]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/bio.c
cfq-iosched: fix queue depth detection
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
2056a782 28#include <linux/blktrace_api.h>
f1970baf 29#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 30
e18b890b 31static struct kmem_cache *bio_slab __read_mostly;
1da177e4 32
fa3536cc 33mempool_t *bio_split_pool __read_mostly;
1da177e4 34
1da177e4
LT
35/*
36 * if you change this list, also change bvec_alloc or things will
37 * break badly! cannot be bigger than what you can fit into an
38 * unsigned short
39 */
40
41#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
6c036527 42static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
43 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
44};
45#undef BV
46
1da177e4
LT
47/*
48 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
49 * IO code that does not need private memory pools.
50 */
51d654e1 51struct bio_set *fs_bio_set;
1da177e4 52
7ba1ba12
MP
53unsigned int bvec_nr_vecs(unsigned short idx)
54{
55 return bvec_slabs[idx].nr_vecs;
56}
57
51d654e1 58struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
1da177e4
LT
59{
60 struct bio_vec *bvl;
1da177e4
LT
61
62 /*
63 * see comment near bvec_array define!
64 */
65 switch (nr) {
66 case 1 : *idx = 0; break;
67 case 2 ... 4: *idx = 1; break;
68 case 5 ... 16: *idx = 2; break;
69 case 17 ... 64: *idx = 3; break;
70 case 65 ... 128: *idx = 4; break;
71 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
72 default:
73 return NULL;
74 }
75 /*
76 * idx now points to the pool we want to allocate from
77 */
78
1da177e4 79 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
1ac0ae06
DC
80 if (bvl)
81 memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
1da177e4
LT
82
83 return bvl;
84}
85
3676347a 86void bio_free(struct bio *bio, struct bio_set *bio_set)
1da177e4 87{
992c5dda
JA
88 if (bio->bi_io_vec) {
89 const int pool_idx = BIO_POOL_IDX(bio);
1da177e4 90
992c5dda
JA
91 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
92
93 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
94 }
1da177e4 95
7ba1ba12
MP
96 if (bio_integrity(bio))
97 bio_integrity_free(bio, bio_set);
98
3676347a
PO
99 mempool_free(bio, bio_set->bio_pool);
100}
101
102/*
103 * default destructor for a bio allocated with bio_alloc_bioset()
104 */
105static void bio_fs_destructor(struct bio *bio)
106{
107 bio_free(bio, fs_bio_set);
1da177e4
LT
108}
109
858119e1 110void bio_init(struct bio *bio)
1da177e4 111{
2b94de55 112 memset(bio, 0, sizeof(*bio));
1da177e4 113 bio->bi_flags = 1 << BIO_UPTODATE;
c7c22e4d 114 bio->bi_comp_cpu = -1;
1da177e4 115 atomic_set(&bio->bi_cnt, 1);
1da177e4
LT
116}
117
118/**
119 * bio_alloc_bioset - allocate a bio for I/O
120 * @gfp_mask: the GFP_ mask given to the slab allocator
121 * @nr_iovecs: number of iovecs to pre-allocate
67be2dd1 122 * @bs: the bio_set to allocate from
1da177e4
LT
123 *
124 * Description:
125 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
126 * If %__GFP_WAIT is set then we will block on the internal pool waiting
127 * for a &struct bio to become free.
128 *
129 * allocate bio and iovecs from the memory pools specified by the
130 * bio_set structure.
131 **/
dd0fc66f 132struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4
LT
133{
134 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
135
136 if (likely(bio)) {
137 struct bio_vec *bvl = NULL;
138
139 bio_init(bio);
140 if (likely(nr_iovecs)) {
eeae1d48 141 unsigned long uninitialized_var(idx);
1da177e4
LT
142
143 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
144 if (unlikely(!bvl)) {
145 mempool_free(bio, bs->bio_pool);
146 bio = NULL;
147 goto out;
148 }
149 bio->bi_flags |= idx << BIO_POOL_OFFSET;
1ac0ae06 150 bio->bi_max_vecs = bvec_nr_vecs(idx);
1da177e4
LT
151 }
152 bio->bi_io_vec = bvl;
1da177e4
LT
153 }
154out:
155 return bio;
156}
157
dd0fc66f 158struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
1da177e4 159{
3676347a
PO
160 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
161
162 if (bio)
163 bio->bi_destructor = bio_fs_destructor;
164
165 return bio;
1da177e4
LT
166}
167
168void zero_fill_bio(struct bio *bio)
169{
170 unsigned long flags;
171 struct bio_vec *bv;
172 int i;
173
174 bio_for_each_segment(bv, bio, i) {
175 char *data = bvec_kmap_irq(bv, &flags);
176 memset(data, 0, bv->bv_len);
177 flush_dcache_page(bv->bv_page);
178 bvec_kunmap_irq(data, &flags);
179 }
180}
181EXPORT_SYMBOL(zero_fill_bio);
182
183/**
184 * bio_put - release a reference to a bio
185 * @bio: bio to release reference to
186 *
187 * Description:
188 * Put a reference to a &struct bio, either one you have gotten with
189 * bio_alloc or bio_get. The last put of a bio will free it.
190 **/
191void bio_put(struct bio *bio)
192{
193 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
194
195 /*
196 * last put frees it
197 */
198 if (atomic_dec_and_test(&bio->bi_cnt)) {
199 bio->bi_next = NULL;
200 bio->bi_destructor(bio);
201 }
202}
203
165125e1 204inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
205{
206 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
207 blk_recount_segments(q, bio);
208
209 return bio->bi_phys_segments;
210}
211
1da177e4
LT
212/**
213 * __bio_clone - clone a bio
214 * @bio: destination bio
215 * @bio_src: bio to clone
216 *
217 * Clone a &bio. Caller will own the returned bio, but not
218 * the actual data it points to. Reference count of returned
219 * bio will be one.
220 */
858119e1 221void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 222{
e525e153
AM
223 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
224 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 225
5d84070e
JA
226 /*
227 * most users will be overriding ->bi_bdev with a new target,
228 * so we don't set nor calculate new physical/hw segment counts here
229 */
1da177e4
LT
230 bio->bi_sector = bio_src->bi_sector;
231 bio->bi_bdev = bio_src->bi_bdev;
232 bio->bi_flags |= 1 << BIO_CLONED;
233 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
234 bio->bi_vcnt = bio_src->bi_vcnt;
235 bio->bi_size = bio_src->bi_size;
a5453be4 236 bio->bi_idx = bio_src->bi_idx;
1da177e4
LT
237}
238
239/**
240 * bio_clone - clone a bio
241 * @bio: bio to clone
242 * @gfp_mask: allocation priority
243 *
244 * Like __bio_clone, only also allocates the returned bio
245 */
dd0fc66f 246struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
247{
248 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
249
7ba1ba12
MP
250 if (!b)
251 return NULL;
252
253 b->bi_destructor = bio_fs_destructor;
254 __bio_clone(b, bio);
255
256 if (bio_integrity(bio)) {
257 int ret;
258
259 ret = bio_integrity_clone(b, bio, fs_bio_set);
260
261 if (ret < 0)
262 return NULL;
3676347a 263 }
1da177e4
LT
264
265 return b;
266}
267
268/**
269 * bio_get_nr_vecs - return approx number of vecs
270 * @bdev: I/O target
271 *
272 * Return the approximate number of pages we can send to this target.
273 * There's no guarantee that you will be able to fit this number of pages
274 * into a bio, it does not account for dynamic restrictions that vary
275 * on offset.
276 */
277int bio_get_nr_vecs(struct block_device *bdev)
278{
165125e1 279 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
280 int nr_pages;
281
282 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
283 if (nr_pages > q->max_phys_segments)
284 nr_pages = q->max_phys_segments;
285 if (nr_pages > q->max_hw_segments)
286 nr_pages = q->max_hw_segments;
287
288 return nr_pages;
289}
290
165125e1 291static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
292 *page, unsigned int len, unsigned int offset,
293 unsigned short max_sectors)
1da177e4
LT
294{
295 int retried_segments = 0;
296 struct bio_vec *bvec;
297
298 /*
299 * cloned bio must not modify vec list
300 */
301 if (unlikely(bio_flagged(bio, BIO_CLONED)))
302 return 0;
303
80cfd548 304 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
305 return 0;
306
80cfd548
JA
307 /*
308 * For filesystems with a blocksize smaller than the pagesize
309 * we will often be called with the same page as last time and
310 * a consecutive offset. Optimize this special case.
311 */
312 if (bio->bi_vcnt > 0) {
313 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
314
315 if (page == prev->bv_page &&
316 offset == prev->bv_offset + prev->bv_len) {
317 prev->bv_len += len;
cc371e66
AK
318
319 if (q->merge_bvec_fn) {
320 struct bvec_merge_data bvm = {
321 .bi_bdev = bio->bi_bdev,
322 .bi_sector = bio->bi_sector,
323 .bi_size = bio->bi_size,
324 .bi_rw = bio->bi_rw,
325 };
326
327 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
328 prev->bv_len -= len;
329 return 0;
330 }
80cfd548
JA
331 }
332
333 goto done;
334 }
335 }
336
337 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
338 return 0;
339
340 /*
341 * we might lose a segment or two here, but rather that than
342 * make this too complex.
343 */
344
345 while (bio->bi_phys_segments >= q->max_phys_segments
5df97b91 346 || bio->bi_phys_segments >= q->max_hw_segments) {
1da177e4
LT
347
348 if (retried_segments)
349 return 0;
350
351 retried_segments = 1;
352 blk_recount_segments(q, bio);
353 }
354
355 /*
356 * setup the new entry, we might clear it again later if we
357 * cannot add the page
358 */
359 bvec = &bio->bi_io_vec[bio->bi_vcnt];
360 bvec->bv_page = page;
361 bvec->bv_len = len;
362 bvec->bv_offset = offset;
363
364 /*
365 * if queue has other restrictions (eg varying max sector size
366 * depending on offset), it can specify a merge_bvec_fn in the
367 * queue to get further control
368 */
369 if (q->merge_bvec_fn) {
cc371e66
AK
370 struct bvec_merge_data bvm = {
371 .bi_bdev = bio->bi_bdev,
372 .bi_sector = bio->bi_sector,
373 .bi_size = bio->bi_size,
374 .bi_rw = bio->bi_rw,
375 };
376
1da177e4
LT
377 /*
378 * merge_bvec_fn() returns number of bytes it can accept
379 * at this offset
380 */
cc371e66 381 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
1da177e4
LT
382 bvec->bv_page = NULL;
383 bvec->bv_len = 0;
384 bvec->bv_offset = 0;
385 return 0;
386 }
387 }
388
389 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 390 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
391 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
392
393 bio->bi_vcnt++;
394 bio->bi_phys_segments++;
80cfd548 395 done:
1da177e4
LT
396 bio->bi_size += len;
397 return len;
398}
399
6e68af66
MC
400/**
401 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 402 * @q: the target queue
6e68af66
MC
403 * @bio: destination bio
404 * @page: page to add
405 * @len: vec entry length
406 * @offset: vec entry offset
407 *
408 * Attempt to add a page to the bio_vec maplist. This can fail for a
409 * number of reasons, such as the bio being full or target block
410 * device limitations. The target block device must allow bio's
411 * smaller than PAGE_SIZE, so it is always possible to add a single
412 * page to an empty bio. This should only be used by REQ_PC bios.
413 */
165125e1 414int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
415 unsigned int len, unsigned int offset)
416{
defd94b7 417 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
6e68af66
MC
418}
419
1da177e4
LT
420/**
421 * bio_add_page - attempt to add page to bio
422 * @bio: destination bio
423 * @page: page to add
424 * @len: vec entry length
425 * @offset: vec entry offset
426 *
427 * Attempt to add a page to the bio_vec maplist. This can fail for a
428 * number of reasons, such as the bio being full or target block
429 * device limitations. The target block device must allow bio's
430 * smaller than PAGE_SIZE, so it is always possible to add a single
431 * page to an empty bio.
432 */
433int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
434 unsigned int offset)
435{
defd94b7
MC
436 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
437 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
1da177e4
LT
438}
439
440struct bio_map_data {
441 struct bio_vec *iovecs;
c5dec1c3
FT
442 int nr_sgvecs;
443 struct sg_iovec *sgvecs;
1da177e4
LT
444};
445
c5dec1c3
FT
446static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
447 struct sg_iovec *iov, int iov_count)
1da177e4
LT
448{
449 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
450 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
451 bmd->nr_sgvecs = iov_count;
1da177e4
LT
452 bio->bi_private = bmd;
453}
454
455static void bio_free_map_data(struct bio_map_data *bmd)
456{
457 kfree(bmd->iovecs);
c5dec1c3 458 kfree(bmd->sgvecs);
1da177e4
LT
459 kfree(bmd);
460}
461
76029ff3
FT
462static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
463 gfp_t gfp_mask)
1da177e4 464{
76029ff3 465 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
466
467 if (!bmd)
468 return NULL;
469
76029ff3 470 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
471 if (!bmd->iovecs) {
472 kfree(bmd);
473 return NULL;
474 }
475
76029ff3 476 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 477 if (bmd->sgvecs)
1da177e4
LT
478 return bmd;
479
c5dec1c3 480 kfree(bmd->iovecs);
1da177e4
LT
481 kfree(bmd);
482 return NULL;
483}
484
aefcc28a
FT
485static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
486 struct sg_iovec *iov, int iov_count, int uncopy)
c5dec1c3
FT
487{
488 int ret = 0, i;
489 struct bio_vec *bvec;
490 int iov_idx = 0;
491 unsigned int iov_off = 0;
492 int read = bio_data_dir(bio) == READ;
493
494 __bio_for_each_segment(bvec, bio, i, 0) {
495 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 496 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
497
498 while (bv_len && iov_idx < iov_count) {
499 unsigned int bytes;
500 char *iov_addr;
501
502 bytes = min_t(unsigned int,
503 iov[iov_idx].iov_len - iov_off, bv_len);
504 iov_addr = iov[iov_idx].iov_base + iov_off;
505
506 if (!ret) {
507 if (!read && !uncopy)
508 ret = copy_from_user(bv_addr, iov_addr,
509 bytes);
510 if (read && uncopy)
511 ret = copy_to_user(iov_addr, bv_addr,
512 bytes);
513
514 if (ret)
515 ret = -EFAULT;
516 }
517
518 bv_len -= bytes;
519 bv_addr += bytes;
520 iov_addr += bytes;
521 iov_off += bytes;
522
523 if (iov[iov_idx].iov_len == iov_off) {
524 iov_idx++;
525 iov_off = 0;
526 }
527 }
528
529 if (uncopy)
530 __free_page(bvec->bv_page);
531 }
532
533 return ret;
534}
535
1da177e4
LT
536/**
537 * bio_uncopy_user - finish previously mapped bio
538 * @bio: bio being terminated
539 *
540 * Free pages allocated from bio_copy_user() and write back data
541 * to user space in case of a read.
542 */
543int bio_uncopy_user(struct bio *bio)
544{
545 struct bio_map_data *bmd = bio->bi_private;
c5dec1c3 546 int ret;
1da177e4 547
aefcc28a 548 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, bmd->nr_sgvecs, 1);
1da177e4 549
1da177e4
LT
550 bio_free_map_data(bmd);
551 bio_put(bio);
552 return ret;
553}
554
555/**
c5dec1c3 556 * bio_copy_user_iov - copy user data to bio
1da177e4 557 * @q: destination block queue
c5dec1c3
FT
558 * @iov: the iovec.
559 * @iov_count: number of elements in the iovec
1da177e4
LT
560 * @write_to_vm: bool indicating writing to pages or not
561 *
562 * Prepares and returns a bio for indirect user io, bouncing data
563 * to/from kernel pages as necessary. Must be paired with
564 * call bio_uncopy_user() on io completion.
565 */
c5dec1c3
FT
566struct bio *bio_copy_user_iov(struct request_queue *q, struct sg_iovec *iov,
567 int iov_count, int write_to_vm)
1da177e4 568{
1da177e4
LT
569 struct bio_map_data *bmd;
570 struct bio_vec *bvec;
571 struct page *page;
572 struct bio *bio;
573 int i, ret;
c5dec1c3
FT
574 int nr_pages = 0;
575 unsigned int len = 0;
1da177e4 576
c5dec1c3
FT
577 for (i = 0; i < iov_count; i++) {
578 unsigned long uaddr;
579 unsigned long end;
580 unsigned long start;
581
582 uaddr = (unsigned long)iov[i].iov_base;
583 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
584 start = uaddr >> PAGE_SHIFT;
585
586 nr_pages += end - start;
587 len += iov[i].iov_len;
588 }
589
76029ff3 590 bmd = bio_alloc_map_data(nr_pages, iov_count, GFP_KERNEL);
1da177e4
LT
591 if (!bmd)
592 return ERR_PTR(-ENOMEM);
593
1da177e4 594 ret = -ENOMEM;
c5dec1c3 595 bio = bio_alloc(GFP_KERNEL, nr_pages);
1da177e4
LT
596 if (!bio)
597 goto out_bmd;
598
599 bio->bi_rw |= (!write_to_vm << BIO_RW);
600
601 ret = 0;
602 while (len) {
603 unsigned int bytes = PAGE_SIZE;
604
605 if (bytes > len)
606 bytes = len;
607
608 page = alloc_page(q->bounce_gfp | GFP_KERNEL);
609 if (!page) {
610 ret = -ENOMEM;
611 break;
612 }
613
0e75f906 614 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1da177e4 615 break;
1da177e4
LT
616
617 len -= bytes;
618 }
619
620 if (ret)
621 goto cleanup;
622
623 /*
624 * success
625 */
626 if (!write_to_vm) {
aefcc28a 627 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0);
c5dec1c3
FT
628 if (ret)
629 goto cleanup;
1da177e4
LT
630 }
631
c5dec1c3 632 bio_set_map_data(bmd, bio, iov, iov_count);
1da177e4
LT
633 return bio;
634cleanup:
635 bio_for_each_segment(bvec, bio, i)
636 __free_page(bvec->bv_page);
637
638 bio_put(bio);
639out_bmd:
640 bio_free_map_data(bmd);
641 return ERR_PTR(ret);
642}
643
c5dec1c3
FT
644/**
645 * bio_copy_user - copy user data to bio
646 * @q: destination block queue
647 * @uaddr: start of user address
648 * @len: length in bytes
649 * @write_to_vm: bool indicating writing to pages or not
650 *
651 * Prepares and returns a bio for indirect user io, bouncing data
652 * to/from kernel pages as necessary. Must be paired with
653 * call bio_uncopy_user() on io completion.
654 */
655struct bio *bio_copy_user(struct request_queue *q, unsigned long uaddr,
656 unsigned int len, int write_to_vm)
657{
658 struct sg_iovec iov;
659
660 iov.iov_base = (void __user *)uaddr;
661 iov.iov_len = len;
662
663 return bio_copy_user_iov(q, &iov, 1, write_to_vm);
664}
665
165125e1 666static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
667 struct block_device *bdev,
668 struct sg_iovec *iov, int iov_count,
669 int write_to_vm)
1da177e4 670{
f1970baf
JB
671 int i, j;
672 int nr_pages = 0;
1da177e4
LT
673 struct page **pages;
674 struct bio *bio;
f1970baf
JB
675 int cur_page = 0;
676 int ret, offset;
1da177e4 677
f1970baf
JB
678 for (i = 0; i < iov_count; i++) {
679 unsigned long uaddr = (unsigned long)iov[i].iov_base;
680 unsigned long len = iov[i].iov_len;
681 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
682 unsigned long start = uaddr >> PAGE_SHIFT;
683
684 nr_pages += end - start;
685 /*
ad2d7225 686 * buffer must be aligned to at least hardsector size for now
f1970baf 687 */
ad2d7225 688 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
689 return ERR_PTR(-EINVAL);
690 }
691
692 if (!nr_pages)
1da177e4
LT
693 return ERR_PTR(-EINVAL);
694
695 bio = bio_alloc(GFP_KERNEL, nr_pages);
696 if (!bio)
697 return ERR_PTR(-ENOMEM);
698
699 ret = -ENOMEM;
11b0b5ab 700 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
1da177e4
LT
701 if (!pages)
702 goto out;
703
f1970baf
JB
704 for (i = 0; i < iov_count; i++) {
705 unsigned long uaddr = (unsigned long)iov[i].iov_base;
706 unsigned long len = iov[i].iov_len;
707 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
708 unsigned long start = uaddr >> PAGE_SHIFT;
709 const int local_nr_pages = end - start;
710 const int page_limit = cur_page + local_nr_pages;
711
f5dd33c4
NP
712 ret = get_user_pages_fast(uaddr, local_nr_pages,
713 write_to_vm, &pages[cur_page]);
99172157
JA
714 if (ret < local_nr_pages) {
715 ret = -EFAULT;
f1970baf 716 goto out_unmap;
99172157 717 }
f1970baf
JB
718
719 offset = uaddr & ~PAGE_MASK;
720 for (j = cur_page; j < page_limit; j++) {
721 unsigned int bytes = PAGE_SIZE - offset;
722
723 if (len <= 0)
724 break;
725
726 if (bytes > len)
727 bytes = len;
728
729 /*
730 * sorry...
731 */
defd94b7
MC
732 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
733 bytes)
f1970baf
JB
734 break;
735
736 len -= bytes;
737 offset = 0;
738 }
1da177e4 739
f1970baf 740 cur_page = j;
1da177e4 741 /*
f1970baf 742 * release the pages we didn't map into the bio, if any
1da177e4 743 */
f1970baf
JB
744 while (j < page_limit)
745 page_cache_release(pages[j++]);
1da177e4
LT
746 }
747
1da177e4
LT
748 kfree(pages);
749
750 /*
751 * set data direction, and check if mapped pages need bouncing
752 */
753 if (!write_to_vm)
754 bio->bi_rw |= (1 << BIO_RW);
755
f1970baf 756 bio->bi_bdev = bdev;
1da177e4
LT
757 bio->bi_flags |= (1 << BIO_USER_MAPPED);
758 return bio;
f1970baf
JB
759
760 out_unmap:
761 for (i = 0; i < nr_pages; i++) {
762 if(!pages[i])
763 break;
764 page_cache_release(pages[i]);
765 }
766 out:
1da177e4
LT
767 kfree(pages);
768 bio_put(bio);
769 return ERR_PTR(ret);
770}
771
772/**
773 * bio_map_user - map user address into bio
165125e1 774 * @q: the struct request_queue for the bio
1da177e4
LT
775 * @bdev: destination block device
776 * @uaddr: start of user address
777 * @len: length in bytes
778 * @write_to_vm: bool indicating writing to pages or not
779 *
780 * Map the user space address into a bio suitable for io to a block
781 * device. Returns an error pointer in case of error.
782 */
165125e1 783struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1da177e4 784 unsigned long uaddr, unsigned int len, int write_to_vm)
f1970baf
JB
785{
786 struct sg_iovec iov;
787
3f70353e 788 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
789 iov.iov_len = len;
790
791 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm);
792}
793
794/**
795 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 796 * @q: the struct request_queue for the bio
f1970baf
JB
797 * @bdev: destination block device
798 * @iov: the iovec.
799 * @iov_count: number of elements in the iovec
800 * @write_to_vm: bool indicating writing to pages or not
801 *
802 * Map the user space address into a bio suitable for io to a block
803 * device. Returns an error pointer in case of error.
804 */
165125e1 805struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf
JB
806 struct sg_iovec *iov, int iov_count,
807 int write_to_vm)
1da177e4
LT
808{
809 struct bio *bio;
810
f1970baf 811 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm);
1da177e4
LT
812
813 if (IS_ERR(bio))
814 return bio;
815
816 /*
817 * subtle -- if __bio_map_user() ended up bouncing a bio,
818 * it would normally disappear when its bi_end_io is run.
819 * however, we need it for the unmap, so grab an extra
820 * reference to it
821 */
822 bio_get(bio);
823
0e75f906 824 return bio;
1da177e4
LT
825}
826
827static void __bio_unmap_user(struct bio *bio)
828{
829 struct bio_vec *bvec;
830 int i;
831
832 /*
833 * make sure we dirty pages we wrote to
834 */
835 __bio_for_each_segment(bvec, bio, i, 0) {
836 if (bio_data_dir(bio) == READ)
837 set_page_dirty_lock(bvec->bv_page);
838
839 page_cache_release(bvec->bv_page);
840 }
841
842 bio_put(bio);
843}
844
845/**
846 * bio_unmap_user - unmap a bio
847 * @bio: the bio being unmapped
848 *
849 * Unmap a bio previously mapped by bio_map_user(). Must be called with
850 * a process context.
851 *
852 * bio_unmap_user() may sleep.
853 */
854void bio_unmap_user(struct bio *bio)
855{
856 __bio_unmap_user(bio);
857 bio_put(bio);
858}
859
6712ecf8 860static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 861{
b823825e 862 bio_put(bio);
b823825e
JA
863}
864
865
165125e1 866static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 867 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
868{
869 unsigned long kaddr = (unsigned long)data;
870 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
871 unsigned long start = kaddr >> PAGE_SHIFT;
872 const int nr_pages = end - start;
873 int offset, i;
874 struct bio *bio;
875
876 bio = bio_alloc(gfp_mask, nr_pages);
877 if (!bio)
878 return ERR_PTR(-ENOMEM);
879
880 offset = offset_in_page(kaddr);
881 for (i = 0; i < nr_pages; i++) {
882 unsigned int bytes = PAGE_SIZE - offset;
883
884 if (len <= 0)
885 break;
886
887 if (bytes > len)
888 bytes = len;
889
defd94b7
MC
890 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
891 offset) < bytes)
df46b9a4
MC
892 break;
893
894 data += bytes;
895 len -= bytes;
896 offset = 0;
897 }
898
b823825e 899 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
900 return bio;
901}
902
903/**
904 * bio_map_kern - map kernel address into bio
165125e1 905 * @q: the struct request_queue for the bio
df46b9a4
MC
906 * @data: pointer to buffer to map
907 * @len: length in bytes
908 * @gfp_mask: allocation flags for bio allocation
909 *
910 * Map the kernel address into a bio suitable for io to a block
911 * device. Returns an error pointer in case of error.
912 */
165125e1 913struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 914 gfp_t gfp_mask)
df46b9a4
MC
915{
916 struct bio *bio;
917
918 bio = __bio_map_kern(q, data, len, gfp_mask);
919 if (IS_ERR(bio))
920 return bio;
921
922 if (bio->bi_size == len)
923 return bio;
924
925 /*
926 * Don't support partial mappings.
927 */
928 bio_put(bio);
929 return ERR_PTR(-EINVAL);
930}
931
68154e90
FT
932static void bio_copy_kern_endio(struct bio *bio, int err)
933{
934 struct bio_vec *bvec;
935 const int read = bio_data_dir(bio) == READ;
76029ff3 936 struct bio_map_data *bmd = bio->bi_private;
68154e90 937 int i;
76029ff3 938 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
939
940 __bio_for_each_segment(bvec, bio, i, 0) {
941 char *addr = page_address(bvec->bv_page);
76029ff3 942 int len = bmd->iovecs[i].bv_len;
68154e90
FT
943
944 if (read && !err)
76029ff3 945 memcpy(p, addr, len);
68154e90
FT
946
947 __free_page(bvec->bv_page);
76029ff3 948 p += len;
68154e90
FT
949 }
950
76029ff3 951 bio_free_map_data(bmd);
68154e90
FT
952 bio_put(bio);
953}
954
955/**
956 * bio_copy_kern - copy kernel address into bio
957 * @q: the struct request_queue for the bio
958 * @data: pointer to buffer to copy
959 * @len: length in bytes
960 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 961 * @reading: data direction is READ
68154e90
FT
962 *
963 * copy the kernel address into a bio suitable for io to a block
964 * device. Returns an error pointer in case of error.
965 */
966struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
967 gfp_t gfp_mask, int reading)
968{
969 unsigned long kaddr = (unsigned long)data;
970 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
971 unsigned long start = kaddr >> PAGE_SHIFT;
972 const int nr_pages = end - start;
973 struct bio *bio;
974 struct bio_vec *bvec;
76029ff3 975 struct bio_map_data *bmd;
68154e90 976 int i, ret;
76029ff3
FT
977 struct sg_iovec iov;
978
979 iov.iov_base = data;
980 iov.iov_len = len;
981
982 bmd = bio_alloc_map_data(nr_pages, 1, gfp_mask);
983 if (!bmd)
984 return ERR_PTR(-ENOMEM);
68154e90 985
76029ff3 986 ret = -ENOMEM;
68154e90
FT
987 bio = bio_alloc(gfp_mask, nr_pages);
988 if (!bio)
76029ff3 989 goto out_bmd;
68154e90
FT
990
991 while (len) {
992 struct page *page;
993 unsigned int bytes = PAGE_SIZE;
994
995 if (bytes > len)
996 bytes = len;
997
998 page = alloc_page(q->bounce_gfp | gfp_mask);
999 if (!page) {
1000 ret = -ENOMEM;
1001 goto cleanup;
1002 }
1003
1004 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) {
1005 ret = -EINVAL;
1006 goto cleanup;
1007 }
1008
1009 len -= bytes;
1010 }
1011
1012 if (!reading) {
1013 void *p = data;
1014
1015 bio_for_each_segment(bvec, bio, i) {
1016 char *addr = page_address(bvec->bv_page);
1017
1018 memcpy(addr, p, bvec->bv_len);
1019 p += bvec->bv_len;
1020 }
1021 }
1022
76029ff3 1023 bio->bi_private = bmd;
68154e90 1024 bio->bi_end_io = bio_copy_kern_endio;
76029ff3
FT
1025
1026 bio_set_map_data(bmd, bio, &iov, 1);
68154e90
FT
1027 return bio;
1028cleanup:
1029 bio_for_each_segment(bvec, bio, i)
1030 __free_page(bvec->bv_page);
1031
1032 bio_put(bio);
76029ff3
FT
1033out_bmd:
1034 bio_free_map_data(bmd);
68154e90
FT
1035
1036 return ERR_PTR(ret);
1037}
1038
1da177e4
LT
1039/*
1040 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1041 * for performing direct-IO in BIOs.
1042 *
1043 * The problem is that we cannot run set_page_dirty() from interrupt context
1044 * because the required locks are not interrupt-safe. So what we can do is to
1045 * mark the pages dirty _before_ performing IO. And in interrupt context,
1046 * check that the pages are still dirty. If so, fine. If not, redirty them
1047 * in process context.
1048 *
1049 * We special-case compound pages here: normally this means reads into hugetlb
1050 * pages. The logic in here doesn't really work right for compound pages
1051 * because the VM does not uniformly chase down the head page in all cases.
1052 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1053 * handle them at all. So we skip compound pages here at an early stage.
1054 *
1055 * Note that this code is very hard to test under normal circumstances because
1056 * direct-io pins the pages with get_user_pages(). This makes
1057 * is_page_cache_freeable return false, and the VM will not clean the pages.
1058 * But other code (eg, pdflush) could clean the pages if they are mapped
1059 * pagecache.
1060 *
1061 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1062 * deferred bio dirtying paths.
1063 */
1064
1065/*
1066 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1067 */
1068void bio_set_pages_dirty(struct bio *bio)
1069{
1070 struct bio_vec *bvec = bio->bi_io_vec;
1071 int i;
1072
1073 for (i = 0; i < bio->bi_vcnt; i++) {
1074 struct page *page = bvec[i].bv_page;
1075
1076 if (page && !PageCompound(page))
1077 set_page_dirty_lock(page);
1078 }
1079}
1080
86b6c7a7 1081static void bio_release_pages(struct bio *bio)
1da177e4
LT
1082{
1083 struct bio_vec *bvec = bio->bi_io_vec;
1084 int i;
1085
1086 for (i = 0; i < bio->bi_vcnt; i++) {
1087 struct page *page = bvec[i].bv_page;
1088
1089 if (page)
1090 put_page(page);
1091 }
1092}
1093
1094/*
1095 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1096 * If they are, then fine. If, however, some pages are clean then they must
1097 * have been written out during the direct-IO read. So we take another ref on
1098 * the BIO and the offending pages and re-dirty the pages in process context.
1099 *
1100 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1101 * here on. It will run one page_cache_release() against each page and will
1102 * run one bio_put() against the BIO.
1103 */
1104
65f27f38 1105static void bio_dirty_fn(struct work_struct *work);
1da177e4 1106
65f27f38 1107static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1108static DEFINE_SPINLOCK(bio_dirty_lock);
1109static struct bio *bio_dirty_list;
1110
1111/*
1112 * This runs in process context
1113 */
65f27f38 1114static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1115{
1116 unsigned long flags;
1117 struct bio *bio;
1118
1119 spin_lock_irqsave(&bio_dirty_lock, flags);
1120 bio = bio_dirty_list;
1121 bio_dirty_list = NULL;
1122 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1123
1124 while (bio) {
1125 struct bio *next = bio->bi_private;
1126
1127 bio_set_pages_dirty(bio);
1128 bio_release_pages(bio);
1129 bio_put(bio);
1130 bio = next;
1131 }
1132}
1133
1134void bio_check_pages_dirty(struct bio *bio)
1135{
1136 struct bio_vec *bvec = bio->bi_io_vec;
1137 int nr_clean_pages = 0;
1138 int i;
1139
1140 for (i = 0; i < bio->bi_vcnt; i++) {
1141 struct page *page = bvec[i].bv_page;
1142
1143 if (PageDirty(page) || PageCompound(page)) {
1144 page_cache_release(page);
1145 bvec[i].bv_page = NULL;
1146 } else {
1147 nr_clean_pages++;
1148 }
1149 }
1150
1151 if (nr_clean_pages) {
1152 unsigned long flags;
1153
1154 spin_lock_irqsave(&bio_dirty_lock, flags);
1155 bio->bi_private = bio_dirty_list;
1156 bio_dirty_list = bio;
1157 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1158 schedule_work(&bio_dirty_work);
1159 } else {
1160 bio_put(bio);
1161 }
1162}
1163
1164/**
1165 * bio_endio - end I/O on a bio
1166 * @bio: bio
1da177e4
LT
1167 * @error: error, if any
1168 *
1169 * Description:
6712ecf8 1170 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1171 * preferred way to end I/O on a bio, it takes care of clearing
1172 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1173 * established -Exxxx (-EIO, for instance) error values in case
1174 * something went wrong. Noone should call bi_end_io() directly on a
1175 * bio unless they own it and thus know that it has an end_io
1176 * function.
1da177e4 1177 **/
6712ecf8 1178void bio_endio(struct bio *bio, int error)
1da177e4
LT
1179{
1180 if (error)
1181 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1182 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1183 error = -EIO;
1da177e4 1184
5bb23a68 1185 if (bio->bi_end_io)
6712ecf8 1186 bio->bi_end_io(bio, error);
1da177e4
LT
1187}
1188
1189void bio_pair_release(struct bio_pair *bp)
1190{
1191 if (atomic_dec_and_test(&bp->cnt)) {
1192 struct bio *master = bp->bio1.bi_private;
1193
6712ecf8 1194 bio_endio(master, bp->error);
1da177e4
LT
1195 mempool_free(bp, bp->bio2.bi_private);
1196 }
1197}
1198
6712ecf8 1199static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1200{
1201 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1202
1203 if (err)
1204 bp->error = err;
1205
1da177e4 1206 bio_pair_release(bp);
1da177e4
LT
1207}
1208
6712ecf8 1209static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1210{
1211 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1212
1213 if (err)
1214 bp->error = err;
1215
1da177e4 1216 bio_pair_release(bp);
1da177e4
LT
1217}
1218
1219/*
1220 * split a bio - only worry about a bio with a single page
1221 * in it's iovec
1222 */
1223struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
1224{
1225 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
1226
1227 if (!bp)
1228 return bp;
1229
2056a782
JA
1230 blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
1231 bi->bi_sector + first_sectors);
1232
1da177e4
LT
1233 BUG_ON(bi->bi_vcnt != 1);
1234 BUG_ON(bi->bi_idx != 0);
1235 atomic_set(&bp->cnt, 3);
1236 bp->error = 0;
1237 bp->bio1 = *bi;
1238 bp->bio2 = *bi;
1239 bp->bio2.bi_sector += first_sectors;
1240 bp->bio2.bi_size -= first_sectors << 9;
1241 bp->bio1.bi_size = first_sectors << 9;
1242
1243 bp->bv1 = bi->bi_io_vec[0];
1244 bp->bv2 = bi->bi_io_vec[0];
1245 bp->bv2.bv_offset += first_sectors << 9;
1246 bp->bv2.bv_len -= first_sectors << 9;
1247 bp->bv1.bv_len = first_sectors << 9;
1248
1249 bp->bio1.bi_io_vec = &bp->bv1;
1250 bp->bio2.bi_io_vec = &bp->bv2;
1251
a2eb0c10
N
1252 bp->bio1.bi_max_vecs = 1;
1253 bp->bio2.bi_max_vecs = 1;
1254
1da177e4
LT
1255 bp->bio1.bi_end_io = bio_pair_end_1;
1256 bp->bio2.bi_end_io = bio_pair_end_2;
1257
1258 bp->bio1.bi_private = bi;
1259 bp->bio2.bi_private = pool;
1260
7ba1ba12
MP
1261 if (bio_integrity(bi))
1262 bio_integrity_split(bi, bp, first_sectors);
1263
1da177e4
LT
1264 return bp;
1265}
1266
1da177e4
LT
1267
1268/*
1269 * create memory pools for biovec's in a bio_set.
1270 * use the global biovec slabs created for general use.
1271 */
5972511b 1272static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4
LT
1273{
1274 int i;
1275
1276 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1277 struct biovec_slab *bp = bvec_slabs + i;
1278 mempool_t **bvp = bs->bvec_pools + i;
1279
93d2341c 1280 *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1281 if (!*bvp)
1282 return -ENOMEM;
1283 }
1284 return 0;
1285}
1286
1287static void biovec_free_pools(struct bio_set *bs)
1288{
1289 int i;
1290
1291 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1292 mempool_t *bvp = bs->bvec_pools[i];
1293
1294 if (bvp)
1295 mempool_destroy(bvp);
1296 }
1297
1298}
1299
1300void bioset_free(struct bio_set *bs)
1301{
1302 if (bs->bio_pool)
1303 mempool_destroy(bs->bio_pool);
1304
7ba1ba12 1305 bioset_integrity_free(bs);
1da177e4
LT
1306 biovec_free_pools(bs);
1307
1308 kfree(bs);
1309}
1310
5972511b 1311struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
1da177e4 1312{
11b0b5ab 1313 struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1314
1315 if (!bs)
1316 return NULL;
1317
93d2341c 1318 bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
1da177e4
LT
1319 if (!bs->bio_pool)
1320 goto bad;
1321
7ba1ba12
MP
1322 if (bioset_integrity_create(bs, bio_pool_size))
1323 goto bad;
1324
5972511b 1325 if (!biovec_create_pools(bs, bvec_pool_size))
1da177e4
LT
1326 return bs;
1327
1328bad:
1329 bioset_free(bs);
1330 return NULL;
1331}
1332
1333static void __init biovec_init_slabs(void)
1334{
1335 int i;
1336
1337 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1338 int size;
1339 struct biovec_slab *bvs = bvec_slabs + i;
1340
1341 size = bvs->nr_vecs * sizeof(struct bio_vec);
1342 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1343 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1344 }
1345}
1346
1347static int __init init_bio(void)
1348{
0a31bd5f 1349 bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4 1350
7ba1ba12 1351 bio_integrity_init_slab();
1da177e4
LT
1352 biovec_init_slabs();
1353
5972511b 1354 fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
1da177e4
LT
1355 if (!fs_bio_set)
1356 panic("bio: can't allocate bios\n");
1357
0eaae62a
MD
1358 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1359 sizeof(struct bio_pair));
1da177e4
LT
1360 if (!bio_split_pool)
1361 panic("bio: can't create split pool\n");
1362
1363 return 0;
1364}
1365
1366subsys_initcall(init_bio);
1367
1368EXPORT_SYMBOL(bio_alloc);
1369EXPORT_SYMBOL(bio_put);
3676347a 1370EXPORT_SYMBOL(bio_free);
1da177e4
LT
1371EXPORT_SYMBOL(bio_endio);
1372EXPORT_SYMBOL(bio_init);
1373EXPORT_SYMBOL(__bio_clone);
1374EXPORT_SYMBOL(bio_clone);
1375EXPORT_SYMBOL(bio_phys_segments);
1da177e4 1376EXPORT_SYMBOL(bio_add_page);
6e68af66 1377EXPORT_SYMBOL(bio_add_pc_page);
1da177e4 1378EXPORT_SYMBOL(bio_get_nr_vecs);
40044ce0
JA
1379EXPORT_SYMBOL(bio_map_user);
1380EXPORT_SYMBOL(bio_unmap_user);
df46b9a4 1381EXPORT_SYMBOL(bio_map_kern);
68154e90 1382EXPORT_SYMBOL(bio_copy_kern);
1da177e4
LT
1383EXPORT_SYMBOL(bio_pair_release);
1384EXPORT_SYMBOL(bio_split);
1385EXPORT_SYMBOL(bio_split_pool);
1386EXPORT_SYMBOL(bio_copy_user);
1387EXPORT_SYMBOL(bio_uncopy_user);
1388EXPORT_SYMBOL(bioset_create);
1389EXPORT_SYMBOL(bioset_free);
1390EXPORT_SYMBOL(bio_alloc_bioset);