]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/bio.c
bio: add support for inlining a number of bio_vecs inside the bio
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
2056a782 28#include <linux/blktrace_api.h>
5f3ea37c 29#include <trace/block.h>
f1970baf 30#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 31
0bfc2455
IM
32DEFINE_TRACE(block_split);
33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
6feef531 40static mempool_t *bio_split_pool __read_mostly;
1da177e4 41
1da177e4
LT
42/*
43 * if you change this list, also change bvec_alloc or things will
44 * break badly! cannot be bigger than what you can fit into an
45 * unsigned short
46 */
1da177e4 47#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
bb799ca0 48struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
49 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
50};
51#undef BV
52
1da177e4
LT
53/*
54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55 * IO code that does not need private memory pools.
56 */
51d654e1 57struct bio_set *fs_bio_set;
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
76 struct bio_slab *bslab;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 struct bio_slab *bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 bio_slab_max <<= 1;
100 bio_slabs = krealloc(bio_slabs,
101 bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!bio_slabs)
104 goto out_unlock;
105 }
106 if (entry == -1)
107 entry = bio_slab_nr++;
108
109 bslab = &bio_slabs[entry];
110
111 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
112 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
113 if (!slab)
114 goto out_unlock;
115
116 printk("bio: create slab <%s> at %d\n", bslab->name, entry);
117 bslab->slab = slab;
118 bslab->slab_ref = 1;
119 bslab->slab_size = sz;
120out_unlock:
121 mutex_unlock(&bio_slab_lock);
122 return slab;
123}
124
125static void bio_put_slab(struct bio_set *bs)
126{
127 struct bio_slab *bslab = NULL;
128 unsigned int i;
129
130 mutex_lock(&bio_slab_lock);
131
132 for (i = 0; i < bio_slab_nr; i++) {
133 if (bs->bio_slab == bio_slabs[i].slab) {
134 bslab = &bio_slabs[i];
135 break;
136 }
137 }
138
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 goto out;
141
142 WARN_ON(!bslab->slab_ref);
143
144 if (--bslab->slab_ref)
145 goto out;
146
147 kmem_cache_destroy(bslab->slab);
148 bslab->slab = NULL;
149
150out:
151 mutex_unlock(&bio_slab_lock);
152}
153
7ba1ba12
MP
154unsigned int bvec_nr_vecs(unsigned short idx)
155{
156 return bvec_slabs[idx].nr_vecs;
157}
158
bb799ca0
JA
159void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
160{
161 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
162
163 if (idx == BIOVEC_MAX_IDX)
164 mempool_free(bv, bs->bvec_pool);
165 else {
166 struct biovec_slab *bvs = bvec_slabs + idx;
167
168 kmem_cache_free(bvs->slab, bv);
169 }
170}
171
7ff9345f
JA
172struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
173 struct bio_set *bs)
1da177e4
LT
174{
175 struct bio_vec *bvl;
1da177e4
LT
176
177 /*
0a0d96b0
JA
178 * If 'bs' is given, lookup the pool and do the mempool alloc.
179 * If not, this is a bio_kmalloc() allocation and just do a
180 * kzalloc() for the exact number of vecs right away.
1da177e4 181 */
7ff9345f
JA
182 if (!bs)
183 bvl = kzalloc(nr * sizeof(struct bio_vec), gfp_mask);
184
185 /*
186 * see comment near bvec_array define!
187 */
188 switch (nr) {
189 case 1:
190 *idx = 0;
191 break;
192 case 2 ... 4:
193 *idx = 1;
194 break;
195 case 5 ... 16:
196 *idx = 2;
197 break;
198 case 17 ... 64:
199 *idx = 3;
200 break;
201 case 65 ... 128:
202 *idx = 4;
203 break;
204 case 129 ... BIO_MAX_PAGES:
205 *idx = 5;
206 break;
207 default:
208 return NULL;
209 }
210
211 /*
212 * idx now points to the pool we want to allocate from. only the
213 * 1-vec entry pool is mempool backed.
214 */
215 if (*idx == BIOVEC_MAX_IDX) {
216fallback:
217 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
218 } else {
219 struct biovec_slab *bvs = bvec_slabs + *idx;
220 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
221
0a0d96b0 222 /*
7ff9345f
JA
223 * Make this allocation restricted and don't dump info on
224 * allocation failures, since we'll fallback to the mempool
225 * in case of failure.
0a0d96b0 226 */
7ff9345f 227 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 228
0a0d96b0 229 /*
7ff9345f
JA
230 * Try a slab allocation. If this fails and __GFP_WAIT
231 * is set, retry with the 1-entry mempool
0a0d96b0 232 */
7ff9345f
JA
233 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
234 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
235 *idx = BIOVEC_MAX_IDX;
236 goto fallback;
237 }
238 }
239
240 if (bvl)
241 memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
1da177e4
LT
242
243 return bvl;
244}
245
7ff9345f 246void bio_free(struct bio *bio, struct bio_set *bs)
1da177e4 247{
bb799ca0 248 void *p;
1da177e4 249
392ddc32 250 if (bio_has_allocated_vec(bio))
bb799ca0 251 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
1da177e4 252
7ba1ba12 253 if (bio_integrity(bio))
7ff9345f 254 bio_integrity_free(bio, bs);
7ba1ba12 255
bb799ca0
JA
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 if (bs->front_pad)
261 p -= bs->front_pad;
262
263 mempool_free(p, bs->bio_pool);
3676347a
PO
264}
265
266/*
267 * default destructor for a bio allocated with bio_alloc_bioset()
268 */
269static void bio_fs_destructor(struct bio *bio)
270{
271 bio_free(bio, fs_bio_set);
1da177e4
LT
272}
273
0a0d96b0
JA
274static void bio_kmalloc_destructor(struct bio *bio)
275{
392ddc32
JA
276 if (bio_has_allocated_vec(bio))
277 kfree(bio->bi_io_vec);
0a0d96b0
JA
278 kfree(bio);
279}
280
858119e1 281void bio_init(struct bio *bio)
1da177e4 282{
2b94de55 283 memset(bio, 0, sizeof(*bio));
1da177e4 284 bio->bi_flags = 1 << BIO_UPTODATE;
c7c22e4d 285 bio->bi_comp_cpu = -1;
1da177e4 286 atomic_set(&bio->bi_cnt, 1);
1da177e4
LT
287}
288
289/**
290 * bio_alloc_bioset - allocate a bio for I/O
291 * @gfp_mask: the GFP_ mask given to the slab allocator
292 * @nr_iovecs: number of iovecs to pre-allocate
0a0d96b0 293 * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
1da177e4
LT
294 *
295 * Description:
0a0d96b0 296 * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
1da177e4 297 * If %__GFP_WAIT is set then we will block on the internal pool waiting
0a0d96b0
JA
298 * for a &struct bio to become free. If a %NULL @bs is passed in, we will
299 * fall back to just using @kmalloc to allocate the required memory.
1da177e4 300 *
bb799ca0
JA
301 * Note that the caller must set ->bi_destructor on succesful return
302 * of a bio, to do the appropriate freeing of the bio once the reference
303 * count drops to zero.
1da177e4 304 **/
dd0fc66f 305struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 306{
bb799ca0
JA
307 struct bio *bio = NULL;
308
309 if (bs) {
310 void *p = mempool_alloc(bs->bio_pool, gfp_mask);
0a0d96b0 311
bb799ca0
JA
312 if (p)
313 bio = p + bs->front_pad;
314 } else
0a0d96b0 315 bio = kmalloc(sizeof(*bio), gfp_mask);
1da177e4
LT
316
317 if (likely(bio)) {
318 struct bio_vec *bvl = NULL;
319
320 bio_init(bio);
321 if (likely(nr_iovecs)) {
eeae1d48 322 unsigned long uninitialized_var(idx);
1da177e4 323
392ddc32
JA
324 if (nr_iovecs <= BIO_INLINE_VECS) {
325 idx = 0;
326 bvl = bio->bi_inline_vecs;
327 nr_iovecs = BIO_INLINE_VECS;
328 memset(bvl, 0, BIO_INLINE_VECS * sizeof(*bvl));
329 } else {
330 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx,
331 bs);
332 nr_iovecs = bvec_nr_vecs(idx);
333 }
1da177e4 334 if (unlikely(!bvl)) {
0a0d96b0
JA
335 if (bs)
336 mempool_free(bio, bs->bio_pool);
337 else
338 kfree(bio);
1da177e4
LT
339 bio = NULL;
340 goto out;
341 }
342 bio->bi_flags |= idx << BIO_POOL_OFFSET;
392ddc32 343 bio->bi_max_vecs = nr_iovecs;
1da177e4
LT
344 }
345 bio->bi_io_vec = bvl;
1da177e4
LT
346 }
347out:
348 return bio;
349}
350
dd0fc66f 351struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
1da177e4 352{
3676347a
PO
353 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
354
355 if (bio)
356 bio->bi_destructor = bio_fs_destructor;
357
358 return bio;
1da177e4
LT
359}
360
0a0d96b0
JA
361/*
362 * Like bio_alloc(), but doesn't use a mempool backing. This means that
363 * it CAN fail, but while bio_alloc() can only be used for allocations
364 * that have a short (finite) life span, bio_kmalloc() should be used
365 * for more permanent bio allocations (like allocating some bio's for
366 * initalization or setup purposes).
367 */
368struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
369{
370 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, NULL);
371
372 if (bio)
373 bio->bi_destructor = bio_kmalloc_destructor;
374
375 return bio;
376}
377
1da177e4
LT
378void zero_fill_bio(struct bio *bio)
379{
380 unsigned long flags;
381 struct bio_vec *bv;
382 int i;
383
384 bio_for_each_segment(bv, bio, i) {
385 char *data = bvec_kmap_irq(bv, &flags);
386 memset(data, 0, bv->bv_len);
387 flush_dcache_page(bv->bv_page);
388 bvec_kunmap_irq(data, &flags);
389 }
390}
391EXPORT_SYMBOL(zero_fill_bio);
392
393/**
394 * bio_put - release a reference to a bio
395 * @bio: bio to release reference to
396 *
397 * Description:
398 * Put a reference to a &struct bio, either one you have gotten with
399 * bio_alloc or bio_get. The last put of a bio will free it.
400 **/
401void bio_put(struct bio *bio)
402{
403 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
404
405 /*
406 * last put frees it
407 */
408 if (atomic_dec_and_test(&bio->bi_cnt)) {
409 bio->bi_next = NULL;
410 bio->bi_destructor(bio);
411 }
412}
413
165125e1 414inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
415{
416 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
417 blk_recount_segments(q, bio);
418
419 return bio->bi_phys_segments;
420}
421
1da177e4
LT
422/**
423 * __bio_clone - clone a bio
424 * @bio: destination bio
425 * @bio_src: bio to clone
426 *
427 * Clone a &bio. Caller will own the returned bio, but not
428 * the actual data it points to. Reference count of returned
429 * bio will be one.
430 */
858119e1 431void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 432{
e525e153
AM
433 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
434 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 435
5d84070e
JA
436 /*
437 * most users will be overriding ->bi_bdev with a new target,
438 * so we don't set nor calculate new physical/hw segment counts here
439 */
1da177e4
LT
440 bio->bi_sector = bio_src->bi_sector;
441 bio->bi_bdev = bio_src->bi_bdev;
442 bio->bi_flags |= 1 << BIO_CLONED;
443 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
444 bio->bi_vcnt = bio_src->bi_vcnt;
445 bio->bi_size = bio_src->bi_size;
a5453be4 446 bio->bi_idx = bio_src->bi_idx;
1da177e4
LT
447}
448
449/**
450 * bio_clone - clone a bio
451 * @bio: bio to clone
452 * @gfp_mask: allocation priority
453 *
454 * Like __bio_clone, only also allocates the returned bio
455 */
dd0fc66f 456struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
457{
458 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
459
7ba1ba12
MP
460 if (!b)
461 return NULL;
462
463 b->bi_destructor = bio_fs_destructor;
464 __bio_clone(b, bio);
465
466 if (bio_integrity(bio)) {
467 int ret;
468
469 ret = bio_integrity_clone(b, bio, fs_bio_set);
470
471 if (ret < 0)
472 return NULL;
3676347a 473 }
1da177e4
LT
474
475 return b;
476}
477
478/**
479 * bio_get_nr_vecs - return approx number of vecs
480 * @bdev: I/O target
481 *
482 * Return the approximate number of pages we can send to this target.
483 * There's no guarantee that you will be able to fit this number of pages
484 * into a bio, it does not account for dynamic restrictions that vary
485 * on offset.
486 */
487int bio_get_nr_vecs(struct block_device *bdev)
488{
165125e1 489 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
490 int nr_pages;
491
492 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
493 if (nr_pages > q->max_phys_segments)
494 nr_pages = q->max_phys_segments;
495 if (nr_pages > q->max_hw_segments)
496 nr_pages = q->max_hw_segments;
497
498 return nr_pages;
499}
500
165125e1 501static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
502 *page, unsigned int len, unsigned int offset,
503 unsigned short max_sectors)
1da177e4
LT
504{
505 int retried_segments = 0;
506 struct bio_vec *bvec;
507
508 /*
509 * cloned bio must not modify vec list
510 */
511 if (unlikely(bio_flagged(bio, BIO_CLONED)))
512 return 0;
513
80cfd548 514 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
515 return 0;
516
80cfd548
JA
517 /*
518 * For filesystems with a blocksize smaller than the pagesize
519 * we will often be called with the same page as last time and
520 * a consecutive offset. Optimize this special case.
521 */
522 if (bio->bi_vcnt > 0) {
523 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
524
525 if (page == prev->bv_page &&
526 offset == prev->bv_offset + prev->bv_len) {
527 prev->bv_len += len;
cc371e66
AK
528
529 if (q->merge_bvec_fn) {
530 struct bvec_merge_data bvm = {
531 .bi_bdev = bio->bi_bdev,
532 .bi_sector = bio->bi_sector,
533 .bi_size = bio->bi_size,
534 .bi_rw = bio->bi_rw,
535 };
536
537 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
538 prev->bv_len -= len;
539 return 0;
540 }
80cfd548
JA
541 }
542
543 goto done;
544 }
545 }
546
547 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
548 return 0;
549
550 /*
551 * we might lose a segment or two here, but rather that than
552 * make this too complex.
553 */
554
555 while (bio->bi_phys_segments >= q->max_phys_segments
5df97b91 556 || bio->bi_phys_segments >= q->max_hw_segments) {
1da177e4
LT
557
558 if (retried_segments)
559 return 0;
560
561 retried_segments = 1;
562 blk_recount_segments(q, bio);
563 }
564
565 /*
566 * setup the new entry, we might clear it again later if we
567 * cannot add the page
568 */
569 bvec = &bio->bi_io_vec[bio->bi_vcnt];
570 bvec->bv_page = page;
571 bvec->bv_len = len;
572 bvec->bv_offset = offset;
573
574 /*
575 * if queue has other restrictions (eg varying max sector size
576 * depending on offset), it can specify a merge_bvec_fn in the
577 * queue to get further control
578 */
579 if (q->merge_bvec_fn) {
cc371e66
AK
580 struct bvec_merge_data bvm = {
581 .bi_bdev = bio->bi_bdev,
582 .bi_sector = bio->bi_sector,
583 .bi_size = bio->bi_size,
584 .bi_rw = bio->bi_rw,
585 };
586
1da177e4
LT
587 /*
588 * merge_bvec_fn() returns number of bytes it can accept
589 * at this offset
590 */
cc371e66 591 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
1da177e4
LT
592 bvec->bv_page = NULL;
593 bvec->bv_len = 0;
594 bvec->bv_offset = 0;
595 return 0;
596 }
597 }
598
599 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 600 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
601 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
602
603 bio->bi_vcnt++;
604 bio->bi_phys_segments++;
80cfd548 605 done:
1da177e4
LT
606 bio->bi_size += len;
607 return len;
608}
609
6e68af66
MC
610/**
611 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 612 * @q: the target queue
6e68af66
MC
613 * @bio: destination bio
614 * @page: page to add
615 * @len: vec entry length
616 * @offset: vec entry offset
617 *
618 * Attempt to add a page to the bio_vec maplist. This can fail for a
619 * number of reasons, such as the bio being full or target block
620 * device limitations. The target block device must allow bio's
621 * smaller than PAGE_SIZE, so it is always possible to add a single
622 * page to an empty bio. This should only be used by REQ_PC bios.
623 */
165125e1 624int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
625 unsigned int len, unsigned int offset)
626{
defd94b7 627 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
6e68af66
MC
628}
629
1da177e4
LT
630/**
631 * bio_add_page - attempt to add page to bio
632 * @bio: destination bio
633 * @page: page to add
634 * @len: vec entry length
635 * @offset: vec entry offset
636 *
637 * Attempt to add a page to the bio_vec maplist. This can fail for a
638 * number of reasons, such as the bio being full or target block
639 * device limitations. The target block device must allow bio's
640 * smaller than PAGE_SIZE, so it is always possible to add a single
641 * page to an empty bio.
642 */
643int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
644 unsigned int offset)
645{
defd94b7
MC
646 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
647 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
1da177e4
LT
648}
649
650struct bio_map_data {
651 struct bio_vec *iovecs;
c5dec1c3 652 struct sg_iovec *sgvecs;
152e283f
FT
653 int nr_sgvecs;
654 int is_our_pages;
1da177e4
LT
655};
656
c5dec1c3 657static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
658 struct sg_iovec *iov, int iov_count,
659 int is_our_pages)
1da177e4
LT
660{
661 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
662 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
663 bmd->nr_sgvecs = iov_count;
152e283f 664 bmd->is_our_pages = is_our_pages;
1da177e4
LT
665 bio->bi_private = bmd;
666}
667
668static void bio_free_map_data(struct bio_map_data *bmd)
669{
670 kfree(bmd->iovecs);
c5dec1c3 671 kfree(bmd->sgvecs);
1da177e4
LT
672 kfree(bmd);
673}
674
76029ff3
FT
675static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
676 gfp_t gfp_mask)
1da177e4 677{
76029ff3 678 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
679
680 if (!bmd)
681 return NULL;
682
76029ff3 683 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
684 if (!bmd->iovecs) {
685 kfree(bmd);
686 return NULL;
687 }
688
76029ff3 689 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 690 if (bmd->sgvecs)
1da177e4
LT
691 return bmd;
692
c5dec1c3 693 kfree(bmd->iovecs);
1da177e4
LT
694 kfree(bmd);
695 return NULL;
696}
697
aefcc28a 698static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
152e283f
FT
699 struct sg_iovec *iov, int iov_count, int uncopy,
700 int do_free_page)
c5dec1c3
FT
701{
702 int ret = 0, i;
703 struct bio_vec *bvec;
704 int iov_idx = 0;
705 unsigned int iov_off = 0;
706 int read = bio_data_dir(bio) == READ;
707
708 __bio_for_each_segment(bvec, bio, i, 0) {
709 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 710 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
711
712 while (bv_len && iov_idx < iov_count) {
713 unsigned int bytes;
714 char *iov_addr;
715
716 bytes = min_t(unsigned int,
717 iov[iov_idx].iov_len - iov_off, bv_len);
718 iov_addr = iov[iov_idx].iov_base + iov_off;
719
720 if (!ret) {
721 if (!read && !uncopy)
722 ret = copy_from_user(bv_addr, iov_addr,
723 bytes);
724 if (read && uncopy)
725 ret = copy_to_user(iov_addr, bv_addr,
726 bytes);
727
728 if (ret)
729 ret = -EFAULT;
730 }
731
732 bv_len -= bytes;
733 bv_addr += bytes;
734 iov_addr += bytes;
735 iov_off += bytes;
736
737 if (iov[iov_idx].iov_len == iov_off) {
738 iov_idx++;
739 iov_off = 0;
740 }
741 }
742
152e283f 743 if (do_free_page)
c5dec1c3
FT
744 __free_page(bvec->bv_page);
745 }
746
747 return ret;
748}
749
1da177e4
LT
750/**
751 * bio_uncopy_user - finish previously mapped bio
752 * @bio: bio being terminated
753 *
754 * Free pages allocated from bio_copy_user() and write back data
755 * to user space in case of a read.
756 */
757int bio_uncopy_user(struct bio *bio)
758{
759 struct bio_map_data *bmd = bio->bi_private;
81882766 760 int ret = 0;
1da177e4 761
81882766
FT
762 if (!bio_flagged(bio, BIO_NULL_MAPPED))
763 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
764 bmd->nr_sgvecs, 1, bmd->is_our_pages);
1da177e4
LT
765 bio_free_map_data(bmd);
766 bio_put(bio);
767 return ret;
768}
769
770/**
c5dec1c3 771 * bio_copy_user_iov - copy user data to bio
1da177e4 772 * @q: destination block queue
152e283f 773 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
774 * @iov: the iovec.
775 * @iov_count: number of elements in the iovec
1da177e4 776 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 777 * @gfp_mask: memory allocation flags
1da177e4
LT
778 *
779 * Prepares and returns a bio for indirect user io, bouncing data
780 * to/from kernel pages as necessary. Must be paired with
781 * call bio_uncopy_user() on io completion.
782 */
152e283f
FT
783struct bio *bio_copy_user_iov(struct request_queue *q,
784 struct rq_map_data *map_data,
785 struct sg_iovec *iov, int iov_count,
786 int write_to_vm, gfp_t gfp_mask)
1da177e4 787{
1da177e4
LT
788 struct bio_map_data *bmd;
789 struct bio_vec *bvec;
790 struct page *page;
791 struct bio *bio;
792 int i, ret;
c5dec1c3
FT
793 int nr_pages = 0;
794 unsigned int len = 0;
1da177e4 795
c5dec1c3
FT
796 for (i = 0; i < iov_count; i++) {
797 unsigned long uaddr;
798 unsigned long end;
799 unsigned long start;
800
801 uaddr = (unsigned long)iov[i].iov_base;
802 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
803 start = uaddr >> PAGE_SHIFT;
804
805 nr_pages += end - start;
806 len += iov[i].iov_len;
807 }
808
a3bce90e 809 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
810 if (!bmd)
811 return ERR_PTR(-ENOMEM);
812
1da177e4 813 ret = -ENOMEM;
a3bce90e 814 bio = bio_alloc(gfp_mask, nr_pages);
1da177e4
LT
815 if (!bio)
816 goto out_bmd;
817
818 bio->bi_rw |= (!write_to_vm << BIO_RW);
819
820 ret = 0;
152e283f 821 i = 0;
1da177e4 822 while (len) {
152e283f
FT
823 unsigned int bytes;
824
825 if (map_data)
826 bytes = 1U << (PAGE_SHIFT + map_data->page_order);
827 else
828 bytes = PAGE_SIZE;
1da177e4
LT
829
830 if (bytes > len)
831 bytes = len;
832
152e283f
FT
833 if (map_data) {
834 if (i == map_data->nr_entries) {
835 ret = -ENOMEM;
836 break;
837 }
838 page = map_data->pages[i++];
839 } else
840 page = alloc_page(q->bounce_gfp | gfp_mask);
1da177e4
LT
841 if (!page) {
842 ret = -ENOMEM;
843 break;
844 }
845
0e75f906 846 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1da177e4 847 break;
1da177e4
LT
848
849 len -= bytes;
850 }
851
852 if (ret)
853 goto cleanup;
854
855 /*
856 * success
857 */
858 if (!write_to_vm) {
152e283f 859 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
c5dec1c3
FT
860 if (ret)
861 goto cleanup;
1da177e4
LT
862 }
863
152e283f 864 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
865 return bio;
866cleanup:
152e283f
FT
867 if (!map_data)
868 bio_for_each_segment(bvec, bio, i)
869 __free_page(bvec->bv_page);
1da177e4
LT
870
871 bio_put(bio);
872out_bmd:
873 bio_free_map_data(bmd);
874 return ERR_PTR(ret);
875}
876
c5dec1c3
FT
877/**
878 * bio_copy_user - copy user data to bio
879 * @q: destination block queue
152e283f 880 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
881 * @uaddr: start of user address
882 * @len: length in bytes
883 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 884 * @gfp_mask: memory allocation flags
c5dec1c3
FT
885 *
886 * Prepares and returns a bio for indirect user io, bouncing data
887 * to/from kernel pages as necessary. Must be paired with
888 * call bio_uncopy_user() on io completion.
889 */
152e283f
FT
890struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
891 unsigned long uaddr, unsigned int len,
892 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
893{
894 struct sg_iovec iov;
895
896 iov.iov_base = (void __user *)uaddr;
897 iov.iov_len = len;
898
152e283f 899 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3
FT
900}
901
165125e1 902static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
903 struct block_device *bdev,
904 struct sg_iovec *iov, int iov_count,
a3bce90e 905 int write_to_vm, gfp_t gfp_mask)
1da177e4 906{
f1970baf
JB
907 int i, j;
908 int nr_pages = 0;
1da177e4
LT
909 struct page **pages;
910 struct bio *bio;
f1970baf
JB
911 int cur_page = 0;
912 int ret, offset;
1da177e4 913
f1970baf
JB
914 for (i = 0; i < iov_count; i++) {
915 unsigned long uaddr = (unsigned long)iov[i].iov_base;
916 unsigned long len = iov[i].iov_len;
917 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
918 unsigned long start = uaddr >> PAGE_SHIFT;
919
920 nr_pages += end - start;
921 /*
ad2d7225 922 * buffer must be aligned to at least hardsector size for now
f1970baf 923 */
ad2d7225 924 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
925 return ERR_PTR(-EINVAL);
926 }
927
928 if (!nr_pages)
1da177e4
LT
929 return ERR_PTR(-EINVAL);
930
a3bce90e 931 bio = bio_alloc(gfp_mask, nr_pages);
1da177e4
LT
932 if (!bio)
933 return ERR_PTR(-ENOMEM);
934
935 ret = -ENOMEM;
a3bce90e 936 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
937 if (!pages)
938 goto out;
939
f1970baf
JB
940 for (i = 0; i < iov_count; i++) {
941 unsigned long uaddr = (unsigned long)iov[i].iov_base;
942 unsigned long len = iov[i].iov_len;
943 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
944 unsigned long start = uaddr >> PAGE_SHIFT;
945 const int local_nr_pages = end - start;
946 const int page_limit = cur_page + local_nr_pages;
947
f5dd33c4
NP
948 ret = get_user_pages_fast(uaddr, local_nr_pages,
949 write_to_vm, &pages[cur_page]);
99172157
JA
950 if (ret < local_nr_pages) {
951 ret = -EFAULT;
f1970baf 952 goto out_unmap;
99172157 953 }
f1970baf
JB
954
955 offset = uaddr & ~PAGE_MASK;
956 for (j = cur_page; j < page_limit; j++) {
957 unsigned int bytes = PAGE_SIZE - offset;
958
959 if (len <= 0)
960 break;
961
962 if (bytes > len)
963 bytes = len;
964
965 /*
966 * sorry...
967 */
defd94b7
MC
968 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
969 bytes)
f1970baf
JB
970 break;
971
972 len -= bytes;
973 offset = 0;
974 }
1da177e4 975
f1970baf 976 cur_page = j;
1da177e4 977 /*
f1970baf 978 * release the pages we didn't map into the bio, if any
1da177e4 979 */
f1970baf
JB
980 while (j < page_limit)
981 page_cache_release(pages[j++]);
1da177e4
LT
982 }
983
1da177e4
LT
984 kfree(pages);
985
986 /*
987 * set data direction, and check if mapped pages need bouncing
988 */
989 if (!write_to_vm)
990 bio->bi_rw |= (1 << BIO_RW);
991
f1970baf 992 bio->bi_bdev = bdev;
1da177e4
LT
993 bio->bi_flags |= (1 << BIO_USER_MAPPED);
994 return bio;
f1970baf
JB
995
996 out_unmap:
997 for (i = 0; i < nr_pages; i++) {
998 if(!pages[i])
999 break;
1000 page_cache_release(pages[i]);
1001 }
1002 out:
1da177e4
LT
1003 kfree(pages);
1004 bio_put(bio);
1005 return ERR_PTR(ret);
1006}
1007
1008/**
1009 * bio_map_user - map user address into bio
165125e1 1010 * @q: the struct request_queue for the bio
1da177e4
LT
1011 * @bdev: destination block device
1012 * @uaddr: start of user address
1013 * @len: length in bytes
1014 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1015 * @gfp_mask: memory allocation flags
1da177e4
LT
1016 *
1017 * Map the user space address into a bio suitable for io to a block
1018 * device. Returns an error pointer in case of error.
1019 */
165125e1 1020struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1021 unsigned long uaddr, unsigned int len, int write_to_vm,
1022 gfp_t gfp_mask)
f1970baf
JB
1023{
1024 struct sg_iovec iov;
1025
3f70353e 1026 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1027 iov.iov_len = len;
1028
a3bce90e 1029 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf
JB
1030}
1031
1032/**
1033 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1034 * @q: the struct request_queue for the bio
f1970baf
JB
1035 * @bdev: destination block device
1036 * @iov: the iovec.
1037 * @iov_count: number of elements in the iovec
1038 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1039 * @gfp_mask: memory allocation flags
f1970baf
JB
1040 *
1041 * Map the user space address into a bio suitable for io to a block
1042 * device. Returns an error pointer in case of error.
1043 */
165125e1 1044struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1045 struct sg_iovec *iov, int iov_count,
a3bce90e 1046 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1047{
1048 struct bio *bio;
1049
a3bce90e
FT
1050 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1051 gfp_mask);
1da177e4
LT
1052 if (IS_ERR(bio))
1053 return bio;
1054
1055 /*
1056 * subtle -- if __bio_map_user() ended up bouncing a bio,
1057 * it would normally disappear when its bi_end_io is run.
1058 * however, we need it for the unmap, so grab an extra
1059 * reference to it
1060 */
1061 bio_get(bio);
1062
0e75f906 1063 return bio;
1da177e4
LT
1064}
1065
1066static void __bio_unmap_user(struct bio *bio)
1067{
1068 struct bio_vec *bvec;
1069 int i;
1070
1071 /*
1072 * make sure we dirty pages we wrote to
1073 */
1074 __bio_for_each_segment(bvec, bio, i, 0) {
1075 if (bio_data_dir(bio) == READ)
1076 set_page_dirty_lock(bvec->bv_page);
1077
1078 page_cache_release(bvec->bv_page);
1079 }
1080
1081 bio_put(bio);
1082}
1083
1084/**
1085 * bio_unmap_user - unmap a bio
1086 * @bio: the bio being unmapped
1087 *
1088 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1089 * a process context.
1090 *
1091 * bio_unmap_user() may sleep.
1092 */
1093void bio_unmap_user(struct bio *bio)
1094{
1095 __bio_unmap_user(bio);
1096 bio_put(bio);
1097}
1098
6712ecf8 1099static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1100{
b823825e 1101 bio_put(bio);
b823825e
JA
1102}
1103
1104
165125e1 1105static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1106 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1107{
1108 unsigned long kaddr = (unsigned long)data;
1109 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1110 unsigned long start = kaddr >> PAGE_SHIFT;
1111 const int nr_pages = end - start;
1112 int offset, i;
1113 struct bio *bio;
1114
1115 bio = bio_alloc(gfp_mask, nr_pages);
1116 if (!bio)
1117 return ERR_PTR(-ENOMEM);
1118
1119 offset = offset_in_page(kaddr);
1120 for (i = 0; i < nr_pages; i++) {
1121 unsigned int bytes = PAGE_SIZE - offset;
1122
1123 if (len <= 0)
1124 break;
1125
1126 if (bytes > len)
1127 bytes = len;
1128
defd94b7
MC
1129 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1130 offset) < bytes)
df46b9a4
MC
1131 break;
1132
1133 data += bytes;
1134 len -= bytes;
1135 offset = 0;
1136 }
1137
b823825e 1138 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1139 return bio;
1140}
1141
1142/**
1143 * bio_map_kern - map kernel address into bio
165125e1 1144 * @q: the struct request_queue for the bio
df46b9a4
MC
1145 * @data: pointer to buffer to map
1146 * @len: length in bytes
1147 * @gfp_mask: allocation flags for bio allocation
1148 *
1149 * Map the kernel address into a bio suitable for io to a block
1150 * device. Returns an error pointer in case of error.
1151 */
165125e1 1152struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1153 gfp_t gfp_mask)
df46b9a4
MC
1154{
1155 struct bio *bio;
1156
1157 bio = __bio_map_kern(q, data, len, gfp_mask);
1158 if (IS_ERR(bio))
1159 return bio;
1160
1161 if (bio->bi_size == len)
1162 return bio;
1163
1164 /*
1165 * Don't support partial mappings.
1166 */
1167 bio_put(bio);
1168 return ERR_PTR(-EINVAL);
1169}
1170
68154e90
FT
1171static void bio_copy_kern_endio(struct bio *bio, int err)
1172{
1173 struct bio_vec *bvec;
1174 const int read = bio_data_dir(bio) == READ;
76029ff3 1175 struct bio_map_data *bmd = bio->bi_private;
68154e90 1176 int i;
76029ff3 1177 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
1178
1179 __bio_for_each_segment(bvec, bio, i, 0) {
1180 char *addr = page_address(bvec->bv_page);
76029ff3 1181 int len = bmd->iovecs[i].bv_len;
68154e90
FT
1182
1183 if (read && !err)
76029ff3 1184 memcpy(p, addr, len);
68154e90
FT
1185
1186 __free_page(bvec->bv_page);
76029ff3 1187 p += len;
68154e90
FT
1188 }
1189
76029ff3 1190 bio_free_map_data(bmd);
68154e90
FT
1191 bio_put(bio);
1192}
1193
1194/**
1195 * bio_copy_kern - copy kernel address into bio
1196 * @q: the struct request_queue for the bio
1197 * @data: pointer to buffer to copy
1198 * @len: length in bytes
1199 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1200 * @reading: data direction is READ
68154e90
FT
1201 *
1202 * copy the kernel address into a bio suitable for io to a block
1203 * device. Returns an error pointer in case of error.
1204 */
1205struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1206 gfp_t gfp_mask, int reading)
1207{
68154e90
FT
1208 struct bio *bio;
1209 struct bio_vec *bvec;
4d8ab62e 1210 int i;
68154e90 1211
4d8ab62e
FT
1212 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1213 if (IS_ERR(bio))
1214 return bio;
68154e90
FT
1215
1216 if (!reading) {
1217 void *p = data;
1218
1219 bio_for_each_segment(bvec, bio, i) {
1220 char *addr = page_address(bvec->bv_page);
1221
1222 memcpy(addr, p, bvec->bv_len);
1223 p += bvec->bv_len;
1224 }
1225 }
1226
68154e90 1227 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1228
68154e90 1229 return bio;
68154e90
FT
1230}
1231
1da177e4
LT
1232/*
1233 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1234 * for performing direct-IO in BIOs.
1235 *
1236 * The problem is that we cannot run set_page_dirty() from interrupt context
1237 * because the required locks are not interrupt-safe. So what we can do is to
1238 * mark the pages dirty _before_ performing IO. And in interrupt context,
1239 * check that the pages are still dirty. If so, fine. If not, redirty them
1240 * in process context.
1241 *
1242 * We special-case compound pages here: normally this means reads into hugetlb
1243 * pages. The logic in here doesn't really work right for compound pages
1244 * because the VM does not uniformly chase down the head page in all cases.
1245 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1246 * handle them at all. So we skip compound pages here at an early stage.
1247 *
1248 * Note that this code is very hard to test under normal circumstances because
1249 * direct-io pins the pages with get_user_pages(). This makes
1250 * is_page_cache_freeable return false, and the VM will not clean the pages.
1251 * But other code (eg, pdflush) could clean the pages if they are mapped
1252 * pagecache.
1253 *
1254 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1255 * deferred bio dirtying paths.
1256 */
1257
1258/*
1259 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1260 */
1261void bio_set_pages_dirty(struct bio *bio)
1262{
1263 struct bio_vec *bvec = bio->bi_io_vec;
1264 int i;
1265
1266 for (i = 0; i < bio->bi_vcnt; i++) {
1267 struct page *page = bvec[i].bv_page;
1268
1269 if (page && !PageCompound(page))
1270 set_page_dirty_lock(page);
1271 }
1272}
1273
86b6c7a7 1274static void bio_release_pages(struct bio *bio)
1da177e4
LT
1275{
1276 struct bio_vec *bvec = bio->bi_io_vec;
1277 int i;
1278
1279 for (i = 0; i < bio->bi_vcnt; i++) {
1280 struct page *page = bvec[i].bv_page;
1281
1282 if (page)
1283 put_page(page);
1284 }
1285}
1286
1287/*
1288 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1289 * If they are, then fine. If, however, some pages are clean then they must
1290 * have been written out during the direct-IO read. So we take another ref on
1291 * the BIO and the offending pages and re-dirty the pages in process context.
1292 *
1293 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1294 * here on. It will run one page_cache_release() against each page and will
1295 * run one bio_put() against the BIO.
1296 */
1297
65f27f38 1298static void bio_dirty_fn(struct work_struct *work);
1da177e4 1299
65f27f38 1300static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1301static DEFINE_SPINLOCK(bio_dirty_lock);
1302static struct bio *bio_dirty_list;
1303
1304/*
1305 * This runs in process context
1306 */
65f27f38 1307static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1308{
1309 unsigned long flags;
1310 struct bio *bio;
1311
1312 spin_lock_irqsave(&bio_dirty_lock, flags);
1313 bio = bio_dirty_list;
1314 bio_dirty_list = NULL;
1315 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1316
1317 while (bio) {
1318 struct bio *next = bio->bi_private;
1319
1320 bio_set_pages_dirty(bio);
1321 bio_release_pages(bio);
1322 bio_put(bio);
1323 bio = next;
1324 }
1325}
1326
1327void bio_check_pages_dirty(struct bio *bio)
1328{
1329 struct bio_vec *bvec = bio->bi_io_vec;
1330 int nr_clean_pages = 0;
1331 int i;
1332
1333 for (i = 0; i < bio->bi_vcnt; i++) {
1334 struct page *page = bvec[i].bv_page;
1335
1336 if (PageDirty(page) || PageCompound(page)) {
1337 page_cache_release(page);
1338 bvec[i].bv_page = NULL;
1339 } else {
1340 nr_clean_pages++;
1341 }
1342 }
1343
1344 if (nr_clean_pages) {
1345 unsigned long flags;
1346
1347 spin_lock_irqsave(&bio_dirty_lock, flags);
1348 bio->bi_private = bio_dirty_list;
1349 bio_dirty_list = bio;
1350 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1351 schedule_work(&bio_dirty_work);
1352 } else {
1353 bio_put(bio);
1354 }
1355}
1356
1357/**
1358 * bio_endio - end I/O on a bio
1359 * @bio: bio
1da177e4
LT
1360 * @error: error, if any
1361 *
1362 * Description:
6712ecf8 1363 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1364 * preferred way to end I/O on a bio, it takes care of clearing
1365 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1366 * established -Exxxx (-EIO, for instance) error values in case
1367 * something went wrong. Noone should call bi_end_io() directly on a
1368 * bio unless they own it and thus know that it has an end_io
1369 * function.
1da177e4 1370 **/
6712ecf8 1371void bio_endio(struct bio *bio, int error)
1da177e4
LT
1372{
1373 if (error)
1374 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1375 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1376 error = -EIO;
1da177e4 1377
5bb23a68 1378 if (bio->bi_end_io)
6712ecf8 1379 bio->bi_end_io(bio, error);
1da177e4
LT
1380}
1381
1382void bio_pair_release(struct bio_pair *bp)
1383{
1384 if (atomic_dec_and_test(&bp->cnt)) {
1385 struct bio *master = bp->bio1.bi_private;
1386
6712ecf8 1387 bio_endio(master, bp->error);
1da177e4
LT
1388 mempool_free(bp, bp->bio2.bi_private);
1389 }
1390}
1391
6712ecf8 1392static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1393{
1394 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1395
1396 if (err)
1397 bp->error = err;
1398
1da177e4 1399 bio_pair_release(bp);
1da177e4
LT
1400}
1401
6712ecf8 1402static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1403{
1404 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1405
1406 if (err)
1407 bp->error = err;
1408
1da177e4 1409 bio_pair_release(bp);
1da177e4
LT
1410}
1411
1412/*
1413 * split a bio - only worry about a bio with a single page
1414 * in it's iovec
1415 */
6feef531 1416struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1417{
6feef531 1418 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1419
1420 if (!bp)
1421 return bp;
1422
5f3ea37c 1423 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1424 bi->bi_sector + first_sectors);
1425
1da177e4
LT
1426 BUG_ON(bi->bi_vcnt != 1);
1427 BUG_ON(bi->bi_idx != 0);
1428 atomic_set(&bp->cnt, 3);
1429 bp->error = 0;
1430 bp->bio1 = *bi;
1431 bp->bio2 = *bi;
1432 bp->bio2.bi_sector += first_sectors;
1433 bp->bio2.bi_size -= first_sectors << 9;
1434 bp->bio1.bi_size = first_sectors << 9;
1435
1436 bp->bv1 = bi->bi_io_vec[0];
1437 bp->bv2 = bi->bi_io_vec[0];
1438 bp->bv2.bv_offset += first_sectors << 9;
1439 bp->bv2.bv_len -= first_sectors << 9;
1440 bp->bv1.bv_len = first_sectors << 9;
1441
1442 bp->bio1.bi_io_vec = &bp->bv1;
1443 bp->bio2.bi_io_vec = &bp->bv2;
1444
a2eb0c10
N
1445 bp->bio1.bi_max_vecs = 1;
1446 bp->bio2.bi_max_vecs = 1;
1447
1da177e4
LT
1448 bp->bio1.bi_end_io = bio_pair_end_1;
1449 bp->bio2.bi_end_io = bio_pair_end_2;
1450
1451 bp->bio1.bi_private = bi;
6feef531 1452 bp->bio2.bi_private = bio_split_pool;
1da177e4 1453
7ba1ba12
MP
1454 if (bio_integrity(bi))
1455 bio_integrity_split(bi, bp, first_sectors);
1456
1da177e4
LT
1457 return bp;
1458}
1459
ad3316bf
MP
1460/**
1461 * bio_sector_offset - Find hardware sector offset in bio
1462 * @bio: bio to inspect
1463 * @index: bio_vec index
1464 * @offset: offset in bv_page
1465 *
1466 * Return the number of hardware sectors between beginning of bio
1467 * and an end point indicated by a bio_vec index and an offset
1468 * within that vector's page.
1469 */
1470sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1471 unsigned int offset)
1472{
1473 unsigned int sector_sz = queue_hardsect_size(bio->bi_bdev->bd_disk->queue);
1474 struct bio_vec *bv;
1475 sector_t sectors;
1476 int i;
1477
1478 sectors = 0;
1479
1480 if (index >= bio->bi_idx)
1481 index = bio->bi_vcnt - 1;
1482
1483 __bio_for_each_segment(bv, bio, i, 0) {
1484 if (i == index) {
1485 if (offset > bv->bv_offset)
1486 sectors += (offset - bv->bv_offset) / sector_sz;
1487 break;
1488 }
1489
1490 sectors += bv->bv_len / sector_sz;
1491 }
1492
1493 return sectors;
1494}
1495EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1496
1497/*
1498 * create memory pools for biovec's in a bio_set.
1499 * use the global biovec slabs created for general use.
1500 */
5972511b 1501static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4 1502{
7ff9345f 1503 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1504
7ff9345f
JA
1505 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1506 if (!bs->bvec_pool)
1507 return -ENOMEM;
1da177e4 1508
1da177e4
LT
1509 return 0;
1510}
1511
1512static void biovec_free_pools(struct bio_set *bs)
1513{
7ff9345f 1514 mempool_destroy(bs->bvec_pool);
1da177e4
LT
1515}
1516
1517void bioset_free(struct bio_set *bs)
1518{
1519 if (bs->bio_pool)
1520 mempool_destroy(bs->bio_pool);
1521
7ba1ba12 1522 bioset_integrity_free(bs);
1da177e4 1523 biovec_free_pools(bs);
bb799ca0 1524 bio_put_slab(bs);
1da177e4
LT
1525
1526 kfree(bs);
1527}
1528
bb799ca0
JA
1529/**
1530 * bioset_create - Create a bio_set
1531 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1532 * @front_pad: Number of bytes to allocate in front of the returned bio
1533 *
1534 * Description:
1535 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1536 * to ask for a number of bytes to be allocated in front of the bio.
1537 * Front pad allocation is useful for embedding the bio inside
1538 * another structure, to avoid allocating extra data to go with the bio.
1539 * Note that the bio must be embedded at the END of that structure always,
1540 * or things will break badly.
1541 */
1542struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1543{
392ddc32 1544 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1545 struct bio_set *bs;
1da177e4 1546
1b434498 1547 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1548 if (!bs)
1549 return NULL;
1550
bb799ca0 1551 bs->front_pad = front_pad;
1b434498 1552
392ddc32 1553 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1554 if (!bs->bio_slab) {
1555 kfree(bs);
1556 return NULL;
1557 }
1558
1559 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1560 if (!bs->bio_pool)
1561 goto bad;
1562
bb799ca0 1563 if (bioset_integrity_create(bs, pool_size))
7ba1ba12
MP
1564 goto bad;
1565
bb799ca0 1566 if (!biovec_create_pools(bs, pool_size))
1da177e4
LT
1567 return bs;
1568
1569bad:
1570 bioset_free(bs);
1571 return NULL;
1572}
1573
1574static void __init biovec_init_slabs(void)
1575{
1576 int i;
1577
1578 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1579 int size;
1580 struct biovec_slab *bvs = bvec_slabs + i;
1581
1582 size = bvs->nr_vecs * sizeof(struct bio_vec);
1583 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1584 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1585 }
1586}
1587
1588static int __init init_bio(void)
1589{
bb799ca0
JA
1590 bio_slab_max = 2;
1591 bio_slab_nr = 0;
1592 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1593 if (!bio_slabs)
1594 panic("bio: can't allocate bios\n");
1da177e4 1595
7ba1ba12 1596 bio_integrity_init_slab();
1da177e4
LT
1597 biovec_init_slabs();
1598
bb799ca0 1599 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1600 if (!fs_bio_set)
1601 panic("bio: can't allocate bios\n");
1602
0eaae62a
MD
1603 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1604 sizeof(struct bio_pair));
1da177e4
LT
1605 if (!bio_split_pool)
1606 panic("bio: can't create split pool\n");
1607
1608 return 0;
1609}
1610
1611subsys_initcall(init_bio);
1612
1613EXPORT_SYMBOL(bio_alloc);
0a0d96b0 1614EXPORT_SYMBOL(bio_kmalloc);
1da177e4 1615EXPORT_SYMBOL(bio_put);
3676347a 1616EXPORT_SYMBOL(bio_free);
1da177e4
LT
1617EXPORT_SYMBOL(bio_endio);
1618EXPORT_SYMBOL(bio_init);
1619EXPORT_SYMBOL(__bio_clone);
1620EXPORT_SYMBOL(bio_clone);
1621EXPORT_SYMBOL(bio_phys_segments);
1da177e4 1622EXPORT_SYMBOL(bio_add_page);
6e68af66 1623EXPORT_SYMBOL(bio_add_pc_page);
1da177e4 1624EXPORT_SYMBOL(bio_get_nr_vecs);
40044ce0
JA
1625EXPORT_SYMBOL(bio_map_user);
1626EXPORT_SYMBOL(bio_unmap_user);
df46b9a4 1627EXPORT_SYMBOL(bio_map_kern);
68154e90 1628EXPORT_SYMBOL(bio_copy_kern);
1da177e4
LT
1629EXPORT_SYMBOL(bio_pair_release);
1630EXPORT_SYMBOL(bio_split);
1da177e4
LT
1631EXPORT_SYMBOL(bio_copy_user);
1632EXPORT_SYMBOL(bio_uncopy_user);
1633EXPORT_SYMBOL(bioset_create);
1634EXPORT_SYMBOL(bioset_free);
1635EXPORT_SYMBOL(bio_alloc_bioset);