]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/bio.c
[SCSI] convert st to use scsi_execute_async
[mirror_ubuntu-bionic-kernel.git] / fs / bio.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
f1970baf 28#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4
LT
29
30#define BIO_POOL_SIZE 256
31
32static kmem_cache_t *bio_slab;
33
34#define BIOVEC_NR_POOLS 6
35
36/*
37 * a small number of entries is fine, not going to be performance critical.
38 * basically we just need to survive
39 */
40#define BIO_SPLIT_ENTRIES 8
41mempool_t *bio_split_pool;
42
43struct biovec_slab {
44 int nr_vecs;
45 char *name;
46 kmem_cache_t *slab;
47};
48
49/*
50 * if you change this list, also change bvec_alloc or things will
51 * break badly! cannot be bigger than what you can fit into an
52 * unsigned short
53 */
54
55#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
6c036527 56static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
57 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
58};
59#undef BV
60
61/*
62 * bio_set is used to allow other portions of the IO system to
63 * allocate their own private memory pools for bio and iovec structures.
64 * These memory pools in turn all allocate from the bio_slab
65 * and the bvec_slabs[].
66 */
67struct bio_set {
68 mempool_t *bio_pool;
69 mempool_t *bvec_pools[BIOVEC_NR_POOLS];
70};
71
72/*
73 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
74 * IO code that does not need private memory pools.
75 */
76static struct bio_set *fs_bio_set;
77
dd0fc66f 78static inline struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
1da177e4
LT
79{
80 struct bio_vec *bvl;
81 struct biovec_slab *bp;
82
83 /*
84 * see comment near bvec_array define!
85 */
86 switch (nr) {
87 case 1 : *idx = 0; break;
88 case 2 ... 4: *idx = 1; break;
89 case 5 ... 16: *idx = 2; break;
90 case 17 ... 64: *idx = 3; break;
91 case 65 ... 128: *idx = 4; break;
92 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
93 default:
94 return NULL;
95 }
96 /*
97 * idx now points to the pool we want to allocate from
98 */
99
100 bp = bvec_slabs + *idx;
101 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
102 if (bvl)
103 memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
104
105 return bvl;
106}
107
3676347a 108void bio_free(struct bio *bio, struct bio_set *bio_set)
1da177e4
LT
109{
110 const int pool_idx = BIO_POOL_IDX(bio);
1da177e4
LT
111
112 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
113
3676347a
PO
114 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
115 mempool_free(bio, bio_set->bio_pool);
116}
117
118/*
119 * default destructor for a bio allocated with bio_alloc_bioset()
120 */
121static void bio_fs_destructor(struct bio *bio)
122{
123 bio_free(bio, fs_bio_set);
1da177e4
LT
124}
125
126inline void bio_init(struct bio *bio)
127{
128 bio->bi_next = NULL;
129 bio->bi_flags = 1 << BIO_UPTODATE;
130 bio->bi_rw = 0;
131 bio->bi_vcnt = 0;
132 bio->bi_idx = 0;
133 bio->bi_phys_segments = 0;
134 bio->bi_hw_segments = 0;
135 bio->bi_hw_front_size = 0;
136 bio->bi_hw_back_size = 0;
137 bio->bi_size = 0;
138 bio->bi_max_vecs = 0;
139 bio->bi_end_io = NULL;
140 atomic_set(&bio->bi_cnt, 1);
141 bio->bi_private = NULL;
142}
143
144/**
145 * bio_alloc_bioset - allocate a bio for I/O
146 * @gfp_mask: the GFP_ mask given to the slab allocator
147 * @nr_iovecs: number of iovecs to pre-allocate
67be2dd1 148 * @bs: the bio_set to allocate from
1da177e4
LT
149 *
150 * Description:
151 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
152 * If %__GFP_WAIT is set then we will block on the internal pool waiting
153 * for a &struct bio to become free.
154 *
155 * allocate bio and iovecs from the memory pools specified by the
156 * bio_set structure.
157 **/
dd0fc66f 158struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4
LT
159{
160 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
161
162 if (likely(bio)) {
163 struct bio_vec *bvl = NULL;
164
165 bio_init(bio);
166 if (likely(nr_iovecs)) {
167 unsigned long idx;
168
169 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
170 if (unlikely(!bvl)) {
171 mempool_free(bio, bs->bio_pool);
172 bio = NULL;
173 goto out;
174 }
175 bio->bi_flags |= idx << BIO_POOL_OFFSET;
176 bio->bi_max_vecs = bvec_slabs[idx].nr_vecs;
177 }
178 bio->bi_io_vec = bvl;
1da177e4
LT
179 }
180out:
181 return bio;
182}
183
dd0fc66f 184struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
1da177e4 185{
3676347a
PO
186 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
187
188 if (bio)
189 bio->bi_destructor = bio_fs_destructor;
190
191 return bio;
1da177e4
LT
192}
193
194void zero_fill_bio(struct bio *bio)
195{
196 unsigned long flags;
197 struct bio_vec *bv;
198 int i;
199
200 bio_for_each_segment(bv, bio, i) {
201 char *data = bvec_kmap_irq(bv, &flags);
202 memset(data, 0, bv->bv_len);
203 flush_dcache_page(bv->bv_page);
204 bvec_kunmap_irq(data, &flags);
205 }
206}
207EXPORT_SYMBOL(zero_fill_bio);
208
209/**
210 * bio_put - release a reference to a bio
211 * @bio: bio to release reference to
212 *
213 * Description:
214 * Put a reference to a &struct bio, either one you have gotten with
215 * bio_alloc or bio_get. The last put of a bio will free it.
216 **/
217void bio_put(struct bio *bio)
218{
219 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
220
221 /*
222 * last put frees it
223 */
224 if (atomic_dec_and_test(&bio->bi_cnt)) {
225 bio->bi_next = NULL;
226 bio->bi_destructor(bio);
227 }
228}
229
230inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
231{
232 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
233 blk_recount_segments(q, bio);
234
235 return bio->bi_phys_segments;
236}
237
238inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
239{
240 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
241 blk_recount_segments(q, bio);
242
243 return bio->bi_hw_segments;
244}
245
246/**
247 * __bio_clone - clone a bio
248 * @bio: destination bio
249 * @bio_src: bio to clone
250 *
251 * Clone a &bio. Caller will own the returned bio, but not
252 * the actual data it points to. Reference count of returned
253 * bio will be one.
254 */
255inline void __bio_clone(struct bio *bio, struct bio *bio_src)
256{
257 request_queue_t *q = bdev_get_queue(bio_src->bi_bdev);
258
e525e153
AM
259 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
260 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4
LT
261
262 bio->bi_sector = bio_src->bi_sector;
263 bio->bi_bdev = bio_src->bi_bdev;
264 bio->bi_flags |= 1 << BIO_CLONED;
265 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
266 bio->bi_vcnt = bio_src->bi_vcnt;
267 bio->bi_size = bio_src->bi_size;
a5453be4 268 bio->bi_idx = bio_src->bi_idx;
1da177e4
LT
269 bio_phys_segments(q, bio);
270 bio_hw_segments(q, bio);
271}
272
273/**
274 * bio_clone - clone a bio
275 * @bio: bio to clone
276 * @gfp_mask: allocation priority
277 *
278 * Like __bio_clone, only also allocates the returned bio
279 */
dd0fc66f 280struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
281{
282 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
283
3676347a
PO
284 if (b) {
285 b->bi_destructor = bio_fs_destructor;
1da177e4 286 __bio_clone(b, bio);
3676347a 287 }
1da177e4
LT
288
289 return b;
290}
291
292/**
293 * bio_get_nr_vecs - return approx number of vecs
294 * @bdev: I/O target
295 *
296 * Return the approximate number of pages we can send to this target.
297 * There's no guarantee that you will be able to fit this number of pages
298 * into a bio, it does not account for dynamic restrictions that vary
299 * on offset.
300 */
301int bio_get_nr_vecs(struct block_device *bdev)
302{
303 request_queue_t *q = bdev_get_queue(bdev);
304 int nr_pages;
305
306 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
307 if (nr_pages > q->max_phys_segments)
308 nr_pages = q->max_phys_segments;
309 if (nr_pages > q->max_hw_segments)
310 nr_pages = q->max_hw_segments;
311
312 return nr_pages;
313}
314
315static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page
316 *page, unsigned int len, unsigned int offset)
317{
318 int retried_segments = 0;
319 struct bio_vec *bvec;
320
321 /*
322 * cloned bio must not modify vec list
323 */
324 if (unlikely(bio_flagged(bio, BIO_CLONED)))
325 return 0;
326
327 if (bio->bi_vcnt >= bio->bi_max_vecs)
328 return 0;
329
330 if (((bio->bi_size + len) >> 9) > q->max_sectors)
331 return 0;
332
333 /*
334 * we might lose a segment or two here, but rather that than
335 * make this too complex.
336 */
337
338 while (bio->bi_phys_segments >= q->max_phys_segments
339 || bio->bi_hw_segments >= q->max_hw_segments
340 || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
341
342 if (retried_segments)
343 return 0;
344
345 retried_segments = 1;
346 blk_recount_segments(q, bio);
347 }
348
349 /*
350 * setup the new entry, we might clear it again later if we
351 * cannot add the page
352 */
353 bvec = &bio->bi_io_vec[bio->bi_vcnt];
354 bvec->bv_page = page;
355 bvec->bv_len = len;
356 bvec->bv_offset = offset;
357
358 /*
359 * if queue has other restrictions (eg varying max sector size
360 * depending on offset), it can specify a merge_bvec_fn in the
361 * queue to get further control
362 */
363 if (q->merge_bvec_fn) {
364 /*
365 * merge_bvec_fn() returns number of bytes it can accept
366 * at this offset
367 */
368 if (q->merge_bvec_fn(q, bio, bvec) < len) {
369 bvec->bv_page = NULL;
370 bvec->bv_len = 0;
371 bvec->bv_offset = 0;
372 return 0;
373 }
374 }
375
376 /* If we may be able to merge these biovecs, force a recount */
377 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
378 BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
379 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
380
381 bio->bi_vcnt++;
382 bio->bi_phys_segments++;
383 bio->bi_hw_segments++;
384 bio->bi_size += len;
385 return len;
386}
387
6e68af66
MC
388/**
389 * bio_add_pc_page - attempt to add page to bio
390 * @bio: destination bio
391 * @page: page to add
392 * @len: vec entry length
393 * @offset: vec entry offset
394 *
395 * Attempt to add a page to the bio_vec maplist. This can fail for a
396 * number of reasons, such as the bio being full or target block
397 * device limitations. The target block device must allow bio's
398 * smaller than PAGE_SIZE, so it is always possible to add a single
399 * page to an empty bio. This should only be used by REQ_PC bios.
400 */
401int bio_add_pc_page(request_queue_t *q, struct bio *bio, struct page *page,
402 unsigned int len, unsigned int offset)
403{
404 return __bio_add_page(q, bio, page, len, offset);
405}
406
1da177e4
LT
407/**
408 * bio_add_page - attempt to add page to bio
409 * @bio: destination bio
410 * @page: page to add
411 * @len: vec entry length
412 * @offset: vec entry offset
413 *
414 * Attempt to add a page to the bio_vec maplist. This can fail for a
415 * number of reasons, such as the bio being full or target block
416 * device limitations. The target block device must allow bio's
417 * smaller than PAGE_SIZE, so it is always possible to add a single
418 * page to an empty bio.
419 */
420int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
421 unsigned int offset)
422{
423 return __bio_add_page(bdev_get_queue(bio->bi_bdev), bio, page,
424 len, offset);
425}
426
427struct bio_map_data {
428 struct bio_vec *iovecs;
429 void __user *userptr;
430};
431
432static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio)
433{
434 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
435 bio->bi_private = bmd;
436}
437
438static void bio_free_map_data(struct bio_map_data *bmd)
439{
440 kfree(bmd->iovecs);
441 kfree(bmd);
442}
443
444static struct bio_map_data *bio_alloc_map_data(int nr_segs)
445{
446 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
447
448 if (!bmd)
449 return NULL;
450
451 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
452 if (bmd->iovecs)
453 return bmd;
454
455 kfree(bmd);
456 return NULL;
457}
458
459/**
460 * bio_uncopy_user - finish previously mapped bio
461 * @bio: bio being terminated
462 *
463 * Free pages allocated from bio_copy_user() and write back data
464 * to user space in case of a read.
465 */
466int bio_uncopy_user(struct bio *bio)
467{
468 struct bio_map_data *bmd = bio->bi_private;
469 const int read = bio_data_dir(bio) == READ;
470 struct bio_vec *bvec;
471 int i, ret = 0;
472
473 __bio_for_each_segment(bvec, bio, i, 0) {
474 char *addr = page_address(bvec->bv_page);
475 unsigned int len = bmd->iovecs[i].bv_len;
476
477 if (read && !ret && copy_to_user(bmd->userptr, addr, len))
478 ret = -EFAULT;
479
480 __free_page(bvec->bv_page);
481 bmd->userptr += len;
482 }
483 bio_free_map_data(bmd);
484 bio_put(bio);
485 return ret;
486}
487
488/**
489 * bio_copy_user - copy user data to bio
490 * @q: destination block queue
491 * @uaddr: start of user address
492 * @len: length in bytes
493 * @write_to_vm: bool indicating writing to pages or not
494 *
495 * Prepares and returns a bio for indirect user io, bouncing data
496 * to/from kernel pages as necessary. Must be paired with
497 * call bio_uncopy_user() on io completion.
498 */
499struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr,
500 unsigned int len, int write_to_vm)
501{
502 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
503 unsigned long start = uaddr >> PAGE_SHIFT;
504 struct bio_map_data *bmd;
505 struct bio_vec *bvec;
506 struct page *page;
507 struct bio *bio;
508 int i, ret;
509
510 bmd = bio_alloc_map_data(end - start);
511 if (!bmd)
512 return ERR_PTR(-ENOMEM);
513
514 bmd->userptr = (void __user *) uaddr;
515
516 ret = -ENOMEM;
517 bio = bio_alloc(GFP_KERNEL, end - start);
518 if (!bio)
519 goto out_bmd;
520
521 bio->bi_rw |= (!write_to_vm << BIO_RW);
522
523 ret = 0;
524 while (len) {
525 unsigned int bytes = PAGE_SIZE;
526
527 if (bytes > len)
528 bytes = len;
529
530 page = alloc_page(q->bounce_gfp | GFP_KERNEL);
531 if (!page) {
532 ret = -ENOMEM;
533 break;
534 }
535
536 if (__bio_add_page(q, bio, page, bytes, 0) < bytes) {
537 ret = -EINVAL;
538 break;
539 }
540
541 len -= bytes;
542 }
543
544 if (ret)
545 goto cleanup;
546
547 /*
548 * success
549 */
550 if (!write_to_vm) {
551 char __user *p = (char __user *) uaddr;
552
553 /*
554 * for a write, copy in data to kernel pages
555 */
556 ret = -EFAULT;
557 bio_for_each_segment(bvec, bio, i) {
558 char *addr = page_address(bvec->bv_page);
559
560 if (copy_from_user(addr, p, bvec->bv_len))
561 goto cleanup;
562 p += bvec->bv_len;
563 }
564 }
565
566 bio_set_map_data(bmd, bio);
567 return bio;
568cleanup:
569 bio_for_each_segment(bvec, bio, i)
570 __free_page(bvec->bv_page);
571
572 bio_put(bio);
573out_bmd:
574 bio_free_map_data(bmd);
575 return ERR_PTR(ret);
576}
577
f1970baf
JB
578static struct bio *__bio_map_user_iov(request_queue_t *q,
579 struct block_device *bdev,
580 struct sg_iovec *iov, int iov_count,
581 int write_to_vm)
1da177e4 582{
f1970baf
JB
583 int i, j;
584 int nr_pages = 0;
1da177e4
LT
585 struct page **pages;
586 struct bio *bio;
f1970baf
JB
587 int cur_page = 0;
588 int ret, offset;
1da177e4 589
f1970baf
JB
590 for (i = 0; i < iov_count; i++) {
591 unsigned long uaddr = (unsigned long)iov[i].iov_base;
592 unsigned long len = iov[i].iov_len;
593 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
594 unsigned long start = uaddr >> PAGE_SHIFT;
595
596 nr_pages += end - start;
597 /*
598 * transfer and buffer must be aligned to at least hardsector
599 * size for now, in the future we can relax this restriction
600 */
601 if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q)))
602 return ERR_PTR(-EINVAL);
603 }
604
605 if (!nr_pages)
1da177e4
LT
606 return ERR_PTR(-EINVAL);
607
608 bio = bio_alloc(GFP_KERNEL, nr_pages);
609 if (!bio)
610 return ERR_PTR(-ENOMEM);
611
612 ret = -ENOMEM;
613 pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
614 if (!pages)
615 goto out;
616
f1970baf
JB
617 memset(pages, 0, nr_pages * sizeof(struct page *));
618
619 for (i = 0; i < iov_count; i++) {
620 unsigned long uaddr = (unsigned long)iov[i].iov_base;
621 unsigned long len = iov[i].iov_len;
622 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
623 unsigned long start = uaddr >> PAGE_SHIFT;
624 const int local_nr_pages = end - start;
625 const int page_limit = cur_page + local_nr_pages;
626
627 down_read(&current->mm->mmap_sem);
628 ret = get_user_pages(current, current->mm, uaddr,
629 local_nr_pages,
630 write_to_vm, 0, &pages[cur_page], NULL);
631 up_read(&current->mm->mmap_sem);
632
633 if (ret < local_nr_pages)
634 goto out_unmap;
635
636
637 offset = uaddr & ~PAGE_MASK;
638 for (j = cur_page; j < page_limit; j++) {
639 unsigned int bytes = PAGE_SIZE - offset;
640
641 if (len <= 0)
642 break;
643
644 if (bytes > len)
645 bytes = len;
646
647 /*
648 * sorry...
649 */
650 if (__bio_add_page(q, bio, pages[j], bytes, offset) < bytes)
651 break;
652
653 len -= bytes;
654 offset = 0;
655 }
1da177e4 656
f1970baf 657 cur_page = j;
1da177e4 658 /*
f1970baf 659 * release the pages we didn't map into the bio, if any
1da177e4 660 */
f1970baf
JB
661 while (j < page_limit)
662 page_cache_release(pages[j++]);
1da177e4
LT
663 }
664
1da177e4
LT
665 kfree(pages);
666
667 /*
668 * set data direction, and check if mapped pages need bouncing
669 */
670 if (!write_to_vm)
671 bio->bi_rw |= (1 << BIO_RW);
672
f1970baf 673 bio->bi_bdev = bdev;
1da177e4
LT
674 bio->bi_flags |= (1 << BIO_USER_MAPPED);
675 return bio;
f1970baf
JB
676
677 out_unmap:
678 for (i = 0; i < nr_pages; i++) {
679 if(!pages[i])
680 break;
681 page_cache_release(pages[i]);
682 }
683 out:
1da177e4
LT
684 kfree(pages);
685 bio_put(bio);
686 return ERR_PTR(ret);
687}
688
689/**
690 * bio_map_user - map user address into bio
67be2dd1 691 * @q: the request_queue_t for the bio
1da177e4
LT
692 * @bdev: destination block device
693 * @uaddr: start of user address
694 * @len: length in bytes
695 * @write_to_vm: bool indicating writing to pages or not
696 *
697 * Map the user space address into a bio suitable for io to a block
698 * device. Returns an error pointer in case of error.
699 */
700struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev,
701 unsigned long uaddr, unsigned int len, int write_to_vm)
f1970baf
JB
702{
703 struct sg_iovec iov;
704
3f70353e 705 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
706 iov.iov_len = len;
707
708 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm);
709}
710
711/**
712 * bio_map_user_iov - map user sg_iovec table into bio
713 * @q: the request_queue_t for the bio
714 * @bdev: destination block device
715 * @iov: the iovec.
716 * @iov_count: number of elements in the iovec
717 * @write_to_vm: bool indicating writing to pages or not
718 *
719 * Map the user space address into a bio suitable for io to a block
720 * device. Returns an error pointer in case of error.
721 */
722struct bio *bio_map_user_iov(request_queue_t *q, struct block_device *bdev,
723 struct sg_iovec *iov, int iov_count,
724 int write_to_vm)
1da177e4
LT
725{
726 struct bio *bio;
f1970baf 727 int len = 0, i;
1da177e4 728
f1970baf 729 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm);
1da177e4
LT
730
731 if (IS_ERR(bio))
732 return bio;
733
734 /*
735 * subtle -- if __bio_map_user() ended up bouncing a bio,
736 * it would normally disappear when its bi_end_io is run.
737 * however, we need it for the unmap, so grab an extra
738 * reference to it
739 */
740 bio_get(bio);
741
f1970baf
JB
742 for (i = 0; i < iov_count; i++)
743 len += iov[i].iov_len;
744
1da177e4
LT
745 if (bio->bi_size == len)
746 return bio;
747
748 /*
749 * don't support partial mappings
750 */
751 bio_endio(bio, bio->bi_size, 0);
752 bio_unmap_user(bio);
753 return ERR_PTR(-EINVAL);
754}
755
756static void __bio_unmap_user(struct bio *bio)
757{
758 struct bio_vec *bvec;
759 int i;
760
761 /*
762 * make sure we dirty pages we wrote to
763 */
764 __bio_for_each_segment(bvec, bio, i, 0) {
765 if (bio_data_dir(bio) == READ)
766 set_page_dirty_lock(bvec->bv_page);
767
768 page_cache_release(bvec->bv_page);
769 }
770
771 bio_put(bio);
772}
773
774/**
775 * bio_unmap_user - unmap a bio
776 * @bio: the bio being unmapped
777 *
778 * Unmap a bio previously mapped by bio_map_user(). Must be called with
779 * a process context.
780 *
781 * bio_unmap_user() may sleep.
782 */
783void bio_unmap_user(struct bio *bio)
784{
785 __bio_unmap_user(bio);
786 bio_put(bio);
787}
788
b823825e
JA
789static int bio_map_kern_endio(struct bio *bio, unsigned int bytes_done, int err)
790{
791 if (bio->bi_size)
792 return 1;
793
794 bio_put(bio);
795 return 0;
796}
797
798
df46b9a4 799static struct bio *__bio_map_kern(request_queue_t *q, void *data,
27496a8c 800 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
801{
802 unsigned long kaddr = (unsigned long)data;
803 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
804 unsigned long start = kaddr >> PAGE_SHIFT;
805 const int nr_pages = end - start;
806 int offset, i;
807 struct bio *bio;
808
809 bio = bio_alloc(gfp_mask, nr_pages);
810 if (!bio)
811 return ERR_PTR(-ENOMEM);
812
813 offset = offset_in_page(kaddr);
814 for (i = 0; i < nr_pages; i++) {
815 unsigned int bytes = PAGE_SIZE - offset;
816
817 if (len <= 0)
818 break;
819
820 if (bytes > len)
821 bytes = len;
822
823 if (__bio_add_page(q, bio, virt_to_page(data), bytes,
824 offset) < bytes)
825 break;
826
827 data += bytes;
828 len -= bytes;
829 offset = 0;
830 }
831
b823825e 832 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
833 return bio;
834}
835
836/**
837 * bio_map_kern - map kernel address into bio
838 * @q: the request_queue_t for the bio
839 * @data: pointer to buffer to map
840 * @len: length in bytes
841 * @gfp_mask: allocation flags for bio allocation
842 *
843 * Map the kernel address into a bio suitable for io to a block
844 * device. Returns an error pointer in case of error.
845 */
846struct bio *bio_map_kern(request_queue_t *q, void *data, unsigned int len,
27496a8c 847 gfp_t gfp_mask)
df46b9a4
MC
848{
849 struct bio *bio;
850
851 bio = __bio_map_kern(q, data, len, gfp_mask);
852 if (IS_ERR(bio))
853 return bio;
854
855 if (bio->bi_size == len)
856 return bio;
857
858 /*
859 * Don't support partial mappings.
860 */
861 bio_put(bio);
862 return ERR_PTR(-EINVAL);
863}
864
1da177e4
LT
865/*
866 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
867 * for performing direct-IO in BIOs.
868 *
869 * The problem is that we cannot run set_page_dirty() from interrupt context
870 * because the required locks are not interrupt-safe. So what we can do is to
871 * mark the pages dirty _before_ performing IO. And in interrupt context,
872 * check that the pages are still dirty. If so, fine. If not, redirty them
873 * in process context.
874 *
875 * We special-case compound pages here: normally this means reads into hugetlb
876 * pages. The logic in here doesn't really work right for compound pages
877 * because the VM does not uniformly chase down the head page in all cases.
878 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
879 * handle them at all. So we skip compound pages here at an early stage.
880 *
881 * Note that this code is very hard to test under normal circumstances because
882 * direct-io pins the pages with get_user_pages(). This makes
883 * is_page_cache_freeable return false, and the VM will not clean the pages.
884 * But other code (eg, pdflush) could clean the pages if they are mapped
885 * pagecache.
886 *
887 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
888 * deferred bio dirtying paths.
889 */
890
891/*
892 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
893 */
894void bio_set_pages_dirty(struct bio *bio)
895{
896 struct bio_vec *bvec = bio->bi_io_vec;
897 int i;
898
899 for (i = 0; i < bio->bi_vcnt; i++) {
900 struct page *page = bvec[i].bv_page;
901
902 if (page && !PageCompound(page))
903 set_page_dirty_lock(page);
904 }
905}
906
907static void bio_release_pages(struct bio *bio)
908{
909 struct bio_vec *bvec = bio->bi_io_vec;
910 int i;
911
912 for (i = 0; i < bio->bi_vcnt; i++) {
913 struct page *page = bvec[i].bv_page;
914
915 if (page)
916 put_page(page);
917 }
918}
919
920/*
921 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
922 * If they are, then fine. If, however, some pages are clean then they must
923 * have been written out during the direct-IO read. So we take another ref on
924 * the BIO and the offending pages and re-dirty the pages in process context.
925 *
926 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
927 * here on. It will run one page_cache_release() against each page and will
928 * run one bio_put() against the BIO.
929 */
930
931static void bio_dirty_fn(void *data);
932
933static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL);
934static DEFINE_SPINLOCK(bio_dirty_lock);
935static struct bio *bio_dirty_list;
936
937/*
938 * This runs in process context
939 */
940static void bio_dirty_fn(void *data)
941{
942 unsigned long flags;
943 struct bio *bio;
944
945 spin_lock_irqsave(&bio_dirty_lock, flags);
946 bio = bio_dirty_list;
947 bio_dirty_list = NULL;
948 spin_unlock_irqrestore(&bio_dirty_lock, flags);
949
950 while (bio) {
951 struct bio *next = bio->bi_private;
952
953 bio_set_pages_dirty(bio);
954 bio_release_pages(bio);
955 bio_put(bio);
956 bio = next;
957 }
958}
959
960void bio_check_pages_dirty(struct bio *bio)
961{
962 struct bio_vec *bvec = bio->bi_io_vec;
963 int nr_clean_pages = 0;
964 int i;
965
966 for (i = 0; i < bio->bi_vcnt; i++) {
967 struct page *page = bvec[i].bv_page;
968
969 if (PageDirty(page) || PageCompound(page)) {
970 page_cache_release(page);
971 bvec[i].bv_page = NULL;
972 } else {
973 nr_clean_pages++;
974 }
975 }
976
977 if (nr_clean_pages) {
978 unsigned long flags;
979
980 spin_lock_irqsave(&bio_dirty_lock, flags);
981 bio->bi_private = bio_dirty_list;
982 bio_dirty_list = bio;
983 spin_unlock_irqrestore(&bio_dirty_lock, flags);
984 schedule_work(&bio_dirty_work);
985 } else {
986 bio_put(bio);
987 }
988}
989
990/**
991 * bio_endio - end I/O on a bio
992 * @bio: bio
993 * @bytes_done: number of bytes completed
994 * @error: error, if any
995 *
996 * Description:
997 * bio_endio() will end I/O on @bytes_done number of bytes. This may be
998 * just a partial part of the bio, or it may be the whole bio. bio_endio()
999 * is the preferred way to end I/O on a bio, it takes care of decrementing
1000 * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
1001 * and one of the established -Exxxx (-EIO, for instance) error values in
1002 * case something went wrong. Noone should call bi_end_io() directly on
1003 * a bio unless they own it and thus know that it has an end_io function.
1004 **/
1005void bio_endio(struct bio *bio, unsigned int bytes_done, int error)
1006{
1007 if (error)
1008 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1009
1010 if (unlikely(bytes_done > bio->bi_size)) {
1011 printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
1012 bytes_done, bio->bi_size);
1013 bytes_done = bio->bi_size;
1014 }
1015
1016 bio->bi_size -= bytes_done;
1017 bio->bi_sector += (bytes_done >> 9);
1018
1019 if (bio->bi_end_io)
1020 bio->bi_end_io(bio, bytes_done, error);
1021}
1022
1023void bio_pair_release(struct bio_pair *bp)
1024{
1025 if (atomic_dec_and_test(&bp->cnt)) {
1026 struct bio *master = bp->bio1.bi_private;
1027
1028 bio_endio(master, master->bi_size, bp->error);
1029 mempool_free(bp, bp->bio2.bi_private);
1030 }
1031}
1032
1033static int bio_pair_end_1(struct bio * bi, unsigned int done, int err)
1034{
1035 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1036
1037 if (err)
1038 bp->error = err;
1039
1040 if (bi->bi_size)
1041 return 1;
1042
1043 bio_pair_release(bp);
1044 return 0;
1045}
1046
1047static int bio_pair_end_2(struct bio * bi, unsigned int done, int err)
1048{
1049 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1050
1051 if (err)
1052 bp->error = err;
1053
1054 if (bi->bi_size)
1055 return 1;
1056
1057 bio_pair_release(bp);
1058 return 0;
1059}
1060
1061/*
1062 * split a bio - only worry about a bio with a single page
1063 * in it's iovec
1064 */
1065struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
1066{
1067 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
1068
1069 if (!bp)
1070 return bp;
1071
1072 BUG_ON(bi->bi_vcnt != 1);
1073 BUG_ON(bi->bi_idx != 0);
1074 atomic_set(&bp->cnt, 3);
1075 bp->error = 0;
1076 bp->bio1 = *bi;
1077 bp->bio2 = *bi;
1078 bp->bio2.bi_sector += first_sectors;
1079 bp->bio2.bi_size -= first_sectors << 9;
1080 bp->bio1.bi_size = first_sectors << 9;
1081
1082 bp->bv1 = bi->bi_io_vec[0];
1083 bp->bv2 = bi->bi_io_vec[0];
1084 bp->bv2.bv_offset += first_sectors << 9;
1085 bp->bv2.bv_len -= first_sectors << 9;
1086 bp->bv1.bv_len = first_sectors << 9;
1087
1088 bp->bio1.bi_io_vec = &bp->bv1;
1089 bp->bio2.bi_io_vec = &bp->bv2;
1090
1091 bp->bio1.bi_end_io = bio_pair_end_1;
1092 bp->bio2.bi_end_io = bio_pair_end_2;
1093
1094 bp->bio1.bi_private = bi;
1095 bp->bio2.bi_private = pool;
1096
1097 return bp;
1098}
1099
dd0fc66f 1100static void *bio_pair_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
1101{
1102 return kmalloc(sizeof(struct bio_pair), gfp_flags);
1103}
1104
1105static void bio_pair_free(void *bp, void *data)
1106{
1107 kfree(bp);
1108}
1109
1110
1111/*
1112 * create memory pools for biovec's in a bio_set.
1113 * use the global biovec slabs created for general use.
1114 */
1115static int biovec_create_pools(struct bio_set *bs, int pool_entries, int scale)
1116{
1117 int i;
1118
1119 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1120 struct biovec_slab *bp = bvec_slabs + i;
1121 mempool_t **bvp = bs->bvec_pools + i;
1122
1123 if (i >= scale)
1124 pool_entries >>= 1;
1125
1126 *bvp = mempool_create(pool_entries, mempool_alloc_slab,
1127 mempool_free_slab, bp->slab);
1128 if (!*bvp)
1129 return -ENOMEM;
1130 }
1131 return 0;
1132}
1133
1134static void biovec_free_pools(struct bio_set *bs)
1135{
1136 int i;
1137
1138 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1139 mempool_t *bvp = bs->bvec_pools[i];
1140
1141 if (bvp)
1142 mempool_destroy(bvp);
1143 }
1144
1145}
1146
1147void bioset_free(struct bio_set *bs)
1148{
1149 if (bs->bio_pool)
1150 mempool_destroy(bs->bio_pool);
1151
1152 biovec_free_pools(bs);
1153
1154 kfree(bs);
1155}
1156
1157struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size, int scale)
1158{
1159 struct bio_set *bs = kmalloc(sizeof(*bs), GFP_KERNEL);
1160
1161 if (!bs)
1162 return NULL;
1163
1164 memset(bs, 0, sizeof(*bs));
1165 bs->bio_pool = mempool_create(bio_pool_size, mempool_alloc_slab,
1166 mempool_free_slab, bio_slab);
1167
1168 if (!bs->bio_pool)
1169 goto bad;
1170
1171 if (!biovec_create_pools(bs, bvec_pool_size, scale))
1172 return bs;
1173
1174bad:
1175 bioset_free(bs);
1176 return NULL;
1177}
1178
1179static void __init biovec_init_slabs(void)
1180{
1181 int i;
1182
1183 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1184 int size;
1185 struct biovec_slab *bvs = bvec_slabs + i;
1186
1187 size = bvs->nr_vecs * sizeof(struct bio_vec);
1188 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1189 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1190 }
1191}
1192
1193static int __init init_bio(void)
1194{
1195 int megabytes, bvec_pool_entries;
1196 int scale = BIOVEC_NR_POOLS;
1197
1198 bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
1199 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1200
1201 biovec_init_slabs();
1202
1203 megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
1204
1205 /*
1206 * find out where to start scaling
1207 */
1208 if (megabytes <= 16)
1209 scale = 0;
1210 else if (megabytes <= 32)
1211 scale = 1;
1212 else if (megabytes <= 64)
1213 scale = 2;
1214 else if (megabytes <= 96)
1215 scale = 3;
1216 else if (megabytes <= 128)
1217 scale = 4;
1218
1219 /*
1220 * scale number of entries
1221 */
1222 bvec_pool_entries = megabytes * 2;
1223 if (bvec_pool_entries > 256)
1224 bvec_pool_entries = 256;
1225
1226 fs_bio_set = bioset_create(BIO_POOL_SIZE, bvec_pool_entries, scale);
1227 if (!fs_bio_set)
1228 panic("bio: can't allocate bios\n");
1229
1230 bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES,
1231 bio_pair_alloc, bio_pair_free, NULL);
1232 if (!bio_split_pool)
1233 panic("bio: can't create split pool\n");
1234
1235 return 0;
1236}
1237
1238subsys_initcall(init_bio);
1239
1240EXPORT_SYMBOL(bio_alloc);
1241EXPORT_SYMBOL(bio_put);
3676347a 1242EXPORT_SYMBOL(bio_free);
1da177e4
LT
1243EXPORT_SYMBOL(bio_endio);
1244EXPORT_SYMBOL(bio_init);
1245EXPORT_SYMBOL(__bio_clone);
1246EXPORT_SYMBOL(bio_clone);
1247EXPORT_SYMBOL(bio_phys_segments);
1248EXPORT_SYMBOL(bio_hw_segments);
1249EXPORT_SYMBOL(bio_add_page);
6e68af66 1250EXPORT_SYMBOL(bio_add_pc_page);
1da177e4
LT
1251EXPORT_SYMBOL(bio_get_nr_vecs);
1252EXPORT_SYMBOL(bio_map_user);
1253EXPORT_SYMBOL(bio_unmap_user);
df46b9a4 1254EXPORT_SYMBOL(bio_map_kern);
1da177e4
LT
1255EXPORT_SYMBOL(bio_pair_release);
1256EXPORT_SYMBOL(bio_split);
1257EXPORT_SYMBOL(bio_split_pool);
1258EXPORT_SYMBOL(bio_copy_user);
1259EXPORT_SYMBOL(bio_uncopy_user);
1260EXPORT_SYMBOL(bioset_create);
1261EXPORT_SYMBOL(bioset_free);
1262EXPORT_SYMBOL(bio_alloc_bioset);