]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/bio.c
block: Remove some unnecessary bi_vcnt usage
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
852c788f 22#include <linux/iocontext.h>
1da177e4
LT
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/kernel.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mempool.h>
28#include <linux/workqueue.h>
852c788f 29#include <linux/cgroup.h>
f1970baf 30#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
6feef531 40static mempool_t *bio_split_pool __read_mostly;
1da177e4 41
1da177e4
LT
42/*
43 * if you change this list, also change bvec_alloc or things will
44 * break badly! cannot be bigger than what you can fit into an
45 * unsigned short
46 */
1da177e4 47#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 48static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
49 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
50};
51#undef BV
52
1da177e4
LT
53/*
54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55 * IO code that does not need private memory pools.
56 */
51d654e1 57struct bio_set *fs_bio_set;
3f86a82a 58EXPORT_SYMBOL(fs_bio_set);
1da177e4 59
bb799ca0
JA
60/*
61 * Our slab pool management
62 */
63struct bio_slab {
64 struct kmem_cache *slab;
65 unsigned int slab_ref;
66 unsigned int slab_size;
67 char name[8];
68};
69static DEFINE_MUTEX(bio_slab_lock);
70static struct bio_slab *bio_slabs;
71static unsigned int bio_slab_nr, bio_slab_max;
72
73static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
74{
75 unsigned int sz = sizeof(struct bio) + extra_size;
76 struct kmem_cache *slab = NULL;
389d7b26 77 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 78 unsigned int new_bio_slab_max;
bb799ca0
JA
79 unsigned int i, entry = -1;
80
81 mutex_lock(&bio_slab_lock);
82
83 i = 0;
84 while (i < bio_slab_nr) {
f06f135d 85 bslab = &bio_slabs[i];
bb799ca0
JA
86
87 if (!bslab->slab && entry == -1)
88 entry = i;
89 else if (bslab->slab_size == sz) {
90 slab = bslab->slab;
91 bslab->slab_ref++;
92 break;
93 }
94 i++;
95 }
96
97 if (slab)
98 goto out_unlock;
99
100 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 101 new_bio_slab_max = bio_slab_max << 1;
389d7b26 102 new_bio_slabs = krealloc(bio_slabs,
386bc35a 103 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
104 GFP_KERNEL);
105 if (!new_bio_slabs)
bb799ca0 106 goto out_unlock;
386bc35a 107 bio_slab_max = new_bio_slab_max;
389d7b26 108 bio_slabs = new_bio_slabs;
bb799ca0
JA
109 }
110 if (entry == -1)
111 entry = bio_slab_nr++;
112
113 bslab = &bio_slabs[entry];
114
115 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
116 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
80cdc6da 120 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
bb799ca0
JA
121 bslab->slab = slab;
122 bslab->slab_ref = 1;
123 bslab->slab_size = sz;
124out_unlock:
125 mutex_unlock(&bio_slab_lock);
126 return slab;
127}
128
129static void bio_put_slab(struct bio_set *bs)
130{
131 struct bio_slab *bslab = NULL;
132 unsigned int i;
133
134 mutex_lock(&bio_slab_lock);
135
136 for (i = 0; i < bio_slab_nr; i++) {
137 if (bs->bio_slab == bio_slabs[i].slab) {
138 bslab = &bio_slabs[i];
139 break;
140 }
141 }
142
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
146 WARN_ON(!bslab->slab_ref);
147
148 if (--bslab->slab_ref)
149 goto out;
150
151 kmem_cache_destroy(bslab->slab);
152 bslab->slab = NULL;
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7ba1ba12
MP
158unsigned int bvec_nr_vecs(unsigned short idx)
159{
160 return bvec_slabs[idx].nr_vecs;
161}
162
9f060e22 163void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0
JA
164{
165 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
166
167 if (idx == BIOVEC_MAX_IDX)
9f060e22 168 mempool_free(bv, pool);
bb799ca0
JA
169 else {
170 struct biovec_slab *bvs = bvec_slabs + idx;
171
172 kmem_cache_free(bvs->slab, bv);
173 }
174}
175
9f060e22
KO
176struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
177 mempool_t *pool)
1da177e4
LT
178{
179 struct bio_vec *bvl;
1da177e4 180
7ff9345f
JA
181 /*
182 * see comment near bvec_array define!
183 */
184 switch (nr) {
185 case 1:
186 *idx = 0;
187 break;
188 case 2 ... 4:
189 *idx = 1;
190 break;
191 case 5 ... 16:
192 *idx = 2;
193 break;
194 case 17 ... 64:
195 *idx = 3;
196 break;
197 case 65 ... 128:
198 *idx = 4;
199 break;
200 case 129 ... BIO_MAX_PAGES:
201 *idx = 5;
202 break;
203 default:
204 return NULL;
205 }
206
207 /*
208 * idx now points to the pool we want to allocate from. only the
209 * 1-vec entry pool is mempool backed.
210 */
211 if (*idx == BIOVEC_MAX_IDX) {
212fallback:
9f060e22 213 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
214 } else {
215 struct biovec_slab *bvs = bvec_slabs + *idx;
216 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
217
0a0d96b0 218 /*
7ff9345f
JA
219 * Make this allocation restricted and don't dump info on
220 * allocation failures, since we'll fallback to the mempool
221 * in case of failure.
0a0d96b0 222 */
7ff9345f 223 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 224
0a0d96b0 225 /*
7ff9345f
JA
226 * Try a slab allocation. If this fails and __GFP_WAIT
227 * is set, retry with the 1-entry mempool
0a0d96b0 228 */
7ff9345f
JA
229 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
230 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
231 *idx = BIOVEC_MAX_IDX;
232 goto fallback;
233 }
234 }
235
1da177e4
LT
236 return bvl;
237}
238
4254bba1 239static void __bio_free(struct bio *bio)
1da177e4 240{
4254bba1 241 bio_disassociate_task(bio);
1da177e4 242
7ba1ba12 243 if (bio_integrity(bio))
1e2a410f 244 bio_integrity_free(bio);
4254bba1 245}
7ba1ba12 246
4254bba1
KO
247static void bio_free(struct bio *bio)
248{
249 struct bio_set *bs = bio->bi_pool;
250 void *p;
251
252 __bio_free(bio);
253
254 if (bs) {
255 if (bio_has_allocated_vec(bio))
9f060e22 256 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
4254bba1
KO
257
258 /*
259 * If we have front padding, adjust the bio pointer before freeing
260 */
261 p = bio;
bb799ca0
JA
262 p -= bs->front_pad;
263
4254bba1
KO
264 mempool_free(p, bs->bio_pool);
265 } else {
266 /* Bio was allocated by bio_kmalloc() */
267 kfree(bio);
268 }
3676347a
PO
269}
270
858119e1 271void bio_init(struct bio *bio)
1da177e4 272{
2b94de55 273 memset(bio, 0, sizeof(*bio));
1da177e4 274 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 275 atomic_set(&bio->bi_cnt, 1);
1da177e4 276}
a112a71d 277EXPORT_SYMBOL(bio_init);
1da177e4 278
f44b48c7
KO
279/**
280 * bio_reset - reinitialize a bio
281 * @bio: bio to reset
282 *
283 * Description:
284 * After calling bio_reset(), @bio will be in the same state as a freshly
285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
286 * preserved are the ones that are initialized by bio_alloc_bioset(). See
287 * comment in struct bio.
288 */
289void bio_reset(struct bio *bio)
290{
291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292
4254bba1 293 __bio_free(bio);
f44b48c7
KO
294
295 memset(bio, 0, BIO_RESET_BYTES);
296 bio->bi_flags = flags|(1 << BIO_UPTODATE);
297}
298EXPORT_SYMBOL(bio_reset);
299
df2cb6da
KO
300static void bio_alloc_rescue(struct work_struct *work)
301{
302 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
303 struct bio *bio;
304
305 while (1) {
306 spin_lock(&bs->rescue_lock);
307 bio = bio_list_pop(&bs->rescue_list);
308 spin_unlock(&bs->rescue_lock);
309
310 if (!bio)
311 break;
312
313 generic_make_request(bio);
314 }
315}
316
317static void punt_bios_to_rescuer(struct bio_set *bs)
318{
319 struct bio_list punt, nopunt;
320 struct bio *bio;
321
322 /*
323 * In order to guarantee forward progress we must punt only bios that
324 * were allocated from this bio_set; otherwise, if there was a bio on
325 * there for a stacking driver higher up in the stack, processing it
326 * could require allocating bios from this bio_set, and doing that from
327 * our own rescuer would be bad.
328 *
329 * Since bio lists are singly linked, pop them all instead of trying to
330 * remove from the middle of the list:
331 */
332
333 bio_list_init(&punt);
334 bio_list_init(&nopunt);
335
336 while ((bio = bio_list_pop(current->bio_list)))
337 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
338
339 *current->bio_list = nopunt;
340
341 spin_lock(&bs->rescue_lock);
342 bio_list_merge(&bs->rescue_list, &punt);
343 spin_unlock(&bs->rescue_lock);
344
345 queue_work(bs->rescue_workqueue, &bs->rescue_work);
346}
347
1da177e4
LT
348/**
349 * bio_alloc_bioset - allocate a bio for I/O
350 * @gfp_mask: the GFP_ mask given to the slab allocator
351 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 352 * @bs: the bio_set to allocate from.
1da177e4
LT
353 *
354 * Description:
3f86a82a
KO
355 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
356 * backed by the @bs's mempool.
357 *
358 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
359 * able to allocate a bio. This is due to the mempool guarantees. To make this
360 * work, callers must never allocate more than 1 bio at a time from this pool.
361 * Callers that need to allocate more than 1 bio must always submit the
362 * previously allocated bio for IO before attempting to allocate a new one.
363 * Failure to do so can cause deadlocks under memory pressure.
364 *
df2cb6da
KO
365 * Note that when running under generic_make_request() (i.e. any block
366 * driver), bios are not submitted until after you return - see the code in
367 * generic_make_request() that converts recursion into iteration, to prevent
368 * stack overflows.
369 *
370 * This would normally mean allocating multiple bios under
371 * generic_make_request() would be susceptible to deadlocks, but we have
372 * deadlock avoidance code that resubmits any blocked bios from a rescuer
373 * thread.
374 *
375 * However, we do not guarantee forward progress for allocations from other
376 * mempools. Doing multiple allocations from the same mempool under
377 * generic_make_request() should be avoided - instead, use bio_set's front_pad
378 * for per bio allocations.
379 *
3f86a82a
KO
380 * RETURNS:
381 * Pointer to new bio on success, NULL on failure.
382 */
dd0fc66f 383struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 384{
df2cb6da 385 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
386 unsigned front_pad;
387 unsigned inline_vecs;
451a9ebf 388 unsigned long idx = BIO_POOL_NONE;
34053979 389 struct bio_vec *bvl = NULL;
451a9ebf
TH
390 struct bio *bio;
391 void *p;
392
3f86a82a
KO
393 if (!bs) {
394 if (nr_iovecs > UIO_MAXIOV)
395 return NULL;
396
397 p = kmalloc(sizeof(struct bio) +
398 nr_iovecs * sizeof(struct bio_vec),
399 gfp_mask);
400 front_pad = 0;
401 inline_vecs = nr_iovecs;
402 } else {
df2cb6da
KO
403 /*
404 * generic_make_request() converts recursion to iteration; this
405 * means if we're running beneath it, any bios we allocate and
406 * submit will not be submitted (and thus freed) until after we
407 * return.
408 *
409 * This exposes us to a potential deadlock if we allocate
410 * multiple bios from the same bio_set() while running
411 * underneath generic_make_request(). If we were to allocate
412 * multiple bios (say a stacking block driver that was splitting
413 * bios), we would deadlock if we exhausted the mempool's
414 * reserve.
415 *
416 * We solve this, and guarantee forward progress, with a rescuer
417 * workqueue per bio_set. If we go to allocate and there are
418 * bios on current->bio_list, we first try the allocation
419 * without __GFP_WAIT; if that fails, we punt those bios we
420 * would be blocking to the rescuer workqueue before we retry
421 * with the original gfp_flags.
422 */
423
424 if (current->bio_list && !bio_list_empty(current->bio_list))
425 gfp_mask &= ~__GFP_WAIT;
426
3f86a82a 427 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
428 if (!p && gfp_mask != saved_gfp) {
429 punt_bios_to_rescuer(bs);
430 gfp_mask = saved_gfp;
431 p = mempool_alloc(bs->bio_pool, gfp_mask);
432 }
433
3f86a82a
KO
434 front_pad = bs->front_pad;
435 inline_vecs = BIO_INLINE_VECS;
436 }
437
451a9ebf
TH
438 if (unlikely(!p))
439 return NULL;
1da177e4 440
3f86a82a 441 bio = p + front_pad;
34053979
IM
442 bio_init(bio);
443
3f86a82a 444 if (nr_iovecs > inline_vecs) {
9f060e22 445 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
446 if (!bvl && gfp_mask != saved_gfp) {
447 punt_bios_to_rescuer(bs);
448 gfp_mask = saved_gfp;
9f060e22 449 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
450 }
451
34053979
IM
452 if (unlikely(!bvl))
453 goto err_free;
3f86a82a
KO
454 } else if (nr_iovecs) {
455 bvl = bio->bi_inline_vecs;
1da177e4 456 }
3f86a82a
KO
457
458 bio->bi_pool = bs;
34053979
IM
459 bio->bi_flags |= idx << BIO_POOL_OFFSET;
460 bio->bi_max_vecs = nr_iovecs;
34053979 461 bio->bi_io_vec = bvl;
1da177e4 462 return bio;
34053979
IM
463
464err_free:
451a9ebf 465 mempool_free(p, bs->bio_pool);
34053979 466 return NULL;
1da177e4 467}
a112a71d 468EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 469
1da177e4
LT
470void zero_fill_bio(struct bio *bio)
471{
472 unsigned long flags;
473 struct bio_vec *bv;
474 int i;
475
476 bio_for_each_segment(bv, bio, i) {
477 char *data = bvec_kmap_irq(bv, &flags);
478 memset(data, 0, bv->bv_len);
479 flush_dcache_page(bv->bv_page);
480 bvec_kunmap_irq(data, &flags);
481 }
482}
483EXPORT_SYMBOL(zero_fill_bio);
484
485/**
486 * bio_put - release a reference to a bio
487 * @bio: bio to release reference to
488 *
489 * Description:
490 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 491 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
492 **/
493void bio_put(struct bio *bio)
494{
495 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
496
497 /*
498 * last put frees it
499 */
4254bba1
KO
500 if (atomic_dec_and_test(&bio->bi_cnt))
501 bio_free(bio);
1da177e4 502}
a112a71d 503EXPORT_SYMBOL(bio_put);
1da177e4 504
165125e1 505inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
506{
507 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
508 blk_recount_segments(q, bio);
509
510 return bio->bi_phys_segments;
511}
a112a71d 512EXPORT_SYMBOL(bio_phys_segments);
1da177e4 513
1da177e4
LT
514/**
515 * __bio_clone - clone a bio
516 * @bio: destination bio
517 * @bio_src: bio to clone
518 *
519 * Clone a &bio. Caller will own the returned bio, but not
520 * the actual data it points to. Reference count of returned
521 * bio will be one.
522 */
858119e1 523void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 524{
e525e153
AM
525 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
526 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 527
5d84070e
JA
528 /*
529 * most users will be overriding ->bi_bdev with a new target,
530 * so we don't set nor calculate new physical/hw segment counts here
531 */
1da177e4
LT
532 bio->bi_sector = bio_src->bi_sector;
533 bio->bi_bdev = bio_src->bi_bdev;
534 bio->bi_flags |= 1 << BIO_CLONED;
535 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
536 bio->bi_vcnt = bio_src->bi_vcnt;
537 bio->bi_size = bio_src->bi_size;
a5453be4 538 bio->bi_idx = bio_src->bi_idx;
1da177e4 539}
a112a71d 540EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
541
542/**
bf800ef1 543 * bio_clone_bioset - clone a bio
1da177e4
LT
544 * @bio: bio to clone
545 * @gfp_mask: allocation priority
bf800ef1 546 * @bs: bio_set to allocate from
1da177e4
LT
547 *
548 * Like __bio_clone, only also allocates the returned bio
549 */
bf800ef1
KO
550struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
551 struct bio_set *bs)
1da177e4 552{
bf800ef1 553 struct bio *b;
1da177e4 554
bf800ef1 555 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
7ba1ba12
MP
556 if (!b)
557 return NULL;
558
7ba1ba12
MP
559 __bio_clone(b, bio);
560
561 if (bio_integrity(bio)) {
562 int ret;
563
1e2a410f 564 ret = bio_integrity_clone(b, bio, gfp_mask);
7ba1ba12 565
059ea331
LZ
566 if (ret < 0) {
567 bio_put(b);
7ba1ba12 568 return NULL;
059ea331 569 }
3676347a 570 }
1da177e4
LT
571
572 return b;
573}
bf800ef1 574EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
575
576/**
577 * bio_get_nr_vecs - return approx number of vecs
578 * @bdev: I/O target
579 *
580 * Return the approximate number of pages we can send to this target.
581 * There's no guarantee that you will be able to fit this number of pages
582 * into a bio, it does not account for dynamic restrictions that vary
583 * on offset.
584 */
585int bio_get_nr_vecs(struct block_device *bdev)
586{
165125e1 587 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
588 int nr_pages;
589
590 nr_pages = min_t(unsigned,
5abebfdd
KO
591 queue_max_segments(q),
592 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
593
594 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
595
1da177e4 596}
a112a71d 597EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 598
165125e1 599static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
600 *page, unsigned int len, unsigned int offset,
601 unsigned short max_sectors)
1da177e4
LT
602{
603 int retried_segments = 0;
604 struct bio_vec *bvec;
605
606 /*
607 * cloned bio must not modify vec list
608 */
609 if (unlikely(bio_flagged(bio, BIO_CLONED)))
610 return 0;
611
80cfd548 612 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
613 return 0;
614
80cfd548
JA
615 /*
616 * For filesystems with a blocksize smaller than the pagesize
617 * we will often be called with the same page as last time and
618 * a consecutive offset. Optimize this special case.
619 */
620 if (bio->bi_vcnt > 0) {
621 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
622
623 if (page == prev->bv_page &&
624 offset == prev->bv_offset + prev->bv_len) {
1d616585 625 unsigned int prev_bv_len = prev->bv_len;
80cfd548 626 prev->bv_len += len;
cc371e66
AK
627
628 if (q->merge_bvec_fn) {
629 struct bvec_merge_data bvm = {
1d616585
DM
630 /* prev_bvec is already charged in
631 bi_size, discharge it in order to
632 simulate merging updated prev_bvec
633 as new bvec. */
cc371e66
AK
634 .bi_bdev = bio->bi_bdev,
635 .bi_sector = bio->bi_sector,
1d616585 636 .bi_size = bio->bi_size - prev_bv_len,
cc371e66
AK
637 .bi_rw = bio->bi_rw,
638 };
639
8bf8c376 640 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
641 prev->bv_len -= len;
642 return 0;
643 }
80cfd548
JA
644 }
645
646 goto done;
647 }
648 }
649
650 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
651 return 0;
652
653 /*
654 * we might lose a segment or two here, but rather that than
655 * make this too complex.
656 */
657
8a78362c 658 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
659
660 if (retried_segments)
661 return 0;
662
663 retried_segments = 1;
664 blk_recount_segments(q, bio);
665 }
666
667 /*
668 * setup the new entry, we might clear it again later if we
669 * cannot add the page
670 */
671 bvec = &bio->bi_io_vec[bio->bi_vcnt];
672 bvec->bv_page = page;
673 bvec->bv_len = len;
674 bvec->bv_offset = offset;
675
676 /*
677 * if queue has other restrictions (eg varying max sector size
678 * depending on offset), it can specify a merge_bvec_fn in the
679 * queue to get further control
680 */
681 if (q->merge_bvec_fn) {
cc371e66
AK
682 struct bvec_merge_data bvm = {
683 .bi_bdev = bio->bi_bdev,
684 .bi_sector = bio->bi_sector,
685 .bi_size = bio->bi_size,
686 .bi_rw = bio->bi_rw,
687 };
688
1da177e4
LT
689 /*
690 * merge_bvec_fn() returns number of bytes it can accept
691 * at this offset
692 */
8bf8c376 693 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
694 bvec->bv_page = NULL;
695 bvec->bv_len = 0;
696 bvec->bv_offset = 0;
697 return 0;
698 }
699 }
700
701 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 702 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
703 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
704
705 bio->bi_vcnt++;
706 bio->bi_phys_segments++;
80cfd548 707 done:
1da177e4
LT
708 bio->bi_size += len;
709 return len;
710}
711
6e68af66
MC
712/**
713 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 714 * @q: the target queue
6e68af66
MC
715 * @bio: destination bio
716 * @page: page to add
717 * @len: vec entry length
718 * @offset: vec entry offset
719 *
720 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
721 * number of reasons, such as the bio being full or target block device
722 * limitations. The target block device must allow bio's up to PAGE_SIZE,
723 * so it is always possible to add a single page to an empty bio.
724 *
725 * This should only be used by REQ_PC bios.
6e68af66 726 */
165125e1 727int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
728 unsigned int len, unsigned int offset)
729{
ae03bf63
MP
730 return __bio_add_page(q, bio, page, len, offset,
731 queue_max_hw_sectors(q));
6e68af66 732}
a112a71d 733EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 734
1da177e4
LT
735/**
736 * bio_add_page - attempt to add page to bio
737 * @bio: destination bio
738 * @page: page to add
739 * @len: vec entry length
740 * @offset: vec entry offset
741 *
742 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
743 * number of reasons, such as the bio being full or target block device
744 * limitations. The target block device must allow bio's up to PAGE_SIZE,
745 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
746 */
747int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
748 unsigned int offset)
749{
defd94b7 750 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 751 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 752}
a112a71d 753EXPORT_SYMBOL(bio_add_page);
1da177e4 754
054bdf64
KO
755/**
756 * bio_advance - increment/complete a bio by some number of bytes
757 * @bio: bio to advance
758 * @bytes: number of bytes to complete
759 *
760 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
761 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
762 * be updated on the last bvec as well.
763 *
764 * @bio will then represent the remaining, uncompleted portion of the io.
765 */
766void bio_advance(struct bio *bio, unsigned bytes)
767{
768 if (bio_integrity(bio))
769 bio_integrity_advance(bio, bytes);
770
771 bio->bi_sector += bytes >> 9;
772 bio->bi_size -= bytes;
773
774 if (bio->bi_rw & BIO_NO_ADVANCE_ITER_MASK)
775 return;
776
777 while (bytes) {
778 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
779 WARN_ONCE(1, "bio idx %d >= vcnt %d\n",
780 bio->bi_idx, bio->bi_vcnt);
781 break;
782 }
783
784 if (bytes >= bio_iovec(bio)->bv_len) {
785 bytes -= bio_iovec(bio)->bv_len;
786 bio->bi_idx++;
787 } else {
788 bio_iovec(bio)->bv_len -= bytes;
789 bio_iovec(bio)->bv_offset += bytes;
790 bytes = 0;
791 }
792 }
793}
794EXPORT_SYMBOL(bio_advance);
795
1da177e4
LT
796struct bio_map_data {
797 struct bio_vec *iovecs;
c5dec1c3 798 struct sg_iovec *sgvecs;
152e283f
FT
799 int nr_sgvecs;
800 int is_our_pages;
1da177e4
LT
801};
802
c5dec1c3 803static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
804 struct sg_iovec *iov, int iov_count,
805 int is_our_pages)
1da177e4
LT
806{
807 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
808 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
809 bmd->nr_sgvecs = iov_count;
152e283f 810 bmd->is_our_pages = is_our_pages;
1da177e4
LT
811 bio->bi_private = bmd;
812}
813
814static void bio_free_map_data(struct bio_map_data *bmd)
815{
816 kfree(bmd->iovecs);
c5dec1c3 817 kfree(bmd->sgvecs);
1da177e4
LT
818 kfree(bmd);
819}
820
121f0994
DC
821static struct bio_map_data *bio_alloc_map_data(int nr_segs,
822 unsigned int iov_count,
76029ff3 823 gfp_t gfp_mask)
1da177e4 824{
f3f63c1c
JA
825 struct bio_map_data *bmd;
826
827 if (iov_count > UIO_MAXIOV)
828 return NULL;
1da177e4 829
f3f63c1c 830 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
831 if (!bmd)
832 return NULL;
833
76029ff3 834 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
835 if (!bmd->iovecs) {
836 kfree(bmd);
837 return NULL;
838 }
839
76029ff3 840 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 841 if (bmd->sgvecs)
1da177e4
LT
842 return bmd;
843
c5dec1c3 844 kfree(bmd->iovecs);
1da177e4
LT
845 kfree(bmd);
846 return NULL;
847}
848
aefcc28a 849static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
850 struct sg_iovec *iov, int iov_count,
851 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
852{
853 int ret = 0, i;
854 struct bio_vec *bvec;
855 int iov_idx = 0;
856 unsigned int iov_off = 0;
c5dec1c3
FT
857
858 __bio_for_each_segment(bvec, bio, i, 0) {
859 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 860 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
861
862 while (bv_len && iov_idx < iov_count) {
863 unsigned int bytes;
0e0c6212 864 char __user *iov_addr;
c5dec1c3
FT
865
866 bytes = min_t(unsigned int,
867 iov[iov_idx].iov_len - iov_off, bv_len);
868 iov_addr = iov[iov_idx].iov_base + iov_off;
869
870 if (!ret) {
ecb554a8 871 if (to_user)
c5dec1c3
FT
872 ret = copy_to_user(iov_addr, bv_addr,
873 bytes);
874
ecb554a8
FT
875 if (from_user)
876 ret = copy_from_user(bv_addr, iov_addr,
877 bytes);
878
c5dec1c3
FT
879 if (ret)
880 ret = -EFAULT;
881 }
882
883 bv_len -= bytes;
884 bv_addr += bytes;
885 iov_addr += bytes;
886 iov_off += bytes;
887
888 if (iov[iov_idx].iov_len == iov_off) {
889 iov_idx++;
890 iov_off = 0;
891 }
892 }
893
152e283f 894 if (do_free_page)
c5dec1c3
FT
895 __free_page(bvec->bv_page);
896 }
897
898 return ret;
899}
900
1da177e4
LT
901/**
902 * bio_uncopy_user - finish previously mapped bio
903 * @bio: bio being terminated
904 *
905 * Free pages allocated from bio_copy_user() and write back data
906 * to user space in case of a read.
907 */
908int bio_uncopy_user(struct bio *bio)
909{
910 struct bio_map_data *bmd = bio->bi_private;
81882766 911 int ret = 0;
1da177e4 912
81882766
FT
913 if (!bio_flagged(bio, BIO_NULL_MAPPED))
914 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
ecb554a8
FT
915 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
916 0, bmd->is_our_pages);
1da177e4
LT
917 bio_free_map_data(bmd);
918 bio_put(bio);
919 return ret;
920}
a112a71d 921EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
922
923/**
c5dec1c3 924 * bio_copy_user_iov - copy user data to bio
1da177e4 925 * @q: destination block queue
152e283f 926 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
927 * @iov: the iovec.
928 * @iov_count: number of elements in the iovec
1da177e4 929 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 930 * @gfp_mask: memory allocation flags
1da177e4
LT
931 *
932 * Prepares and returns a bio for indirect user io, bouncing data
933 * to/from kernel pages as necessary. Must be paired with
934 * call bio_uncopy_user() on io completion.
935 */
152e283f
FT
936struct bio *bio_copy_user_iov(struct request_queue *q,
937 struct rq_map_data *map_data,
938 struct sg_iovec *iov, int iov_count,
939 int write_to_vm, gfp_t gfp_mask)
1da177e4 940{
1da177e4
LT
941 struct bio_map_data *bmd;
942 struct bio_vec *bvec;
943 struct page *page;
944 struct bio *bio;
945 int i, ret;
c5dec1c3
FT
946 int nr_pages = 0;
947 unsigned int len = 0;
56c451f4 948 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 949
c5dec1c3
FT
950 for (i = 0; i < iov_count; i++) {
951 unsigned long uaddr;
952 unsigned long end;
953 unsigned long start;
954
955 uaddr = (unsigned long)iov[i].iov_base;
956 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
957 start = uaddr >> PAGE_SHIFT;
958
cb4644ca
JA
959 /*
960 * Overflow, abort
961 */
962 if (end < start)
963 return ERR_PTR(-EINVAL);
964
c5dec1c3
FT
965 nr_pages += end - start;
966 len += iov[i].iov_len;
967 }
968
69838727
FT
969 if (offset)
970 nr_pages++;
971
a3bce90e 972 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
973 if (!bmd)
974 return ERR_PTR(-ENOMEM);
975
1da177e4 976 ret = -ENOMEM;
a9e9dc24 977 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
978 if (!bio)
979 goto out_bmd;
980
7b6d91da
CH
981 if (!write_to_vm)
982 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
983
984 ret = 0;
56c451f4
FT
985
986 if (map_data) {
e623ddb4 987 nr_pages = 1 << map_data->page_order;
56c451f4
FT
988 i = map_data->offset / PAGE_SIZE;
989 }
1da177e4 990 while (len) {
e623ddb4 991 unsigned int bytes = PAGE_SIZE;
1da177e4 992
56c451f4
FT
993 bytes -= offset;
994
1da177e4
LT
995 if (bytes > len)
996 bytes = len;
997
152e283f 998 if (map_data) {
e623ddb4 999 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1000 ret = -ENOMEM;
1001 break;
1002 }
e623ddb4
FT
1003
1004 page = map_data->pages[i / nr_pages];
1005 page += (i % nr_pages);
1006
1007 i++;
1008 } else {
152e283f 1009 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1010 if (!page) {
1011 ret = -ENOMEM;
1012 break;
1013 }
1da177e4
LT
1014 }
1015
56c451f4 1016 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1017 break;
1da177e4
LT
1018
1019 len -= bytes;
56c451f4 1020 offset = 0;
1da177e4
LT
1021 }
1022
1023 if (ret)
1024 goto cleanup;
1025
1026 /*
1027 * success
1028 */
ecb554a8
FT
1029 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1030 (map_data && map_data->from_user)) {
1031 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
1032 if (ret)
1033 goto cleanup;
1da177e4
LT
1034 }
1035
152e283f 1036 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
1037 return bio;
1038cleanup:
152e283f
FT
1039 if (!map_data)
1040 bio_for_each_segment(bvec, bio, i)
1041 __free_page(bvec->bv_page);
1da177e4
LT
1042
1043 bio_put(bio);
1044out_bmd:
1045 bio_free_map_data(bmd);
1046 return ERR_PTR(ret);
1047}
1048
c5dec1c3
FT
1049/**
1050 * bio_copy_user - copy user data to bio
1051 * @q: destination block queue
152e283f 1052 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1053 * @uaddr: start of user address
1054 * @len: length in bytes
1055 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1056 * @gfp_mask: memory allocation flags
c5dec1c3
FT
1057 *
1058 * Prepares and returns a bio for indirect user io, bouncing data
1059 * to/from kernel pages as necessary. Must be paired with
1060 * call bio_uncopy_user() on io completion.
1061 */
152e283f
FT
1062struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1063 unsigned long uaddr, unsigned int len,
1064 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
1065{
1066 struct sg_iovec iov;
1067
1068 iov.iov_base = (void __user *)uaddr;
1069 iov.iov_len = len;
1070
152e283f 1071 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 1072}
a112a71d 1073EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 1074
165125e1 1075static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
1076 struct block_device *bdev,
1077 struct sg_iovec *iov, int iov_count,
a3bce90e 1078 int write_to_vm, gfp_t gfp_mask)
1da177e4 1079{
f1970baf
JB
1080 int i, j;
1081 int nr_pages = 0;
1da177e4
LT
1082 struct page **pages;
1083 struct bio *bio;
f1970baf
JB
1084 int cur_page = 0;
1085 int ret, offset;
1da177e4 1086
f1970baf
JB
1087 for (i = 0; i < iov_count; i++) {
1088 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1089 unsigned long len = iov[i].iov_len;
1090 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1091 unsigned long start = uaddr >> PAGE_SHIFT;
1092
cb4644ca
JA
1093 /*
1094 * Overflow, abort
1095 */
1096 if (end < start)
1097 return ERR_PTR(-EINVAL);
1098
f1970baf
JB
1099 nr_pages += end - start;
1100 /*
ad2d7225 1101 * buffer must be aligned to at least hardsector size for now
f1970baf 1102 */
ad2d7225 1103 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1104 return ERR_PTR(-EINVAL);
1105 }
1106
1107 if (!nr_pages)
1da177e4
LT
1108 return ERR_PTR(-EINVAL);
1109
a9e9dc24 1110 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1111 if (!bio)
1112 return ERR_PTR(-ENOMEM);
1113
1114 ret = -ENOMEM;
a3bce90e 1115 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1116 if (!pages)
1117 goto out;
1118
f1970baf
JB
1119 for (i = 0; i < iov_count; i++) {
1120 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1121 unsigned long len = iov[i].iov_len;
1122 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1123 unsigned long start = uaddr >> PAGE_SHIFT;
1124 const int local_nr_pages = end - start;
1125 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1126
f5dd33c4
NP
1127 ret = get_user_pages_fast(uaddr, local_nr_pages,
1128 write_to_vm, &pages[cur_page]);
99172157
JA
1129 if (ret < local_nr_pages) {
1130 ret = -EFAULT;
f1970baf 1131 goto out_unmap;
99172157 1132 }
f1970baf
JB
1133
1134 offset = uaddr & ~PAGE_MASK;
1135 for (j = cur_page; j < page_limit; j++) {
1136 unsigned int bytes = PAGE_SIZE - offset;
1137
1138 if (len <= 0)
1139 break;
1140
1141 if (bytes > len)
1142 bytes = len;
1143
1144 /*
1145 * sorry...
1146 */
defd94b7
MC
1147 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1148 bytes)
f1970baf
JB
1149 break;
1150
1151 len -= bytes;
1152 offset = 0;
1153 }
1da177e4 1154
f1970baf 1155 cur_page = j;
1da177e4 1156 /*
f1970baf 1157 * release the pages we didn't map into the bio, if any
1da177e4 1158 */
f1970baf
JB
1159 while (j < page_limit)
1160 page_cache_release(pages[j++]);
1da177e4
LT
1161 }
1162
1da177e4
LT
1163 kfree(pages);
1164
1165 /*
1166 * set data direction, and check if mapped pages need bouncing
1167 */
1168 if (!write_to_vm)
7b6d91da 1169 bio->bi_rw |= REQ_WRITE;
1da177e4 1170
f1970baf 1171 bio->bi_bdev = bdev;
1da177e4
LT
1172 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1173 return bio;
f1970baf
JB
1174
1175 out_unmap:
1176 for (i = 0; i < nr_pages; i++) {
1177 if(!pages[i])
1178 break;
1179 page_cache_release(pages[i]);
1180 }
1181 out:
1da177e4
LT
1182 kfree(pages);
1183 bio_put(bio);
1184 return ERR_PTR(ret);
1185}
1186
1187/**
1188 * bio_map_user - map user address into bio
165125e1 1189 * @q: the struct request_queue for the bio
1da177e4
LT
1190 * @bdev: destination block device
1191 * @uaddr: start of user address
1192 * @len: length in bytes
1193 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1194 * @gfp_mask: memory allocation flags
1da177e4
LT
1195 *
1196 * Map the user space address into a bio suitable for io to a block
1197 * device. Returns an error pointer in case of error.
1198 */
165125e1 1199struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1200 unsigned long uaddr, unsigned int len, int write_to_vm,
1201 gfp_t gfp_mask)
f1970baf
JB
1202{
1203 struct sg_iovec iov;
1204
3f70353e 1205 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1206 iov.iov_len = len;
1207
a3bce90e 1208 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1209}
a112a71d 1210EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1211
1212/**
1213 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1214 * @q: the struct request_queue for the bio
f1970baf
JB
1215 * @bdev: destination block device
1216 * @iov: the iovec.
1217 * @iov_count: number of elements in the iovec
1218 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1219 * @gfp_mask: memory allocation flags
f1970baf
JB
1220 *
1221 * Map the user space address into a bio suitable for io to a block
1222 * device. Returns an error pointer in case of error.
1223 */
165125e1 1224struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1225 struct sg_iovec *iov, int iov_count,
a3bce90e 1226 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1227{
1228 struct bio *bio;
1229
a3bce90e
FT
1230 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1231 gfp_mask);
1da177e4
LT
1232 if (IS_ERR(bio))
1233 return bio;
1234
1235 /*
1236 * subtle -- if __bio_map_user() ended up bouncing a bio,
1237 * it would normally disappear when its bi_end_io is run.
1238 * however, we need it for the unmap, so grab an extra
1239 * reference to it
1240 */
1241 bio_get(bio);
1242
0e75f906 1243 return bio;
1da177e4
LT
1244}
1245
1246static void __bio_unmap_user(struct bio *bio)
1247{
1248 struct bio_vec *bvec;
1249 int i;
1250
1251 /*
1252 * make sure we dirty pages we wrote to
1253 */
1254 __bio_for_each_segment(bvec, bio, i, 0) {
1255 if (bio_data_dir(bio) == READ)
1256 set_page_dirty_lock(bvec->bv_page);
1257
1258 page_cache_release(bvec->bv_page);
1259 }
1260
1261 bio_put(bio);
1262}
1263
1264/**
1265 * bio_unmap_user - unmap a bio
1266 * @bio: the bio being unmapped
1267 *
1268 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1269 * a process context.
1270 *
1271 * bio_unmap_user() may sleep.
1272 */
1273void bio_unmap_user(struct bio *bio)
1274{
1275 __bio_unmap_user(bio);
1276 bio_put(bio);
1277}
a112a71d 1278EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1279
6712ecf8 1280static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1281{
b823825e 1282 bio_put(bio);
b823825e
JA
1283}
1284
165125e1 1285static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1286 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1287{
1288 unsigned long kaddr = (unsigned long)data;
1289 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1290 unsigned long start = kaddr >> PAGE_SHIFT;
1291 const int nr_pages = end - start;
1292 int offset, i;
1293 struct bio *bio;
1294
a9e9dc24 1295 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1296 if (!bio)
1297 return ERR_PTR(-ENOMEM);
1298
1299 offset = offset_in_page(kaddr);
1300 for (i = 0; i < nr_pages; i++) {
1301 unsigned int bytes = PAGE_SIZE - offset;
1302
1303 if (len <= 0)
1304 break;
1305
1306 if (bytes > len)
1307 bytes = len;
1308
defd94b7
MC
1309 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1310 offset) < bytes)
df46b9a4
MC
1311 break;
1312
1313 data += bytes;
1314 len -= bytes;
1315 offset = 0;
1316 }
1317
b823825e 1318 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1319 return bio;
1320}
1321
1322/**
1323 * bio_map_kern - map kernel address into bio
165125e1 1324 * @q: the struct request_queue for the bio
df46b9a4
MC
1325 * @data: pointer to buffer to map
1326 * @len: length in bytes
1327 * @gfp_mask: allocation flags for bio allocation
1328 *
1329 * Map the kernel address into a bio suitable for io to a block
1330 * device. Returns an error pointer in case of error.
1331 */
165125e1 1332struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1333 gfp_t gfp_mask)
df46b9a4
MC
1334{
1335 struct bio *bio;
1336
1337 bio = __bio_map_kern(q, data, len, gfp_mask);
1338 if (IS_ERR(bio))
1339 return bio;
1340
1341 if (bio->bi_size == len)
1342 return bio;
1343
1344 /*
1345 * Don't support partial mappings.
1346 */
1347 bio_put(bio);
1348 return ERR_PTR(-EINVAL);
1349}
a112a71d 1350EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1351
68154e90
FT
1352static void bio_copy_kern_endio(struct bio *bio, int err)
1353{
1354 struct bio_vec *bvec;
1355 const int read = bio_data_dir(bio) == READ;
76029ff3 1356 struct bio_map_data *bmd = bio->bi_private;
68154e90 1357 int i;
76029ff3 1358 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
1359
1360 __bio_for_each_segment(bvec, bio, i, 0) {
1361 char *addr = page_address(bvec->bv_page);
76029ff3 1362 int len = bmd->iovecs[i].bv_len;
68154e90 1363
4fc981ef 1364 if (read)
76029ff3 1365 memcpy(p, addr, len);
68154e90
FT
1366
1367 __free_page(bvec->bv_page);
76029ff3 1368 p += len;
68154e90
FT
1369 }
1370
76029ff3 1371 bio_free_map_data(bmd);
68154e90
FT
1372 bio_put(bio);
1373}
1374
1375/**
1376 * bio_copy_kern - copy kernel address into bio
1377 * @q: the struct request_queue for the bio
1378 * @data: pointer to buffer to copy
1379 * @len: length in bytes
1380 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1381 * @reading: data direction is READ
68154e90
FT
1382 *
1383 * copy the kernel address into a bio suitable for io to a block
1384 * device. Returns an error pointer in case of error.
1385 */
1386struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1387 gfp_t gfp_mask, int reading)
1388{
68154e90
FT
1389 struct bio *bio;
1390 struct bio_vec *bvec;
4d8ab62e 1391 int i;
68154e90 1392
4d8ab62e
FT
1393 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1394 if (IS_ERR(bio))
1395 return bio;
68154e90
FT
1396
1397 if (!reading) {
1398 void *p = data;
1399
1400 bio_for_each_segment(bvec, bio, i) {
1401 char *addr = page_address(bvec->bv_page);
1402
1403 memcpy(addr, p, bvec->bv_len);
1404 p += bvec->bv_len;
1405 }
1406 }
1407
68154e90 1408 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1409
68154e90 1410 return bio;
68154e90 1411}
a112a71d 1412EXPORT_SYMBOL(bio_copy_kern);
68154e90 1413
1da177e4
LT
1414/*
1415 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1416 * for performing direct-IO in BIOs.
1417 *
1418 * The problem is that we cannot run set_page_dirty() from interrupt context
1419 * because the required locks are not interrupt-safe. So what we can do is to
1420 * mark the pages dirty _before_ performing IO. And in interrupt context,
1421 * check that the pages are still dirty. If so, fine. If not, redirty them
1422 * in process context.
1423 *
1424 * We special-case compound pages here: normally this means reads into hugetlb
1425 * pages. The logic in here doesn't really work right for compound pages
1426 * because the VM does not uniformly chase down the head page in all cases.
1427 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1428 * handle them at all. So we skip compound pages here at an early stage.
1429 *
1430 * Note that this code is very hard to test under normal circumstances because
1431 * direct-io pins the pages with get_user_pages(). This makes
1432 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1433 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1434 * pagecache.
1435 *
1436 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1437 * deferred bio dirtying paths.
1438 */
1439
1440/*
1441 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1442 */
1443void bio_set_pages_dirty(struct bio *bio)
1444{
1445 struct bio_vec *bvec = bio->bi_io_vec;
1446 int i;
1447
1448 for (i = 0; i < bio->bi_vcnt; i++) {
1449 struct page *page = bvec[i].bv_page;
1450
1451 if (page && !PageCompound(page))
1452 set_page_dirty_lock(page);
1453 }
1454}
1455
86b6c7a7 1456static void bio_release_pages(struct bio *bio)
1da177e4
LT
1457{
1458 struct bio_vec *bvec = bio->bi_io_vec;
1459 int i;
1460
1461 for (i = 0; i < bio->bi_vcnt; i++) {
1462 struct page *page = bvec[i].bv_page;
1463
1464 if (page)
1465 put_page(page);
1466 }
1467}
1468
1469/*
1470 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1471 * If they are, then fine. If, however, some pages are clean then they must
1472 * have been written out during the direct-IO read. So we take another ref on
1473 * the BIO and the offending pages and re-dirty the pages in process context.
1474 *
1475 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1476 * here on. It will run one page_cache_release() against each page and will
1477 * run one bio_put() against the BIO.
1478 */
1479
65f27f38 1480static void bio_dirty_fn(struct work_struct *work);
1da177e4 1481
65f27f38 1482static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1483static DEFINE_SPINLOCK(bio_dirty_lock);
1484static struct bio *bio_dirty_list;
1485
1486/*
1487 * This runs in process context
1488 */
65f27f38 1489static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1490{
1491 unsigned long flags;
1492 struct bio *bio;
1493
1494 spin_lock_irqsave(&bio_dirty_lock, flags);
1495 bio = bio_dirty_list;
1496 bio_dirty_list = NULL;
1497 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1498
1499 while (bio) {
1500 struct bio *next = bio->bi_private;
1501
1502 bio_set_pages_dirty(bio);
1503 bio_release_pages(bio);
1504 bio_put(bio);
1505 bio = next;
1506 }
1507}
1508
1509void bio_check_pages_dirty(struct bio *bio)
1510{
1511 struct bio_vec *bvec = bio->bi_io_vec;
1512 int nr_clean_pages = 0;
1513 int i;
1514
1515 for (i = 0; i < bio->bi_vcnt; i++) {
1516 struct page *page = bvec[i].bv_page;
1517
1518 if (PageDirty(page) || PageCompound(page)) {
1519 page_cache_release(page);
1520 bvec[i].bv_page = NULL;
1521 } else {
1522 nr_clean_pages++;
1523 }
1524 }
1525
1526 if (nr_clean_pages) {
1527 unsigned long flags;
1528
1529 spin_lock_irqsave(&bio_dirty_lock, flags);
1530 bio->bi_private = bio_dirty_list;
1531 bio_dirty_list = bio;
1532 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1533 schedule_work(&bio_dirty_work);
1534 } else {
1535 bio_put(bio);
1536 }
1537}
1538
2d4dc890
IL
1539#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1540void bio_flush_dcache_pages(struct bio *bi)
1541{
1542 int i;
1543 struct bio_vec *bvec;
1544
1545 bio_for_each_segment(bvec, bi, i)
1546 flush_dcache_page(bvec->bv_page);
1547}
1548EXPORT_SYMBOL(bio_flush_dcache_pages);
1549#endif
1550
1da177e4
LT
1551/**
1552 * bio_endio - end I/O on a bio
1553 * @bio: bio
1da177e4
LT
1554 * @error: error, if any
1555 *
1556 * Description:
6712ecf8 1557 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1558 * preferred way to end I/O on a bio, it takes care of clearing
1559 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1560 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1561 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1562 * bio unless they own it and thus know that it has an end_io
1563 * function.
1da177e4 1564 **/
6712ecf8 1565void bio_endio(struct bio *bio, int error)
1da177e4
LT
1566{
1567 if (error)
1568 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1569 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1570 error = -EIO;
1da177e4 1571
3a366e61
TH
1572 trace_block_bio_complete(bio, error);
1573
5bb23a68 1574 if (bio->bi_end_io)
6712ecf8 1575 bio->bi_end_io(bio, error);
1da177e4 1576}
a112a71d 1577EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1578
1579void bio_pair_release(struct bio_pair *bp)
1580{
1581 if (atomic_dec_and_test(&bp->cnt)) {
1582 struct bio *master = bp->bio1.bi_private;
1583
6712ecf8 1584 bio_endio(master, bp->error);
1da177e4
LT
1585 mempool_free(bp, bp->bio2.bi_private);
1586 }
1587}
a112a71d 1588EXPORT_SYMBOL(bio_pair_release);
1da177e4 1589
6712ecf8 1590static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1591{
1592 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1593
1594 if (err)
1595 bp->error = err;
1596
1da177e4 1597 bio_pair_release(bp);
1da177e4
LT
1598}
1599
6712ecf8 1600static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1601{
1602 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1603
1604 if (err)
1605 bp->error = err;
1606
1da177e4 1607 bio_pair_release(bp);
1da177e4
LT
1608}
1609
1610/*
c7eee1b8 1611 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1612 */
6feef531 1613struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1614{
6feef531 1615 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1616
1617 if (!bp)
1618 return bp;
1619
5f3ea37c 1620 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1621 bi->bi_sector + first_sectors);
1622
5b83636a 1623 BUG_ON(bio_segments(bi) > 1);
1da177e4
LT
1624 atomic_set(&bp->cnt, 3);
1625 bp->error = 0;
1626 bp->bio1 = *bi;
1627 bp->bio2 = *bi;
1628 bp->bio2.bi_sector += first_sectors;
1629 bp->bio2.bi_size -= first_sectors << 9;
1630 bp->bio1.bi_size = first_sectors << 9;
1631
02f3939e 1632 if (bi->bi_vcnt != 0) {
5b83636a
KO
1633 bp->bv1 = *bio_iovec(bi);
1634 bp->bv2 = *bio_iovec(bi);
4363ac7c 1635
02f3939e
SL
1636 if (bio_is_rw(bi)) {
1637 bp->bv2.bv_offset += first_sectors << 9;
1638 bp->bv2.bv_len -= first_sectors << 9;
1639 bp->bv1.bv_len = first_sectors << 9;
1640 }
1da177e4 1641
02f3939e
SL
1642 bp->bio1.bi_io_vec = &bp->bv1;
1643 bp->bio2.bi_io_vec = &bp->bv2;
1da177e4 1644
02f3939e
SL
1645 bp->bio1.bi_max_vecs = 1;
1646 bp->bio2.bi_max_vecs = 1;
1647 }
a2eb0c10 1648
1da177e4
LT
1649 bp->bio1.bi_end_io = bio_pair_end_1;
1650 bp->bio2.bi_end_io = bio_pair_end_2;
1651
1652 bp->bio1.bi_private = bi;
6feef531 1653 bp->bio2.bi_private = bio_split_pool;
1da177e4 1654
7ba1ba12
MP
1655 if (bio_integrity(bi))
1656 bio_integrity_split(bi, bp, first_sectors);
1657
1da177e4
LT
1658 return bp;
1659}
a112a71d 1660EXPORT_SYMBOL(bio_split);
1da177e4 1661
ad3316bf
MP
1662/**
1663 * bio_sector_offset - Find hardware sector offset in bio
1664 * @bio: bio to inspect
1665 * @index: bio_vec index
1666 * @offset: offset in bv_page
1667 *
1668 * Return the number of hardware sectors between beginning of bio
1669 * and an end point indicated by a bio_vec index and an offset
1670 * within that vector's page.
1671 */
1672sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1673 unsigned int offset)
1674{
e1defc4f 1675 unsigned int sector_sz;
ad3316bf
MP
1676 struct bio_vec *bv;
1677 sector_t sectors;
1678 int i;
1679
e1defc4f 1680 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1681 sectors = 0;
1682
1683 if (index >= bio->bi_idx)
1684 index = bio->bi_vcnt - 1;
1685
1686 __bio_for_each_segment(bv, bio, i, 0) {
1687 if (i == index) {
1688 if (offset > bv->bv_offset)
1689 sectors += (offset - bv->bv_offset) / sector_sz;
1690 break;
1691 }
1692
1693 sectors += bv->bv_len / sector_sz;
1694 }
1695
1696 return sectors;
1697}
1698EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1699
1700/*
1701 * create memory pools for biovec's in a bio_set.
1702 * use the global biovec slabs created for general use.
1703 */
9f060e22 1704mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1da177e4 1705{
7ff9345f 1706 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1707
9f060e22 1708 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1709}
1710
1711void bioset_free(struct bio_set *bs)
1712{
df2cb6da
KO
1713 if (bs->rescue_workqueue)
1714 destroy_workqueue(bs->rescue_workqueue);
1715
1da177e4
LT
1716 if (bs->bio_pool)
1717 mempool_destroy(bs->bio_pool);
1718
9f060e22
KO
1719 if (bs->bvec_pool)
1720 mempool_destroy(bs->bvec_pool);
1721
7878cba9 1722 bioset_integrity_free(bs);
bb799ca0 1723 bio_put_slab(bs);
1da177e4
LT
1724
1725 kfree(bs);
1726}
a112a71d 1727EXPORT_SYMBOL(bioset_free);
1da177e4 1728
bb799ca0
JA
1729/**
1730 * bioset_create - Create a bio_set
1731 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1732 * @front_pad: Number of bytes to allocate in front of the returned bio
1733 *
1734 * Description:
1735 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1736 * to ask for a number of bytes to be allocated in front of the bio.
1737 * Front pad allocation is useful for embedding the bio inside
1738 * another structure, to avoid allocating extra data to go with the bio.
1739 * Note that the bio must be embedded at the END of that structure always,
1740 * or things will break badly.
1741 */
1742struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1743{
392ddc32 1744 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1745 struct bio_set *bs;
1da177e4 1746
1b434498 1747 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1748 if (!bs)
1749 return NULL;
1750
bb799ca0 1751 bs->front_pad = front_pad;
1b434498 1752
df2cb6da
KO
1753 spin_lock_init(&bs->rescue_lock);
1754 bio_list_init(&bs->rescue_list);
1755 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1756
392ddc32 1757 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1758 if (!bs->bio_slab) {
1759 kfree(bs);
1760 return NULL;
1761 }
1762
1763 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1764 if (!bs->bio_pool)
1765 goto bad;
1766
9f060e22
KO
1767 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1768 if (!bs->bvec_pool)
df2cb6da
KO
1769 goto bad;
1770
1771 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1772 if (!bs->rescue_workqueue)
1773 goto bad;
1da177e4 1774
df2cb6da 1775 return bs;
1da177e4
LT
1776bad:
1777 bioset_free(bs);
1778 return NULL;
1779}
a112a71d 1780EXPORT_SYMBOL(bioset_create);
1da177e4 1781
852c788f
TH
1782#ifdef CONFIG_BLK_CGROUP
1783/**
1784 * bio_associate_current - associate a bio with %current
1785 * @bio: target bio
1786 *
1787 * Associate @bio with %current if it hasn't been associated yet. Block
1788 * layer will treat @bio as if it were issued by %current no matter which
1789 * task actually issues it.
1790 *
1791 * This function takes an extra reference of @task's io_context and blkcg
1792 * which will be put when @bio is released. The caller must own @bio,
1793 * ensure %current->io_context exists, and is responsible for synchronizing
1794 * calls to this function.
1795 */
1796int bio_associate_current(struct bio *bio)
1797{
1798 struct io_context *ioc;
1799 struct cgroup_subsys_state *css;
1800
1801 if (bio->bi_ioc)
1802 return -EBUSY;
1803
1804 ioc = current->io_context;
1805 if (!ioc)
1806 return -ENOENT;
1807
1808 /* acquire active ref on @ioc and associate */
1809 get_io_context_active(ioc);
1810 bio->bi_ioc = ioc;
1811
1812 /* associate blkcg if exists */
1813 rcu_read_lock();
1814 css = task_subsys_state(current, blkio_subsys_id);
1815 if (css && css_tryget(css))
1816 bio->bi_css = css;
1817 rcu_read_unlock();
1818
1819 return 0;
1820}
1821
1822/**
1823 * bio_disassociate_task - undo bio_associate_current()
1824 * @bio: target bio
1825 */
1826void bio_disassociate_task(struct bio *bio)
1827{
1828 if (bio->bi_ioc) {
1829 put_io_context(bio->bi_ioc);
1830 bio->bi_ioc = NULL;
1831 }
1832 if (bio->bi_css) {
1833 css_put(bio->bi_css);
1834 bio->bi_css = NULL;
1835 }
1836}
1837
1838#endif /* CONFIG_BLK_CGROUP */
1839
1da177e4
LT
1840static void __init biovec_init_slabs(void)
1841{
1842 int i;
1843
1844 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1845 int size;
1846 struct biovec_slab *bvs = bvec_slabs + i;
1847
a7fcd37c
JA
1848 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1849 bvs->slab = NULL;
1850 continue;
1851 }
a7fcd37c 1852
1da177e4
LT
1853 size = bvs->nr_vecs * sizeof(struct bio_vec);
1854 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1855 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1856 }
1857}
1858
1859static int __init init_bio(void)
1860{
bb799ca0
JA
1861 bio_slab_max = 2;
1862 bio_slab_nr = 0;
1863 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1864 if (!bio_slabs)
1865 panic("bio: can't allocate bios\n");
1da177e4 1866
7878cba9 1867 bio_integrity_init();
1da177e4
LT
1868 biovec_init_slabs();
1869
bb799ca0 1870 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1871 if (!fs_bio_set)
1872 panic("bio: can't allocate bios\n");
1873
a91a2785
MP
1874 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1875 panic("bio: can't create integrity pool\n");
1876
0eaae62a
MD
1877 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1878 sizeof(struct bio_pair));
1da177e4
LT
1879 if (!bio_split_pool)
1880 panic("bio: can't create split pool\n");
1881
1882 return 0;
1883}
1da177e4 1884subsys_initcall(init_bio);