]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
0fe23479 | 2 | * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> |
1da177e4 LT |
3 | * |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of the GNU General Public License version 2 as | |
6 | * published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
11 | * GNU General Public License for more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public Licens | |
14 | * along with this program; if not, write to the Free Software | |
15 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- | |
16 | * | |
17 | */ | |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/bio.h> | |
21 | #include <linux/blkdev.h> | |
22 | #include <linux/slab.h> | |
23 | #include <linux/init.h> | |
24 | #include <linux/kernel.h> | |
25 | #include <linux/module.h> | |
26 | #include <linux/mempool.h> | |
27 | #include <linux/workqueue.h> | |
2056a782 | 28 | #include <linux/blktrace_api.h> |
f1970baf | 29 | #include <scsi/sg.h> /* for struct sg_iovec */ |
1da177e4 | 30 | |
e18b890b | 31 | static struct kmem_cache *bio_slab __read_mostly; |
1da177e4 | 32 | |
fa3536cc | 33 | mempool_t *bio_split_pool __read_mostly; |
1da177e4 | 34 | |
1da177e4 LT |
35 | /* |
36 | * if you change this list, also change bvec_alloc or things will | |
37 | * break badly! cannot be bigger than what you can fit into an | |
38 | * unsigned short | |
39 | */ | |
40 | ||
41 | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } | |
6c036527 | 42 | static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { |
1da177e4 LT |
43 | BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), |
44 | }; | |
45 | #undef BV | |
46 | ||
1da177e4 LT |
47 | /* |
48 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | |
49 | * IO code that does not need private memory pools. | |
50 | */ | |
51d654e1 | 51 | struct bio_set *fs_bio_set; |
1da177e4 | 52 | |
7ba1ba12 MP |
53 | unsigned int bvec_nr_vecs(unsigned short idx) |
54 | { | |
55 | return bvec_slabs[idx].nr_vecs; | |
56 | } | |
57 | ||
51d654e1 | 58 | struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs) |
1da177e4 LT |
59 | { |
60 | struct bio_vec *bvl; | |
1da177e4 LT |
61 | |
62 | /* | |
63 | * see comment near bvec_array define! | |
64 | */ | |
65 | switch (nr) { | |
66 | case 1 : *idx = 0; break; | |
67 | case 2 ... 4: *idx = 1; break; | |
68 | case 5 ... 16: *idx = 2; break; | |
69 | case 17 ... 64: *idx = 3; break; | |
70 | case 65 ... 128: *idx = 4; break; | |
71 | case 129 ... BIO_MAX_PAGES: *idx = 5; break; | |
72 | default: | |
73 | return NULL; | |
74 | } | |
75 | /* | |
76 | * idx now points to the pool we want to allocate from | |
77 | */ | |
78 | ||
1da177e4 | 79 | bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask); |
1ac0ae06 DC |
80 | if (bvl) |
81 | memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec)); | |
1da177e4 LT |
82 | |
83 | return bvl; | |
84 | } | |
85 | ||
3676347a | 86 | void bio_free(struct bio *bio, struct bio_set *bio_set) |
1da177e4 | 87 | { |
992c5dda JA |
88 | if (bio->bi_io_vec) { |
89 | const int pool_idx = BIO_POOL_IDX(bio); | |
1da177e4 | 90 | |
992c5dda JA |
91 | BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS); |
92 | ||
93 | mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]); | |
94 | } | |
1da177e4 | 95 | |
7ba1ba12 MP |
96 | if (bio_integrity(bio)) |
97 | bio_integrity_free(bio, bio_set); | |
98 | ||
3676347a PO |
99 | mempool_free(bio, bio_set->bio_pool); |
100 | } | |
101 | ||
102 | /* | |
103 | * default destructor for a bio allocated with bio_alloc_bioset() | |
104 | */ | |
105 | static void bio_fs_destructor(struct bio *bio) | |
106 | { | |
107 | bio_free(bio, fs_bio_set); | |
1da177e4 LT |
108 | } |
109 | ||
858119e1 | 110 | void bio_init(struct bio *bio) |
1da177e4 | 111 | { |
2b94de55 | 112 | memset(bio, 0, sizeof(*bio)); |
1da177e4 | 113 | bio->bi_flags = 1 << BIO_UPTODATE; |
1da177e4 | 114 | atomic_set(&bio->bi_cnt, 1); |
1da177e4 LT |
115 | } |
116 | ||
117 | /** | |
118 | * bio_alloc_bioset - allocate a bio for I/O | |
119 | * @gfp_mask: the GFP_ mask given to the slab allocator | |
120 | * @nr_iovecs: number of iovecs to pre-allocate | |
67be2dd1 | 121 | * @bs: the bio_set to allocate from |
1da177e4 LT |
122 | * |
123 | * Description: | |
124 | * bio_alloc_bioset will first try it's on mempool to satisfy the allocation. | |
125 | * If %__GFP_WAIT is set then we will block on the internal pool waiting | |
126 | * for a &struct bio to become free. | |
127 | * | |
128 | * allocate bio and iovecs from the memory pools specified by the | |
129 | * bio_set structure. | |
130 | **/ | |
dd0fc66f | 131 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) |
1da177e4 LT |
132 | { |
133 | struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask); | |
134 | ||
135 | if (likely(bio)) { | |
136 | struct bio_vec *bvl = NULL; | |
137 | ||
138 | bio_init(bio); | |
139 | if (likely(nr_iovecs)) { | |
eeae1d48 | 140 | unsigned long uninitialized_var(idx); |
1da177e4 LT |
141 | |
142 | bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs); | |
143 | if (unlikely(!bvl)) { | |
144 | mempool_free(bio, bs->bio_pool); | |
145 | bio = NULL; | |
146 | goto out; | |
147 | } | |
148 | bio->bi_flags |= idx << BIO_POOL_OFFSET; | |
1ac0ae06 | 149 | bio->bi_max_vecs = bvec_nr_vecs(idx); |
1da177e4 LT |
150 | } |
151 | bio->bi_io_vec = bvl; | |
1da177e4 LT |
152 | } |
153 | out: | |
154 | return bio; | |
155 | } | |
156 | ||
dd0fc66f | 157 | struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs) |
1da177e4 | 158 | { |
3676347a PO |
159 | struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set); |
160 | ||
161 | if (bio) | |
162 | bio->bi_destructor = bio_fs_destructor; | |
163 | ||
164 | return bio; | |
1da177e4 LT |
165 | } |
166 | ||
167 | void zero_fill_bio(struct bio *bio) | |
168 | { | |
169 | unsigned long flags; | |
170 | struct bio_vec *bv; | |
171 | int i; | |
172 | ||
173 | bio_for_each_segment(bv, bio, i) { | |
174 | char *data = bvec_kmap_irq(bv, &flags); | |
175 | memset(data, 0, bv->bv_len); | |
176 | flush_dcache_page(bv->bv_page); | |
177 | bvec_kunmap_irq(data, &flags); | |
178 | } | |
179 | } | |
180 | EXPORT_SYMBOL(zero_fill_bio); | |
181 | ||
182 | /** | |
183 | * bio_put - release a reference to a bio | |
184 | * @bio: bio to release reference to | |
185 | * | |
186 | * Description: | |
187 | * Put a reference to a &struct bio, either one you have gotten with | |
188 | * bio_alloc or bio_get. The last put of a bio will free it. | |
189 | **/ | |
190 | void bio_put(struct bio *bio) | |
191 | { | |
192 | BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); | |
193 | ||
194 | /* | |
195 | * last put frees it | |
196 | */ | |
197 | if (atomic_dec_and_test(&bio->bi_cnt)) { | |
198 | bio->bi_next = NULL; | |
199 | bio->bi_destructor(bio); | |
200 | } | |
201 | } | |
202 | ||
165125e1 | 203 | inline int bio_phys_segments(struct request_queue *q, struct bio *bio) |
1da177e4 LT |
204 | { |
205 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | |
206 | blk_recount_segments(q, bio); | |
207 | ||
208 | return bio->bi_phys_segments; | |
209 | } | |
210 | ||
165125e1 | 211 | inline int bio_hw_segments(struct request_queue *q, struct bio *bio) |
1da177e4 LT |
212 | { |
213 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | |
214 | blk_recount_segments(q, bio); | |
215 | ||
216 | return bio->bi_hw_segments; | |
217 | } | |
218 | ||
219 | /** | |
220 | * __bio_clone - clone a bio | |
221 | * @bio: destination bio | |
222 | * @bio_src: bio to clone | |
223 | * | |
224 | * Clone a &bio. Caller will own the returned bio, but not | |
225 | * the actual data it points to. Reference count of returned | |
226 | * bio will be one. | |
227 | */ | |
858119e1 | 228 | void __bio_clone(struct bio *bio, struct bio *bio_src) |
1da177e4 | 229 | { |
e525e153 AM |
230 | memcpy(bio->bi_io_vec, bio_src->bi_io_vec, |
231 | bio_src->bi_max_vecs * sizeof(struct bio_vec)); | |
1da177e4 | 232 | |
5d84070e JA |
233 | /* |
234 | * most users will be overriding ->bi_bdev with a new target, | |
235 | * so we don't set nor calculate new physical/hw segment counts here | |
236 | */ | |
1da177e4 LT |
237 | bio->bi_sector = bio_src->bi_sector; |
238 | bio->bi_bdev = bio_src->bi_bdev; | |
239 | bio->bi_flags |= 1 << BIO_CLONED; | |
240 | bio->bi_rw = bio_src->bi_rw; | |
1da177e4 LT |
241 | bio->bi_vcnt = bio_src->bi_vcnt; |
242 | bio->bi_size = bio_src->bi_size; | |
a5453be4 | 243 | bio->bi_idx = bio_src->bi_idx; |
1da177e4 LT |
244 | } |
245 | ||
246 | /** | |
247 | * bio_clone - clone a bio | |
248 | * @bio: bio to clone | |
249 | * @gfp_mask: allocation priority | |
250 | * | |
251 | * Like __bio_clone, only also allocates the returned bio | |
252 | */ | |
dd0fc66f | 253 | struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) |
1da177e4 LT |
254 | { |
255 | struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set); | |
256 | ||
7ba1ba12 MP |
257 | if (!b) |
258 | return NULL; | |
259 | ||
260 | b->bi_destructor = bio_fs_destructor; | |
261 | __bio_clone(b, bio); | |
262 | ||
263 | if (bio_integrity(bio)) { | |
264 | int ret; | |
265 | ||
266 | ret = bio_integrity_clone(b, bio, fs_bio_set); | |
267 | ||
268 | if (ret < 0) | |
269 | return NULL; | |
3676347a | 270 | } |
1da177e4 LT |
271 | |
272 | return b; | |
273 | } | |
274 | ||
275 | /** | |
276 | * bio_get_nr_vecs - return approx number of vecs | |
277 | * @bdev: I/O target | |
278 | * | |
279 | * Return the approximate number of pages we can send to this target. | |
280 | * There's no guarantee that you will be able to fit this number of pages | |
281 | * into a bio, it does not account for dynamic restrictions that vary | |
282 | * on offset. | |
283 | */ | |
284 | int bio_get_nr_vecs(struct block_device *bdev) | |
285 | { | |
165125e1 | 286 | struct request_queue *q = bdev_get_queue(bdev); |
1da177e4 LT |
287 | int nr_pages; |
288 | ||
289 | nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
290 | if (nr_pages > q->max_phys_segments) | |
291 | nr_pages = q->max_phys_segments; | |
292 | if (nr_pages > q->max_hw_segments) | |
293 | nr_pages = q->max_hw_segments; | |
294 | ||
295 | return nr_pages; | |
296 | } | |
297 | ||
165125e1 | 298 | static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page |
defd94b7 MC |
299 | *page, unsigned int len, unsigned int offset, |
300 | unsigned short max_sectors) | |
1da177e4 LT |
301 | { |
302 | int retried_segments = 0; | |
303 | struct bio_vec *bvec; | |
304 | ||
305 | /* | |
306 | * cloned bio must not modify vec list | |
307 | */ | |
308 | if (unlikely(bio_flagged(bio, BIO_CLONED))) | |
309 | return 0; | |
310 | ||
80cfd548 | 311 | if (((bio->bi_size + len) >> 9) > max_sectors) |
1da177e4 LT |
312 | return 0; |
313 | ||
80cfd548 JA |
314 | /* |
315 | * For filesystems with a blocksize smaller than the pagesize | |
316 | * we will often be called with the same page as last time and | |
317 | * a consecutive offset. Optimize this special case. | |
318 | */ | |
319 | if (bio->bi_vcnt > 0) { | |
320 | struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | |
321 | ||
322 | if (page == prev->bv_page && | |
323 | offset == prev->bv_offset + prev->bv_len) { | |
324 | prev->bv_len += len; | |
cc371e66 AK |
325 | |
326 | if (q->merge_bvec_fn) { | |
327 | struct bvec_merge_data bvm = { | |
328 | .bi_bdev = bio->bi_bdev, | |
329 | .bi_sector = bio->bi_sector, | |
330 | .bi_size = bio->bi_size, | |
331 | .bi_rw = bio->bi_rw, | |
332 | }; | |
333 | ||
334 | if (q->merge_bvec_fn(q, &bvm, prev) < len) { | |
335 | prev->bv_len -= len; | |
336 | return 0; | |
337 | } | |
80cfd548 JA |
338 | } |
339 | ||
340 | goto done; | |
341 | } | |
342 | } | |
343 | ||
344 | if (bio->bi_vcnt >= bio->bi_max_vecs) | |
1da177e4 LT |
345 | return 0; |
346 | ||
347 | /* | |
348 | * we might lose a segment or two here, but rather that than | |
349 | * make this too complex. | |
350 | */ | |
351 | ||
352 | while (bio->bi_phys_segments >= q->max_phys_segments | |
353 | || bio->bi_hw_segments >= q->max_hw_segments | |
354 | || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) { | |
355 | ||
356 | if (retried_segments) | |
357 | return 0; | |
358 | ||
359 | retried_segments = 1; | |
360 | blk_recount_segments(q, bio); | |
361 | } | |
362 | ||
363 | /* | |
364 | * setup the new entry, we might clear it again later if we | |
365 | * cannot add the page | |
366 | */ | |
367 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; | |
368 | bvec->bv_page = page; | |
369 | bvec->bv_len = len; | |
370 | bvec->bv_offset = offset; | |
371 | ||
372 | /* | |
373 | * if queue has other restrictions (eg varying max sector size | |
374 | * depending on offset), it can specify a merge_bvec_fn in the | |
375 | * queue to get further control | |
376 | */ | |
377 | if (q->merge_bvec_fn) { | |
cc371e66 AK |
378 | struct bvec_merge_data bvm = { |
379 | .bi_bdev = bio->bi_bdev, | |
380 | .bi_sector = bio->bi_sector, | |
381 | .bi_size = bio->bi_size, | |
382 | .bi_rw = bio->bi_rw, | |
383 | }; | |
384 | ||
1da177e4 LT |
385 | /* |
386 | * merge_bvec_fn() returns number of bytes it can accept | |
387 | * at this offset | |
388 | */ | |
cc371e66 | 389 | if (q->merge_bvec_fn(q, &bvm, bvec) < len) { |
1da177e4 LT |
390 | bvec->bv_page = NULL; |
391 | bvec->bv_len = 0; | |
392 | bvec->bv_offset = 0; | |
393 | return 0; | |
394 | } | |
395 | } | |
396 | ||
397 | /* If we may be able to merge these biovecs, force a recount */ | |
398 | if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) || | |
399 | BIOVEC_VIRT_MERGEABLE(bvec-1, bvec))) | |
400 | bio->bi_flags &= ~(1 << BIO_SEG_VALID); | |
401 | ||
402 | bio->bi_vcnt++; | |
403 | bio->bi_phys_segments++; | |
404 | bio->bi_hw_segments++; | |
80cfd548 | 405 | done: |
1da177e4 LT |
406 | bio->bi_size += len; |
407 | return len; | |
408 | } | |
409 | ||
6e68af66 MC |
410 | /** |
411 | * bio_add_pc_page - attempt to add page to bio | |
fddfdeaf | 412 | * @q: the target queue |
6e68af66 MC |
413 | * @bio: destination bio |
414 | * @page: page to add | |
415 | * @len: vec entry length | |
416 | * @offset: vec entry offset | |
417 | * | |
418 | * Attempt to add a page to the bio_vec maplist. This can fail for a | |
419 | * number of reasons, such as the bio being full or target block | |
420 | * device limitations. The target block device must allow bio's | |
421 | * smaller than PAGE_SIZE, so it is always possible to add a single | |
422 | * page to an empty bio. This should only be used by REQ_PC bios. | |
423 | */ | |
165125e1 | 424 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, |
6e68af66 MC |
425 | unsigned int len, unsigned int offset) |
426 | { | |
defd94b7 | 427 | return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors); |
6e68af66 MC |
428 | } |
429 | ||
1da177e4 LT |
430 | /** |
431 | * bio_add_page - attempt to add page to bio | |
432 | * @bio: destination bio | |
433 | * @page: page to add | |
434 | * @len: vec entry length | |
435 | * @offset: vec entry offset | |
436 | * | |
437 | * Attempt to add a page to the bio_vec maplist. This can fail for a | |
438 | * number of reasons, such as the bio being full or target block | |
439 | * device limitations. The target block device must allow bio's | |
440 | * smaller than PAGE_SIZE, so it is always possible to add a single | |
441 | * page to an empty bio. | |
442 | */ | |
443 | int bio_add_page(struct bio *bio, struct page *page, unsigned int len, | |
444 | unsigned int offset) | |
445 | { | |
defd94b7 MC |
446 | struct request_queue *q = bdev_get_queue(bio->bi_bdev); |
447 | return __bio_add_page(q, bio, page, len, offset, q->max_sectors); | |
1da177e4 LT |
448 | } |
449 | ||
450 | struct bio_map_data { | |
451 | struct bio_vec *iovecs; | |
c5dec1c3 FT |
452 | int nr_sgvecs; |
453 | struct sg_iovec *sgvecs; | |
1da177e4 LT |
454 | }; |
455 | ||
c5dec1c3 FT |
456 | static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, |
457 | struct sg_iovec *iov, int iov_count) | |
1da177e4 LT |
458 | { |
459 | memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt); | |
c5dec1c3 FT |
460 | memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); |
461 | bmd->nr_sgvecs = iov_count; | |
1da177e4 LT |
462 | bio->bi_private = bmd; |
463 | } | |
464 | ||
465 | static void bio_free_map_data(struct bio_map_data *bmd) | |
466 | { | |
467 | kfree(bmd->iovecs); | |
c5dec1c3 | 468 | kfree(bmd->sgvecs); |
1da177e4 LT |
469 | kfree(bmd); |
470 | } | |
471 | ||
76029ff3 FT |
472 | static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count, |
473 | gfp_t gfp_mask) | |
1da177e4 | 474 | { |
76029ff3 | 475 | struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask); |
1da177e4 LT |
476 | |
477 | if (!bmd) | |
478 | return NULL; | |
479 | ||
76029ff3 | 480 | bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask); |
c5dec1c3 FT |
481 | if (!bmd->iovecs) { |
482 | kfree(bmd); | |
483 | return NULL; | |
484 | } | |
485 | ||
76029ff3 | 486 | bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask); |
c5dec1c3 | 487 | if (bmd->sgvecs) |
1da177e4 LT |
488 | return bmd; |
489 | ||
c5dec1c3 | 490 | kfree(bmd->iovecs); |
1da177e4 LT |
491 | kfree(bmd); |
492 | return NULL; | |
493 | } | |
494 | ||
aefcc28a FT |
495 | static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs, |
496 | struct sg_iovec *iov, int iov_count, int uncopy) | |
c5dec1c3 FT |
497 | { |
498 | int ret = 0, i; | |
499 | struct bio_vec *bvec; | |
500 | int iov_idx = 0; | |
501 | unsigned int iov_off = 0; | |
502 | int read = bio_data_dir(bio) == READ; | |
503 | ||
504 | __bio_for_each_segment(bvec, bio, i, 0) { | |
505 | char *bv_addr = page_address(bvec->bv_page); | |
aefcc28a | 506 | unsigned int bv_len = iovecs[i].bv_len; |
c5dec1c3 FT |
507 | |
508 | while (bv_len && iov_idx < iov_count) { | |
509 | unsigned int bytes; | |
510 | char *iov_addr; | |
511 | ||
512 | bytes = min_t(unsigned int, | |
513 | iov[iov_idx].iov_len - iov_off, bv_len); | |
514 | iov_addr = iov[iov_idx].iov_base + iov_off; | |
515 | ||
516 | if (!ret) { | |
517 | if (!read && !uncopy) | |
518 | ret = copy_from_user(bv_addr, iov_addr, | |
519 | bytes); | |
520 | if (read && uncopy) | |
521 | ret = copy_to_user(iov_addr, bv_addr, | |
522 | bytes); | |
523 | ||
524 | if (ret) | |
525 | ret = -EFAULT; | |
526 | } | |
527 | ||
528 | bv_len -= bytes; | |
529 | bv_addr += bytes; | |
530 | iov_addr += bytes; | |
531 | iov_off += bytes; | |
532 | ||
533 | if (iov[iov_idx].iov_len == iov_off) { | |
534 | iov_idx++; | |
535 | iov_off = 0; | |
536 | } | |
537 | } | |
538 | ||
539 | if (uncopy) | |
540 | __free_page(bvec->bv_page); | |
541 | } | |
542 | ||
543 | return ret; | |
544 | } | |
545 | ||
1da177e4 LT |
546 | /** |
547 | * bio_uncopy_user - finish previously mapped bio | |
548 | * @bio: bio being terminated | |
549 | * | |
550 | * Free pages allocated from bio_copy_user() and write back data | |
551 | * to user space in case of a read. | |
552 | */ | |
553 | int bio_uncopy_user(struct bio *bio) | |
554 | { | |
555 | struct bio_map_data *bmd = bio->bi_private; | |
c5dec1c3 | 556 | int ret; |
1da177e4 | 557 | |
aefcc28a | 558 | ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, bmd->nr_sgvecs, 1); |
1da177e4 | 559 | |
1da177e4 LT |
560 | bio_free_map_data(bmd); |
561 | bio_put(bio); | |
562 | return ret; | |
563 | } | |
564 | ||
565 | /** | |
c5dec1c3 | 566 | * bio_copy_user_iov - copy user data to bio |
1da177e4 | 567 | * @q: destination block queue |
c5dec1c3 FT |
568 | * @iov: the iovec. |
569 | * @iov_count: number of elements in the iovec | |
1da177e4 LT |
570 | * @write_to_vm: bool indicating writing to pages or not |
571 | * | |
572 | * Prepares and returns a bio for indirect user io, bouncing data | |
573 | * to/from kernel pages as necessary. Must be paired with | |
574 | * call bio_uncopy_user() on io completion. | |
575 | */ | |
c5dec1c3 FT |
576 | struct bio *bio_copy_user_iov(struct request_queue *q, struct sg_iovec *iov, |
577 | int iov_count, int write_to_vm) | |
1da177e4 | 578 | { |
1da177e4 LT |
579 | struct bio_map_data *bmd; |
580 | struct bio_vec *bvec; | |
581 | struct page *page; | |
582 | struct bio *bio; | |
583 | int i, ret; | |
c5dec1c3 FT |
584 | int nr_pages = 0; |
585 | unsigned int len = 0; | |
1da177e4 | 586 | |
c5dec1c3 FT |
587 | for (i = 0; i < iov_count; i++) { |
588 | unsigned long uaddr; | |
589 | unsigned long end; | |
590 | unsigned long start; | |
591 | ||
592 | uaddr = (unsigned long)iov[i].iov_base; | |
593 | end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
594 | start = uaddr >> PAGE_SHIFT; | |
595 | ||
596 | nr_pages += end - start; | |
597 | len += iov[i].iov_len; | |
598 | } | |
599 | ||
76029ff3 | 600 | bmd = bio_alloc_map_data(nr_pages, iov_count, GFP_KERNEL); |
1da177e4 LT |
601 | if (!bmd) |
602 | return ERR_PTR(-ENOMEM); | |
603 | ||
1da177e4 | 604 | ret = -ENOMEM; |
c5dec1c3 | 605 | bio = bio_alloc(GFP_KERNEL, nr_pages); |
1da177e4 LT |
606 | if (!bio) |
607 | goto out_bmd; | |
608 | ||
609 | bio->bi_rw |= (!write_to_vm << BIO_RW); | |
610 | ||
611 | ret = 0; | |
612 | while (len) { | |
613 | unsigned int bytes = PAGE_SIZE; | |
614 | ||
615 | if (bytes > len) | |
616 | bytes = len; | |
617 | ||
618 | page = alloc_page(q->bounce_gfp | GFP_KERNEL); | |
619 | if (!page) { | |
620 | ret = -ENOMEM; | |
621 | break; | |
622 | } | |
623 | ||
0e75f906 | 624 | if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) |
1da177e4 | 625 | break; |
1da177e4 LT |
626 | |
627 | len -= bytes; | |
628 | } | |
629 | ||
630 | if (ret) | |
631 | goto cleanup; | |
632 | ||
633 | /* | |
634 | * success | |
635 | */ | |
636 | if (!write_to_vm) { | |
aefcc28a | 637 | ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0); |
c5dec1c3 FT |
638 | if (ret) |
639 | goto cleanup; | |
1da177e4 LT |
640 | } |
641 | ||
c5dec1c3 | 642 | bio_set_map_data(bmd, bio, iov, iov_count); |
1da177e4 LT |
643 | return bio; |
644 | cleanup: | |
645 | bio_for_each_segment(bvec, bio, i) | |
646 | __free_page(bvec->bv_page); | |
647 | ||
648 | bio_put(bio); | |
649 | out_bmd: | |
650 | bio_free_map_data(bmd); | |
651 | return ERR_PTR(ret); | |
652 | } | |
653 | ||
c5dec1c3 FT |
654 | /** |
655 | * bio_copy_user - copy user data to bio | |
656 | * @q: destination block queue | |
657 | * @uaddr: start of user address | |
658 | * @len: length in bytes | |
659 | * @write_to_vm: bool indicating writing to pages or not | |
660 | * | |
661 | * Prepares and returns a bio for indirect user io, bouncing data | |
662 | * to/from kernel pages as necessary. Must be paired with | |
663 | * call bio_uncopy_user() on io completion. | |
664 | */ | |
665 | struct bio *bio_copy_user(struct request_queue *q, unsigned long uaddr, | |
666 | unsigned int len, int write_to_vm) | |
667 | { | |
668 | struct sg_iovec iov; | |
669 | ||
670 | iov.iov_base = (void __user *)uaddr; | |
671 | iov.iov_len = len; | |
672 | ||
673 | return bio_copy_user_iov(q, &iov, 1, write_to_vm); | |
674 | } | |
675 | ||
165125e1 | 676 | static struct bio *__bio_map_user_iov(struct request_queue *q, |
f1970baf JB |
677 | struct block_device *bdev, |
678 | struct sg_iovec *iov, int iov_count, | |
679 | int write_to_vm) | |
1da177e4 | 680 | { |
f1970baf JB |
681 | int i, j; |
682 | int nr_pages = 0; | |
1da177e4 LT |
683 | struct page **pages; |
684 | struct bio *bio; | |
f1970baf JB |
685 | int cur_page = 0; |
686 | int ret, offset; | |
1da177e4 | 687 | |
f1970baf JB |
688 | for (i = 0; i < iov_count; i++) { |
689 | unsigned long uaddr = (unsigned long)iov[i].iov_base; | |
690 | unsigned long len = iov[i].iov_len; | |
691 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
692 | unsigned long start = uaddr >> PAGE_SHIFT; | |
693 | ||
694 | nr_pages += end - start; | |
695 | /* | |
ad2d7225 | 696 | * buffer must be aligned to at least hardsector size for now |
f1970baf | 697 | */ |
ad2d7225 | 698 | if (uaddr & queue_dma_alignment(q)) |
f1970baf JB |
699 | return ERR_PTR(-EINVAL); |
700 | } | |
701 | ||
702 | if (!nr_pages) | |
1da177e4 LT |
703 | return ERR_PTR(-EINVAL); |
704 | ||
705 | bio = bio_alloc(GFP_KERNEL, nr_pages); | |
706 | if (!bio) | |
707 | return ERR_PTR(-ENOMEM); | |
708 | ||
709 | ret = -ENOMEM; | |
11b0b5ab | 710 | pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); |
1da177e4 LT |
711 | if (!pages) |
712 | goto out; | |
713 | ||
f1970baf JB |
714 | for (i = 0; i < iov_count; i++) { |
715 | unsigned long uaddr = (unsigned long)iov[i].iov_base; | |
716 | unsigned long len = iov[i].iov_len; | |
717 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
718 | unsigned long start = uaddr >> PAGE_SHIFT; | |
719 | const int local_nr_pages = end - start; | |
720 | const int page_limit = cur_page + local_nr_pages; | |
721 | ||
f5dd33c4 NP |
722 | ret = get_user_pages_fast(uaddr, local_nr_pages, |
723 | write_to_vm, &pages[cur_page]); | |
99172157 JA |
724 | if (ret < local_nr_pages) { |
725 | ret = -EFAULT; | |
f1970baf | 726 | goto out_unmap; |
99172157 | 727 | } |
f1970baf JB |
728 | |
729 | offset = uaddr & ~PAGE_MASK; | |
730 | for (j = cur_page; j < page_limit; j++) { | |
731 | unsigned int bytes = PAGE_SIZE - offset; | |
732 | ||
733 | if (len <= 0) | |
734 | break; | |
735 | ||
736 | if (bytes > len) | |
737 | bytes = len; | |
738 | ||
739 | /* | |
740 | * sorry... | |
741 | */ | |
defd94b7 MC |
742 | if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < |
743 | bytes) | |
f1970baf JB |
744 | break; |
745 | ||
746 | len -= bytes; | |
747 | offset = 0; | |
748 | } | |
1da177e4 | 749 | |
f1970baf | 750 | cur_page = j; |
1da177e4 | 751 | /* |
f1970baf | 752 | * release the pages we didn't map into the bio, if any |
1da177e4 | 753 | */ |
f1970baf JB |
754 | while (j < page_limit) |
755 | page_cache_release(pages[j++]); | |
1da177e4 LT |
756 | } |
757 | ||
1da177e4 LT |
758 | kfree(pages); |
759 | ||
760 | /* | |
761 | * set data direction, and check if mapped pages need bouncing | |
762 | */ | |
763 | if (!write_to_vm) | |
764 | bio->bi_rw |= (1 << BIO_RW); | |
765 | ||
f1970baf | 766 | bio->bi_bdev = bdev; |
1da177e4 LT |
767 | bio->bi_flags |= (1 << BIO_USER_MAPPED); |
768 | return bio; | |
f1970baf JB |
769 | |
770 | out_unmap: | |
771 | for (i = 0; i < nr_pages; i++) { | |
772 | if(!pages[i]) | |
773 | break; | |
774 | page_cache_release(pages[i]); | |
775 | } | |
776 | out: | |
1da177e4 LT |
777 | kfree(pages); |
778 | bio_put(bio); | |
779 | return ERR_PTR(ret); | |
780 | } | |
781 | ||
782 | /** | |
783 | * bio_map_user - map user address into bio | |
165125e1 | 784 | * @q: the struct request_queue for the bio |
1da177e4 LT |
785 | * @bdev: destination block device |
786 | * @uaddr: start of user address | |
787 | * @len: length in bytes | |
788 | * @write_to_vm: bool indicating writing to pages or not | |
789 | * | |
790 | * Map the user space address into a bio suitable for io to a block | |
791 | * device. Returns an error pointer in case of error. | |
792 | */ | |
165125e1 | 793 | struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, |
1da177e4 | 794 | unsigned long uaddr, unsigned int len, int write_to_vm) |
f1970baf JB |
795 | { |
796 | struct sg_iovec iov; | |
797 | ||
3f70353e | 798 | iov.iov_base = (void __user *)uaddr; |
f1970baf JB |
799 | iov.iov_len = len; |
800 | ||
801 | return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm); | |
802 | } | |
803 | ||
804 | /** | |
805 | * bio_map_user_iov - map user sg_iovec table into bio | |
165125e1 | 806 | * @q: the struct request_queue for the bio |
f1970baf JB |
807 | * @bdev: destination block device |
808 | * @iov: the iovec. | |
809 | * @iov_count: number of elements in the iovec | |
810 | * @write_to_vm: bool indicating writing to pages or not | |
811 | * | |
812 | * Map the user space address into a bio suitable for io to a block | |
813 | * device. Returns an error pointer in case of error. | |
814 | */ | |
165125e1 | 815 | struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, |
f1970baf JB |
816 | struct sg_iovec *iov, int iov_count, |
817 | int write_to_vm) | |
1da177e4 LT |
818 | { |
819 | struct bio *bio; | |
820 | ||
f1970baf | 821 | bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm); |
1da177e4 LT |
822 | |
823 | if (IS_ERR(bio)) | |
824 | return bio; | |
825 | ||
826 | /* | |
827 | * subtle -- if __bio_map_user() ended up bouncing a bio, | |
828 | * it would normally disappear when its bi_end_io is run. | |
829 | * however, we need it for the unmap, so grab an extra | |
830 | * reference to it | |
831 | */ | |
832 | bio_get(bio); | |
833 | ||
0e75f906 | 834 | return bio; |
1da177e4 LT |
835 | } |
836 | ||
837 | static void __bio_unmap_user(struct bio *bio) | |
838 | { | |
839 | struct bio_vec *bvec; | |
840 | int i; | |
841 | ||
842 | /* | |
843 | * make sure we dirty pages we wrote to | |
844 | */ | |
845 | __bio_for_each_segment(bvec, bio, i, 0) { | |
846 | if (bio_data_dir(bio) == READ) | |
847 | set_page_dirty_lock(bvec->bv_page); | |
848 | ||
849 | page_cache_release(bvec->bv_page); | |
850 | } | |
851 | ||
852 | bio_put(bio); | |
853 | } | |
854 | ||
855 | /** | |
856 | * bio_unmap_user - unmap a bio | |
857 | * @bio: the bio being unmapped | |
858 | * | |
859 | * Unmap a bio previously mapped by bio_map_user(). Must be called with | |
860 | * a process context. | |
861 | * | |
862 | * bio_unmap_user() may sleep. | |
863 | */ | |
864 | void bio_unmap_user(struct bio *bio) | |
865 | { | |
866 | __bio_unmap_user(bio); | |
867 | bio_put(bio); | |
868 | } | |
869 | ||
6712ecf8 | 870 | static void bio_map_kern_endio(struct bio *bio, int err) |
b823825e | 871 | { |
b823825e | 872 | bio_put(bio); |
b823825e JA |
873 | } |
874 | ||
875 | ||
165125e1 | 876 | static struct bio *__bio_map_kern(struct request_queue *q, void *data, |
27496a8c | 877 | unsigned int len, gfp_t gfp_mask) |
df46b9a4 MC |
878 | { |
879 | unsigned long kaddr = (unsigned long)data; | |
880 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
881 | unsigned long start = kaddr >> PAGE_SHIFT; | |
882 | const int nr_pages = end - start; | |
883 | int offset, i; | |
884 | struct bio *bio; | |
885 | ||
886 | bio = bio_alloc(gfp_mask, nr_pages); | |
887 | if (!bio) | |
888 | return ERR_PTR(-ENOMEM); | |
889 | ||
890 | offset = offset_in_page(kaddr); | |
891 | for (i = 0; i < nr_pages; i++) { | |
892 | unsigned int bytes = PAGE_SIZE - offset; | |
893 | ||
894 | if (len <= 0) | |
895 | break; | |
896 | ||
897 | if (bytes > len) | |
898 | bytes = len; | |
899 | ||
defd94b7 MC |
900 | if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, |
901 | offset) < bytes) | |
df46b9a4 MC |
902 | break; |
903 | ||
904 | data += bytes; | |
905 | len -= bytes; | |
906 | offset = 0; | |
907 | } | |
908 | ||
b823825e | 909 | bio->bi_end_io = bio_map_kern_endio; |
df46b9a4 MC |
910 | return bio; |
911 | } | |
912 | ||
913 | /** | |
914 | * bio_map_kern - map kernel address into bio | |
165125e1 | 915 | * @q: the struct request_queue for the bio |
df46b9a4 MC |
916 | * @data: pointer to buffer to map |
917 | * @len: length in bytes | |
918 | * @gfp_mask: allocation flags for bio allocation | |
919 | * | |
920 | * Map the kernel address into a bio suitable for io to a block | |
921 | * device. Returns an error pointer in case of error. | |
922 | */ | |
165125e1 | 923 | struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, |
27496a8c | 924 | gfp_t gfp_mask) |
df46b9a4 MC |
925 | { |
926 | struct bio *bio; | |
927 | ||
928 | bio = __bio_map_kern(q, data, len, gfp_mask); | |
929 | if (IS_ERR(bio)) | |
930 | return bio; | |
931 | ||
932 | if (bio->bi_size == len) | |
933 | return bio; | |
934 | ||
935 | /* | |
936 | * Don't support partial mappings. | |
937 | */ | |
938 | bio_put(bio); | |
939 | return ERR_PTR(-EINVAL); | |
940 | } | |
941 | ||
68154e90 FT |
942 | static void bio_copy_kern_endio(struct bio *bio, int err) |
943 | { | |
944 | struct bio_vec *bvec; | |
945 | const int read = bio_data_dir(bio) == READ; | |
76029ff3 | 946 | struct bio_map_data *bmd = bio->bi_private; |
68154e90 | 947 | int i; |
76029ff3 | 948 | char *p = bmd->sgvecs[0].iov_base; |
68154e90 FT |
949 | |
950 | __bio_for_each_segment(bvec, bio, i, 0) { | |
951 | char *addr = page_address(bvec->bv_page); | |
76029ff3 | 952 | int len = bmd->iovecs[i].bv_len; |
68154e90 FT |
953 | |
954 | if (read && !err) | |
76029ff3 | 955 | memcpy(p, addr, len); |
68154e90 FT |
956 | |
957 | __free_page(bvec->bv_page); | |
76029ff3 | 958 | p += len; |
68154e90 FT |
959 | } |
960 | ||
76029ff3 | 961 | bio_free_map_data(bmd); |
68154e90 FT |
962 | bio_put(bio); |
963 | } | |
964 | ||
965 | /** | |
966 | * bio_copy_kern - copy kernel address into bio | |
967 | * @q: the struct request_queue for the bio | |
968 | * @data: pointer to buffer to copy | |
969 | * @len: length in bytes | |
970 | * @gfp_mask: allocation flags for bio and page allocation | |
ffee0259 | 971 | * @reading: data direction is READ |
68154e90 FT |
972 | * |
973 | * copy the kernel address into a bio suitable for io to a block | |
974 | * device. Returns an error pointer in case of error. | |
975 | */ | |
976 | struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, | |
977 | gfp_t gfp_mask, int reading) | |
978 | { | |
979 | unsigned long kaddr = (unsigned long)data; | |
980 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
981 | unsigned long start = kaddr >> PAGE_SHIFT; | |
982 | const int nr_pages = end - start; | |
983 | struct bio *bio; | |
984 | struct bio_vec *bvec; | |
76029ff3 | 985 | struct bio_map_data *bmd; |
68154e90 | 986 | int i, ret; |
76029ff3 FT |
987 | struct sg_iovec iov; |
988 | ||
989 | iov.iov_base = data; | |
990 | iov.iov_len = len; | |
991 | ||
992 | bmd = bio_alloc_map_data(nr_pages, 1, gfp_mask); | |
993 | if (!bmd) | |
994 | return ERR_PTR(-ENOMEM); | |
68154e90 | 995 | |
76029ff3 | 996 | ret = -ENOMEM; |
68154e90 FT |
997 | bio = bio_alloc(gfp_mask, nr_pages); |
998 | if (!bio) | |
76029ff3 | 999 | goto out_bmd; |
68154e90 FT |
1000 | |
1001 | while (len) { | |
1002 | struct page *page; | |
1003 | unsigned int bytes = PAGE_SIZE; | |
1004 | ||
1005 | if (bytes > len) | |
1006 | bytes = len; | |
1007 | ||
1008 | page = alloc_page(q->bounce_gfp | gfp_mask); | |
1009 | if (!page) { | |
1010 | ret = -ENOMEM; | |
1011 | goto cleanup; | |
1012 | } | |
1013 | ||
1014 | if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) { | |
1015 | ret = -EINVAL; | |
1016 | goto cleanup; | |
1017 | } | |
1018 | ||
1019 | len -= bytes; | |
1020 | } | |
1021 | ||
1022 | if (!reading) { | |
1023 | void *p = data; | |
1024 | ||
1025 | bio_for_each_segment(bvec, bio, i) { | |
1026 | char *addr = page_address(bvec->bv_page); | |
1027 | ||
1028 | memcpy(addr, p, bvec->bv_len); | |
1029 | p += bvec->bv_len; | |
1030 | } | |
1031 | } | |
1032 | ||
76029ff3 | 1033 | bio->bi_private = bmd; |
68154e90 | 1034 | bio->bi_end_io = bio_copy_kern_endio; |
76029ff3 FT |
1035 | |
1036 | bio_set_map_data(bmd, bio, &iov, 1); | |
68154e90 FT |
1037 | return bio; |
1038 | cleanup: | |
1039 | bio_for_each_segment(bvec, bio, i) | |
1040 | __free_page(bvec->bv_page); | |
1041 | ||
1042 | bio_put(bio); | |
76029ff3 FT |
1043 | out_bmd: |
1044 | bio_free_map_data(bmd); | |
68154e90 FT |
1045 | |
1046 | return ERR_PTR(ret); | |
1047 | } | |
1048 | ||
1da177e4 LT |
1049 | /* |
1050 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | |
1051 | * for performing direct-IO in BIOs. | |
1052 | * | |
1053 | * The problem is that we cannot run set_page_dirty() from interrupt context | |
1054 | * because the required locks are not interrupt-safe. So what we can do is to | |
1055 | * mark the pages dirty _before_ performing IO. And in interrupt context, | |
1056 | * check that the pages are still dirty. If so, fine. If not, redirty them | |
1057 | * in process context. | |
1058 | * | |
1059 | * We special-case compound pages here: normally this means reads into hugetlb | |
1060 | * pages. The logic in here doesn't really work right for compound pages | |
1061 | * because the VM does not uniformly chase down the head page in all cases. | |
1062 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | |
1063 | * handle them at all. So we skip compound pages here at an early stage. | |
1064 | * | |
1065 | * Note that this code is very hard to test under normal circumstances because | |
1066 | * direct-io pins the pages with get_user_pages(). This makes | |
1067 | * is_page_cache_freeable return false, and the VM will not clean the pages. | |
1068 | * But other code (eg, pdflush) could clean the pages if they are mapped | |
1069 | * pagecache. | |
1070 | * | |
1071 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | |
1072 | * deferred bio dirtying paths. | |
1073 | */ | |
1074 | ||
1075 | /* | |
1076 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | |
1077 | */ | |
1078 | void bio_set_pages_dirty(struct bio *bio) | |
1079 | { | |
1080 | struct bio_vec *bvec = bio->bi_io_vec; | |
1081 | int i; | |
1082 | ||
1083 | for (i = 0; i < bio->bi_vcnt; i++) { | |
1084 | struct page *page = bvec[i].bv_page; | |
1085 | ||
1086 | if (page && !PageCompound(page)) | |
1087 | set_page_dirty_lock(page); | |
1088 | } | |
1089 | } | |
1090 | ||
86b6c7a7 | 1091 | static void bio_release_pages(struct bio *bio) |
1da177e4 LT |
1092 | { |
1093 | struct bio_vec *bvec = bio->bi_io_vec; | |
1094 | int i; | |
1095 | ||
1096 | for (i = 0; i < bio->bi_vcnt; i++) { | |
1097 | struct page *page = bvec[i].bv_page; | |
1098 | ||
1099 | if (page) | |
1100 | put_page(page); | |
1101 | } | |
1102 | } | |
1103 | ||
1104 | /* | |
1105 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | |
1106 | * If they are, then fine. If, however, some pages are clean then they must | |
1107 | * have been written out during the direct-IO read. So we take another ref on | |
1108 | * the BIO and the offending pages and re-dirty the pages in process context. | |
1109 | * | |
1110 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | |
1111 | * here on. It will run one page_cache_release() against each page and will | |
1112 | * run one bio_put() against the BIO. | |
1113 | */ | |
1114 | ||
65f27f38 | 1115 | static void bio_dirty_fn(struct work_struct *work); |
1da177e4 | 1116 | |
65f27f38 | 1117 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); |
1da177e4 LT |
1118 | static DEFINE_SPINLOCK(bio_dirty_lock); |
1119 | static struct bio *bio_dirty_list; | |
1120 | ||
1121 | /* | |
1122 | * This runs in process context | |
1123 | */ | |
65f27f38 | 1124 | static void bio_dirty_fn(struct work_struct *work) |
1da177e4 LT |
1125 | { |
1126 | unsigned long flags; | |
1127 | struct bio *bio; | |
1128 | ||
1129 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1130 | bio = bio_dirty_list; | |
1131 | bio_dirty_list = NULL; | |
1132 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1133 | ||
1134 | while (bio) { | |
1135 | struct bio *next = bio->bi_private; | |
1136 | ||
1137 | bio_set_pages_dirty(bio); | |
1138 | bio_release_pages(bio); | |
1139 | bio_put(bio); | |
1140 | bio = next; | |
1141 | } | |
1142 | } | |
1143 | ||
1144 | void bio_check_pages_dirty(struct bio *bio) | |
1145 | { | |
1146 | struct bio_vec *bvec = bio->bi_io_vec; | |
1147 | int nr_clean_pages = 0; | |
1148 | int i; | |
1149 | ||
1150 | for (i = 0; i < bio->bi_vcnt; i++) { | |
1151 | struct page *page = bvec[i].bv_page; | |
1152 | ||
1153 | if (PageDirty(page) || PageCompound(page)) { | |
1154 | page_cache_release(page); | |
1155 | bvec[i].bv_page = NULL; | |
1156 | } else { | |
1157 | nr_clean_pages++; | |
1158 | } | |
1159 | } | |
1160 | ||
1161 | if (nr_clean_pages) { | |
1162 | unsigned long flags; | |
1163 | ||
1164 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1165 | bio->bi_private = bio_dirty_list; | |
1166 | bio_dirty_list = bio; | |
1167 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1168 | schedule_work(&bio_dirty_work); | |
1169 | } else { | |
1170 | bio_put(bio); | |
1171 | } | |
1172 | } | |
1173 | ||
1174 | /** | |
1175 | * bio_endio - end I/O on a bio | |
1176 | * @bio: bio | |
1da177e4 LT |
1177 | * @error: error, if any |
1178 | * | |
1179 | * Description: | |
6712ecf8 | 1180 | * bio_endio() will end I/O on the whole bio. bio_endio() is the |
5bb23a68 N |
1181 | * preferred way to end I/O on a bio, it takes care of clearing |
1182 | * BIO_UPTODATE on error. @error is 0 on success, and and one of the | |
1183 | * established -Exxxx (-EIO, for instance) error values in case | |
1184 | * something went wrong. Noone should call bi_end_io() directly on a | |
1185 | * bio unless they own it and thus know that it has an end_io | |
1186 | * function. | |
1da177e4 | 1187 | **/ |
6712ecf8 | 1188 | void bio_endio(struct bio *bio, int error) |
1da177e4 LT |
1189 | { |
1190 | if (error) | |
1191 | clear_bit(BIO_UPTODATE, &bio->bi_flags); | |
9cc54d40 N |
1192 | else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) |
1193 | error = -EIO; | |
1da177e4 | 1194 | |
5bb23a68 | 1195 | if (bio->bi_end_io) |
6712ecf8 | 1196 | bio->bi_end_io(bio, error); |
1da177e4 LT |
1197 | } |
1198 | ||
1199 | void bio_pair_release(struct bio_pair *bp) | |
1200 | { | |
1201 | if (atomic_dec_and_test(&bp->cnt)) { | |
1202 | struct bio *master = bp->bio1.bi_private; | |
1203 | ||
6712ecf8 | 1204 | bio_endio(master, bp->error); |
1da177e4 LT |
1205 | mempool_free(bp, bp->bio2.bi_private); |
1206 | } | |
1207 | } | |
1208 | ||
6712ecf8 | 1209 | static void bio_pair_end_1(struct bio *bi, int err) |
1da177e4 LT |
1210 | { |
1211 | struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); | |
1212 | ||
1213 | if (err) | |
1214 | bp->error = err; | |
1215 | ||
1da177e4 | 1216 | bio_pair_release(bp); |
1da177e4 LT |
1217 | } |
1218 | ||
6712ecf8 | 1219 | static void bio_pair_end_2(struct bio *bi, int err) |
1da177e4 LT |
1220 | { |
1221 | struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); | |
1222 | ||
1223 | if (err) | |
1224 | bp->error = err; | |
1225 | ||
1da177e4 | 1226 | bio_pair_release(bp); |
1da177e4 LT |
1227 | } |
1228 | ||
1229 | /* | |
1230 | * split a bio - only worry about a bio with a single page | |
1231 | * in it's iovec | |
1232 | */ | |
1233 | struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors) | |
1234 | { | |
1235 | struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO); | |
1236 | ||
1237 | if (!bp) | |
1238 | return bp; | |
1239 | ||
2056a782 JA |
1240 | blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi, |
1241 | bi->bi_sector + first_sectors); | |
1242 | ||
1da177e4 LT |
1243 | BUG_ON(bi->bi_vcnt != 1); |
1244 | BUG_ON(bi->bi_idx != 0); | |
1245 | atomic_set(&bp->cnt, 3); | |
1246 | bp->error = 0; | |
1247 | bp->bio1 = *bi; | |
1248 | bp->bio2 = *bi; | |
1249 | bp->bio2.bi_sector += first_sectors; | |
1250 | bp->bio2.bi_size -= first_sectors << 9; | |
1251 | bp->bio1.bi_size = first_sectors << 9; | |
1252 | ||
1253 | bp->bv1 = bi->bi_io_vec[0]; | |
1254 | bp->bv2 = bi->bi_io_vec[0]; | |
1255 | bp->bv2.bv_offset += first_sectors << 9; | |
1256 | bp->bv2.bv_len -= first_sectors << 9; | |
1257 | bp->bv1.bv_len = first_sectors << 9; | |
1258 | ||
1259 | bp->bio1.bi_io_vec = &bp->bv1; | |
1260 | bp->bio2.bi_io_vec = &bp->bv2; | |
1261 | ||
a2eb0c10 N |
1262 | bp->bio1.bi_max_vecs = 1; |
1263 | bp->bio2.bi_max_vecs = 1; | |
1264 | ||
1da177e4 LT |
1265 | bp->bio1.bi_end_io = bio_pair_end_1; |
1266 | bp->bio2.bi_end_io = bio_pair_end_2; | |
1267 | ||
1268 | bp->bio1.bi_private = bi; | |
1269 | bp->bio2.bi_private = pool; | |
1270 | ||
7ba1ba12 MP |
1271 | if (bio_integrity(bi)) |
1272 | bio_integrity_split(bi, bp, first_sectors); | |
1273 | ||
1da177e4 LT |
1274 | return bp; |
1275 | } | |
1276 | ||
1da177e4 LT |
1277 | |
1278 | /* | |
1279 | * create memory pools for biovec's in a bio_set. | |
1280 | * use the global biovec slabs created for general use. | |
1281 | */ | |
5972511b | 1282 | static int biovec_create_pools(struct bio_set *bs, int pool_entries) |
1da177e4 LT |
1283 | { |
1284 | int i; | |
1285 | ||
1286 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | |
1287 | struct biovec_slab *bp = bvec_slabs + i; | |
1288 | mempool_t **bvp = bs->bvec_pools + i; | |
1289 | ||
93d2341c | 1290 | *bvp = mempool_create_slab_pool(pool_entries, bp->slab); |
1da177e4 LT |
1291 | if (!*bvp) |
1292 | return -ENOMEM; | |
1293 | } | |
1294 | return 0; | |
1295 | } | |
1296 | ||
1297 | static void biovec_free_pools(struct bio_set *bs) | |
1298 | { | |
1299 | int i; | |
1300 | ||
1301 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | |
1302 | mempool_t *bvp = bs->bvec_pools[i]; | |
1303 | ||
1304 | if (bvp) | |
1305 | mempool_destroy(bvp); | |
1306 | } | |
1307 | ||
1308 | } | |
1309 | ||
1310 | void bioset_free(struct bio_set *bs) | |
1311 | { | |
1312 | if (bs->bio_pool) | |
1313 | mempool_destroy(bs->bio_pool); | |
1314 | ||
7ba1ba12 | 1315 | bioset_integrity_free(bs); |
1da177e4 LT |
1316 | biovec_free_pools(bs); |
1317 | ||
1318 | kfree(bs); | |
1319 | } | |
1320 | ||
5972511b | 1321 | struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size) |
1da177e4 | 1322 | { |
11b0b5ab | 1323 | struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL); |
1da177e4 LT |
1324 | |
1325 | if (!bs) | |
1326 | return NULL; | |
1327 | ||
93d2341c | 1328 | bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab); |
1da177e4 LT |
1329 | if (!bs->bio_pool) |
1330 | goto bad; | |
1331 | ||
7ba1ba12 MP |
1332 | if (bioset_integrity_create(bs, bio_pool_size)) |
1333 | goto bad; | |
1334 | ||
5972511b | 1335 | if (!biovec_create_pools(bs, bvec_pool_size)) |
1da177e4 LT |
1336 | return bs; |
1337 | ||
1338 | bad: | |
1339 | bioset_free(bs); | |
1340 | return NULL; | |
1341 | } | |
1342 | ||
1343 | static void __init biovec_init_slabs(void) | |
1344 | { | |
1345 | int i; | |
1346 | ||
1347 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | |
1348 | int size; | |
1349 | struct biovec_slab *bvs = bvec_slabs + i; | |
1350 | ||
1351 | size = bvs->nr_vecs * sizeof(struct bio_vec); | |
1352 | bvs->slab = kmem_cache_create(bvs->name, size, 0, | |
20c2df83 | 1353 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1da177e4 LT |
1354 | } |
1355 | } | |
1356 | ||
1357 | static int __init init_bio(void) | |
1358 | { | |
0a31bd5f | 1359 | bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC); |
1da177e4 | 1360 | |
7ba1ba12 | 1361 | bio_integrity_init_slab(); |
1da177e4 LT |
1362 | biovec_init_slabs(); |
1363 | ||
5972511b | 1364 | fs_bio_set = bioset_create(BIO_POOL_SIZE, 2); |
1da177e4 LT |
1365 | if (!fs_bio_set) |
1366 | panic("bio: can't allocate bios\n"); | |
1367 | ||
0eaae62a MD |
1368 | bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES, |
1369 | sizeof(struct bio_pair)); | |
1da177e4 LT |
1370 | if (!bio_split_pool) |
1371 | panic("bio: can't create split pool\n"); | |
1372 | ||
1373 | return 0; | |
1374 | } | |
1375 | ||
1376 | subsys_initcall(init_bio); | |
1377 | ||
1378 | EXPORT_SYMBOL(bio_alloc); | |
1379 | EXPORT_SYMBOL(bio_put); | |
3676347a | 1380 | EXPORT_SYMBOL(bio_free); |
1da177e4 LT |
1381 | EXPORT_SYMBOL(bio_endio); |
1382 | EXPORT_SYMBOL(bio_init); | |
1383 | EXPORT_SYMBOL(__bio_clone); | |
1384 | EXPORT_SYMBOL(bio_clone); | |
1385 | EXPORT_SYMBOL(bio_phys_segments); | |
1386 | EXPORT_SYMBOL(bio_hw_segments); | |
1387 | EXPORT_SYMBOL(bio_add_page); | |
6e68af66 | 1388 | EXPORT_SYMBOL(bio_add_pc_page); |
1da177e4 | 1389 | EXPORT_SYMBOL(bio_get_nr_vecs); |
40044ce0 JA |
1390 | EXPORT_SYMBOL(bio_map_user); |
1391 | EXPORT_SYMBOL(bio_unmap_user); | |
df46b9a4 | 1392 | EXPORT_SYMBOL(bio_map_kern); |
68154e90 | 1393 | EXPORT_SYMBOL(bio_copy_kern); |
1da177e4 LT |
1394 | EXPORT_SYMBOL(bio_pair_release); |
1395 | EXPORT_SYMBOL(bio_split); | |
1396 | EXPORT_SYMBOL(bio_split_pool); | |
1397 | EXPORT_SYMBOL(bio_copy_user); | |
1398 | EXPORT_SYMBOL(bio_uncopy_user); | |
1399 | EXPORT_SYMBOL(bioset_create); | |
1400 | EXPORT_SYMBOL(bioset_free); | |
1401 | EXPORT_SYMBOL(bio_alloc_bioset); |