]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/bio.c
block: Immutable bio vecs
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
f1970baf 31#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 32
55782138 33#include <trace/events/block.h>
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
6feef531 41static mempool_t *bio_split_pool __read_mostly;
1da177e4 42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
1da177e4 48#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 49static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
50 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
51d654e1 58struct bio_set *fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
118 if (!slab)
119 goto out_unlock;
120
80cdc6da 121 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
161 return bvec_slabs[idx].nr_vecs;
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0
JA
165{
166 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
167
168 if (idx == BIOVEC_MAX_IDX)
9f060e22 169 mempool_free(bv, pool);
bb799ca0
JA
170 else {
171 struct biovec_slab *bvs = bvec_slabs + idx;
172
173 kmem_cache_free(bvs->slab, bv);
174 }
175}
176
9f060e22
KO
177struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
178 mempool_t *pool)
1da177e4
LT
179{
180 struct bio_vec *bvl;
1da177e4 181
7ff9345f
JA
182 /*
183 * see comment near bvec_array define!
184 */
185 switch (nr) {
186 case 1:
187 *idx = 0;
188 break;
189 case 2 ... 4:
190 *idx = 1;
191 break;
192 case 5 ... 16:
193 *idx = 2;
194 break;
195 case 17 ... 64:
196 *idx = 3;
197 break;
198 case 65 ... 128:
199 *idx = 4;
200 break;
201 case 129 ... BIO_MAX_PAGES:
202 *idx = 5;
203 break;
204 default:
205 return NULL;
206 }
207
208 /*
209 * idx now points to the pool we want to allocate from. only the
210 * 1-vec entry pool is mempool backed.
211 */
212 if (*idx == BIOVEC_MAX_IDX) {
213fallback:
9f060e22 214 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
215 } else {
216 struct biovec_slab *bvs = bvec_slabs + *idx;
217 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
218
0a0d96b0 219 /*
7ff9345f
JA
220 * Make this allocation restricted and don't dump info on
221 * allocation failures, since we'll fallback to the mempool
222 * in case of failure.
0a0d96b0 223 */
7ff9345f 224 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 225
0a0d96b0 226 /*
7ff9345f
JA
227 * Try a slab allocation. If this fails and __GFP_WAIT
228 * is set, retry with the 1-entry mempool
0a0d96b0 229 */
7ff9345f
JA
230 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
231 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
232 *idx = BIOVEC_MAX_IDX;
233 goto fallback;
234 }
235 }
236
1da177e4
LT
237 return bvl;
238}
239
4254bba1 240static void __bio_free(struct bio *bio)
1da177e4 241{
4254bba1 242 bio_disassociate_task(bio);
1da177e4 243
7ba1ba12 244 if (bio_integrity(bio))
1e2a410f 245 bio_integrity_free(bio);
4254bba1 246}
7ba1ba12 247
4254bba1
KO
248static void bio_free(struct bio *bio)
249{
250 struct bio_set *bs = bio->bi_pool;
251 void *p;
252
253 __bio_free(bio);
254
255 if (bs) {
a38352e0 256 if (bio_flagged(bio, BIO_OWNS_VEC))
9f060e22 257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
4254bba1
KO
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
bb799ca0
JA
263 p -= bs->front_pad;
264
4254bba1
KO
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
3676347a
PO
270}
271
858119e1 272void bio_init(struct bio *bio)
1da177e4 273{
2b94de55 274 memset(bio, 0, sizeof(*bio));
1da177e4 275 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 276 atomic_set(&bio->bi_cnt, 1);
1da177e4 277}
a112a71d 278EXPORT_SYMBOL(bio_init);
1da177e4 279
f44b48c7
KO
280/**
281 * bio_reset - reinitialize a bio
282 * @bio: bio to reset
283 *
284 * Description:
285 * After calling bio_reset(), @bio will be in the same state as a freshly
286 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
287 * preserved are the ones that are initialized by bio_alloc_bioset(). See
288 * comment in struct bio.
289 */
290void bio_reset(struct bio *bio)
291{
292 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
293
4254bba1 294 __bio_free(bio);
f44b48c7
KO
295
296 memset(bio, 0, BIO_RESET_BYTES);
297 bio->bi_flags = flags|(1 << BIO_UPTODATE);
298}
299EXPORT_SYMBOL(bio_reset);
300
df2cb6da
KO
301static void bio_alloc_rescue(struct work_struct *work)
302{
303 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
304 struct bio *bio;
305
306 while (1) {
307 spin_lock(&bs->rescue_lock);
308 bio = bio_list_pop(&bs->rescue_list);
309 spin_unlock(&bs->rescue_lock);
310
311 if (!bio)
312 break;
313
314 generic_make_request(bio);
315 }
316}
317
318static void punt_bios_to_rescuer(struct bio_set *bs)
319{
320 struct bio_list punt, nopunt;
321 struct bio *bio;
322
323 /*
324 * In order to guarantee forward progress we must punt only bios that
325 * were allocated from this bio_set; otherwise, if there was a bio on
326 * there for a stacking driver higher up in the stack, processing it
327 * could require allocating bios from this bio_set, and doing that from
328 * our own rescuer would be bad.
329 *
330 * Since bio lists are singly linked, pop them all instead of trying to
331 * remove from the middle of the list:
332 */
333
334 bio_list_init(&punt);
335 bio_list_init(&nopunt);
336
337 while ((bio = bio_list_pop(current->bio_list)))
338 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
339
340 *current->bio_list = nopunt;
341
342 spin_lock(&bs->rescue_lock);
343 bio_list_merge(&bs->rescue_list, &punt);
344 spin_unlock(&bs->rescue_lock);
345
346 queue_work(bs->rescue_workqueue, &bs->rescue_work);
347}
348
1da177e4
LT
349/**
350 * bio_alloc_bioset - allocate a bio for I/O
351 * @gfp_mask: the GFP_ mask given to the slab allocator
352 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 353 * @bs: the bio_set to allocate from.
1da177e4
LT
354 *
355 * Description:
3f86a82a
KO
356 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
357 * backed by the @bs's mempool.
358 *
359 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
360 * able to allocate a bio. This is due to the mempool guarantees. To make this
361 * work, callers must never allocate more than 1 bio at a time from this pool.
362 * Callers that need to allocate more than 1 bio must always submit the
363 * previously allocated bio for IO before attempting to allocate a new one.
364 * Failure to do so can cause deadlocks under memory pressure.
365 *
df2cb6da
KO
366 * Note that when running under generic_make_request() (i.e. any block
367 * driver), bios are not submitted until after you return - see the code in
368 * generic_make_request() that converts recursion into iteration, to prevent
369 * stack overflows.
370 *
371 * This would normally mean allocating multiple bios under
372 * generic_make_request() would be susceptible to deadlocks, but we have
373 * deadlock avoidance code that resubmits any blocked bios from a rescuer
374 * thread.
375 *
376 * However, we do not guarantee forward progress for allocations from other
377 * mempools. Doing multiple allocations from the same mempool under
378 * generic_make_request() should be avoided - instead, use bio_set's front_pad
379 * for per bio allocations.
380 *
3f86a82a
KO
381 * RETURNS:
382 * Pointer to new bio on success, NULL on failure.
383 */
dd0fc66f 384struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 385{
df2cb6da 386 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
387 unsigned front_pad;
388 unsigned inline_vecs;
451a9ebf 389 unsigned long idx = BIO_POOL_NONE;
34053979 390 struct bio_vec *bvl = NULL;
451a9ebf
TH
391 struct bio *bio;
392 void *p;
393
3f86a82a
KO
394 if (!bs) {
395 if (nr_iovecs > UIO_MAXIOV)
396 return NULL;
397
398 p = kmalloc(sizeof(struct bio) +
399 nr_iovecs * sizeof(struct bio_vec),
400 gfp_mask);
401 front_pad = 0;
402 inline_vecs = nr_iovecs;
403 } else {
df2cb6da
KO
404 /*
405 * generic_make_request() converts recursion to iteration; this
406 * means if we're running beneath it, any bios we allocate and
407 * submit will not be submitted (and thus freed) until after we
408 * return.
409 *
410 * This exposes us to a potential deadlock if we allocate
411 * multiple bios from the same bio_set() while running
412 * underneath generic_make_request(). If we were to allocate
413 * multiple bios (say a stacking block driver that was splitting
414 * bios), we would deadlock if we exhausted the mempool's
415 * reserve.
416 *
417 * We solve this, and guarantee forward progress, with a rescuer
418 * workqueue per bio_set. If we go to allocate and there are
419 * bios on current->bio_list, we first try the allocation
420 * without __GFP_WAIT; if that fails, we punt those bios we
421 * would be blocking to the rescuer workqueue before we retry
422 * with the original gfp_flags.
423 */
424
425 if (current->bio_list && !bio_list_empty(current->bio_list))
426 gfp_mask &= ~__GFP_WAIT;
427
3f86a82a 428 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
429 if (!p && gfp_mask != saved_gfp) {
430 punt_bios_to_rescuer(bs);
431 gfp_mask = saved_gfp;
432 p = mempool_alloc(bs->bio_pool, gfp_mask);
433 }
434
3f86a82a
KO
435 front_pad = bs->front_pad;
436 inline_vecs = BIO_INLINE_VECS;
437 }
438
451a9ebf
TH
439 if (unlikely(!p))
440 return NULL;
1da177e4 441
3f86a82a 442 bio = p + front_pad;
34053979
IM
443 bio_init(bio);
444
3f86a82a 445 if (nr_iovecs > inline_vecs) {
9f060e22 446 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
447 if (!bvl && gfp_mask != saved_gfp) {
448 punt_bios_to_rescuer(bs);
449 gfp_mask = saved_gfp;
9f060e22 450 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
451 }
452
34053979
IM
453 if (unlikely(!bvl))
454 goto err_free;
a38352e0
KO
455
456 bio->bi_flags |= 1 << BIO_OWNS_VEC;
3f86a82a
KO
457 } else if (nr_iovecs) {
458 bvl = bio->bi_inline_vecs;
1da177e4 459 }
3f86a82a
KO
460
461 bio->bi_pool = bs;
34053979
IM
462 bio->bi_flags |= idx << BIO_POOL_OFFSET;
463 bio->bi_max_vecs = nr_iovecs;
34053979 464 bio->bi_io_vec = bvl;
1da177e4 465 return bio;
34053979
IM
466
467err_free:
451a9ebf 468 mempool_free(p, bs->bio_pool);
34053979 469 return NULL;
1da177e4 470}
a112a71d 471EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 472
1da177e4
LT
473void zero_fill_bio(struct bio *bio)
474{
475 unsigned long flags;
7988613b
KO
476 struct bio_vec bv;
477 struct bvec_iter iter;
1da177e4 478
7988613b
KO
479 bio_for_each_segment(bv, bio, iter) {
480 char *data = bvec_kmap_irq(&bv, &flags);
481 memset(data, 0, bv.bv_len);
482 flush_dcache_page(bv.bv_page);
1da177e4
LT
483 bvec_kunmap_irq(data, &flags);
484 }
485}
486EXPORT_SYMBOL(zero_fill_bio);
487
488/**
489 * bio_put - release a reference to a bio
490 * @bio: bio to release reference to
491 *
492 * Description:
493 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 494 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
495 **/
496void bio_put(struct bio *bio)
497{
498 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
499
500 /*
501 * last put frees it
502 */
4254bba1
KO
503 if (atomic_dec_and_test(&bio->bi_cnt))
504 bio_free(bio);
1da177e4 505}
a112a71d 506EXPORT_SYMBOL(bio_put);
1da177e4 507
165125e1 508inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
509{
510 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
511 blk_recount_segments(q, bio);
512
513 return bio->bi_phys_segments;
514}
a112a71d 515EXPORT_SYMBOL(bio_phys_segments);
1da177e4 516
1da177e4
LT
517/**
518 * __bio_clone - clone a bio
519 * @bio: destination bio
520 * @bio_src: bio to clone
521 *
522 * Clone a &bio. Caller will own the returned bio, but not
523 * the actual data it points to. Reference count of returned
524 * bio will be one.
525 */
858119e1 526void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 527{
e525e153
AM
528 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
529 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 530
5d84070e
JA
531 /*
532 * most users will be overriding ->bi_bdev with a new target,
533 * so we don't set nor calculate new physical/hw segment counts here
534 */
1da177e4
LT
535 bio->bi_bdev = bio_src->bi_bdev;
536 bio->bi_flags |= 1 << BIO_CLONED;
537 bio->bi_rw = bio_src->bi_rw;
1da177e4 538 bio->bi_vcnt = bio_src->bi_vcnt;
4550dd6c 539 bio->bi_iter = bio_src->bi_iter;
1da177e4 540}
a112a71d 541EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
542
543/**
bf800ef1 544 * bio_clone_bioset - clone a bio
1da177e4
LT
545 * @bio: bio to clone
546 * @gfp_mask: allocation priority
bf800ef1 547 * @bs: bio_set to allocate from
1da177e4
LT
548 *
549 * Like __bio_clone, only also allocates the returned bio
550 */
bf800ef1
KO
551struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
552 struct bio_set *bs)
1da177e4 553{
bf800ef1 554 struct bio *b;
1da177e4 555
bf800ef1 556 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
7ba1ba12
MP
557 if (!b)
558 return NULL;
559
7ba1ba12
MP
560 __bio_clone(b, bio);
561
562 if (bio_integrity(bio)) {
563 int ret;
564
1e2a410f 565 ret = bio_integrity_clone(b, bio, gfp_mask);
7ba1ba12 566
059ea331
LZ
567 if (ret < 0) {
568 bio_put(b);
7ba1ba12 569 return NULL;
059ea331 570 }
3676347a 571 }
1da177e4
LT
572
573 return b;
574}
bf800ef1 575EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
576
577/**
578 * bio_get_nr_vecs - return approx number of vecs
579 * @bdev: I/O target
580 *
581 * Return the approximate number of pages we can send to this target.
582 * There's no guarantee that you will be able to fit this number of pages
583 * into a bio, it does not account for dynamic restrictions that vary
584 * on offset.
585 */
586int bio_get_nr_vecs(struct block_device *bdev)
587{
165125e1 588 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
589 int nr_pages;
590
591 nr_pages = min_t(unsigned,
5abebfdd
KO
592 queue_max_segments(q),
593 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
594
595 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
596
1da177e4 597}
a112a71d 598EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 599
165125e1 600static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7 601 *page, unsigned int len, unsigned int offset,
34f2fd8d 602 unsigned int max_sectors)
1da177e4
LT
603{
604 int retried_segments = 0;
605 struct bio_vec *bvec;
606
607 /*
608 * cloned bio must not modify vec list
609 */
610 if (unlikely(bio_flagged(bio, BIO_CLONED)))
611 return 0;
612
4f024f37 613 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
614 return 0;
615
80cfd548
JA
616 /*
617 * For filesystems with a blocksize smaller than the pagesize
618 * we will often be called with the same page as last time and
619 * a consecutive offset. Optimize this special case.
620 */
621 if (bio->bi_vcnt > 0) {
622 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
623
624 if (page == prev->bv_page &&
625 offset == prev->bv_offset + prev->bv_len) {
1d616585 626 unsigned int prev_bv_len = prev->bv_len;
80cfd548 627 prev->bv_len += len;
cc371e66
AK
628
629 if (q->merge_bvec_fn) {
630 struct bvec_merge_data bvm = {
1d616585
DM
631 /* prev_bvec is already charged in
632 bi_size, discharge it in order to
633 simulate merging updated prev_bvec
634 as new bvec. */
cc371e66 635 .bi_bdev = bio->bi_bdev,
4f024f37
KO
636 .bi_sector = bio->bi_iter.bi_sector,
637 .bi_size = bio->bi_iter.bi_size -
638 prev_bv_len,
cc371e66
AK
639 .bi_rw = bio->bi_rw,
640 };
641
8bf8c376 642 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
643 prev->bv_len -= len;
644 return 0;
645 }
80cfd548
JA
646 }
647
648 goto done;
649 }
650 }
651
652 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
653 return 0;
654
655 /*
656 * we might lose a segment or two here, but rather that than
657 * make this too complex.
658 */
659
8a78362c 660 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
661
662 if (retried_segments)
663 return 0;
664
665 retried_segments = 1;
666 blk_recount_segments(q, bio);
667 }
668
669 /*
670 * setup the new entry, we might clear it again later if we
671 * cannot add the page
672 */
673 bvec = &bio->bi_io_vec[bio->bi_vcnt];
674 bvec->bv_page = page;
675 bvec->bv_len = len;
676 bvec->bv_offset = offset;
677
678 /*
679 * if queue has other restrictions (eg varying max sector size
680 * depending on offset), it can specify a merge_bvec_fn in the
681 * queue to get further control
682 */
683 if (q->merge_bvec_fn) {
cc371e66
AK
684 struct bvec_merge_data bvm = {
685 .bi_bdev = bio->bi_bdev,
4f024f37
KO
686 .bi_sector = bio->bi_iter.bi_sector,
687 .bi_size = bio->bi_iter.bi_size,
cc371e66
AK
688 .bi_rw = bio->bi_rw,
689 };
690
1da177e4
LT
691 /*
692 * merge_bvec_fn() returns number of bytes it can accept
693 * at this offset
694 */
8bf8c376 695 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
696 bvec->bv_page = NULL;
697 bvec->bv_len = 0;
698 bvec->bv_offset = 0;
699 return 0;
700 }
701 }
702
703 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 704 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
705 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
706
707 bio->bi_vcnt++;
708 bio->bi_phys_segments++;
80cfd548 709 done:
4f024f37 710 bio->bi_iter.bi_size += len;
1da177e4
LT
711 return len;
712}
713
6e68af66
MC
714/**
715 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 716 * @q: the target queue
6e68af66
MC
717 * @bio: destination bio
718 * @page: page to add
719 * @len: vec entry length
720 * @offset: vec entry offset
721 *
722 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
723 * number of reasons, such as the bio being full or target block device
724 * limitations. The target block device must allow bio's up to PAGE_SIZE,
725 * so it is always possible to add a single page to an empty bio.
726 *
727 * This should only be used by REQ_PC bios.
6e68af66 728 */
165125e1 729int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
730 unsigned int len, unsigned int offset)
731{
ae03bf63
MP
732 return __bio_add_page(q, bio, page, len, offset,
733 queue_max_hw_sectors(q));
6e68af66 734}
a112a71d 735EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 736
1da177e4
LT
737/**
738 * bio_add_page - attempt to add page to bio
739 * @bio: destination bio
740 * @page: page to add
741 * @len: vec entry length
742 * @offset: vec entry offset
743 *
744 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
745 * number of reasons, such as the bio being full or target block device
746 * limitations. The target block device must allow bio's up to PAGE_SIZE,
747 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
748 */
749int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
750 unsigned int offset)
751{
defd94b7 752 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 753 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 754}
a112a71d 755EXPORT_SYMBOL(bio_add_page);
1da177e4 756
9e882242
KO
757struct submit_bio_ret {
758 struct completion event;
759 int error;
760};
761
762static void submit_bio_wait_endio(struct bio *bio, int error)
763{
764 struct submit_bio_ret *ret = bio->bi_private;
765
766 ret->error = error;
767 complete(&ret->event);
768}
769
770/**
771 * submit_bio_wait - submit a bio, and wait until it completes
772 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
773 * @bio: The &struct bio which describes the I/O
774 *
775 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
776 * bio_endio() on failure.
777 */
778int submit_bio_wait(int rw, struct bio *bio)
779{
780 struct submit_bio_ret ret;
781
782 rw |= REQ_SYNC;
783 init_completion(&ret.event);
784 bio->bi_private = &ret;
785 bio->bi_end_io = submit_bio_wait_endio;
786 submit_bio(rw, bio);
787 wait_for_completion(&ret.event);
788
789 return ret.error;
790}
791EXPORT_SYMBOL(submit_bio_wait);
792
054bdf64
KO
793/**
794 * bio_advance - increment/complete a bio by some number of bytes
795 * @bio: bio to advance
796 * @bytes: number of bytes to complete
797 *
798 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
799 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
800 * be updated on the last bvec as well.
801 *
802 * @bio will then represent the remaining, uncompleted portion of the io.
803 */
804void bio_advance(struct bio *bio, unsigned bytes)
805{
806 if (bio_integrity(bio))
807 bio_integrity_advance(bio, bytes);
808
4550dd6c 809 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
810}
811EXPORT_SYMBOL(bio_advance);
812
a0787606
KO
813/**
814 * bio_alloc_pages - allocates a single page for each bvec in a bio
815 * @bio: bio to allocate pages for
816 * @gfp_mask: flags for allocation
817 *
818 * Allocates pages up to @bio->bi_vcnt.
819 *
820 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
821 * freed.
822 */
823int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
824{
825 int i;
826 struct bio_vec *bv;
827
828 bio_for_each_segment_all(bv, bio, i) {
829 bv->bv_page = alloc_page(gfp_mask);
830 if (!bv->bv_page) {
831 while (--bv >= bio->bi_io_vec)
832 __free_page(bv->bv_page);
833 return -ENOMEM;
834 }
835 }
836
837 return 0;
838}
839EXPORT_SYMBOL(bio_alloc_pages);
840
16ac3d63
KO
841/**
842 * bio_copy_data - copy contents of data buffers from one chain of bios to
843 * another
844 * @src: source bio list
845 * @dst: destination bio list
846 *
847 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
848 * @src and @dst as linked lists of bios.
849 *
850 * Stops when it reaches the end of either @src or @dst - that is, copies
851 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
852 */
853void bio_copy_data(struct bio *dst, struct bio *src)
854{
855 struct bio_vec *src_bv, *dst_bv;
856 unsigned src_offset, dst_offset, bytes;
857 void *src_p, *dst_p;
858
a4ad39b1
KO
859 src_bv = __bio_iovec(src);
860 dst_bv = __bio_iovec(dst);
16ac3d63
KO
861
862 src_offset = src_bv->bv_offset;
863 dst_offset = dst_bv->bv_offset;
864
865 while (1) {
866 if (src_offset == src_bv->bv_offset + src_bv->bv_len) {
867 src_bv++;
868 if (src_bv == bio_iovec_idx(src, src->bi_vcnt)) {
869 src = src->bi_next;
870 if (!src)
871 break;
872
a4ad39b1 873 src_bv = __bio_iovec(src);
16ac3d63
KO
874 }
875
876 src_offset = src_bv->bv_offset;
877 }
878
879 if (dst_offset == dst_bv->bv_offset + dst_bv->bv_len) {
880 dst_bv++;
881 if (dst_bv == bio_iovec_idx(dst, dst->bi_vcnt)) {
882 dst = dst->bi_next;
883 if (!dst)
884 break;
885
a4ad39b1 886 dst_bv = __bio_iovec(dst);
16ac3d63
KO
887 }
888
889 dst_offset = dst_bv->bv_offset;
890 }
891
892 bytes = min(dst_bv->bv_offset + dst_bv->bv_len - dst_offset,
893 src_bv->bv_offset + src_bv->bv_len - src_offset);
894
895 src_p = kmap_atomic(src_bv->bv_page);
896 dst_p = kmap_atomic(dst_bv->bv_page);
897
2f6cf0de
KO
898 memcpy(dst_p + dst_offset,
899 src_p + src_offset,
16ac3d63
KO
900 bytes);
901
902 kunmap_atomic(dst_p);
903 kunmap_atomic(src_p);
904
905 src_offset += bytes;
906 dst_offset += bytes;
907 }
908}
909EXPORT_SYMBOL(bio_copy_data);
910
1da177e4
LT
911struct bio_map_data {
912 struct bio_vec *iovecs;
c5dec1c3 913 struct sg_iovec *sgvecs;
152e283f
FT
914 int nr_sgvecs;
915 int is_our_pages;
1da177e4
LT
916};
917
c5dec1c3 918static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
919 struct sg_iovec *iov, int iov_count,
920 int is_our_pages)
1da177e4
LT
921{
922 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
923 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
924 bmd->nr_sgvecs = iov_count;
152e283f 925 bmd->is_our_pages = is_our_pages;
1da177e4
LT
926 bio->bi_private = bmd;
927}
928
929static void bio_free_map_data(struct bio_map_data *bmd)
930{
931 kfree(bmd->iovecs);
c5dec1c3 932 kfree(bmd->sgvecs);
1da177e4
LT
933 kfree(bmd);
934}
935
121f0994
DC
936static struct bio_map_data *bio_alloc_map_data(int nr_segs,
937 unsigned int iov_count,
76029ff3 938 gfp_t gfp_mask)
1da177e4 939{
f3f63c1c
JA
940 struct bio_map_data *bmd;
941
942 if (iov_count > UIO_MAXIOV)
943 return NULL;
1da177e4 944
f3f63c1c 945 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
946 if (!bmd)
947 return NULL;
948
76029ff3 949 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
950 if (!bmd->iovecs) {
951 kfree(bmd);
952 return NULL;
953 }
954
76029ff3 955 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 956 if (bmd->sgvecs)
1da177e4
LT
957 return bmd;
958
c5dec1c3 959 kfree(bmd->iovecs);
1da177e4
LT
960 kfree(bmd);
961 return NULL;
962}
963
aefcc28a 964static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
965 struct sg_iovec *iov, int iov_count,
966 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
967{
968 int ret = 0, i;
969 struct bio_vec *bvec;
970 int iov_idx = 0;
971 unsigned int iov_off = 0;
c5dec1c3 972
d74c6d51 973 bio_for_each_segment_all(bvec, bio, i) {
c5dec1c3 974 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 975 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
976
977 while (bv_len && iov_idx < iov_count) {
978 unsigned int bytes;
0e0c6212 979 char __user *iov_addr;
c5dec1c3
FT
980
981 bytes = min_t(unsigned int,
982 iov[iov_idx].iov_len - iov_off, bv_len);
983 iov_addr = iov[iov_idx].iov_base + iov_off;
984
985 if (!ret) {
ecb554a8 986 if (to_user)
c5dec1c3
FT
987 ret = copy_to_user(iov_addr, bv_addr,
988 bytes);
989
ecb554a8
FT
990 if (from_user)
991 ret = copy_from_user(bv_addr, iov_addr,
992 bytes);
993
c5dec1c3
FT
994 if (ret)
995 ret = -EFAULT;
996 }
997
998 bv_len -= bytes;
999 bv_addr += bytes;
1000 iov_addr += bytes;
1001 iov_off += bytes;
1002
1003 if (iov[iov_idx].iov_len == iov_off) {
1004 iov_idx++;
1005 iov_off = 0;
1006 }
1007 }
1008
152e283f 1009 if (do_free_page)
c5dec1c3
FT
1010 __free_page(bvec->bv_page);
1011 }
1012
1013 return ret;
1014}
1015
1da177e4
LT
1016/**
1017 * bio_uncopy_user - finish previously mapped bio
1018 * @bio: bio being terminated
1019 *
1020 * Free pages allocated from bio_copy_user() and write back data
1021 * to user space in case of a read.
1022 */
1023int bio_uncopy_user(struct bio *bio)
1024{
1025 struct bio_map_data *bmd = bio->bi_private;
35dc2483
RD
1026 struct bio_vec *bvec;
1027 int ret = 0, i;
1da177e4 1028
35dc2483
RD
1029 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1030 /*
1031 * if we're in a workqueue, the request is orphaned, so
1032 * don't copy into a random user address space, just free.
1033 */
1034 if (current->mm)
1035 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
1036 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
1037 0, bmd->is_our_pages);
1038 else if (bmd->is_our_pages)
1039 bio_for_each_segment_all(bvec, bio, i)
1040 __free_page(bvec->bv_page);
1041 }
1da177e4
LT
1042 bio_free_map_data(bmd);
1043 bio_put(bio);
1044 return ret;
1045}
a112a71d 1046EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
1047
1048/**
c5dec1c3 1049 * bio_copy_user_iov - copy user data to bio
1da177e4 1050 * @q: destination block queue
152e283f 1051 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1052 * @iov: the iovec.
1053 * @iov_count: number of elements in the iovec
1da177e4 1054 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1055 * @gfp_mask: memory allocation flags
1da177e4
LT
1056 *
1057 * Prepares and returns a bio for indirect user io, bouncing data
1058 * to/from kernel pages as necessary. Must be paired with
1059 * call bio_uncopy_user() on io completion.
1060 */
152e283f
FT
1061struct bio *bio_copy_user_iov(struct request_queue *q,
1062 struct rq_map_data *map_data,
1063 struct sg_iovec *iov, int iov_count,
1064 int write_to_vm, gfp_t gfp_mask)
1da177e4 1065{
1da177e4
LT
1066 struct bio_map_data *bmd;
1067 struct bio_vec *bvec;
1068 struct page *page;
1069 struct bio *bio;
1070 int i, ret;
c5dec1c3
FT
1071 int nr_pages = 0;
1072 unsigned int len = 0;
56c451f4 1073 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 1074
c5dec1c3
FT
1075 for (i = 0; i < iov_count; i++) {
1076 unsigned long uaddr;
1077 unsigned long end;
1078 unsigned long start;
1079
1080 uaddr = (unsigned long)iov[i].iov_base;
1081 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1082 start = uaddr >> PAGE_SHIFT;
1083
cb4644ca
JA
1084 /*
1085 * Overflow, abort
1086 */
1087 if (end < start)
1088 return ERR_PTR(-EINVAL);
1089
c5dec1c3
FT
1090 nr_pages += end - start;
1091 len += iov[i].iov_len;
1092 }
1093
69838727
FT
1094 if (offset)
1095 nr_pages++;
1096
a3bce90e 1097 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
1098 if (!bmd)
1099 return ERR_PTR(-ENOMEM);
1100
1da177e4 1101 ret = -ENOMEM;
a9e9dc24 1102 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1103 if (!bio)
1104 goto out_bmd;
1105
7b6d91da
CH
1106 if (!write_to_vm)
1107 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
1108
1109 ret = 0;
56c451f4
FT
1110
1111 if (map_data) {
e623ddb4 1112 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1113 i = map_data->offset / PAGE_SIZE;
1114 }
1da177e4 1115 while (len) {
e623ddb4 1116 unsigned int bytes = PAGE_SIZE;
1da177e4 1117
56c451f4
FT
1118 bytes -= offset;
1119
1da177e4
LT
1120 if (bytes > len)
1121 bytes = len;
1122
152e283f 1123 if (map_data) {
e623ddb4 1124 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1125 ret = -ENOMEM;
1126 break;
1127 }
e623ddb4
FT
1128
1129 page = map_data->pages[i / nr_pages];
1130 page += (i % nr_pages);
1131
1132 i++;
1133 } else {
152e283f 1134 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1135 if (!page) {
1136 ret = -ENOMEM;
1137 break;
1138 }
1da177e4
LT
1139 }
1140
56c451f4 1141 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1142 break;
1da177e4
LT
1143
1144 len -= bytes;
56c451f4 1145 offset = 0;
1da177e4
LT
1146 }
1147
1148 if (ret)
1149 goto cleanup;
1150
1151 /*
1152 * success
1153 */
ecb554a8
FT
1154 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1155 (map_data && map_data->from_user)) {
1156 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
1157 if (ret)
1158 goto cleanup;
1da177e4
LT
1159 }
1160
152e283f 1161 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
1162 return bio;
1163cleanup:
152e283f 1164 if (!map_data)
d74c6d51 1165 bio_for_each_segment_all(bvec, bio, i)
152e283f 1166 __free_page(bvec->bv_page);
1da177e4
LT
1167
1168 bio_put(bio);
1169out_bmd:
1170 bio_free_map_data(bmd);
1171 return ERR_PTR(ret);
1172}
1173
c5dec1c3
FT
1174/**
1175 * bio_copy_user - copy user data to bio
1176 * @q: destination block queue
152e283f 1177 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1178 * @uaddr: start of user address
1179 * @len: length in bytes
1180 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1181 * @gfp_mask: memory allocation flags
c5dec1c3
FT
1182 *
1183 * Prepares and returns a bio for indirect user io, bouncing data
1184 * to/from kernel pages as necessary. Must be paired with
1185 * call bio_uncopy_user() on io completion.
1186 */
152e283f
FT
1187struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1188 unsigned long uaddr, unsigned int len,
1189 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
1190{
1191 struct sg_iovec iov;
1192
1193 iov.iov_base = (void __user *)uaddr;
1194 iov.iov_len = len;
1195
152e283f 1196 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 1197}
a112a71d 1198EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 1199
165125e1 1200static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
1201 struct block_device *bdev,
1202 struct sg_iovec *iov, int iov_count,
a3bce90e 1203 int write_to_vm, gfp_t gfp_mask)
1da177e4 1204{
f1970baf
JB
1205 int i, j;
1206 int nr_pages = 0;
1da177e4
LT
1207 struct page **pages;
1208 struct bio *bio;
f1970baf
JB
1209 int cur_page = 0;
1210 int ret, offset;
1da177e4 1211
f1970baf
JB
1212 for (i = 0; i < iov_count; i++) {
1213 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1214 unsigned long len = iov[i].iov_len;
1215 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1216 unsigned long start = uaddr >> PAGE_SHIFT;
1217
cb4644ca
JA
1218 /*
1219 * Overflow, abort
1220 */
1221 if (end < start)
1222 return ERR_PTR(-EINVAL);
1223
f1970baf
JB
1224 nr_pages += end - start;
1225 /*
ad2d7225 1226 * buffer must be aligned to at least hardsector size for now
f1970baf 1227 */
ad2d7225 1228 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1229 return ERR_PTR(-EINVAL);
1230 }
1231
1232 if (!nr_pages)
1da177e4
LT
1233 return ERR_PTR(-EINVAL);
1234
a9e9dc24 1235 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1236 if (!bio)
1237 return ERR_PTR(-ENOMEM);
1238
1239 ret = -ENOMEM;
a3bce90e 1240 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1241 if (!pages)
1242 goto out;
1243
f1970baf
JB
1244 for (i = 0; i < iov_count; i++) {
1245 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1246 unsigned long len = iov[i].iov_len;
1247 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1248 unsigned long start = uaddr >> PAGE_SHIFT;
1249 const int local_nr_pages = end - start;
1250 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1251
f5dd33c4
NP
1252 ret = get_user_pages_fast(uaddr, local_nr_pages,
1253 write_to_vm, &pages[cur_page]);
99172157
JA
1254 if (ret < local_nr_pages) {
1255 ret = -EFAULT;
f1970baf 1256 goto out_unmap;
99172157 1257 }
f1970baf
JB
1258
1259 offset = uaddr & ~PAGE_MASK;
1260 for (j = cur_page; j < page_limit; j++) {
1261 unsigned int bytes = PAGE_SIZE - offset;
1262
1263 if (len <= 0)
1264 break;
1265
1266 if (bytes > len)
1267 bytes = len;
1268
1269 /*
1270 * sorry...
1271 */
defd94b7
MC
1272 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1273 bytes)
f1970baf
JB
1274 break;
1275
1276 len -= bytes;
1277 offset = 0;
1278 }
1da177e4 1279
f1970baf 1280 cur_page = j;
1da177e4 1281 /*
f1970baf 1282 * release the pages we didn't map into the bio, if any
1da177e4 1283 */
f1970baf
JB
1284 while (j < page_limit)
1285 page_cache_release(pages[j++]);
1da177e4
LT
1286 }
1287
1da177e4
LT
1288 kfree(pages);
1289
1290 /*
1291 * set data direction, and check if mapped pages need bouncing
1292 */
1293 if (!write_to_vm)
7b6d91da 1294 bio->bi_rw |= REQ_WRITE;
1da177e4 1295
f1970baf 1296 bio->bi_bdev = bdev;
1da177e4
LT
1297 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1298 return bio;
f1970baf
JB
1299
1300 out_unmap:
1301 for (i = 0; i < nr_pages; i++) {
1302 if(!pages[i])
1303 break;
1304 page_cache_release(pages[i]);
1305 }
1306 out:
1da177e4
LT
1307 kfree(pages);
1308 bio_put(bio);
1309 return ERR_PTR(ret);
1310}
1311
1312/**
1313 * bio_map_user - map user address into bio
165125e1 1314 * @q: the struct request_queue for the bio
1da177e4
LT
1315 * @bdev: destination block device
1316 * @uaddr: start of user address
1317 * @len: length in bytes
1318 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1319 * @gfp_mask: memory allocation flags
1da177e4
LT
1320 *
1321 * Map the user space address into a bio suitable for io to a block
1322 * device. Returns an error pointer in case of error.
1323 */
165125e1 1324struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1325 unsigned long uaddr, unsigned int len, int write_to_vm,
1326 gfp_t gfp_mask)
f1970baf
JB
1327{
1328 struct sg_iovec iov;
1329
3f70353e 1330 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1331 iov.iov_len = len;
1332
a3bce90e 1333 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1334}
a112a71d 1335EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1336
1337/**
1338 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1339 * @q: the struct request_queue for the bio
f1970baf
JB
1340 * @bdev: destination block device
1341 * @iov: the iovec.
1342 * @iov_count: number of elements in the iovec
1343 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1344 * @gfp_mask: memory allocation flags
f1970baf
JB
1345 *
1346 * Map the user space address into a bio suitable for io to a block
1347 * device. Returns an error pointer in case of error.
1348 */
165125e1 1349struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1350 struct sg_iovec *iov, int iov_count,
a3bce90e 1351 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1352{
1353 struct bio *bio;
1354
a3bce90e
FT
1355 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1356 gfp_mask);
1da177e4
LT
1357 if (IS_ERR(bio))
1358 return bio;
1359
1360 /*
1361 * subtle -- if __bio_map_user() ended up bouncing a bio,
1362 * it would normally disappear when its bi_end_io is run.
1363 * however, we need it for the unmap, so grab an extra
1364 * reference to it
1365 */
1366 bio_get(bio);
1367
0e75f906 1368 return bio;
1da177e4
LT
1369}
1370
1371static void __bio_unmap_user(struct bio *bio)
1372{
1373 struct bio_vec *bvec;
1374 int i;
1375
1376 /*
1377 * make sure we dirty pages we wrote to
1378 */
d74c6d51 1379 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1380 if (bio_data_dir(bio) == READ)
1381 set_page_dirty_lock(bvec->bv_page);
1382
1383 page_cache_release(bvec->bv_page);
1384 }
1385
1386 bio_put(bio);
1387}
1388
1389/**
1390 * bio_unmap_user - unmap a bio
1391 * @bio: the bio being unmapped
1392 *
1393 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1394 * a process context.
1395 *
1396 * bio_unmap_user() may sleep.
1397 */
1398void bio_unmap_user(struct bio *bio)
1399{
1400 __bio_unmap_user(bio);
1401 bio_put(bio);
1402}
a112a71d 1403EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1404
6712ecf8 1405static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1406{
b823825e 1407 bio_put(bio);
b823825e
JA
1408}
1409
165125e1 1410static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1411 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1412{
1413 unsigned long kaddr = (unsigned long)data;
1414 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1415 unsigned long start = kaddr >> PAGE_SHIFT;
1416 const int nr_pages = end - start;
1417 int offset, i;
1418 struct bio *bio;
1419
a9e9dc24 1420 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1421 if (!bio)
1422 return ERR_PTR(-ENOMEM);
1423
1424 offset = offset_in_page(kaddr);
1425 for (i = 0; i < nr_pages; i++) {
1426 unsigned int bytes = PAGE_SIZE - offset;
1427
1428 if (len <= 0)
1429 break;
1430
1431 if (bytes > len)
1432 bytes = len;
1433
defd94b7
MC
1434 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1435 offset) < bytes)
df46b9a4
MC
1436 break;
1437
1438 data += bytes;
1439 len -= bytes;
1440 offset = 0;
1441 }
1442
b823825e 1443 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1444 return bio;
1445}
1446
1447/**
1448 * bio_map_kern - map kernel address into bio
165125e1 1449 * @q: the struct request_queue for the bio
df46b9a4
MC
1450 * @data: pointer to buffer to map
1451 * @len: length in bytes
1452 * @gfp_mask: allocation flags for bio allocation
1453 *
1454 * Map the kernel address into a bio suitable for io to a block
1455 * device. Returns an error pointer in case of error.
1456 */
165125e1 1457struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1458 gfp_t gfp_mask)
df46b9a4
MC
1459{
1460 struct bio *bio;
1461
1462 bio = __bio_map_kern(q, data, len, gfp_mask);
1463 if (IS_ERR(bio))
1464 return bio;
1465
4f024f37 1466 if (bio->bi_iter.bi_size == len)
df46b9a4
MC
1467 return bio;
1468
1469 /*
1470 * Don't support partial mappings.
1471 */
1472 bio_put(bio);
1473 return ERR_PTR(-EINVAL);
1474}
a112a71d 1475EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1476
68154e90
FT
1477static void bio_copy_kern_endio(struct bio *bio, int err)
1478{
1479 struct bio_vec *bvec;
1480 const int read = bio_data_dir(bio) == READ;
76029ff3 1481 struct bio_map_data *bmd = bio->bi_private;
68154e90 1482 int i;
76029ff3 1483 char *p = bmd->sgvecs[0].iov_base;
68154e90 1484
d74c6d51 1485 bio_for_each_segment_all(bvec, bio, i) {
68154e90 1486 char *addr = page_address(bvec->bv_page);
76029ff3 1487 int len = bmd->iovecs[i].bv_len;
68154e90 1488
4fc981ef 1489 if (read)
76029ff3 1490 memcpy(p, addr, len);
68154e90
FT
1491
1492 __free_page(bvec->bv_page);
76029ff3 1493 p += len;
68154e90
FT
1494 }
1495
76029ff3 1496 bio_free_map_data(bmd);
68154e90
FT
1497 bio_put(bio);
1498}
1499
1500/**
1501 * bio_copy_kern - copy kernel address into bio
1502 * @q: the struct request_queue for the bio
1503 * @data: pointer to buffer to copy
1504 * @len: length in bytes
1505 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1506 * @reading: data direction is READ
68154e90
FT
1507 *
1508 * copy the kernel address into a bio suitable for io to a block
1509 * device. Returns an error pointer in case of error.
1510 */
1511struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1512 gfp_t gfp_mask, int reading)
1513{
68154e90
FT
1514 struct bio *bio;
1515 struct bio_vec *bvec;
4d8ab62e 1516 int i;
68154e90 1517
4d8ab62e
FT
1518 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1519 if (IS_ERR(bio))
1520 return bio;
68154e90
FT
1521
1522 if (!reading) {
1523 void *p = data;
1524
d74c6d51 1525 bio_for_each_segment_all(bvec, bio, i) {
68154e90
FT
1526 char *addr = page_address(bvec->bv_page);
1527
1528 memcpy(addr, p, bvec->bv_len);
1529 p += bvec->bv_len;
1530 }
1531 }
1532
68154e90 1533 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1534
68154e90 1535 return bio;
68154e90 1536}
a112a71d 1537EXPORT_SYMBOL(bio_copy_kern);
68154e90 1538
1da177e4
LT
1539/*
1540 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1541 * for performing direct-IO in BIOs.
1542 *
1543 * The problem is that we cannot run set_page_dirty() from interrupt context
1544 * because the required locks are not interrupt-safe. So what we can do is to
1545 * mark the pages dirty _before_ performing IO. And in interrupt context,
1546 * check that the pages are still dirty. If so, fine. If not, redirty them
1547 * in process context.
1548 *
1549 * We special-case compound pages here: normally this means reads into hugetlb
1550 * pages. The logic in here doesn't really work right for compound pages
1551 * because the VM does not uniformly chase down the head page in all cases.
1552 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1553 * handle them at all. So we skip compound pages here at an early stage.
1554 *
1555 * Note that this code is very hard to test under normal circumstances because
1556 * direct-io pins the pages with get_user_pages(). This makes
1557 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1558 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1559 * pagecache.
1560 *
1561 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1562 * deferred bio dirtying paths.
1563 */
1564
1565/*
1566 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1567 */
1568void bio_set_pages_dirty(struct bio *bio)
1569{
cb34e057 1570 struct bio_vec *bvec;
1da177e4
LT
1571 int i;
1572
cb34e057
KO
1573 bio_for_each_segment_all(bvec, bio, i) {
1574 struct page *page = bvec->bv_page;
1da177e4
LT
1575
1576 if (page && !PageCompound(page))
1577 set_page_dirty_lock(page);
1578 }
1579}
1580
86b6c7a7 1581static void bio_release_pages(struct bio *bio)
1da177e4 1582{
cb34e057 1583 struct bio_vec *bvec;
1da177e4
LT
1584 int i;
1585
cb34e057
KO
1586 bio_for_each_segment_all(bvec, bio, i) {
1587 struct page *page = bvec->bv_page;
1da177e4
LT
1588
1589 if (page)
1590 put_page(page);
1591 }
1592}
1593
1594/*
1595 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1596 * If they are, then fine. If, however, some pages are clean then they must
1597 * have been written out during the direct-IO read. So we take another ref on
1598 * the BIO and the offending pages and re-dirty the pages in process context.
1599 *
1600 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1601 * here on. It will run one page_cache_release() against each page and will
1602 * run one bio_put() against the BIO.
1603 */
1604
65f27f38 1605static void bio_dirty_fn(struct work_struct *work);
1da177e4 1606
65f27f38 1607static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1608static DEFINE_SPINLOCK(bio_dirty_lock);
1609static struct bio *bio_dirty_list;
1610
1611/*
1612 * This runs in process context
1613 */
65f27f38 1614static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1615{
1616 unsigned long flags;
1617 struct bio *bio;
1618
1619 spin_lock_irqsave(&bio_dirty_lock, flags);
1620 bio = bio_dirty_list;
1621 bio_dirty_list = NULL;
1622 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1623
1624 while (bio) {
1625 struct bio *next = bio->bi_private;
1626
1627 bio_set_pages_dirty(bio);
1628 bio_release_pages(bio);
1629 bio_put(bio);
1630 bio = next;
1631 }
1632}
1633
1634void bio_check_pages_dirty(struct bio *bio)
1635{
cb34e057 1636 struct bio_vec *bvec;
1da177e4
LT
1637 int nr_clean_pages = 0;
1638 int i;
1639
cb34e057
KO
1640 bio_for_each_segment_all(bvec, bio, i) {
1641 struct page *page = bvec->bv_page;
1da177e4
LT
1642
1643 if (PageDirty(page) || PageCompound(page)) {
1644 page_cache_release(page);
cb34e057 1645 bvec->bv_page = NULL;
1da177e4
LT
1646 } else {
1647 nr_clean_pages++;
1648 }
1649 }
1650
1651 if (nr_clean_pages) {
1652 unsigned long flags;
1653
1654 spin_lock_irqsave(&bio_dirty_lock, flags);
1655 bio->bi_private = bio_dirty_list;
1656 bio_dirty_list = bio;
1657 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1658 schedule_work(&bio_dirty_work);
1659 } else {
1660 bio_put(bio);
1661 }
1662}
1663
2d4dc890
IL
1664#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1665void bio_flush_dcache_pages(struct bio *bi)
1666{
7988613b
KO
1667 struct bio_vec bvec;
1668 struct bvec_iter iter;
2d4dc890 1669
7988613b
KO
1670 bio_for_each_segment(bvec, bi, iter)
1671 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1672}
1673EXPORT_SYMBOL(bio_flush_dcache_pages);
1674#endif
1675
1da177e4
LT
1676/**
1677 * bio_endio - end I/O on a bio
1678 * @bio: bio
1da177e4
LT
1679 * @error: error, if any
1680 *
1681 * Description:
6712ecf8 1682 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1683 * preferred way to end I/O on a bio, it takes care of clearing
1684 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1685 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1686 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1687 * bio unless they own it and thus know that it has an end_io
1688 * function.
1da177e4 1689 **/
6712ecf8 1690void bio_endio(struct bio *bio, int error)
1da177e4
LT
1691{
1692 if (error)
1693 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1694 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1695 error = -EIO;
1da177e4 1696
5bb23a68 1697 if (bio->bi_end_io)
6712ecf8 1698 bio->bi_end_io(bio, error);
1da177e4 1699}
a112a71d 1700EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1701
1702void bio_pair_release(struct bio_pair *bp)
1703{
1704 if (atomic_dec_and_test(&bp->cnt)) {
1705 struct bio *master = bp->bio1.bi_private;
1706
6712ecf8 1707 bio_endio(master, bp->error);
1da177e4
LT
1708 mempool_free(bp, bp->bio2.bi_private);
1709 }
1710}
a112a71d 1711EXPORT_SYMBOL(bio_pair_release);
1da177e4 1712
6712ecf8 1713static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1714{
1715 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1716
1717 if (err)
1718 bp->error = err;
1719
1da177e4 1720 bio_pair_release(bp);
1da177e4
LT
1721}
1722
6712ecf8 1723static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1724{
1725 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1726
1727 if (err)
1728 bp->error = err;
1729
1da177e4 1730 bio_pair_release(bp);
1da177e4
LT
1731}
1732
1733/*
c7eee1b8 1734 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1735 */
6feef531 1736struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1737{
6feef531 1738 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1739
1740 if (!bp)
1741 return bp;
1742
5f3ea37c 1743 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
4f024f37 1744 bi->bi_iter.bi_sector + first_sectors);
2056a782 1745
5b83636a 1746 BUG_ON(bio_segments(bi) > 1);
1da177e4
LT
1747 atomic_set(&bp->cnt, 3);
1748 bp->error = 0;
1749 bp->bio1 = *bi;
1750 bp->bio2 = *bi;
4f024f37
KO
1751 bp->bio2.bi_iter.bi_sector += first_sectors;
1752 bp->bio2.bi_iter.bi_size -= first_sectors << 9;
1753 bp->bio1.bi_iter.bi_size = first_sectors << 9;
1da177e4 1754
02f3939e 1755 if (bi->bi_vcnt != 0) {
a4ad39b1
KO
1756 bp->bv1 = bio_iovec(bi);
1757 bp->bv2 = bio_iovec(bi);
4363ac7c 1758
02f3939e
SL
1759 if (bio_is_rw(bi)) {
1760 bp->bv2.bv_offset += first_sectors << 9;
1761 bp->bv2.bv_len -= first_sectors << 9;
1762 bp->bv1.bv_len = first_sectors << 9;
1763 }
1da177e4 1764
02f3939e
SL
1765 bp->bio1.bi_io_vec = &bp->bv1;
1766 bp->bio2.bi_io_vec = &bp->bv2;
1da177e4 1767
02f3939e
SL
1768 bp->bio1.bi_max_vecs = 1;
1769 bp->bio2.bi_max_vecs = 1;
1770 }
a2eb0c10 1771
1da177e4
LT
1772 bp->bio1.bi_end_io = bio_pair_end_1;
1773 bp->bio2.bi_end_io = bio_pair_end_2;
1774
1775 bp->bio1.bi_private = bi;
6feef531 1776 bp->bio2.bi_private = bio_split_pool;
1da177e4 1777
7ba1ba12
MP
1778 if (bio_integrity(bi))
1779 bio_integrity_split(bi, bp, first_sectors);
1780
1da177e4
LT
1781 return bp;
1782}
a112a71d 1783EXPORT_SYMBOL(bio_split);
1da177e4 1784
6678d83f
KO
1785/**
1786 * bio_trim - trim a bio
1787 * @bio: bio to trim
1788 * @offset: number of sectors to trim from the front of @bio
1789 * @size: size we want to trim @bio to, in sectors
1790 */
1791void bio_trim(struct bio *bio, int offset, int size)
1792{
1793 /* 'bio' is a cloned bio which we need to trim to match
1794 * the given offset and size.
1795 * This requires adjusting bi_sector, bi_size, and bi_io_vec
1796 */
1797 int i;
1798 struct bio_vec *bvec;
1799 int sofar = 0;
1800
1801 size <<= 9;
4f024f37 1802 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1803 return;
1804
1805 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1806
1807 bio_advance(bio, offset << 9);
1808
4f024f37 1809 bio->bi_iter.bi_size = size;
6678d83f
KO
1810
1811 /* avoid any complications with bi_idx being non-zero*/
4f024f37
KO
1812 if (bio->bi_iter.bi_idx) {
1813 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_iter.bi_idx,
1814 (bio->bi_vcnt - bio->bi_iter.bi_idx) *
1815 sizeof(struct bio_vec));
1816 bio->bi_vcnt -= bio->bi_iter.bi_idx;
1817 bio->bi_iter.bi_idx = 0;
6678d83f
KO
1818 }
1819 /* Make sure vcnt and last bv are not too big */
7988613b 1820 bio_for_each_segment_all(bvec, bio, i) {
6678d83f
KO
1821 if (sofar + bvec->bv_len > size)
1822 bvec->bv_len = size - sofar;
1823 if (bvec->bv_len == 0) {
1824 bio->bi_vcnt = i;
1825 break;
1826 }
1827 sofar += bvec->bv_len;
1828 }
1829}
1830EXPORT_SYMBOL_GPL(bio_trim);
1831
ad3316bf
MP
1832/**
1833 * bio_sector_offset - Find hardware sector offset in bio
1834 * @bio: bio to inspect
1835 * @index: bio_vec index
1836 * @offset: offset in bv_page
1837 *
1838 * Return the number of hardware sectors between beginning of bio
1839 * and an end point indicated by a bio_vec index and an offset
1840 * within that vector's page.
1841 */
1842sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1843 unsigned int offset)
1844{
e1defc4f 1845 unsigned int sector_sz;
ad3316bf
MP
1846 struct bio_vec *bv;
1847 sector_t sectors;
1848 int i;
1849
e1defc4f 1850 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1851 sectors = 0;
1852
4f024f37 1853 if (index >= bio->bi_iter.bi_idx)
ad3316bf
MP
1854 index = bio->bi_vcnt - 1;
1855
d74c6d51 1856 bio_for_each_segment_all(bv, bio, i) {
ad3316bf
MP
1857 if (i == index) {
1858 if (offset > bv->bv_offset)
1859 sectors += (offset - bv->bv_offset) / sector_sz;
1860 break;
1861 }
1862
1863 sectors += bv->bv_len / sector_sz;
1864 }
1865
1866 return sectors;
1867}
1868EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1869
1870/*
1871 * create memory pools for biovec's in a bio_set.
1872 * use the global biovec slabs created for general use.
1873 */
9f060e22 1874mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1da177e4 1875{
7ff9345f 1876 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1877
9f060e22 1878 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1879}
1880
1881void bioset_free(struct bio_set *bs)
1882{
df2cb6da
KO
1883 if (bs->rescue_workqueue)
1884 destroy_workqueue(bs->rescue_workqueue);
1885
1da177e4
LT
1886 if (bs->bio_pool)
1887 mempool_destroy(bs->bio_pool);
1888
9f060e22
KO
1889 if (bs->bvec_pool)
1890 mempool_destroy(bs->bvec_pool);
1891
7878cba9 1892 bioset_integrity_free(bs);
bb799ca0 1893 bio_put_slab(bs);
1da177e4
LT
1894
1895 kfree(bs);
1896}
a112a71d 1897EXPORT_SYMBOL(bioset_free);
1da177e4 1898
bb799ca0
JA
1899/**
1900 * bioset_create - Create a bio_set
1901 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1902 * @front_pad: Number of bytes to allocate in front of the returned bio
1903 *
1904 * Description:
1905 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1906 * to ask for a number of bytes to be allocated in front of the bio.
1907 * Front pad allocation is useful for embedding the bio inside
1908 * another structure, to avoid allocating extra data to go with the bio.
1909 * Note that the bio must be embedded at the END of that structure always,
1910 * or things will break badly.
1911 */
1912struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1913{
392ddc32 1914 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1915 struct bio_set *bs;
1da177e4 1916
1b434498 1917 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1918 if (!bs)
1919 return NULL;
1920
bb799ca0 1921 bs->front_pad = front_pad;
1b434498 1922
df2cb6da
KO
1923 spin_lock_init(&bs->rescue_lock);
1924 bio_list_init(&bs->rescue_list);
1925 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1926
392ddc32 1927 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1928 if (!bs->bio_slab) {
1929 kfree(bs);
1930 return NULL;
1931 }
1932
1933 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1934 if (!bs->bio_pool)
1935 goto bad;
1936
9f060e22
KO
1937 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1938 if (!bs->bvec_pool)
df2cb6da
KO
1939 goto bad;
1940
1941 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1942 if (!bs->rescue_workqueue)
1943 goto bad;
1da177e4 1944
df2cb6da 1945 return bs;
1da177e4
LT
1946bad:
1947 bioset_free(bs);
1948 return NULL;
1949}
a112a71d 1950EXPORT_SYMBOL(bioset_create);
1da177e4 1951
852c788f
TH
1952#ifdef CONFIG_BLK_CGROUP
1953/**
1954 * bio_associate_current - associate a bio with %current
1955 * @bio: target bio
1956 *
1957 * Associate @bio with %current if it hasn't been associated yet. Block
1958 * layer will treat @bio as if it were issued by %current no matter which
1959 * task actually issues it.
1960 *
1961 * This function takes an extra reference of @task's io_context and blkcg
1962 * which will be put when @bio is released. The caller must own @bio,
1963 * ensure %current->io_context exists, and is responsible for synchronizing
1964 * calls to this function.
1965 */
1966int bio_associate_current(struct bio *bio)
1967{
1968 struct io_context *ioc;
1969 struct cgroup_subsys_state *css;
1970
1971 if (bio->bi_ioc)
1972 return -EBUSY;
1973
1974 ioc = current->io_context;
1975 if (!ioc)
1976 return -ENOENT;
1977
1978 /* acquire active ref on @ioc and associate */
1979 get_io_context_active(ioc);
1980 bio->bi_ioc = ioc;
1981
1982 /* associate blkcg if exists */
1983 rcu_read_lock();
8af01f56 1984 css = task_css(current, blkio_subsys_id);
852c788f
TH
1985 if (css && css_tryget(css))
1986 bio->bi_css = css;
1987 rcu_read_unlock();
1988
1989 return 0;
1990}
1991
1992/**
1993 * bio_disassociate_task - undo bio_associate_current()
1994 * @bio: target bio
1995 */
1996void bio_disassociate_task(struct bio *bio)
1997{
1998 if (bio->bi_ioc) {
1999 put_io_context(bio->bi_ioc);
2000 bio->bi_ioc = NULL;
2001 }
2002 if (bio->bi_css) {
2003 css_put(bio->bi_css);
2004 bio->bi_css = NULL;
2005 }
2006}
2007
2008#endif /* CONFIG_BLK_CGROUP */
2009
1da177e4
LT
2010static void __init biovec_init_slabs(void)
2011{
2012 int i;
2013
2014 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2015 int size;
2016 struct biovec_slab *bvs = bvec_slabs + i;
2017
a7fcd37c
JA
2018 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2019 bvs->slab = NULL;
2020 continue;
2021 }
a7fcd37c 2022
1da177e4
LT
2023 size = bvs->nr_vecs * sizeof(struct bio_vec);
2024 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2025 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2026 }
2027}
2028
2029static int __init init_bio(void)
2030{
bb799ca0
JA
2031 bio_slab_max = 2;
2032 bio_slab_nr = 0;
2033 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2034 if (!bio_slabs)
2035 panic("bio: can't allocate bios\n");
1da177e4 2036
7878cba9 2037 bio_integrity_init();
1da177e4
LT
2038 biovec_init_slabs();
2039
bb799ca0 2040 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2041 if (!fs_bio_set)
2042 panic("bio: can't allocate bios\n");
2043
a91a2785
MP
2044 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2045 panic("bio: can't create integrity pool\n");
2046
0eaae62a
MD
2047 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
2048 sizeof(struct bio_pair));
1da177e4
LT
2049 if (!bio_split_pool)
2050 panic("bio: can't create split pool\n");
2051
2052 return 0;
2053}
1da177e4 2054subsys_initcall(init_bio);