]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/bio.c
block: Consolidate bio_alloc_bioset(), bio_kmalloc()
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
852c788f 22#include <linux/iocontext.h>
1da177e4
LT
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/kernel.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mempool.h>
28#include <linux/workqueue.h>
852c788f 29#include <linux/cgroup.h>
f1970baf 30#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
6feef531 40static mempool_t *bio_split_pool __read_mostly;
1da177e4 41
1da177e4
LT
42/*
43 * if you change this list, also change bvec_alloc or things will
44 * break badly! cannot be bigger than what you can fit into an
45 * unsigned short
46 */
1da177e4 47#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 48static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
49 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
50};
51#undef BV
52
1da177e4
LT
53/*
54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55 * IO code that does not need private memory pools.
56 */
51d654e1 57struct bio_set *fs_bio_set;
3f86a82a 58EXPORT_SYMBOL(fs_bio_set);
1da177e4 59
bb799ca0
JA
60/*
61 * Our slab pool management
62 */
63struct bio_slab {
64 struct kmem_cache *slab;
65 unsigned int slab_ref;
66 unsigned int slab_size;
67 char name[8];
68};
69static DEFINE_MUTEX(bio_slab_lock);
70static struct bio_slab *bio_slabs;
71static unsigned int bio_slab_nr, bio_slab_max;
72
73static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
74{
75 unsigned int sz = sizeof(struct bio) + extra_size;
76 struct kmem_cache *slab = NULL;
389d7b26 77 struct bio_slab *bslab, *new_bio_slabs;
bb799ca0
JA
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
f06f135d 84 bslab = &bio_slabs[i];
bb799ca0
JA
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
100 bio_slab_max <<= 1;
389d7b26
AK
101 new_bio_slabs = krealloc(bio_slabs,
102 bio_slab_max * sizeof(struct bio_slab),
103 GFP_KERNEL);
104 if (!new_bio_slabs)
bb799ca0 105 goto out_unlock;
389d7b26 106 bio_slabs = new_bio_slabs;
bb799ca0
JA
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
115 if (!slab)
116 goto out_unlock;
117
80cdc6da 118 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
bb799ca0
JA
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152out:
153 mutex_unlock(&bio_slab_lock);
154}
155
7ba1ba12
MP
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158 return bvec_slabs[idx].nr_vecs;
159}
160
bb799ca0
JA
161void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
162{
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, bs->bvec_pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172}
173
7ff9345f
JA
174struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
175 struct bio_set *bs)
1da177e4
LT
176{
177 struct bio_vec *bvl;
1da177e4 178
7ff9345f
JA
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210fallback:
211 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
215
0a0d96b0 216 /*
7ff9345f
JA
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
0a0d96b0 220 */
7ff9345f 221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 222
0a0d96b0 223 /*
7ff9345f
JA
224 * Try a slab allocation. If this fails and __GFP_WAIT
225 * is set, retry with the 1-entry mempool
0a0d96b0 226 */
7ff9345f
JA
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
1da177e4
LT
234 return bvl;
235}
236
4254bba1 237static void __bio_free(struct bio *bio)
1da177e4 238{
4254bba1 239 bio_disassociate_task(bio);
1da177e4 240
7ba1ba12 241 if (bio_integrity(bio))
1e2a410f 242 bio_integrity_free(bio);
4254bba1 243}
7ba1ba12 244
4254bba1
KO
245static void bio_free(struct bio *bio)
246{
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_has_allocated_vec(bio))
254 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
bb799ca0
JA
260 p -= bs->front_pad;
261
4254bba1
KO
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
3676347a
PO
267}
268
858119e1 269void bio_init(struct bio *bio)
1da177e4 270{
2b94de55 271 memset(bio, 0, sizeof(*bio));
1da177e4 272 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 273 atomic_set(&bio->bi_cnt, 1);
1da177e4 274}
a112a71d 275EXPORT_SYMBOL(bio_init);
1da177e4 276
f44b48c7
KO
277/**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287void bio_reset(struct bio *bio)
288{
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
4254bba1 291 __bio_free(bio);
f44b48c7
KO
292
293 memset(bio, 0, BIO_RESET_BYTES);
294 bio->bi_flags = flags|(1 << BIO_UPTODATE);
295}
296EXPORT_SYMBOL(bio_reset);
297
1da177e4
LT
298/**
299 * bio_alloc_bioset - allocate a bio for I/O
300 * @gfp_mask: the GFP_ mask given to the slab allocator
301 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 302 * @bs: the bio_set to allocate from.
1da177e4
LT
303 *
304 * Description:
3f86a82a
KO
305 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
306 * backed by the @bs's mempool.
307 *
308 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
309 * able to allocate a bio. This is due to the mempool guarantees. To make this
310 * work, callers must never allocate more than 1 bio at a time from this pool.
311 * Callers that need to allocate more than 1 bio must always submit the
312 * previously allocated bio for IO before attempting to allocate a new one.
313 * Failure to do so can cause deadlocks under memory pressure.
314 *
315 * RETURNS:
316 * Pointer to new bio on success, NULL on failure.
317 */
dd0fc66f 318struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 319{
3f86a82a
KO
320 unsigned front_pad;
321 unsigned inline_vecs;
451a9ebf 322 unsigned long idx = BIO_POOL_NONE;
34053979 323 struct bio_vec *bvl = NULL;
451a9ebf
TH
324 struct bio *bio;
325 void *p;
326
3f86a82a
KO
327 if (!bs) {
328 if (nr_iovecs > UIO_MAXIOV)
329 return NULL;
330
331 p = kmalloc(sizeof(struct bio) +
332 nr_iovecs * sizeof(struct bio_vec),
333 gfp_mask);
334 front_pad = 0;
335 inline_vecs = nr_iovecs;
336 } else {
337 p = mempool_alloc(bs->bio_pool, gfp_mask);
338 front_pad = bs->front_pad;
339 inline_vecs = BIO_INLINE_VECS;
340 }
341
451a9ebf
TH
342 if (unlikely(!p))
343 return NULL;
1da177e4 344
3f86a82a 345 bio = p + front_pad;
34053979
IM
346 bio_init(bio);
347
3f86a82a 348 if (nr_iovecs > inline_vecs) {
34053979
IM
349 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
350 if (unlikely(!bvl))
351 goto err_free;
3f86a82a
KO
352 } else if (nr_iovecs) {
353 bvl = bio->bi_inline_vecs;
1da177e4 354 }
3f86a82a
KO
355
356 bio->bi_pool = bs;
34053979
IM
357 bio->bi_flags |= idx << BIO_POOL_OFFSET;
358 bio->bi_max_vecs = nr_iovecs;
34053979 359 bio->bi_io_vec = bvl;
1da177e4 360 return bio;
34053979
IM
361
362err_free:
451a9ebf 363 mempool_free(p, bs->bio_pool);
34053979 364 return NULL;
1da177e4 365}
a112a71d 366EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 367
1da177e4
LT
368void zero_fill_bio(struct bio *bio)
369{
370 unsigned long flags;
371 struct bio_vec *bv;
372 int i;
373
374 bio_for_each_segment(bv, bio, i) {
375 char *data = bvec_kmap_irq(bv, &flags);
376 memset(data, 0, bv->bv_len);
377 flush_dcache_page(bv->bv_page);
378 bvec_kunmap_irq(data, &flags);
379 }
380}
381EXPORT_SYMBOL(zero_fill_bio);
382
383/**
384 * bio_put - release a reference to a bio
385 * @bio: bio to release reference to
386 *
387 * Description:
388 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 389 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
390 **/
391void bio_put(struct bio *bio)
392{
393 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
394
395 /*
396 * last put frees it
397 */
4254bba1
KO
398 if (atomic_dec_and_test(&bio->bi_cnt))
399 bio_free(bio);
1da177e4 400}
a112a71d 401EXPORT_SYMBOL(bio_put);
1da177e4 402
165125e1 403inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
404{
405 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
406 blk_recount_segments(q, bio);
407
408 return bio->bi_phys_segments;
409}
a112a71d 410EXPORT_SYMBOL(bio_phys_segments);
1da177e4 411
1da177e4
LT
412/**
413 * __bio_clone - clone a bio
414 * @bio: destination bio
415 * @bio_src: bio to clone
416 *
417 * Clone a &bio. Caller will own the returned bio, but not
418 * the actual data it points to. Reference count of returned
419 * bio will be one.
420 */
858119e1 421void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 422{
e525e153
AM
423 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
424 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 425
5d84070e
JA
426 /*
427 * most users will be overriding ->bi_bdev with a new target,
428 * so we don't set nor calculate new physical/hw segment counts here
429 */
1da177e4
LT
430 bio->bi_sector = bio_src->bi_sector;
431 bio->bi_bdev = bio_src->bi_bdev;
432 bio->bi_flags |= 1 << BIO_CLONED;
433 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
434 bio->bi_vcnt = bio_src->bi_vcnt;
435 bio->bi_size = bio_src->bi_size;
a5453be4 436 bio->bi_idx = bio_src->bi_idx;
1da177e4 437}
a112a71d 438EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
439
440/**
441 * bio_clone - clone a bio
442 * @bio: bio to clone
443 * @gfp_mask: allocation priority
444 *
445 * Like __bio_clone, only also allocates the returned bio
446 */
dd0fc66f 447struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4 448{
395c72a7 449 struct bio *b = bio_alloc(gfp_mask, bio->bi_max_vecs);
1da177e4 450
7ba1ba12
MP
451 if (!b)
452 return NULL;
453
7ba1ba12
MP
454 __bio_clone(b, bio);
455
456 if (bio_integrity(bio)) {
457 int ret;
458
1e2a410f 459 ret = bio_integrity_clone(b, bio, gfp_mask);
7ba1ba12 460
059ea331
LZ
461 if (ret < 0) {
462 bio_put(b);
7ba1ba12 463 return NULL;
059ea331 464 }
3676347a 465 }
1da177e4
LT
466
467 return b;
468}
a112a71d 469EXPORT_SYMBOL(bio_clone);
1da177e4
LT
470
471/**
472 * bio_get_nr_vecs - return approx number of vecs
473 * @bdev: I/O target
474 *
475 * Return the approximate number of pages we can send to this target.
476 * There's no guarantee that you will be able to fit this number of pages
477 * into a bio, it does not account for dynamic restrictions that vary
478 * on offset.
479 */
480int bio_get_nr_vecs(struct block_device *bdev)
481{
165125e1 482 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
483 int nr_pages;
484
485 nr_pages = min_t(unsigned,
5abebfdd
KO
486 queue_max_segments(q),
487 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
488
489 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
490
1da177e4 491}
a112a71d 492EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 493
165125e1 494static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
495 *page, unsigned int len, unsigned int offset,
496 unsigned short max_sectors)
1da177e4
LT
497{
498 int retried_segments = 0;
499 struct bio_vec *bvec;
500
501 /*
502 * cloned bio must not modify vec list
503 */
504 if (unlikely(bio_flagged(bio, BIO_CLONED)))
505 return 0;
506
80cfd548 507 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
508 return 0;
509
80cfd548
JA
510 /*
511 * For filesystems with a blocksize smaller than the pagesize
512 * we will often be called with the same page as last time and
513 * a consecutive offset. Optimize this special case.
514 */
515 if (bio->bi_vcnt > 0) {
516 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
517
518 if (page == prev->bv_page &&
519 offset == prev->bv_offset + prev->bv_len) {
1d616585 520 unsigned int prev_bv_len = prev->bv_len;
80cfd548 521 prev->bv_len += len;
cc371e66
AK
522
523 if (q->merge_bvec_fn) {
524 struct bvec_merge_data bvm = {
1d616585
DM
525 /* prev_bvec is already charged in
526 bi_size, discharge it in order to
527 simulate merging updated prev_bvec
528 as new bvec. */
cc371e66
AK
529 .bi_bdev = bio->bi_bdev,
530 .bi_sector = bio->bi_sector,
1d616585 531 .bi_size = bio->bi_size - prev_bv_len,
cc371e66
AK
532 .bi_rw = bio->bi_rw,
533 };
534
8bf8c376 535 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
536 prev->bv_len -= len;
537 return 0;
538 }
80cfd548
JA
539 }
540
541 goto done;
542 }
543 }
544
545 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
546 return 0;
547
548 /*
549 * we might lose a segment or two here, but rather that than
550 * make this too complex.
551 */
552
8a78362c 553 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
554
555 if (retried_segments)
556 return 0;
557
558 retried_segments = 1;
559 blk_recount_segments(q, bio);
560 }
561
562 /*
563 * setup the new entry, we might clear it again later if we
564 * cannot add the page
565 */
566 bvec = &bio->bi_io_vec[bio->bi_vcnt];
567 bvec->bv_page = page;
568 bvec->bv_len = len;
569 bvec->bv_offset = offset;
570
571 /*
572 * if queue has other restrictions (eg varying max sector size
573 * depending on offset), it can specify a merge_bvec_fn in the
574 * queue to get further control
575 */
576 if (q->merge_bvec_fn) {
cc371e66
AK
577 struct bvec_merge_data bvm = {
578 .bi_bdev = bio->bi_bdev,
579 .bi_sector = bio->bi_sector,
580 .bi_size = bio->bi_size,
581 .bi_rw = bio->bi_rw,
582 };
583
1da177e4
LT
584 /*
585 * merge_bvec_fn() returns number of bytes it can accept
586 * at this offset
587 */
8bf8c376 588 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
589 bvec->bv_page = NULL;
590 bvec->bv_len = 0;
591 bvec->bv_offset = 0;
592 return 0;
593 }
594 }
595
596 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 597 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
598 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
599
600 bio->bi_vcnt++;
601 bio->bi_phys_segments++;
80cfd548 602 done:
1da177e4
LT
603 bio->bi_size += len;
604 return len;
605}
606
6e68af66
MC
607/**
608 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 609 * @q: the target queue
6e68af66
MC
610 * @bio: destination bio
611 * @page: page to add
612 * @len: vec entry length
613 * @offset: vec entry offset
614 *
615 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
616 * number of reasons, such as the bio being full or target block device
617 * limitations. The target block device must allow bio's up to PAGE_SIZE,
618 * so it is always possible to add a single page to an empty bio.
619 *
620 * This should only be used by REQ_PC bios.
6e68af66 621 */
165125e1 622int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
623 unsigned int len, unsigned int offset)
624{
ae03bf63
MP
625 return __bio_add_page(q, bio, page, len, offset,
626 queue_max_hw_sectors(q));
6e68af66 627}
a112a71d 628EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 629
1da177e4
LT
630/**
631 * bio_add_page - attempt to add page to bio
632 * @bio: destination bio
633 * @page: page to add
634 * @len: vec entry length
635 * @offset: vec entry offset
636 *
637 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
638 * number of reasons, such as the bio being full or target block device
639 * limitations. The target block device must allow bio's up to PAGE_SIZE,
640 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
641 */
642int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
643 unsigned int offset)
644{
defd94b7 645 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 646 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 647}
a112a71d 648EXPORT_SYMBOL(bio_add_page);
1da177e4
LT
649
650struct bio_map_data {
651 struct bio_vec *iovecs;
c5dec1c3 652 struct sg_iovec *sgvecs;
152e283f
FT
653 int nr_sgvecs;
654 int is_our_pages;
1da177e4
LT
655};
656
c5dec1c3 657static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
658 struct sg_iovec *iov, int iov_count,
659 int is_our_pages)
1da177e4
LT
660{
661 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
662 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
663 bmd->nr_sgvecs = iov_count;
152e283f 664 bmd->is_our_pages = is_our_pages;
1da177e4
LT
665 bio->bi_private = bmd;
666}
667
668static void bio_free_map_data(struct bio_map_data *bmd)
669{
670 kfree(bmd->iovecs);
c5dec1c3 671 kfree(bmd->sgvecs);
1da177e4
LT
672 kfree(bmd);
673}
674
121f0994
DC
675static struct bio_map_data *bio_alloc_map_data(int nr_segs,
676 unsigned int iov_count,
76029ff3 677 gfp_t gfp_mask)
1da177e4 678{
f3f63c1c
JA
679 struct bio_map_data *bmd;
680
681 if (iov_count > UIO_MAXIOV)
682 return NULL;
1da177e4 683
f3f63c1c 684 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
685 if (!bmd)
686 return NULL;
687
76029ff3 688 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
689 if (!bmd->iovecs) {
690 kfree(bmd);
691 return NULL;
692 }
693
76029ff3 694 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 695 if (bmd->sgvecs)
1da177e4
LT
696 return bmd;
697
c5dec1c3 698 kfree(bmd->iovecs);
1da177e4
LT
699 kfree(bmd);
700 return NULL;
701}
702
aefcc28a 703static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
704 struct sg_iovec *iov, int iov_count,
705 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
706{
707 int ret = 0, i;
708 struct bio_vec *bvec;
709 int iov_idx = 0;
710 unsigned int iov_off = 0;
c5dec1c3
FT
711
712 __bio_for_each_segment(bvec, bio, i, 0) {
713 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 714 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
715
716 while (bv_len && iov_idx < iov_count) {
717 unsigned int bytes;
0e0c6212 718 char __user *iov_addr;
c5dec1c3
FT
719
720 bytes = min_t(unsigned int,
721 iov[iov_idx].iov_len - iov_off, bv_len);
722 iov_addr = iov[iov_idx].iov_base + iov_off;
723
724 if (!ret) {
ecb554a8 725 if (to_user)
c5dec1c3
FT
726 ret = copy_to_user(iov_addr, bv_addr,
727 bytes);
728
ecb554a8
FT
729 if (from_user)
730 ret = copy_from_user(bv_addr, iov_addr,
731 bytes);
732
c5dec1c3
FT
733 if (ret)
734 ret = -EFAULT;
735 }
736
737 bv_len -= bytes;
738 bv_addr += bytes;
739 iov_addr += bytes;
740 iov_off += bytes;
741
742 if (iov[iov_idx].iov_len == iov_off) {
743 iov_idx++;
744 iov_off = 0;
745 }
746 }
747
152e283f 748 if (do_free_page)
c5dec1c3
FT
749 __free_page(bvec->bv_page);
750 }
751
752 return ret;
753}
754
1da177e4
LT
755/**
756 * bio_uncopy_user - finish previously mapped bio
757 * @bio: bio being terminated
758 *
759 * Free pages allocated from bio_copy_user() and write back data
760 * to user space in case of a read.
761 */
762int bio_uncopy_user(struct bio *bio)
763{
764 struct bio_map_data *bmd = bio->bi_private;
81882766 765 int ret = 0;
1da177e4 766
81882766
FT
767 if (!bio_flagged(bio, BIO_NULL_MAPPED))
768 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
ecb554a8
FT
769 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
770 0, bmd->is_our_pages);
1da177e4
LT
771 bio_free_map_data(bmd);
772 bio_put(bio);
773 return ret;
774}
a112a71d 775EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
776
777/**
c5dec1c3 778 * bio_copy_user_iov - copy user data to bio
1da177e4 779 * @q: destination block queue
152e283f 780 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
781 * @iov: the iovec.
782 * @iov_count: number of elements in the iovec
1da177e4 783 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 784 * @gfp_mask: memory allocation flags
1da177e4
LT
785 *
786 * Prepares and returns a bio for indirect user io, bouncing data
787 * to/from kernel pages as necessary. Must be paired with
788 * call bio_uncopy_user() on io completion.
789 */
152e283f
FT
790struct bio *bio_copy_user_iov(struct request_queue *q,
791 struct rq_map_data *map_data,
792 struct sg_iovec *iov, int iov_count,
793 int write_to_vm, gfp_t gfp_mask)
1da177e4 794{
1da177e4
LT
795 struct bio_map_data *bmd;
796 struct bio_vec *bvec;
797 struct page *page;
798 struct bio *bio;
799 int i, ret;
c5dec1c3
FT
800 int nr_pages = 0;
801 unsigned int len = 0;
56c451f4 802 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 803
c5dec1c3
FT
804 for (i = 0; i < iov_count; i++) {
805 unsigned long uaddr;
806 unsigned long end;
807 unsigned long start;
808
809 uaddr = (unsigned long)iov[i].iov_base;
810 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
811 start = uaddr >> PAGE_SHIFT;
812
cb4644ca
JA
813 /*
814 * Overflow, abort
815 */
816 if (end < start)
817 return ERR_PTR(-EINVAL);
818
c5dec1c3
FT
819 nr_pages += end - start;
820 len += iov[i].iov_len;
821 }
822
69838727
FT
823 if (offset)
824 nr_pages++;
825
a3bce90e 826 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
827 if (!bmd)
828 return ERR_PTR(-ENOMEM);
829
1da177e4 830 ret = -ENOMEM;
a9e9dc24 831 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
832 if (!bio)
833 goto out_bmd;
834
7b6d91da
CH
835 if (!write_to_vm)
836 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
837
838 ret = 0;
56c451f4
FT
839
840 if (map_data) {
e623ddb4 841 nr_pages = 1 << map_data->page_order;
56c451f4
FT
842 i = map_data->offset / PAGE_SIZE;
843 }
1da177e4 844 while (len) {
e623ddb4 845 unsigned int bytes = PAGE_SIZE;
1da177e4 846
56c451f4
FT
847 bytes -= offset;
848
1da177e4
LT
849 if (bytes > len)
850 bytes = len;
851
152e283f 852 if (map_data) {
e623ddb4 853 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
854 ret = -ENOMEM;
855 break;
856 }
e623ddb4
FT
857
858 page = map_data->pages[i / nr_pages];
859 page += (i % nr_pages);
860
861 i++;
862 } else {
152e283f 863 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
864 if (!page) {
865 ret = -ENOMEM;
866 break;
867 }
1da177e4
LT
868 }
869
56c451f4 870 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 871 break;
1da177e4
LT
872
873 len -= bytes;
56c451f4 874 offset = 0;
1da177e4
LT
875 }
876
877 if (ret)
878 goto cleanup;
879
880 /*
881 * success
882 */
ecb554a8
FT
883 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
884 (map_data && map_data->from_user)) {
885 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
886 if (ret)
887 goto cleanup;
1da177e4
LT
888 }
889
152e283f 890 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
891 return bio;
892cleanup:
152e283f
FT
893 if (!map_data)
894 bio_for_each_segment(bvec, bio, i)
895 __free_page(bvec->bv_page);
1da177e4
LT
896
897 bio_put(bio);
898out_bmd:
899 bio_free_map_data(bmd);
900 return ERR_PTR(ret);
901}
902
c5dec1c3
FT
903/**
904 * bio_copy_user - copy user data to bio
905 * @q: destination block queue
152e283f 906 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
907 * @uaddr: start of user address
908 * @len: length in bytes
909 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 910 * @gfp_mask: memory allocation flags
c5dec1c3
FT
911 *
912 * Prepares and returns a bio for indirect user io, bouncing data
913 * to/from kernel pages as necessary. Must be paired with
914 * call bio_uncopy_user() on io completion.
915 */
152e283f
FT
916struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
917 unsigned long uaddr, unsigned int len,
918 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
919{
920 struct sg_iovec iov;
921
922 iov.iov_base = (void __user *)uaddr;
923 iov.iov_len = len;
924
152e283f 925 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 926}
a112a71d 927EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 928
165125e1 929static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
930 struct block_device *bdev,
931 struct sg_iovec *iov, int iov_count,
a3bce90e 932 int write_to_vm, gfp_t gfp_mask)
1da177e4 933{
f1970baf
JB
934 int i, j;
935 int nr_pages = 0;
1da177e4
LT
936 struct page **pages;
937 struct bio *bio;
f1970baf
JB
938 int cur_page = 0;
939 int ret, offset;
1da177e4 940
f1970baf
JB
941 for (i = 0; i < iov_count; i++) {
942 unsigned long uaddr = (unsigned long)iov[i].iov_base;
943 unsigned long len = iov[i].iov_len;
944 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
945 unsigned long start = uaddr >> PAGE_SHIFT;
946
cb4644ca
JA
947 /*
948 * Overflow, abort
949 */
950 if (end < start)
951 return ERR_PTR(-EINVAL);
952
f1970baf
JB
953 nr_pages += end - start;
954 /*
ad2d7225 955 * buffer must be aligned to at least hardsector size for now
f1970baf 956 */
ad2d7225 957 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
958 return ERR_PTR(-EINVAL);
959 }
960
961 if (!nr_pages)
1da177e4
LT
962 return ERR_PTR(-EINVAL);
963
a9e9dc24 964 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
965 if (!bio)
966 return ERR_PTR(-ENOMEM);
967
968 ret = -ENOMEM;
a3bce90e 969 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
970 if (!pages)
971 goto out;
972
f1970baf
JB
973 for (i = 0; i < iov_count; i++) {
974 unsigned long uaddr = (unsigned long)iov[i].iov_base;
975 unsigned long len = iov[i].iov_len;
976 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
977 unsigned long start = uaddr >> PAGE_SHIFT;
978 const int local_nr_pages = end - start;
979 const int page_limit = cur_page + local_nr_pages;
cb4644ca 980
f5dd33c4
NP
981 ret = get_user_pages_fast(uaddr, local_nr_pages,
982 write_to_vm, &pages[cur_page]);
99172157
JA
983 if (ret < local_nr_pages) {
984 ret = -EFAULT;
f1970baf 985 goto out_unmap;
99172157 986 }
f1970baf
JB
987
988 offset = uaddr & ~PAGE_MASK;
989 for (j = cur_page; j < page_limit; j++) {
990 unsigned int bytes = PAGE_SIZE - offset;
991
992 if (len <= 0)
993 break;
994
995 if (bytes > len)
996 bytes = len;
997
998 /*
999 * sorry...
1000 */
defd94b7
MC
1001 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1002 bytes)
f1970baf
JB
1003 break;
1004
1005 len -= bytes;
1006 offset = 0;
1007 }
1da177e4 1008
f1970baf 1009 cur_page = j;
1da177e4 1010 /*
f1970baf 1011 * release the pages we didn't map into the bio, if any
1da177e4 1012 */
f1970baf
JB
1013 while (j < page_limit)
1014 page_cache_release(pages[j++]);
1da177e4
LT
1015 }
1016
1da177e4
LT
1017 kfree(pages);
1018
1019 /*
1020 * set data direction, and check if mapped pages need bouncing
1021 */
1022 if (!write_to_vm)
7b6d91da 1023 bio->bi_rw |= REQ_WRITE;
1da177e4 1024
f1970baf 1025 bio->bi_bdev = bdev;
1da177e4
LT
1026 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1027 return bio;
f1970baf
JB
1028
1029 out_unmap:
1030 for (i = 0; i < nr_pages; i++) {
1031 if(!pages[i])
1032 break;
1033 page_cache_release(pages[i]);
1034 }
1035 out:
1da177e4
LT
1036 kfree(pages);
1037 bio_put(bio);
1038 return ERR_PTR(ret);
1039}
1040
1041/**
1042 * bio_map_user - map user address into bio
165125e1 1043 * @q: the struct request_queue for the bio
1da177e4
LT
1044 * @bdev: destination block device
1045 * @uaddr: start of user address
1046 * @len: length in bytes
1047 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1048 * @gfp_mask: memory allocation flags
1da177e4
LT
1049 *
1050 * Map the user space address into a bio suitable for io to a block
1051 * device. Returns an error pointer in case of error.
1052 */
165125e1 1053struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1054 unsigned long uaddr, unsigned int len, int write_to_vm,
1055 gfp_t gfp_mask)
f1970baf
JB
1056{
1057 struct sg_iovec iov;
1058
3f70353e 1059 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1060 iov.iov_len = len;
1061
a3bce90e 1062 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1063}
a112a71d 1064EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1065
1066/**
1067 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1068 * @q: the struct request_queue for the bio
f1970baf
JB
1069 * @bdev: destination block device
1070 * @iov: the iovec.
1071 * @iov_count: number of elements in the iovec
1072 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1073 * @gfp_mask: memory allocation flags
f1970baf
JB
1074 *
1075 * Map the user space address into a bio suitable for io to a block
1076 * device. Returns an error pointer in case of error.
1077 */
165125e1 1078struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1079 struct sg_iovec *iov, int iov_count,
a3bce90e 1080 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1081{
1082 struct bio *bio;
1083
a3bce90e
FT
1084 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1085 gfp_mask);
1da177e4
LT
1086 if (IS_ERR(bio))
1087 return bio;
1088
1089 /*
1090 * subtle -- if __bio_map_user() ended up bouncing a bio,
1091 * it would normally disappear when its bi_end_io is run.
1092 * however, we need it for the unmap, so grab an extra
1093 * reference to it
1094 */
1095 bio_get(bio);
1096
0e75f906 1097 return bio;
1da177e4
LT
1098}
1099
1100static void __bio_unmap_user(struct bio *bio)
1101{
1102 struct bio_vec *bvec;
1103 int i;
1104
1105 /*
1106 * make sure we dirty pages we wrote to
1107 */
1108 __bio_for_each_segment(bvec, bio, i, 0) {
1109 if (bio_data_dir(bio) == READ)
1110 set_page_dirty_lock(bvec->bv_page);
1111
1112 page_cache_release(bvec->bv_page);
1113 }
1114
1115 bio_put(bio);
1116}
1117
1118/**
1119 * bio_unmap_user - unmap a bio
1120 * @bio: the bio being unmapped
1121 *
1122 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1123 * a process context.
1124 *
1125 * bio_unmap_user() may sleep.
1126 */
1127void bio_unmap_user(struct bio *bio)
1128{
1129 __bio_unmap_user(bio);
1130 bio_put(bio);
1131}
a112a71d 1132EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1133
6712ecf8 1134static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1135{
b823825e 1136 bio_put(bio);
b823825e
JA
1137}
1138
165125e1 1139static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1140 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1141{
1142 unsigned long kaddr = (unsigned long)data;
1143 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1144 unsigned long start = kaddr >> PAGE_SHIFT;
1145 const int nr_pages = end - start;
1146 int offset, i;
1147 struct bio *bio;
1148
a9e9dc24 1149 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1150 if (!bio)
1151 return ERR_PTR(-ENOMEM);
1152
1153 offset = offset_in_page(kaddr);
1154 for (i = 0; i < nr_pages; i++) {
1155 unsigned int bytes = PAGE_SIZE - offset;
1156
1157 if (len <= 0)
1158 break;
1159
1160 if (bytes > len)
1161 bytes = len;
1162
defd94b7
MC
1163 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1164 offset) < bytes)
df46b9a4
MC
1165 break;
1166
1167 data += bytes;
1168 len -= bytes;
1169 offset = 0;
1170 }
1171
b823825e 1172 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1173 return bio;
1174}
1175
1176/**
1177 * bio_map_kern - map kernel address into bio
165125e1 1178 * @q: the struct request_queue for the bio
df46b9a4
MC
1179 * @data: pointer to buffer to map
1180 * @len: length in bytes
1181 * @gfp_mask: allocation flags for bio allocation
1182 *
1183 * Map the kernel address into a bio suitable for io to a block
1184 * device. Returns an error pointer in case of error.
1185 */
165125e1 1186struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1187 gfp_t gfp_mask)
df46b9a4
MC
1188{
1189 struct bio *bio;
1190
1191 bio = __bio_map_kern(q, data, len, gfp_mask);
1192 if (IS_ERR(bio))
1193 return bio;
1194
1195 if (bio->bi_size == len)
1196 return bio;
1197
1198 /*
1199 * Don't support partial mappings.
1200 */
1201 bio_put(bio);
1202 return ERR_PTR(-EINVAL);
1203}
a112a71d 1204EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1205
68154e90
FT
1206static void bio_copy_kern_endio(struct bio *bio, int err)
1207{
1208 struct bio_vec *bvec;
1209 const int read = bio_data_dir(bio) == READ;
76029ff3 1210 struct bio_map_data *bmd = bio->bi_private;
68154e90 1211 int i;
76029ff3 1212 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
1213
1214 __bio_for_each_segment(bvec, bio, i, 0) {
1215 char *addr = page_address(bvec->bv_page);
76029ff3 1216 int len = bmd->iovecs[i].bv_len;
68154e90 1217
4fc981ef 1218 if (read)
76029ff3 1219 memcpy(p, addr, len);
68154e90
FT
1220
1221 __free_page(bvec->bv_page);
76029ff3 1222 p += len;
68154e90
FT
1223 }
1224
76029ff3 1225 bio_free_map_data(bmd);
68154e90
FT
1226 bio_put(bio);
1227}
1228
1229/**
1230 * bio_copy_kern - copy kernel address into bio
1231 * @q: the struct request_queue for the bio
1232 * @data: pointer to buffer to copy
1233 * @len: length in bytes
1234 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1235 * @reading: data direction is READ
68154e90
FT
1236 *
1237 * copy the kernel address into a bio suitable for io to a block
1238 * device. Returns an error pointer in case of error.
1239 */
1240struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1241 gfp_t gfp_mask, int reading)
1242{
68154e90
FT
1243 struct bio *bio;
1244 struct bio_vec *bvec;
4d8ab62e 1245 int i;
68154e90 1246
4d8ab62e
FT
1247 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1248 if (IS_ERR(bio))
1249 return bio;
68154e90
FT
1250
1251 if (!reading) {
1252 void *p = data;
1253
1254 bio_for_each_segment(bvec, bio, i) {
1255 char *addr = page_address(bvec->bv_page);
1256
1257 memcpy(addr, p, bvec->bv_len);
1258 p += bvec->bv_len;
1259 }
1260 }
1261
68154e90 1262 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1263
68154e90 1264 return bio;
68154e90 1265}
a112a71d 1266EXPORT_SYMBOL(bio_copy_kern);
68154e90 1267
1da177e4
LT
1268/*
1269 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1270 * for performing direct-IO in BIOs.
1271 *
1272 * The problem is that we cannot run set_page_dirty() from interrupt context
1273 * because the required locks are not interrupt-safe. So what we can do is to
1274 * mark the pages dirty _before_ performing IO. And in interrupt context,
1275 * check that the pages are still dirty. If so, fine. If not, redirty them
1276 * in process context.
1277 *
1278 * We special-case compound pages here: normally this means reads into hugetlb
1279 * pages. The logic in here doesn't really work right for compound pages
1280 * because the VM does not uniformly chase down the head page in all cases.
1281 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1282 * handle them at all. So we skip compound pages here at an early stage.
1283 *
1284 * Note that this code is very hard to test under normal circumstances because
1285 * direct-io pins the pages with get_user_pages(). This makes
1286 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1287 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1288 * pagecache.
1289 *
1290 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1291 * deferred bio dirtying paths.
1292 */
1293
1294/*
1295 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1296 */
1297void bio_set_pages_dirty(struct bio *bio)
1298{
1299 struct bio_vec *bvec = bio->bi_io_vec;
1300 int i;
1301
1302 for (i = 0; i < bio->bi_vcnt; i++) {
1303 struct page *page = bvec[i].bv_page;
1304
1305 if (page && !PageCompound(page))
1306 set_page_dirty_lock(page);
1307 }
1308}
1309
86b6c7a7 1310static void bio_release_pages(struct bio *bio)
1da177e4
LT
1311{
1312 struct bio_vec *bvec = bio->bi_io_vec;
1313 int i;
1314
1315 for (i = 0; i < bio->bi_vcnt; i++) {
1316 struct page *page = bvec[i].bv_page;
1317
1318 if (page)
1319 put_page(page);
1320 }
1321}
1322
1323/*
1324 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1325 * If they are, then fine. If, however, some pages are clean then they must
1326 * have been written out during the direct-IO read. So we take another ref on
1327 * the BIO and the offending pages and re-dirty the pages in process context.
1328 *
1329 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1330 * here on. It will run one page_cache_release() against each page and will
1331 * run one bio_put() against the BIO.
1332 */
1333
65f27f38 1334static void bio_dirty_fn(struct work_struct *work);
1da177e4 1335
65f27f38 1336static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1337static DEFINE_SPINLOCK(bio_dirty_lock);
1338static struct bio *bio_dirty_list;
1339
1340/*
1341 * This runs in process context
1342 */
65f27f38 1343static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1344{
1345 unsigned long flags;
1346 struct bio *bio;
1347
1348 spin_lock_irqsave(&bio_dirty_lock, flags);
1349 bio = bio_dirty_list;
1350 bio_dirty_list = NULL;
1351 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1352
1353 while (bio) {
1354 struct bio *next = bio->bi_private;
1355
1356 bio_set_pages_dirty(bio);
1357 bio_release_pages(bio);
1358 bio_put(bio);
1359 bio = next;
1360 }
1361}
1362
1363void bio_check_pages_dirty(struct bio *bio)
1364{
1365 struct bio_vec *bvec = bio->bi_io_vec;
1366 int nr_clean_pages = 0;
1367 int i;
1368
1369 for (i = 0; i < bio->bi_vcnt; i++) {
1370 struct page *page = bvec[i].bv_page;
1371
1372 if (PageDirty(page) || PageCompound(page)) {
1373 page_cache_release(page);
1374 bvec[i].bv_page = NULL;
1375 } else {
1376 nr_clean_pages++;
1377 }
1378 }
1379
1380 if (nr_clean_pages) {
1381 unsigned long flags;
1382
1383 spin_lock_irqsave(&bio_dirty_lock, flags);
1384 bio->bi_private = bio_dirty_list;
1385 bio_dirty_list = bio;
1386 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1387 schedule_work(&bio_dirty_work);
1388 } else {
1389 bio_put(bio);
1390 }
1391}
1392
2d4dc890
IL
1393#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1394void bio_flush_dcache_pages(struct bio *bi)
1395{
1396 int i;
1397 struct bio_vec *bvec;
1398
1399 bio_for_each_segment(bvec, bi, i)
1400 flush_dcache_page(bvec->bv_page);
1401}
1402EXPORT_SYMBOL(bio_flush_dcache_pages);
1403#endif
1404
1da177e4
LT
1405/**
1406 * bio_endio - end I/O on a bio
1407 * @bio: bio
1da177e4
LT
1408 * @error: error, if any
1409 *
1410 * Description:
6712ecf8 1411 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1412 * preferred way to end I/O on a bio, it takes care of clearing
1413 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1414 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1415 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1416 * bio unless they own it and thus know that it has an end_io
1417 * function.
1da177e4 1418 **/
6712ecf8 1419void bio_endio(struct bio *bio, int error)
1da177e4
LT
1420{
1421 if (error)
1422 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1423 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1424 error = -EIO;
1da177e4 1425
5bb23a68 1426 if (bio->bi_end_io)
6712ecf8 1427 bio->bi_end_io(bio, error);
1da177e4 1428}
a112a71d 1429EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1430
1431void bio_pair_release(struct bio_pair *bp)
1432{
1433 if (atomic_dec_and_test(&bp->cnt)) {
1434 struct bio *master = bp->bio1.bi_private;
1435
6712ecf8 1436 bio_endio(master, bp->error);
1da177e4
LT
1437 mempool_free(bp, bp->bio2.bi_private);
1438 }
1439}
a112a71d 1440EXPORT_SYMBOL(bio_pair_release);
1da177e4 1441
6712ecf8 1442static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1443{
1444 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1445
1446 if (err)
1447 bp->error = err;
1448
1da177e4 1449 bio_pair_release(bp);
1da177e4
LT
1450}
1451
6712ecf8 1452static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1453{
1454 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1455
1456 if (err)
1457 bp->error = err;
1458
1da177e4 1459 bio_pair_release(bp);
1da177e4
LT
1460}
1461
1462/*
c7eee1b8 1463 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1464 */
6feef531 1465struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1466{
6feef531 1467 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1468
1469 if (!bp)
1470 return bp;
1471
5f3ea37c 1472 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1473 bi->bi_sector + first_sectors);
1474
1da177e4
LT
1475 BUG_ON(bi->bi_vcnt != 1);
1476 BUG_ON(bi->bi_idx != 0);
1477 atomic_set(&bp->cnt, 3);
1478 bp->error = 0;
1479 bp->bio1 = *bi;
1480 bp->bio2 = *bi;
1481 bp->bio2.bi_sector += first_sectors;
1482 bp->bio2.bi_size -= first_sectors << 9;
1483 bp->bio1.bi_size = first_sectors << 9;
1484
1485 bp->bv1 = bi->bi_io_vec[0];
1486 bp->bv2 = bi->bi_io_vec[0];
1487 bp->bv2.bv_offset += first_sectors << 9;
1488 bp->bv2.bv_len -= first_sectors << 9;
1489 bp->bv1.bv_len = first_sectors << 9;
1490
1491 bp->bio1.bi_io_vec = &bp->bv1;
1492 bp->bio2.bi_io_vec = &bp->bv2;
1493
a2eb0c10
N
1494 bp->bio1.bi_max_vecs = 1;
1495 bp->bio2.bi_max_vecs = 1;
1496
1da177e4
LT
1497 bp->bio1.bi_end_io = bio_pair_end_1;
1498 bp->bio2.bi_end_io = bio_pair_end_2;
1499
1500 bp->bio1.bi_private = bi;
6feef531 1501 bp->bio2.bi_private = bio_split_pool;
1da177e4 1502
7ba1ba12
MP
1503 if (bio_integrity(bi))
1504 bio_integrity_split(bi, bp, first_sectors);
1505
1da177e4
LT
1506 return bp;
1507}
a112a71d 1508EXPORT_SYMBOL(bio_split);
1da177e4 1509
ad3316bf
MP
1510/**
1511 * bio_sector_offset - Find hardware sector offset in bio
1512 * @bio: bio to inspect
1513 * @index: bio_vec index
1514 * @offset: offset in bv_page
1515 *
1516 * Return the number of hardware sectors between beginning of bio
1517 * and an end point indicated by a bio_vec index and an offset
1518 * within that vector's page.
1519 */
1520sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1521 unsigned int offset)
1522{
e1defc4f 1523 unsigned int sector_sz;
ad3316bf
MP
1524 struct bio_vec *bv;
1525 sector_t sectors;
1526 int i;
1527
e1defc4f 1528 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1529 sectors = 0;
1530
1531 if (index >= bio->bi_idx)
1532 index = bio->bi_vcnt - 1;
1533
1534 __bio_for_each_segment(bv, bio, i, 0) {
1535 if (i == index) {
1536 if (offset > bv->bv_offset)
1537 sectors += (offset - bv->bv_offset) / sector_sz;
1538 break;
1539 }
1540
1541 sectors += bv->bv_len / sector_sz;
1542 }
1543
1544 return sectors;
1545}
1546EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1547
1548/*
1549 * create memory pools for biovec's in a bio_set.
1550 * use the global biovec slabs created for general use.
1551 */
5972511b 1552static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4 1553{
7ff9345f 1554 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1555
7ff9345f
JA
1556 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1557 if (!bs->bvec_pool)
1558 return -ENOMEM;
1da177e4 1559
1da177e4
LT
1560 return 0;
1561}
1562
1563static void biovec_free_pools(struct bio_set *bs)
1564{
7ff9345f 1565 mempool_destroy(bs->bvec_pool);
1da177e4
LT
1566}
1567
1568void bioset_free(struct bio_set *bs)
1569{
1570 if (bs->bio_pool)
1571 mempool_destroy(bs->bio_pool);
1572
7878cba9 1573 bioset_integrity_free(bs);
1da177e4 1574 biovec_free_pools(bs);
bb799ca0 1575 bio_put_slab(bs);
1da177e4
LT
1576
1577 kfree(bs);
1578}
a112a71d 1579EXPORT_SYMBOL(bioset_free);
1da177e4 1580
bb799ca0
JA
1581/**
1582 * bioset_create - Create a bio_set
1583 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1584 * @front_pad: Number of bytes to allocate in front of the returned bio
1585 *
1586 * Description:
1587 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1588 * to ask for a number of bytes to be allocated in front of the bio.
1589 * Front pad allocation is useful for embedding the bio inside
1590 * another structure, to avoid allocating extra data to go with the bio.
1591 * Note that the bio must be embedded at the END of that structure always,
1592 * or things will break badly.
1593 */
1594struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1595{
392ddc32 1596 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1597 struct bio_set *bs;
1da177e4 1598
1b434498 1599 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1600 if (!bs)
1601 return NULL;
1602
bb799ca0 1603 bs->front_pad = front_pad;
1b434498 1604
392ddc32 1605 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1606 if (!bs->bio_slab) {
1607 kfree(bs);
1608 return NULL;
1609 }
1610
1611 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1612 if (!bs->bio_pool)
1613 goto bad;
1614
bb799ca0 1615 if (!biovec_create_pools(bs, pool_size))
1da177e4
LT
1616 return bs;
1617
1618bad:
1619 bioset_free(bs);
1620 return NULL;
1621}
a112a71d 1622EXPORT_SYMBOL(bioset_create);
1da177e4 1623
852c788f
TH
1624#ifdef CONFIG_BLK_CGROUP
1625/**
1626 * bio_associate_current - associate a bio with %current
1627 * @bio: target bio
1628 *
1629 * Associate @bio with %current if it hasn't been associated yet. Block
1630 * layer will treat @bio as if it were issued by %current no matter which
1631 * task actually issues it.
1632 *
1633 * This function takes an extra reference of @task's io_context and blkcg
1634 * which will be put when @bio is released. The caller must own @bio,
1635 * ensure %current->io_context exists, and is responsible for synchronizing
1636 * calls to this function.
1637 */
1638int bio_associate_current(struct bio *bio)
1639{
1640 struct io_context *ioc;
1641 struct cgroup_subsys_state *css;
1642
1643 if (bio->bi_ioc)
1644 return -EBUSY;
1645
1646 ioc = current->io_context;
1647 if (!ioc)
1648 return -ENOENT;
1649
1650 /* acquire active ref on @ioc and associate */
1651 get_io_context_active(ioc);
1652 bio->bi_ioc = ioc;
1653
1654 /* associate blkcg if exists */
1655 rcu_read_lock();
1656 css = task_subsys_state(current, blkio_subsys_id);
1657 if (css && css_tryget(css))
1658 bio->bi_css = css;
1659 rcu_read_unlock();
1660
1661 return 0;
1662}
1663
1664/**
1665 * bio_disassociate_task - undo bio_associate_current()
1666 * @bio: target bio
1667 */
1668void bio_disassociate_task(struct bio *bio)
1669{
1670 if (bio->bi_ioc) {
1671 put_io_context(bio->bi_ioc);
1672 bio->bi_ioc = NULL;
1673 }
1674 if (bio->bi_css) {
1675 css_put(bio->bi_css);
1676 bio->bi_css = NULL;
1677 }
1678}
1679
1680#endif /* CONFIG_BLK_CGROUP */
1681
1da177e4
LT
1682static void __init biovec_init_slabs(void)
1683{
1684 int i;
1685
1686 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1687 int size;
1688 struct biovec_slab *bvs = bvec_slabs + i;
1689
a7fcd37c
JA
1690 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1691 bvs->slab = NULL;
1692 continue;
1693 }
a7fcd37c 1694
1da177e4
LT
1695 size = bvs->nr_vecs * sizeof(struct bio_vec);
1696 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1697 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1698 }
1699}
1700
1701static int __init init_bio(void)
1702{
bb799ca0
JA
1703 bio_slab_max = 2;
1704 bio_slab_nr = 0;
1705 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1706 if (!bio_slabs)
1707 panic("bio: can't allocate bios\n");
1da177e4 1708
7878cba9 1709 bio_integrity_init();
1da177e4
LT
1710 biovec_init_slabs();
1711
bb799ca0 1712 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1713 if (!fs_bio_set)
1714 panic("bio: can't allocate bios\n");
1715
a91a2785
MP
1716 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1717 panic("bio: can't create integrity pool\n");
1718
0eaae62a
MD
1719 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1720 sizeof(struct bio_pair));
1da177e4
LT
1721 if (!bio_split_pool)
1722 panic("bio: can't create split pool\n");
1723
1724 return 0;
1725}
1da177e4 1726subsys_initcall(init_bio);