]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/bio.c
block: Add bio_clone_fast()
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
f1970baf 31#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 32
55782138 33#include <trace/events/block.h>
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
6feef531 41static mempool_t *bio_split_pool __read_mostly;
1da177e4 42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
1da177e4 48#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 49static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
50 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
51d654e1 58struct bio_set *fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
118 if (!slab)
119 goto out_unlock;
120
80cdc6da 121 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
161 return bvec_slabs[idx].nr_vecs;
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0
JA
165{
166 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
167
168 if (idx == BIOVEC_MAX_IDX)
9f060e22 169 mempool_free(bv, pool);
bb799ca0
JA
170 else {
171 struct biovec_slab *bvs = bvec_slabs + idx;
172
173 kmem_cache_free(bvs->slab, bv);
174 }
175}
176
9f060e22
KO
177struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
178 mempool_t *pool)
1da177e4
LT
179{
180 struct bio_vec *bvl;
1da177e4 181
7ff9345f
JA
182 /*
183 * see comment near bvec_array define!
184 */
185 switch (nr) {
186 case 1:
187 *idx = 0;
188 break;
189 case 2 ... 4:
190 *idx = 1;
191 break;
192 case 5 ... 16:
193 *idx = 2;
194 break;
195 case 17 ... 64:
196 *idx = 3;
197 break;
198 case 65 ... 128:
199 *idx = 4;
200 break;
201 case 129 ... BIO_MAX_PAGES:
202 *idx = 5;
203 break;
204 default:
205 return NULL;
206 }
207
208 /*
209 * idx now points to the pool we want to allocate from. only the
210 * 1-vec entry pool is mempool backed.
211 */
212 if (*idx == BIOVEC_MAX_IDX) {
213fallback:
9f060e22 214 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
215 } else {
216 struct biovec_slab *bvs = bvec_slabs + *idx;
217 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
218
0a0d96b0 219 /*
7ff9345f
JA
220 * Make this allocation restricted and don't dump info on
221 * allocation failures, since we'll fallback to the mempool
222 * in case of failure.
0a0d96b0 223 */
7ff9345f 224 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 225
0a0d96b0 226 /*
7ff9345f
JA
227 * Try a slab allocation. If this fails and __GFP_WAIT
228 * is set, retry with the 1-entry mempool
0a0d96b0 229 */
7ff9345f
JA
230 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
231 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
232 *idx = BIOVEC_MAX_IDX;
233 goto fallback;
234 }
235 }
236
1da177e4
LT
237 return bvl;
238}
239
4254bba1 240static void __bio_free(struct bio *bio)
1da177e4 241{
4254bba1 242 bio_disassociate_task(bio);
1da177e4 243
7ba1ba12 244 if (bio_integrity(bio))
1e2a410f 245 bio_integrity_free(bio);
4254bba1 246}
7ba1ba12 247
4254bba1
KO
248static void bio_free(struct bio *bio)
249{
250 struct bio_set *bs = bio->bi_pool;
251 void *p;
252
253 __bio_free(bio);
254
255 if (bs) {
a38352e0 256 if (bio_flagged(bio, BIO_OWNS_VEC))
9f060e22 257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
4254bba1
KO
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
bb799ca0
JA
263 p -= bs->front_pad;
264
4254bba1
KO
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
3676347a
PO
270}
271
858119e1 272void bio_init(struct bio *bio)
1da177e4 273{
2b94de55 274 memset(bio, 0, sizeof(*bio));
1da177e4 275 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 276 atomic_set(&bio->bi_cnt, 1);
1da177e4 277}
a112a71d 278EXPORT_SYMBOL(bio_init);
1da177e4 279
f44b48c7
KO
280/**
281 * bio_reset - reinitialize a bio
282 * @bio: bio to reset
283 *
284 * Description:
285 * After calling bio_reset(), @bio will be in the same state as a freshly
286 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
287 * preserved are the ones that are initialized by bio_alloc_bioset(). See
288 * comment in struct bio.
289 */
290void bio_reset(struct bio *bio)
291{
292 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
293
4254bba1 294 __bio_free(bio);
f44b48c7
KO
295
296 memset(bio, 0, BIO_RESET_BYTES);
297 bio->bi_flags = flags|(1 << BIO_UPTODATE);
298}
299EXPORT_SYMBOL(bio_reset);
300
df2cb6da
KO
301static void bio_alloc_rescue(struct work_struct *work)
302{
303 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
304 struct bio *bio;
305
306 while (1) {
307 spin_lock(&bs->rescue_lock);
308 bio = bio_list_pop(&bs->rescue_list);
309 spin_unlock(&bs->rescue_lock);
310
311 if (!bio)
312 break;
313
314 generic_make_request(bio);
315 }
316}
317
318static void punt_bios_to_rescuer(struct bio_set *bs)
319{
320 struct bio_list punt, nopunt;
321 struct bio *bio;
322
323 /*
324 * In order to guarantee forward progress we must punt only bios that
325 * were allocated from this bio_set; otherwise, if there was a bio on
326 * there for a stacking driver higher up in the stack, processing it
327 * could require allocating bios from this bio_set, and doing that from
328 * our own rescuer would be bad.
329 *
330 * Since bio lists are singly linked, pop them all instead of trying to
331 * remove from the middle of the list:
332 */
333
334 bio_list_init(&punt);
335 bio_list_init(&nopunt);
336
337 while ((bio = bio_list_pop(current->bio_list)))
338 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
339
340 *current->bio_list = nopunt;
341
342 spin_lock(&bs->rescue_lock);
343 bio_list_merge(&bs->rescue_list, &punt);
344 spin_unlock(&bs->rescue_lock);
345
346 queue_work(bs->rescue_workqueue, &bs->rescue_work);
347}
348
1da177e4
LT
349/**
350 * bio_alloc_bioset - allocate a bio for I/O
351 * @gfp_mask: the GFP_ mask given to the slab allocator
352 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 353 * @bs: the bio_set to allocate from.
1da177e4
LT
354 *
355 * Description:
3f86a82a
KO
356 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
357 * backed by the @bs's mempool.
358 *
359 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
360 * able to allocate a bio. This is due to the mempool guarantees. To make this
361 * work, callers must never allocate more than 1 bio at a time from this pool.
362 * Callers that need to allocate more than 1 bio must always submit the
363 * previously allocated bio for IO before attempting to allocate a new one.
364 * Failure to do so can cause deadlocks under memory pressure.
365 *
df2cb6da
KO
366 * Note that when running under generic_make_request() (i.e. any block
367 * driver), bios are not submitted until after you return - see the code in
368 * generic_make_request() that converts recursion into iteration, to prevent
369 * stack overflows.
370 *
371 * This would normally mean allocating multiple bios under
372 * generic_make_request() would be susceptible to deadlocks, but we have
373 * deadlock avoidance code that resubmits any blocked bios from a rescuer
374 * thread.
375 *
376 * However, we do not guarantee forward progress for allocations from other
377 * mempools. Doing multiple allocations from the same mempool under
378 * generic_make_request() should be avoided - instead, use bio_set's front_pad
379 * for per bio allocations.
380 *
3f86a82a
KO
381 * RETURNS:
382 * Pointer to new bio on success, NULL on failure.
383 */
dd0fc66f 384struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 385{
df2cb6da 386 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
387 unsigned front_pad;
388 unsigned inline_vecs;
451a9ebf 389 unsigned long idx = BIO_POOL_NONE;
34053979 390 struct bio_vec *bvl = NULL;
451a9ebf
TH
391 struct bio *bio;
392 void *p;
393
3f86a82a
KO
394 if (!bs) {
395 if (nr_iovecs > UIO_MAXIOV)
396 return NULL;
397
398 p = kmalloc(sizeof(struct bio) +
399 nr_iovecs * sizeof(struct bio_vec),
400 gfp_mask);
401 front_pad = 0;
402 inline_vecs = nr_iovecs;
403 } else {
df2cb6da
KO
404 /*
405 * generic_make_request() converts recursion to iteration; this
406 * means if we're running beneath it, any bios we allocate and
407 * submit will not be submitted (and thus freed) until after we
408 * return.
409 *
410 * This exposes us to a potential deadlock if we allocate
411 * multiple bios from the same bio_set() while running
412 * underneath generic_make_request(). If we were to allocate
413 * multiple bios (say a stacking block driver that was splitting
414 * bios), we would deadlock if we exhausted the mempool's
415 * reserve.
416 *
417 * We solve this, and guarantee forward progress, with a rescuer
418 * workqueue per bio_set. If we go to allocate and there are
419 * bios on current->bio_list, we first try the allocation
420 * without __GFP_WAIT; if that fails, we punt those bios we
421 * would be blocking to the rescuer workqueue before we retry
422 * with the original gfp_flags.
423 */
424
425 if (current->bio_list && !bio_list_empty(current->bio_list))
426 gfp_mask &= ~__GFP_WAIT;
427
3f86a82a 428 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
429 if (!p && gfp_mask != saved_gfp) {
430 punt_bios_to_rescuer(bs);
431 gfp_mask = saved_gfp;
432 p = mempool_alloc(bs->bio_pool, gfp_mask);
433 }
434
3f86a82a
KO
435 front_pad = bs->front_pad;
436 inline_vecs = BIO_INLINE_VECS;
437 }
438
451a9ebf
TH
439 if (unlikely(!p))
440 return NULL;
1da177e4 441
3f86a82a 442 bio = p + front_pad;
34053979
IM
443 bio_init(bio);
444
3f86a82a 445 if (nr_iovecs > inline_vecs) {
9f060e22 446 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
447 if (!bvl && gfp_mask != saved_gfp) {
448 punt_bios_to_rescuer(bs);
449 gfp_mask = saved_gfp;
9f060e22 450 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
451 }
452
34053979
IM
453 if (unlikely(!bvl))
454 goto err_free;
a38352e0
KO
455
456 bio->bi_flags |= 1 << BIO_OWNS_VEC;
3f86a82a
KO
457 } else if (nr_iovecs) {
458 bvl = bio->bi_inline_vecs;
1da177e4 459 }
3f86a82a
KO
460
461 bio->bi_pool = bs;
34053979
IM
462 bio->bi_flags |= idx << BIO_POOL_OFFSET;
463 bio->bi_max_vecs = nr_iovecs;
34053979 464 bio->bi_io_vec = bvl;
1da177e4 465 return bio;
34053979
IM
466
467err_free:
451a9ebf 468 mempool_free(p, bs->bio_pool);
34053979 469 return NULL;
1da177e4 470}
a112a71d 471EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 472
1da177e4
LT
473void zero_fill_bio(struct bio *bio)
474{
475 unsigned long flags;
7988613b
KO
476 struct bio_vec bv;
477 struct bvec_iter iter;
1da177e4 478
7988613b
KO
479 bio_for_each_segment(bv, bio, iter) {
480 char *data = bvec_kmap_irq(&bv, &flags);
481 memset(data, 0, bv.bv_len);
482 flush_dcache_page(bv.bv_page);
1da177e4
LT
483 bvec_kunmap_irq(data, &flags);
484 }
485}
486EXPORT_SYMBOL(zero_fill_bio);
487
488/**
489 * bio_put - release a reference to a bio
490 * @bio: bio to release reference to
491 *
492 * Description:
493 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 494 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
495 **/
496void bio_put(struct bio *bio)
497{
498 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
499
500 /*
501 * last put frees it
502 */
4254bba1
KO
503 if (atomic_dec_and_test(&bio->bi_cnt))
504 bio_free(bio);
1da177e4 505}
a112a71d 506EXPORT_SYMBOL(bio_put);
1da177e4 507
165125e1 508inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
509{
510 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
511 blk_recount_segments(q, bio);
512
513 return bio->bi_phys_segments;
514}
a112a71d 515EXPORT_SYMBOL(bio_phys_segments);
1da177e4 516
1da177e4
LT
517/**
518 * __bio_clone - clone a bio
519 * @bio: destination bio
520 * @bio_src: bio to clone
521 *
522 * Clone a &bio. Caller will own the returned bio, but not
523 * the actual data it points to. Reference count of returned
524 * bio will be one.
525 */
858119e1 526void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 527{
003b5c57
KO
528 if (bio_is_rw(bio_src)) {
529 struct bio_vec bv;
530 struct bvec_iter iter;
531
532 bio_for_each_segment(bv, bio_src, iter)
533 bio->bi_io_vec[bio->bi_vcnt++] = bv;
534 } else if (bio_has_data(bio_src)) {
535 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
536 bio_src->bi_max_vecs * sizeof(struct bio_vec));
537 bio->bi_vcnt = bio_src->bi_vcnt;
538 }
1da177e4 539
5d84070e
JA
540 /*
541 * most users will be overriding ->bi_bdev with a new target,
542 * so we don't set nor calculate new physical/hw segment counts here
543 */
1da177e4
LT
544 bio->bi_bdev = bio_src->bi_bdev;
545 bio->bi_flags |= 1 << BIO_CLONED;
546 bio->bi_rw = bio_src->bi_rw;
4550dd6c 547 bio->bi_iter = bio_src->bi_iter;
1da177e4 548}
a112a71d 549EXPORT_SYMBOL(__bio_clone);
1da177e4 550
59d276fe
KO
551/**
552 * __bio_clone_fast - clone a bio that shares the original bio's biovec
553 * @bio: destination bio
554 * @bio_src: bio to clone
555 *
556 * Clone a &bio. Caller will own the returned bio, but not
557 * the actual data it points to. Reference count of returned
558 * bio will be one.
559 *
560 * Caller must ensure that @bio_src is not freed before @bio.
561 */
562void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
563{
564 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
565
566 /*
567 * most users will be overriding ->bi_bdev with a new target,
568 * so we don't set nor calculate new physical/hw segment counts here
569 */
570 bio->bi_bdev = bio_src->bi_bdev;
571 bio->bi_flags |= 1 << BIO_CLONED;
572 bio->bi_rw = bio_src->bi_rw;
573 bio->bi_iter = bio_src->bi_iter;
574 bio->bi_io_vec = bio_src->bi_io_vec;
575}
576EXPORT_SYMBOL(__bio_clone_fast);
577
578/**
579 * bio_clone_fast - clone a bio that shares the original bio's biovec
580 * @bio: bio to clone
581 * @gfp_mask: allocation priority
582 * @bs: bio_set to allocate from
583 *
584 * Like __bio_clone_fast, only also allocates the returned bio
585 */
586struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
587{
588 struct bio *b;
589
590 b = bio_alloc_bioset(gfp_mask, 0, bs);
591 if (!b)
592 return NULL;
593
594 __bio_clone_fast(b, bio);
595
596 if (bio_integrity(bio)) {
597 int ret;
598
599 ret = bio_integrity_clone(b, bio, gfp_mask);
600
601 if (ret < 0) {
602 bio_put(b);
603 return NULL;
604 }
605 }
606
607 return b;
608}
609EXPORT_SYMBOL(bio_clone_fast);
610
1da177e4 611/**
bdb53207
KO
612 * bio_clone_bioset - clone a bio
613 * @bio_src: bio to clone
1da177e4 614 * @gfp_mask: allocation priority
bf800ef1 615 * @bs: bio_set to allocate from
1da177e4 616 *
bdb53207
KO
617 * Clone bio. Caller will own the returned bio, but not the actual data it
618 * points to. Reference count of returned bio will be one.
1da177e4 619 */
bdb53207 620struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
bf800ef1 621 struct bio_set *bs)
1da177e4 622{
bdb53207
KO
623 unsigned nr_iovecs = 0;
624 struct bvec_iter iter;
625 struct bio_vec bv;
626 struct bio *bio;
1da177e4 627
bdb53207
KO
628 /*
629 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
630 * bio_src->bi_io_vec to bio->bi_io_vec.
631 *
632 * We can't do that anymore, because:
633 *
634 * - The point of cloning the biovec is to produce a bio with a biovec
635 * the caller can modify: bi_idx and bi_bvec_done should be 0.
636 *
637 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
638 * we tried to clone the whole thing bio_alloc_bioset() would fail.
639 * But the clone should succeed as long as the number of biovecs we
640 * actually need to allocate is fewer than BIO_MAX_PAGES.
641 *
642 * - Lastly, bi_vcnt should not be looked at or relied upon by code
643 * that does not own the bio - reason being drivers don't use it for
644 * iterating over the biovec anymore, so expecting it to be kept up
645 * to date (i.e. for clones that share the parent biovec) is just
646 * asking for trouble and would force extra work on
647 * __bio_clone_fast() anyways.
648 */
649
650 bio_for_each_segment(bv, bio_src, iter)
651 nr_iovecs++;
652
653 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, bs);
654 if (!bio)
7ba1ba12
MP
655 return NULL;
656
bdb53207
KO
657 bio->bi_bdev = bio_src->bi_bdev;
658 bio->bi_rw = bio_src->bi_rw;
659 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
660 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 661
bdb53207
KO
662 bio_for_each_segment(bv, bio_src, iter)
663 bio->bi_io_vec[bio->bi_vcnt++] = bv;
7ba1ba12 664
bdb53207
KO
665 if (bio_integrity(bio_src)) {
666 int ret;
7ba1ba12 667
bdb53207 668 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 669 if (ret < 0) {
bdb53207 670 bio_put(bio);
7ba1ba12 671 return NULL;
059ea331 672 }
3676347a 673 }
1da177e4 674
bdb53207 675 return bio;
1da177e4 676}
bf800ef1 677EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
678
679/**
680 * bio_get_nr_vecs - return approx number of vecs
681 * @bdev: I/O target
682 *
683 * Return the approximate number of pages we can send to this target.
684 * There's no guarantee that you will be able to fit this number of pages
685 * into a bio, it does not account for dynamic restrictions that vary
686 * on offset.
687 */
688int bio_get_nr_vecs(struct block_device *bdev)
689{
165125e1 690 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
691 int nr_pages;
692
693 nr_pages = min_t(unsigned,
5abebfdd
KO
694 queue_max_segments(q),
695 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
696
697 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
698
1da177e4 699}
a112a71d 700EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 701
165125e1 702static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7 703 *page, unsigned int len, unsigned int offset,
34f2fd8d 704 unsigned int max_sectors)
1da177e4
LT
705{
706 int retried_segments = 0;
707 struct bio_vec *bvec;
708
709 /*
710 * cloned bio must not modify vec list
711 */
712 if (unlikely(bio_flagged(bio, BIO_CLONED)))
713 return 0;
714
4f024f37 715 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
716 return 0;
717
80cfd548
JA
718 /*
719 * For filesystems with a blocksize smaller than the pagesize
720 * we will often be called with the same page as last time and
721 * a consecutive offset. Optimize this special case.
722 */
723 if (bio->bi_vcnt > 0) {
724 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
725
726 if (page == prev->bv_page &&
727 offset == prev->bv_offset + prev->bv_len) {
1d616585 728 unsigned int prev_bv_len = prev->bv_len;
80cfd548 729 prev->bv_len += len;
cc371e66
AK
730
731 if (q->merge_bvec_fn) {
732 struct bvec_merge_data bvm = {
1d616585
DM
733 /* prev_bvec is already charged in
734 bi_size, discharge it in order to
735 simulate merging updated prev_bvec
736 as new bvec. */
cc371e66 737 .bi_bdev = bio->bi_bdev,
4f024f37
KO
738 .bi_sector = bio->bi_iter.bi_sector,
739 .bi_size = bio->bi_iter.bi_size -
740 prev_bv_len,
cc371e66
AK
741 .bi_rw = bio->bi_rw,
742 };
743
8bf8c376 744 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
745 prev->bv_len -= len;
746 return 0;
747 }
80cfd548
JA
748 }
749
750 goto done;
751 }
752 }
753
754 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
755 return 0;
756
757 /*
758 * we might lose a segment or two here, but rather that than
759 * make this too complex.
760 */
761
8a78362c 762 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
763
764 if (retried_segments)
765 return 0;
766
767 retried_segments = 1;
768 blk_recount_segments(q, bio);
769 }
770
771 /*
772 * setup the new entry, we might clear it again later if we
773 * cannot add the page
774 */
775 bvec = &bio->bi_io_vec[bio->bi_vcnt];
776 bvec->bv_page = page;
777 bvec->bv_len = len;
778 bvec->bv_offset = offset;
779
780 /*
781 * if queue has other restrictions (eg varying max sector size
782 * depending on offset), it can specify a merge_bvec_fn in the
783 * queue to get further control
784 */
785 if (q->merge_bvec_fn) {
cc371e66
AK
786 struct bvec_merge_data bvm = {
787 .bi_bdev = bio->bi_bdev,
4f024f37
KO
788 .bi_sector = bio->bi_iter.bi_sector,
789 .bi_size = bio->bi_iter.bi_size,
cc371e66
AK
790 .bi_rw = bio->bi_rw,
791 };
792
1da177e4
LT
793 /*
794 * merge_bvec_fn() returns number of bytes it can accept
795 * at this offset
796 */
8bf8c376 797 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
798 bvec->bv_page = NULL;
799 bvec->bv_len = 0;
800 bvec->bv_offset = 0;
801 return 0;
802 }
803 }
804
805 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 806 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
807 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
808
809 bio->bi_vcnt++;
810 bio->bi_phys_segments++;
80cfd548 811 done:
4f024f37 812 bio->bi_iter.bi_size += len;
1da177e4
LT
813 return len;
814}
815
6e68af66
MC
816/**
817 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 818 * @q: the target queue
6e68af66
MC
819 * @bio: destination bio
820 * @page: page to add
821 * @len: vec entry length
822 * @offset: vec entry offset
823 *
824 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
825 * number of reasons, such as the bio being full or target block device
826 * limitations. The target block device must allow bio's up to PAGE_SIZE,
827 * so it is always possible to add a single page to an empty bio.
828 *
829 * This should only be used by REQ_PC bios.
6e68af66 830 */
165125e1 831int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
832 unsigned int len, unsigned int offset)
833{
ae03bf63
MP
834 return __bio_add_page(q, bio, page, len, offset,
835 queue_max_hw_sectors(q));
6e68af66 836}
a112a71d 837EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 838
1da177e4
LT
839/**
840 * bio_add_page - attempt to add page to bio
841 * @bio: destination bio
842 * @page: page to add
843 * @len: vec entry length
844 * @offset: vec entry offset
845 *
846 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
847 * number of reasons, such as the bio being full or target block device
848 * limitations. The target block device must allow bio's up to PAGE_SIZE,
849 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
850 */
851int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
852 unsigned int offset)
853{
defd94b7 854 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 855 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 856}
a112a71d 857EXPORT_SYMBOL(bio_add_page);
1da177e4 858
9e882242
KO
859struct submit_bio_ret {
860 struct completion event;
861 int error;
862};
863
864static void submit_bio_wait_endio(struct bio *bio, int error)
865{
866 struct submit_bio_ret *ret = bio->bi_private;
867
868 ret->error = error;
869 complete(&ret->event);
870}
871
872/**
873 * submit_bio_wait - submit a bio, and wait until it completes
874 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
875 * @bio: The &struct bio which describes the I/O
876 *
877 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
878 * bio_endio() on failure.
879 */
880int submit_bio_wait(int rw, struct bio *bio)
881{
882 struct submit_bio_ret ret;
883
884 rw |= REQ_SYNC;
885 init_completion(&ret.event);
886 bio->bi_private = &ret;
887 bio->bi_end_io = submit_bio_wait_endio;
888 submit_bio(rw, bio);
889 wait_for_completion(&ret.event);
890
891 return ret.error;
892}
893EXPORT_SYMBOL(submit_bio_wait);
894
054bdf64
KO
895/**
896 * bio_advance - increment/complete a bio by some number of bytes
897 * @bio: bio to advance
898 * @bytes: number of bytes to complete
899 *
900 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
901 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
902 * be updated on the last bvec as well.
903 *
904 * @bio will then represent the remaining, uncompleted portion of the io.
905 */
906void bio_advance(struct bio *bio, unsigned bytes)
907{
908 if (bio_integrity(bio))
909 bio_integrity_advance(bio, bytes);
910
4550dd6c 911 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
912}
913EXPORT_SYMBOL(bio_advance);
914
a0787606
KO
915/**
916 * bio_alloc_pages - allocates a single page for each bvec in a bio
917 * @bio: bio to allocate pages for
918 * @gfp_mask: flags for allocation
919 *
920 * Allocates pages up to @bio->bi_vcnt.
921 *
922 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
923 * freed.
924 */
925int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
926{
927 int i;
928 struct bio_vec *bv;
929
930 bio_for_each_segment_all(bv, bio, i) {
931 bv->bv_page = alloc_page(gfp_mask);
932 if (!bv->bv_page) {
933 while (--bv >= bio->bi_io_vec)
934 __free_page(bv->bv_page);
935 return -ENOMEM;
936 }
937 }
938
939 return 0;
940}
941EXPORT_SYMBOL(bio_alloc_pages);
942
16ac3d63
KO
943/**
944 * bio_copy_data - copy contents of data buffers from one chain of bios to
945 * another
946 * @src: source bio list
947 * @dst: destination bio list
948 *
949 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
950 * @src and @dst as linked lists of bios.
951 *
952 * Stops when it reaches the end of either @src or @dst - that is, copies
953 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
954 */
955void bio_copy_data(struct bio *dst, struct bio *src)
956{
1cb9dda4
KO
957 struct bvec_iter src_iter, dst_iter;
958 struct bio_vec src_bv, dst_bv;
16ac3d63 959 void *src_p, *dst_p;
1cb9dda4 960 unsigned bytes;
16ac3d63 961
1cb9dda4
KO
962 src_iter = src->bi_iter;
963 dst_iter = dst->bi_iter;
16ac3d63
KO
964
965 while (1) {
1cb9dda4
KO
966 if (!src_iter.bi_size) {
967 src = src->bi_next;
968 if (!src)
969 break;
16ac3d63 970
1cb9dda4 971 src_iter = src->bi_iter;
16ac3d63
KO
972 }
973
1cb9dda4
KO
974 if (!dst_iter.bi_size) {
975 dst = dst->bi_next;
976 if (!dst)
977 break;
16ac3d63 978
1cb9dda4 979 dst_iter = dst->bi_iter;
16ac3d63
KO
980 }
981
1cb9dda4
KO
982 src_bv = bio_iter_iovec(src, src_iter);
983 dst_bv = bio_iter_iovec(dst, dst_iter);
984
985 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 986
1cb9dda4
KO
987 src_p = kmap_atomic(src_bv.bv_page);
988 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 989
1cb9dda4
KO
990 memcpy(dst_p + dst_bv.bv_offset,
991 src_p + src_bv.bv_offset,
16ac3d63
KO
992 bytes);
993
994 kunmap_atomic(dst_p);
995 kunmap_atomic(src_p);
996
1cb9dda4
KO
997 bio_advance_iter(src, &src_iter, bytes);
998 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
999 }
1000}
1001EXPORT_SYMBOL(bio_copy_data);
1002
1da177e4
LT
1003struct bio_map_data {
1004 struct bio_vec *iovecs;
c5dec1c3 1005 struct sg_iovec *sgvecs;
152e283f
FT
1006 int nr_sgvecs;
1007 int is_our_pages;
1da177e4
LT
1008};
1009
c5dec1c3 1010static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
1011 struct sg_iovec *iov, int iov_count,
1012 int is_our_pages)
1da177e4
LT
1013{
1014 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
1015 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
1016 bmd->nr_sgvecs = iov_count;
152e283f 1017 bmd->is_our_pages = is_our_pages;
1da177e4
LT
1018 bio->bi_private = bmd;
1019}
1020
1021static void bio_free_map_data(struct bio_map_data *bmd)
1022{
1023 kfree(bmd->iovecs);
c5dec1c3 1024 kfree(bmd->sgvecs);
1da177e4
LT
1025 kfree(bmd);
1026}
1027
121f0994
DC
1028static struct bio_map_data *bio_alloc_map_data(int nr_segs,
1029 unsigned int iov_count,
76029ff3 1030 gfp_t gfp_mask)
1da177e4 1031{
f3f63c1c
JA
1032 struct bio_map_data *bmd;
1033
1034 if (iov_count > UIO_MAXIOV)
1035 return NULL;
1da177e4 1036
f3f63c1c 1037 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
1038 if (!bmd)
1039 return NULL;
1040
76029ff3 1041 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
1042 if (!bmd->iovecs) {
1043 kfree(bmd);
1044 return NULL;
1045 }
1046
76029ff3 1047 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 1048 if (bmd->sgvecs)
1da177e4
LT
1049 return bmd;
1050
c5dec1c3 1051 kfree(bmd->iovecs);
1da177e4
LT
1052 kfree(bmd);
1053 return NULL;
1054}
1055
aefcc28a 1056static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
1057 struct sg_iovec *iov, int iov_count,
1058 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
1059{
1060 int ret = 0, i;
1061 struct bio_vec *bvec;
1062 int iov_idx = 0;
1063 unsigned int iov_off = 0;
c5dec1c3 1064
d74c6d51 1065 bio_for_each_segment_all(bvec, bio, i) {
c5dec1c3 1066 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 1067 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
1068
1069 while (bv_len && iov_idx < iov_count) {
1070 unsigned int bytes;
0e0c6212 1071 char __user *iov_addr;
c5dec1c3
FT
1072
1073 bytes = min_t(unsigned int,
1074 iov[iov_idx].iov_len - iov_off, bv_len);
1075 iov_addr = iov[iov_idx].iov_base + iov_off;
1076
1077 if (!ret) {
ecb554a8 1078 if (to_user)
c5dec1c3
FT
1079 ret = copy_to_user(iov_addr, bv_addr,
1080 bytes);
1081
ecb554a8
FT
1082 if (from_user)
1083 ret = copy_from_user(bv_addr, iov_addr,
1084 bytes);
1085
c5dec1c3
FT
1086 if (ret)
1087 ret = -EFAULT;
1088 }
1089
1090 bv_len -= bytes;
1091 bv_addr += bytes;
1092 iov_addr += bytes;
1093 iov_off += bytes;
1094
1095 if (iov[iov_idx].iov_len == iov_off) {
1096 iov_idx++;
1097 iov_off = 0;
1098 }
1099 }
1100
152e283f 1101 if (do_free_page)
c5dec1c3
FT
1102 __free_page(bvec->bv_page);
1103 }
1104
1105 return ret;
1106}
1107
1da177e4
LT
1108/**
1109 * bio_uncopy_user - finish previously mapped bio
1110 * @bio: bio being terminated
1111 *
1112 * Free pages allocated from bio_copy_user() and write back data
1113 * to user space in case of a read.
1114 */
1115int bio_uncopy_user(struct bio *bio)
1116{
1117 struct bio_map_data *bmd = bio->bi_private;
35dc2483
RD
1118 struct bio_vec *bvec;
1119 int ret = 0, i;
1da177e4 1120
35dc2483
RD
1121 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1122 /*
1123 * if we're in a workqueue, the request is orphaned, so
1124 * don't copy into a random user address space, just free.
1125 */
1126 if (current->mm)
1127 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
1128 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
1129 0, bmd->is_our_pages);
1130 else if (bmd->is_our_pages)
1131 bio_for_each_segment_all(bvec, bio, i)
1132 __free_page(bvec->bv_page);
1133 }
1da177e4
LT
1134 bio_free_map_data(bmd);
1135 bio_put(bio);
1136 return ret;
1137}
a112a71d 1138EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
1139
1140/**
c5dec1c3 1141 * bio_copy_user_iov - copy user data to bio
1da177e4 1142 * @q: destination block queue
152e283f 1143 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1144 * @iov: the iovec.
1145 * @iov_count: number of elements in the iovec
1da177e4 1146 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1147 * @gfp_mask: memory allocation flags
1da177e4
LT
1148 *
1149 * Prepares and returns a bio for indirect user io, bouncing data
1150 * to/from kernel pages as necessary. Must be paired with
1151 * call bio_uncopy_user() on io completion.
1152 */
152e283f
FT
1153struct bio *bio_copy_user_iov(struct request_queue *q,
1154 struct rq_map_data *map_data,
1155 struct sg_iovec *iov, int iov_count,
1156 int write_to_vm, gfp_t gfp_mask)
1da177e4 1157{
1da177e4
LT
1158 struct bio_map_data *bmd;
1159 struct bio_vec *bvec;
1160 struct page *page;
1161 struct bio *bio;
1162 int i, ret;
c5dec1c3
FT
1163 int nr_pages = 0;
1164 unsigned int len = 0;
56c451f4 1165 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 1166
c5dec1c3
FT
1167 for (i = 0; i < iov_count; i++) {
1168 unsigned long uaddr;
1169 unsigned long end;
1170 unsigned long start;
1171
1172 uaddr = (unsigned long)iov[i].iov_base;
1173 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1174 start = uaddr >> PAGE_SHIFT;
1175
cb4644ca
JA
1176 /*
1177 * Overflow, abort
1178 */
1179 if (end < start)
1180 return ERR_PTR(-EINVAL);
1181
c5dec1c3
FT
1182 nr_pages += end - start;
1183 len += iov[i].iov_len;
1184 }
1185
69838727
FT
1186 if (offset)
1187 nr_pages++;
1188
a3bce90e 1189 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
1190 if (!bmd)
1191 return ERR_PTR(-ENOMEM);
1192
1da177e4 1193 ret = -ENOMEM;
a9e9dc24 1194 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1195 if (!bio)
1196 goto out_bmd;
1197
7b6d91da
CH
1198 if (!write_to_vm)
1199 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
1200
1201 ret = 0;
56c451f4
FT
1202
1203 if (map_data) {
e623ddb4 1204 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1205 i = map_data->offset / PAGE_SIZE;
1206 }
1da177e4 1207 while (len) {
e623ddb4 1208 unsigned int bytes = PAGE_SIZE;
1da177e4 1209
56c451f4
FT
1210 bytes -= offset;
1211
1da177e4
LT
1212 if (bytes > len)
1213 bytes = len;
1214
152e283f 1215 if (map_data) {
e623ddb4 1216 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1217 ret = -ENOMEM;
1218 break;
1219 }
e623ddb4
FT
1220
1221 page = map_data->pages[i / nr_pages];
1222 page += (i % nr_pages);
1223
1224 i++;
1225 } else {
152e283f 1226 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1227 if (!page) {
1228 ret = -ENOMEM;
1229 break;
1230 }
1da177e4
LT
1231 }
1232
56c451f4 1233 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1234 break;
1da177e4
LT
1235
1236 len -= bytes;
56c451f4 1237 offset = 0;
1da177e4
LT
1238 }
1239
1240 if (ret)
1241 goto cleanup;
1242
1243 /*
1244 * success
1245 */
ecb554a8
FT
1246 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1247 (map_data && map_data->from_user)) {
1248 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
1249 if (ret)
1250 goto cleanup;
1da177e4
LT
1251 }
1252
152e283f 1253 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
1254 return bio;
1255cleanup:
152e283f 1256 if (!map_data)
d74c6d51 1257 bio_for_each_segment_all(bvec, bio, i)
152e283f 1258 __free_page(bvec->bv_page);
1da177e4
LT
1259
1260 bio_put(bio);
1261out_bmd:
1262 bio_free_map_data(bmd);
1263 return ERR_PTR(ret);
1264}
1265
c5dec1c3
FT
1266/**
1267 * bio_copy_user - copy user data to bio
1268 * @q: destination block queue
152e283f 1269 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1270 * @uaddr: start of user address
1271 * @len: length in bytes
1272 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1273 * @gfp_mask: memory allocation flags
c5dec1c3
FT
1274 *
1275 * Prepares and returns a bio for indirect user io, bouncing data
1276 * to/from kernel pages as necessary. Must be paired with
1277 * call bio_uncopy_user() on io completion.
1278 */
152e283f
FT
1279struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1280 unsigned long uaddr, unsigned int len,
1281 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
1282{
1283 struct sg_iovec iov;
1284
1285 iov.iov_base = (void __user *)uaddr;
1286 iov.iov_len = len;
1287
152e283f 1288 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 1289}
a112a71d 1290EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 1291
165125e1 1292static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
1293 struct block_device *bdev,
1294 struct sg_iovec *iov, int iov_count,
a3bce90e 1295 int write_to_vm, gfp_t gfp_mask)
1da177e4 1296{
f1970baf
JB
1297 int i, j;
1298 int nr_pages = 0;
1da177e4
LT
1299 struct page **pages;
1300 struct bio *bio;
f1970baf
JB
1301 int cur_page = 0;
1302 int ret, offset;
1da177e4 1303
f1970baf
JB
1304 for (i = 0; i < iov_count; i++) {
1305 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1306 unsigned long len = iov[i].iov_len;
1307 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1308 unsigned long start = uaddr >> PAGE_SHIFT;
1309
cb4644ca
JA
1310 /*
1311 * Overflow, abort
1312 */
1313 if (end < start)
1314 return ERR_PTR(-EINVAL);
1315
f1970baf
JB
1316 nr_pages += end - start;
1317 /*
ad2d7225 1318 * buffer must be aligned to at least hardsector size for now
f1970baf 1319 */
ad2d7225 1320 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1321 return ERR_PTR(-EINVAL);
1322 }
1323
1324 if (!nr_pages)
1da177e4
LT
1325 return ERR_PTR(-EINVAL);
1326
a9e9dc24 1327 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1328 if (!bio)
1329 return ERR_PTR(-ENOMEM);
1330
1331 ret = -ENOMEM;
a3bce90e 1332 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1333 if (!pages)
1334 goto out;
1335
f1970baf
JB
1336 for (i = 0; i < iov_count; i++) {
1337 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1338 unsigned long len = iov[i].iov_len;
1339 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1340 unsigned long start = uaddr >> PAGE_SHIFT;
1341 const int local_nr_pages = end - start;
1342 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1343
f5dd33c4
NP
1344 ret = get_user_pages_fast(uaddr, local_nr_pages,
1345 write_to_vm, &pages[cur_page]);
99172157
JA
1346 if (ret < local_nr_pages) {
1347 ret = -EFAULT;
f1970baf 1348 goto out_unmap;
99172157 1349 }
f1970baf
JB
1350
1351 offset = uaddr & ~PAGE_MASK;
1352 for (j = cur_page; j < page_limit; j++) {
1353 unsigned int bytes = PAGE_SIZE - offset;
1354
1355 if (len <= 0)
1356 break;
1357
1358 if (bytes > len)
1359 bytes = len;
1360
1361 /*
1362 * sorry...
1363 */
defd94b7
MC
1364 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1365 bytes)
f1970baf
JB
1366 break;
1367
1368 len -= bytes;
1369 offset = 0;
1370 }
1da177e4 1371
f1970baf 1372 cur_page = j;
1da177e4 1373 /*
f1970baf 1374 * release the pages we didn't map into the bio, if any
1da177e4 1375 */
f1970baf
JB
1376 while (j < page_limit)
1377 page_cache_release(pages[j++]);
1da177e4
LT
1378 }
1379
1da177e4
LT
1380 kfree(pages);
1381
1382 /*
1383 * set data direction, and check if mapped pages need bouncing
1384 */
1385 if (!write_to_vm)
7b6d91da 1386 bio->bi_rw |= REQ_WRITE;
1da177e4 1387
f1970baf 1388 bio->bi_bdev = bdev;
1da177e4
LT
1389 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1390 return bio;
f1970baf
JB
1391
1392 out_unmap:
1393 for (i = 0; i < nr_pages; i++) {
1394 if(!pages[i])
1395 break;
1396 page_cache_release(pages[i]);
1397 }
1398 out:
1da177e4
LT
1399 kfree(pages);
1400 bio_put(bio);
1401 return ERR_PTR(ret);
1402}
1403
1404/**
1405 * bio_map_user - map user address into bio
165125e1 1406 * @q: the struct request_queue for the bio
1da177e4
LT
1407 * @bdev: destination block device
1408 * @uaddr: start of user address
1409 * @len: length in bytes
1410 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1411 * @gfp_mask: memory allocation flags
1da177e4
LT
1412 *
1413 * Map the user space address into a bio suitable for io to a block
1414 * device. Returns an error pointer in case of error.
1415 */
165125e1 1416struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1417 unsigned long uaddr, unsigned int len, int write_to_vm,
1418 gfp_t gfp_mask)
f1970baf
JB
1419{
1420 struct sg_iovec iov;
1421
3f70353e 1422 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1423 iov.iov_len = len;
1424
a3bce90e 1425 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1426}
a112a71d 1427EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1428
1429/**
1430 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1431 * @q: the struct request_queue for the bio
f1970baf
JB
1432 * @bdev: destination block device
1433 * @iov: the iovec.
1434 * @iov_count: number of elements in the iovec
1435 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1436 * @gfp_mask: memory allocation flags
f1970baf
JB
1437 *
1438 * Map the user space address into a bio suitable for io to a block
1439 * device. Returns an error pointer in case of error.
1440 */
165125e1 1441struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1442 struct sg_iovec *iov, int iov_count,
a3bce90e 1443 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1444{
1445 struct bio *bio;
1446
a3bce90e
FT
1447 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1448 gfp_mask);
1da177e4
LT
1449 if (IS_ERR(bio))
1450 return bio;
1451
1452 /*
1453 * subtle -- if __bio_map_user() ended up bouncing a bio,
1454 * it would normally disappear when its bi_end_io is run.
1455 * however, we need it for the unmap, so grab an extra
1456 * reference to it
1457 */
1458 bio_get(bio);
1459
0e75f906 1460 return bio;
1da177e4
LT
1461}
1462
1463static void __bio_unmap_user(struct bio *bio)
1464{
1465 struct bio_vec *bvec;
1466 int i;
1467
1468 /*
1469 * make sure we dirty pages we wrote to
1470 */
d74c6d51 1471 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1472 if (bio_data_dir(bio) == READ)
1473 set_page_dirty_lock(bvec->bv_page);
1474
1475 page_cache_release(bvec->bv_page);
1476 }
1477
1478 bio_put(bio);
1479}
1480
1481/**
1482 * bio_unmap_user - unmap a bio
1483 * @bio: the bio being unmapped
1484 *
1485 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1486 * a process context.
1487 *
1488 * bio_unmap_user() may sleep.
1489 */
1490void bio_unmap_user(struct bio *bio)
1491{
1492 __bio_unmap_user(bio);
1493 bio_put(bio);
1494}
a112a71d 1495EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1496
6712ecf8 1497static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1498{
b823825e 1499 bio_put(bio);
b823825e
JA
1500}
1501
165125e1 1502static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1503 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1504{
1505 unsigned long kaddr = (unsigned long)data;
1506 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1507 unsigned long start = kaddr >> PAGE_SHIFT;
1508 const int nr_pages = end - start;
1509 int offset, i;
1510 struct bio *bio;
1511
a9e9dc24 1512 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1513 if (!bio)
1514 return ERR_PTR(-ENOMEM);
1515
1516 offset = offset_in_page(kaddr);
1517 for (i = 0; i < nr_pages; i++) {
1518 unsigned int bytes = PAGE_SIZE - offset;
1519
1520 if (len <= 0)
1521 break;
1522
1523 if (bytes > len)
1524 bytes = len;
1525
defd94b7
MC
1526 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1527 offset) < bytes)
df46b9a4
MC
1528 break;
1529
1530 data += bytes;
1531 len -= bytes;
1532 offset = 0;
1533 }
1534
b823825e 1535 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1536 return bio;
1537}
1538
1539/**
1540 * bio_map_kern - map kernel address into bio
165125e1 1541 * @q: the struct request_queue for the bio
df46b9a4
MC
1542 * @data: pointer to buffer to map
1543 * @len: length in bytes
1544 * @gfp_mask: allocation flags for bio allocation
1545 *
1546 * Map the kernel address into a bio suitable for io to a block
1547 * device. Returns an error pointer in case of error.
1548 */
165125e1 1549struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1550 gfp_t gfp_mask)
df46b9a4
MC
1551{
1552 struct bio *bio;
1553
1554 bio = __bio_map_kern(q, data, len, gfp_mask);
1555 if (IS_ERR(bio))
1556 return bio;
1557
4f024f37 1558 if (bio->bi_iter.bi_size == len)
df46b9a4
MC
1559 return bio;
1560
1561 /*
1562 * Don't support partial mappings.
1563 */
1564 bio_put(bio);
1565 return ERR_PTR(-EINVAL);
1566}
a112a71d 1567EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1568
68154e90
FT
1569static void bio_copy_kern_endio(struct bio *bio, int err)
1570{
1571 struct bio_vec *bvec;
1572 const int read = bio_data_dir(bio) == READ;
76029ff3 1573 struct bio_map_data *bmd = bio->bi_private;
68154e90 1574 int i;
76029ff3 1575 char *p = bmd->sgvecs[0].iov_base;
68154e90 1576
d74c6d51 1577 bio_for_each_segment_all(bvec, bio, i) {
68154e90 1578 char *addr = page_address(bvec->bv_page);
76029ff3 1579 int len = bmd->iovecs[i].bv_len;
68154e90 1580
4fc981ef 1581 if (read)
76029ff3 1582 memcpy(p, addr, len);
68154e90
FT
1583
1584 __free_page(bvec->bv_page);
76029ff3 1585 p += len;
68154e90
FT
1586 }
1587
76029ff3 1588 bio_free_map_data(bmd);
68154e90
FT
1589 bio_put(bio);
1590}
1591
1592/**
1593 * bio_copy_kern - copy kernel address into bio
1594 * @q: the struct request_queue for the bio
1595 * @data: pointer to buffer to copy
1596 * @len: length in bytes
1597 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1598 * @reading: data direction is READ
68154e90
FT
1599 *
1600 * copy the kernel address into a bio suitable for io to a block
1601 * device. Returns an error pointer in case of error.
1602 */
1603struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1604 gfp_t gfp_mask, int reading)
1605{
68154e90
FT
1606 struct bio *bio;
1607 struct bio_vec *bvec;
4d8ab62e 1608 int i;
68154e90 1609
4d8ab62e
FT
1610 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1611 if (IS_ERR(bio))
1612 return bio;
68154e90
FT
1613
1614 if (!reading) {
1615 void *p = data;
1616
d74c6d51 1617 bio_for_each_segment_all(bvec, bio, i) {
68154e90
FT
1618 char *addr = page_address(bvec->bv_page);
1619
1620 memcpy(addr, p, bvec->bv_len);
1621 p += bvec->bv_len;
1622 }
1623 }
1624
68154e90 1625 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1626
68154e90 1627 return bio;
68154e90 1628}
a112a71d 1629EXPORT_SYMBOL(bio_copy_kern);
68154e90 1630
1da177e4
LT
1631/*
1632 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1633 * for performing direct-IO in BIOs.
1634 *
1635 * The problem is that we cannot run set_page_dirty() from interrupt context
1636 * because the required locks are not interrupt-safe. So what we can do is to
1637 * mark the pages dirty _before_ performing IO. And in interrupt context,
1638 * check that the pages are still dirty. If so, fine. If not, redirty them
1639 * in process context.
1640 *
1641 * We special-case compound pages here: normally this means reads into hugetlb
1642 * pages. The logic in here doesn't really work right for compound pages
1643 * because the VM does not uniformly chase down the head page in all cases.
1644 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1645 * handle them at all. So we skip compound pages here at an early stage.
1646 *
1647 * Note that this code is very hard to test under normal circumstances because
1648 * direct-io pins the pages with get_user_pages(). This makes
1649 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1650 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1651 * pagecache.
1652 *
1653 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1654 * deferred bio dirtying paths.
1655 */
1656
1657/*
1658 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1659 */
1660void bio_set_pages_dirty(struct bio *bio)
1661{
cb34e057 1662 struct bio_vec *bvec;
1da177e4
LT
1663 int i;
1664
cb34e057
KO
1665 bio_for_each_segment_all(bvec, bio, i) {
1666 struct page *page = bvec->bv_page;
1da177e4
LT
1667
1668 if (page && !PageCompound(page))
1669 set_page_dirty_lock(page);
1670 }
1671}
1672
86b6c7a7 1673static void bio_release_pages(struct bio *bio)
1da177e4 1674{
cb34e057 1675 struct bio_vec *bvec;
1da177e4
LT
1676 int i;
1677
cb34e057
KO
1678 bio_for_each_segment_all(bvec, bio, i) {
1679 struct page *page = bvec->bv_page;
1da177e4
LT
1680
1681 if (page)
1682 put_page(page);
1683 }
1684}
1685
1686/*
1687 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1688 * If they are, then fine. If, however, some pages are clean then they must
1689 * have been written out during the direct-IO read. So we take another ref on
1690 * the BIO and the offending pages and re-dirty the pages in process context.
1691 *
1692 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1693 * here on. It will run one page_cache_release() against each page and will
1694 * run one bio_put() against the BIO.
1695 */
1696
65f27f38 1697static void bio_dirty_fn(struct work_struct *work);
1da177e4 1698
65f27f38 1699static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1700static DEFINE_SPINLOCK(bio_dirty_lock);
1701static struct bio *bio_dirty_list;
1702
1703/*
1704 * This runs in process context
1705 */
65f27f38 1706static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1707{
1708 unsigned long flags;
1709 struct bio *bio;
1710
1711 spin_lock_irqsave(&bio_dirty_lock, flags);
1712 bio = bio_dirty_list;
1713 bio_dirty_list = NULL;
1714 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1715
1716 while (bio) {
1717 struct bio *next = bio->bi_private;
1718
1719 bio_set_pages_dirty(bio);
1720 bio_release_pages(bio);
1721 bio_put(bio);
1722 bio = next;
1723 }
1724}
1725
1726void bio_check_pages_dirty(struct bio *bio)
1727{
cb34e057 1728 struct bio_vec *bvec;
1da177e4
LT
1729 int nr_clean_pages = 0;
1730 int i;
1731
cb34e057
KO
1732 bio_for_each_segment_all(bvec, bio, i) {
1733 struct page *page = bvec->bv_page;
1da177e4
LT
1734
1735 if (PageDirty(page) || PageCompound(page)) {
1736 page_cache_release(page);
cb34e057 1737 bvec->bv_page = NULL;
1da177e4
LT
1738 } else {
1739 nr_clean_pages++;
1740 }
1741 }
1742
1743 if (nr_clean_pages) {
1744 unsigned long flags;
1745
1746 spin_lock_irqsave(&bio_dirty_lock, flags);
1747 bio->bi_private = bio_dirty_list;
1748 bio_dirty_list = bio;
1749 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1750 schedule_work(&bio_dirty_work);
1751 } else {
1752 bio_put(bio);
1753 }
1754}
1755
2d4dc890
IL
1756#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1757void bio_flush_dcache_pages(struct bio *bi)
1758{
7988613b
KO
1759 struct bio_vec bvec;
1760 struct bvec_iter iter;
2d4dc890 1761
7988613b
KO
1762 bio_for_each_segment(bvec, bi, iter)
1763 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1764}
1765EXPORT_SYMBOL(bio_flush_dcache_pages);
1766#endif
1767
1da177e4
LT
1768/**
1769 * bio_endio - end I/O on a bio
1770 * @bio: bio
1da177e4
LT
1771 * @error: error, if any
1772 *
1773 * Description:
6712ecf8 1774 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1775 * preferred way to end I/O on a bio, it takes care of clearing
1776 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1777 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1778 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1779 * bio unless they own it and thus know that it has an end_io
1780 * function.
1da177e4 1781 **/
6712ecf8 1782void bio_endio(struct bio *bio, int error)
1da177e4
LT
1783{
1784 if (error)
1785 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1786 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1787 error = -EIO;
1da177e4 1788
5bb23a68 1789 if (bio->bi_end_io)
6712ecf8 1790 bio->bi_end_io(bio, error);
1da177e4 1791}
a112a71d 1792EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1793
1794void bio_pair_release(struct bio_pair *bp)
1795{
1796 if (atomic_dec_and_test(&bp->cnt)) {
1797 struct bio *master = bp->bio1.bi_private;
1798
6712ecf8 1799 bio_endio(master, bp->error);
1da177e4
LT
1800 mempool_free(bp, bp->bio2.bi_private);
1801 }
1802}
a112a71d 1803EXPORT_SYMBOL(bio_pair_release);
1da177e4 1804
6712ecf8 1805static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1806{
1807 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1808
1809 if (err)
1810 bp->error = err;
1811
1da177e4 1812 bio_pair_release(bp);
1da177e4
LT
1813}
1814
6712ecf8 1815static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1816{
1817 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1818
1819 if (err)
1820 bp->error = err;
1821
1da177e4 1822 bio_pair_release(bp);
1da177e4
LT
1823}
1824
1825/*
c7eee1b8 1826 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1827 */
6feef531 1828struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1829{
6feef531 1830 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1831
1832 if (!bp)
1833 return bp;
1834
5f3ea37c 1835 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
4f024f37 1836 bi->bi_iter.bi_sector + first_sectors);
2056a782 1837
458b76ed 1838 BUG_ON(bio_multiple_segments(bi));
1da177e4
LT
1839 atomic_set(&bp->cnt, 3);
1840 bp->error = 0;
1841 bp->bio1 = *bi;
1842 bp->bio2 = *bi;
4f024f37
KO
1843 bp->bio2.bi_iter.bi_sector += first_sectors;
1844 bp->bio2.bi_iter.bi_size -= first_sectors << 9;
1845 bp->bio1.bi_iter.bi_size = first_sectors << 9;
1da177e4 1846
02f3939e 1847 if (bi->bi_vcnt != 0) {
a4ad39b1
KO
1848 bp->bv1 = bio_iovec(bi);
1849 bp->bv2 = bio_iovec(bi);
4363ac7c 1850
02f3939e
SL
1851 if (bio_is_rw(bi)) {
1852 bp->bv2.bv_offset += first_sectors << 9;
1853 bp->bv2.bv_len -= first_sectors << 9;
1854 bp->bv1.bv_len = first_sectors << 9;
1855 }
1da177e4 1856
02f3939e
SL
1857 bp->bio1.bi_io_vec = &bp->bv1;
1858 bp->bio2.bi_io_vec = &bp->bv2;
1da177e4 1859
02f3939e
SL
1860 bp->bio1.bi_max_vecs = 1;
1861 bp->bio2.bi_max_vecs = 1;
1862 }
a2eb0c10 1863
1da177e4
LT
1864 bp->bio1.bi_end_io = bio_pair_end_1;
1865 bp->bio2.bi_end_io = bio_pair_end_2;
1866
1867 bp->bio1.bi_private = bi;
6feef531 1868 bp->bio2.bi_private = bio_split_pool;
1da177e4 1869
7ba1ba12
MP
1870 if (bio_integrity(bi))
1871 bio_integrity_split(bi, bp, first_sectors);
1872
1da177e4
LT
1873 return bp;
1874}
a112a71d 1875EXPORT_SYMBOL(bio_split);
1da177e4 1876
6678d83f
KO
1877/**
1878 * bio_trim - trim a bio
1879 * @bio: bio to trim
1880 * @offset: number of sectors to trim from the front of @bio
1881 * @size: size we want to trim @bio to, in sectors
1882 */
1883void bio_trim(struct bio *bio, int offset, int size)
1884{
1885 /* 'bio' is a cloned bio which we need to trim to match
1886 * the given offset and size.
1887 * This requires adjusting bi_sector, bi_size, and bi_io_vec
1888 */
1889 int i;
1890 struct bio_vec *bvec;
1891 int sofar = 0;
1892
1893 size <<= 9;
4f024f37 1894 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1895 return;
1896
1897 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1898
1899 bio_advance(bio, offset << 9);
1900
4f024f37 1901 bio->bi_iter.bi_size = size;
6678d83f
KO
1902
1903 /* avoid any complications with bi_idx being non-zero*/
4f024f37
KO
1904 if (bio->bi_iter.bi_idx) {
1905 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_iter.bi_idx,
1906 (bio->bi_vcnt - bio->bi_iter.bi_idx) *
1907 sizeof(struct bio_vec));
1908 bio->bi_vcnt -= bio->bi_iter.bi_idx;
1909 bio->bi_iter.bi_idx = 0;
6678d83f
KO
1910 }
1911 /* Make sure vcnt and last bv are not too big */
7988613b 1912 bio_for_each_segment_all(bvec, bio, i) {
6678d83f
KO
1913 if (sofar + bvec->bv_len > size)
1914 bvec->bv_len = size - sofar;
1915 if (bvec->bv_len == 0) {
1916 bio->bi_vcnt = i;
1917 break;
1918 }
1919 sofar += bvec->bv_len;
1920 }
1921}
1922EXPORT_SYMBOL_GPL(bio_trim);
1923
ad3316bf
MP
1924/**
1925 * bio_sector_offset - Find hardware sector offset in bio
1926 * @bio: bio to inspect
1927 * @index: bio_vec index
1928 * @offset: offset in bv_page
1929 *
1930 * Return the number of hardware sectors between beginning of bio
1931 * and an end point indicated by a bio_vec index and an offset
1932 * within that vector's page.
1933 */
1934sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1935 unsigned int offset)
1936{
e1defc4f 1937 unsigned int sector_sz;
ad3316bf
MP
1938 struct bio_vec *bv;
1939 sector_t sectors;
1940 int i;
1941
e1defc4f 1942 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1943 sectors = 0;
1944
4f024f37 1945 if (index >= bio->bi_iter.bi_idx)
ad3316bf
MP
1946 index = bio->bi_vcnt - 1;
1947
d74c6d51 1948 bio_for_each_segment_all(bv, bio, i) {
ad3316bf
MP
1949 if (i == index) {
1950 if (offset > bv->bv_offset)
1951 sectors += (offset - bv->bv_offset) / sector_sz;
1952 break;
1953 }
1954
1955 sectors += bv->bv_len / sector_sz;
1956 }
1957
1958 return sectors;
1959}
1960EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1961
1962/*
1963 * create memory pools for biovec's in a bio_set.
1964 * use the global biovec slabs created for general use.
1965 */
9f060e22 1966mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1da177e4 1967{
7ff9345f 1968 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1969
9f060e22 1970 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1971}
1972
1973void bioset_free(struct bio_set *bs)
1974{
df2cb6da
KO
1975 if (bs->rescue_workqueue)
1976 destroy_workqueue(bs->rescue_workqueue);
1977
1da177e4
LT
1978 if (bs->bio_pool)
1979 mempool_destroy(bs->bio_pool);
1980
9f060e22
KO
1981 if (bs->bvec_pool)
1982 mempool_destroy(bs->bvec_pool);
1983
7878cba9 1984 bioset_integrity_free(bs);
bb799ca0 1985 bio_put_slab(bs);
1da177e4
LT
1986
1987 kfree(bs);
1988}
a112a71d 1989EXPORT_SYMBOL(bioset_free);
1da177e4 1990
bb799ca0
JA
1991/**
1992 * bioset_create - Create a bio_set
1993 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1994 * @front_pad: Number of bytes to allocate in front of the returned bio
1995 *
1996 * Description:
1997 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1998 * to ask for a number of bytes to be allocated in front of the bio.
1999 * Front pad allocation is useful for embedding the bio inside
2000 * another structure, to avoid allocating extra data to go with the bio.
2001 * Note that the bio must be embedded at the END of that structure always,
2002 * or things will break badly.
2003 */
2004struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 2005{
392ddc32 2006 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 2007 struct bio_set *bs;
1da177e4 2008
1b434498 2009 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
2010 if (!bs)
2011 return NULL;
2012
bb799ca0 2013 bs->front_pad = front_pad;
1b434498 2014
df2cb6da
KO
2015 spin_lock_init(&bs->rescue_lock);
2016 bio_list_init(&bs->rescue_list);
2017 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2018
392ddc32 2019 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
2020 if (!bs->bio_slab) {
2021 kfree(bs);
2022 return NULL;
2023 }
2024
2025 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
2026 if (!bs->bio_pool)
2027 goto bad;
2028
9f060e22
KO
2029 bs->bvec_pool = biovec_create_pool(bs, pool_size);
2030 if (!bs->bvec_pool)
df2cb6da
KO
2031 goto bad;
2032
2033 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2034 if (!bs->rescue_workqueue)
2035 goto bad;
1da177e4 2036
df2cb6da 2037 return bs;
1da177e4
LT
2038bad:
2039 bioset_free(bs);
2040 return NULL;
2041}
a112a71d 2042EXPORT_SYMBOL(bioset_create);
1da177e4 2043
852c788f
TH
2044#ifdef CONFIG_BLK_CGROUP
2045/**
2046 * bio_associate_current - associate a bio with %current
2047 * @bio: target bio
2048 *
2049 * Associate @bio with %current if it hasn't been associated yet. Block
2050 * layer will treat @bio as if it were issued by %current no matter which
2051 * task actually issues it.
2052 *
2053 * This function takes an extra reference of @task's io_context and blkcg
2054 * which will be put when @bio is released. The caller must own @bio,
2055 * ensure %current->io_context exists, and is responsible for synchronizing
2056 * calls to this function.
2057 */
2058int bio_associate_current(struct bio *bio)
2059{
2060 struct io_context *ioc;
2061 struct cgroup_subsys_state *css;
2062
2063 if (bio->bi_ioc)
2064 return -EBUSY;
2065
2066 ioc = current->io_context;
2067 if (!ioc)
2068 return -ENOENT;
2069
2070 /* acquire active ref on @ioc and associate */
2071 get_io_context_active(ioc);
2072 bio->bi_ioc = ioc;
2073
2074 /* associate blkcg if exists */
2075 rcu_read_lock();
8af01f56 2076 css = task_css(current, blkio_subsys_id);
852c788f
TH
2077 if (css && css_tryget(css))
2078 bio->bi_css = css;
2079 rcu_read_unlock();
2080
2081 return 0;
2082}
2083
2084/**
2085 * bio_disassociate_task - undo bio_associate_current()
2086 * @bio: target bio
2087 */
2088void bio_disassociate_task(struct bio *bio)
2089{
2090 if (bio->bi_ioc) {
2091 put_io_context(bio->bi_ioc);
2092 bio->bi_ioc = NULL;
2093 }
2094 if (bio->bi_css) {
2095 css_put(bio->bi_css);
2096 bio->bi_css = NULL;
2097 }
2098}
2099
2100#endif /* CONFIG_BLK_CGROUP */
2101
1da177e4
LT
2102static void __init biovec_init_slabs(void)
2103{
2104 int i;
2105
2106 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2107 int size;
2108 struct biovec_slab *bvs = bvec_slabs + i;
2109
a7fcd37c
JA
2110 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2111 bvs->slab = NULL;
2112 continue;
2113 }
a7fcd37c 2114
1da177e4
LT
2115 size = bvs->nr_vecs * sizeof(struct bio_vec);
2116 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2117 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2118 }
2119}
2120
2121static int __init init_bio(void)
2122{
bb799ca0
JA
2123 bio_slab_max = 2;
2124 bio_slab_nr = 0;
2125 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2126 if (!bio_slabs)
2127 panic("bio: can't allocate bios\n");
1da177e4 2128
7878cba9 2129 bio_integrity_init();
1da177e4
LT
2130 biovec_init_slabs();
2131
bb799ca0 2132 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2133 if (!fs_bio_set)
2134 panic("bio: can't allocate bios\n");
2135
a91a2785
MP
2136 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2137 panic("bio: can't create integrity pool\n");
2138
0eaae62a
MD
2139 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
2140 sizeof(struct bio_pair));
1da177e4
LT
2141 if (!bio_split_pool)
2142 panic("bio: can't create split pool\n");
2143
2144 return 0;
2145}
1da177e4 2146subsys_initcall(init_bio);