]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/bio.c
block: Globalize bio_set and bio_vec_slab
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
2056a782 28#include <linux/blktrace_api.h>
f1970baf 29#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 30
e18b890b 31static struct kmem_cache *bio_slab __read_mostly;
1da177e4 32
fa3536cc 33mempool_t *bio_split_pool __read_mostly;
1da177e4 34
1da177e4
LT
35/*
36 * if you change this list, also change bvec_alloc or things will
37 * break badly! cannot be bigger than what you can fit into an
38 * unsigned short
39 */
40
41#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
6c036527 42static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
43 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
44};
45#undef BV
46
1da177e4
LT
47/*
48 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
49 * IO code that does not need private memory pools.
50 */
51d654e1 51struct bio_set *fs_bio_set;
1da177e4 52
51d654e1 53struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
1da177e4
LT
54{
55 struct bio_vec *bvl;
1da177e4
LT
56
57 /*
58 * see comment near bvec_array define!
59 */
60 switch (nr) {
61 case 1 : *idx = 0; break;
62 case 2 ... 4: *idx = 1; break;
63 case 5 ... 16: *idx = 2; break;
64 case 17 ... 64: *idx = 3; break;
65 case 65 ... 128: *idx = 4; break;
66 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
67 default:
68 return NULL;
69 }
70 /*
71 * idx now points to the pool we want to allocate from
72 */
73
1da177e4 74 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
bf02c082
AM
75 if (bvl) {
76 struct biovec_slab *bp = bvec_slabs + *idx;
77
1da177e4 78 memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
bf02c082 79 }
1da177e4
LT
80
81 return bvl;
82}
83
3676347a 84void bio_free(struct bio *bio, struct bio_set *bio_set)
1da177e4 85{
992c5dda
JA
86 if (bio->bi_io_vec) {
87 const int pool_idx = BIO_POOL_IDX(bio);
1da177e4 88
992c5dda
JA
89 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
90
91 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
92 }
1da177e4 93
3676347a
PO
94 mempool_free(bio, bio_set->bio_pool);
95}
96
97/*
98 * default destructor for a bio allocated with bio_alloc_bioset()
99 */
100static void bio_fs_destructor(struct bio *bio)
101{
102 bio_free(bio, fs_bio_set);
1da177e4
LT
103}
104
858119e1 105void bio_init(struct bio *bio)
1da177e4 106{
2b94de55 107 memset(bio, 0, sizeof(*bio));
1da177e4 108 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 109 atomic_set(&bio->bi_cnt, 1);
1da177e4
LT
110}
111
112/**
113 * bio_alloc_bioset - allocate a bio for I/O
114 * @gfp_mask: the GFP_ mask given to the slab allocator
115 * @nr_iovecs: number of iovecs to pre-allocate
67be2dd1 116 * @bs: the bio_set to allocate from
1da177e4
LT
117 *
118 * Description:
119 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
120 * If %__GFP_WAIT is set then we will block on the internal pool waiting
121 * for a &struct bio to become free.
122 *
123 * allocate bio and iovecs from the memory pools specified by the
124 * bio_set structure.
125 **/
dd0fc66f 126struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4
LT
127{
128 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
129
130 if (likely(bio)) {
131 struct bio_vec *bvl = NULL;
132
133 bio_init(bio);
134 if (likely(nr_iovecs)) {
eeae1d48 135 unsigned long uninitialized_var(idx);
1da177e4
LT
136
137 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
138 if (unlikely(!bvl)) {
139 mempool_free(bio, bs->bio_pool);
140 bio = NULL;
141 goto out;
142 }
143 bio->bi_flags |= idx << BIO_POOL_OFFSET;
144 bio->bi_max_vecs = bvec_slabs[idx].nr_vecs;
145 }
146 bio->bi_io_vec = bvl;
1da177e4
LT
147 }
148out:
149 return bio;
150}
151
dd0fc66f 152struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
1da177e4 153{
3676347a
PO
154 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
155
156 if (bio)
157 bio->bi_destructor = bio_fs_destructor;
158
159 return bio;
1da177e4
LT
160}
161
162void zero_fill_bio(struct bio *bio)
163{
164 unsigned long flags;
165 struct bio_vec *bv;
166 int i;
167
168 bio_for_each_segment(bv, bio, i) {
169 char *data = bvec_kmap_irq(bv, &flags);
170 memset(data, 0, bv->bv_len);
171 flush_dcache_page(bv->bv_page);
172 bvec_kunmap_irq(data, &flags);
173 }
174}
175EXPORT_SYMBOL(zero_fill_bio);
176
177/**
178 * bio_put - release a reference to a bio
179 * @bio: bio to release reference to
180 *
181 * Description:
182 * Put a reference to a &struct bio, either one you have gotten with
183 * bio_alloc or bio_get. The last put of a bio will free it.
184 **/
185void bio_put(struct bio *bio)
186{
187 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
188
189 /*
190 * last put frees it
191 */
192 if (atomic_dec_and_test(&bio->bi_cnt)) {
193 bio->bi_next = NULL;
194 bio->bi_destructor(bio);
195 }
196}
197
165125e1 198inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
199{
200 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
201 blk_recount_segments(q, bio);
202
203 return bio->bi_phys_segments;
204}
205
165125e1 206inline int bio_hw_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
207{
208 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
209 blk_recount_segments(q, bio);
210
211 return bio->bi_hw_segments;
212}
213
214/**
215 * __bio_clone - clone a bio
216 * @bio: destination bio
217 * @bio_src: bio to clone
218 *
219 * Clone a &bio. Caller will own the returned bio, but not
220 * the actual data it points to. Reference count of returned
221 * bio will be one.
222 */
858119e1 223void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 224{
e525e153
AM
225 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
226 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 227
5d84070e
JA
228 /*
229 * most users will be overriding ->bi_bdev with a new target,
230 * so we don't set nor calculate new physical/hw segment counts here
231 */
1da177e4
LT
232 bio->bi_sector = bio_src->bi_sector;
233 bio->bi_bdev = bio_src->bi_bdev;
234 bio->bi_flags |= 1 << BIO_CLONED;
235 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
236 bio->bi_vcnt = bio_src->bi_vcnt;
237 bio->bi_size = bio_src->bi_size;
a5453be4 238 bio->bi_idx = bio_src->bi_idx;
1da177e4
LT
239}
240
241/**
242 * bio_clone - clone a bio
243 * @bio: bio to clone
244 * @gfp_mask: allocation priority
245 *
246 * Like __bio_clone, only also allocates the returned bio
247 */
dd0fc66f 248struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
249{
250 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
251
3676347a
PO
252 if (b) {
253 b->bi_destructor = bio_fs_destructor;
1da177e4 254 __bio_clone(b, bio);
3676347a 255 }
1da177e4
LT
256
257 return b;
258}
259
260/**
261 * bio_get_nr_vecs - return approx number of vecs
262 * @bdev: I/O target
263 *
264 * Return the approximate number of pages we can send to this target.
265 * There's no guarantee that you will be able to fit this number of pages
266 * into a bio, it does not account for dynamic restrictions that vary
267 * on offset.
268 */
269int bio_get_nr_vecs(struct block_device *bdev)
270{
165125e1 271 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
272 int nr_pages;
273
274 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
275 if (nr_pages > q->max_phys_segments)
276 nr_pages = q->max_phys_segments;
277 if (nr_pages > q->max_hw_segments)
278 nr_pages = q->max_hw_segments;
279
280 return nr_pages;
281}
282
165125e1 283static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
284 *page, unsigned int len, unsigned int offset,
285 unsigned short max_sectors)
1da177e4
LT
286{
287 int retried_segments = 0;
288 struct bio_vec *bvec;
289
290 /*
291 * cloned bio must not modify vec list
292 */
293 if (unlikely(bio_flagged(bio, BIO_CLONED)))
294 return 0;
295
80cfd548 296 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
297 return 0;
298
80cfd548
JA
299 /*
300 * For filesystems with a blocksize smaller than the pagesize
301 * we will often be called with the same page as last time and
302 * a consecutive offset. Optimize this special case.
303 */
304 if (bio->bi_vcnt > 0) {
305 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
306
307 if (page == prev->bv_page &&
308 offset == prev->bv_offset + prev->bv_len) {
309 prev->bv_len += len;
310 if (q->merge_bvec_fn &&
311 q->merge_bvec_fn(q, bio, prev) < len) {
312 prev->bv_len -= len;
313 return 0;
314 }
315
316 goto done;
317 }
318 }
319
320 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
321 return 0;
322
323 /*
324 * we might lose a segment or two here, but rather that than
325 * make this too complex.
326 */
327
328 while (bio->bi_phys_segments >= q->max_phys_segments
329 || bio->bi_hw_segments >= q->max_hw_segments
330 || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
331
332 if (retried_segments)
333 return 0;
334
335 retried_segments = 1;
336 blk_recount_segments(q, bio);
337 }
338
339 /*
340 * setup the new entry, we might clear it again later if we
341 * cannot add the page
342 */
343 bvec = &bio->bi_io_vec[bio->bi_vcnt];
344 bvec->bv_page = page;
345 bvec->bv_len = len;
346 bvec->bv_offset = offset;
347
348 /*
349 * if queue has other restrictions (eg varying max sector size
350 * depending on offset), it can specify a merge_bvec_fn in the
351 * queue to get further control
352 */
353 if (q->merge_bvec_fn) {
354 /*
355 * merge_bvec_fn() returns number of bytes it can accept
356 * at this offset
357 */
358 if (q->merge_bvec_fn(q, bio, bvec) < len) {
359 bvec->bv_page = NULL;
360 bvec->bv_len = 0;
361 bvec->bv_offset = 0;
362 return 0;
363 }
364 }
365
366 /* If we may be able to merge these biovecs, force a recount */
367 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
368 BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
369 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
370
371 bio->bi_vcnt++;
372 bio->bi_phys_segments++;
373 bio->bi_hw_segments++;
80cfd548 374 done:
1da177e4
LT
375 bio->bi_size += len;
376 return len;
377}
378
6e68af66
MC
379/**
380 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 381 * @q: the target queue
6e68af66
MC
382 * @bio: destination bio
383 * @page: page to add
384 * @len: vec entry length
385 * @offset: vec entry offset
386 *
387 * Attempt to add a page to the bio_vec maplist. This can fail for a
388 * number of reasons, such as the bio being full or target block
389 * device limitations. The target block device must allow bio's
390 * smaller than PAGE_SIZE, so it is always possible to add a single
391 * page to an empty bio. This should only be used by REQ_PC bios.
392 */
165125e1 393int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
394 unsigned int len, unsigned int offset)
395{
defd94b7 396 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
6e68af66
MC
397}
398
1da177e4
LT
399/**
400 * bio_add_page - attempt to add page to bio
401 * @bio: destination bio
402 * @page: page to add
403 * @len: vec entry length
404 * @offset: vec entry offset
405 *
406 * Attempt to add a page to the bio_vec maplist. This can fail for a
407 * number of reasons, such as the bio being full or target block
408 * device limitations. The target block device must allow bio's
409 * smaller than PAGE_SIZE, so it is always possible to add a single
410 * page to an empty bio.
411 */
412int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
413 unsigned int offset)
414{
defd94b7
MC
415 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
416 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
1da177e4
LT
417}
418
419struct bio_map_data {
420 struct bio_vec *iovecs;
c5dec1c3
FT
421 int nr_sgvecs;
422 struct sg_iovec *sgvecs;
1da177e4
LT
423};
424
c5dec1c3
FT
425static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
426 struct sg_iovec *iov, int iov_count)
1da177e4
LT
427{
428 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
429 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
430 bmd->nr_sgvecs = iov_count;
1da177e4
LT
431 bio->bi_private = bmd;
432}
433
434static void bio_free_map_data(struct bio_map_data *bmd)
435{
436 kfree(bmd->iovecs);
c5dec1c3 437 kfree(bmd->sgvecs);
1da177e4
LT
438 kfree(bmd);
439}
440
c5dec1c3 441static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count)
1da177e4
LT
442{
443 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
444
445 if (!bmd)
446 return NULL;
447
448 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
c5dec1c3
FT
449 if (!bmd->iovecs) {
450 kfree(bmd);
451 return NULL;
452 }
453
454 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, GFP_KERNEL);
455 if (bmd->sgvecs)
1da177e4
LT
456 return bmd;
457
c5dec1c3 458 kfree(bmd->iovecs);
1da177e4
LT
459 kfree(bmd);
460 return NULL;
461}
462
c5dec1c3
FT
463static int __bio_copy_iov(struct bio *bio, struct sg_iovec *iov, int iov_count,
464 int uncopy)
465{
466 int ret = 0, i;
467 struct bio_vec *bvec;
468 int iov_idx = 0;
469 unsigned int iov_off = 0;
470 int read = bio_data_dir(bio) == READ;
471
472 __bio_for_each_segment(bvec, bio, i, 0) {
473 char *bv_addr = page_address(bvec->bv_page);
474 unsigned int bv_len = bvec->bv_len;
475
476 while (bv_len && iov_idx < iov_count) {
477 unsigned int bytes;
478 char *iov_addr;
479
480 bytes = min_t(unsigned int,
481 iov[iov_idx].iov_len - iov_off, bv_len);
482 iov_addr = iov[iov_idx].iov_base + iov_off;
483
484 if (!ret) {
485 if (!read && !uncopy)
486 ret = copy_from_user(bv_addr, iov_addr,
487 bytes);
488 if (read && uncopy)
489 ret = copy_to_user(iov_addr, bv_addr,
490 bytes);
491
492 if (ret)
493 ret = -EFAULT;
494 }
495
496 bv_len -= bytes;
497 bv_addr += bytes;
498 iov_addr += bytes;
499 iov_off += bytes;
500
501 if (iov[iov_idx].iov_len == iov_off) {
502 iov_idx++;
503 iov_off = 0;
504 }
505 }
506
507 if (uncopy)
508 __free_page(bvec->bv_page);
509 }
510
511 return ret;
512}
513
1da177e4
LT
514/**
515 * bio_uncopy_user - finish previously mapped bio
516 * @bio: bio being terminated
517 *
518 * Free pages allocated from bio_copy_user() and write back data
519 * to user space in case of a read.
520 */
521int bio_uncopy_user(struct bio *bio)
522{
523 struct bio_map_data *bmd = bio->bi_private;
c5dec1c3 524 int ret;
1da177e4 525
c5dec1c3 526 ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs, 1);
1da177e4 527
1da177e4
LT
528 bio_free_map_data(bmd);
529 bio_put(bio);
530 return ret;
531}
532
533/**
c5dec1c3 534 * bio_copy_user_iov - copy user data to bio
1da177e4 535 * @q: destination block queue
c5dec1c3
FT
536 * @iov: the iovec.
537 * @iov_count: number of elements in the iovec
1da177e4
LT
538 * @write_to_vm: bool indicating writing to pages or not
539 *
540 * Prepares and returns a bio for indirect user io, bouncing data
541 * to/from kernel pages as necessary. Must be paired with
542 * call bio_uncopy_user() on io completion.
543 */
c5dec1c3
FT
544struct bio *bio_copy_user_iov(struct request_queue *q, struct sg_iovec *iov,
545 int iov_count, int write_to_vm)
1da177e4 546{
1da177e4
LT
547 struct bio_map_data *bmd;
548 struct bio_vec *bvec;
549 struct page *page;
550 struct bio *bio;
551 int i, ret;
c5dec1c3
FT
552 int nr_pages = 0;
553 unsigned int len = 0;
1da177e4 554
c5dec1c3
FT
555 for (i = 0; i < iov_count; i++) {
556 unsigned long uaddr;
557 unsigned long end;
558 unsigned long start;
559
560 uaddr = (unsigned long)iov[i].iov_base;
561 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
562 start = uaddr >> PAGE_SHIFT;
563
564 nr_pages += end - start;
565 len += iov[i].iov_len;
566 }
567
568 bmd = bio_alloc_map_data(nr_pages, iov_count);
1da177e4
LT
569 if (!bmd)
570 return ERR_PTR(-ENOMEM);
571
1da177e4 572 ret = -ENOMEM;
c5dec1c3 573 bio = bio_alloc(GFP_KERNEL, nr_pages);
1da177e4
LT
574 if (!bio)
575 goto out_bmd;
576
577 bio->bi_rw |= (!write_to_vm << BIO_RW);
578
579 ret = 0;
580 while (len) {
581 unsigned int bytes = PAGE_SIZE;
582
583 if (bytes > len)
584 bytes = len;
585
586 page = alloc_page(q->bounce_gfp | GFP_KERNEL);
587 if (!page) {
588 ret = -ENOMEM;
589 break;
590 }
591
0e75f906 592 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1da177e4 593 break;
1da177e4
LT
594
595 len -= bytes;
596 }
597
598 if (ret)
599 goto cleanup;
600
601 /*
602 * success
603 */
604 if (!write_to_vm) {
c5dec1c3
FT
605 ret = __bio_copy_iov(bio, iov, iov_count, 0);
606 if (ret)
607 goto cleanup;
1da177e4
LT
608 }
609
c5dec1c3 610 bio_set_map_data(bmd, bio, iov, iov_count);
1da177e4
LT
611 return bio;
612cleanup:
613 bio_for_each_segment(bvec, bio, i)
614 __free_page(bvec->bv_page);
615
616 bio_put(bio);
617out_bmd:
618 bio_free_map_data(bmd);
619 return ERR_PTR(ret);
620}
621
c5dec1c3
FT
622/**
623 * bio_copy_user - copy user data to bio
624 * @q: destination block queue
625 * @uaddr: start of user address
626 * @len: length in bytes
627 * @write_to_vm: bool indicating writing to pages or not
628 *
629 * Prepares and returns a bio for indirect user io, bouncing data
630 * to/from kernel pages as necessary. Must be paired with
631 * call bio_uncopy_user() on io completion.
632 */
633struct bio *bio_copy_user(struct request_queue *q, unsigned long uaddr,
634 unsigned int len, int write_to_vm)
635{
636 struct sg_iovec iov;
637
638 iov.iov_base = (void __user *)uaddr;
639 iov.iov_len = len;
640
641 return bio_copy_user_iov(q, &iov, 1, write_to_vm);
642}
643
165125e1 644static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
645 struct block_device *bdev,
646 struct sg_iovec *iov, int iov_count,
647 int write_to_vm)
1da177e4 648{
f1970baf
JB
649 int i, j;
650 int nr_pages = 0;
1da177e4
LT
651 struct page **pages;
652 struct bio *bio;
f1970baf
JB
653 int cur_page = 0;
654 int ret, offset;
1da177e4 655
f1970baf
JB
656 for (i = 0; i < iov_count; i++) {
657 unsigned long uaddr = (unsigned long)iov[i].iov_base;
658 unsigned long len = iov[i].iov_len;
659 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
660 unsigned long start = uaddr >> PAGE_SHIFT;
661
662 nr_pages += end - start;
663 /*
ad2d7225 664 * buffer must be aligned to at least hardsector size for now
f1970baf 665 */
ad2d7225 666 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
667 return ERR_PTR(-EINVAL);
668 }
669
670 if (!nr_pages)
1da177e4
LT
671 return ERR_PTR(-EINVAL);
672
673 bio = bio_alloc(GFP_KERNEL, nr_pages);
674 if (!bio)
675 return ERR_PTR(-ENOMEM);
676
677 ret = -ENOMEM;
11b0b5ab 678 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
1da177e4
LT
679 if (!pages)
680 goto out;
681
f1970baf
JB
682 for (i = 0; i < iov_count; i++) {
683 unsigned long uaddr = (unsigned long)iov[i].iov_base;
684 unsigned long len = iov[i].iov_len;
685 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
686 unsigned long start = uaddr >> PAGE_SHIFT;
687 const int local_nr_pages = end - start;
688 const int page_limit = cur_page + local_nr_pages;
689
690 down_read(&current->mm->mmap_sem);
691 ret = get_user_pages(current, current->mm, uaddr,
692 local_nr_pages,
693 write_to_vm, 0, &pages[cur_page], NULL);
694 up_read(&current->mm->mmap_sem);
695
99172157
JA
696 if (ret < local_nr_pages) {
697 ret = -EFAULT;
f1970baf 698 goto out_unmap;
99172157 699 }
f1970baf
JB
700
701 offset = uaddr & ~PAGE_MASK;
702 for (j = cur_page; j < page_limit; j++) {
703 unsigned int bytes = PAGE_SIZE - offset;
704
705 if (len <= 0)
706 break;
707
708 if (bytes > len)
709 bytes = len;
710
711 /*
712 * sorry...
713 */
defd94b7
MC
714 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
715 bytes)
f1970baf
JB
716 break;
717
718 len -= bytes;
719 offset = 0;
720 }
1da177e4 721
f1970baf 722 cur_page = j;
1da177e4 723 /*
f1970baf 724 * release the pages we didn't map into the bio, if any
1da177e4 725 */
f1970baf
JB
726 while (j < page_limit)
727 page_cache_release(pages[j++]);
1da177e4
LT
728 }
729
1da177e4
LT
730 kfree(pages);
731
732 /*
733 * set data direction, and check if mapped pages need bouncing
734 */
735 if (!write_to_vm)
736 bio->bi_rw |= (1 << BIO_RW);
737
f1970baf 738 bio->bi_bdev = bdev;
1da177e4
LT
739 bio->bi_flags |= (1 << BIO_USER_MAPPED);
740 return bio;
f1970baf
JB
741
742 out_unmap:
743 for (i = 0; i < nr_pages; i++) {
744 if(!pages[i])
745 break;
746 page_cache_release(pages[i]);
747 }
748 out:
1da177e4
LT
749 kfree(pages);
750 bio_put(bio);
751 return ERR_PTR(ret);
752}
753
754/**
755 * bio_map_user - map user address into bio
165125e1 756 * @q: the struct request_queue for the bio
1da177e4
LT
757 * @bdev: destination block device
758 * @uaddr: start of user address
759 * @len: length in bytes
760 * @write_to_vm: bool indicating writing to pages or not
761 *
762 * Map the user space address into a bio suitable for io to a block
763 * device. Returns an error pointer in case of error.
764 */
165125e1 765struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1da177e4 766 unsigned long uaddr, unsigned int len, int write_to_vm)
f1970baf
JB
767{
768 struct sg_iovec iov;
769
3f70353e 770 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
771 iov.iov_len = len;
772
773 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm);
774}
775
776/**
777 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 778 * @q: the struct request_queue for the bio
f1970baf
JB
779 * @bdev: destination block device
780 * @iov: the iovec.
781 * @iov_count: number of elements in the iovec
782 * @write_to_vm: bool indicating writing to pages or not
783 *
784 * Map the user space address into a bio suitable for io to a block
785 * device. Returns an error pointer in case of error.
786 */
165125e1 787struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf
JB
788 struct sg_iovec *iov, int iov_count,
789 int write_to_vm)
1da177e4
LT
790{
791 struct bio *bio;
792
f1970baf 793 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm);
1da177e4
LT
794
795 if (IS_ERR(bio))
796 return bio;
797
798 /*
799 * subtle -- if __bio_map_user() ended up bouncing a bio,
800 * it would normally disappear when its bi_end_io is run.
801 * however, we need it for the unmap, so grab an extra
802 * reference to it
803 */
804 bio_get(bio);
805
0e75f906 806 return bio;
1da177e4
LT
807}
808
809static void __bio_unmap_user(struct bio *bio)
810{
811 struct bio_vec *bvec;
812 int i;
813
814 /*
815 * make sure we dirty pages we wrote to
816 */
817 __bio_for_each_segment(bvec, bio, i, 0) {
818 if (bio_data_dir(bio) == READ)
819 set_page_dirty_lock(bvec->bv_page);
820
821 page_cache_release(bvec->bv_page);
822 }
823
824 bio_put(bio);
825}
826
827/**
828 * bio_unmap_user - unmap a bio
829 * @bio: the bio being unmapped
830 *
831 * Unmap a bio previously mapped by bio_map_user(). Must be called with
832 * a process context.
833 *
834 * bio_unmap_user() may sleep.
835 */
836void bio_unmap_user(struct bio *bio)
837{
838 __bio_unmap_user(bio);
839 bio_put(bio);
840}
841
6712ecf8 842static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 843{
b823825e 844 bio_put(bio);
b823825e
JA
845}
846
847
165125e1 848static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 849 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
850{
851 unsigned long kaddr = (unsigned long)data;
852 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
853 unsigned long start = kaddr >> PAGE_SHIFT;
854 const int nr_pages = end - start;
855 int offset, i;
856 struct bio *bio;
857
858 bio = bio_alloc(gfp_mask, nr_pages);
859 if (!bio)
860 return ERR_PTR(-ENOMEM);
861
862 offset = offset_in_page(kaddr);
863 for (i = 0; i < nr_pages; i++) {
864 unsigned int bytes = PAGE_SIZE - offset;
865
866 if (len <= 0)
867 break;
868
869 if (bytes > len)
870 bytes = len;
871
defd94b7
MC
872 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
873 offset) < bytes)
df46b9a4
MC
874 break;
875
876 data += bytes;
877 len -= bytes;
878 offset = 0;
879 }
880
b823825e 881 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
882 return bio;
883}
884
885/**
886 * bio_map_kern - map kernel address into bio
165125e1 887 * @q: the struct request_queue for the bio
df46b9a4
MC
888 * @data: pointer to buffer to map
889 * @len: length in bytes
890 * @gfp_mask: allocation flags for bio allocation
891 *
892 * Map the kernel address into a bio suitable for io to a block
893 * device. Returns an error pointer in case of error.
894 */
165125e1 895struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 896 gfp_t gfp_mask)
df46b9a4
MC
897{
898 struct bio *bio;
899
900 bio = __bio_map_kern(q, data, len, gfp_mask);
901 if (IS_ERR(bio))
902 return bio;
903
904 if (bio->bi_size == len)
905 return bio;
906
907 /*
908 * Don't support partial mappings.
909 */
910 bio_put(bio);
911 return ERR_PTR(-EINVAL);
912}
913
68154e90
FT
914static void bio_copy_kern_endio(struct bio *bio, int err)
915{
916 struct bio_vec *bvec;
917 const int read = bio_data_dir(bio) == READ;
918 char *p = bio->bi_private;
919 int i;
920
921 __bio_for_each_segment(bvec, bio, i, 0) {
922 char *addr = page_address(bvec->bv_page);
923
924 if (read && !err)
925 memcpy(p, addr, bvec->bv_len);
926
927 __free_page(bvec->bv_page);
928 p += bvec->bv_len;
929 }
930
931 bio_put(bio);
932}
933
934/**
935 * bio_copy_kern - copy kernel address into bio
936 * @q: the struct request_queue for the bio
937 * @data: pointer to buffer to copy
938 * @len: length in bytes
939 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 940 * @reading: data direction is READ
68154e90
FT
941 *
942 * copy the kernel address into a bio suitable for io to a block
943 * device. Returns an error pointer in case of error.
944 */
945struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
946 gfp_t gfp_mask, int reading)
947{
948 unsigned long kaddr = (unsigned long)data;
949 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
950 unsigned long start = kaddr >> PAGE_SHIFT;
951 const int nr_pages = end - start;
952 struct bio *bio;
953 struct bio_vec *bvec;
954 int i, ret;
955
956 bio = bio_alloc(gfp_mask, nr_pages);
957 if (!bio)
958 return ERR_PTR(-ENOMEM);
959
960 while (len) {
961 struct page *page;
962 unsigned int bytes = PAGE_SIZE;
963
964 if (bytes > len)
965 bytes = len;
966
967 page = alloc_page(q->bounce_gfp | gfp_mask);
968 if (!page) {
969 ret = -ENOMEM;
970 goto cleanup;
971 }
972
973 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) {
974 ret = -EINVAL;
975 goto cleanup;
976 }
977
978 len -= bytes;
979 }
980
981 if (!reading) {
982 void *p = data;
983
984 bio_for_each_segment(bvec, bio, i) {
985 char *addr = page_address(bvec->bv_page);
986
987 memcpy(addr, p, bvec->bv_len);
988 p += bvec->bv_len;
989 }
990 }
991
992 bio->bi_private = data;
993 bio->bi_end_io = bio_copy_kern_endio;
994 return bio;
995cleanup:
996 bio_for_each_segment(bvec, bio, i)
997 __free_page(bvec->bv_page);
998
999 bio_put(bio);
1000
1001 return ERR_PTR(ret);
1002}
1003
1da177e4
LT
1004/*
1005 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1006 * for performing direct-IO in BIOs.
1007 *
1008 * The problem is that we cannot run set_page_dirty() from interrupt context
1009 * because the required locks are not interrupt-safe. So what we can do is to
1010 * mark the pages dirty _before_ performing IO. And in interrupt context,
1011 * check that the pages are still dirty. If so, fine. If not, redirty them
1012 * in process context.
1013 *
1014 * We special-case compound pages here: normally this means reads into hugetlb
1015 * pages. The logic in here doesn't really work right for compound pages
1016 * because the VM does not uniformly chase down the head page in all cases.
1017 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1018 * handle them at all. So we skip compound pages here at an early stage.
1019 *
1020 * Note that this code is very hard to test under normal circumstances because
1021 * direct-io pins the pages with get_user_pages(). This makes
1022 * is_page_cache_freeable return false, and the VM will not clean the pages.
1023 * But other code (eg, pdflush) could clean the pages if they are mapped
1024 * pagecache.
1025 *
1026 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1027 * deferred bio dirtying paths.
1028 */
1029
1030/*
1031 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1032 */
1033void bio_set_pages_dirty(struct bio *bio)
1034{
1035 struct bio_vec *bvec = bio->bi_io_vec;
1036 int i;
1037
1038 for (i = 0; i < bio->bi_vcnt; i++) {
1039 struct page *page = bvec[i].bv_page;
1040
1041 if (page && !PageCompound(page))
1042 set_page_dirty_lock(page);
1043 }
1044}
1045
86b6c7a7 1046static void bio_release_pages(struct bio *bio)
1da177e4
LT
1047{
1048 struct bio_vec *bvec = bio->bi_io_vec;
1049 int i;
1050
1051 for (i = 0; i < bio->bi_vcnt; i++) {
1052 struct page *page = bvec[i].bv_page;
1053
1054 if (page)
1055 put_page(page);
1056 }
1057}
1058
1059/*
1060 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1061 * If they are, then fine. If, however, some pages are clean then they must
1062 * have been written out during the direct-IO read. So we take another ref on
1063 * the BIO and the offending pages and re-dirty the pages in process context.
1064 *
1065 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1066 * here on. It will run one page_cache_release() against each page and will
1067 * run one bio_put() against the BIO.
1068 */
1069
65f27f38 1070static void bio_dirty_fn(struct work_struct *work);
1da177e4 1071
65f27f38 1072static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1073static DEFINE_SPINLOCK(bio_dirty_lock);
1074static struct bio *bio_dirty_list;
1075
1076/*
1077 * This runs in process context
1078 */
65f27f38 1079static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1080{
1081 unsigned long flags;
1082 struct bio *bio;
1083
1084 spin_lock_irqsave(&bio_dirty_lock, flags);
1085 bio = bio_dirty_list;
1086 bio_dirty_list = NULL;
1087 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1088
1089 while (bio) {
1090 struct bio *next = bio->bi_private;
1091
1092 bio_set_pages_dirty(bio);
1093 bio_release_pages(bio);
1094 bio_put(bio);
1095 bio = next;
1096 }
1097}
1098
1099void bio_check_pages_dirty(struct bio *bio)
1100{
1101 struct bio_vec *bvec = bio->bi_io_vec;
1102 int nr_clean_pages = 0;
1103 int i;
1104
1105 for (i = 0; i < bio->bi_vcnt; i++) {
1106 struct page *page = bvec[i].bv_page;
1107
1108 if (PageDirty(page) || PageCompound(page)) {
1109 page_cache_release(page);
1110 bvec[i].bv_page = NULL;
1111 } else {
1112 nr_clean_pages++;
1113 }
1114 }
1115
1116 if (nr_clean_pages) {
1117 unsigned long flags;
1118
1119 spin_lock_irqsave(&bio_dirty_lock, flags);
1120 bio->bi_private = bio_dirty_list;
1121 bio_dirty_list = bio;
1122 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1123 schedule_work(&bio_dirty_work);
1124 } else {
1125 bio_put(bio);
1126 }
1127}
1128
1129/**
1130 * bio_endio - end I/O on a bio
1131 * @bio: bio
1da177e4
LT
1132 * @error: error, if any
1133 *
1134 * Description:
6712ecf8 1135 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1136 * preferred way to end I/O on a bio, it takes care of clearing
1137 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1138 * established -Exxxx (-EIO, for instance) error values in case
1139 * something went wrong. Noone should call bi_end_io() directly on a
1140 * bio unless they own it and thus know that it has an end_io
1141 * function.
1da177e4 1142 **/
6712ecf8 1143void bio_endio(struct bio *bio, int error)
1da177e4
LT
1144{
1145 if (error)
1146 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1147 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1148 error = -EIO;
1da177e4 1149
5bb23a68 1150 if (bio->bi_end_io)
6712ecf8 1151 bio->bi_end_io(bio, error);
1da177e4
LT
1152}
1153
1154void bio_pair_release(struct bio_pair *bp)
1155{
1156 if (atomic_dec_and_test(&bp->cnt)) {
1157 struct bio *master = bp->bio1.bi_private;
1158
6712ecf8 1159 bio_endio(master, bp->error);
1da177e4
LT
1160 mempool_free(bp, bp->bio2.bi_private);
1161 }
1162}
1163
6712ecf8 1164static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1165{
1166 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1167
1168 if (err)
1169 bp->error = err;
1170
1da177e4 1171 bio_pair_release(bp);
1da177e4
LT
1172}
1173
6712ecf8 1174static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1175{
1176 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1177
1178 if (err)
1179 bp->error = err;
1180
1da177e4 1181 bio_pair_release(bp);
1da177e4
LT
1182}
1183
1184/*
1185 * split a bio - only worry about a bio with a single page
1186 * in it's iovec
1187 */
1188struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
1189{
1190 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
1191
1192 if (!bp)
1193 return bp;
1194
2056a782
JA
1195 blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
1196 bi->bi_sector + first_sectors);
1197
1da177e4
LT
1198 BUG_ON(bi->bi_vcnt != 1);
1199 BUG_ON(bi->bi_idx != 0);
1200 atomic_set(&bp->cnt, 3);
1201 bp->error = 0;
1202 bp->bio1 = *bi;
1203 bp->bio2 = *bi;
1204 bp->bio2.bi_sector += first_sectors;
1205 bp->bio2.bi_size -= first_sectors << 9;
1206 bp->bio1.bi_size = first_sectors << 9;
1207
1208 bp->bv1 = bi->bi_io_vec[0];
1209 bp->bv2 = bi->bi_io_vec[0];
1210 bp->bv2.bv_offset += first_sectors << 9;
1211 bp->bv2.bv_len -= first_sectors << 9;
1212 bp->bv1.bv_len = first_sectors << 9;
1213
1214 bp->bio1.bi_io_vec = &bp->bv1;
1215 bp->bio2.bi_io_vec = &bp->bv2;
1216
a2eb0c10
N
1217 bp->bio1.bi_max_vecs = 1;
1218 bp->bio2.bi_max_vecs = 1;
1219
1da177e4
LT
1220 bp->bio1.bi_end_io = bio_pair_end_1;
1221 bp->bio2.bi_end_io = bio_pair_end_2;
1222
1223 bp->bio1.bi_private = bi;
1224 bp->bio2.bi_private = pool;
1225
1226 return bp;
1227}
1228
1da177e4
LT
1229
1230/*
1231 * create memory pools for biovec's in a bio_set.
1232 * use the global biovec slabs created for general use.
1233 */
5972511b 1234static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4
LT
1235{
1236 int i;
1237
1238 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1239 struct biovec_slab *bp = bvec_slabs + i;
1240 mempool_t **bvp = bs->bvec_pools + i;
1241
93d2341c 1242 *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1243 if (!*bvp)
1244 return -ENOMEM;
1245 }
1246 return 0;
1247}
1248
1249static void biovec_free_pools(struct bio_set *bs)
1250{
1251 int i;
1252
1253 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1254 mempool_t *bvp = bs->bvec_pools[i];
1255
1256 if (bvp)
1257 mempool_destroy(bvp);
1258 }
1259
1260}
1261
1262void bioset_free(struct bio_set *bs)
1263{
1264 if (bs->bio_pool)
1265 mempool_destroy(bs->bio_pool);
1266
1267 biovec_free_pools(bs);
1268
1269 kfree(bs);
1270}
1271
5972511b 1272struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
1da177e4 1273{
11b0b5ab 1274 struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1275
1276 if (!bs)
1277 return NULL;
1278
93d2341c 1279 bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
1da177e4
LT
1280 if (!bs->bio_pool)
1281 goto bad;
1282
5972511b 1283 if (!biovec_create_pools(bs, bvec_pool_size))
1da177e4
LT
1284 return bs;
1285
1286bad:
1287 bioset_free(bs);
1288 return NULL;
1289}
1290
1291static void __init biovec_init_slabs(void)
1292{
1293 int i;
1294
1295 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1296 int size;
1297 struct biovec_slab *bvs = bvec_slabs + i;
1298
1299 size = bvs->nr_vecs * sizeof(struct bio_vec);
1300 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1301 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1302 }
1303}
1304
1305static int __init init_bio(void)
1306{
0a31bd5f 1307 bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
1308
1309 biovec_init_slabs();
1310
5972511b 1311 fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
1da177e4
LT
1312 if (!fs_bio_set)
1313 panic("bio: can't allocate bios\n");
1314
0eaae62a
MD
1315 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1316 sizeof(struct bio_pair));
1da177e4
LT
1317 if (!bio_split_pool)
1318 panic("bio: can't create split pool\n");
1319
1320 return 0;
1321}
1322
1323subsys_initcall(init_bio);
1324
1325EXPORT_SYMBOL(bio_alloc);
1326EXPORT_SYMBOL(bio_put);
3676347a 1327EXPORT_SYMBOL(bio_free);
1da177e4
LT
1328EXPORT_SYMBOL(bio_endio);
1329EXPORT_SYMBOL(bio_init);
1330EXPORT_SYMBOL(__bio_clone);
1331EXPORT_SYMBOL(bio_clone);
1332EXPORT_SYMBOL(bio_phys_segments);
1333EXPORT_SYMBOL(bio_hw_segments);
1334EXPORT_SYMBOL(bio_add_page);
6e68af66 1335EXPORT_SYMBOL(bio_add_pc_page);
1da177e4 1336EXPORT_SYMBOL(bio_get_nr_vecs);
40044ce0
JA
1337EXPORT_SYMBOL(bio_map_user);
1338EXPORT_SYMBOL(bio_unmap_user);
df46b9a4 1339EXPORT_SYMBOL(bio_map_kern);
68154e90 1340EXPORT_SYMBOL(bio_copy_kern);
1da177e4
LT
1341EXPORT_SYMBOL(bio_pair_release);
1342EXPORT_SYMBOL(bio_split);
1343EXPORT_SYMBOL(bio_split_pool);
1344EXPORT_SYMBOL(bio_copy_user);
1345EXPORT_SYMBOL(bio_uncopy_user);
1346EXPORT_SYMBOL(bioset_create);
1347EXPORT_SYMBOL(bioset_free);
1348EXPORT_SYMBOL(bio_alloc_bioset);