da177e4
LT
1072}
1073
b53119f1
LT
1074static inline void iocb_destroy(struct aio_kiocb *iocb)
1075{
74259703
AV
1076 if (iocb->ki_eventfd)
1077 eventfd_ctx_put(iocb->ki_eventfd);
b53119f1
LT
1078 if (iocb->ki_filp)
1079 fput(iocb->ki_filp);
1080 percpu_ref_put(&iocb->ki_ctx->reqs);
1081 kmem_cache_free(kiocb_cachep, iocb);
1082}
1083
1da177e4
LT
1084/* aio_complete
1085 * Called when the io request on the given iocb is complete.
1da177e4 1086 */
2bb874c0 1087static void aio_complete(struct aio_kiocb *iocb)
1da177e4
LT
1088{
1089 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1090 struct aio_ring *ring;
21b40200 1091 struct io_event *ev_page, *event;
d856f32a 1092 unsigned tail, pos, head;
1da177e4 1093 unsigned long flags;
1da177e4 1094
0460fef2
KO
1095 /*
1096 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1097 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1098 * pointer since we might be called from irq context.
1099 */
1100 spin_lock_irqsave(&ctx->completion_lock, flags);
1101
58c85dc2 1102 tail = ctx->tail;
21b40200
KO
1103 pos = tail + AIO_EVENTS_OFFSET;
1104
58c85dc2 1105 if (++tail >= ctx->nr_events)
4bf69b2a 1106 tail = 0;
1da177e4 1107
58c85dc2 1108 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1109 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1110
a9339b78 1111 *event = iocb->ki_res;
1da177e4 1112
21b40200 1113 kunmap_atomic(ev_page);
58c85dc2 1114 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200 1115
a9339b78
AV
1116 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1117 (void __user *)(unsigned long)iocb->ki_res.obj,
1118 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1da177e4
LT
1119
1120 /* after flagging the request as done, we
1121 * must never even look at it again
1122 */
1123 smp_wmb(); /* make event visible before updating tail */
1124
58c85dc2 1125 ctx->tail = tail;
1da177e4 1126
58c85dc2 1127 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1128 head = ring->head;
21b40200 1129 ring->tail = tail;
e8e3c3d6 1130 kunmap_atomic(ring);
58c85dc2 1131 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1132
d856f32a
BL
1133 ctx->completed_events++;
1134 if (ctx->completed_events > 1)
1135 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1136 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1137
21b40200 1138 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1139
1140 /*
1141 * Check if the user asked us to deliver the result through an
1142 * eventfd. The eventfd_signal() function is safe to be called
1143 * from IRQ context.
1144 */
74259703 1145 if (iocb->ki_eventfd)
8d1c98b0
DL
1146 eventfd_signal(iocb->ki_eventfd, 1);
1147
6cb2a210
QB
1148 /*
1149 * We have to order our ring_info tail store above and test
1150 * of the wait list below outside the wait lock. This is
1151 * like in wake_up_bit() where clearing a bit has to be
1152 * ordered with the unlocked test.
1153 */
1154 smp_mb();
1155
1da177e4
LT
1156 if (waitqueue_active(&ctx->wait))
1157 wake_up(&ctx->wait);
2bb874c0
AV
1158}
1159
1160static inline void iocb_put(struct aio_kiocb *iocb)
1161{
1162 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1163 aio_complete(iocb);
1164 iocb_destroy(iocb);
1165 }
1da177e4
LT
1166}
1167
2be4e7de 1168/* aio_read_events_ring
a31ad380
KO
1169 * Pull an event off of the ioctx's event ring. Returns the number of
1170 * events fetched
1da177e4 1171 */
a31ad380
KO
1172static long aio_read_events_ring(struct kioctx *ctx,
1173 struct io_event __user *event, long nr)
1da177e4 1174{
1da177e4 1175 struct aio_ring *ring;
5ffac122 1176 unsigned head, tail, pos;
a31ad380
KO
1177 long ret = 0;
1178 int copy_ret;
1179
9c9ce763
DC
1180 /*
1181 * The mutex can block and wake us up and that will cause
1182 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1183 * and repeat. This should be rare enough that it doesn't cause
1184 * peformance issues. See the comment in read_events() for more detail.
1185 */
1186 sched_annotate_sleep();
58c85dc2 1187 mutex_lock(&ctx->ring_lock);
1da177e4 1188
fa8a53c3 1189 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1190 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1191 head = ring->head;
5ffac122 1192 tail = ring->tail;
a31ad380
KO
1193 kunmap_atomic(ring);
1194
2ff396be
JM
1195 /*
1196 * Ensure that once we've read the current tail pointer, that
1197 * we also see the events that were stored up to the tail.
1198 */
1199 smp_rmb();
1200
5ffac122 1201 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1202
5ffac122 1203 if (head == tail)
1da177e4
LT
1204 goto out;
1205
edfbbf38
BL
1206 head %= ctx->nr_events;
1207 tail %= ctx->nr_events;
1208
a31ad380
KO
1209 while (ret < nr) {
1210 long avail;
1211 struct io_event *ev;
1212 struct page *page;
1213
5ffac122
KO
1214 avail = (head <= tail ? tail : ctx->nr_events) - head;
1215 if (head == tail)
a31ad380
KO
1216 break;
1217
a31ad380 1218 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1219 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1220 pos %= AIO_EVENTS_PER_PAGE;
1221
d2988bd4
AV
1222 avail = min(avail, nr - ret);
1223 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1224
a31ad380
KO
1225 ev = kmap(page);
1226 copy_ret = copy_to_user(event + ret, ev + pos,
1227 sizeof(*ev) * avail);
1228 kunmap(page);
1229
1230 if (unlikely(copy_ret)) {
1231 ret = -EFAULT;
1232 goto out;
1233 }
1234
1235 ret += avail;
1236 head += avail;
58c85dc2 1237 head %= ctx->nr_events;
1da177e4 1238 }
1da177e4 1239
58c85dc2 1240 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1241 ring->head = head;
91d80a84 1242 kunmap_atomic(ring);
58c85dc2 1243 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1244
5ffac122 1245 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1246out:
58c85dc2 1247 mutex_unlock(&ctx->ring_lock);
a31ad380 1248
1da177e4
LT
1249 return ret;
1250}
1251
a31ad380
KO
1252static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1253 struct io_event __user *event, long *i)
1da177e4 1254{
a31ad380 1255 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1256
a31ad380
KO
1257 if (ret > 0)
1258 *i += ret;
1da177e4 1259
a31ad380
KO
1260 if (unlikely(atomic_read(&ctx->dead)))
1261 ret = -EINVAL;
1da177e4 1262
a31ad380
KO
1263 if (!*i)
1264 *i = ret;
1da177e4 1265
a31ad380 1266 return ret < 0 || *i >= min_nr;
1da177e4
LT
1267}
1268
a31ad380 1269static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1270 struct io_event __user *event,
fa2e62a5 1271 ktime_t until)
1da177e4 1272{
a31ad380 1273 long ret = 0;
1da177e4 1274
a31ad380
KO
1275 /*
1276 * Note that aio_read_events() is being called as the conditional - i.e.
1277 * we're calling it after prepare_to_wait() has set task state to
1278 * TASK_INTERRUPTIBLE.
1279 *
1280 * But aio_read_events() can block, and if it blocks it's going to flip
1281 * the task state back to TASK_RUNNING.
1282 *
1283 * This should be ok, provided it doesn't flip the state back to
1284 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1285 * will only happen if the mutex_lock() call blocks, and we then find
1286 * the ringbuffer empty. So in practice we should be ok, but it's
1287 * something to be aware of when touching this code.
1288 */
2456e855 1289 if (until == 0)
5f785de5
FZ
1290 aio_read_events(ctx, min_nr, nr, event, &ret);
1291 else
1292 wait_event_interruptible_hrtimeout(ctx->wait,
1293 aio_read_events(ctx, min_nr, nr, event, &ret),
1294 until);
a31ad380 1295 return ret;
1da177e4
LT
1296}
1297
1da177e4
LT
1298/* sys_io_setup:
1299 * Create an aio_context capable of receiving at least nr_events.
1300 * ctxp must not point to an aio_context that already exists, and
1301 * must be initialized to 0 prior to the call. On successful
1302 * creation of the aio_context, *ctxp is filled in with the resulting
1303 * handle. May fail with -EINVAL if *ctxp is not initialized,
1304 * if the specified nr_events exceeds internal limits. May fail
1305 * with -EAGAIN if the specified nr_events exceeds the user's limit
1306 * of available events. May fail with -ENOMEM if insufficient kernel
1307 * resources are available. May fail with -EFAULT if an invalid
1308 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1309 * implemented.
1310 */
002c8976 1311SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1312{
1313 struct kioctx *ioctx = NULL;
1314 unsigned long ctx;
1315 long ret;
1316
1317 ret = get_user(ctx, ctxp);
1318 if (unlikely(ret))
1319 goto out;
1320
1321 ret = -EINVAL;
d55b5fda 1322 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1323 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1324 ctx, nr_events);
1da177e4
LT
1325 goto out;
1326 }
1327
1328 ioctx = ioctx_alloc(nr_events);
1329 ret = PTR_ERR(ioctx);
1330 if (!IS_ERR(ioctx)) {
1331 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1332 if (ret)
e02ba72a 1333 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1334 percpu_ref_put(&ioctx->users);
1da177e4
LT
1335 }
1336
1337out:
1338 return ret;
1339}
1340
c00d2c7e
AV
1341#ifdef CONFIG_COMPAT
1342COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1343{
1344 struct kioctx *ioctx = NULL;
1345 unsigned long ctx;
1346 long ret;
1347
1348 ret = get_user(ctx, ctx32p);
1349 if (unlikely(ret))
1350 goto out;
1351
1352 ret = -EINVAL;
1353 if (unlikely(ctx || nr_events == 0)) {
1354 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1355 ctx, nr_events);
1356 goto out;
1357 }
1358
1359 ioctx = ioctx_alloc(nr_events);
1360 ret = PTR_ERR(ioctx);
1361 if (!IS_ERR(ioctx)) {
1362 /* truncating is ok because it's a user address */
1363 ret = put_user((u32)ioctx->user_id, ctx32p);
1364 if (ret)
1365 kill_ioctx(current->mm, ioctx, NULL);
1366 percpu_ref_put(&ioctx->users);
1367 }
1368
1369out:
1370 return ret;
1371}
1372#endif
1373
1da177e4
LT
1374/* sys_io_destroy:
1375 * Destroy the aio_context specified. May cancel any outstanding
1376 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1377 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1378 * is invalid.
1379 */
002c8976 1380SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1381{
1382 struct kioctx *ioctx = lookup_ioctx(ctx);
1383 if (likely(NULL != ioctx)) {
dc48e56d 1384 struct ctx_rq_wait wait;
fb2d4483 1385 int ret;
e02ba72a 1386
dc48e56d
JA
1387 init_completion(&wait.comp);
1388 atomic_set(&wait.count, 1);
1389
e02ba72a
AP
1390 /* Pass requests_done to kill_ioctx() where it can be set
1391 * in a thread-safe way. If we try to set it here then we have
1392 * a race condition if two io_destroy() called simultaneously.
1393 */
dc48e56d 1394 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1395 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1396
1397 /* Wait until all IO for the context are done. Otherwise kernel
1398 * keep using user-space buffers even if user thinks the context
1399 * is destroyed.
1400 */
fb2d4483 1401 if (!ret)
dc48e56d 1402 wait_for_completion(&wait.comp);
e02ba72a 1403
fb2d4483 1404 return ret;
1da177e4 1405 }
acd88d4e 1406 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1407 return -EINVAL;
1408}
1409
3c96c7f4
AV
1410static void aio_remove_iocb(struct aio_kiocb *iocb)
1411{
1412 struct kioctx *ctx = iocb->ki_ctx;
1413 unsigned long flags;
1414
1415 spin_lock_irqsave(&ctx->ctx_lock, flags);
1416 list_del(&iocb->ki_list);
1417 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1418}
1419
6b19b766 1420static void aio_complete_rw(struct kiocb *kiocb, long res)
54843f87
CH
1421{
1422 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1423
3c96c7f4
AV
1424 if (!list_empty_careful(&iocb->ki_list))
1425 aio_remove_iocb(iocb);
1426
54843f87
CH
1427 if (kiocb->ki_flags & IOCB_WRITE) {
1428 struct inode *inode = file_inode(kiocb->ki_filp);
1429
1430 /*
1431 * Tell lockdep we inherited freeze protection from submission
1432 * thread.
1433 */
1434 if (S_ISREG(inode->i_mode))
1435 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1436 file_end_write(kiocb->ki_filp);
1437 }
1438
2bb874c0 1439 iocb->ki_res.res = res;
6b19b766 1440 iocb->ki_res.res2 = 0;
2bb874c0 1441 iocb_put(iocb);
54843f87
CH
1442}
1443
88a6f18b 1444static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
54843f87
CH
1445{
1446 int ret;
1447
54843f87 1448 req->ki_complete = aio_complete_rw;
ec51f8ee 1449 req->private = NULL;
54843f87
CH
1450 req->ki_pos = iocb->aio_offset;
1451 req->ki_flags = iocb_flags(req->ki_filp);
1452 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1453 req->ki_flags |= IOCB_EVENTFD;
fc28724d 1454 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
d9a08a9e
AM
1455 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1456 /*
1457 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1458 * aio_reqprio is interpreted as an I/O scheduling
1459 * class and priority.
1460 */
1461 ret = ioprio_check_cap(iocb->aio_reqprio);
1462 if (ret) {
9a6d9a62 1463 pr_debug("aio ioprio check cap error: %d\n", ret);
84c4e1f8 1464 return ret;
d9a08a9e
AM
1465 }
1466
1467 req->ki_ioprio = iocb->aio_reqprio;
1468 } else
76dc8913 1469 req->ki_ioprio = get_current_ioprio();
d9a08a9e 1470
54843f87
CH
1471 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1472 if (unlikely(ret))
84c4e1f8 1473 return ret;
154989e4
CH
1474
1475 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1476 return 0;
54843f87
CH
1477}
1478
87e5e6da
JA
1479static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1480 struct iovec **iovec, bool vectored, bool compat,
1481 struct iov_iter *iter)
eed4e51f 1482{
89319d31
CH
1483 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1484 size_t len = iocb->aio_nbytes;
1485
1486 if (!vectored) {
1487 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1488 *iovec = NULL;
1489 return ret;
1490 }
89cd35c5
CH
1491
1492 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
eed4e51f
BP
1493}
1494
9061d14a 1495static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1496{
1497 switch (ret) {
1498 case -EIOCBQUEUED:
9061d14a 1499 break;
89319d31
CH
1500 case -ERESTARTSYS:
1501 case -ERESTARTNOINTR:
1502 case -ERESTARTNOHAND:
1503 case -ERESTART_RESTARTBLOCK:
1504 /*
1505 * There's no easy way to restart the syscall since other AIO's
1506 * may be already running. Just fail this IO with EINTR.
1507 */
1508 ret = -EINTR;
df561f66 1509 fallthrough;
89319d31 1510 default:
6b19b766 1511 req->ki_complete(req, ret);
89319d31
CH
1512 }
1513}
1514
958c13ce 1515static int aio_read(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1516 bool vectored, bool compat)
1da177e4 1517{
00fefb9c 1518 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1519 struct iov_iter iter;
54843f87 1520 struct file *file;
958c13ce 1521 int ret;
1da177e4 1522
54843f87
CH
1523 ret = aio_prep_rw(req, iocb);
1524 if (ret)
1525 return ret;
1526 file = req->ki_filp;
89319d31 1527 if (unlikely(!(file->f_mode & FMODE_READ)))
84c4e1f8 1528 return -EBADF;
54843f87 1529 ret = -EINVAL;
89319d31 1530 if (unlikely(!file->f_op->read_iter))
84c4e1f8 1531 return -EINVAL;
73a7075e 1532
89319d31 1533 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1534 if (ret < 0)
84c4e1f8 1535 return ret;
89319d31
CH
1536 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1537 if (!ret)
9061d14a 1538 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31
CH
1539 kfree(iovec);
1540 return ret;
1541}
73a7075e 1542
958c13ce 1543static int aio_write(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1544 bool vectored, bool compat)
89319d31 1545{
89319d31
CH
1546 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1547 struct iov_iter iter;
54843f87 1548 struct file *file;
958c13ce 1549 int ret;
41ef4eb8 1550
54843f87
CH
1551 ret = aio_prep_rw(req, iocb);
1552 if (ret)
1553 return ret;
1554 file = req->ki_filp;
1555
89319d31 1556 if (unlikely(!(file->f_mode & FMODE_WRITE)))
84c4e1f8 1557 return -EBADF;
89319d31 1558 if (unlikely(!file->f_op->write_iter))
84c4e1f8 1559 return -EINVAL;
1da177e4 1560
89319d31 1561 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1562 if (ret < 0)
84c4e1f8 1563 return ret;
89319d31
CH
1564 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1565 if (!ret) {
70fe2f48 1566 /*
92ce4728 1567 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1568 * which will be released by another thread in
1569 * aio_complete_rw(). Fool lockdep by telling it the lock got
1570 * released so that it doesn't complain about the held lock when
1571 * we return to userspace.
70fe2f48 1572 */
92ce4728 1573 if (S_ISREG(file_inode(file)->i_mode)) {
8a3c84b6 1574 sb_start_write(file_inode(file)->i_sb);
a12f1ae6 1575 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1576 }
1577 req->ki_flags |= IOCB_WRITE;
9061d14a 1578 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1579 }
89319d31
CH
1580 kfree(iovec);
1581 return ret;
1da177e4
LT
1582}
1583
a3c0d439
CH
1584static void aio_fsync_work(struct work_struct *work)
1585{
2bb874c0 1586 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
530f32fc 1587 const struct cred *old_cred = override_creds(iocb->fsync.creds);
a3c0d439 1588
2bb874c0 1589 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
530f32fc
MS
1590 revert_creds(old_cred);
1591 put_cred(iocb->fsync.creds);
2bb874c0 1592 iocb_put(iocb);
a3c0d439
CH
1593}
1594
88a6f18b
JA
1595static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1596 bool datasync)
a3c0d439
CH
1597{
1598 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1599 iocb->aio_rw_flags))
1600 return -EINVAL;
a11e1d43 1601
84c4e1f8 1602 if (unlikely(!req->file->f_op->fsync))
a3c0d439 1603 return -EINVAL;
a3c0d439 1604
530f32fc
MS
1605 req->creds = prepare_creds();
1606 if (!req->creds)
1607 return -ENOMEM;
1608
a3c0d439
CH
1609 req->datasync = datasync;
1610 INIT_WORK(&req->work, aio_fsync_work);
1611 schedule_work(&req->work);
9061d14a 1612 return 0;
a3c0d439
CH
1613}
1614
01d7a356
JA
1615static void aio_poll_put_work(struct work_struct *work)
1616{
1617 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1618 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1619
1620 iocb_put(iocb);
1621}
1622
50252e4b
EB
1623/*
1624 * Safely lock the waitqueue which the request is on, synchronizing with the
1625 * case where the ->poll() provider decides to free its waitqueue early.
1626 *
1627 * Returns true on success, meaning that req->head->lock was locked, req->wait
1628 * is on req->head, and an RCU read lock was taken. Returns false if the
1629 * request was already removed from its waitqueue (which might no longer exist).
1630 */
1631static bool poll_iocb_lock_wq(struct poll_iocb *req)
1632{
1633 wait_queue_head_t *head;
1634
1635 /*
1636 * While we hold the waitqueue lock and the waitqueue is nonempty,
1637 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1638 * lock in the first place can race with the waitqueue being freed.
1639 *
1640 * We solve this as eventpoll does: by taking advantage of the fact that
1641 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1642 * we enter rcu_read_lock() and see that the pointer to the queue is
1643 * non-NULL, we can then lock it without the memory being freed out from
1644 * under us, then check whether the request is still on the queue.
1645 *
1646 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1647 * case the caller deletes the entry from the queue, leaving it empty.
1648 * In that case, only RCU prevents the queue memory from being freed.
1649 */
1650 rcu_read_lock();
1651 head = smp_load_acquire(&req->head);
1652 if (head) {
1653 spin_lock(&head->lock);
1654 if (!list_empty(&req->wait.entry))
1655 return true;
1656 spin_unlock(&head->lock);
1657 }
1658 rcu_read_unlock();
1659 return false;
1660}
1661
1662static void poll_iocb_unlock_wq(struct poll_iocb *req)
1663{
1664 spin_unlock(&req->head->lock);
1665 rcu_read_unlock();
1666}
1667
bfe4037e
CH
1668static void aio_poll_complete_work(struct work_struct *work)
1669{
1670 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1671 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1672 struct poll_table_struct pt = { ._key = req->events };
1673 struct kioctx *ctx = iocb->ki_ctx;
1674 __poll_t mask = 0;
1675
1676 if (!READ_ONCE(req->cancelled))
1677 mask = vfs_poll(req->file, &pt) & req->events;
1678
1679 /*
1680 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1681 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1682 * synchronize with them. In the cancellation case the list_del_init
1683 * itself is not actually needed, but harmless so we keep it in to
1684 * avoid further branches in the fast path.
1685 */
1686 spin_lock_irq(&ctx->ctx_lock);
50252e4b
EB
1687 if (poll_iocb_lock_wq(req)) {
1688 if (!mask && !READ_ONCE(req->cancelled)) {
1689 /*
1690 * The request isn't actually ready to be completed yet.
1691 * Reschedule completion if another wakeup came in.
1692 */
1693 if (req->work_need_resched) {
1694 schedule_work(&req->work);
1695 req->work_need_resched = false;
1696 } else {
1697 req->work_scheduled = false;
1698 }
1699 poll_iocb_unlock_wq(req);
1700 spin_unlock_irq(&ctx->ctx_lock);
1701 return;
363bee27 1702 }
50252e4b
EB
1703 list_del_init(&req->wait.entry);
1704 poll_iocb_unlock_wq(req);
1705 } /* else, POLLFREE has freed the waitqueue, so we must complete */
bfe4037e 1706 list_del_init(&iocb->ki_list);
af5c72b1 1707 iocb->ki_res.res = mangle_poll(mask);
bfe4037e
CH
1708 spin_unlock_irq(&ctx->ctx_lock);
1709
af5c72b1 1710 iocb_put(iocb);
bfe4037e
CH
1711}
1712
1713/* assumes we are called with irqs disabled */
1714static int aio_poll_cancel(struct kiocb *iocb)
1715{
1716 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1717 struct poll_iocb *req = &aiocb->poll;
1718
50252e4b
EB
1719 if (poll_iocb_lock_wq(req)) {
1720 WRITE_ONCE(req->cancelled, true);
1721 if (!req->work_scheduled) {
1722 schedule_work(&aiocb->poll.work);
1723 req->work_scheduled = true;
1724 }
1725 poll_iocb_unlock_wq(req);
1726 } /* else, the request was force-cancelled by POLLFREE already */
bfe4037e
CH
1727
1728 return 0;
1729}
1730
1731static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1732 void *key)
1733{
1734 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1735 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e 1736 __poll_t mask = key_to_poll(key);
d3d6a18d 1737 unsigned long flags;
bfe4037e 1738
bfe4037e 1739 /* for instances that support it check for an event match first: */
af5c72b1
AV
1740 if (mask && !(mask & req->events))
1741 return 0;
e8693bcf 1742
363bee27
EB
1743 /*
1744 * Complete the request inline if possible. This requires that three
1745 * conditions be met:
1746 * 1. An event mask must have been passed. If a plain wakeup was done
1747 * instead, then mask == 0 and we have to call vfs_poll() to get
1748 * the events, so inline completion isn't possible.
1749 * 2. The completion work must not have already been scheduled.
1750 * 3. ctx_lock must not be busy. We have to use trylock because we
1751 * already hold the waitqueue lock, so this inverts the normal
1752 * locking order. Use irqsave/irqrestore because not all
1753 * filesystems (e.g. fuse) call this function with IRQs disabled,
1754 * yet IRQs have to be disabled before ctx_lock is obtained.
1755 */
1756 if (mask && !req->work_scheduled &&
1757 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
01d7a356
JA
1758 struct kioctx *ctx = iocb->ki_ctx;
1759
363bee27 1760 list_del_init(&req->wait.entry);
af5c72b1
AV
1761 list_del(&iocb->ki_list);
1762 iocb->ki_res.res = mangle_poll(mask);
4b374986 1763 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
01d7a356
JA
1764 iocb = NULL;
1765 INIT_WORK(&req->work, aio_poll_put_work);
1766 schedule_work(&req->work);
1767 }
1768 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1769 if (iocb)
1770 iocb_put(iocb);
af5c72b1 1771 } else {
363bee27
EB
1772 /*
1773 * Schedule the completion work if needed. If it was already
1774 * scheduled, record that another wakeup came in.
1775 *
1776 * Don't remove the request from the waitqueue here, as it might
1777 * not actually be complete yet (we won't know until vfs_poll()
50252e4b
EB
1778 * is called), and we must not miss any wakeups. POLLFREE is an
1779 * exception to this; see below.
363bee27
EB
1780 */
1781 if (req->work_scheduled) {
1782 req->work_need_resched = true;
1783 } else {
1784 schedule_work(&req->work);
1785 req->work_scheduled = true;
1786 }
50252e4b
EB
1787
1788 /*
1789 * If the waitqueue is being freed early but we can't complete
1790 * the request inline, we have to tear down the request as best
1791 * we can. That means immediately removing the request from its
1792 * waitqueue and preventing all further accesses to the
1793 * waitqueue via the request. We also need to schedule the
1794 * completion work (done above). Also mark the request as
1795 * cancelled, to potentially skip an unneeded call to ->poll().
1796 */
1797 if (mask & POLLFREE) {
1798 WRITE_ONCE(req->cancelled, true);
1799 list_del_init(&req->wait.entry);
1800
1801 /*
1802 * Careful: this *must* be the last step, since as soon
1803 * as req->head is NULL'ed out, the request can be
1804 * completed and freed, since aio_poll_complete_work()
1805 * will no longer need to take the waitqueue lock.
1806 */
1807 smp_store_release(&req->head, NULL);
1808 }
e8693bcf 1809 }
bfe4037e
CH
1810 return 1;
1811}
1812
1813struct aio_poll_table {
1814 struct poll_table_struct pt;
1815 struct aio_kiocb *iocb;
50252e4b 1816 bool queued;
bfe4037e
CH
1817 int error;
1818};
1819
1820static void
1821aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1822 struct poll_table_struct *p)
1823{
1824 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1825
1826 /* multiple wait queues per file are not supported */
50252e4b 1827 if (unlikely(pt->queued)) {
bfe4037e
CH
1828 pt->error = -EINVAL;
1829 return;
1830 }
1831
50252e4b 1832 pt->queued = true;
bfe4037e
CH
1833 pt->error = 0;
1834 pt->iocb->poll.head = head;
1835 add_wait_queue(head, &pt->iocb->poll.wait);
1836}
1837
958c13ce 1838static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
bfe4037e
CH
1839{
1840 struct kioctx *ctx = aiocb->ki_ctx;
1841 struct poll_iocb *req = &aiocb->poll;
1842 struct aio_poll_table apt;
af5c72b1 1843 bool cancel = false;
bfe4037e
CH
1844 __poll_t mask;
1845
1846 /* reject any unknown events outside the normal event mask. */
1847 if ((u16)iocb->aio_buf != iocb->aio_buf)
1848 return -EINVAL;
1849 /* reject fields that are not defined for poll */
1850 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1851 return -EINVAL;
1852
1853 INIT_WORK(&req->work, aio_poll_complete_work);
1854 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
bfe4037e 1855
2bc4ca9b 1856 req->head = NULL;
2bc4ca9b 1857 req->cancelled = false;
363bee27
EB
1858 req->work_scheduled = false;
1859 req->work_need_resched = false;
2bc4ca9b 1860
bfe4037e
CH
1861 apt.pt._qproc = aio_poll_queue_proc;
1862 apt.pt._key = req->events;
1863 apt.iocb = aiocb;
50252e4b 1864 apt.queued = false;
bfe4037e
CH
1865 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1866
1867 /* initialized the list so that we can do list_empty checks */
1868 INIT_LIST_HEAD(&req->wait.entry);
1869 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1870
bfe4037e 1871 mask = vfs_poll(req->file, &apt.pt) & req->events;
bfe4037e 1872 spin_lock_irq(&ctx->ctx_lock);
50252e4b
EB
1873 if (likely(apt.queued)) {
1874 bool on_queue = poll_iocb_lock_wq(req);
1875
1876 if (!on_queue || req->work_scheduled) {
363bee27
EB
1877 /*
1878 * aio_poll_wake() already either scheduled the async
1879 * completion work, or completed the request inline.
1880 */
1881 if (apt.error) /* unsupported case: multiple queues */
af5c72b1
AV
1882 cancel = true;
1883 apt.error = 0;
1884 mask = 0;
1885 }
1886 if (mask || apt.error) {
363bee27 1887 /* Steal to complete synchronously. */
af5c72b1
AV
1888 list_del_init(&req->wait.entry);
1889 } else if (cancel) {
363bee27 1890 /* Cancel if possible (may be too late though). */
af5c72b1 1891 WRITE_ONCE(req->cancelled, true);
50252e4b 1892 } else if (on_queue) {
363bee27
EB
1893 /*
1894 * Actually waiting for an event, so add the request to
1895 * active_reqs so that it can be cancelled if needed.
1896 */
af5c72b1
AV
1897 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1898 aiocb->ki_cancel = aio_poll_cancel;
1899 }
50252e4b
EB
1900 if (on_queue)
1901 poll_iocb_unlock_wq(req);
af5c72b1
AV
1902 }
1903 if (mask) { /* no async, we'd stolen it */
1904 aiocb->ki_res.res = mangle_poll(mask);
bfe4037e 1905 apt.error = 0;
bfe4037e 1906 }
bfe4037e 1907 spin_unlock_irq(&ctx->ctx_lock);
bfe4037e 1908 if (mask)
af5c72b1
AV
1909 iocb_put(aiocb);
1910 return apt.error;
bfe4037e
CH
1911}
1912
88a6f18b 1913static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
7316b49c
AV
1914 struct iocb __user *user_iocb, struct aio_kiocb *req,
1915 bool compat)
1da177e4 1916{
84c4e1f8 1917 req->ki_filp = fget(iocb->aio_fildes);
84c4e1f8 1918 if (unlikely(!req->ki_filp))
7316b49c 1919 return -EBADF;
84c4e1f8 1920
88a6f18b 1921 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
74259703 1922 struct eventfd_ctx *eventfd;
9c3060be
DL
1923 /*
1924 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1925 * instance of the file* now. The file descriptor must be
1926 * an eventfd() fd, and will be signaled for each completed
1927 * event using the eventfd_signal() function.
1928 */
74259703 1929 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
7316b49c 1930 if (IS_ERR(eventfd))
18bfb9c6 1931 return PTR_ERR(eventfd);
7316b49c 1932
74259703 1933 req->ki_eventfd = eventfd;
9830f4be
GR
1934 }
1935
7316b49c 1936 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
caf4167a 1937 pr_debug("EFAULT: aio_key\n");
7316b49c 1938 return -EFAULT;
1da177e4
LT
1939 }
1940
a9339b78
AV
1941 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1942 req->ki_res.data = iocb->aio_data;
1943 req->ki_res.res = 0;
1944 req->ki_res.res2 = 0;
1da177e4 1945
88a6f18b 1946 switch (iocb->aio_lio_opcode) {
89319d31 1947 case IOCB_CMD_PREAD:
7316b49c 1948 return aio_read(&req->rw, iocb, false, compat);
89319d31 1949 case IOCB_CMD_PWRITE:
7316b49c 1950 return aio_write(&req->rw, iocb, false, compat);
89319d31 1951 case IOCB_CMD_PREADV:
7316b49c 1952 return aio_read(&req->rw, iocb, true, compat);
89319d31 1953 case IOCB_CMD_PWRITEV:
7316b49c 1954 return aio_write(&req->rw, iocb, true, compat);
a3c0d439 1955 case IOCB_CMD_FSYNC:
7316b49c 1956 return aio_fsync(&req->fsync, iocb, false);
a3c0d439 1957 case IOCB_CMD_FDSYNC:
7316b49c 1958 return aio_fsync(&req->fsync, iocb, true);
bfe4037e 1959 case IOCB_CMD_POLL:
7316b49c 1960 return aio_poll(req, iocb);
89319d31 1961 default:
88a6f18b 1962 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
7316b49c 1963 return -EINVAL;
89319d31 1964 }
1da177e4
LT
1965}
1966
88a6f18b
JA
1967static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1968 bool compat)
1969{
7316b49c 1970 struct aio_kiocb *req;
88a6f18b 1971 struct iocb iocb;
7316b49c 1972 int err;
88a6f18b
JA
1973
1974 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1975 return -EFAULT;
1976
7316b49c
AV
1977 /* enforce forwards compatibility on users */
1978 if (unlikely(iocb.aio_reserved2)) {
1979 pr_debug("EINVAL: reserve field set\n");
1980 return -EINVAL;
1981 }
1982
1983 /* prevent overflows */
1984 if (unlikely(
1985 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1986 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1987 ((ssize_t)iocb.aio_nbytes < 0)
1988 )) {
1989 pr_debug("EINVAL: overflow check\n");
1990 return -EINVAL;
1991 }
1992
1993 req = aio_get_req(ctx);
1994 if (unlikely(!req))
1995 return -EAGAIN;
1996
1997 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1998
1999 /* Done with the synchronous reference */
2000 iocb_put(req);
2001
2002 /*
2003 * If err is 0, we'd either done aio_complete() ourselves or have
2004 * arranged for that to be done asynchronously. Anything non-zero
2005 * means that we need to destroy req ourselves.
2006 */
2007 if (unlikely(err)) {
2008 iocb_destroy(req);
2009 put_reqs_available(ctx, 1);
2010 }
2011 return err;
88a6f18b
JA
2012}
2013
67ba049f
AV
2014/* sys_io_submit:
2015 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2016 * the number of iocbs queued. May return -EINVAL if the aio_context
2017 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2018 * *iocbpp[0] is not properly initialized, if the operation specified
2019 * is invalid for the file descriptor in the iocb. May fail with
2020 * -EFAULT if any of the data structures point to invalid data. May
2021 * fail with -EBADF if the file descriptor specified in the first
2022 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2023 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2024 * fail with -ENOSYS if not implemented.
2025 */
2026SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2027 struct iocb __user * __user *, iocbpp)
1da177e4
LT
2028{
2029 struct kioctx *ctx;
2030 long ret = 0;
080d676d 2031 int i = 0;
9f5b9425 2032 struct blk_plug plug;
1da177e4
LT
2033
2034 if (unlikely(nr < 0))
2035 return -EINVAL;
2036
1da177e4
LT
2037 ctx = lookup_ioctx(ctx_id);
2038 if (unlikely(!ctx)) {
caf4167a 2039 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
2040 return -EINVAL;
2041 }
2042
1da92779
AV
2043 if (nr > ctx->nr_events)
2044 nr = ctx->nr_events;
2045
a79d40e9
JA
2046 if (nr > AIO_PLUG_THRESHOLD)
2047 blk_start_plug(&plug);
67ba049f 2048 for (i = 0; i < nr; i++) {
1da177e4 2049 struct iocb __user *user_iocb;
1da177e4 2050
67ba049f 2051 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
2052 ret = -EFAULT;
2053 break;
2054 }
2055
67ba049f 2056 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
2057 if (ret)
2058 break;
2059 }
a79d40e9
JA
2060 if (nr > AIO_PLUG_THRESHOLD)
2061 blk_finish_plug(&plug);
1da177e4 2062
723be6e3 2063 percpu_ref_put(&ctx->users);
1da177e4
LT
2064 return i ? i : ret;
2065}
2066
c00d2c7e 2067#ifdef CONFIG_COMPAT
c00d2c7e 2068COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 2069 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 2070{
67ba049f
AV
2071 struct kioctx *ctx;
2072 long ret = 0;
2073 int i = 0;
2074 struct blk_plug plug;
c00d2c7e
AV
2075
2076 if (unlikely(nr < 0))
2077 return -EINVAL;
2078
67ba049f
AV
2079 ctx = lookup_ioctx(ctx_id);
2080 if (unlikely(!ctx)) {
2081 pr_debug("EINVAL: invalid context id\n");
2082 return -EINVAL;
2083 }
2084
1da92779
AV
2085 if (nr > ctx->nr_events)
2086 nr = ctx->nr_events;
2087
a79d40e9
JA
2088 if (nr > AIO_PLUG_THRESHOLD)
2089 blk_start_plug(&plug);
67ba049f
AV
2090 for (i = 0; i < nr; i++) {
2091 compat_uptr_t user_iocb;
2092
2093 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2094 ret = -EFAULT;
2095 break;
2096 }
2097
2098 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2099 if (ret)
2100 break;
2101 }
a79d40e9
JA
2102 if (nr > AIO_PLUG_THRESHOLD)
2103 blk_finish_plug(&plug);
67ba049f
AV
2104
2105 percpu_ref_put(&ctx->users);
2106 return i ? i : ret;
c00d2c7e
AV
2107}
2108#endif
2109
1da177e4
LT
2110/* sys_io_cancel:
2111 * Attempts to cancel an iocb previously passed to io_submit. If
2112 * the operation is successfully cancelled, the resulting event is
2113 * copied into the memory pointed to by result without being placed
2114 * into the completion queue and 0 is returned. May fail with
2115 * -EFAULT if any of the data structures pointed to are invalid.
2116 * May fail with -EINVAL if aio_context specified by ctx_id is
2117 * invalid. May fail with -EAGAIN if the iocb specified was not
2118 * cancelled. Will fail with -ENOSYS if not implemented.
2119 */
002c8976
HC
2120SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2121 struct io_event __user *, result)
1da177e4 2122{
1da177e4 2123 struct kioctx *ctx;
04b2fa9f 2124 struct aio_kiocb *kiocb;
888933f8 2125 int ret = -EINVAL;
1da177e4 2126 u32 key;
a9339b78 2127 u64 obj = (u64)(unsigned long)iocb;
1da177e4 2128
f3a2752a 2129 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 2130 return -EFAULT;
f3a2752a
CH
2131 if (unlikely(key != KIOCB_KEY))
2132 return -EINVAL;
1da177e4
LT
2133
2134 ctx = lookup_ioctx(ctx_id);
2135 if (unlikely(!ctx))
2136 return -EINVAL;
2137
2138 spin_lock_irq(&ctx->ctx_lock);
833f4154
AV
2139 /* TODO: use a hash or array, this sucks. */
2140 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
a9339b78 2141 if (kiocb->ki_res.obj == obj) {
833f4154
AV
2142 ret = kiocb->ki_cancel(&kiocb->rw);
2143 list_del_init(&kiocb->ki_list);
2144 break;
2145 }
888933f8 2146 }
1da177e4
LT
2147 spin_unlock_irq(&ctx->ctx_lock);
2148
906b973c 2149 if (!ret) {
bec68faa
KO
2150 /*
2151 * The result argument is no longer used - the io_event is
2152 * always delivered via the ring buffer. -EINPROGRESS indicates
2153 * cancellation is progress:
906b973c 2154 */
bec68faa 2155 ret = -EINPROGRESS;
906b973c 2156 }
1da177e4 2157
723be6e3 2158 percpu_ref_put(&ctx->users);
1da177e4
LT
2159
2160 return ret;
2161}
2162
fa2e62a5
DD
2163static long do_io_getevents(aio_context_t ctx_id,
2164 long min_nr,
2165 long nr,
2166 struct io_event __user *events,
2167 struct timespec64 *ts)
2168{
2169 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2170 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2171 long ret = -EINVAL;
2172
2173 if (likely(ioctx)) {
2174 if (likely(min_nr <= nr && min_nr >= 0))
2175 ret = read_events(ioctx, min_nr, nr, events, until);
2176 percpu_ref_put(&ioctx->users);
2177 }
2178
2179 return ret;
2180}
2181
1da177e4
LT
2182/* io_getevents:
2183 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2184 * the completion queue for the aio_context specified by ctx_id. If
2185 * it succeeds, the number of read events is returned. May fail with
2186 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2187 * out of range, if timeout is out of range. May fail with -EFAULT
2188 * if any of the memory specified is invalid. May return 0 or
2189 * < min_nr if the timeout specified by timeout has elapsed
2190 * before sufficient events are available, where timeout == NULL
2191 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2192 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2193 */
3ca47e95 2194#ifdef CONFIG_64BIT
7a35397f 2195
002c8976
HC
2196SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2197 long, min_nr,
2198 long, nr,
2199 struct io_event __user *, events,
7a35397f 2200 struct __kernel_timespec __user *, timeout)
1da177e4 2201{
fa2e62a5 2202 struct timespec64 ts;
7a074e96
CH
2203 int ret;
2204
2205 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2206 return -EFAULT;
2207
2208 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2209 if (!ret && signal_pending(current))
2210 ret = -EINTR;
2211 return ret;
2212}
1da177e4 2213
7a35397f
DD
2214#endif
2215
9ba546c0
CH
2216struct __aio_sigset {
2217 const sigset_t __user *sigmask;
2218 size_t sigsetsize;
2219};
2220
7a074e96
CH
2221SYSCALL_DEFINE6(io_pgetevents,
2222 aio_context_t, ctx_id,
2223 long, min_nr,
2224 long, nr,
2225 struct io_event __user *, events,
7a35397f 2226 struct __kernel_timespec __user *, timeout,
7a074e96
CH
2227 const struct __aio_sigset __user *, usig)
2228{
2229 struct __aio_sigset ksig = { NULL, };
7a074e96 2230 struct timespec64 ts;
97abc889 2231 bool interrupted;
7a074e96
CH
2232 int ret;
2233
2234 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2235 return -EFAULT;
2236
2237 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2238 return -EFAULT;
2239
b772434b 2240 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
7a35397f
DD
2241 if (ret)
2242 return ret;
7a074e96
CH
2243
2244 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2245
2246 interrupted = signal_pending(current);
b772434b 2247 restore_saved_sigmask_unless(interrupted);
97abc889 2248 if (interrupted && !ret)
7a35397f 2249 ret = -ERESTARTNOHAND;
7a074e96 2250
7a35397f
DD
2251 return ret;
2252}
2253
2254#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2255
2256SYSCALL_DEFINE6(io_pgetevents_time32,
2257 aio_context_t, ctx_id,
2258 long, min_nr,
2259 long, nr,
2260 struct io_event __user *, events,
2261 struct old_timespec32 __user *, timeout,
2262 const struct __aio_sigset __user *, usig)
2263{
2264 struct __aio_sigset ksig = { NULL, };
7a35397f 2265 struct timespec64 ts;
97abc889 2266 bool interrupted;
7a35397f
DD
2267 int ret;
2268
2269 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2270 return -EFAULT;
2271
2272 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2273 return -EFAULT;
2274
ded653cc 2275
b772434b 2276 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
ded653cc
DD
2277 if (ret)
2278 return ret;
7a074e96
CH
2279
2280 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2281
2282 interrupted = signal_pending(current);
b772434b 2283 restore_saved_sigmask_unless(interrupted);
97abc889 2284 if (interrupted && !ret)
854a6ed5 2285 ret = -ERESTARTNOHAND;
fa2e62a5 2286
7a074e96 2287 return ret;
1da177e4 2288}
c00d2c7e 2289
7a35397f
DD
2290#endif
2291
2292#if defined(CONFIG_COMPAT_32BIT_TIME)
2293
8dabe724
AB
2294SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2295 __s32, min_nr,
2296 __s32, nr,
2297 struct io_event __user *, events,
2298 struct old_timespec32 __user *, timeout)
c00d2c7e 2299{
fa2e62a5 2300 struct timespec64 t;
7a074e96
CH
2301 int ret;
2302
9afc5eee 2303 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2304 return -EFAULT;
2305
2306 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2307 if (!ret && signal_pending(current))
2308 ret = -EINTR;
2309 return ret;
2310}
2311
7a35397f
DD
2312#endif
2313
2314#ifdef CONFIG_COMPAT
c00d2c7e 2315
7a074e96 2316struct __compat_aio_sigset {
97eba80f 2317 compat_uptr_t sigmask;
7a074e96
CH
2318 compat_size_t sigsetsize;
2319};
2320
7a35397f
DD
2321#if defined(CONFIG_COMPAT_32BIT_TIME)
2322
7a074e96
CH
2323COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2324 compat_aio_context_t, ctx_id,
2325 compat_long_t, min_nr,
2326 compat_long_t, nr,
2327 struct io_event __user *, events,
9afc5eee 2328 struct old_timespec32 __user *, timeout,
7a074e96
CH
2329 const struct __compat_aio_sigset __user *, usig)
2330{
97eba80f 2331 struct __compat_aio_sigset ksig = { 0, };
7a074e96 2332 struct timespec64 t;
97abc889 2333 bool interrupted;
7a074e96
CH
2334 int ret;
2335
9afc5eee 2336 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2337 return -EFAULT;
2338
2339 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2340 return -EFAULT;
2341
97eba80f 2342 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
ded653cc
DD
2343 if (ret)
2344 return ret;
c00d2c7e 2345
7a074e96 2346 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2347
2348 interrupted = signal_pending(current);
b772434b 2349 restore_saved_sigmask_unless(interrupted);
97abc889 2350 if (interrupted && !ret)
854a6ed5 2351 ret = -ERESTARTNOHAND;
fa2e62a5 2352
7a074e96 2353 return ret;
c00d2c7e 2354}
7a35397f
DD
2355
2356#endif
2357
2358COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2359 compat_aio_context_t, ctx_id,
2360 compat_long_t, min_nr,
2361 compat_long_t, nr,
2362 struct io_event __user *, events,
2363 struct __kernel_timespec __user *, timeout,
2364 const struct __compat_aio_sigset __user *, usig)
2365{
97eba80f 2366 struct __compat_aio_sigset ksig = { 0, };
7a35397f 2367 struct timespec64 t;
97abc889 2368 bool interrupted;
7a35397f
DD
2369 int ret;
2370
2371 if (timeout && get_timespec64(&t, timeout))
2372 return -EFAULT;
2373
2374 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2375 return -EFAULT;
2376
97eba80f 2377 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
7a35397f
DD
2378 if (ret)
2379 return ret;
2380
2381 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2382
2383 interrupted = signal_pending(current);
b772434b 2384 restore_saved_sigmask_unless(interrupted);
97abc889 2385 if (interrupted && !ret)
7a35397f 2386 ret = -ERESTARTNOHAND;
fa2e62a5 2387
7a074e96 2388 return ret;
c00d2c7e
AV
2389}
2390#endif