]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/aio.c
UBUNTU: Ubuntu-5.4.0-117.132
[mirror_ubuntu-focal-kernel.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
3d2d827f 30#include <linux/mmu_context.h>
e1bdd5f2 31#include <linux/percpu.h>
1da177e4
LT
32#include <linux/slab.h>
33#include <linux/timer.h>
34#include <linux/aio.h>
35#include <linux/highmem.h>
36#include <linux/workqueue.h>
37#include <linux/security.h>
9c3060be 38#include <linux/eventfd.h>
cfb1e33e 39#include <linux/blkdev.h>
9d85cba7 40#include <linux/compat.h>
36bc08cc
GZ
41#include <linux/migrate.h>
42#include <linux/ramfs.h>
723be6e3 43#include <linux/percpu-refcount.h>
71ad7490 44#include <linux/mount.h>
52db59df 45#include <linux/pseudo_fs.h>
1da177e4
LT
46
47#include <asm/kmap_types.h>
7c0f6ba6 48#include <linux/uaccess.h>
a538e3ff 49#include <linux/nospec.h>
1da177e4 50
68d70d03
AV
51#include "internal.h"
52
f3a2752a
CH
53#define KIOCB_KEY 0
54
4e179bca
KO
55#define AIO_RING_MAGIC 0xa10a10a1
56#define AIO_RING_COMPAT_FEATURES 1
57#define AIO_RING_INCOMPAT_FEATURES 0
58struct aio_ring {
59 unsigned id; /* kernel internal index number */
60 unsigned nr; /* number of io_events */
fa8a53c3
BL
61 unsigned head; /* Written to by userland or under ring_lock
62 * mutex by aio_read_events_ring(). */
4e179bca
KO
63 unsigned tail;
64
65 unsigned magic;
66 unsigned compat_features;
67 unsigned incompat_features;
68 unsigned header_length; /* size of aio_ring */
69
70
71 struct io_event io_events[0];
72}; /* 128 bytes + ring size */
73
a79d40e9
JA
74/*
75 * Plugging is meant to work with larger batches of IOs. If we don't
76 * have more than the below, then don't bother setting up a plug.
77 */
78#define AIO_PLUG_THRESHOLD 2
79
4e179bca 80#define AIO_RING_PAGES 8
4e179bca 81
db446a08 82struct kioctx_table {
d0264c01
TH
83 struct rcu_head rcu;
84 unsigned nr;
85 struct kioctx __rcu *table[];
db446a08
BL
86};
87
e1bdd5f2
KO
88struct kioctx_cpu {
89 unsigned reqs_available;
90};
91
dc48e56d
JA
92struct ctx_rq_wait {
93 struct completion comp;
94 atomic_t count;
95};
96
4e179bca 97struct kioctx {
723be6e3 98 struct percpu_ref users;
36f55889 99 atomic_t dead;
4e179bca 100
e34ecee2
KO
101 struct percpu_ref reqs;
102
4e179bca 103 unsigned long user_id;
4e179bca 104
e1bdd5f2
KO
105 struct __percpu kioctx_cpu *cpu;
106
107 /*
108 * For percpu reqs_available, number of slots we move to/from global
109 * counter at a time:
110 */
111 unsigned req_batch;
3e845ce0
KO
112 /*
113 * This is what userspace passed to io_setup(), it's not used for
114 * anything but counting against the global max_reqs quota.
115 *
58c85dc2 116 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
117 * aio_setup_ring())
118 */
4e179bca
KO
119 unsigned max_reqs;
120
58c85dc2
KO
121 /* Size of ringbuffer, in units of struct io_event */
122 unsigned nr_events;
4e179bca 123
58c85dc2
KO
124 unsigned long mmap_base;
125 unsigned long mmap_size;
126
127 struct page **ring_pages;
128 long nr_pages;
129
f729863a 130 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 131
e02ba72a
AP
132 /*
133 * signals when all in-flight requests are done
134 */
dc48e56d 135 struct ctx_rq_wait *rq_wait;
e02ba72a 136
4e23bcae 137 struct {
34e83fc6
KO
138 /*
139 * This counts the number of available slots in the ringbuffer,
140 * so we avoid overflowing it: it's decremented (if positive)
141 * when allocating a kiocb and incremented when the resulting
142 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
143 *
144 * We batch accesses to it with a percpu version.
34e83fc6
KO
145 */
146 atomic_t reqs_available;
4e23bcae
KO
147 } ____cacheline_aligned_in_smp;
148
149 struct {
150 spinlock_t ctx_lock;
151 struct list_head active_reqs; /* used for cancellation */
152 } ____cacheline_aligned_in_smp;
153
58c85dc2
KO
154 struct {
155 struct mutex ring_lock;
4e23bcae
KO
156 wait_queue_head_t wait;
157 } ____cacheline_aligned_in_smp;
58c85dc2
KO
158
159 struct {
160 unsigned tail;
d856f32a 161 unsigned completed_events;
58c85dc2 162 spinlock_t completion_lock;
4e23bcae 163 } ____cacheline_aligned_in_smp;
58c85dc2
KO
164
165 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 166 struct file *aio_ring_file;
db446a08
BL
167
168 unsigned id;
4e179bca
KO
169};
170
84c4e1f8
LT
171/*
172 * First field must be the file pointer in all the
173 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
174 */
a3c0d439 175struct fsync_iocb {
a3c0d439 176 struct file *file;
84c4e1f8 177 struct work_struct work;
a3c0d439 178 bool datasync;
87e329bc 179 struct cred *creds;
a3c0d439
CH
180};
181
bfe4037e
CH
182struct poll_iocb {
183 struct file *file;
184 struct wait_queue_head *head;
185 __poll_t events;
bfe4037e 186 bool cancelled;
44496768
EB
187 bool work_scheduled;
188 bool work_need_resched;
bfe4037e
CH
189 struct wait_queue_entry wait;
190 struct work_struct work;
191};
192
84c4e1f8
LT
193/*
194 * NOTE! Each of the iocb union members has the file pointer
195 * as the first entry in their struct definition. So you can
196 * access the file pointer through any of the sub-structs,
197 * or directly as just 'ki_filp' in this struct.
198 */
04b2fa9f 199struct aio_kiocb {
54843f87 200 union {
84c4e1f8 201 struct file *ki_filp;
54843f87 202 struct kiocb rw;
a3c0d439 203 struct fsync_iocb fsync;
bfe4037e 204 struct poll_iocb poll;
54843f87 205 };
04b2fa9f
CH
206
207 struct kioctx *ki_ctx;
208 kiocb_cancel_fn *ki_cancel;
209
a9339b78 210 struct io_event ki_res;
04b2fa9f
CH
211
212 struct list_head ki_list; /* the aio core uses this
213 * for cancellation */
9018ccc4 214 refcount_t ki_refcnt;
04b2fa9f
CH
215
216 /*
217 * If the aio_resfd field of the userspace iocb is not zero,
218 * this is the underlying eventfd context to deliver events to.
219 */
220 struct eventfd_ctx *ki_eventfd;
221};
222
1da177e4 223/*------ sysctl variables----*/
d55b5fda
ZB
224static DEFINE_SPINLOCK(aio_nr_lock);
225unsigned long aio_nr; /* current system wide number of aio requests */
226unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
227/*----end sysctl variables---*/
228
e18b890b
CL
229static struct kmem_cache *kiocb_cachep;
230static struct kmem_cache *kioctx_cachep;
1da177e4 231
71ad7490
BL
232static struct vfsmount *aio_mnt;
233
234static const struct file_operations aio_ring_fops;
235static const struct address_space_operations aio_ctx_aops;
236
237static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
238{
71ad7490 239 struct file *file;
71ad7490 240 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
241 if (IS_ERR(inode))
242 return ERR_CAST(inode);
71ad7490
BL
243
244 inode->i_mapping->a_ops = &aio_ctx_aops;
245 inode->i_mapping->private_data = ctx;
246 inode->i_size = PAGE_SIZE * nr_pages;
247
d93aa9d8
AV
248 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
249 O_RDWR, &aio_ring_fops);
c9c554f2 250 if (IS_ERR(file))
71ad7490 251 iput(inode);
71ad7490
BL
252 return file;
253}
254
52db59df 255static int aio_init_fs_context(struct fs_context *fc)
71ad7490 256{
52db59df
DH
257 if (!init_pseudo(fc, AIO_RING_MAGIC))
258 return -ENOMEM;
259 fc->s_iflags |= SB_I_NOEXEC;
260 return 0;
71ad7490
BL
261}
262
1da177e4
LT
263/* aio_setup
264 * Creates the slab caches used by the aio routines, panic on
265 * failure as this is done early during the boot sequence.
266 */
267static int __init aio_setup(void)
268{
71ad7490
BL
269 static struct file_system_type aio_fs = {
270 .name = "aio",
52db59df 271 .init_fs_context = aio_init_fs_context,
71ad7490
BL
272 .kill_sb = kill_anon_super,
273 };
274 aio_mnt = kern_mount(&aio_fs);
275 if (IS_ERR(aio_mnt))
276 panic("Failed to create aio fs mount.");
277
04b2fa9f 278 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 279 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
280 return 0;
281}
385773e0 282__initcall(aio_setup);
1da177e4 283
5e9ae2e5
BL
284static void put_aio_ring_file(struct kioctx *ctx)
285{
286 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
287 struct address_space *i_mapping;
288
5e9ae2e5 289 if (aio_ring_file) {
45063097 290 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
291
292 /* Prevent further access to the kioctx from migratepages */
45063097 293 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
294 spin_lock(&i_mapping->private_lock);
295 i_mapping->private_data = NULL;
5e9ae2e5 296 ctx->aio_ring_file = NULL;
de04e769 297 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
298
299 fput(aio_ring_file);
300 }
301}
302
1da177e4
LT
303static void aio_free_ring(struct kioctx *ctx)
304{
36bc08cc 305 int i;
1da177e4 306
fa8a53c3
BL
307 /* Disconnect the kiotx from the ring file. This prevents future
308 * accesses to the kioctx from page migration.
309 */
310 put_aio_ring_file(ctx);
311
36bc08cc 312 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 313 struct page *page;
36bc08cc
GZ
314 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
315 page_count(ctx->ring_pages[i]));
8e321fef
BL
316 page = ctx->ring_pages[i];
317 if (!page)
318 continue;
319 ctx->ring_pages[i] = NULL;
320 put_page(page);
36bc08cc 321 }
1da177e4 322
ddb8c45b 323 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 324 kfree(ctx->ring_pages);
ddb8c45b
SL
325 ctx->ring_pages = NULL;
326 }
36bc08cc
GZ
327}
328
5477e70a 329static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 330{
5477e70a 331 struct file *file = vma->vm_file;
e4a0d3e7
PE
332 struct mm_struct *mm = vma->vm_mm;
333 struct kioctx_table *table;
b2edffdd 334 int i, res = -EINVAL;
e4a0d3e7
PE
335
336 spin_lock(&mm->ioctx_lock);
337 rcu_read_lock();
338 table = rcu_dereference(mm->ioctx_table);
339 for (i = 0; i < table->nr; i++) {
340 struct kioctx *ctx;
341
d0264c01 342 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 343 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
344 if (!atomic_read(&ctx->dead)) {
345 ctx->user_id = ctx->mmap_base = vma->vm_start;
346 res = 0;
347 }
e4a0d3e7
PE
348 break;
349 }
350 }
351
352 rcu_read_unlock();
353 spin_unlock(&mm->ioctx_lock);
b2edffdd 354 return res;
e4a0d3e7
PE
355}
356
5477e70a
ON
357static const struct vm_operations_struct aio_ring_vm_ops = {
358 .mremap = aio_ring_mremap,
359#if IS_ENABLED(CONFIG_MMU)
360 .fault = filemap_fault,
361 .map_pages = filemap_map_pages,
362 .page_mkwrite = filemap_page_mkwrite,
363#endif
364};
365
366static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
367{
368 vma->vm_flags |= VM_DONTEXPAND;
369 vma->vm_ops = &aio_ring_vm_ops;
370 return 0;
371}
372
36bc08cc
GZ
373static const struct file_operations aio_ring_fops = {
374 .mmap = aio_ring_mmap,
375};
376
0c45355f 377#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
378static int aio_migratepage(struct address_space *mapping, struct page *new,
379 struct page *old, enum migrate_mode mode)
380{
5e9ae2e5 381 struct kioctx *ctx;
36bc08cc 382 unsigned long flags;
fa8a53c3 383 pgoff_t idx;
36bc08cc
GZ
384 int rc;
385
2916ecc0
JG
386 /*
387 * We cannot support the _NO_COPY case here, because copy needs to
388 * happen under the ctx->completion_lock. That does not work with the
389 * migration workflow of MIGRATE_SYNC_NO_COPY.
390 */
391 if (mode == MIGRATE_SYNC_NO_COPY)
392 return -EINVAL;
393
8e321fef
BL
394 rc = 0;
395
fa8a53c3 396 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
397 spin_lock(&mapping->private_lock);
398 ctx = mapping->private_data;
fa8a53c3
BL
399 if (!ctx) {
400 rc = -EINVAL;
401 goto out;
402 }
403
404 /* The ring_lock mutex. The prevents aio_read_events() from writing
405 * to the ring's head, and prevents page migration from mucking in
406 * a partially initialized kiotx.
407 */
408 if (!mutex_trylock(&ctx->ring_lock)) {
409 rc = -EAGAIN;
410 goto out;
411 }
412
413 idx = old->index;
414 if (idx < (pgoff_t)ctx->nr_pages) {
415 /* Make sure the old page hasn't already been changed */
416 if (ctx->ring_pages[idx] != old)
417 rc = -EAGAIN;
8e321fef
BL
418 } else
419 rc = -EINVAL;
8e321fef
BL
420
421 if (rc != 0)
fa8a53c3 422 goto out_unlock;
8e321fef 423
36bc08cc
GZ
424 /* Writeback must be complete */
425 BUG_ON(PageWriteback(old));
8e321fef 426 get_page(new);
36bc08cc 427
37109694 428 rc = migrate_page_move_mapping(mapping, new, old, 1);
36bc08cc 429 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 430 put_page(new);
fa8a53c3 431 goto out_unlock;
36bc08cc
GZ
432 }
433
fa8a53c3
BL
434 /* Take completion_lock to prevent other writes to the ring buffer
435 * while the old page is copied to the new. This prevents new
436 * events from being lost.
5e9ae2e5 437 */
fa8a53c3
BL
438 spin_lock_irqsave(&ctx->completion_lock, flags);
439 migrate_page_copy(new, old);
440 BUG_ON(ctx->ring_pages[idx] != old);
441 ctx->ring_pages[idx] = new;
442 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 443
fa8a53c3
BL
444 /* The old page is no longer accessible. */
445 put_page(old);
8e321fef 446
fa8a53c3
BL
447out_unlock:
448 mutex_unlock(&ctx->ring_lock);
449out:
450 spin_unlock(&mapping->private_lock);
36bc08cc 451 return rc;
1da177e4 452}
0c45355f 453#endif
1da177e4 454
36bc08cc 455static const struct address_space_operations aio_ctx_aops = {
835f252c 456 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 457#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 458 .migratepage = aio_migratepage,
0c45355f 459#endif
36bc08cc
GZ
460};
461
2a8a9867 462static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
463{
464 struct aio_ring *ring;
41003a7b 465 struct mm_struct *mm = current->mm;
3dc9acb6 466 unsigned long size, unused;
1da177e4 467 int nr_pages;
36bc08cc
GZ
468 int i;
469 struct file *file;
1da177e4
LT
470
471 /* Compensate for the ring buffer's head/tail overlap entry */
472 nr_events += 2; /* 1 is required, 2 for good luck */
473
474 size = sizeof(struct aio_ring);
475 size += sizeof(struct io_event) * nr_events;
1da177e4 476
36bc08cc 477 nr_pages = PFN_UP(size);
1da177e4
LT
478 if (nr_pages < 0)
479 return -EINVAL;
480
71ad7490 481 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
482 if (IS_ERR(file)) {
483 ctx->aio_ring_file = NULL;
fa8a53c3 484 return -ENOMEM;
36bc08cc
GZ
485 }
486
3dc9acb6
LT
487 ctx->aio_ring_file = file;
488 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
489 / sizeof(struct io_event);
490
491 ctx->ring_pages = ctx->internal_pages;
492 if (nr_pages > AIO_RING_PAGES) {
493 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
494 GFP_KERNEL);
495 if (!ctx->ring_pages) {
496 put_aio_ring_file(ctx);
497 return -ENOMEM;
498 }
499 }
500
36bc08cc
GZ
501 for (i = 0; i < nr_pages; i++) {
502 struct page *page;
45063097 503 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
504 i, GFP_HIGHUSER | __GFP_ZERO);
505 if (!page)
506 break;
507 pr_debug("pid(%d) page[%d]->count=%d\n",
508 current->pid, i, page_count(page));
509 SetPageUptodate(page);
36bc08cc 510 unlock_page(page);
3dc9acb6
LT
511
512 ctx->ring_pages[i] = page;
36bc08cc 513 }
3dc9acb6 514 ctx->nr_pages = i;
1da177e4 515
3dc9acb6
LT
516 if (unlikely(i != nr_pages)) {
517 aio_free_ring(ctx);
fa8a53c3 518 return -ENOMEM;
1da177e4
LT
519 }
520
58c85dc2
KO
521 ctx->mmap_size = nr_pages * PAGE_SIZE;
522 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 523
013373e8
MH
524 if (down_write_killable(&mm->mmap_sem)) {
525 ctx->mmap_size = 0;
526 aio_free_ring(ctx);
527 return -EINTR;
528 }
529
36bc08cc
GZ
530 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
531 PROT_READ | PROT_WRITE,
897ab3e0 532 MAP_SHARED, 0, &unused, NULL);
3dc9acb6 533 up_write(&mm->mmap_sem);
58c85dc2 534 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 535 ctx->mmap_size = 0;
1da177e4 536 aio_free_ring(ctx);
fa8a53c3 537 return -ENOMEM;
1da177e4
LT
538 }
539
58c85dc2 540 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 541
58c85dc2
KO
542 ctx->user_id = ctx->mmap_base;
543 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 544
58c85dc2 545 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 546 ring->nr = nr_events; /* user copy */
db446a08 547 ring->id = ~0U;
1da177e4
LT
548 ring->head = ring->tail = 0;
549 ring->magic = AIO_RING_MAGIC;
550 ring->compat_features = AIO_RING_COMPAT_FEATURES;
551 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
552 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 553 kunmap_atomic(ring);
58c85dc2 554 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
555
556 return 0;
557}
558
1da177e4
LT
559#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
560#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
561#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
562
04b2fa9f 563void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 564{
54843f87 565 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
566 struct kioctx *ctx = req->ki_ctx;
567 unsigned long flags;
568
75321b50
CH
569 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
570 return;
0460fef2 571
75321b50
CH
572 spin_lock_irqsave(&ctx->ctx_lock, flags);
573 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 574 req->ki_cancel = cancel;
0460fef2
KO
575 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
576}
577EXPORT_SYMBOL(kiocb_set_cancel_fn);
578
a6d7cff4
TH
579/*
580 * free_ioctx() should be RCU delayed to synchronize against the RCU
581 * protected lookup_ioctx() and also needs process context to call
f729863a 582 * aio_free_ring(). Use rcu_work.
a6d7cff4 583 */
e34ecee2 584static void free_ioctx(struct work_struct *work)
36f55889 585{
f729863a
TH
586 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
587 free_rwork);
e34ecee2 588 pr_debug("freeing %p\n", ctx);
e1bdd5f2 589
e34ecee2 590 aio_free_ring(ctx);
e1bdd5f2 591 free_percpu(ctx->cpu);
9a1049da
TH
592 percpu_ref_exit(&ctx->reqs);
593 percpu_ref_exit(&ctx->users);
36f55889
KO
594 kmem_cache_free(kioctx_cachep, ctx);
595}
596
e34ecee2
KO
597static void free_ioctx_reqs(struct percpu_ref *ref)
598{
599 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
600
e02ba72a 601 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
602 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
603 complete(&ctx->rq_wait->comp);
e02ba72a 604
a6d7cff4 605 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
606 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
607 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
608}
609
36f55889
KO
610/*
611 * When this function runs, the kioctx has been removed from the "hash table"
612 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
613 * now it's safe to cancel any that need to be.
614 */
e34ecee2 615static void free_ioctx_users(struct percpu_ref *ref)
36f55889 616{
e34ecee2 617 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 618 struct aio_kiocb *req;
36f55889
KO
619
620 spin_lock_irq(&ctx->ctx_lock);
621
622 while (!list_empty(&ctx->active_reqs)) {
623 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 624 struct aio_kiocb, ki_list);
888933f8 625 req->ki_cancel(&req->rw);
4faa9996 626 list_del_init(&req->ki_list);
36f55889
KO
627 }
628
629 spin_unlock_irq(&ctx->ctx_lock);
630
e34ecee2
KO
631 percpu_ref_kill(&ctx->reqs);
632 percpu_ref_put(&ctx->reqs);
36f55889
KO
633}
634
db446a08
BL
635static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
636{
637 unsigned i, new_nr;
638 struct kioctx_table *table, *old;
639 struct aio_ring *ring;
640
641 spin_lock(&mm->ioctx_lock);
855ef0de 642 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
643
644 while (1) {
645 if (table)
646 for (i = 0; i < table->nr; i++)
d0264c01 647 if (!rcu_access_pointer(table->table[i])) {
db446a08 648 ctx->id = i;
d0264c01 649 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
650 spin_unlock(&mm->ioctx_lock);
651
fa8a53c3
BL
652 /* While kioctx setup is in progress,
653 * we are protected from page migration
654 * changes ring_pages by ->ring_lock.
655 */
db446a08
BL
656 ring = kmap_atomic(ctx->ring_pages[0]);
657 ring->id = ctx->id;
658 kunmap_atomic(ring);
659 return 0;
660 }
661
662 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
663 spin_unlock(&mm->ioctx_lock);
664
665 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
666 new_nr, GFP_KERNEL);
667 if (!table)
668 return -ENOMEM;
669
670 table->nr = new_nr;
671
672 spin_lock(&mm->ioctx_lock);
855ef0de 673 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
674
675 if (!old) {
676 rcu_assign_pointer(mm->ioctx_table, table);
677 } else if (table->nr > old->nr) {
678 memcpy(table->table, old->table,
679 old->nr * sizeof(struct kioctx *));
680
681 rcu_assign_pointer(mm->ioctx_table, table);
682 kfree_rcu(old, rcu);
683 } else {
684 kfree(table);
685 table = old;
686 }
687 }
688}
689
e34ecee2
KO
690static void aio_nr_sub(unsigned nr)
691{
692 spin_lock(&aio_nr_lock);
693 if (WARN_ON(aio_nr - nr > aio_nr))
694 aio_nr = 0;
695 else
696 aio_nr -= nr;
697 spin_unlock(&aio_nr_lock);
698}
699
1da177e4
LT
700/* ioctx_alloc
701 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
702 */
703static struct kioctx *ioctx_alloc(unsigned nr_events)
704{
41003a7b 705 struct mm_struct *mm = current->mm;
1da177e4 706 struct kioctx *ctx;
e23754f8 707 int err = -ENOMEM;
1da177e4 708
2a8a9867
MFO
709 /*
710 * Store the original nr_events -- what userspace passed to io_setup(),
711 * for counting against the global limit -- before it changes.
712 */
713 unsigned int max_reqs = nr_events;
714
e1bdd5f2
KO
715 /*
716 * We keep track of the number of available ringbuffer slots, to prevent
717 * overflow (reqs_available), and we also use percpu counters for this.
718 *
719 * So since up to half the slots might be on other cpu's percpu counters
720 * and unavailable, double nr_events so userspace sees what they
721 * expected: additionally, we move req_batch slots to/from percpu
722 * counters at a time, so make sure that isn't 0:
723 */
724 nr_events = max(nr_events, num_possible_cpus() * 4);
725 nr_events *= 2;
726
1da177e4 727 /* Prevent overflows */
08397acd 728 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
729 pr_debug("ENOMEM: nr_events too high\n");
730 return ERR_PTR(-EINVAL);
731 }
732
2a8a9867 733 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
734 return ERR_PTR(-EAGAIN);
735
c3762229 736 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
737 if (!ctx)
738 return ERR_PTR(-ENOMEM);
739
2a8a9867 740 ctx->max_reqs = max_reqs;
1da177e4 741
1da177e4 742 spin_lock_init(&ctx->ctx_lock);
0460fef2 743 spin_lock_init(&ctx->completion_lock);
58c85dc2 744 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
745 /* Protect against page migration throughout kiotx setup by keeping
746 * the ring_lock mutex held until setup is complete. */
747 mutex_lock(&ctx->ring_lock);
1da177e4
LT
748 init_waitqueue_head(&ctx->wait);
749
750 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 751
2aad2a86 752 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
753 goto err;
754
2aad2a86 755 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
756 goto err;
757
e1bdd5f2
KO
758 ctx->cpu = alloc_percpu(struct kioctx_cpu);
759 if (!ctx->cpu)
e34ecee2 760 goto err;
1da177e4 761
2a8a9867 762 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 763 if (err < 0)
e34ecee2 764 goto err;
e1bdd5f2 765
34e83fc6 766 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 767 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
768 if (ctx->req_batch < 1)
769 ctx->req_batch = 1;
34e83fc6 770
1da177e4 771 /* limit the number of system wide aios */
9fa1cb39 772 spin_lock(&aio_nr_lock);
2a8a9867
MFO
773 if (aio_nr + ctx->max_reqs > aio_max_nr ||
774 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 775 spin_unlock(&aio_nr_lock);
e34ecee2 776 err = -EAGAIN;
d1b94327 777 goto err_ctx;
2dd542b7
AV
778 }
779 aio_nr += ctx->max_reqs;
9fa1cb39 780 spin_unlock(&aio_nr_lock);
1da177e4 781
1881686f
BL
782 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
783 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 784
da90382c
BL
785 err = ioctx_add_table(ctx, mm);
786 if (err)
e34ecee2 787 goto err_cleanup;
da90382c 788
fa8a53c3
BL
789 /* Release the ring_lock mutex now that all setup is complete. */
790 mutex_unlock(&ctx->ring_lock);
791
caf4167a 792 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 793 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
794 return ctx;
795
e34ecee2
KO
796err_cleanup:
797 aio_nr_sub(ctx->max_reqs);
d1b94327 798err_ctx:
deeb8525
AV
799 atomic_set(&ctx->dead, 1);
800 if (ctx->mmap_size)
801 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 802 aio_free_ring(ctx);
e34ecee2 803err:
fa8a53c3 804 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 805 free_percpu(ctx->cpu);
9a1049da
TH
806 percpu_ref_exit(&ctx->reqs);
807 percpu_ref_exit(&ctx->users);
1da177e4 808 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 809 pr_debug("error allocating ioctx %d\n", err);
e23754f8 810 return ERR_PTR(err);
1da177e4
LT
811}
812
36f55889
KO
813/* kill_ioctx
814 * Cancels all outstanding aio requests on an aio context. Used
815 * when the processes owning a context have all exited to encourage
816 * the rapid destruction of the kioctx.
817 */
fb2d4483 818static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 819 struct ctx_rq_wait *wait)
36f55889 820{
fa88b6f8 821 struct kioctx_table *table;
db446a08 822
b2edffdd
AV
823 spin_lock(&mm->ioctx_lock);
824 if (atomic_xchg(&ctx->dead, 1)) {
825 spin_unlock(&mm->ioctx_lock);
fa88b6f8 826 return -EINVAL;
b2edffdd 827 }
db446a08 828
855ef0de 829 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
830 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
831 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 832 spin_unlock(&mm->ioctx_lock);
4fcc712f 833
a6d7cff4 834 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 835 wake_up_all(&ctx->wait);
4fcc712f 836
fa88b6f8
BL
837 /*
838 * It'd be more correct to do this in free_ioctx(), after all
839 * the outstanding kiocbs have finished - but by then io_destroy
840 * has already returned, so io_setup() could potentially return
841 * -EAGAIN with no ioctxs actually in use (as far as userspace
842 * could tell).
843 */
844 aio_nr_sub(ctx->max_reqs);
4fcc712f 845
fa88b6f8
BL
846 if (ctx->mmap_size)
847 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 848
dc48e56d 849 ctx->rq_wait = wait;
fa88b6f8
BL
850 percpu_ref_kill(&ctx->users);
851 return 0;
1da177e4
LT
852}
853
36f55889
KO
854/*
855 * exit_aio: called when the last user of mm goes away. At this point, there is
856 * no way for any new requests to be submited or any of the io_* syscalls to be
857 * called on the context.
858 *
859 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
860 * them.
1da177e4 861 */
fc9b52cd 862void exit_aio(struct mm_struct *mm)
1da177e4 863{
4b70ac5f 864 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
865 struct ctx_rq_wait wait;
866 int i, skipped;
db446a08 867
4b70ac5f
ON
868 if (!table)
869 return;
db446a08 870
dc48e56d
JA
871 atomic_set(&wait.count, table->nr);
872 init_completion(&wait.comp);
873
874 skipped = 0;
4b70ac5f 875 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
876 struct kioctx *ctx =
877 rcu_dereference_protected(table->table[i], true);
abf137dd 878
dc48e56d
JA
879 if (!ctx) {
880 skipped++;
4b70ac5f 881 continue;
dc48e56d
JA
882 }
883
936af157 884 /*
4b70ac5f
ON
885 * We don't need to bother with munmap() here - exit_mmap(mm)
886 * is coming and it'll unmap everything. And we simply can't,
887 * this is not necessarily our ->mm.
888 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
889 * that it needs to unmap the area, just set it to 0.
936af157 890 */
58c85dc2 891 ctx->mmap_size = 0;
dc48e56d
JA
892 kill_ioctx(mm, ctx, &wait);
893 }
36f55889 894
dc48e56d 895 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 896 /* Wait until all IO for the context are done. */
dc48e56d 897 wait_for_completion(&wait.comp);
1da177e4 898 }
4b70ac5f
ON
899
900 RCU_INIT_POINTER(mm->ioctx_table, NULL);
901 kfree(table);
1da177e4
LT
902}
903
e1bdd5f2
KO
904static void put_reqs_available(struct kioctx *ctx, unsigned nr)
905{
906 struct kioctx_cpu *kcpu;
263782c1 907 unsigned long flags;
e1bdd5f2 908
263782c1 909 local_irq_save(flags);
be6fb451 910 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 911 kcpu->reqs_available += nr;
263782c1 912
e1bdd5f2
KO
913 while (kcpu->reqs_available >= ctx->req_batch * 2) {
914 kcpu->reqs_available -= ctx->req_batch;
915 atomic_add(ctx->req_batch, &ctx->reqs_available);
916 }
917
263782c1 918 local_irq_restore(flags);
e1bdd5f2
KO
919}
920
432c7997 921static bool __get_reqs_available(struct kioctx *ctx)
e1bdd5f2
KO
922{
923 struct kioctx_cpu *kcpu;
924 bool ret = false;
263782c1 925 unsigned long flags;
e1bdd5f2 926
263782c1 927 local_irq_save(flags);
be6fb451 928 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
929 if (!kcpu->reqs_available) {
930 int old, avail = atomic_read(&ctx->reqs_available);
931
932 do {
933 if (avail < ctx->req_batch)
934 goto out;
935
936 old = avail;
937 avail = atomic_cmpxchg(&ctx->reqs_available,
938 avail, avail - ctx->req_batch);
939 } while (avail != old);
940
941 kcpu->reqs_available += ctx->req_batch;
942 }
943
944 ret = true;
945 kcpu->reqs_available--;
946out:
263782c1 947 local_irq_restore(flags);
e1bdd5f2
KO
948 return ret;
949}
950
d856f32a
BL
951/* refill_reqs_available
952 * Updates the reqs_available reference counts used for tracking the
953 * number of free slots in the completion ring. This can be called
954 * from aio_complete() (to optimistically update reqs_available) or
955 * from aio_get_req() (the we're out of events case). It must be
956 * called holding ctx->completion_lock.
957 */
958static void refill_reqs_available(struct kioctx *ctx, unsigned head,
959 unsigned tail)
960{
961 unsigned events_in_ring, completed;
962
963 /* Clamp head since userland can write to it. */
964 head %= ctx->nr_events;
965 if (head <= tail)
966 events_in_ring = tail - head;
967 else
968 events_in_ring = ctx->nr_events - (head - tail);
969
970 completed = ctx->completed_events;
971 if (events_in_ring < completed)
972 completed -= events_in_ring;
973 else
974 completed = 0;
975
976 if (!completed)
977 return;
978
979 ctx->completed_events -= completed;
980 put_reqs_available(ctx, completed);
981}
982
983/* user_refill_reqs_available
984 * Called to refill reqs_available when aio_get_req() encounters an
985 * out of space in the completion ring.
986 */
987static void user_refill_reqs_available(struct kioctx *ctx)
988{
989 spin_lock_irq(&ctx->completion_lock);
990 if (ctx->completed_events) {
991 struct aio_ring *ring;
992 unsigned head;
993
994 /* Access of ring->head may race with aio_read_events_ring()
995 * here, but that's okay since whether we read the old version
996 * or the new version, and either will be valid. The important
997 * part is that head cannot pass tail since we prevent
998 * aio_complete() from updating tail by holding
999 * ctx->completion_lock. Even if head is invalid, the check
1000 * against ctx->completed_events below will make sure we do the
1001 * safe/right thing.
1002 */
1003 ring = kmap_atomic(ctx->ring_pages[0]);
1004 head = ring->head;
1005 kunmap_atomic(ring);
1006
1007 refill_reqs_available(ctx, head, ctx->tail);
1008 }
1009
1010 spin_unlock_irq(&ctx->completion_lock);
1011}
1012
432c7997
CH
1013static bool get_reqs_available(struct kioctx *ctx)
1014{
1015 if (__get_reqs_available(ctx))
1016 return true;
1017 user_refill_reqs_available(ctx);
1018 return __get_reqs_available(ctx);
1019}
1020
1da177e4 1021/* aio_get_req
57282d8f
KO
1022 * Allocate a slot for an aio request.
1023 * Returns NULL if no requests are free.
b53119f1
LT
1024 *
1025 * The refcount is initialized to 2 - one for the async op completion,
1026 * one for the synchronous code that does this.
1da177e4 1027 */
04b2fa9f 1028static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1029{
04b2fa9f 1030 struct aio_kiocb *req;
a1c8eae7 1031
2bc4ca9b 1032 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1da177e4 1033 if (unlikely(!req))
432c7997 1034 return NULL;
1da177e4 1035
fa0ca2ae 1036 if (unlikely(!get_reqs_available(ctx))) {
6af1c849 1037 kmem_cache_free(kiocb_cachep, req);
fa0ca2ae
AV
1038 return NULL;
1039 }
1040
e34ecee2 1041 percpu_ref_get(&ctx->reqs);
2bc4ca9b 1042 req->ki_ctx = ctx;
75321b50 1043 INIT_LIST_HEAD(&req->ki_list);
b53119f1 1044 refcount_set(&req->ki_refcnt, 2);
2bc4ca9b 1045 req->ki_eventfd = NULL;
080d676d 1046 return req;
1da177e4
LT
1047}
1048
d5470b59 1049static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1050{
db446a08 1051 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1052 struct mm_struct *mm = current->mm;
65c24491 1053 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1054 struct kioctx_table *table;
1055 unsigned id;
1056
1057 if (get_user(id, &ring->id))
1058 return NULL;
1da177e4 1059
abf137dd 1060 rcu_read_lock();
db446a08 1061 table = rcu_dereference(mm->ioctx_table);
abf137dd 1062
db446a08
BL
1063 if (!table || id >= table->nr)
1064 goto out;
1da177e4 1065
a538e3ff 1066 id = array_index_nospec(id, table->nr);
d0264c01 1067 ctx = rcu_dereference(table->table[id]);
f30d704f 1068 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1069 if (percpu_ref_tryget_live(&ctx->users))
1070 ret = ctx;
db446a08
BL
1071 }
1072out:
abf137dd 1073 rcu_read_unlock();
65c24491 1074 return ret;
1da177e4
LT
1075}
1076
b53119f1
LT
1077static inline void iocb_destroy(struct aio_kiocb *iocb)
1078{
74259703
AV
1079 if (iocb->ki_eventfd)
1080 eventfd_ctx_put(iocb->ki_eventfd);
b53119f1
LT
1081 if (iocb->ki_filp)
1082 fput(iocb->ki_filp);
1083 percpu_ref_put(&iocb->ki_ctx->reqs);
1084 kmem_cache_free(kiocb_cachep, iocb);
1085}
1086
1da177e4
LT
1087/* aio_complete
1088 * Called when the io request on the given iocb is complete.
1da177e4 1089 */
2bb874c0 1090static void aio_complete(struct aio_kiocb *iocb)
1da177e4
LT
1091{
1092 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1093 struct aio_ring *ring;
21b40200 1094 struct io_event *ev_page, *event;
d856f32a 1095 unsigned tail, pos, head;
1da177e4 1096 unsigned long flags;
1da177e4 1097
0460fef2
KO
1098 /*
1099 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1100 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1101 * pointer since we might be called from irq context.
1102 */
1103 spin_lock_irqsave(&ctx->completion_lock, flags);
1104
58c85dc2 1105 tail = ctx->tail;
21b40200
KO
1106 pos = tail + AIO_EVENTS_OFFSET;
1107
58c85dc2 1108 if (++tail >= ctx->nr_events)
4bf69b2a 1109 tail = 0;
1da177e4 1110
58c85dc2 1111 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1112 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1113
a9339b78 1114 *event = iocb->ki_res;
1da177e4 1115
21b40200 1116 kunmap_atomic(ev_page);
58c85dc2 1117 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200 1118
a9339b78
AV
1119 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1120 (void __user *)(unsigned long)iocb->ki_res.obj,
1121 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1da177e4
LT
1122
1123 /* after flagging the request as done, we
1124 * must never even look at it again
1125 */
1126 smp_wmb(); /* make event visible before updating tail */
1127
58c85dc2 1128 ctx->tail = tail;
1da177e4 1129
58c85dc2 1130 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1131 head = ring->head;
21b40200 1132 ring->tail = tail;
e8e3c3d6 1133 kunmap_atomic(ring);
58c85dc2 1134 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1135
d856f32a
BL
1136 ctx->completed_events++;
1137 if (ctx->completed_events > 1)
1138 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1139 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1140
21b40200 1141 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1142
1143 /*
1144 * Check if the user asked us to deliver the result through an
1145 * eventfd. The eventfd_signal() function is safe to be called
1146 * from IRQ context.
1147 */
74259703 1148 if (iocb->ki_eventfd)
8d1c98b0
DL
1149 eventfd_signal(iocb->ki_eventfd, 1);
1150
6cb2a210
QB
1151 /*
1152 * We have to order our ring_info tail store above and test
1153 * of the wait list below outside the wait lock. This is
1154 * like in wake_up_bit() where clearing a bit has to be
1155 * ordered with the unlocked test.
1156 */
1157 smp_mb();
1158
1da177e4
LT
1159 if (waitqueue_active(&ctx->wait))
1160 wake_up(&ctx->wait);
2bb874c0
AV
1161}
1162
1163static inline void iocb_put(struct aio_kiocb *iocb)
1164{
1165 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1166 aio_complete(iocb);
1167 iocb_destroy(iocb);
1168 }
1da177e4
LT
1169}
1170
2be4e7de 1171/* aio_read_events_ring
a31ad380
KO
1172 * Pull an event off of the ioctx's event ring. Returns the number of
1173 * events fetched
1da177e4 1174 */
a31ad380
KO
1175static long aio_read_events_ring(struct kioctx *ctx,
1176 struct io_event __user *event, long nr)
1da177e4 1177{
1da177e4 1178 struct aio_ring *ring;
5ffac122 1179 unsigned head, tail, pos;
a31ad380
KO
1180 long ret = 0;
1181 int copy_ret;
1182
9c9ce763
DC
1183 /*
1184 * The mutex can block and wake us up and that will cause
1185 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1186 * and repeat. This should be rare enough that it doesn't cause
1187 * peformance issues. See the comment in read_events() for more detail.
1188 */
1189 sched_annotate_sleep();
58c85dc2 1190 mutex_lock(&ctx->ring_lock);
1da177e4 1191
fa8a53c3 1192 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1193 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1194 head = ring->head;
5ffac122 1195 tail = ring->tail;
a31ad380
KO
1196 kunmap_atomic(ring);
1197
2ff396be
JM
1198 /*
1199 * Ensure that once we've read the current tail pointer, that
1200 * we also see the events that were stored up to the tail.
1201 */
1202 smp_rmb();
1203
5ffac122 1204 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1205
5ffac122 1206 if (head == tail)
1da177e4
LT
1207 goto out;
1208
edfbbf38
BL
1209 head %= ctx->nr_events;
1210 tail %= ctx->nr_events;
1211
a31ad380
KO
1212 while (ret < nr) {
1213 long avail;
1214 struct io_event *ev;
1215 struct page *page;
1216
5ffac122
KO
1217 avail = (head <= tail ? tail : ctx->nr_events) - head;
1218 if (head == tail)
a31ad380
KO
1219 break;
1220
a31ad380 1221 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1222 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1223 pos %= AIO_EVENTS_PER_PAGE;
1224
d2988bd4
AV
1225 avail = min(avail, nr - ret);
1226 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1227
a31ad380
KO
1228 ev = kmap(page);
1229 copy_ret = copy_to_user(event + ret, ev + pos,
1230 sizeof(*ev) * avail);
1231 kunmap(page);
1232
1233 if (unlikely(copy_ret)) {
1234 ret = -EFAULT;
1235 goto out;
1236 }
1237
1238 ret += avail;
1239 head += avail;
58c85dc2 1240 head %= ctx->nr_events;
1da177e4 1241 }
1da177e4 1242
58c85dc2 1243 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1244 ring->head = head;
91d80a84 1245 kunmap_atomic(ring);
58c85dc2 1246 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1247
5ffac122 1248 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1249out:
58c85dc2 1250 mutex_unlock(&ctx->ring_lock);
a31ad380 1251
1da177e4
LT
1252 return ret;
1253}
1254
a31ad380
KO
1255static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1256 struct io_event __user *event, long *i)
1da177e4 1257{
a31ad380 1258 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1259
a31ad380
KO
1260 if (ret > 0)
1261 *i += ret;
1da177e4 1262
a31ad380
KO
1263 if (unlikely(atomic_read(&ctx->dead)))
1264 ret = -EINVAL;
1da177e4 1265
a31ad380
KO
1266 if (!*i)
1267 *i = ret;
1da177e4 1268
a31ad380 1269 return ret < 0 || *i >= min_nr;
1da177e4
LT
1270}
1271
a31ad380 1272static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1273 struct io_event __user *event,
fa2e62a5 1274 ktime_t until)
1da177e4 1275{
a31ad380 1276 long ret = 0;
1da177e4 1277
a31ad380
KO
1278 /*
1279 * Note that aio_read_events() is being called as the conditional - i.e.
1280 * we're calling it after prepare_to_wait() has set task state to
1281 * TASK_INTERRUPTIBLE.
1282 *
1283 * But aio_read_events() can block, and if it blocks it's going to flip
1284 * the task state back to TASK_RUNNING.
1285 *
1286 * This should be ok, provided it doesn't flip the state back to
1287 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1288 * will only happen if the mutex_lock() call blocks, and we then find
1289 * the ringbuffer empty. So in practice we should be ok, but it's
1290 * something to be aware of when touching this code.
1291 */
2456e855 1292 if (until == 0)
5f785de5
FZ
1293 aio_read_events(ctx, min_nr, nr, event, &ret);
1294 else
1295 wait_event_interruptible_hrtimeout(ctx->wait,
1296 aio_read_events(ctx, min_nr, nr, event, &ret),
1297 until);
a31ad380 1298 return ret;
1da177e4
LT
1299}
1300
1da177e4
LT
1301/* sys_io_setup:
1302 * Create an aio_context capable of receiving at least nr_events.
1303 * ctxp must not point to an aio_context that already exists, and
1304 * must be initialized to 0 prior to the call. On successful
1305 * creation of the aio_context, *ctxp is filled in with the resulting
1306 * handle. May fail with -EINVAL if *ctxp is not initialized,
1307 * if the specified nr_events exceeds internal limits. May fail
1308 * with -EAGAIN if the specified nr_events exceeds the user's limit
1309 * of available events. May fail with -ENOMEM if insufficient kernel
1310 * resources are available. May fail with -EFAULT if an invalid
1311 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1312 * implemented.
1313 */
002c8976 1314SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1315{
1316 struct kioctx *ioctx = NULL;
1317 unsigned long ctx;
1318 long ret;
1319
1320 ret = get_user(ctx, ctxp);
1321 if (unlikely(ret))
1322 goto out;
1323
1324 ret = -EINVAL;
d55b5fda 1325 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1326 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1327 ctx, nr_events);
1da177e4
LT
1328 goto out;
1329 }
1330
1331 ioctx = ioctx_alloc(nr_events);
1332 ret = PTR_ERR(ioctx);
1333 if (!IS_ERR(ioctx)) {
1334 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1335 if (ret)
e02ba72a 1336 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1337 percpu_ref_put(&ioctx->users);
1da177e4
LT
1338 }
1339
1340out:
1341 return ret;
1342}
1343
c00d2c7e
AV
1344#ifdef CONFIG_COMPAT
1345COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1346{
1347 struct kioctx *ioctx = NULL;
1348 unsigned long ctx;
1349 long ret;
1350
1351 ret = get_user(ctx, ctx32p);
1352 if (unlikely(ret))
1353 goto out;
1354
1355 ret = -EINVAL;
1356 if (unlikely(ctx || nr_events == 0)) {
1357 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1358 ctx, nr_events);
1359 goto out;
1360 }
1361
1362 ioctx = ioctx_alloc(nr_events);
1363 ret = PTR_ERR(ioctx);
1364 if (!IS_ERR(ioctx)) {
1365 /* truncating is ok because it's a user address */
1366 ret = put_user((u32)ioctx->user_id, ctx32p);
1367 if (ret)
1368 kill_ioctx(current->mm, ioctx, NULL);
1369 percpu_ref_put(&ioctx->users);
1370 }
1371
1372out:
1373 return ret;
1374}
1375#endif
1376
1da177e4
LT
1377/* sys_io_destroy:
1378 * Destroy the aio_context specified. May cancel any outstanding
1379 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1380 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1381 * is invalid.
1382 */
002c8976 1383SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1384{
1385 struct kioctx *ioctx = lookup_ioctx(ctx);
1386 if (likely(NULL != ioctx)) {
dc48e56d 1387 struct ctx_rq_wait wait;
fb2d4483 1388 int ret;
e02ba72a 1389
dc48e56d
JA
1390 init_completion(&wait.comp);
1391 atomic_set(&wait.count, 1);
1392
e02ba72a
AP
1393 /* Pass requests_done to kill_ioctx() where it can be set
1394 * in a thread-safe way. If we try to set it here then we have
1395 * a race condition if two io_destroy() called simultaneously.
1396 */
dc48e56d 1397 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1398 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1399
1400 /* Wait until all IO for the context are done. Otherwise kernel
1401 * keep using user-space buffers even if user thinks the context
1402 * is destroyed.
1403 */
fb2d4483 1404 if (!ret)
dc48e56d 1405 wait_for_completion(&wait.comp);
e02ba72a 1406
fb2d4483 1407 return ret;
1da177e4 1408 }
acd88d4e 1409 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1410 return -EINVAL;
1411}
1412
3c96c7f4
AV
1413static void aio_remove_iocb(struct aio_kiocb *iocb)
1414{
1415 struct kioctx *ctx = iocb->ki_ctx;
1416 unsigned long flags;
1417
1418 spin_lock_irqsave(&ctx->ctx_lock, flags);
1419 list_del(&iocb->ki_list);
1420 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1421}
1422
54843f87
CH
1423static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1424{
1425 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1426
3c96c7f4
AV
1427 if (!list_empty_careful(&iocb->ki_list))
1428 aio_remove_iocb(iocb);
1429
54843f87
CH
1430 if (kiocb->ki_flags & IOCB_WRITE) {
1431 struct inode *inode = file_inode(kiocb->ki_filp);
1432
1433 /*
1434 * Tell lockdep we inherited freeze protection from submission
1435 * thread.
1436 */
1437 if (S_ISREG(inode->i_mode))
1438 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1439 file_end_write(kiocb->ki_filp);
1440 }
1441
2bb874c0
AV
1442 iocb->ki_res.res = res;
1443 iocb->ki_res.res2 = res2;
1444 iocb_put(iocb);
54843f87
CH
1445}
1446
88a6f18b 1447static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
54843f87
CH
1448{
1449 int ret;
1450
54843f87 1451 req->ki_complete = aio_complete_rw;
ec51f8ee 1452 req->private = NULL;
54843f87
CH
1453 req->ki_pos = iocb->aio_offset;
1454 req->ki_flags = iocb_flags(req->ki_filp);
1455 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1456 req->ki_flags |= IOCB_EVENTFD;
fc28724d 1457 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
d9a08a9e
AM
1458 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1459 /*
1460 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1461 * aio_reqprio is interpreted as an I/O scheduling
1462 * class and priority.
1463 */
1464 ret = ioprio_check_cap(iocb->aio_reqprio);
1465 if (ret) {
9a6d9a62 1466 pr_debug("aio ioprio check cap error: %d\n", ret);
84c4e1f8 1467 return ret;
d9a08a9e
AM
1468 }
1469
1470 req->ki_ioprio = iocb->aio_reqprio;
1471 } else
76dc8913 1472 req->ki_ioprio = get_current_ioprio();
d9a08a9e 1473
54843f87
CH
1474 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1475 if (unlikely(ret))
84c4e1f8 1476 return ret;
154989e4
CH
1477
1478 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1479 return 0;
54843f87
CH
1480}
1481
87e5e6da
JA
1482static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1483 struct iovec **iovec, bool vectored, bool compat,
1484 struct iov_iter *iter)
eed4e51f 1485{
89319d31
CH
1486 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1487 size_t len = iocb->aio_nbytes;
1488
1489 if (!vectored) {
1490 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1491 *iovec = NULL;
1492 return ret;
1493 }
9d85cba7
JM
1494#ifdef CONFIG_COMPAT
1495 if (compat)
89319d31
CH
1496 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1497 iter);
9d85cba7 1498#endif
89319d31 1499 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
eed4e51f
BP
1500}
1501
9061d14a 1502static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1503{
1504 switch (ret) {
1505 case -EIOCBQUEUED:
9061d14a 1506 break;
89319d31
CH
1507 case -ERESTARTSYS:
1508 case -ERESTARTNOINTR:
1509 case -ERESTARTNOHAND:
1510 case -ERESTART_RESTARTBLOCK:
1511 /*
1512 * There's no easy way to restart the syscall since other AIO's
1513 * may be already running. Just fail this IO with EINTR.
1514 */
1515 ret = -EINTR;
1516 /*FALLTHRU*/
1517 default:
bc9bff61 1518 req->ki_complete(req, ret, 0);
89319d31
CH
1519 }
1520}
1521
958c13ce 1522static int aio_read(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1523 bool vectored, bool compat)
1da177e4 1524{
00fefb9c 1525 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1526 struct iov_iter iter;
54843f87 1527 struct file *file;
958c13ce 1528 int ret;
1da177e4 1529
54843f87
CH
1530 ret = aio_prep_rw(req, iocb);
1531 if (ret)
1532 return ret;
1533 file = req->ki_filp;
89319d31 1534 if (unlikely(!(file->f_mode & FMODE_READ)))
84c4e1f8 1535 return -EBADF;
54843f87 1536 ret = -EINVAL;
89319d31 1537 if (unlikely(!file->f_op->read_iter))
84c4e1f8 1538 return -EINVAL;
73a7075e 1539
89319d31 1540 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1541 if (ret < 0)
84c4e1f8 1542 return ret;
89319d31
CH
1543 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1544 if (!ret)
9061d14a 1545 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31
CH
1546 kfree(iovec);
1547 return ret;
1548}
73a7075e 1549
958c13ce 1550static int aio_write(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1551 bool vectored, bool compat)
89319d31 1552{
89319d31
CH
1553 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1554 struct iov_iter iter;
54843f87 1555 struct file *file;
958c13ce 1556 int ret;
41ef4eb8 1557
54843f87
CH
1558 ret = aio_prep_rw(req, iocb);
1559 if (ret)
1560 return ret;
1561 file = req->ki_filp;
1562
89319d31 1563 if (unlikely(!(file->f_mode & FMODE_WRITE)))
84c4e1f8 1564 return -EBADF;
89319d31 1565 if (unlikely(!file->f_op->write_iter))
84c4e1f8 1566 return -EINVAL;
1da177e4 1567
89319d31 1568 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1569 if (ret < 0)
84c4e1f8 1570 return ret;
89319d31
CH
1571 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1572 if (!ret) {
70fe2f48 1573 /*
92ce4728 1574 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1575 * which will be released by another thread in
1576 * aio_complete_rw(). Fool lockdep by telling it the lock got
1577 * released so that it doesn't complain about the held lock when
1578 * we return to userspace.
70fe2f48 1579 */
92ce4728
CH
1580 if (S_ISREG(file_inode(file)->i_mode)) {
1581 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
a12f1ae6 1582 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1583 }
1584 req->ki_flags |= IOCB_WRITE;
9061d14a 1585 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1586 }
89319d31
CH
1587 kfree(iovec);
1588 return ret;
1da177e4
LT
1589}
1590
a3c0d439
CH
1591static void aio_fsync_work(struct work_struct *work)
1592{
2bb874c0 1593 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
87e329bc 1594 const struct cred *old_cred = override_creds(iocb->fsync.creds);
a3c0d439 1595
2bb874c0 1596 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
87e329bc
MS
1597 revert_creds(old_cred);
1598 put_cred(iocb->fsync.creds);
2bb874c0 1599 iocb_put(iocb);
a3c0d439
CH
1600}
1601
88a6f18b
JA
1602static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1603 bool datasync)
a3c0d439
CH
1604{
1605 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1606 iocb->aio_rw_flags))
1607 return -EINVAL;
a11e1d43 1608
84c4e1f8 1609 if (unlikely(!req->file->f_op->fsync))
a3c0d439 1610 return -EINVAL;
a3c0d439 1611
87e329bc
MS
1612 req->creds = prepare_creds();
1613 if (!req->creds)
1614 return -ENOMEM;
1615
a3c0d439
CH
1616 req->datasync = datasync;
1617 INIT_WORK(&req->work, aio_fsync_work);
1618 schedule_work(&req->work);
9061d14a 1619 return 0;
a3c0d439
CH
1620}
1621
f32a4b7d
JA
1622static void aio_poll_put_work(struct work_struct *work)
1623{
1624 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1625 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1626
1627 iocb_put(iocb);
1628}
1629
f64c5cdc
EB
1630/*
1631 * Safely lock the waitqueue which the request is on, synchronizing with the
1632 * case where the ->poll() provider decides to free its waitqueue early.
1633 *
1634 * Returns true on success, meaning that req->head->lock was locked, req->wait
1635 * is on req->head, and an RCU read lock was taken. Returns false if the
1636 * request was already removed from its waitqueue (which might no longer exist).
1637 */
1638static bool poll_iocb_lock_wq(struct poll_iocb *req)
1639{
1640 wait_queue_head_t *head;
1641
1642 /*
1643 * While we hold the waitqueue lock and the waitqueue is nonempty,
1644 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1645 * lock in the first place can race with the waitqueue being freed.
1646 *
1647 * We solve this as eventpoll does: by taking advantage of the fact that
1648 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1649 * we enter rcu_read_lock() and see that the pointer to the queue is
1650 * non-NULL, we can then lock it without the memory being freed out from
1651 * under us, then check whether the request is still on the queue.
1652 *
1653 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1654 * case the caller deletes the entry from the queue, leaving it empty.
1655 * In that case, only RCU prevents the queue memory from being freed.
1656 */
1657 rcu_read_lock();
1658 head = smp_load_acquire(&req->head);
1659 if (head) {
1660 spin_lock(&head->lock);
1661 if (!list_empty(&req->wait.entry))
1662 return true;
1663 spin_unlock(&head->lock);
1664 }
1665 rcu_read_unlock();
1666 return false;
1667}
1668
1669static void poll_iocb_unlock_wq(struct poll_iocb *req)
1670{
1671 spin_unlock(&req->head->lock);
1672 rcu_read_unlock();
1673}
1674
bfe4037e
CH
1675static void aio_poll_complete_work(struct work_struct *work)
1676{
1677 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1678 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1679 struct poll_table_struct pt = { ._key = req->events };
1680 struct kioctx *ctx = iocb->ki_ctx;
1681 __poll_t mask = 0;
1682
1683 if (!READ_ONCE(req->cancelled))
1684 mask = vfs_poll(req->file, &pt) & req->events;
1685
1686 /*
1687 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1688 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1689 * synchronize with them. In the cancellation case the list_del_init
1690 * itself is not actually needed, but harmless so we keep it in to
1691 * avoid further branches in the fast path.
1692 */
1693 spin_lock_irq(&ctx->ctx_lock);
f64c5cdc
EB
1694 if (poll_iocb_lock_wq(req)) {
1695 if (!mask && !READ_ONCE(req->cancelled)) {
1696 /*
1697 * The request isn't actually ready to be completed yet.
1698 * Reschedule completion if another wakeup came in.
1699 */
1700 if (req->work_need_resched) {
1701 schedule_work(&req->work);
1702 req->work_need_resched = false;
1703 } else {
1704 req->work_scheduled = false;
1705 }
1706 poll_iocb_unlock_wq(req);
1707 spin_unlock_irq(&ctx->ctx_lock);
1708 return;
44496768 1709 }
f64c5cdc
EB
1710 list_del_init(&req->wait.entry);
1711 poll_iocb_unlock_wq(req);
1712 } /* else, POLLFREE has freed the waitqueue, so we must complete */
bfe4037e 1713 list_del_init(&iocb->ki_list);
af5c72b1 1714 iocb->ki_res.res = mangle_poll(mask);
bfe4037e
CH
1715 spin_unlock_irq(&ctx->ctx_lock);
1716
af5c72b1 1717 iocb_put(iocb);
bfe4037e
CH
1718}
1719
1720/* assumes we are called with irqs disabled */
1721static int aio_poll_cancel(struct kiocb *iocb)
1722{
1723 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1724 struct poll_iocb *req = &aiocb->poll;
1725
f64c5cdc
EB
1726 if (poll_iocb_lock_wq(req)) {
1727 WRITE_ONCE(req->cancelled, true);
1728 if (!req->work_scheduled) {
1729 schedule_work(&aiocb->poll.work);
1730 req->work_scheduled = true;
1731 }
1732 poll_iocb_unlock_wq(req);
1733 } /* else, the request was force-cancelled by POLLFREE already */
bfe4037e
CH
1734
1735 return 0;
1736}
1737
1738static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1739 void *key)
1740{
1741 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1742 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e 1743 __poll_t mask = key_to_poll(key);
d3d6a18d 1744 unsigned long flags;
bfe4037e 1745
bfe4037e 1746 /* for instances that support it check for an event match first: */
af5c72b1
AV
1747 if (mask && !(mask & req->events))
1748 return 0;
e8693bcf 1749
44496768
EB
1750 /*
1751 * Complete the request inline if possible. This requires that three
1752 * conditions be met:
1753 * 1. An event mask must have been passed. If a plain wakeup was done
1754 * instead, then mask == 0 and we have to call vfs_poll() to get
1755 * the events, so inline completion isn't possible.
1756 * 2. The completion work must not have already been scheduled.
1757 * 3. ctx_lock must not be busy. We have to use trylock because we
1758 * already hold the waitqueue lock, so this inverts the normal
1759 * locking order. Use irqsave/irqrestore because not all
1760 * filesystems (e.g. fuse) call this function with IRQs disabled,
1761 * yet IRQs have to be disabled before ctx_lock is obtained.
1762 */
1763 if (mask && !req->work_scheduled &&
1764 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
f32a4b7d
JA
1765 struct kioctx *ctx = iocb->ki_ctx;
1766
44496768 1767 list_del_init(&req->wait.entry);
af5c72b1
AV
1768 list_del(&iocb->ki_list);
1769 iocb->ki_res.res = mangle_poll(mask);
f32a4b7d
JA
1770 if (iocb->ki_eventfd && eventfd_signal_count()) {
1771 iocb = NULL;
1772 INIT_WORK(&req->work, aio_poll_put_work);
1773 schedule_work(&req->work);
1774 }
1775 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1776 if (iocb)
1777 iocb_put(iocb);
af5c72b1 1778 } else {
44496768
EB
1779 /*
1780 * Schedule the completion work if needed. If it was already
1781 * scheduled, record that another wakeup came in.
1782 *
1783 * Don't remove the request from the waitqueue here, as it might
1784 * not actually be complete yet (we won't know until vfs_poll()
f64c5cdc
EB
1785 * is called), and we must not miss any wakeups. POLLFREE is an
1786 * exception to this; see below.
44496768
EB
1787 */
1788 if (req->work_scheduled) {
1789 req->work_need_resched = true;
1790 } else {
1791 schedule_work(&req->work);
1792 req->work_scheduled = true;
1793 }
f64c5cdc
EB
1794
1795 /*
1796 * If the waitqueue is being freed early but we can't complete
1797 * the request inline, we have to tear down the request as best
1798 * we can. That means immediately removing the request from its
1799 * waitqueue and preventing all further accesses to the
1800 * waitqueue via the request. We also need to schedule the
1801 * completion work (done above). Also mark the request as
1802 * cancelled, to potentially skip an unneeded call to ->poll().
1803 */
1804 if (mask & POLLFREE) {
1805 WRITE_ONCE(req->cancelled, true);
1806 list_del_init(&req->wait.entry);
1807
1808 /*
1809 * Careful: this *must* be the last step, since as soon
1810 * as req->head is NULL'ed out, the request can be
1811 * completed and freed, since aio_poll_complete_work()
1812 * will no longer need to take the waitqueue lock.
1813 */
1814 smp_store_release(&req->head, NULL);
1815 }
e8693bcf 1816 }
bfe4037e
CH
1817 return 1;
1818}
1819
1820struct aio_poll_table {
1821 struct poll_table_struct pt;
1822 struct aio_kiocb *iocb;
f64c5cdc 1823 bool queued;
bfe4037e
CH
1824 int error;
1825};
1826
1827static void
1828aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1829 struct poll_table_struct *p)
1830{
1831 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1832
1833 /* multiple wait queues per file are not supported */
f64c5cdc 1834 if (unlikely(pt->queued)) {
bfe4037e
CH
1835 pt->error = -EINVAL;
1836 return;
1837 }
1838
f64c5cdc 1839 pt->queued = true;
bfe4037e
CH
1840 pt->error = 0;
1841 pt->iocb->poll.head = head;
1842 add_wait_queue(head, &pt->iocb->poll.wait);
1843}
1844
958c13ce 1845static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
bfe4037e
CH
1846{
1847 struct kioctx *ctx = aiocb->ki_ctx;
1848 struct poll_iocb *req = &aiocb->poll;
1849 struct aio_poll_table apt;
af5c72b1 1850 bool cancel = false;
bfe4037e
CH
1851 __poll_t mask;
1852
1853 /* reject any unknown events outside the normal event mask. */
1854 if ((u16)iocb->aio_buf != iocb->aio_buf)
1855 return -EINVAL;
1856 /* reject fields that are not defined for poll */
1857 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1858 return -EINVAL;
1859
1860 INIT_WORK(&req->work, aio_poll_complete_work);
1861 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
bfe4037e 1862
2bc4ca9b 1863 req->head = NULL;
2bc4ca9b 1864 req->cancelled = false;
44496768
EB
1865 req->work_scheduled = false;
1866 req->work_need_resched = false;
2bc4ca9b 1867
bfe4037e
CH
1868 apt.pt._qproc = aio_poll_queue_proc;
1869 apt.pt._key = req->events;
1870 apt.iocb = aiocb;
f64c5cdc 1871 apt.queued = false;
bfe4037e
CH
1872 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1873
1874 /* initialized the list so that we can do list_empty checks */
1875 INIT_LIST_HEAD(&req->wait.entry);
1876 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1877
bfe4037e 1878 mask = vfs_poll(req->file, &apt.pt) & req->events;
bfe4037e 1879 spin_lock_irq(&ctx->ctx_lock);
f64c5cdc
EB
1880 if (likely(apt.queued)) {
1881 bool on_queue = poll_iocb_lock_wq(req);
1882
1883 if (!on_queue || req->work_scheduled) {
44496768
EB
1884 /*
1885 * aio_poll_wake() already either scheduled the async
1886 * completion work, or completed the request inline.
1887 */
1888 if (apt.error) /* unsupported case: multiple queues */
af5c72b1
AV
1889 cancel = true;
1890 apt.error = 0;
1891 mask = 0;
1892 }
1893 if (mask || apt.error) {
44496768 1894 /* Steal to complete synchronously. */
af5c72b1
AV
1895 list_del_init(&req->wait.entry);
1896 } else if (cancel) {
44496768 1897 /* Cancel if possible (may be too late though). */
af5c72b1 1898 WRITE_ONCE(req->cancelled, true);
f64c5cdc 1899 } else if (on_queue) {
44496768
EB
1900 /*
1901 * Actually waiting for an event, so add the request to
1902 * active_reqs so that it can be cancelled if needed.
1903 */
af5c72b1
AV
1904 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1905 aiocb->ki_cancel = aio_poll_cancel;
1906 }
f64c5cdc
EB
1907 if (on_queue)
1908 poll_iocb_unlock_wq(req);
af5c72b1
AV
1909 }
1910 if (mask) { /* no async, we'd stolen it */
1911 aiocb->ki_res.res = mangle_poll(mask);
bfe4037e 1912 apt.error = 0;
bfe4037e 1913 }
bfe4037e 1914 spin_unlock_irq(&ctx->ctx_lock);
bfe4037e 1915 if (mask)
af5c72b1
AV
1916 iocb_put(aiocb);
1917 return apt.error;
bfe4037e
CH
1918}
1919
88a6f18b 1920static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
7316b49c
AV
1921 struct iocb __user *user_iocb, struct aio_kiocb *req,
1922 bool compat)
1da177e4 1923{
84c4e1f8 1924 req->ki_filp = fget(iocb->aio_fildes);
84c4e1f8 1925 if (unlikely(!req->ki_filp))
7316b49c 1926 return -EBADF;
84c4e1f8 1927
88a6f18b 1928 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
74259703 1929 struct eventfd_ctx *eventfd;
9c3060be
DL
1930 /*
1931 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1932 * instance of the file* now. The file descriptor must be
1933 * an eventfd() fd, and will be signaled for each completed
1934 * event using the eventfd_signal() function.
1935 */
74259703 1936 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
7316b49c 1937 if (IS_ERR(eventfd))
18bfb9c6 1938 return PTR_ERR(eventfd);
7316b49c 1939
74259703 1940 req->ki_eventfd = eventfd;
9830f4be
GR
1941 }
1942
7316b49c 1943 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
caf4167a 1944 pr_debug("EFAULT: aio_key\n");
7316b49c 1945 return -EFAULT;
1da177e4
LT
1946 }
1947
a9339b78
AV
1948 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1949 req->ki_res.data = iocb->aio_data;
1950 req->ki_res.res = 0;
1951 req->ki_res.res2 = 0;
1da177e4 1952
88a6f18b 1953 switch (iocb->aio_lio_opcode) {
89319d31 1954 case IOCB_CMD_PREAD:
7316b49c 1955 return aio_read(&req->rw, iocb, false, compat);
89319d31 1956 case IOCB_CMD_PWRITE:
7316b49c 1957 return aio_write(&req->rw, iocb, false, compat);
89319d31 1958 case IOCB_CMD_PREADV:
7316b49c 1959 return aio_read(&req->rw, iocb, true, compat);
89319d31 1960 case IOCB_CMD_PWRITEV:
7316b49c 1961 return aio_write(&req->rw, iocb, true, compat);
a3c0d439 1962 case IOCB_CMD_FSYNC:
7316b49c 1963 return aio_fsync(&req->fsync, iocb, false);
a3c0d439 1964 case IOCB_CMD_FDSYNC:
7316b49c 1965 return aio_fsync(&req->fsync, iocb, true);
bfe4037e 1966 case IOCB_CMD_POLL:
7316b49c 1967 return aio_poll(req, iocb);
89319d31 1968 default:
88a6f18b 1969 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
7316b49c 1970 return -EINVAL;
89319d31 1971 }
1da177e4
LT
1972}
1973
88a6f18b
JA
1974static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1975 bool compat)
1976{
7316b49c 1977 struct aio_kiocb *req;
88a6f18b 1978 struct iocb iocb;
7316b49c 1979 int err;
88a6f18b
JA
1980
1981 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1982 return -EFAULT;
1983
7316b49c
AV
1984 /* enforce forwards compatibility on users */
1985 if (unlikely(iocb.aio_reserved2)) {
1986 pr_debug("EINVAL: reserve field set\n");
1987 return -EINVAL;
1988 }
1989
1990 /* prevent overflows */
1991 if (unlikely(
1992 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1993 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1994 ((ssize_t)iocb.aio_nbytes < 0)
1995 )) {
1996 pr_debug("EINVAL: overflow check\n");
1997 return -EINVAL;
1998 }
1999
2000 req = aio_get_req(ctx);
2001 if (unlikely(!req))
2002 return -EAGAIN;
2003
2004 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2005
2006 /* Done with the synchronous reference */
2007 iocb_put(req);
2008
2009 /*
2010 * If err is 0, we'd either done aio_complete() ourselves or have
2011 * arranged for that to be done asynchronously. Anything non-zero
2012 * means that we need to destroy req ourselves.
2013 */
2014 if (unlikely(err)) {
2015 iocb_destroy(req);
2016 put_reqs_available(ctx, 1);
2017 }
2018 return err;
88a6f18b
JA
2019}
2020
67ba049f
AV
2021/* sys_io_submit:
2022 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2023 * the number of iocbs queued. May return -EINVAL if the aio_context
2024 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2025 * *iocbpp[0] is not properly initialized, if the operation specified
2026 * is invalid for the file descriptor in the iocb. May fail with
2027 * -EFAULT if any of the data structures point to invalid data. May
2028 * fail with -EBADF if the file descriptor specified in the first
2029 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2030 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2031 * fail with -ENOSYS if not implemented.
2032 */
2033SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2034 struct iocb __user * __user *, iocbpp)
1da177e4
LT
2035{
2036 struct kioctx *ctx;
2037 long ret = 0;
080d676d 2038 int i = 0;
9f5b9425 2039 struct blk_plug plug;
1da177e4
LT
2040
2041 if (unlikely(nr < 0))
2042 return -EINVAL;
2043
1da177e4
LT
2044 ctx = lookup_ioctx(ctx_id);
2045 if (unlikely(!ctx)) {
caf4167a 2046 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
2047 return -EINVAL;
2048 }
2049
1da92779
AV
2050 if (nr > ctx->nr_events)
2051 nr = ctx->nr_events;
2052
a79d40e9
JA
2053 if (nr > AIO_PLUG_THRESHOLD)
2054 blk_start_plug(&plug);
67ba049f 2055 for (i = 0; i < nr; i++) {
1da177e4 2056 struct iocb __user *user_iocb;
1da177e4 2057
67ba049f 2058 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
2059 ret = -EFAULT;
2060 break;
2061 }
2062
67ba049f 2063 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
2064 if (ret)
2065 break;
2066 }
a79d40e9
JA
2067 if (nr > AIO_PLUG_THRESHOLD)
2068 blk_finish_plug(&plug);
1da177e4 2069
723be6e3 2070 percpu_ref_put(&ctx->users);
1da177e4
LT
2071 return i ? i : ret;
2072}
2073
c00d2c7e 2074#ifdef CONFIG_COMPAT
c00d2c7e 2075COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 2076 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 2077{
67ba049f
AV
2078 struct kioctx *ctx;
2079 long ret = 0;
2080 int i = 0;
2081 struct blk_plug plug;
c00d2c7e
AV
2082
2083 if (unlikely(nr < 0))
2084 return -EINVAL;
2085
67ba049f
AV
2086 ctx = lookup_ioctx(ctx_id);
2087 if (unlikely(!ctx)) {
2088 pr_debug("EINVAL: invalid context id\n");
2089 return -EINVAL;
2090 }
2091
1da92779
AV
2092 if (nr > ctx->nr_events)
2093 nr = ctx->nr_events;
2094
a79d40e9
JA
2095 if (nr > AIO_PLUG_THRESHOLD)
2096 blk_start_plug(&plug);
67ba049f
AV
2097 for (i = 0; i < nr; i++) {
2098 compat_uptr_t user_iocb;
2099
2100 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2101 ret = -EFAULT;
2102 break;
2103 }
2104
2105 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2106 if (ret)
2107 break;
2108 }
a79d40e9
JA
2109 if (nr > AIO_PLUG_THRESHOLD)
2110 blk_finish_plug(&plug);
67ba049f
AV
2111
2112 percpu_ref_put(&ctx->users);
2113 return i ? i : ret;
c00d2c7e
AV
2114}
2115#endif
2116
1da177e4
LT
2117/* sys_io_cancel:
2118 * Attempts to cancel an iocb previously passed to io_submit. If
2119 * the operation is successfully cancelled, the resulting event is
2120 * copied into the memory pointed to by result without being placed
2121 * into the completion queue and 0 is returned. May fail with
2122 * -EFAULT if any of the data structures pointed to are invalid.
2123 * May fail with -EINVAL if aio_context specified by ctx_id is
2124 * invalid. May fail with -EAGAIN if the iocb specified was not
2125 * cancelled. Will fail with -ENOSYS if not implemented.
2126 */
002c8976
HC
2127SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2128 struct io_event __user *, result)
1da177e4 2129{
1da177e4 2130 struct kioctx *ctx;
04b2fa9f 2131 struct aio_kiocb *kiocb;
888933f8 2132 int ret = -EINVAL;
1da177e4 2133 u32 key;
a9339b78 2134 u64 obj = (u64)(unsigned long)iocb;
1da177e4 2135
f3a2752a 2136 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 2137 return -EFAULT;
f3a2752a
CH
2138 if (unlikely(key != KIOCB_KEY))
2139 return -EINVAL;
1da177e4
LT
2140
2141 ctx = lookup_ioctx(ctx_id);
2142 if (unlikely(!ctx))
2143 return -EINVAL;
2144
2145 spin_lock_irq(&ctx->ctx_lock);
833f4154
AV
2146 /* TODO: use a hash or array, this sucks. */
2147 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
a9339b78 2148 if (kiocb->ki_res.obj == obj) {
833f4154
AV
2149 ret = kiocb->ki_cancel(&kiocb->rw);
2150 list_del_init(&kiocb->ki_list);
2151 break;
2152 }
888933f8 2153 }
1da177e4
LT
2154 spin_unlock_irq(&ctx->ctx_lock);
2155
906b973c 2156 if (!ret) {
bec68faa
KO
2157 /*
2158 * The result argument is no longer used - the io_event is
2159 * always delivered via the ring buffer. -EINPROGRESS indicates
2160 * cancellation is progress:
906b973c 2161 */
bec68faa 2162 ret = -EINPROGRESS;
906b973c 2163 }
1da177e4 2164
723be6e3 2165 percpu_ref_put(&ctx->users);
1da177e4
LT
2166
2167 return ret;
2168}
2169
fa2e62a5
DD
2170static long do_io_getevents(aio_context_t ctx_id,
2171 long min_nr,
2172 long nr,
2173 struct io_event __user *events,
2174 struct timespec64 *ts)
2175{
2176 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2177 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2178 long ret = -EINVAL;
2179
2180 if (likely(ioctx)) {
2181 if (likely(min_nr <= nr && min_nr >= 0))
2182 ret = read_events(ioctx, min_nr, nr, events, until);
2183 percpu_ref_put(&ioctx->users);
2184 }
2185
2186 return ret;
2187}
2188
1da177e4
LT
2189/* io_getevents:
2190 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2191 * the completion queue for the aio_context specified by ctx_id. If
2192 * it succeeds, the number of read events is returned. May fail with
2193 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2194 * out of range, if timeout is out of range. May fail with -EFAULT
2195 * if any of the memory specified is invalid. May return 0 or
2196 * < min_nr if the timeout specified by timeout has elapsed
2197 * before sufficient events are available, where timeout == NULL
2198 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2199 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2200 */
7a35397f
DD
2201#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2202
002c8976
HC
2203SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2204 long, min_nr,
2205 long, nr,
2206 struct io_event __user *, events,
7a35397f 2207 struct __kernel_timespec __user *, timeout)
1da177e4 2208{
fa2e62a5 2209 struct timespec64 ts;
7a074e96
CH
2210 int ret;
2211
2212 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2213 return -EFAULT;
2214
2215 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2216 if (!ret && signal_pending(current))
2217 ret = -EINTR;
2218 return ret;
2219}
1da177e4 2220
7a35397f
DD
2221#endif
2222
9ba546c0
CH
2223struct __aio_sigset {
2224 const sigset_t __user *sigmask;
2225 size_t sigsetsize;
2226};
2227
7a074e96
CH
2228SYSCALL_DEFINE6(io_pgetevents,
2229 aio_context_t, ctx_id,
2230 long, min_nr,
2231 long, nr,
2232 struct io_event __user *, events,
7a35397f 2233 struct __kernel_timespec __user *, timeout,
7a074e96
CH
2234 const struct __aio_sigset __user *, usig)
2235{
2236 struct __aio_sigset ksig = { NULL, };
7a074e96 2237 struct timespec64 ts;
97abc889 2238 bool interrupted;
7a074e96
CH
2239 int ret;
2240
2241 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2242 return -EFAULT;
2243
2244 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2245 return -EFAULT;
2246
b772434b 2247 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
7a35397f
DD
2248 if (ret)
2249 return ret;
7a074e96
CH
2250
2251 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2252
2253 interrupted = signal_pending(current);
b772434b 2254 restore_saved_sigmask_unless(interrupted);
97abc889 2255 if (interrupted && !ret)
7a35397f 2256 ret = -ERESTARTNOHAND;
7a074e96 2257
7a35397f
DD
2258 return ret;
2259}
2260
2261#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2262
2263SYSCALL_DEFINE6(io_pgetevents_time32,
2264 aio_context_t, ctx_id,
2265 long, min_nr,
2266 long, nr,
2267 struct io_event __user *, events,
2268 struct old_timespec32 __user *, timeout,
2269 const struct __aio_sigset __user *, usig)
2270{
2271 struct __aio_sigset ksig = { NULL, };
7a35397f 2272 struct timespec64 ts;
97abc889 2273 bool interrupted;
7a35397f
DD
2274 int ret;
2275
2276 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2277 return -EFAULT;
2278
2279 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2280 return -EFAULT;
2281
ded653cc 2282
b772434b 2283 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
ded653cc
DD
2284 if (ret)
2285 return ret;
7a074e96
CH
2286
2287 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2288
2289 interrupted = signal_pending(current);
b772434b 2290 restore_saved_sigmask_unless(interrupted);
97abc889 2291 if (interrupted && !ret)
854a6ed5 2292 ret = -ERESTARTNOHAND;
fa2e62a5 2293
7a074e96 2294 return ret;
1da177e4 2295}
c00d2c7e 2296
7a35397f
DD
2297#endif
2298
2299#if defined(CONFIG_COMPAT_32BIT_TIME)
2300
8dabe724
AB
2301SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2302 __s32, min_nr,
2303 __s32, nr,
2304 struct io_event __user *, events,
2305 struct old_timespec32 __user *, timeout)
c00d2c7e 2306{
fa2e62a5 2307 struct timespec64 t;
7a074e96
CH
2308 int ret;
2309
9afc5eee 2310 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2311 return -EFAULT;
2312
2313 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2314 if (!ret && signal_pending(current))
2315 ret = -EINTR;
2316 return ret;
2317}
2318
7a35397f
DD
2319#endif
2320
2321#ifdef CONFIG_COMPAT
c00d2c7e 2322
7a074e96 2323struct __compat_aio_sigset {
97eba80f 2324 compat_uptr_t sigmask;
7a074e96
CH
2325 compat_size_t sigsetsize;
2326};
2327
7a35397f
DD
2328#if defined(CONFIG_COMPAT_32BIT_TIME)
2329
7a074e96
CH
2330COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2331 compat_aio_context_t, ctx_id,
2332 compat_long_t, min_nr,
2333 compat_long_t, nr,
2334 struct io_event __user *, events,
9afc5eee 2335 struct old_timespec32 __user *, timeout,
7a074e96
CH
2336 const struct __compat_aio_sigset __user *, usig)
2337{
97eba80f 2338 struct __compat_aio_sigset ksig = { 0, };
7a074e96 2339 struct timespec64 t;
97abc889 2340 bool interrupted;
7a074e96
CH
2341 int ret;
2342
9afc5eee 2343 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2344 return -EFAULT;
2345
2346 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2347 return -EFAULT;
2348
97eba80f 2349 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
ded653cc
DD
2350 if (ret)
2351 return ret;
c00d2c7e 2352
7a074e96 2353 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2354
2355 interrupted = signal_pending(current);
b772434b 2356 restore_saved_sigmask_unless(interrupted);
97abc889 2357 if (interrupted && !ret)
854a6ed5 2358 ret = -ERESTARTNOHAND;
fa2e62a5 2359
7a074e96 2360 return ret;
c00d2c7e 2361}
7a35397f
DD
2362
2363#endif
2364
2365COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2366 compat_aio_context_t, ctx_id,
2367 compat_long_t, min_nr,
2368 compat_long_t, nr,
2369 struct io_event __user *, events,
2370 struct __kernel_timespec __user *, timeout,
2371 const struct __compat_aio_sigset __user *, usig)
2372{
97eba80f 2373 struct __compat_aio_sigset ksig = { 0, };
7a35397f 2374 struct timespec64 t;
97abc889 2375 bool interrupted;
7a35397f
DD
2376 int ret;
2377
2378 if (timeout && get_timespec64(&t, timeout))
2379 return -EFAULT;
2380
2381 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2382 return -EFAULT;
2383
97eba80f 2384 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
7a35397f
DD
2385 if (ret)
2386 return ret;
2387
2388 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2389
2390 interrupted = signal_pending(current);
b772434b 2391 restore_saved_sigmask_unless(interrupted);
97abc889 2392 if (interrupted && !ret)
7a35397f 2393 ret = -ERESTARTNOHAND;
fa2e62a5 2394
7a074e96 2395 return ret;
c00d2c7e
AV
2396}
2397#endif