]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/bio.c
block: Kill bi_destructor
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
852c788f 22#include <linux/iocontext.h>
1da177e4
LT
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/kernel.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mempool.h>
28#include <linux/workqueue.h>
852c788f 29#include <linux/cgroup.h>
f1970baf 30#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
6feef531 40static mempool_t *bio_split_pool __read_mostly;
1da177e4 41
1da177e4
LT
42/*
43 * if you change this list, also change bvec_alloc or things will
44 * break badly! cannot be bigger than what you can fit into an
45 * unsigned short
46 */
1da177e4 47#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 48static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
49 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
50};
51#undef BV
52
1da177e4
LT
53/*
54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55 * IO code that does not need private memory pools.
56 */
51d654e1 57struct bio_set *fs_bio_set;
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
389d7b26 76 struct bio_slab *bslab, *new_bio_slabs;
bb799ca0
JA
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
f06f135d 83 bslab = &bio_slabs[i];
bb799ca0
JA
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 bio_slab_max <<= 1;
389d7b26
AK
100 new_bio_slabs = krealloc(bio_slabs,
101 bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
bb799ca0 104 goto out_unlock;
389d7b26 105 bio_slabs = new_bio_slabs;
bb799ca0
JA
106 }
107 if (entry == -1)
108 entry = bio_slab_nr++;
109
110 bslab = &bio_slabs[entry];
111
112 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
113 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
114 if (!slab)
115 goto out_unlock;
116
80cdc6da 117 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
bb799ca0
JA
118 bslab->slab = slab;
119 bslab->slab_ref = 1;
120 bslab->slab_size = sz;
121out_unlock:
122 mutex_unlock(&bio_slab_lock);
123 return slab;
124}
125
126static void bio_put_slab(struct bio_set *bs)
127{
128 struct bio_slab *bslab = NULL;
129 unsigned int i;
130
131 mutex_lock(&bio_slab_lock);
132
133 for (i = 0; i < bio_slab_nr; i++) {
134 if (bs->bio_slab == bio_slabs[i].slab) {
135 bslab = &bio_slabs[i];
136 break;
137 }
138 }
139
140 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
141 goto out;
142
143 WARN_ON(!bslab->slab_ref);
144
145 if (--bslab->slab_ref)
146 goto out;
147
148 kmem_cache_destroy(bslab->slab);
149 bslab->slab = NULL;
150
151out:
152 mutex_unlock(&bio_slab_lock);
153}
154
7ba1ba12
MP
155unsigned int bvec_nr_vecs(unsigned short idx)
156{
157 return bvec_slabs[idx].nr_vecs;
158}
159
bb799ca0
JA
160void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
161{
162 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
163
164 if (idx == BIOVEC_MAX_IDX)
165 mempool_free(bv, bs->bvec_pool);
166 else {
167 struct biovec_slab *bvs = bvec_slabs + idx;
168
169 kmem_cache_free(bvs->slab, bv);
170 }
171}
172
7ff9345f
JA
173struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
174 struct bio_set *bs)
1da177e4
LT
175{
176 struct bio_vec *bvl;
1da177e4 177
7ff9345f
JA
178 /*
179 * see comment near bvec_array define!
180 */
181 switch (nr) {
182 case 1:
183 *idx = 0;
184 break;
185 case 2 ... 4:
186 *idx = 1;
187 break;
188 case 5 ... 16:
189 *idx = 2;
190 break;
191 case 17 ... 64:
192 *idx = 3;
193 break;
194 case 65 ... 128:
195 *idx = 4;
196 break;
197 case 129 ... BIO_MAX_PAGES:
198 *idx = 5;
199 break;
200 default:
201 return NULL;
202 }
203
204 /*
205 * idx now points to the pool we want to allocate from. only the
206 * 1-vec entry pool is mempool backed.
207 */
208 if (*idx == BIOVEC_MAX_IDX) {
209fallback:
210 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
211 } else {
212 struct biovec_slab *bvs = bvec_slabs + *idx;
213 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
214
0a0d96b0 215 /*
7ff9345f
JA
216 * Make this allocation restricted and don't dump info on
217 * allocation failures, since we'll fallback to the mempool
218 * in case of failure.
0a0d96b0 219 */
7ff9345f 220 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 221
0a0d96b0 222 /*
7ff9345f
JA
223 * Try a slab allocation. If this fails and __GFP_WAIT
224 * is set, retry with the 1-entry mempool
0a0d96b0 225 */
7ff9345f
JA
226 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
227 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
228 *idx = BIOVEC_MAX_IDX;
229 goto fallback;
230 }
231 }
232
1da177e4
LT
233 return bvl;
234}
235
4254bba1 236static void __bio_free(struct bio *bio)
1da177e4 237{
4254bba1 238 bio_disassociate_task(bio);
1da177e4 239
7ba1ba12 240 if (bio_integrity(bio))
1e2a410f 241 bio_integrity_free(bio);
4254bba1 242}
7ba1ba12 243
4254bba1
KO
244static void bio_free(struct bio *bio)
245{
246 struct bio_set *bs = bio->bi_pool;
247 void *p;
248
249 __bio_free(bio);
250
251 if (bs) {
252 if (bio_has_allocated_vec(bio))
253 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
254
255 /*
256 * If we have front padding, adjust the bio pointer before freeing
257 */
258 p = bio;
bb799ca0
JA
259 p -= bs->front_pad;
260
4254bba1
KO
261 mempool_free(p, bs->bio_pool);
262 } else {
263 /* Bio was allocated by bio_kmalloc() */
264 kfree(bio);
265 }
3676347a
PO
266}
267
858119e1 268void bio_init(struct bio *bio)
1da177e4 269{
2b94de55 270 memset(bio, 0, sizeof(*bio));
1da177e4 271 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 272 atomic_set(&bio->bi_cnt, 1);
1da177e4 273}
a112a71d 274EXPORT_SYMBOL(bio_init);
1da177e4 275
f44b48c7
KO
276/**
277 * bio_reset - reinitialize a bio
278 * @bio: bio to reset
279 *
280 * Description:
281 * After calling bio_reset(), @bio will be in the same state as a freshly
282 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
283 * preserved are the ones that are initialized by bio_alloc_bioset(). See
284 * comment in struct bio.
285 */
286void bio_reset(struct bio *bio)
287{
288 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
289
4254bba1 290 __bio_free(bio);
f44b48c7
KO
291
292 memset(bio, 0, BIO_RESET_BYTES);
293 bio->bi_flags = flags|(1 << BIO_UPTODATE);
294}
295EXPORT_SYMBOL(bio_reset);
296
1da177e4
LT
297/**
298 * bio_alloc_bioset - allocate a bio for I/O
299 * @gfp_mask: the GFP_ mask given to the slab allocator
300 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 301 * @bs: the bio_set to allocate from.
1da177e4
LT
302 *
303 * Description:
db18efac 304 * bio_alloc_bioset will try its own mempool to satisfy the allocation.
1da177e4 305 * If %__GFP_WAIT is set then we will block on the internal pool waiting
db18efac 306 * for a &struct bio to become free.
1da177e4 307 **/
dd0fc66f 308struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 309{
451a9ebf 310 unsigned long idx = BIO_POOL_NONE;
34053979 311 struct bio_vec *bvl = NULL;
451a9ebf
TH
312 struct bio *bio;
313 void *p;
314
315 p = mempool_alloc(bs->bio_pool, gfp_mask);
316 if (unlikely(!p))
317 return NULL;
318 bio = p + bs->front_pad;
1da177e4 319
34053979 320 bio_init(bio);
395c72a7 321 bio->bi_pool = bs;
34053979
IM
322
323 if (unlikely(!nr_iovecs))
324 goto out_set;
325
326 if (nr_iovecs <= BIO_INLINE_VECS) {
327 bvl = bio->bi_inline_vecs;
328 nr_iovecs = BIO_INLINE_VECS;
329 } else {
330 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
331 if (unlikely(!bvl))
332 goto err_free;
333
334 nr_iovecs = bvec_nr_vecs(idx);
1da177e4 335 }
451a9ebf 336out_set:
34053979
IM
337 bio->bi_flags |= idx << BIO_POOL_OFFSET;
338 bio->bi_max_vecs = nr_iovecs;
34053979 339 bio->bi_io_vec = bvl;
1da177e4 340 return bio;
34053979
IM
341
342err_free:
451a9ebf 343 mempool_free(p, bs->bio_pool);
34053979 344 return NULL;
1da177e4 345}
a112a71d 346EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 347
451a9ebf
TH
348/**
349 * bio_alloc - allocate a new bio, memory pool backed
350 * @gfp_mask: allocation mask to use
351 * @nr_iovecs: number of iovecs
352 *
5f04eeb8
AB
353 * bio_alloc will allocate a bio and associated bio_vec array that can hold
354 * at least @nr_iovecs entries. Allocations will be done from the
355 * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
356 *
357 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
358 * a bio. This is due to the mempool guarantees. To make this work, callers
359 * must never allocate more than 1 bio at a time from this pool. Callers
360 * that need to allocate more than 1 bio must always submit the previously
361 * allocated bio for IO before attempting to allocate a new one. Failure to
362 * do so can cause livelocks under memory pressure.
451a9ebf
TH
363 *
364 * RETURNS:
365 * Pointer to new bio on success, NULL on failure.
366 */
121f0994 367struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
451a9ebf 368{
395c72a7 369 return bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
451a9ebf 370}
a112a71d 371EXPORT_SYMBOL(bio_alloc);
451a9ebf 372
86c824b9 373/**
5f04eeb8 374 * bio_kmalloc - allocate a bio for I/O using kmalloc()
86c824b9
JA
375 * @gfp_mask: the GFP_ mask given to the slab allocator
376 * @nr_iovecs: number of iovecs to pre-allocate
377 *
378 * Description:
5f04eeb8
AB
379 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
380 * %__GFP_WAIT, the allocation is guaranteed to succeed.
86c824b9
JA
381 *
382 **/
121f0994 383struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
0a0d96b0 384{
451a9ebf 385 struct bio *bio;
0a0d96b0 386
f3f63c1c
JA
387 if (nr_iovecs > UIO_MAXIOV)
388 return NULL;
389
451a9ebf
TH
390 bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
391 gfp_mask);
392 if (unlikely(!bio))
393 return NULL;
394
395 bio_init(bio);
396 bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
397 bio->bi_max_vecs = nr_iovecs;
398 bio->bi_io_vec = bio->bi_inline_vecs;
0a0d96b0
JA
399
400 return bio;
401}
a112a71d 402EXPORT_SYMBOL(bio_kmalloc);
0a0d96b0 403
1da177e4
LT
404void zero_fill_bio(struct bio *bio)
405{
406 unsigned long flags;
407 struct bio_vec *bv;
408 int i;
409
410 bio_for_each_segment(bv, bio, i) {
411 char *data = bvec_kmap_irq(bv, &flags);
412 memset(data, 0, bv->bv_len);
413 flush_dcache_page(bv->bv_page);
414 bvec_kunmap_irq(data, &flags);
415 }
416}
417EXPORT_SYMBOL(zero_fill_bio);
418
419/**
420 * bio_put - release a reference to a bio
421 * @bio: bio to release reference to
422 *
423 * Description:
424 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 425 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
426 **/
427void bio_put(struct bio *bio)
428{
429 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
430
431 /*
432 * last put frees it
433 */
4254bba1
KO
434 if (atomic_dec_and_test(&bio->bi_cnt))
435 bio_free(bio);
1da177e4 436}
a112a71d 437EXPORT_SYMBOL(bio_put);
1da177e4 438
165125e1 439inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
440{
441 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
442 blk_recount_segments(q, bio);
443
444 return bio->bi_phys_segments;
445}
a112a71d 446EXPORT_SYMBOL(bio_phys_segments);
1da177e4 447
1da177e4
LT
448/**
449 * __bio_clone - clone a bio
450 * @bio: destination bio
451 * @bio_src: bio to clone
452 *
453 * Clone a &bio. Caller will own the returned bio, but not
454 * the actual data it points to. Reference count of returned
455 * bio will be one.
456 */
858119e1 457void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 458{
e525e153
AM
459 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
460 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 461
5d84070e
JA
462 /*
463 * most users will be overriding ->bi_bdev with a new target,
464 * so we don't set nor calculate new physical/hw segment counts here
465 */
1da177e4
LT
466 bio->bi_sector = bio_src->bi_sector;
467 bio->bi_bdev = bio_src->bi_bdev;
468 bio->bi_flags |= 1 << BIO_CLONED;
469 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
470 bio->bi_vcnt = bio_src->bi_vcnt;
471 bio->bi_size = bio_src->bi_size;
a5453be4 472 bio->bi_idx = bio_src->bi_idx;
1da177e4 473}
a112a71d 474EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
475
476/**
477 * bio_clone - clone a bio
478 * @bio: bio to clone
479 * @gfp_mask: allocation priority
480 *
481 * Like __bio_clone, only also allocates the returned bio
482 */
dd0fc66f 483struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4 484{
395c72a7 485 struct bio *b = bio_alloc(gfp_mask, bio->bi_max_vecs);
1da177e4 486
7ba1ba12
MP
487 if (!b)
488 return NULL;
489
7ba1ba12
MP
490 __bio_clone(b, bio);
491
492 if (bio_integrity(bio)) {
493 int ret;
494
1e2a410f 495 ret = bio_integrity_clone(b, bio, gfp_mask);
7ba1ba12 496
059ea331
LZ
497 if (ret < 0) {
498 bio_put(b);
7ba1ba12 499 return NULL;
059ea331 500 }
3676347a 501 }
1da177e4
LT
502
503 return b;
504}
a112a71d 505EXPORT_SYMBOL(bio_clone);
1da177e4
LT
506
507/**
508 * bio_get_nr_vecs - return approx number of vecs
509 * @bdev: I/O target
510 *
511 * Return the approximate number of pages we can send to this target.
512 * There's no guarantee that you will be able to fit this number of pages
513 * into a bio, it does not account for dynamic restrictions that vary
514 * on offset.
515 */
516int bio_get_nr_vecs(struct block_device *bdev)
517{
165125e1 518 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
519 int nr_pages;
520
521 nr_pages = min_t(unsigned,
5abebfdd
KO
522 queue_max_segments(q),
523 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
524
525 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
526
1da177e4 527}
a112a71d 528EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 529
165125e1 530static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
531 *page, unsigned int len, unsigned int offset,
532 unsigned short max_sectors)
1da177e4
LT
533{
534 int retried_segments = 0;
535 struct bio_vec *bvec;
536
537 /*
538 * cloned bio must not modify vec list
539 */
540 if (unlikely(bio_flagged(bio, BIO_CLONED)))
541 return 0;
542
80cfd548 543 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
544 return 0;
545
80cfd548
JA
546 /*
547 * For filesystems with a blocksize smaller than the pagesize
548 * we will often be called with the same page as last time and
549 * a consecutive offset. Optimize this special case.
550 */
551 if (bio->bi_vcnt > 0) {
552 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
553
554 if (page == prev->bv_page &&
555 offset == prev->bv_offset + prev->bv_len) {
1d616585 556 unsigned int prev_bv_len = prev->bv_len;
80cfd548 557 prev->bv_len += len;
cc371e66
AK
558
559 if (q->merge_bvec_fn) {
560 struct bvec_merge_data bvm = {
1d616585
DM
561 /* prev_bvec is already charged in
562 bi_size, discharge it in order to
563 simulate merging updated prev_bvec
564 as new bvec. */
cc371e66
AK
565 .bi_bdev = bio->bi_bdev,
566 .bi_sector = bio->bi_sector,
1d616585 567 .bi_size = bio->bi_size - prev_bv_len,
cc371e66
AK
568 .bi_rw = bio->bi_rw,
569 };
570
8bf8c376 571 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
572 prev->bv_len -= len;
573 return 0;
574 }
80cfd548
JA
575 }
576
577 goto done;
578 }
579 }
580
581 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
582 return 0;
583
584 /*
585 * we might lose a segment or two here, but rather that than
586 * make this too complex.
587 */
588
8a78362c 589 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
590
591 if (retried_segments)
592 return 0;
593
594 retried_segments = 1;
595 blk_recount_segments(q, bio);
596 }
597
598 /*
599 * setup the new entry, we might clear it again later if we
600 * cannot add the page
601 */
602 bvec = &bio->bi_io_vec[bio->bi_vcnt];
603 bvec->bv_page = page;
604 bvec->bv_len = len;
605 bvec->bv_offset = offset;
606
607 /*
608 * if queue has other restrictions (eg varying max sector size
609 * depending on offset), it can specify a merge_bvec_fn in the
610 * queue to get further control
611 */
612 if (q->merge_bvec_fn) {
cc371e66
AK
613 struct bvec_merge_data bvm = {
614 .bi_bdev = bio->bi_bdev,
615 .bi_sector = bio->bi_sector,
616 .bi_size = bio->bi_size,
617 .bi_rw = bio->bi_rw,
618 };
619
1da177e4
LT
620 /*
621 * merge_bvec_fn() returns number of bytes it can accept
622 * at this offset
623 */
8bf8c376 624 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
625 bvec->bv_page = NULL;
626 bvec->bv_len = 0;
627 bvec->bv_offset = 0;
628 return 0;
629 }
630 }
631
632 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 633 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
634 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
635
636 bio->bi_vcnt++;
637 bio->bi_phys_segments++;
80cfd548 638 done:
1da177e4
LT
639 bio->bi_size += len;
640 return len;
641}
642
6e68af66
MC
643/**
644 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 645 * @q: the target queue
6e68af66
MC
646 * @bio: destination bio
647 * @page: page to add
648 * @len: vec entry length
649 * @offset: vec entry offset
650 *
651 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
652 * number of reasons, such as the bio being full or target block device
653 * limitations. The target block device must allow bio's up to PAGE_SIZE,
654 * so it is always possible to add a single page to an empty bio.
655 *
656 * This should only be used by REQ_PC bios.
6e68af66 657 */
165125e1 658int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
659 unsigned int len, unsigned int offset)
660{
ae03bf63
MP
661 return __bio_add_page(q, bio, page, len, offset,
662 queue_max_hw_sectors(q));
6e68af66 663}
a112a71d 664EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 665
1da177e4
LT
666/**
667 * bio_add_page - attempt to add page to bio
668 * @bio: destination bio
669 * @page: page to add
670 * @len: vec entry length
671 * @offset: vec entry offset
672 *
673 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
674 * number of reasons, such as the bio being full or target block device
675 * limitations. The target block device must allow bio's up to PAGE_SIZE,
676 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
677 */
678int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
679 unsigned int offset)
680{
defd94b7 681 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 682 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 683}
a112a71d 684EXPORT_SYMBOL(bio_add_page);
1da177e4
LT
685
686struct bio_map_data {
687 struct bio_vec *iovecs;
c5dec1c3 688 struct sg_iovec *sgvecs;
152e283f
FT
689 int nr_sgvecs;
690 int is_our_pages;
1da177e4
LT
691};
692
c5dec1c3 693static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
694 struct sg_iovec *iov, int iov_count,
695 int is_our_pages)
1da177e4
LT
696{
697 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
698 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
699 bmd->nr_sgvecs = iov_count;
152e283f 700 bmd->is_our_pages = is_our_pages;
1da177e4
LT
701 bio->bi_private = bmd;
702}
703
704static void bio_free_map_data(struct bio_map_data *bmd)
705{
706 kfree(bmd->iovecs);
c5dec1c3 707 kfree(bmd->sgvecs);
1da177e4
LT
708 kfree(bmd);
709}
710
121f0994
DC
711static struct bio_map_data *bio_alloc_map_data(int nr_segs,
712 unsigned int iov_count,
76029ff3 713 gfp_t gfp_mask)
1da177e4 714{
f3f63c1c
JA
715 struct bio_map_data *bmd;
716
717 if (iov_count > UIO_MAXIOV)
718 return NULL;
1da177e4 719
f3f63c1c 720 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
721 if (!bmd)
722 return NULL;
723
76029ff3 724 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
725 if (!bmd->iovecs) {
726 kfree(bmd);
727 return NULL;
728 }
729
76029ff3 730 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 731 if (bmd->sgvecs)
1da177e4
LT
732 return bmd;
733
c5dec1c3 734 kfree(bmd->iovecs);
1da177e4
LT
735 kfree(bmd);
736 return NULL;
737}
738
aefcc28a 739static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
740 struct sg_iovec *iov, int iov_count,
741 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
742{
743 int ret = 0, i;
744 struct bio_vec *bvec;
745 int iov_idx = 0;
746 unsigned int iov_off = 0;
c5dec1c3
FT
747
748 __bio_for_each_segment(bvec, bio, i, 0) {
749 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 750 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
751
752 while (bv_len && iov_idx < iov_count) {
753 unsigned int bytes;
0e0c6212 754 char __user *iov_addr;
c5dec1c3
FT
755
756 bytes = min_t(unsigned int,
757 iov[iov_idx].iov_len - iov_off, bv_len);
758 iov_addr = iov[iov_idx].iov_base + iov_off;
759
760 if (!ret) {
ecb554a8 761 if (to_user)
c5dec1c3
FT
762 ret = copy_to_user(iov_addr, bv_addr,
763 bytes);
764
ecb554a8
FT
765 if (from_user)
766 ret = copy_from_user(bv_addr, iov_addr,
767 bytes);
768
c5dec1c3
FT
769 if (ret)
770 ret = -EFAULT;
771 }
772
773 bv_len -= bytes;
774 bv_addr += bytes;
775 iov_addr += bytes;
776 iov_off += bytes;
777
778 if (iov[iov_idx].iov_len == iov_off) {
779 iov_idx++;
780 iov_off = 0;
781 }
782 }
783
152e283f 784 if (do_free_page)
c5dec1c3
FT
785 __free_page(bvec->bv_page);
786 }
787
788 return ret;
789}
790
1da177e4
LT
791/**
792 * bio_uncopy_user - finish previously mapped bio
793 * @bio: bio being terminated
794 *
795 * Free pages allocated from bio_copy_user() and write back data
796 * to user space in case of a read.
797 */
798int bio_uncopy_user(struct bio *bio)
799{
800 struct bio_map_data *bmd = bio->bi_private;
81882766 801 int ret = 0;
1da177e4 802
81882766
FT
803 if (!bio_flagged(bio, BIO_NULL_MAPPED))
804 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
ecb554a8
FT
805 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
806 0, bmd->is_our_pages);
1da177e4
LT
807 bio_free_map_data(bmd);
808 bio_put(bio);
809 return ret;
810}
a112a71d 811EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
812
813/**
c5dec1c3 814 * bio_copy_user_iov - copy user data to bio
1da177e4 815 * @q: destination block queue
152e283f 816 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
817 * @iov: the iovec.
818 * @iov_count: number of elements in the iovec
1da177e4 819 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 820 * @gfp_mask: memory allocation flags
1da177e4
LT
821 *
822 * Prepares and returns a bio for indirect user io, bouncing data
823 * to/from kernel pages as necessary. Must be paired with
824 * call bio_uncopy_user() on io completion.
825 */
152e283f
FT
826struct bio *bio_copy_user_iov(struct request_queue *q,
827 struct rq_map_data *map_data,
828 struct sg_iovec *iov, int iov_count,
829 int write_to_vm, gfp_t gfp_mask)
1da177e4 830{
1da177e4
LT
831 struct bio_map_data *bmd;
832 struct bio_vec *bvec;
833 struct page *page;
834 struct bio *bio;
835 int i, ret;
c5dec1c3
FT
836 int nr_pages = 0;
837 unsigned int len = 0;
56c451f4 838 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 839
c5dec1c3
FT
840 for (i = 0; i < iov_count; i++) {
841 unsigned long uaddr;
842 unsigned long end;
843 unsigned long start;
844
845 uaddr = (unsigned long)iov[i].iov_base;
846 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
847 start = uaddr >> PAGE_SHIFT;
848
cb4644ca
JA
849 /*
850 * Overflow, abort
851 */
852 if (end < start)
853 return ERR_PTR(-EINVAL);
854
c5dec1c3
FT
855 nr_pages += end - start;
856 len += iov[i].iov_len;
857 }
858
69838727
FT
859 if (offset)
860 nr_pages++;
861
a3bce90e 862 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
863 if (!bmd)
864 return ERR_PTR(-ENOMEM);
865
1da177e4 866 ret = -ENOMEM;
a9e9dc24 867 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
868 if (!bio)
869 goto out_bmd;
870
7b6d91da
CH
871 if (!write_to_vm)
872 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
873
874 ret = 0;
56c451f4
FT
875
876 if (map_data) {
e623ddb4 877 nr_pages = 1 << map_data->page_order;
56c451f4
FT
878 i = map_data->offset / PAGE_SIZE;
879 }
1da177e4 880 while (len) {
e623ddb4 881 unsigned int bytes = PAGE_SIZE;
1da177e4 882
56c451f4
FT
883 bytes -= offset;
884
1da177e4
LT
885 if (bytes > len)
886 bytes = len;
887
152e283f 888 if (map_data) {
e623ddb4 889 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
890 ret = -ENOMEM;
891 break;
892 }
e623ddb4
FT
893
894 page = map_data->pages[i / nr_pages];
895 page += (i % nr_pages);
896
897 i++;
898 } else {
152e283f 899 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
900 if (!page) {
901 ret = -ENOMEM;
902 break;
903 }
1da177e4
LT
904 }
905
56c451f4 906 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 907 break;
1da177e4
LT
908
909 len -= bytes;
56c451f4 910 offset = 0;
1da177e4
LT
911 }
912
913 if (ret)
914 goto cleanup;
915
916 /*
917 * success
918 */
ecb554a8
FT
919 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
920 (map_data && map_data->from_user)) {
921 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
922 if (ret)
923 goto cleanup;
1da177e4
LT
924 }
925
152e283f 926 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
927 return bio;
928cleanup:
152e283f
FT
929 if (!map_data)
930 bio_for_each_segment(bvec, bio, i)
931 __free_page(bvec->bv_page);
1da177e4
LT
932
933 bio_put(bio);
934out_bmd:
935 bio_free_map_data(bmd);
936 return ERR_PTR(ret);
937}
938
c5dec1c3
FT
939/**
940 * bio_copy_user - copy user data to bio
941 * @q: destination block queue
152e283f 942 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
943 * @uaddr: start of user address
944 * @len: length in bytes
945 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 946 * @gfp_mask: memory allocation flags
c5dec1c3
FT
947 *
948 * Prepares and returns a bio for indirect user io, bouncing data
949 * to/from kernel pages as necessary. Must be paired with
950 * call bio_uncopy_user() on io completion.
951 */
152e283f
FT
952struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
953 unsigned long uaddr, unsigned int len,
954 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
955{
956 struct sg_iovec iov;
957
958 iov.iov_base = (void __user *)uaddr;
959 iov.iov_len = len;
960
152e283f 961 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 962}
a112a71d 963EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 964
165125e1 965static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
966 struct block_device *bdev,
967 struct sg_iovec *iov, int iov_count,
a3bce90e 968 int write_to_vm, gfp_t gfp_mask)
1da177e4 969{
f1970baf
JB
970 int i, j;
971 int nr_pages = 0;
1da177e4
LT
972 struct page **pages;
973 struct bio *bio;
f1970baf
JB
974 int cur_page = 0;
975 int ret, offset;
1da177e4 976
f1970baf
JB
977 for (i = 0; i < iov_count; i++) {
978 unsigned long uaddr = (unsigned long)iov[i].iov_base;
979 unsigned long len = iov[i].iov_len;
980 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
981 unsigned long start = uaddr >> PAGE_SHIFT;
982
cb4644ca
JA
983 /*
984 * Overflow, abort
985 */
986 if (end < start)
987 return ERR_PTR(-EINVAL);
988
f1970baf
JB
989 nr_pages += end - start;
990 /*
ad2d7225 991 * buffer must be aligned to at least hardsector size for now
f1970baf 992 */
ad2d7225 993 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
994 return ERR_PTR(-EINVAL);
995 }
996
997 if (!nr_pages)
1da177e4
LT
998 return ERR_PTR(-EINVAL);
999
a9e9dc24 1000 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1001 if (!bio)
1002 return ERR_PTR(-ENOMEM);
1003
1004 ret = -ENOMEM;
a3bce90e 1005 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1006 if (!pages)
1007 goto out;
1008
f1970baf
JB
1009 for (i = 0; i < iov_count; i++) {
1010 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1011 unsigned long len = iov[i].iov_len;
1012 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1013 unsigned long start = uaddr >> PAGE_SHIFT;
1014 const int local_nr_pages = end - start;
1015 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1016
f5dd33c4
NP
1017 ret = get_user_pages_fast(uaddr, local_nr_pages,
1018 write_to_vm, &pages[cur_page]);
99172157
JA
1019 if (ret < local_nr_pages) {
1020 ret = -EFAULT;
f1970baf 1021 goto out_unmap;
99172157 1022 }
f1970baf
JB
1023
1024 offset = uaddr & ~PAGE_MASK;
1025 for (j = cur_page; j < page_limit; j++) {
1026 unsigned int bytes = PAGE_SIZE - offset;
1027
1028 if (len <= 0)
1029 break;
1030
1031 if (bytes > len)
1032 bytes = len;
1033
1034 /*
1035 * sorry...
1036 */
defd94b7
MC
1037 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1038 bytes)
f1970baf
JB
1039 break;
1040
1041 len -= bytes;
1042 offset = 0;
1043 }
1da177e4 1044
f1970baf 1045 cur_page = j;
1da177e4 1046 /*
f1970baf 1047 * release the pages we didn't map into the bio, if any
1da177e4 1048 */
f1970baf
JB
1049 while (j < page_limit)
1050 page_cache_release(pages[j++]);
1da177e4
LT
1051 }
1052
1da177e4
LT
1053 kfree(pages);
1054
1055 /*
1056 * set data direction, and check if mapped pages need bouncing
1057 */
1058 if (!write_to_vm)
7b6d91da 1059 bio->bi_rw |= REQ_WRITE;
1da177e4 1060
f1970baf 1061 bio->bi_bdev = bdev;
1da177e4
LT
1062 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1063 return bio;
f1970baf
JB
1064
1065 out_unmap:
1066 for (i = 0; i < nr_pages; i++) {
1067 if(!pages[i])
1068 break;
1069 page_cache_release(pages[i]);
1070 }
1071 out:
1da177e4
LT
1072 kfree(pages);
1073 bio_put(bio);
1074 return ERR_PTR(ret);
1075}
1076
1077/**
1078 * bio_map_user - map user address into bio
165125e1 1079 * @q: the struct request_queue for the bio
1da177e4
LT
1080 * @bdev: destination block device
1081 * @uaddr: start of user address
1082 * @len: length in bytes
1083 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1084 * @gfp_mask: memory allocation flags
1da177e4
LT
1085 *
1086 * Map the user space address into a bio suitable for io to a block
1087 * device. Returns an error pointer in case of error.
1088 */
165125e1 1089struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1090 unsigned long uaddr, unsigned int len, int write_to_vm,
1091 gfp_t gfp_mask)
f1970baf
JB
1092{
1093 struct sg_iovec iov;
1094
3f70353e 1095 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1096 iov.iov_len = len;
1097
a3bce90e 1098 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1099}
a112a71d 1100EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1101
1102/**
1103 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1104 * @q: the struct request_queue for the bio
f1970baf
JB
1105 * @bdev: destination block device
1106 * @iov: the iovec.
1107 * @iov_count: number of elements in the iovec
1108 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1109 * @gfp_mask: memory allocation flags
f1970baf
JB
1110 *
1111 * Map the user space address into a bio suitable for io to a block
1112 * device. Returns an error pointer in case of error.
1113 */
165125e1 1114struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1115 struct sg_iovec *iov, int iov_count,
a3bce90e 1116 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1117{
1118 struct bio *bio;
1119
a3bce90e
FT
1120 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1121 gfp_mask);
1da177e4
LT
1122 if (IS_ERR(bio))
1123 return bio;
1124
1125 /*
1126 * subtle -- if __bio_map_user() ended up bouncing a bio,
1127 * it would normally disappear when its bi_end_io is run.
1128 * however, we need it for the unmap, so grab an extra
1129 * reference to it
1130 */
1131 bio_get(bio);
1132
0e75f906 1133 return bio;
1da177e4
LT
1134}
1135
1136static void __bio_unmap_user(struct bio *bio)
1137{
1138 struct bio_vec *bvec;
1139 int i;
1140
1141 /*
1142 * make sure we dirty pages we wrote to
1143 */
1144 __bio_for_each_segment(bvec, bio, i, 0) {
1145 if (bio_data_dir(bio) == READ)
1146 set_page_dirty_lock(bvec->bv_page);
1147
1148 page_cache_release(bvec->bv_page);
1149 }
1150
1151 bio_put(bio);
1152}
1153
1154/**
1155 * bio_unmap_user - unmap a bio
1156 * @bio: the bio being unmapped
1157 *
1158 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1159 * a process context.
1160 *
1161 * bio_unmap_user() may sleep.
1162 */
1163void bio_unmap_user(struct bio *bio)
1164{
1165 __bio_unmap_user(bio);
1166 bio_put(bio);
1167}
a112a71d 1168EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1169
6712ecf8 1170static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1171{
b823825e 1172 bio_put(bio);
b823825e
JA
1173}
1174
165125e1 1175static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1176 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1177{
1178 unsigned long kaddr = (unsigned long)data;
1179 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1180 unsigned long start = kaddr >> PAGE_SHIFT;
1181 const int nr_pages = end - start;
1182 int offset, i;
1183 struct bio *bio;
1184
a9e9dc24 1185 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1186 if (!bio)
1187 return ERR_PTR(-ENOMEM);
1188
1189 offset = offset_in_page(kaddr);
1190 for (i = 0; i < nr_pages; i++) {
1191 unsigned int bytes = PAGE_SIZE - offset;
1192
1193 if (len <= 0)
1194 break;
1195
1196 if (bytes > len)
1197 bytes = len;
1198
defd94b7
MC
1199 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1200 offset) < bytes)
df46b9a4
MC
1201 break;
1202
1203 data += bytes;
1204 len -= bytes;
1205 offset = 0;
1206 }
1207
b823825e 1208 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1209 return bio;
1210}
1211
1212/**
1213 * bio_map_kern - map kernel address into bio
165125e1 1214 * @q: the struct request_queue for the bio
df46b9a4
MC
1215 * @data: pointer to buffer to map
1216 * @len: length in bytes
1217 * @gfp_mask: allocation flags for bio allocation
1218 *
1219 * Map the kernel address into a bio suitable for io to a block
1220 * device. Returns an error pointer in case of error.
1221 */
165125e1 1222struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1223 gfp_t gfp_mask)
df46b9a4
MC
1224{
1225 struct bio *bio;
1226
1227 bio = __bio_map_kern(q, data, len, gfp_mask);
1228 if (IS_ERR(bio))
1229 return bio;
1230
1231 if (bio->bi_size == len)
1232 return bio;
1233
1234 /*
1235 * Don't support partial mappings.
1236 */
1237 bio_put(bio);
1238 return ERR_PTR(-EINVAL);
1239}
a112a71d 1240EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1241
68154e90
FT
1242static void bio_copy_kern_endio(struct bio *bio, int err)
1243{
1244 struct bio_vec *bvec;
1245 const int read = bio_data_dir(bio) == READ;
76029ff3 1246 struct bio_map_data *bmd = bio->bi_private;
68154e90 1247 int i;
76029ff3 1248 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
1249
1250 __bio_for_each_segment(bvec, bio, i, 0) {
1251 char *addr = page_address(bvec->bv_page);
76029ff3 1252 int len = bmd->iovecs[i].bv_len;
68154e90 1253
4fc981ef 1254 if (read)
76029ff3 1255 memcpy(p, addr, len);
68154e90
FT
1256
1257 __free_page(bvec->bv_page);
76029ff3 1258 p += len;
68154e90
FT
1259 }
1260
76029ff3 1261 bio_free_map_data(bmd);
68154e90
FT
1262 bio_put(bio);
1263}
1264
1265/**
1266 * bio_copy_kern - copy kernel address into bio
1267 * @q: the struct request_queue for the bio
1268 * @data: pointer to buffer to copy
1269 * @len: length in bytes
1270 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1271 * @reading: data direction is READ
68154e90
FT
1272 *
1273 * copy the kernel address into a bio suitable for io to a block
1274 * device. Returns an error pointer in case of error.
1275 */
1276struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1277 gfp_t gfp_mask, int reading)
1278{
68154e90
FT
1279 struct bio *bio;
1280 struct bio_vec *bvec;
4d8ab62e 1281 int i;
68154e90 1282
4d8ab62e
FT
1283 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1284 if (IS_ERR(bio))
1285 return bio;
68154e90
FT
1286
1287 if (!reading) {
1288 void *p = data;
1289
1290 bio_for_each_segment(bvec, bio, i) {
1291 char *addr = page_address(bvec->bv_page);
1292
1293 memcpy(addr, p, bvec->bv_len);
1294 p += bvec->bv_len;
1295 }
1296 }
1297
68154e90 1298 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1299
68154e90 1300 return bio;
68154e90 1301}
a112a71d 1302EXPORT_SYMBOL(bio_copy_kern);
68154e90 1303
1da177e4
LT
1304/*
1305 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1306 * for performing direct-IO in BIOs.
1307 *
1308 * The problem is that we cannot run set_page_dirty() from interrupt context
1309 * because the required locks are not interrupt-safe. So what we can do is to
1310 * mark the pages dirty _before_ performing IO. And in interrupt context,
1311 * check that the pages are still dirty. If so, fine. If not, redirty them
1312 * in process context.
1313 *
1314 * We special-case compound pages here: normally this means reads into hugetlb
1315 * pages. The logic in here doesn't really work right for compound pages
1316 * because the VM does not uniformly chase down the head page in all cases.
1317 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1318 * handle them at all. So we skip compound pages here at an early stage.
1319 *
1320 * Note that this code is very hard to test under normal circumstances because
1321 * direct-io pins the pages with get_user_pages(). This makes
1322 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1323 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1324 * pagecache.
1325 *
1326 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1327 * deferred bio dirtying paths.
1328 */
1329
1330/*
1331 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1332 */
1333void bio_set_pages_dirty(struct bio *bio)
1334{
1335 struct bio_vec *bvec = bio->bi_io_vec;
1336 int i;
1337
1338 for (i = 0; i < bio->bi_vcnt; i++) {
1339 struct page *page = bvec[i].bv_page;
1340
1341 if (page && !PageCompound(page))
1342 set_page_dirty_lock(page);
1343 }
1344}
1345
86b6c7a7 1346static void bio_release_pages(struct bio *bio)
1da177e4
LT
1347{
1348 struct bio_vec *bvec = bio->bi_io_vec;
1349 int i;
1350
1351 for (i = 0; i < bio->bi_vcnt; i++) {
1352 struct page *page = bvec[i].bv_page;
1353
1354 if (page)
1355 put_page(page);
1356 }
1357}
1358
1359/*
1360 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1361 * If they are, then fine. If, however, some pages are clean then they must
1362 * have been written out during the direct-IO read. So we take another ref on
1363 * the BIO and the offending pages and re-dirty the pages in process context.
1364 *
1365 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1366 * here on. It will run one page_cache_release() against each page and will
1367 * run one bio_put() against the BIO.
1368 */
1369
65f27f38 1370static void bio_dirty_fn(struct work_struct *work);
1da177e4 1371
65f27f38 1372static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1373static DEFINE_SPINLOCK(bio_dirty_lock);
1374static struct bio *bio_dirty_list;
1375
1376/*
1377 * This runs in process context
1378 */
65f27f38 1379static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1380{
1381 unsigned long flags;
1382 struct bio *bio;
1383
1384 spin_lock_irqsave(&bio_dirty_lock, flags);
1385 bio = bio_dirty_list;
1386 bio_dirty_list = NULL;
1387 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1388
1389 while (bio) {
1390 struct bio *next = bio->bi_private;
1391
1392 bio_set_pages_dirty(bio);
1393 bio_release_pages(bio);
1394 bio_put(bio);
1395 bio = next;
1396 }
1397}
1398
1399void bio_check_pages_dirty(struct bio *bio)
1400{
1401 struct bio_vec *bvec = bio->bi_io_vec;
1402 int nr_clean_pages = 0;
1403 int i;
1404
1405 for (i = 0; i < bio->bi_vcnt; i++) {
1406 struct page *page = bvec[i].bv_page;
1407
1408 if (PageDirty(page) || PageCompound(page)) {
1409 page_cache_release(page);
1410 bvec[i].bv_page = NULL;
1411 } else {
1412 nr_clean_pages++;
1413 }
1414 }
1415
1416 if (nr_clean_pages) {
1417 unsigned long flags;
1418
1419 spin_lock_irqsave(&bio_dirty_lock, flags);
1420 bio->bi_private = bio_dirty_list;
1421 bio_dirty_list = bio;
1422 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1423 schedule_work(&bio_dirty_work);
1424 } else {
1425 bio_put(bio);
1426 }
1427}
1428
2d4dc890
IL
1429#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1430void bio_flush_dcache_pages(struct bio *bi)
1431{
1432 int i;
1433 struct bio_vec *bvec;
1434
1435 bio_for_each_segment(bvec, bi, i)
1436 flush_dcache_page(bvec->bv_page);
1437}
1438EXPORT_SYMBOL(bio_flush_dcache_pages);
1439#endif
1440
1da177e4
LT
1441/**
1442 * bio_endio - end I/O on a bio
1443 * @bio: bio
1da177e4
LT
1444 * @error: error, if any
1445 *
1446 * Description:
6712ecf8 1447 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1448 * preferred way to end I/O on a bio, it takes care of clearing
1449 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1450 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1451 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1452 * bio unless they own it and thus know that it has an end_io
1453 * function.
1da177e4 1454 **/
6712ecf8 1455void bio_endio(struct bio *bio, int error)
1da177e4
LT
1456{
1457 if (error)
1458 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1459 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1460 error = -EIO;
1da177e4 1461
5bb23a68 1462 if (bio->bi_end_io)
6712ecf8 1463 bio->bi_end_io(bio, error);
1da177e4 1464}
a112a71d 1465EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1466
1467void bio_pair_release(struct bio_pair *bp)
1468{
1469 if (atomic_dec_and_test(&bp->cnt)) {
1470 struct bio *master = bp->bio1.bi_private;
1471
6712ecf8 1472 bio_endio(master, bp->error);
1da177e4
LT
1473 mempool_free(bp, bp->bio2.bi_private);
1474 }
1475}
a112a71d 1476EXPORT_SYMBOL(bio_pair_release);
1da177e4 1477
6712ecf8 1478static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1479{
1480 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1481
1482 if (err)
1483 bp->error = err;
1484
1da177e4 1485 bio_pair_release(bp);
1da177e4
LT
1486}
1487
6712ecf8 1488static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1489{
1490 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1491
1492 if (err)
1493 bp->error = err;
1494
1da177e4 1495 bio_pair_release(bp);
1da177e4
LT
1496}
1497
1498/*
c7eee1b8 1499 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1500 */
6feef531 1501struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1502{
6feef531 1503 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1504
1505 if (!bp)
1506 return bp;
1507
5f3ea37c 1508 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1509 bi->bi_sector + first_sectors);
1510
1da177e4
LT
1511 BUG_ON(bi->bi_vcnt != 1);
1512 BUG_ON(bi->bi_idx != 0);
1513 atomic_set(&bp->cnt, 3);
1514 bp->error = 0;
1515 bp->bio1 = *bi;
1516 bp->bio2 = *bi;
1517 bp->bio2.bi_sector += first_sectors;
1518 bp->bio2.bi_size -= first_sectors << 9;
1519 bp->bio1.bi_size = first_sectors << 9;
1520
1521 bp->bv1 = bi->bi_io_vec[0];
1522 bp->bv2 = bi->bi_io_vec[0];
1523 bp->bv2.bv_offset += first_sectors << 9;
1524 bp->bv2.bv_len -= first_sectors << 9;
1525 bp->bv1.bv_len = first_sectors << 9;
1526
1527 bp->bio1.bi_io_vec = &bp->bv1;
1528 bp->bio2.bi_io_vec = &bp->bv2;
1529
a2eb0c10
N
1530 bp->bio1.bi_max_vecs = 1;
1531 bp->bio2.bi_max_vecs = 1;
1532
1da177e4
LT
1533 bp->bio1.bi_end_io = bio_pair_end_1;
1534 bp->bio2.bi_end_io = bio_pair_end_2;
1535
1536 bp->bio1.bi_private = bi;
6feef531 1537 bp->bio2.bi_private = bio_split_pool;
1da177e4 1538
7ba1ba12
MP
1539 if (bio_integrity(bi))
1540 bio_integrity_split(bi, bp, first_sectors);
1541
1da177e4
LT
1542 return bp;
1543}
a112a71d 1544EXPORT_SYMBOL(bio_split);
1da177e4 1545
ad3316bf
MP
1546/**
1547 * bio_sector_offset - Find hardware sector offset in bio
1548 * @bio: bio to inspect
1549 * @index: bio_vec index
1550 * @offset: offset in bv_page
1551 *
1552 * Return the number of hardware sectors between beginning of bio
1553 * and an end point indicated by a bio_vec index and an offset
1554 * within that vector's page.
1555 */
1556sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1557 unsigned int offset)
1558{
e1defc4f 1559 unsigned int sector_sz;
ad3316bf
MP
1560 struct bio_vec *bv;
1561 sector_t sectors;
1562 int i;
1563
e1defc4f 1564 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1565 sectors = 0;
1566
1567 if (index >= bio->bi_idx)
1568 index = bio->bi_vcnt - 1;
1569
1570 __bio_for_each_segment(bv, bio, i, 0) {
1571 if (i == index) {
1572 if (offset > bv->bv_offset)
1573 sectors += (offset - bv->bv_offset) / sector_sz;
1574 break;
1575 }
1576
1577 sectors += bv->bv_len / sector_sz;
1578 }
1579
1580 return sectors;
1581}
1582EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1583
1584/*
1585 * create memory pools for biovec's in a bio_set.
1586 * use the global biovec slabs created for general use.
1587 */
5972511b 1588static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4 1589{
7ff9345f 1590 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1591
7ff9345f
JA
1592 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1593 if (!bs->bvec_pool)
1594 return -ENOMEM;
1da177e4 1595
1da177e4
LT
1596 return 0;
1597}
1598
1599static void biovec_free_pools(struct bio_set *bs)
1600{
7ff9345f 1601 mempool_destroy(bs->bvec_pool);
1da177e4
LT
1602}
1603
1604void bioset_free(struct bio_set *bs)
1605{
1606 if (bs->bio_pool)
1607 mempool_destroy(bs->bio_pool);
1608
7878cba9 1609 bioset_integrity_free(bs);
1da177e4 1610 biovec_free_pools(bs);
bb799ca0 1611 bio_put_slab(bs);
1da177e4
LT
1612
1613 kfree(bs);
1614}
a112a71d 1615EXPORT_SYMBOL(bioset_free);
1da177e4 1616
bb799ca0
JA
1617/**
1618 * bioset_create - Create a bio_set
1619 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1620 * @front_pad: Number of bytes to allocate in front of the returned bio
1621 *
1622 * Description:
1623 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1624 * to ask for a number of bytes to be allocated in front of the bio.
1625 * Front pad allocation is useful for embedding the bio inside
1626 * another structure, to avoid allocating extra data to go with the bio.
1627 * Note that the bio must be embedded at the END of that structure always,
1628 * or things will break badly.
1629 */
1630struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1631{
392ddc32 1632 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1633 struct bio_set *bs;
1da177e4 1634
1b434498 1635 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1636 if (!bs)
1637 return NULL;
1638
bb799ca0 1639 bs->front_pad = front_pad;
1b434498 1640
392ddc32 1641 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1642 if (!bs->bio_slab) {
1643 kfree(bs);
1644 return NULL;
1645 }
1646
1647 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1648 if (!bs->bio_pool)
1649 goto bad;
1650
bb799ca0 1651 if (!biovec_create_pools(bs, pool_size))
1da177e4
LT
1652 return bs;
1653
1654bad:
1655 bioset_free(bs);
1656 return NULL;
1657}
a112a71d 1658EXPORT_SYMBOL(bioset_create);
1da177e4 1659
852c788f
TH
1660#ifdef CONFIG_BLK_CGROUP
1661/**
1662 * bio_associate_current - associate a bio with %current
1663 * @bio: target bio
1664 *
1665 * Associate @bio with %current if it hasn't been associated yet. Block
1666 * layer will treat @bio as if it were issued by %current no matter which
1667 * task actually issues it.
1668 *
1669 * This function takes an extra reference of @task's io_context and blkcg
1670 * which will be put when @bio is released. The caller must own @bio,
1671 * ensure %current->io_context exists, and is responsible for synchronizing
1672 * calls to this function.
1673 */
1674int bio_associate_current(struct bio *bio)
1675{
1676 struct io_context *ioc;
1677 struct cgroup_subsys_state *css;
1678
1679 if (bio->bi_ioc)
1680 return -EBUSY;
1681
1682 ioc = current->io_context;
1683 if (!ioc)
1684 return -ENOENT;
1685
1686 /* acquire active ref on @ioc and associate */
1687 get_io_context_active(ioc);
1688 bio->bi_ioc = ioc;
1689
1690 /* associate blkcg if exists */
1691 rcu_read_lock();
1692 css = task_subsys_state(current, blkio_subsys_id);
1693 if (css && css_tryget(css))
1694 bio->bi_css = css;
1695 rcu_read_unlock();
1696
1697 return 0;
1698}
1699
1700/**
1701 * bio_disassociate_task - undo bio_associate_current()
1702 * @bio: target bio
1703 */
1704void bio_disassociate_task(struct bio *bio)
1705{
1706 if (bio->bi_ioc) {
1707 put_io_context(bio->bi_ioc);
1708 bio->bi_ioc = NULL;
1709 }
1710 if (bio->bi_css) {
1711 css_put(bio->bi_css);
1712 bio->bi_css = NULL;
1713 }
1714}
1715
1716#endif /* CONFIG_BLK_CGROUP */
1717
1da177e4
LT
1718static void __init biovec_init_slabs(void)
1719{
1720 int i;
1721
1722 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1723 int size;
1724 struct biovec_slab *bvs = bvec_slabs + i;
1725
a7fcd37c
JA
1726 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1727 bvs->slab = NULL;
1728 continue;
1729 }
a7fcd37c 1730
1da177e4
LT
1731 size = bvs->nr_vecs * sizeof(struct bio_vec);
1732 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1733 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1734 }
1735}
1736
1737static int __init init_bio(void)
1738{
bb799ca0
JA
1739 bio_slab_max = 2;
1740 bio_slab_nr = 0;
1741 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1742 if (!bio_slabs)
1743 panic("bio: can't allocate bios\n");
1da177e4 1744
7878cba9 1745 bio_integrity_init();
1da177e4
LT
1746 biovec_init_slabs();
1747
bb799ca0 1748 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1749 if (!fs_bio_set)
1750 panic("bio: can't allocate bios\n");
1751
a91a2785
MP
1752 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1753 panic("bio: can't create integrity pool\n");
1754
0eaae62a
MD
1755 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1756 sizeof(struct bio_pair));
1da177e4
LT
1757 if (!bio_split_pool)
1758 panic("bio: can't create split pool\n");
1759
1760 return 0;
1761}
1da177e4 1762subsys_initcall(init_bio);