]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/aio.c
aio: separate out ring reservation from req allocation
[mirror_ubuntu-jammy-kernel.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
3d2d827f 30#include <linux/mmu_context.h>
e1bdd5f2 31#include <linux/percpu.h>
1da177e4
LT
32#include <linux/slab.h>
33#include <linux/timer.h>
34#include <linux/aio.h>
35#include <linux/highmem.h>
36#include <linux/workqueue.h>
37#include <linux/security.h>
9c3060be 38#include <linux/eventfd.h>
cfb1e33e 39#include <linux/blkdev.h>
9d85cba7 40#include <linux/compat.h>
36bc08cc
GZ
41#include <linux/migrate.h>
42#include <linux/ramfs.h>
723be6e3 43#include <linux/percpu-refcount.h>
71ad7490 44#include <linux/mount.h>
1da177e4
LT
45
46#include <asm/kmap_types.h>
7c0f6ba6 47#include <linux/uaccess.h>
a538e3ff 48#include <linux/nospec.h>
1da177e4 49
68d70d03
AV
50#include "internal.h"
51
f3a2752a
CH
52#define KIOCB_KEY 0
53
4e179bca
KO
54#define AIO_RING_MAGIC 0xa10a10a1
55#define AIO_RING_COMPAT_FEATURES 1
56#define AIO_RING_INCOMPAT_FEATURES 0
57struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
fa8a53c3
BL
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
4e179bca
KO
62 unsigned tail;
63
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
68
69
70 struct io_event io_events[0];
71}; /* 128 bytes + ring size */
72
73#define AIO_RING_PAGES 8
4e179bca 74
db446a08 75struct kioctx_table {
d0264c01
TH
76 struct rcu_head rcu;
77 unsigned nr;
78 struct kioctx __rcu *table[];
db446a08
BL
79};
80
e1bdd5f2
KO
81struct kioctx_cpu {
82 unsigned reqs_available;
83};
84
dc48e56d
JA
85struct ctx_rq_wait {
86 struct completion comp;
87 atomic_t count;
88};
89
4e179bca 90struct kioctx {
723be6e3 91 struct percpu_ref users;
36f55889 92 atomic_t dead;
4e179bca 93
e34ecee2
KO
94 struct percpu_ref reqs;
95
4e179bca 96 unsigned long user_id;
4e179bca 97
e1bdd5f2
KO
98 struct __percpu kioctx_cpu *cpu;
99
100 /*
101 * For percpu reqs_available, number of slots we move to/from global
102 * counter at a time:
103 */
104 unsigned req_batch;
3e845ce0
KO
105 /*
106 * This is what userspace passed to io_setup(), it's not used for
107 * anything but counting against the global max_reqs quota.
108 *
58c85dc2 109 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
110 * aio_setup_ring())
111 */
4e179bca
KO
112 unsigned max_reqs;
113
58c85dc2
KO
114 /* Size of ringbuffer, in units of struct io_event */
115 unsigned nr_events;
4e179bca 116
58c85dc2
KO
117 unsigned long mmap_base;
118 unsigned long mmap_size;
119
120 struct page **ring_pages;
121 long nr_pages;
122
f729863a 123 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 124
e02ba72a
AP
125 /*
126 * signals when all in-flight requests are done
127 */
dc48e56d 128 struct ctx_rq_wait *rq_wait;
e02ba72a 129
4e23bcae 130 struct {
34e83fc6
KO
131 /*
132 * This counts the number of available slots in the ringbuffer,
133 * so we avoid overflowing it: it's decremented (if positive)
134 * when allocating a kiocb and incremented when the resulting
135 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
136 *
137 * We batch accesses to it with a percpu version.
34e83fc6
KO
138 */
139 atomic_t reqs_available;
4e23bcae
KO
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 spinlock_t ctx_lock;
144 struct list_head active_reqs; /* used for cancellation */
145 } ____cacheline_aligned_in_smp;
146
58c85dc2
KO
147 struct {
148 struct mutex ring_lock;
4e23bcae
KO
149 wait_queue_head_t wait;
150 } ____cacheline_aligned_in_smp;
58c85dc2
KO
151
152 struct {
153 unsigned tail;
d856f32a 154 unsigned completed_events;
58c85dc2 155 spinlock_t completion_lock;
4e23bcae 156 } ____cacheline_aligned_in_smp;
58c85dc2
KO
157
158 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 159 struct file *aio_ring_file;
db446a08
BL
160
161 unsigned id;
4e179bca
KO
162};
163
a3c0d439
CH
164struct fsync_iocb {
165 struct work_struct work;
166 struct file *file;
167 bool datasync;
168};
169
bfe4037e
CH
170struct poll_iocb {
171 struct file *file;
172 struct wait_queue_head *head;
173 __poll_t events;
174 bool woken;
175 bool cancelled;
176 struct wait_queue_entry wait;
177 struct work_struct work;
178};
179
04b2fa9f 180struct aio_kiocb {
54843f87
CH
181 union {
182 struct kiocb rw;
a3c0d439 183 struct fsync_iocb fsync;
bfe4037e 184 struct poll_iocb poll;
54843f87 185 };
04b2fa9f
CH
186
187 struct kioctx *ki_ctx;
188 kiocb_cancel_fn *ki_cancel;
189
190 struct iocb __user *ki_user_iocb; /* user's aiocb */
191 __u64 ki_user_data; /* user's data for completion */
192
193 struct list_head ki_list; /* the aio core uses this
194 * for cancellation */
9018ccc4 195 refcount_t ki_refcnt;
04b2fa9f
CH
196
197 /*
198 * If the aio_resfd field of the userspace iocb is not zero,
199 * this is the underlying eventfd context to deliver events to.
200 */
201 struct eventfd_ctx *ki_eventfd;
202};
203
1da177e4 204/*------ sysctl variables----*/
d55b5fda
ZB
205static DEFINE_SPINLOCK(aio_nr_lock);
206unsigned long aio_nr; /* current system wide number of aio requests */
207unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
208/*----end sysctl variables---*/
209
e18b890b
CL
210static struct kmem_cache *kiocb_cachep;
211static struct kmem_cache *kioctx_cachep;
1da177e4 212
71ad7490
BL
213static struct vfsmount *aio_mnt;
214
215static const struct file_operations aio_ring_fops;
216static const struct address_space_operations aio_ctx_aops;
217
218static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
219{
71ad7490 220 struct file *file;
71ad7490 221 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
222 if (IS_ERR(inode))
223 return ERR_CAST(inode);
71ad7490
BL
224
225 inode->i_mapping->a_ops = &aio_ctx_aops;
226 inode->i_mapping->private_data = ctx;
227 inode->i_size = PAGE_SIZE * nr_pages;
228
d93aa9d8
AV
229 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
230 O_RDWR, &aio_ring_fops);
c9c554f2 231 if (IS_ERR(file))
71ad7490 232 iput(inode);
71ad7490
BL
233 return file;
234}
235
236static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
238{
d93aa9d8 239 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
22f6b4d3
JH
240 AIO_RING_MAGIC);
241
242 if (!IS_ERR(root))
243 root->d_sb->s_iflags |= SB_I_NOEXEC;
244 return root;
71ad7490
BL
245}
246
1da177e4
LT
247/* aio_setup
248 * Creates the slab caches used by the aio routines, panic on
249 * failure as this is done early during the boot sequence.
250 */
251static int __init aio_setup(void)
252{
71ad7490
BL
253 static struct file_system_type aio_fs = {
254 .name = "aio",
255 .mount = aio_mount,
256 .kill_sb = kill_anon_super,
257 };
258 aio_mnt = kern_mount(&aio_fs);
259 if (IS_ERR(aio_mnt))
260 panic("Failed to create aio fs mount.");
261
04b2fa9f 262 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 263 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
264 return 0;
265}
385773e0 266__initcall(aio_setup);
1da177e4 267
5e9ae2e5
BL
268static void put_aio_ring_file(struct kioctx *ctx)
269{
270 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
271 struct address_space *i_mapping;
272
5e9ae2e5 273 if (aio_ring_file) {
45063097 274 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
275
276 /* Prevent further access to the kioctx from migratepages */
45063097 277 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
278 spin_lock(&i_mapping->private_lock);
279 i_mapping->private_data = NULL;
5e9ae2e5 280 ctx->aio_ring_file = NULL;
de04e769 281 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
282
283 fput(aio_ring_file);
284 }
285}
286
1da177e4
LT
287static void aio_free_ring(struct kioctx *ctx)
288{
36bc08cc 289 int i;
1da177e4 290
fa8a53c3
BL
291 /* Disconnect the kiotx from the ring file. This prevents future
292 * accesses to the kioctx from page migration.
293 */
294 put_aio_ring_file(ctx);
295
36bc08cc 296 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 297 struct page *page;
36bc08cc
GZ
298 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
299 page_count(ctx->ring_pages[i]));
8e321fef
BL
300 page = ctx->ring_pages[i];
301 if (!page)
302 continue;
303 ctx->ring_pages[i] = NULL;
304 put_page(page);
36bc08cc 305 }
1da177e4 306
ddb8c45b 307 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 308 kfree(ctx->ring_pages);
ddb8c45b
SL
309 ctx->ring_pages = NULL;
310 }
36bc08cc
GZ
311}
312
5477e70a 313static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 314{
5477e70a 315 struct file *file = vma->vm_file;
e4a0d3e7
PE
316 struct mm_struct *mm = vma->vm_mm;
317 struct kioctx_table *table;
b2edffdd 318 int i, res = -EINVAL;
e4a0d3e7
PE
319
320 spin_lock(&mm->ioctx_lock);
321 rcu_read_lock();
322 table = rcu_dereference(mm->ioctx_table);
323 for (i = 0; i < table->nr; i++) {
324 struct kioctx *ctx;
325
d0264c01 326 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 327 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
328 if (!atomic_read(&ctx->dead)) {
329 ctx->user_id = ctx->mmap_base = vma->vm_start;
330 res = 0;
331 }
e4a0d3e7
PE
332 break;
333 }
334 }
335
336 rcu_read_unlock();
337 spin_unlock(&mm->ioctx_lock);
b2edffdd 338 return res;
e4a0d3e7
PE
339}
340
5477e70a
ON
341static const struct vm_operations_struct aio_ring_vm_ops = {
342 .mremap = aio_ring_mremap,
343#if IS_ENABLED(CONFIG_MMU)
344 .fault = filemap_fault,
345 .map_pages = filemap_map_pages,
346 .page_mkwrite = filemap_page_mkwrite,
347#endif
348};
349
350static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
351{
352 vma->vm_flags |= VM_DONTEXPAND;
353 vma->vm_ops = &aio_ring_vm_ops;
354 return 0;
355}
356
36bc08cc
GZ
357static const struct file_operations aio_ring_fops = {
358 .mmap = aio_ring_mmap,
359};
360
0c45355f 361#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
362static int aio_migratepage(struct address_space *mapping, struct page *new,
363 struct page *old, enum migrate_mode mode)
364{
5e9ae2e5 365 struct kioctx *ctx;
36bc08cc 366 unsigned long flags;
fa8a53c3 367 pgoff_t idx;
36bc08cc
GZ
368 int rc;
369
2916ecc0
JG
370 /*
371 * We cannot support the _NO_COPY case here, because copy needs to
372 * happen under the ctx->completion_lock. That does not work with the
373 * migration workflow of MIGRATE_SYNC_NO_COPY.
374 */
375 if (mode == MIGRATE_SYNC_NO_COPY)
376 return -EINVAL;
377
8e321fef
BL
378 rc = 0;
379
fa8a53c3 380 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
381 spin_lock(&mapping->private_lock);
382 ctx = mapping->private_data;
fa8a53c3
BL
383 if (!ctx) {
384 rc = -EINVAL;
385 goto out;
386 }
387
388 /* The ring_lock mutex. The prevents aio_read_events() from writing
389 * to the ring's head, and prevents page migration from mucking in
390 * a partially initialized kiotx.
391 */
392 if (!mutex_trylock(&ctx->ring_lock)) {
393 rc = -EAGAIN;
394 goto out;
395 }
396
397 idx = old->index;
398 if (idx < (pgoff_t)ctx->nr_pages) {
399 /* Make sure the old page hasn't already been changed */
400 if (ctx->ring_pages[idx] != old)
401 rc = -EAGAIN;
8e321fef
BL
402 } else
403 rc = -EINVAL;
8e321fef
BL
404
405 if (rc != 0)
fa8a53c3 406 goto out_unlock;
8e321fef 407
36bc08cc
GZ
408 /* Writeback must be complete */
409 BUG_ON(PageWriteback(old));
8e321fef 410 get_page(new);
36bc08cc 411
8e321fef 412 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
36bc08cc 413 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 414 put_page(new);
fa8a53c3 415 goto out_unlock;
36bc08cc
GZ
416 }
417
fa8a53c3
BL
418 /* Take completion_lock to prevent other writes to the ring buffer
419 * while the old page is copied to the new. This prevents new
420 * events from being lost.
5e9ae2e5 421 */
fa8a53c3
BL
422 spin_lock_irqsave(&ctx->completion_lock, flags);
423 migrate_page_copy(new, old);
424 BUG_ON(ctx->ring_pages[idx] != old);
425 ctx->ring_pages[idx] = new;
426 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 427
fa8a53c3
BL
428 /* The old page is no longer accessible. */
429 put_page(old);
8e321fef 430
fa8a53c3
BL
431out_unlock:
432 mutex_unlock(&ctx->ring_lock);
433out:
434 spin_unlock(&mapping->private_lock);
36bc08cc 435 return rc;
1da177e4 436}
0c45355f 437#endif
1da177e4 438
36bc08cc 439static const struct address_space_operations aio_ctx_aops = {
835f252c 440 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 441#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 442 .migratepage = aio_migratepage,
0c45355f 443#endif
36bc08cc
GZ
444};
445
2a8a9867 446static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
447{
448 struct aio_ring *ring;
41003a7b 449 struct mm_struct *mm = current->mm;
3dc9acb6 450 unsigned long size, unused;
1da177e4 451 int nr_pages;
36bc08cc
GZ
452 int i;
453 struct file *file;
1da177e4
LT
454
455 /* Compensate for the ring buffer's head/tail overlap entry */
456 nr_events += 2; /* 1 is required, 2 for good luck */
457
458 size = sizeof(struct aio_ring);
459 size += sizeof(struct io_event) * nr_events;
1da177e4 460
36bc08cc 461 nr_pages = PFN_UP(size);
1da177e4
LT
462 if (nr_pages < 0)
463 return -EINVAL;
464
71ad7490 465 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
466 if (IS_ERR(file)) {
467 ctx->aio_ring_file = NULL;
fa8a53c3 468 return -ENOMEM;
36bc08cc
GZ
469 }
470
3dc9acb6
LT
471 ctx->aio_ring_file = file;
472 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
473 / sizeof(struct io_event);
474
475 ctx->ring_pages = ctx->internal_pages;
476 if (nr_pages > AIO_RING_PAGES) {
477 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
478 GFP_KERNEL);
479 if (!ctx->ring_pages) {
480 put_aio_ring_file(ctx);
481 return -ENOMEM;
482 }
483 }
484
36bc08cc
GZ
485 for (i = 0; i < nr_pages; i++) {
486 struct page *page;
45063097 487 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
488 i, GFP_HIGHUSER | __GFP_ZERO);
489 if (!page)
490 break;
491 pr_debug("pid(%d) page[%d]->count=%d\n",
492 current->pid, i, page_count(page));
493 SetPageUptodate(page);
36bc08cc 494 unlock_page(page);
3dc9acb6
LT
495
496 ctx->ring_pages[i] = page;
36bc08cc 497 }
3dc9acb6 498 ctx->nr_pages = i;
1da177e4 499
3dc9acb6
LT
500 if (unlikely(i != nr_pages)) {
501 aio_free_ring(ctx);
fa8a53c3 502 return -ENOMEM;
1da177e4
LT
503 }
504
58c85dc2
KO
505 ctx->mmap_size = nr_pages * PAGE_SIZE;
506 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 507
013373e8
MH
508 if (down_write_killable(&mm->mmap_sem)) {
509 ctx->mmap_size = 0;
510 aio_free_ring(ctx);
511 return -EINTR;
512 }
513
36bc08cc
GZ
514 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
515 PROT_READ | PROT_WRITE,
897ab3e0 516 MAP_SHARED, 0, &unused, NULL);
3dc9acb6 517 up_write(&mm->mmap_sem);
58c85dc2 518 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 519 ctx->mmap_size = 0;
1da177e4 520 aio_free_ring(ctx);
fa8a53c3 521 return -ENOMEM;
1da177e4
LT
522 }
523
58c85dc2 524 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 525
58c85dc2
KO
526 ctx->user_id = ctx->mmap_base;
527 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 528
58c85dc2 529 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 530 ring->nr = nr_events; /* user copy */
db446a08 531 ring->id = ~0U;
1da177e4
LT
532 ring->head = ring->tail = 0;
533 ring->magic = AIO_RING_MAGIC;
534 ring->compat_features = AIO_RING_COMPAT_FEATURES;
535 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
536 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 537 kunmap_atomic(ring);
58c85dc2 538 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
539
540 return 0;
541}
542
1da177e4
LT
543#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
544#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
545#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
546
04b2fa9f 547void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 548{
54843f87 549 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
550 struct kioctx *ctx = req->ki_ctx;
551 unsigned long flags;
552
75321b50
CH
553 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
554 return;
0460fef2 555
75321b50
CH
556 spin_lock_irqsave(&ctx->ctx_lock, flags);
557 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 558 req->ki_cancel = cancel;
0460fef2
KO
559 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
560}
561EXPORT_SYMBOL(kiocb_set_cancel_fn);
562
a6d7cff4
TH
563/*
564 * free_ioctx() should be RCU delayed to synchronize against the RCU
565 * protected lookup_ioctx() and also needs process context to call
f729863a 566 * aio_free_ring(). Use rcu_work.
a6d7cff4 567 */
e34ecee2 568static void free_ioctx(struct work_struct *work)
36f55889 569{
f729863a
TH
570 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
571 free_rwork);
e34ecee2 572 pr_debug("freeing %p\n", ctx);
e1bdd5f2 573
e34ecee2 574 aio_free_ring(ctx);
e1bdd5f2 575 free_percpu(ctx->cpu);
9a1049da
TH
576 percpu_ref_exit(&ctx->reqs);
577 percpu_ref_exit(&ctx->users);
36f55889
KO
578 kmem_cache_free(kioctx_cachep, ctx);
579}
580
e34ecee2
KO
581static void free_ioctx_reqs(struct percpu_ref *ref)
582{
583 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
584
e02ba72a 585 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
586 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
587 complete(&ctx->rq_wait->comp);
e02ba72a 588
a6d7cff4 589 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
590 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
591 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
592}
593
36f55889
KO
594/*
595 * When this function runs, the kioctx has been removed from the "hash table"
596 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
597 * now it's safe to cancel any that need to be.
598 */
e34ecee2 599static void free_ioctx_users(struct percpu_ref *ref)
36f55889 600{
e34ecee2 601 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 602 struct aio_kiocb *req;
36f55889
KO
603
604 spin_lock_irq(&ctx->ctx_lock);
605
606 while (!list_empty(&ctx->active_reqs)) {
607 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 608 struct aio_kiocb, ki_list);
888933f8 609 req->ki_cancel(&req->rw);
4faa9996 610 list_del_init(&req->ki_list);
36f55889
KO
611 }
612
613 spin_unlock_irq(&ctx->ctx_lock);
614
e34ecee2
KO
615 percpu_ref_kill(&ctx->reqs);
616 percpu_ref_put(&ctx->reqs);
36f55889
KO
617}
618
db446a08
BL
619static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
620{
621 unsigned i, new_nr;
622 struct kioctx_table *table, *old;
623 struct aio_ring *ring;
624
625 spin_lock(&mm->ioctx_lock);
855ef0de 626 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
627
628 while (1) {
629 if (table)
630 for (i = 0; i < table->nr; i++)
d0264c01 631 if (!rcu_access_pointer(table->table[i])) {
db446a08 632 ctx->id = i;
d0264c01 633 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
634 spin_unlock(&mm->ioctx_lock);
635
fa8a53c3
BL
636 /* While kioctx setup is in progress,
637 * we are protected from page migration
638 * changes ring_pages by ->ring_lock.
639 */
db446a08
BL
640 ring = kmap_atomic(ctx->ring_pages[0]);
641 ring->id = ctx->id;
642 kunmap_atomic(ring);
643 return 0;
644 }
645
646 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
647 spin_unlock(&mm->ioctx_lock);
648
649 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
650 new_nr, GFP_KERNEL);
651 if (!table)
652 return -ENOMEM;
653
654 table->nr = new_nr;
655
656 spin_lock(&mm->ioctx_lock);
855ef0de 657 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
658
659 if (!old) {
660 rcu_assign_pointer(mm->ioctx_table, table);
661 } else if (table->nr > old->nr) {
662 memcpy(table->table, old->table,
663 old->nr * sizeof(struct kioctx *));
664
665 rcu_assign_pointer(mm->ioctx_table, table);
666 kfree_rcu(old, rcu);
667 } else {
668 kfree(table);
669 table = old;
670 }
671 }
672}
673
e34ecee2
KO
674static void aio_nr_sub(unsigned nr)
675{
676 spin_lock(&aio_nr_lock);
677 if (WARN_ON(aio_nr - nr > aio_nr))
678 aio_nr = 0;
679 else
680 aio_nr -= nr;
681 spin_unlock(&aio_nr_lock);
682}
683
1da177e4
LT
684/* ioctx_alloc
685 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
686 */
687static struct kioctx *ioctx_alloc(unsigned nr_events)
688{
41003a7b 689 struct mm_struct *mm = current->mm;
1da177e4 690 struct kioctx *ctx;
e23754f8 691 int err = -ENOMEM;
1da177e4 692
2a8a9867
MFO
693 /*
694 * Store the original nr_events -- what userspace passed to io_setup(),
695 * for counting against the global limit -- before it changes.
696 */
697 unsigned int max_reqs = nr_events;
698
e1bdd5f2
KO
699 /*
700 * We keep track of the number of available ringbuffer slots, to prevent
701 * overflow (reqs_available), and we also use percpu counters for this.
702 *
703 * So since up to half the slots might be on other cpu's percpu counters
704 * and unavailable, double nr_events so userspace sees what they
705 * expected: additionally, we move req_batch slots to/from percpu
706 * counters at a time, so make sure that isn't 0:
707 */
708 nr_events = max(nr_events, num_possible_cpus() * 4);
709 nr_events *= 2;
710
1da177e4 711 /* Prevent overflows */
08397acd 712 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
713 pr_debug("ENOMEM: nr_events too high\n");
714 return ERR_PTR(-EINVAL);
715 }
716
2a8a9867 717 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
718 return ERR_PTR(-EAGAIN);
719
c3762229 720 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
721 if (!ctx)
722 return ERR_PTR(-ENOMEM);
723
2a8a9867 724 ctx->max_reqs = max_reqs;
1da177e4 725
1da177e4 726 spin_lock_init(&ctx->ctx_lock);
0460fef2 727 spin_lock_init(&ctx->completion_lock);
58c85dc2 728 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
729 /* Protect against page migration throughout kiotx setup by keeping
730 * the ring_lock mutex held until setup is complete. */
731 mutex_lock(&ctx->ring_lock);
1da177e4
LT
732 init_waitqueue_head(&ctx->wait);
733
734 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 735
2aad2a86 736 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
737 goto err;
738
2aad2a86 739 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
740 goto err;
741
e1bdd5f2
KO
742 ctx->cpu = alloc_percpu(struct kioctx_cpu);
743 if (!ctx->cpu)
e34ecee2 744 goto err;
1da177e4 745
2a8a9867 746 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 747 if (err < 0)
e34ecee2 748 goto err;
e1bdd5f2 749
34e83fc6 750 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 751 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
752 if (ctx->req_batch < 1)
753 ctx->req_batch = 1;
34e83fc6 754
1da177e4 755 /* limit the number of system wide aios */
9fa1cb39 756 spin_lock(&aio_nr_lock);
2a8a9867
MFO
757 if (aio_nr + ctx->max_reqs > aio_max_nr ||
758 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 759 spin_unlock(&aio_nr_lock);
e34ecee2 760 err = -EAGAIN;
d1b94327 761 goto err_ctx;
2dd542b7
AV
762 }
763 aio_nr += ctx->max_reqs;
9fa1cb39 764 spin_unlock(&aio_nr_lock);
1da177e4 765
1881686f
BL
766 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
767 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 768
da90382c
BL
769 err = ioctx_add_table(ctx, mm);
770 if (err)
e34ecee2 771 goto err_cleanup;
da90382c 772
fa8a53c3
BL
773 /* Release the ring_lock mutex now that all setup is complete. */
774 mutex_unlock(&ctx->ring_lock);
775
caf4167a 776 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 777 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
778 return ctx;
779
e34ecee2
KO
780err_cleanup:
781 aio_nr_sub(ctx->max_reqs);
d1b94327 782err_ctx:
deeb8525
AV
783 atomic_set(&ctx->dead, 1);
784 if (ctx->mmap_size)
785 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 786 aio_free_ring(ctx);
e34ecee2 787err:
fa8a53c3 788 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 789 free_percpu(ctx->cpu);
9a1049da
TH
790 percpu_ref_exit(&ctx->reqs);
791 percpu_ref_exit(&ctx->users);
1da177e4 792 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 793 pr_debug("error allocating ioctx %d\n", err);
e23754f8 794 return ERR_PTR(err);
1da177e4
LT
795}
796
36f55889
KO
797/* kill_ioctx
798 * Cancels all outstanding aio requests on an aio context. Used
799 * when the processes owning a context have all exited to encourage
800 * the rapid destruction of the kioctx.
801 */
fb2d4483 802static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 803 struct ctx_rq_wait *wait)
36f55889 804{
fa88b6f8 805 struct kioctx_table *table;
db446a08 806
b2edffdd
AV
807 spin_lock(&mm->ioctx_lock);
808 if (atomic_xchg(&ctx->dead, 1)) {
809 spin_unlock(&mm->ioctx_lock);
fa88b6f8 810 return -EINVAL;
b2edffdd 811 }
db446a08 812
855ef0de 813 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
814 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
815 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 816 spin_unlock(&mm->ioctx_lock);
4fcc712f 817
a6d7cff4 818 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 819 wake_up_all(&ctx->wait);
4fcc712f 820
fa88b6f8
BL
821 /*
822 * It'd be more correct to do this in free_ioctx(), after all
823 * the outstanding kiocbs have finished - but by then io_destroy
824 * has already returned, so io_setup() could potentially return
825 * -EAGAIN with no ioctxs actually in use (as far as userspace
826 * could tell).
827 */
828 aio_nr_sub(ctx->max_reqs);
4fcc712f 829
fa88b6f8
BL
830 if (ctx->mmap_size)
831 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 832
dc48e56d 833 ctx->rq_wait = wait;
fa88b6f8
BL
834 percpu_ref_kill(&ctx->users);
835 return 0;
1da177e4
LT
836}
837
36f55889
KO
838/*
839 * exit_aio: called when the last user of mm goes away. At this point, there is
840 * no way for any new requests to be submited or any of the io_* syscalls to be
841 * called on the context.
842 *
843 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
844 * them.
1da177e4 845 */
fc9b52cd 846void exit_aio(struct mm_struct *mm)
1da177e4 847{
4b70ac5f 848 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
849 struct ctx_rq_wait wait;
850 int i, skipped;
db446a08 851
4b70ac5f
ON
852 if (!table)
853 return;
db446a08 854
dc48e56d
JA
855 atomic_set(&wait.count, table->nr);
856 init_completion(&wait.comp);
857
858 skipped = 0;
4b70ac5f 859 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
860 struct kioctx *ctx =
861 rcu_dereference_protected(table->table[i], true);
abf137dd 862
dc48e56d
JA
863 if (!ctx) {
864 skipped++;
4b70ac5f 865 continue;
dc48e56d
JA
866 }
867
936af157 868 /*
4b70ac5f
ON
869 * We don't need to bother with munmap() here - exit_mmap(mm)
870 * is coming and it'll unmap everything. And we simply can't,
871 * this is not necessarily our ->mm.
872 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
873 * that it needs to unmap the area, just set it to 0.
936af157 874 */
58c85dc2 875 ctx->mmap_size = 0;
dc48e56d
JA
876 kill_ioctx(mm, ctx, &wait);
877 }
36f55889 878
dc48e56d 879 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 880 /* Wait until all IO for the context are done. */
dc48e56d 881 wait_for_completion(&wait.comp);
1da177e4 882 }
4b70ac5f
ON
883
884 RCU_INIT_POINTER(mm->ioctx_table, NULL);
885 kfree(table);
1da177e4
LT
886}
887
e1bdd5f2
KO
888static void put_reqs_available(struct kioctx *ctx, unsigned nr)
889{
890 struct kioctx_cpu *kcpu;
263782c1 891 unsigned long flags;
e1bdd5f2 892
263782c1 893 local_irq_save(flags);
be6fb451 894 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 895 kcpu->reqs_available += nr;
263782c1 896
e1bdd5f2
KO
897 while (kcpu->reqs_available >= ctx->req_batch * 2) {
898 kcpu->reqs_available -= ctx->req_batch;
899 atomic_add(ctx->req_batch, &ctx->reqs_available);
900 }
901
263782c1 902 local_irq_restore(flags);
e1bdd5f2
KO
903}
904
432c7997 905static bool __get_reqs_available(struct kioctx *ctx)
e1bdd5f2
KO
906{
907 struct kioctx_cpu *kcpu;
908 bool ret = false;
263782c1 909 unsigned long flags;
e1bdd5f2 910
263782c1 911 local_irq_save(flags);
be6fb451 912 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
913 if (!kcpu->reqs_available) {
914 int old, avail = atomic_read(&ctx->reqs_available);
915
916 do {
917 if (avail < ctx->req_batch)
918 goto out;
919
920 old = avail;
921 avail = atomic_cmpxchg(&ctx->reqs_available,
922 avail, avail - ctx->req_batch);
923 } while (avail != old);
924
925 kcpu->reqs_available += ctx->req_batch;
926 }
927
928 ret = true;
929 kcpu->reqs_available--;
930out:
263782c1 931 local_irq_restore(flags);
e1bdd5f2
KO
932 return ret;
933}
934
d856f32a
BL
935/* refill_reqs_available
936 * Updates the reqs_available reference counts used for tracking the
937 * number of free slots in the completion ring. This can be called
938 * from aio_complete() (to optimistically update reqs_available) or
939 * from aio_get_req() (the we're out of events case). It must be
940 * called holding ctx->completion_lock.
941 */
942static void refill_reqs_available(struct kioctx *ctx, unsigned head,
943 unsigned tail)
944{
945 unsigned events_in_ring, completed;
946
947 /* Clamp head since userland can write to it. */
948 head %= ctx->nr_events;
949 if (head <= tail)
950 events_in_ring = tail - head;
951 else
952 events_in_ring = ctx->nr_events - (head - tail);
953
954 completed = ctx->completed_events;
955 if (events_in_ring < completed)
956 completed -= events_in_ring;
957 else
958 completed = 0;
959
960 if (!completed)
961 return;
962
963 ctx->completed_events -= completed;
964 put_reqs_available(ctx, completed);
965}
966
967/* user_refill_reqs_available
968 * Called to refill reqs_available when aio_get_req() encounters an
969 * out of space in the completion ring.
970 */
971static void user_refill_reqs_available(struct kioctx *ctx)
972{
973 spin_lock_irq(&ctx->completion_lock);
974 if (ctx->completed_events) {
975 struct aio_ring *ring;
976 unsigned head;
977
978 /* Access of ring->head may race with aio_read_events_ring()
979 * here, but that's okay since whether we read the old version
980 * or the new version, and either will be valid. The important
981 * part is that head cannot pass tail since we prevent
982 * aio_complete() from updating tail by holding
983 * ctx->completion_lock. Even if head is invalid, the check
984 * against ctx->completed_events below will make sure we do the
985 * safe/right thing.
986 */
987 ring = kmap_atomic(ctx->ring_pages[0]);
988 head = ring->head;
989 kunmap_atomic(ring);
990
991 refill_reqs_available(ctx, head, ctx->tail);
992 }
993
994 spin_unlock_irq(&ctx->completion_lock);
995}
996
432c7997
CH
997static bool get_reqs_available(struct kioctx *ctx)
998{
999 if (__get_reqs_available(ctx))
1000 return true;
1001 user_refill_reqs_available(ctx);
1002 return __get_reqs_available(ctx);
1003}
1004
1da177e4 1005/* aio_get_req
57282d8f
KO
1006 * Allocate a slot for an aio request.
1007 * Returns NULL if no requests are free.
1da177e4 1008 */
04b2fa9f 1009static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1010{
04b2fa9f 1011 struct aio_kiocb *req;
a1c8eae7 1012
0460fef2 1013 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1da177e4 1014 if (unlikely(!req))
432c7997 1015 return NULL;
1da177e4 1016
e34ecee2 1017 percpu_ref_get(&ctx->reqs);
75321b50 1018 INIT_LIST_HEAD(&req->ki_list);
9018ccc4 1019 refcount_set(&req->ki_refcnt, 0);
1da177e4 1020 req->ki_ctx = ctx;
080d676d 1021 return req;
1da177e4
LT
1022}
1023
d5470b59 1024static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1025{
db446a08 1026 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1027 struct mm_struct *mm = current->mm;
65c24491 1028 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1029 struct kioctx_table *table;
1030 unsigned id;
1031
1032 if (get_user(id, &ring->id))
1033 return NULL;
1da177e4 1034
abf137dd 1035 rcu_read_lock();
db446a08 1036 table = rcu_dereference(mm->ioctx_table);
abf137dd 1037
db446a08
BL
1038 if (!table || id >= table->nr)
1039 goto out;
1da177e4 1040
a538e3ff 1041 id = array_index_nospec(id, table->nr);
d0264c01 1042 ctx = rcu_dereference(table->table[id]);
f30d704f 1043 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1044 if (percpu_ref_tryget_live(&ctx->users))
1045 ret = ctx;
db446a08
BL
1046 }
1047out:
abf137dd 1048 rcu_read_unlock();
65c24491 1049 return ret;
1da177e4
LT
1050}
1051
9018ccc4
CH
1052static inline void iocb_put(struct aio_kiocb *iocb)
1053{
1054 if (refcount_read(&iocb->ki_refcnt) == 0 ||
1055 refcount_dec_and_test(&iocb->ki_refcnt)) {
1056 percpu_ref_put(&iocb->ki_ctx->reqs);
1057 kmem_cache_free(kiocb_cachep, iocb);
1058 }
1059}
1060
1da177e4
LT
1061/* aio_complete
1062 * Called when the io request on the given iocb is complete.
1da177e4 1063 */
54843f87 1064static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1da177e4
LT
1065{
1066 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1067 struct aio_ring *ring;
21b40200 1068 struct io_event *ev_page, *event;
d856f32a 1069 unsigned tail, pos, head;
1da177e4 1070 unsigned long flags;
1da177e4 1071
0460fef2
KO
1072 /*
1073 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1074 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1075 * pointer since we might be called from irq context.
1076 */
1077 spin_lock_irqsave(&ctx->completion_lock, flags);
1078
58c85dc2 1079 tail = ctx->tail;
21b40200
KO
1080 pos = tail + AIO_EVENTS_OFFSET;
1081
58c85dc2 1082 if (++tail >= ctx->nr_events)
4bf69b2a 1083 tail = 0;
1da177e4 1084
58c85dc2 1085 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1086 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1087
04b2fa9f 1088 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1da177e4
LT
1089 event->data = iocb->ki_user_data;
1090 event->res = res;
1091 event->res2 = res2;
1092
21b40200 1093 kunmap_atomic(ev_page);
58c85dc2 1094 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1095
1096 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
04b2fa9f 1097 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
caf4167a 1098 res, res2);
1da177e4
LT
1099
1100 /* after flagging the request as done, we
1101 * must never even look at it again
1102 */
1103 smp_wmb(); /* make event visible before updating tail */
1104
58c85dc2 1105 ctx->tail = tail;
1da177e4 1106
58c85dc2 1107 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1108 head = ring->head;
21b40200 1109 ring->tail = tail;
e8e3c3d6 1110 kunmap_atomic(ring);
58c85dc2 1111 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1112
d856f32a
BL
1113 ctx->completed_events++;
1114 if (ctx->completed_events > 1)
1115 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1116 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1117
21b40200 1118 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1119
1120 /*
1121 * Check if the user asked us to deliver the result through an
1122 * eventfd. The eventfd_signal() function is safe to be called
1123 * from IRQ context.
1124 */
54843f87 1125 if (iocb->ki_eventfd) {
8d1c98b0 1126 eventfd_signal(iocb->ki_eventfd, 1);
54843f87
CH
1127 eventfd_ctx_put(iocb->ki_eventfd);
1128 }
8d1c98b0 1129
6cb2a210
QB
1130 /*
1131 * We have to order our ring_info tail store above and test
1132 * of the wait list below outside the wait lock. This is
1133 * like in wake_up_bit() where clearing a bit has to be
1134 * ordered with the unlocked test.
1135 */
1136 smp_mb();
1137
1da177e4
LT
1138 if (waitqueue_active(&ctx->wait))
1139 wake_up(&ctx->wait);
9018ccc4 1140 iocb_put(iocb);
1da177e4
LT
1141}
1142
2be4e7de 1143/* aio_read_events_ring
a31ad380
KO
1144 * Pull an event off of the ioctx's event ring. Returns the number of
1145 * events fetched
1da177e4 1146 */
a31ad380
KO
1147static long aio_read_events_ring(struct kioctx *ctx,
1148 struct io_event __user *event, long nr)
1da177e4 1149{
1da177e4 1150 struct aio_ring *ring;
5ffac122 1151 unsigned head, tail, pos;
a31ad380
KO
1152 long ret = 0;
1153 int copy_ret;
1154
9c9ce763
DC
1155 /*
1156 * The mutex can block and wake us up and that will cause
1157 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1158 * and repeat. This should be rare enough that it doesn't cause
1159 * peformance issues. See the comment in read_events() for more detail.
1160 */
1161 sched_annotate_sleep();
58c85dc2 1162 mutex_lock(&ctx->ring_lock);
1da177e4 1163
fa8a53c3 1164 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1165 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1166 head = ring->head;
5ffac122 1167 tail = ring->tail;
a31ad380
KO
1168 kunmap_atomic(ring);
1169
2ff396be
JM
1170 /*
1171 * Ensure that once we've read the current tail pointer, that
1172 * we also see the events that were stored up to the tail.
1173 */
1174 smp_rmb();
1175
5ffac122 1176 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1177
5ffac122 1178 if (head == tail)
1da177e4
LT
1179 goto out;
1180
edfbbf38
BL
1181 head %= ctx->nr_events;
1182 tail %= ctx->nr_events;
1183
a31ad380
KO
1184 while (ret < nr) {
1185 long avail;
1186 struct io_event *ev;
1187 struct page *page;
1188
5ffac122
KO
1189 avail = (head <= tail ? tail : ctx->nr_events) - head;
1190 if (head == tail)
a31ad380
KO
1191 break;
1192
a31ad380 1193 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1194 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1195 pos %= AIO_EVENTS_PER_PAGE;
1196
d2988bd4
AV
1197 avail = min(avail, nr - ret);
1198 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1199
a31ad380
KO
1200 ev = kmap(page);
1201 copy_ret = copy_to_user(event + ret, ev + pos,
1202 sizeof(*ev) * avail);
1203 kunmap(page);
1204
1205 if (unlikely(copy_ret)) {
1206 ret = -EFAULT;
1207 goto out;
1208 }
1209
1210 ret += avail;
1211 head += avail;
58c85dc2 1212 head %= ctx->nr_events;
1da177e4 1213 }
1da177e4 1214
58c85dc2 1215 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1216 ring->head = head;
91d80a84 1217 kunmap_atomic(ring);
58c85dc2 1218 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1219
5ffac122 1220 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1221out:
58c85dc2 1222 mutex_unlock(&ctx->ring_lock);
a31ad380 1223
1da177e4
LT
1224 return ret;
1225}
1226
a31ad380
KO
1227static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1228 struct io_event __user *event, long *i)
1da177e4 1229{
a31ad380 1230 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1231
a31ad380
KO
1232 if (ret > 0)
1233 *i += ret;
1da177e4 1234
a31ad380
KO
1235 if (unlikely(atomic_read(&ctx->dead)))
1236 ret = -EINVAL;
1da177e4 1237
a31ad380
KO
1238 if (!*i)
1239 *i = ret;
1da177e4 1240
a31ad380 1241 return ret < 0 || *i >= min_nr;
1da177e4
LT
1242}
1243
a31ad380 1244static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1245 struct io_event __user *event,
fa2e62a5 1246 ktime_t until)
1da177e4 1247{
a31ad380 1248 long ret = 0;
1da177e4 1249
a31ad380
KO
1250 /*
1251 * Note that aio_read_events() is being called as the conditional - i.e.
1252 * we're calling it after prepare_to_wait() has set task state to
1253 * TASK_INTERRUPTIBLE.
1254 *
1255 * But aio_read_events() can block, and if it blocks it's going to flip
1256 * the task state back to TASK_RUNNING.
1257 *
1258 * This should be ok, provided it doesn't flip the state back to
1259 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1260 * will only happen if the mutex_lock() call blocks, and we then find
1261 * the ringbuffer empty. So in practice we should be ok, but it's
1262 * something to be aware of when touching this code.
1263 */
2456e855 1264 if (until == 0)
5f785de5
FZ
1265 aio_read_events(ctx, min_nr, nr, event, &ret);
1266 else
1267 wait_event_interruptible_hrtimeout(ctx->wait,
1268 aio_read_events(ctx, min_nr, nr, event, &ret),
1269 until);
a31ad380 1270 return ret;
1da177e4
LT
1271}
1272
1da177e4
LT
1273/* sys_io_setup:
1274 * Create an aio_context capable of receiving at least nr_events.
1275 * ctxp must not point to an aio_context that already exists, and
1276 * must be initialized to 0 prior to the call. On successful
1277 * creation of the aio_context, *ctxp is filled in with the resulting
1278 * handle. May fail with -EINVAL if *ctxp is not initialized,
1279 * if the specified nr_events exceeds internal limits. May fail
1280 * with -EAGAIN if the specified nr_events exceeds the user's limit
1281 * of available events. May fail with -ENOMEM if insufficient kernel
1282 * resources are available. May fail with -EFAULT if an invalid
1283 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1284 * implemented.
1285 */
002c8976 1286SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1287{
1288 struct kioctx *ioctx = NULL;
1289 unsigned long ctx;
1290 long ret;
1291
1292 ret = get_user(ctx, ctxp);
1293 if (unlikely(ret))
1294 goto out;
1295
1296 ret = -EINVAL;
d55b5fda 1297 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1298 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1299 ctx, nr_events);
1da177e4
LT
1300 goto out;
1301 }
1302
1303 ioctx = ioctx_alloc(nr_events);
1304 ret = PTR_ERR(ioctx);
1305 if (!IS_ERR(ioctx)) {
1306 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1307 if (ret)
e02ba72a 1308 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1309 percpu_ref_put(&ioctx->users);
1da177e4
LT
1310 }
1311
1312out:
1313 return ret;
1314}
1315
c00d2c7e
AV
1316#ifdef CONFIG_COMPAT
1317COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1318{
1319 struct kioctx *ioctx = NULL;
1320 unsigned long ctx;
1321 long ret;
1322
1323 ret = get_user(ctx, ctx32p);
1324 if (unlikely(ret))
1325 goto out;
1326
1327 ret = -EINVAL;
1328 if (unlikely(ctx || nr_events == 0)) {
1329 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1330 ctx, nr_events);
1331 goto out;
1332 }
1333
1334 ioctx = ioctx_alloc(nr_events);
1335 ret = PTR_ERR(ioctx);
1336 if (!IS_ERR(ioctx)) {
1337 /* truncating is ok because it's a user address */
1338 ret = put_user((u32)ioctx->user_id, ctx32p);
1339 if (ret)
1340 kill_ioctx(current->mm, ioctx, NULL);
1341 percpu_ref_put(&ioctx->users);
1342 }
1343
1344out:
1345 return ret;
1346}
1347#endif
1348
1da177e4
LT
1349/* sys_io_destroy:
1350 * Destroy the aio_context specified. May cancel any outstanding
1351 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1352 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1353 * is invalid.
1354 */
002c8976 1355SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1356{
1357 struct kioctx *ioctx = lookup_ioctx(ctx);
1358 if (likely(NULL != ioctx)) {
dc48e56d 1359 struct ctx_rq_wait wait;
fb2d4483 1360 int ret;
e02ba72a 1361
dc48e56d
JA
1362 init_completion(&wait.comp);
1363 atomic_set(&wait.count, 1);
1364
e02ba72a
AP
1365 /* Pass requests_done to kill_ioctx() where it can be set
1366 * in a thread-safe way. If we try to set it here then we have
1367 * a race condition if two io_destroy() called simultaneously.
1368 */
dc48e56d 1369 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1370 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1371
1372 /* Wait until all IO for the context are done. Otherwise kernel
1373 * keep using user-space buffers even if user thinks the context
1374 * is destroyed.
1375 */
fb2d4483 1376 if (!ret)
dc48e56d 1377 wait_for_completion(&wait.comp);
e02ba72a 1378
fb2d4483 1379 return ret;
1da177e4 1380 }
acd88d4e 1381 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1382 return -EINVAL;
1383}
1384
3c96c7f4
AV
1385static void aio_remove_iocb(struct aio_kiocb *iocb)
1386{
1387 struct kioctx *ctx = iocb->ki_ctx;
1388 unsigned long flags;
1389
1390 spin_lock_irqsave(&ctx->ctx_lock, flags);
1391 list_del(&iocb->ki_list);
1392 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1393}
1394
54843f87
CH
1395static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1396{
1397 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1398
3c96c7f4
AV
1399 if (!list_empty_careful(&iocb->ki_list))
1400 aio_remove_iocb(iocb);
1401
54843f87
CH
1402 if (kiocb->ki_flags & IOCB_WRITE) {
1403 struct inode *inode = file_inode(kiocb->ki_filp);
1404
1405 /*
1406 * Tell lockdep we inherited freeze protection from submission
1407 * thread.
1408 */
1409 if (S_ISREG(inode->i_mode))
1410 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1411 file_end_write(kiocb->ki_filp);
1412 }
1413
1414 fput(kiocb->ki_filp);
1415 aio_complete(iocb, res, res2);
1416}
1417
1418static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1419{
1420 int ret;
1421
1422 req->ki_filp = fget(iocb->aio_fildes);
1423 if (unlikely(!req->ki_filp))
1424 return -EBADF;
1425 req->ki_complete = aio_complete_rw;
1426 req->ki_pos = iocb->aio_offset;
1427 req->ki_flags = iocb_flags(req->ki_filp);
1428 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1429 req->ki_flags |= IOCB_EVENTFD;
fc28724d 1430 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
d9a08a9e
AM
1431 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1432 /*
1433 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1434 * aio_reqprio is interpreted as an I/O scheduling
1435 * class and priority.
1436 */
1437 ret = ioprio_check_cap(iocb->aio_reqprio);
1438 if (ret) {
9a6d9a62 1439 pr_debug("aio ioprio check cap error: %d\n", ret);
154989e4 1440 goto out_fput;
d9a08a9e
AM
1441 }
1442
1443 req->ki_ioprio = iocb->aio_reqprio;
1444 } else
76dc8913 1445 req->ki_ioprio = get_current_ioprio();
d9a08a9e 1446
54843f87
CH
1447 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1448 if (unlikely(ret))
154989e4
CH
1449 goto out_fput;
1450
1451 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1452 return 0;
1453
1454out_fput:
1455 fput(req->ki_filp);
54843f87
CH
1456 return ret;
1457}
1458
89319d31
CH
1459static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1460 bool vectored, bool compat, struct iov_iter *iter)
eed4e51f 1461{
89319d31
CH
1462 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1463 size_t len = iocb->aio_nbytes;
1464
1465 if (!vectored) {
1466 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1467 *iovec = NULL;
1468 return ret;
1469 }
9d85cba7
JM
1470#ifdef CONFIG_COMPAT
1471 if (compat)
89319d31
CH
1472 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1473 iter);
9d85cba7 1474#endif
89319d31 1475 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
eed4e51f
BP
1476}
1477
9061d14a 1478static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1479{
1480 switch (ret) {
1481 case -EIOCBQUEUED:
9061d14a 1482 break;
89319d31
CH
1483 case -ERESTARTSYS:
1484 case -ERESTARTNOINTR:
1485 case -ERESTARTNOHAND:
1486 case -ERESTART_RESTARTBLOCK:
1487 /*
1488 * There's no easy way to restart the syscall since other AIO's
1489 * may be already running. Just fail this IO with EINTR.
1490 */
1491 ret = -EINTR;
1492 /*FALLTHRU*/
1493 default:
bc9bff61 1494 req->ki_complete(req, ret, 0);
89319d31
CH
1495 }
1496}
1497
1498static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1499 bool compat)
1da177e4 1500{
00fefb9c 1501 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1502 struct iov_iter iter;
54843f87 1503 struct file *file;
89319d31 1504 ssize_t ret;
1da177e4 1505
54843f87
CH
1506 ret = aio_prep_rw(req, iocb);
1507 if (ret)
1508 return ret;
1509 file = req->ki_filp;
1510
1511 ret = -EBADF;
89319d31 1512 if (unlikely(!(file->f_mode & FMODE_READ)))
54843f87
CH
1513 goto out_fput;
1514 ret = -EINVAL;
89319d31 1515 if (unlikely(!file->f_op->read_iter))
54843f87 1516 goto out_fput;
73a7075e 1517
89319d31
CH
1518 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1519 if (ret)
54843f87 1520 goto out_fput;
89319d31
CH
1521 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1522 if (!ret)
9061d14a 1523 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31 1524 kfree(iovec);
54843f87 1525out_fput:
9061d14a 1526 if (unlikely(ret))
54843f87 1527 fput(file);
89319d31
CH
1528 return ret;
1529}
73a7075e 1530
89319d31
CH
1531static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1532 bool compat)
1533{
89319d31
CH
1534 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1535 struct iov_iter iter;
54843f87 1536 struct file *file;
89319d31 1537 ssize_t ret;
41ef4eb8 1538
54843f87
CH
1539 ret = aio_prep_rw(req, iocb);
1540 if (ret)
1541 return ret;
1542 file = req->ki_filp;
1543
1544 ret = -EBADF;
89319d31 1545 if (unlikely(!(file->f_mode & FMODE_WRITE)))
54843f87
CH
1546 goto out_fput;
1547 ret = -EINVAL;
89319d31 1548 if (unlikely(!file->f_op->write_iter))
54843f87 1549 goto out_fput;
1da177e4 1550
89319d31
CH
1551 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1552 if (ret)
54843f87 1553 goto out_fput;
89319d31
CH
1554 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1555 if (!ret) {
70fe2f48 1556 /*
92ce4728 1557 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1558 * which will be released by another thread in
1559 * aio_complete_rw(). Fool lockdep by telling it the lock got
1560 * released so that it doesn't complain about the held lock when
1561 * we return to userspace.
70fe2f48 1562 */
92ce4728
CH
1563 if (S_ISREG(file_inode(file)->i_mode)) {
1564 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
a12f1ae6 1565 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1566 }
1567 req->ki_flags |= IOCB_WRITE;
9061d14a 1568 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1569 }
89319d31 1570 kfree(iovec);
54843f87 1571out_fput:
9061d14a 1572 if (unlikely(ret))
54843f87 1573 fput(file);
89319d31 1574 return ret;
1da177e4
LT
1575}
1576
a3c0d439
CH
1577static void aio_fsync_work(struct work_struct *work)
1578{
1579 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1580 int ret;
1581
1582 ret = vfs_fsync(req->file, req->datasync);
1583 fput(req->file);
1584 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1585}
1586
1587static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1588{
1589 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1590 iocb->aio_rw_flags))
1591 return -EINVAL;
a11e1d43 1592
a3c0d439
CH
1593 req->file = fget(iocb->aio_fildes);
1594 if (unlikely(!req->file))
1595 return -EBADF;
1596 if (unlikely(!req->file->f_op->fsync)) {
1597 fput(req->file);
1598 return -EINVAL;
1599 }
1600
1601 req->datasync = datasync;
1602 INIT_WORK(&req->work, aio_fsync_work);
1603 schedule_work(&req->work);
9061d14a 1604 return 0;
a3c0d439
CH
1605}
1606
bfe4037e
CH
1607static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1608{
1609 struct file *file = iocb->poll.file;
1610
1611 aio_complete(iocb, mangle_poll(mask), 0);
1612 fput(file);
1613}
1614
1615static void aio_poll_complete_work(struct work_struct *work)
1616{
1617 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1618 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1619 struct poll_table_struct pt = { ._key = req->events };
1620 struct kioctx *ctx = iocb->ki_ctx;
1621 __poll_t mask = 0;
1622
1623 if (!READ_ONCE(req->cancelled))
1624 mask = vfs_poll(req->file, &pt) & req->events;
1625
1626 /*
1627 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1628 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1629 * synchronize with them. In the cancellation case the list_del_init
1630 * itself is not actually needed, but harmless so we keep it in to
1631 * avoid further branches in the fast path.
1632 */
1633 spin_lock_irq(&ctx->ctx_lock);
1634 if (!mask && !READ_ONCE(req->cancelled)) {
1635 add_wait_queue(req->head, &req->wait);
1636 spin_unlock_irq(&ctx->ctx_lock);
1637 return;
1638 }
1639 list_del_init(&iocb->ki_list);
1640 spin_unlock_irq(&ctx->ctx_lock);
1641
1642 aio_poll_complete(iocb, mask);
1643}
1644
1645/* assumes we are called with irqs disabled */
1646static int aio_poll_cancel(struct kiocb *iocb)
1647{
1648 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1649 struct poll_iocb *req = &aiocb->poll;
1650
1651 spin_lock(&req->head->lock);
1652 WRITE_ONCE(req->cancelled, true);
1653 if (!list_empty(&req->wait.entry)) {
1654 list_del_init(&req->wait.entry);
1655 schedule_work(&aiocb->poll.work);
1656 }
1657 spin_unlock(&req->head->lock);
1658
1659 return 0;
1660}
1661
1662static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1663 void *key)
1664{
1665 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1666 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e
CH
1667 __poll_t mask = key_to_poll(key);
1668
1669 req->woken = true;
1670
1671 /* for instances that support it check for an event match first: */
e8693bcf
CH
1672 if (mask) {
1673 if (!(mask & req->events))
1674 return 0;
1675
1676 /* try to complete the iocb inline if we can: */
1677 if (spin_trylock(&iocb->ki_ctx->ctx_lock)) {
1678 list_del(&iocb->ki_list);
1679 spin_unlock(&iocb->ki_ctx->ctx_lock);
1680
1681 list_del_init(&req->wait.entry);
1682 aio_poll_complete(iocb, mask);
1683 return 1;
1684 }
1685 }
bfe4037e
CH
1686
1687 list_del_init(&req->wait.entry);
1688 schedule_work(&req->work);
1689 return 1;
1690}
1691
1692struct aio_poll_table {
1693 struct poll_table_struct pt;
1694 struct aio_kiocb *iocb;
1695 int error;
1696};
1697
1698static void
1699aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1700 struct poll_table_struct *p)
1701{
1702 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1703
1704 /* multiple wait queues per file are not supported */
1705 if (unlikely(pt->iocb->poll.head)) {
1706 pt->error = -EINVAL;
1707 return;
1708 }
1709
1710 pt->error = 0;
1711 pt->iocb->poll.head = head;
1712 add_wait_queue(head, &pt->iocb->poll.wait);
1713}
1714
1715static ssize_t aio_poll(struct aio_kiocb *aiocb, struct iocb *iocb)
1716{
1717 struct kioctx *ctx = aiocb->ki_ctx;
1718 struct poll_iocb *req = &aiocb->poll;
1719 struct aio_poll_table apt;
1720 __poll_t mask;
1721
1722 /* reject any unknown events outside the normal event mask. */
1723 if ((u16)iocb->aio_buf != iocb->aio_buf)
1724 return -EINVAL;
1725 /* reject fields that are not defined for poll */
1726 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1727 return -EINVAL;
1728
1729 INIT_WORK(&req->work, aio_poll_complete_work);
1730 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1731 req->file = fget(iocb->aio_fildes);
1732 if (unlikely(!req->file))
1733 return -EBADF;
1734
1735 apt.pt._qproc = aio_poll_queue_proc;
1736 apt.pt._key = req->events;
1737 apt.iocb = aiocb;
1738 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1739
1740 /* initialized the list so that we can do list_empty checks */
1741 INIT_LIST_HEAD(&req->wait.entry);
1742 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1743
1744 /* one for removal from waitqueue, one for this function */
1745 refcount_set(&aiocb->ki_refcnt, 2);
1746
1747 mask = vfs_poll(req->file, &apt.pt) & req->events;
1748 if (unlikely(!req->head)) {
1749 /* we did not manage to set up a waitqueue, done */
1750 goto out;
1751 }
1752
1753 spin_lock_irq(&ctx->ctx_lock);
1754 spin_lock(&req->head->lock);
1755 if (req->woken) {
1756 /* wake_up context handles the rest */
1757 mask = 0;
1758 apt.error = 0;
1759 } else if (mask || apt.error) {
1760 /* if we get an error or a mask we are done */
1761 WARN_ON_ONCE(list_empty(&req->wait.entry));
1762 list_del_init(&req->wait.entry);
1763 } else {
1764 /* actually waiting for an event */
1765 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1766 aiocb->ki_cancel = aio_poll_cancel;
1767 }
1768 spin_unlock(&req->head->lock);
1769 spin_unlock_irq(&ctx->ctx_lock);
1770
1771out:
1772 if (unlikely(apt.error)) {
1773 fput(req->file);
1774 return apt.error;
1775 }
1776
1777 if (mask)
1778 aio_poll_complete(aiocb, mask);
1779 iocb_put(aiocb);
1780 return 0;
1781}
1782
d5470b59 1783static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
95af8496 1784 bool compat)
1da177e4 1785{
04b2fa9f 1786 struct aio_kiocb *req;
95af8496 1787 struct iocb iocb;
1da177e4
LT
1788 ssize_t ret;
1789
95af8496
AV
1790 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1791 return -EFAULT;
1792
1da177e4 1793 /* enforce forwards compatibility on users */
95af8496 1794 if (unlikely(iocb.aio_reserved2)) {
caf4167a 1795 pr_debug("EINVAL: reserve field set\n");
1da177e4
LT
1796 return -EINVAL;
1797 }
1798
1799 /* prevent overflows */
1800 if (unlikely(
95af8496
AV
1801 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1802 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1803 ((ssize_t)iocb.aio_nbytes < 0)
1da177e4 1804 )) {
acd88d4e 1805 pr_debug("EINVAL: overflow check\n");
1da177e4
LT
1806 return -EINVAL;
1807 }
1808
432c7997
CH
1809 if (!get_reqs_available(ctx))
1810 return -EAGAIN;
1811
1812 ret = -EAGAIN;
41ef4eb8 1813 req = aio_get_req(ctx);
1d98ebfc 1814 if (unlikely(!req))
432c7997 1815 goto out_put_reqs_available;
1d98ebfc 1816
95af8496 1817 if (iocb.aio_flags & IOCB_FLAG_RESFD) {
9c3060be
DL
1818 /*
1819 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1820 * instance of the file* now. The file descriptor must be
1821 * an eventfd() fd, and will be signaled for each completed
1822 * event using the eventfd_signal() function.
1823 */
95af8496 1824 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
801678c5 1825 if (IS_ERR(req->ki_eventfd)) {
9c3060be 1826 ret = PTR_ERR(req->ki_eventfd);
87c3a86e 1827 req->ki_eventfd = NULL;
9c3060be
DL
1828 goto out_put_req;
1829 }
9830f4be
GR
1830 }
1831
8a660890 1832 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1da177e4 1833 if (unlikely(ret)) {
caf4167a 1834 pr_debug("EFAULT: aio_key\n");
1da177e4
LT
1835 goto out_put_req;
1836 }
1837
04b2fa9f 1838 req->ki_user_iocb = user_iocb;
95af8496 1839 req->ki_user_data = iocb.aio_data;
1da177e4 1840
95af8496 1841 switch (iocb.aio_lio_opcode) {
89319d31 1842 case IOCB_CMD_PREAD:
95af8496 1843 ret = aio_read(&req->rw, &iocb, false, compat);
89319d31
CH
1844 break;
1845 case IOCB_CMD_PWRITE:
95af8496 1846 ret = aio_write(&req->rw, &iocb, false, compat);
89319d31
CH
1847 break;
1848 case IOCB_CMD_PREADV:
95af8496 1849 ret = aio_read(&req->rw, &iocb, true, compat);
89319d31
CH
1850 break;
1851 case IOCB_CMD_PWRITEV:
95af8496 1852 ret = aio_write(&req->rw, &iocb, true, compat);
89319d31 1853 break;
a3c0d439 1854 case IOCB_CMD_FSYNC:
95af8496 1855 ret = aio_fsync(&req->fsync, &iocb, false);
a3c0d439
CH
1856 break;
1857 case IOCB_CMD_FDSYNC:
95af8496 1858 ret = aio_fsync(&req->fsync, &iocb, true);
ac060cba 1859 break;
bfe4037e
CH
1860 case IOCB_CMD_POLL:
1861 ret = aio_poll(req, &iocb);
1862 break;
89319d31 1863 default:
95af8496 1864 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
89319d31
CH
1865 ret = -EINVAL;
1866 break;
1867 }
41003a7b 1868
92ce4728 1869 /*
9061d14a
AV
1870 * If ret is 0, we'd either done aio_complete() ourselves or have
1871 * arranged for that to be done asynchronously. Anything non-zero
1872 * means that we need to destroy req ourselves.
92ce4728 1873 */
9061d14a 1874 if (ret)
89319d31 1875 goto out_put_req;
1da177e4 1876 return 0;
1da177e4 1877out_put_req:
e34ecee2 1878 percpu_ref_put(&ctx->reqs);
54843f87
CH
1879 if (req->ki_eventfd)
1880 eventfd_ctx_put(req->ki_eventfd);
1881 kmem_cache_free(kiocb_cachep, req);
432c7997
CH
1882out_put_reqs_available:
1883 put_reqs_available(ctx, 1);
1da177e4
LT
1884 return ret;
1885}
1886
67ba049f
AV
1887/* sys_io_submit:
1888 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1889 * the number of iocbs queued. May return -EINVAL if the aio_context
1890 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1891 * *iocbpp[0] is not properly initialized, if the operation specified
1892 * is invalid for the file descriptor in the iocb. May fail with
1893 * -EFAULT if any of the data structures point to invalid data. May
1894 * fail with -EBADF if the file descriptor specified in the first
1895 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1896 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1897 * fail with -ENOSYS if not implemented.
1898 */
1899SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1900 struct iocb __user * __user *, iocbpp)
1da177e4
LT
1901{
1902 struct kioctx *ctx;
1903 long ret = 0;
080d676d 1904 int i = 0;
9f5b9425 1905 struct blk_plug plug;
1da177e4
LT
1906
1907 if (unlikely(nr < 0))
1908 return -EINVAL;
1909
1da177e4
LT
1910 ctx = lookup_ioctx(ctx_id);
1911 if (unlikely(!ctx)) {
caf4167a 1912 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1913 return -EINVAL;
1914 }
1915
1da92779
AV
1916 if (nr > ctx->nr_events)
1917 nr = ctx->nr_events;
1918
9f5b9425 1919 blk_start_plug(&plug);
67ba049f 1920 for (i = 0; i < nr; i++) {
1da177e4 1921 struct iocb __user *user_iocb;
1da177e4 1922
67ba049f 1923 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
1924 ret = -EFAULT;
1925 break;
1926 }
1927
67ba049f 1928 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
1929 if (ret)
1930 break;
1931 }
9f5b9425 1932 blk_finish_plug(&plug);
1da177e4 1933
723be6e3 1934 percpu_ref_put(&ctx->users);
1da177e4
LT
1935 return i ? i : ret;
1936}
1937
c00d2c7e 1938#ifdef CONFIG_COMPAT
c00d2c7e 1939COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 1940 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 1941{
67ba049f
AV
1942 struct kioctx *ctx;
1943 long ret = 0;
1944 int i = 0;
1945 struct blk_plug plug;
c00d2c7e
AV
1946
1947 if (unlikely(nr < 0))
1948 return -EINVAL;
1949
67ba049f
AV
1950 ctx = lookup_ioctx(ctx_id);
1951 if (unlikely(!ctx)) {
1952 pr_debug("EINVAL: invalid context id\n");
1953 return -EINVAL;
1954 }
1955
1da92779
AV
1956 if (nr > ctx->nr_events)
1957 nr = ctx->nr_events;
1958
67ba049f
AV
1959 blk_start_plug(&plug);
1960 for (i = 0; i < nr; i++) {
1961 compat_uptr_t user_iocb;
1962
1963 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1964 ret = -EFAULT;
1965 break;
1966 }
1967
1968 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1969 if (ret)
1970 break;
1971 }
1972 blk_finish_plug(&plug);
1973
1974 percpu_ref_put(&ctx->users);
1975 return i ? i : ret;
c00d2c7e
AV
1976}
1977#endif
1978
1da177e4
LT
1979/* lookup_kiocb
1980 * Finds a given iocb for cancellation.
1da177e4 1981 */
04b2fa9f 1982static struct aio_kiocb *
f3a2752a 1983lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1da177e4 1984{
04b2fa9f 1985 struct aio_kiocb *kiocb;
d00689af
ZB
1986
1987 assert_spin_locked(&ctx->ctx_lock);
1988
1da177e4 1989 /* TODO: use a hash or array, this sucks. */
04b2fa9f
CH
1990 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1991 if (kiocb->ki_user_iocb == iocb)
1da177e4
LT
1992 return kiocb;
1993 }
1994 return NULL;
1995}
1996
1997/* sys_io_cancel:
1998 * Attempts to cancel an iocb previously passed to io_submit. If
1999 * the operation is successfully cancelled, the resulting event is
2000 * copied into the memory pointed to by result without being placed
2001 * into the completion queue and 0 is returned. May fail with
2002 * -EFAULT if any of the data structures pointed to are invalid.
2003 * May fail with -EINVAL if aio_context specified by ctx_id is
2004 * invalid. May fail with -EAGAIN if the iocb specified was not
2005 * cancelled. Will fail with -ENOSYS if not implemented.
2006 */
002c8976
HC
2007SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2008 struct io_event __user *, result)
1da177e4 2009{
1da177e4 2010 struct kioctx *ctx;
04b2fa9f 2011 struct aio_kiocb *kiocb;
888933f8 2012 int ret = -EINVAL;
1da177e4 2013 u32 key;
1da177e4 2014
f3a2752a 2015 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 2016 return -EFAULT;
f3a2752a
CH
2017 if (unlikely(key != KIOCB_KEY))
2018 return -EINVAL;
1da177e4
LT
2019
2020 ctx = lookup_ioctx(ctx_id);
2021 if (unlikely(!ctx))
2022 return -EINVAL;
2023
2024 spin_lock_irq(&ctx->ctx_lock);
f3a2752a 2025 kiocb = lookup_kiocb(ctx, iocb);
888933f8
CH
2026 if (kiocb) {
2027 ret = kiocb->ki_cancel(&kiocb->rw);
2028 list_del_init(&kiocb->ki_list);
2029 }
1da177e4
LT
2030 spin_unlock_irq(&ctx->ctx_lock);
2031
906b973c 2032 if (!ret) {
bec68faa
KO
2033 /*
2034 * The result argument is no longer used - the io_event is
2035 * always delivered via the ring buffer. -EINPROGRESS indicates
2036 * cancellation is progress:
906b973c 2037 */
bec68faa 2038 ret = -EINPROGRESS;
906b973c 2039 }
1da177e4 2040
723be6e3 2041 percpu_ref_put(&ctx->users);
1da177e4
LT
2042
2043 return ret;
2044}
2045
fa2e62a5
DD
2046static long do_io_getevents(aio_context_t ctx_id,
2047 long min_nr,
2048 long nr,
2049 struct io_event __user *events,
2050 struct timespec64 *ts)
2051{
2052 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2053 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2054 long ret = -EINVAL;
2055
2056 if (likely(ioctx)) {
2057 if (likely(min_nr <= nr && min_nr >= 0))
2058 ret = read_events(ioctx, min_nr, nr, events, until);
2059 percpu_ref_put(&ioctx->users);
2060 }
2061
2062 return ret;
2063}
2064
1da177e4
LT
2065/* io_getevents:
2066 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2067 * the completion queue for the aio_context specified by ctx_id. If
2068 * it succeeds, the number of read events is returned. May fail with
2069 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2070 * out of range, if timeout is out of range. May fail with -EFAULT
2071 * if any of the memory specified is invalid. May return 0 or
2072 * < min_nr if the timeout specified by timeout has elapsed
2073 * before sufficient events are available, where timeout == NULL
2074 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2075 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2076 */
002c8976
HC
2077SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2078 long, min_nr,
2079 long, nr,
2080 struct io_event __user *, events,
2081 struct timespec __user *, timeout)
1da177e4 2082{
fa2e62a5 2083 struct timespec64 ts;
7a074e96
CH
2084 int ret;
2085
2086 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2087 return -EFAULT;
2088
2089 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2090 if (!ret && signal_pending(current))
2091 ret = -EINTR;
2092 return ret;
2093}
1da177e4 2094
9ba546c0
CH
2095struct __aio_sigset {
2096 const sigset_t __user *sigmask;
2097 size_t sigsetsize;
2098};
2099
7a074e96
CH
2100SYSCALL_DEFINE6(io_pgetevents,
2101 aio_context_t, ctx_id,
2102 long, min_nr,
2103 long, nr,
2104 struct io_event __user *, events,
2105 struct timespec __user *, timeout,
2106 const struct __aio_sigset __user *, usig)
2107{
2108 struct __aio_sigset ksig = { NULL, };
2109 sigset_t ksigmask, sigsaved;
2110 struct timespec64 ts;
2111 int ret;
2112
2113 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2114 return -EFAULT;
2115
2116 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2117 return -EFAULT;
2118
2119 if (ksig.sigmask) {
2120 if (ksig.sigsetsize != sizeof(sigset_t))
2121 return -EINVAL;
2122 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
fa2e62a5 2123 return -EFAULT;
7a074e96
CH
2124 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2125 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2126 }
2127
2128 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2129 if (signal_pending(current)) {
2130 if (ksig.sigmask) {
2131 current->saved_sigmask = sigsaved;
2132 set_restore_sigmask();
2133 }
2134
2135 if (!ret)
2136 ret = -ERESTARTNOHAND;
2137 } else {
2138 if (ksig.sigmask)
2139 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1da177e4 2140 }
fa2e62a5 2141
7a074e96 2142 return ret;
1da177e4 2143}
c00d2c7e
AV
2144
2145#ifdef CONFIG_COMPAT
2146COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2147 compat_long_t, min_nr,
2148 compat_long_t, nr,
2149 struct io_event __user *, events,
9afc5eee 2150 struct old_timespec32 __user *, timeout)
c00d2c7e 2151{
fa2e62a5 2152 struct timespec64 t;
7a074e96
CH
2153 int ret;
2154
9afc5eee 2155 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2156 return -EFAULT;
2157
2158 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2159 if (!ret && signal_pending(current))
2160 ret = -EINTR;
2161 return ret;
2162}
2163
c00d2c7e 2164
7a074e96
CH
2165struct __compat_aio_sigset {
2166 compat_sigset_t __user *sigmask;
2167 compat_size_t sigsetsize;
2168};
2169
2170COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2171 compat_aio_context_t, ctx_id,
2172 compat_long_t, min_nr,
2173 compat_long_t, nr,
2174 struct io_event __user *, events,
9afc5eee 2175 struct old_timespec32 __user *, timeout,
7a074e96
CH
2176 const struct __compat_aio_sigset __user *, usig)
2177{
2178 struct __compat_aio_sigset ksig = { NULL, };
2179 sigset_t ksigmask, sigsaved;
2180 struct timespec64 t;
2181 int ret;
2182
9afc5eee 2183 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2184 return -EFAULT;
2185
2186 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2187 return -EFAULT;
2188
2189 if (ksig.sigmask) {
2190 if (ksig.sigsetsize != sizeof(compat_sigset_t))
2191 return -EINVAL;
2192 if (get_compat_sigset(&ksigmask, ksig.sigmask))
c00d2c7e 2193 return -EFAULT;
7a074e96
CH
2194 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2195 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2196 }
c00d2c7e 2197
7a074e96
CH
2198 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2199 if (signal_pending(current)) {
2200 if (ksig.sigmask) {
2201 current->saved_sigmask = sigsaved;
2202 set_restore_sigmask();
2203 }
2204 if (!ret)
2205 ret = -ERESTARTNOHAND;
2206 } else {
2207 if (ksig.sigmask)
2208 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
c00d2c7e 2209 }
fa2e62a5 2210
7a074e96 2211 return ret;
c00d2c7e
AV
2212}
2213#endif