]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/bio.c
raid1: Refactor narrow_write_error() to not use bi_idx
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
852c788f 22#include <linux/iocontext.h>
1da177e4
LT
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/kernel.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mempool.h>
28#include <linux/workqueue.h>
852c788f 29#include <linux/cgroup.h>
f1970baf 30#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
6feef531 40static mempool_t *bio_split_pool __read_mostly;
1da177e4 41
1da177e4
LT
42/*
43 * if you change this list, also change bvec_alloc or things will
44 * break badly! cannot be bigger than what you can fit into an
45 * unsigned short
46 */
1da177e4 47#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 48static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
49 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
50};
51#undef BV
52
1da177e4
LT
53/*
54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55 * IO code that does not need private memory pools.
56 */
51d654e1 57struct bio_set *fs_bio_set;
3f86a82a 58EXPORT_SYMBOL(fs_bio_set);
1da177e4 59
bb799ca0
JA
60/*
61 * Our slab pool management
62 */
63struct bio_slab {
64 struct kmem_cache *slab;
65 unsigned int slab_ref;
66 unsigned int slab_size;
67 char name[8];
68};
69static DEFINE_MUTEX(bio_slab_lock);
70static struct bio_slab *bio_slabs;
71static unsigned int bio_slab_nr, bio_slab_max;
72
73static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
74{
75 unsigned int sz = sizeof(struct bio) + extra_size;
76 struct kmem_cache *slab = NULL;
389d7b26 77 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 78 unsigned int new_bio_slab_max;
bb799ca0
JA
79 unsigned int i, entry = -1;
80
81 mutex_lock(&bio_slab_lock);
82
83 i = 0;
84 while (i < bio_slab_nr) {
f06f135d 85 bslab = &bio_slabs[i];
bb799ca0
JA
86
87 if (!bslab->slab && entry == -1)
88 entry = i;
89 else if (bslab->slab_size == sz) {
90 slab = bslab->slab;
91 bslab->slab_ref++;
92 break;
93 }
94 i++;
95 }
96
97 if (slab)
98 goto out_unlock;
99
100 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 101 new_bio_slab_max = bio_slab_max << 1;
389d7b26 102 new_bio_slabs = krealloc(bio_slabs,
386bc35a 103 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
104 GFP_KERNEL);
105 if (!new_bio_slabs)
bb799ca0 106 goto out_unlock;
386bc35a 107 bio_slab_max = new_bio_slab_max;
389d7b26 108 bio_slabs = new_bio_slabs;
bb799ca0
JA
109 }
110 if (entry == -1)
111 entry = bio_slab_nr++;
112
113 bslab = &bio_slabs[entry];
114
115 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
116 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
80cdc6da 120 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
bb799ca0
JA
121 bslab->slab = slab;
122 bslab->slab_ref = 1;
123 bslab->slab_size = sz;
124out_unlock:
125 mutex_unlock(&bio_slab_lock);
126 return slab;
127}
128
129static void bio_put_slab(struct bio_set *bs)
130{
131 struct bio_slab *bslab = NULL;
132 unsigned int i;
133
134 mutex_lock(&bio_slab_lock);
135
136 for (i = 0; i < bio_slab_nr; i++) {
137 if (bs->bio_slab == bio_slabs[i].slab) {
138 bslab = &bio_slabs[i];
139 break;
140 }
141 }
142
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
146 WARN_ON(!bslab->slab_ref);
147
148 if (--bslab->slab_ref)
149 goto out;
150
151 kmem_cache_destroy(bslab->slab);
152 bslab->slab = NULL;
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7ba1ba12
MP
158unsigned int bvec_nr_vecs(unsigned short idx)
159{
160 return bvec_slabs[idx].nr_vecs;
161}
162
9f060e22 163void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0
JA
164{
165 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
166
167 if (idx == BIOVEC_MAX_IDX)
9f060e22 168 mempool_free(bv, pool);
bb799ca0
JA
169 else {
170 struct biovec_slab *bvs = bvec_slabs + idx;
171
172 kmem_cache_free(bvs->slab, bv);
173 }
174}
175
9f060e22
KO
176struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
177 mempool_t *pool)
1da177e4
LT
178{
179 struct bio_vec *bvl;
1da177e4 180
7ff9345f
JA
181 /*
182 * see comment near bvec_array define!
183 */
184 switch (nr) {
185 case 1:
186 *idx = 0;
187 break;
188 case 2 ... 4:
189 *idx = 1;
190 break;
191 case 5 ... 16:
192 *idx = 2;
193 break;
194 case 17 ... 64:
195 *idx = 3;
196 break;
197 case 65 ... 128:
198 *idx = 4;
199 break;
200 case 129 ... BIO_MAX_PAGES:
201 *idx = 5;
202 break;
203 default:
204 return NULL;
205 }
206
207 /*
208 * idx now points to the pool we want to allocate from. only the
209 * 1-vec entry pool is mempool backed.
210 */
211 if (*idx == BIOVEC_MAX_IDX) {
212fallback:
9f060e22 213 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
214 } else {
215 struct biovec_slab *bvs = bvec_slabs + *idx;
216 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
217
0a0d96b0 218 /*
7ff9345f
JA
219 * Make this allocation restricted and don't dump info on
220 * allocation failures, since we'll fallback to the mempool
221 * in case of failure.
0a0d96b0 222 */
7ff9345f 223 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 224
0a0d96b0 225 /*
7ff9345f
JA
226 * Try a slab allocation. If this fails and __GFP_WAIT
227 * is set, retry with the 1-entry mempool
0a0d96b0 228 */
7ff9345f
JA
229 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
230 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
231 *idx = BIOVEC_MAX_IDX;
232 goto fallback;
233 }
234 }
235
1da177e4
LT
236 return bvl;
237}
238
4254bba1 239static void __bio_free(struct bio *bio)
1da177e4 240{
4254bba1 241 bio_disassociate_task(bio);
1da177e4 242
7ba1ba12 243 if (bio_integrity(bio))
1e2a410f 244 bio_integrity_free(bio);
4254bba1 245}
7ba1ba12 246
4254bba1
KO
247static void bio_free(struct bio *bio)
248{
249 struct bio_set *bs = bio->bi_pool;
250 void *p;
251
252 __bio_free(bio);
253
254 if (bs) {
255 if (bio_has_allocated_vec(bio))
9f060e22 256 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
4254bba1
KO
257
258 /*
259 * If we have front padding, adjust the bio pointer before freeing
260 */
261 p = bio;
bb799ca0
JA
262 p -= bs->front_pad;
263
4254bba1
KO
264 mempool_free(p, bs->bio_pool);
265 } else {
266 /* Bio was allocated by bio_kmalloc() */
267 kfree(bio);
268 }
3676347a
PO
269}
270
858119e1 271void bio_init(struct bio *bio)
1da177e4 272{
2b94de55 273 memset(bio, 0, sizeof(*bio));
1da177e4 274 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 275 atomic_set(&bio->bi_cnt, 1);
1da177e4 276}
a112a71d 277EXPORT_SYMBOL(bio_init);
1da177e4 278
f44b48c7
KO
279/**
280 * bio_reset - reinitialize a bio
281 * @bio: bio to reset
282 *
283 * Description:
284 * After calling bio_reset(), @bio will be in the same state as a freshly
285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
286 * preserved are the ones that are initialized by bio_alloc_bioset(). See
287 * comment in struct bio.
288 */
289void bio_reset(struct bio *bio)
290{
291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292
4254bba1 293 __bio_free(bio);
f44b48c7
KO
294
295 memset(bio, 0, BIO_RESET_BYTES);
296 bio->bi_flags = flags|(1 << BIO_UPTODATE);
297}
298EXPORT_SYMBOL(bio_reset);
299
df2cb6da
KO
300static void bio_alloc_rescue(struct work_struct *work)
301{
302 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
303 struct bio *bio;
304
305 while (1) {
306 spin_lock(&bs->rescue_lock);
307 bio = bio_list_pop(&bs->rescue_list);
308 spin_unlock(&bs->rescue_lock);
309
310 if (!bio)
311 break;
312
313 generic_make_request(bio);
314 }
315}
316
317static void punt_bios_to_rescuer(struct bio_set *bs)
318{
319 struct bio_list punt, nopunt;
320 struct bio *bio;
321
322 /*
323 * In order to guarantee forward progress we must punt only bios that
324 * were allocated from this bio_set; otherwise, if there was a bio on
325 * there for a stacking driver higher up in the stack, processing it
326 * could require allocating bios from this bio_set, and doing that from
327 * our own rescuer would be bad.
328 *
329 * Since bio lists are singly linked, pop them all instead of trying to
330 * remove from the middle of the list:
331 */
332
333 bio_list_init(&punt);
334 bio_list_init(&nopunt);
335
336 while ((bio = bio_list_pop(current->bio_list)))
337 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
338
339 *current->bio_list = nopunt;
340
341 spin_lock(&bs->rescue_lock);
342 bio_list_merge(&bs->rescue_list, &punt);
343 spin_unlock(&bs->rescue_lock);
344
345 queue_work(bs->rescue_workqueue, &bs->rescue_work);
346}
347
1da177e4
LT
348/**
349 * bio_alloc_bioset - allocate a bio for I/O
350 * @gfp_mask: the GFP_ mask given to the slab allocator
351 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 352 * @bs: the bio_set to allocate from.
1da177e4
LT
353 *
354 * Description:
3f86a82a
KO
355 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
356 * backed by the @bs's mempool.
357 *
358 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
359 * able to allocate a bio. This is due to the mempool guarantees. To make this
360 * work, callers must never allocate more than 1 bio at a time from this pool.
361 * Callers that need to allocate more than 1 bio must always submit the
362 * previously allocated bio for IO before attempting to allocate a new one.
363 * Failure to do so can cause deadlocks under memory pressure.
364 *
df2cb6da
KO
365 * Note that when running under generic_make_request() (i.e. any block
366 * driver), bios are not submitted until after you return - see the code in
367 * generic_make_request() that converts recursion into iteration, to prevent
368 * stack overflows.
369 *
370 * This would normally mean allocating multiple bios under
371 * generic_make_request() would be susceptible to deadlocks, but we have
372 * deadlock avoidance code that resubmits any blocked bios from a rescuer
373 * thread.
374 *
375 * However, we do not guarantee forward progress for allocations from other
376 * mempools. Doing multiple allocations from the same mempool under
377 * generic_make_request() should be avoided - instead, use bio_set's front_pad
378 * for per bio allocations.
379 *
3f86a82a
KO
380 * RETURNS:
381 * Pointer to new bio on success, NULL on failure.
382 */
dd0fc66f 383struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 384{
df2cb6da 385 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
386 unsigned front_pad;
387 unsigned inline_vecs;
451a9ebf 388 unsigned long idx = BIO_POOL_NONE;
34053979 389 struct bio_vec *bvl = NULL;
451a9ebf
TH
390 struct bio *bio;
391 void *p;
392
3f86a82a
KO
393 if (!bs) {
394 if (nr_iovecs > UIO_MAXIOV)
395 return NULL;
396
397 p = kmalloc(sizeof(struct bio) +
398 nr_iovecs * sizeof(struct bio_vec),
399 gfp_mask);
400 front_pad = 0;
401 inline_vecs = nr_iovecs;
402 } else {
df2cb6da
KO
403 /*
404 * generic_make_request() converts recursion to iteration; this
405 * means if we're running beneath it, any bios we allocate and
406 * submit will not be submitted (and thus freed) until after we
407 * return.
408 *
409 * This exposes us to a potential deadlock if we allocate
410 * multiple bios from the same bio_set() while running
411 * underneath generic_make_request(). If we were to allocate
412 * multiple bios (say a stacking block driver that was splitting
413 * bios), we would deadlock if we exhausted the mempool's
414 * reserve.
415 *
416 * We solve this, and guarantee forward progress, with a rescuer
417 * workqueue per bio_set. If we go to allocate and there are
418 * bios on current->bio_list, we first try the allocation
419 * without __GFP_WAIT; if that fails, we punt those bios we
420 * would be blocking to the rescuer workqueue before we retry
421 * with the original gfp_flags.
422 */
423
424 if (current->bio_list && !bio_list_empty(current->bio_list))
425 gfp_mask &= ~__GFP_WAIT;
426
3f86a82a 427 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
428 if (!p && gfp_mask != saved_gfp) {
429 punt_bios_to_rescuer(bs);
430 gfp_mask = saved_gfp;
431 p = mempool_alloc(bs->bio_pool, gfp_mask);
432 }
433
3f86a82a
KO
434 front_pad = bs->front_pad;
435 inline_vecs = BIO_INLINE_VECS;
436 }
437
451a9ebf
TH
438 if (unlikely(!p))
439 return NULL;
1da177e4 440
3f86a82a 441 bio = p + front_pad;
34053979
IM
442 bio_init(bio);
443
3f86a82a 444 if (nr_iovecs > inline_vecs) {
9f060e22 445 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
446 if (!bvl && gfp_mask != saved_gfp) {
447 punt_bios_to_rescuer(bs);
448 gfp_mask = saved_gfp;
9f060e22 449 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
450 }
451
34053979
IM
452 if (unlikely(!bvl))
453 goto err_free;
3f86a82a
KO
454 } else if (nr_iovecs) {
455 bvl = bio->bi_inline_vecs;
1da177e4 456 }
3f86a82a
KO
457
458 bio->bi_pool = bs;
34053979
IM
459 bio->bi_flags |= idx << BIO_POOL_OFFSET;
460 bio->bi_max_vecs = nr_iovecs;
34053979 461 bio->bi_io_vec = bvl;
1da177e4 462 return bio;
34053979
IM
463
464err_free:
451a9ebf 465 mempool_free(p, bs->bio_pool);
34053979 466 return NULL;
1da177e4 467}
a112a71d 468EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 469
1da177e4
LT
470void zero_fill_bio(struct bio *bio)
471{
472 unsigned long flags;
473 struct bio_vec *bv;
474 int i;
475
476 bio_for_each_segment(bv, bio, i) {
477 char *data = bvec_kmap_irq(bv, &flags);
478 memset(data, 0, bv->bv_len);
479 flush_dcache_page(bv->bv_page);
480 bvec_kunmap_irq(data, &flags);
481 }
482}
483EXPORT_SYMBOL(zero_fill_bio);
484
485/**
486 * bio_put - release a reference to a bio
487 * @bio: bio to release reference to
488 *
489 * Description:
490 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 491 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
492 **/
493void bio_put(struct bio *bio)
494{
495 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
496
497 /*
498 * last put frees it
499 */
4254bba1
KO
500 if (atomic_dec_and_test(&bio->bi_cnt))
501 bio_free(bio);
1da177e4 502}
a112a71d 503EXPORT_SYMBOL(bio_put);
1da177e4 504
165125e1 505inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
506{
507 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
508 blk_recount_segments(q, bio);
509
510 return bio->bi_phys_segments;
511}
a112a71d 512EXPORT_SYMBOL(bio_phys_segments);
1da177e4 513
1da177e4
LT
514/**
515 * __bio_clone - clone a bio
516 * @bio: destination bio
517 * @bio_src: bio to clone
518 *
519 * Clone a &bio. Caller will own the returned bio, but not
520 * the actual data it points to. Reference count of returned
521 * bio will be one.
522 */
858119e1 523void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 524{
e525e153
AM
525 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
526 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 527
5d84070e
JA
528 /*
529 * most users will be overriding ->bi_bdev with a new target,
530 * so we don't set nor calculate new physical/hw segment counts here
531 */
1da177e4
LT
532 bio->bi_sector = bio_src->bi_sector;
533 bio->bi_bdev = bio_src->bi_bdev;
534 bio->bi_flags |= 1 << BIO_CLONED;
535 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
536 bio->bi_vcnt = bio_src->bi_vcnt;
537 bio->bi_size = bio_src->bi_size;
a5453be4 538 bio->bi_idx = bio_src->bi_idx;
1da177e4 539}
a112a71d 540EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
541
542/**
bf800ef1 543 * bio_clone_bioset - clone a bio
1da177e4
LT
544 * @bio: bio to clone
545 * @gfp_mask: allocation priority
bf800ef1 546 * @bs: bio_set to allocate from
1da177e4
LT
547 *
548 * Like __bio_clone, only also allocates the returned bio
549 */
bf800ef1
KO
550struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
551 struct bio_set *bs)
1da177e4 552{
bf800ef1 553 struct bio *b;
1da177e4 554
bf800ef1 555 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
7ba1ba12
MP
556 if (!b)
557 return NULL;
558
7ba1ba12
MP
559 __bio_clone(b, bio);
560
561 if (bio_integrity(bio)) {
562 int ret;
563
1e2a410f 564 ret = bio_integrity_clone(b, bio, gfp_mask);
7ba1ba12 565
059ea331
LZ
566 if (ret < 0) {
567 bio_put(b);
7ba1ba12 568 return NULL;
059ea331 569 }
3676347a 570 }
1da177e4
LT
571
572 return b;
573}
bf800ef1 574EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
575
576/**
577 * bio_get_nr_vecs - return approx number of vecs
578 * @bdev: I/O target
579 *
580 * Return the approximate number of pages we can send to this target.
581 * There's no guarantee that you will be able to fit this number of pages
582 * into a bio, it does not account for dynamic restrictions that vary
583 * on offset.
584 */
585int bio_get_nr_vecs(struct block_device *bdev)
586{
165125e1 587 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
588 int nr_pages;
589
590 nr_pages = min_t(unsigned,
5abebfdd
KO
591 queue_max_segments(q),
592 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
593
594 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
595
1da177e4 596}
a112a71d 597EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 598
165125e1 599static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
600 *page, unsigned int len, unsigned int offset,
601 unsigned short max_sectors)
1da177e4
LT
602{
603 int retried_segments = 0;
604 struct bio_vec *bvec;
605
606 /*
607 * cloned bio must not modify vec list
608 */
609 if (unlikely(bio_flagged(bio, BIO_CLONED)))
610 return 0;
611
80cfd548 612 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
613 return 0;
614
80cfd548
JA
615 /*
616 * For filesystems with a blocksize smaller than the pagesize
617 * we will often be called with the same page as last time and
618 * a consecutive offset. Optimize this special case.
619 */
620 if (bio->bi_vcnt > 0) {
621 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
622
623 if (page == prev->bv_page &&
624 offset == prev->bv_offset + prev->bv_len) {
1d616585 625 unsigned int prev_bv_len = prev->bv_len;
80cfd548 626 prev->bv_len += len;
cc371e66
AK
627
628 if (q->merge_bvec_fn) {
629 struct bvec_merge_data bvm = {
1d616585
DM
630 /* prev_bvec is already charged in
631 bi_size, discharge it in order to
632 simulate merging updated prev_bvec
633 as new bvec. */
cc371e66
AK
634 .bi_bdev = bio->bi_bdev,
635 .bi_sector = bio->bi_sector,
1d616585 636 .bi_size = bio->bi_size - prev_bv_len,
cc371e66
AK
637 .bi_rw = bio->bi_rw,
638 };
639
8bf8c376 640 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
641 prev->bv_len -= len;
642 return 0;
643 }
80cfd548
JA
644 }
645
646 goto done;
647 }
648 }
649
650 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
651 return 0;
652
653 /*
654 * we might lose a segment or two here, but rather that than
655 * make this too complex.
656 */
657
8a78362c 658 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
659
660 if (retried_segments)
661 return 0;
662
663 retried_segments = 1;
664 blk_recount_segments(q, bio);
665 }
666
667 /*
668 * setup the new entry, we might clear it again later if we
669 * cannot add the page
670 */
671 bvec = &bio->bi_io_vec[bio->bi_vcnt];
672 bvec->bv_page = page;
673 bvec->bv_len = len;
674 bvec->bv_offset = offset;
675
676 /*
677 * if queue has other restrictions (eg varying max sector size
678 * depending on offset), it can specify a merge_bvec_fn in the
679 * queue to get further control
680 */
681 if (q->merge_bvec_fn) {
cc371e66
AK
682 struct bvec_merge_data bvm = {
683 .bi_bdev = bio->bi_bdev,
684 .bi_sector = bio->bi_sector,
685 .bi_size = bio->bi_size,
686 .bi_rw = bio->bi_rw,
687 };
688
1da177e4
LT
689 /*
690 * merge_bvec_fn() returns number of bytes it can accept
691 * at this offset
692 */
8bf8c376 693 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
694 bvec->bv_page = NULL;
695 bvec->bv_len = 0;
696 bvec->bv_offset = 0;
697 return 0;
698 }
699 }
700
701 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 702 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
703 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
704
705 bio->bi_vcnt++;
706 bio->bi_phys_segments++;
80cfd548 707 done:
1da177e4
LT
708 bio->bi_size += len;
709 return len;
710}
711
6e68af66
MC
712/**
713 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 714 * @q: the target queue
6e68af66
MC
715 * @bio: destination bio
716 * @page: page to add
717 * @len: vec entry length
718 * @offset: vec entry offset
719 *
720 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
721 * number of reasons, such as the bio being full or target block device
722 * limitations. The target block device must allow bio's up to PAGE_SIZE,
723 * so it is always possible to add a single page to an empty bio.
724 *
725 * This should only be used by REQ_PC bios.
6e68af66 726 */
165125e1 727int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
728 unsigned int len, unsigned int offset)
729{
ae03bf63
MP
730 return __bio_add_page(q, bio, page, len, offset,
731 queue_max_hw_sectors(q));
6e68af66 732}
a112a71d 733EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 734
1da177e4
LT
735/**
736 * bio_add_page - attempt to add page to bio
737 * @bio: destination bio
738 * @page: page to add
739 * @len: vec entry length
740 * @offset: vec entry offset
741 *
742 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
743 * number of reasons, such as the bio being full or target block device
744 * limitations. The target block device must allow bio's up to PAGE_SIZE,
745 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
746 */
747int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
748 unsigned int offset)
749{
defd94b7 750 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 751 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 752}
a112a71d 753EXPORT_SYMBOL(bio_add_page);
1da177e4 754
9e882242
KO
755struct submit_bio_ret {
756 struct completion event;
757 int error;
758};
759
760static void submit_bio_wait_endio(struct bio *bio, int error)
761{
762 struct submit_bio_ret *ret = bio->bi_private;
763
764 ret->error = error;
765 complete(&ret->event);
766}
767
768/**
769 * submit_bio_wait - submit a bio, and wait until it completes
770 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
771 * @bio: The &struct bio which describes the I/O
772 *
773 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
774 * bio_endio() on failure.
775 */
776int submit_bio_wait(int rw, struct bio *bio)
777{
778 struct submit_bio_ret ret;
779
780 rw |= REQ_SYNC;
781 init_completion(&ret.event);
782 bio->bi_private = &ret;
783 bio->bi_end_io = submit_bio_wait_endio;
784 submit_bio(rw, bio);
785 wait_for_completion(&ret.event);
786
787 return ret.error;
788}
789EXPORT_SYMBOL(submit_bio_wait);
790
054bdf64
KO
791/**
792 * bio_advance - increment/complete a bio by some number of bytes
793 * @bio: bio to advance
794 * @bytes: number of bytes to complete
795 *
796 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
797 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
798 * be updated on the last bvec as well.
799 *
800 * @bio will then represent the remaining, uncompleted portion of the io.
801 */
802void bio_advance(struct bio *bio, unsigned bytes)
803{
804 if (bio_integrity(bio))
805 bio_integrity_advance(bio, bytes);
806
807 bio->bi_sector += bytes >> 9;
808 bio->bi_size -= bytes;
809
810 if (bio->bi_rw & BIO_NO_ADVANCE_ITER_MASK)
811 return;
812
813 while (bytes) {
814 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
815 WARN_ONCE(1, "bio idx %d >= vcnt %d\n",
816 bio->bi_idx, bio->bi_vcnt);
817 break;
818 }
819
820 if (bytes >= bio_iovec(bio)->bv_len) {
821 bytes -= bio_iovec(bio)->bv_len;
822 bio->bi_idx++;
823 } else {
824 bio_iovec(bio)->bv_len -= bytes;
825 bio_iovec(bio)->bv_offset += bytes;
826 bytes = 0;
827 }
828 }
829}
830EXPORT_SYMBOL(bio_advance);
831
1da177e4
LT
832struct bio_map_data {
833 struct bio_vec *iovecs;
c5dec1c3 834 struct sg_iovec *sgvecs;
152e283f
FT
835 int nr_sgvecs;
836 int is_our_pages;
1da177e4
LT
837};
838
c5dec1c3 839static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
840 struct sg_iovec *iov, int iov_count,
841 int is_our_pages)
1da177e4
LT
842{
843 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
844 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
845 bmd->nr_sgvecs = iov_count;
152e283f 846 bmd->is_our_pages = is_our_pages;
1da177e4
LT
847 bio->bi_private = bmd;
848}
849
850static void bio_free_map_data(struct bio_map_data *bmd)
851{
852 kfree(bmd->iovecs);
c5dec1c3 853 kfree(bmd->sgvecs);
1da177e4
LT
854 kfree(bmd);
855}
856
121f0994
DC
857static struct bio_map_data *bio_alloc_map_data(int nr_segs,
858 unsigned int iov_count,
76029ff3 859 gfp_t gfp_mask)
1da177e4 860{
f3f63c1c
JA
861 struct bio_map_data *bmd;
862
863 if (iov_count > UIO_MAXIOV)
864 return NULL;
1da177e4 865
f3f63c1c 866 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
867 if (!bmd)
868 return NULL;
869
76029ff3 870 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
871 if (!bmd->iovecs) {
872 kfree(bmd);
873 return NULL;
874 }
875
76029ff3 876 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 877 if (bmd->sgvecs)
1da177e4
LT
878 return bmd;
879
c5dec1c3 880 kfree(bmd->iovecs);
1da177e4
LT
881 kfree(bmd);
882 return NULL;
883}
884
aefcc28a 885static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
886 struct sg_iovec *iov, int iov_count,
887 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
888{
889 int ret = 0, i;
890 struct bio_vec *bvec;
891 int iov_idx = 0;
892 unsigned int iov_off = 0;
c5dec1c3
FT
893
894 __bio_for_each_segment(bvec, bio, i, 0) {
895 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 896 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
897
898 while (bv_len && iov_idx < iov_count) {
899 unsigned int bytes;
0e0c6212 900 char __user *iov_addr;
c5dec1c3
FT
901
902 bytes = min_t(unsigned int,
903 iov[iov_idx].iov_len - iov_off, bv_len);
904 iov_addr = iov[iov_idx].iov_base + iov_off;
905
906 if (!ret) {
ecb554a8 907 if (to_user)
c5dec1c3
FT
908 ret = copy_to_user(iov_addr, bv_addr,
909 bytes);
910
ecb554a8
FT
911 if (from_user)
912 ret = copy_from_user(bv_addr, iov_addr,
913 bytes);
914
c5dec1c3
FT
915 if (ret)
916 ret = -EFAULT;
917 }
918
919 bv_len -= bytes;
920 bv_addr += bytes;
921 iov_addr += bytes;
922 iov_off += bytes;
923
924 if (iov[iov_idx].iov_len == iov_off) {
925 iov_idx++;
926 iov_off = 0;
927 }
928 }
929
152e283f 930 if (do_free_page)
c5dec1c3
FT
931 __free_page(bvec->bv_page);
932 }
933
934 return ret;
935}
936
1da177e4
LT
937/**
938 * bio_uncopy_user - finish previously mapped bio
939 * @bio: bio being terminated
940 *
941 * Free pages allocated from bio_copy_user() and write back data
942 * to user space in case of a read.
943 */
944int bio_uncopy_user(struct bio *bio)
945{
946 struct bio_map_data *bmd = bio->bi_private;
81882766 947 int ret = 0;
1da177e4 948
81882766
FT
949 if (!bio_flagged(bio, BIO_NULL_MAPPED))
950 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
ecb554a8
FT
951 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
952 0, bmd->is_our_pages);
1da177e4
LT
953 bio_free_map_data(bmd);
954 bio_put(bio);
955 return ret;
956}
a112a71d 957EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
958
959/**
c5dec1c3 960 * bio_copy_user_iov - copy user data to bio
1da177e4 961 * @q: destination block queue
152e283f 962 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
963 * @iov: the iovec.
964 * @iov_count: number of elements in the iovec
1da177e4 965 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 966 * @gfp_mask: memory allocation flags
1da177e4
LT
967 *
968 * Prepares and returns a bio for indirect user io, bouncing data
969 * to/from kernel pages as necessary. Must be paired with
970 * call bio_uncopy_user() on io completion.
971 */
152e283f
FT
972struct bio *bio_copy_user_iov(struct request_queue *q,
973 struct rq_map_data *map_data,
974 struct sg_iovec *iov, int iov_count,
975 int write_to_vm, gfp_t gfp_mask)
1da177e4 976{
1da177e4
LT
977 struct bio_map_data *bmd;
978 struct bio_vec *bvec;
979 struct page *page;
980 struct bio *bio;
981 int i, ret;
c5dec1c3
FT
982 int nr_pages = 0;
983 unsigned int len = 0;
56c451f4 984 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 985
c5dec1c3
FT
986 for (i = 0; i < iov_count; i++) {
987 unsigned long uaddr;
988 unsigned long end;
989 unsigned long start;
990
991 uaddr = (unsigned long)iov[i].iov_base;
992 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
993 start = uaddr >> PAGE_SHIFT;
994
cb4644ca
JA
995 /*
996 * Overflow, abort
997 */
998 if (end < start)
999 return ERR_PTR(-EINVAL);
1000
c5dec1c3
FT
1001 nr_pages += end - start;
1002 len += iov[i].iov_len;
1003 }
1004
69838727
FT
1005 if (offset)
1006 nr_pages++;
1007
a3bce90e 1008 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
1009 if (!bmd)
1010 return ERR_PTR(-ENOMEM);
1011
1da177e4 1012 ret = -ENOMEM;
a9e9dc24 1013 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1014 if (!bio)
1015 goto out_bmd;
1016
7b6d91da
CH
1017 if (!write_to_vm)
1018 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
1019
1020 ret = 0;
56c451f4
FT
1021
1022 if (map_data) {
e623ddb4 1023 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1024 i = map_data->offset / PAGE_SIZE;
1025 }
1da177e4 1026 while (len) {
e623ddb4 1027 unsigned int bytes = PAGE_SIZE;
1da177e4 1028
56c451f4
FT
1029 bytes -= offset;
1030
1da177e4
LT
1031 if (bytes > len)
1032 bytes = len;
1033
152e283f 1034 if (map_data) {
e623ddb4 1035 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1036 ret = -ENOMEM;
1037 break;
1038 }
e623ddb4
FT
1039
1040 page = map_data->pages[i / nr_pages];
1041 page += (i % nr_pages);
1042
1043 i++;
1044 } else {
152e283f 1045 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1046 if (!page) {
1047 ret = -ENOMEM;
1048 break;
1049 }
1da177e4
LT
1050 }
1051
56c451f4 1052 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1053 break;
1da177e4
LT
1054
1055 len -= bytes;
56c451f4 1056 offset = 0;
1da177e4
LT
1057 }
1058
1059 if (ret)
1060 goto cleanup;
1061
1062 /*
1063 * success
1064 */
ecb554a8
FT
1065 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1066 (map_data && map_data->from_user)) {
1067 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
1068 if (ret)
1069 goto cleanup;
1da177e4
LT
1070 }
1071
152e283f 1072 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
1073 return bio;
1074cleanup:
152e283f
FT
1075 if (!map_data)
1076 bio_for_each_segment(bvec, bio, i)
1077 __free_page(bvec->bv_page);
1da177e4
LT
1078
1079 bio_put(bio);
1080out_bmd:
1081 bio_free_map_data(bmd);
1082 return ERR_PTR(ret);
1083}
1084
c5dec1c3
FT
1085/**
1086 * bio_copy_user - copy user data to bio
1087 * @q: destination block queue
152e283f 1088 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1089 * @uaddr: start of user address
1090 * @len: length in bytes
1091 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1092 * @gfp_mask: memory allocation flags
c5dec1c3
FT
1093 *
1094 * Prepares and returns a bio for indirect user io, bouncing data
1095 * to/from kernel pages as necessary. Must be paired with
1096 * call bio_uncopy_user() on io completion.
1097 */
152e283f
FT
1098struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1099 unsigned long uaddr, unsigned int len,
1100 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
1101{
1102 struct sg_iovec iov;
1103
1104 iov.iov_base = (void __user *)uaddr;
1105 iov.iov_len = len;
1106
152e283f 1107 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 1108}
a112a71d 1109EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 1110
165125e1 1111static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
1112 struct block_device *bdev,
1113 struct sg_iovec *iov, int iov_count,
a3bce90e 1114 int write_to_vm, gfp_t gfp_mask)
1da177e4 1115{
f1970baf
JB
1116 int i, j;
1117 int nr_pages = 0;
1da177e4
LT
1118 struct page **pages;
1119 struct bio *bio;
f1970baf
JB
1120 int cur_page = 0;
1121 int ret, offset;
1da177e4 1122
f1970baf
JB
1123 for (i = 0; i < iov_count; i++) {
1124 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1125 unsigned long len = iov[i].iov_len;
1126 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1127 unsigned long start = uaddr >> PAGE_SHIFT;
1128
cb4644ca
JA
1129 /*
1130 * Overflow, abort
1131 */
1132 if (end < start)
1133 return ERR_PTR(-EINVAL);
1134
f1970baf
JB
1135 nr_pages += end - start;
1136 /*
ad2d7225 1137 * buffer must be aligned to at least hardsector size for now
f1970baf 1138 */
ad2d7225 1139 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1140 return ERR_PTR(-EINVAL);
1141 }
1142
1143 if (!nr_pages)
1da177e4
LT
1144 return ERR_PTR(-EINVAL);
1145
a9e9dc24 1146 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1147 if (!bio)
1148 return ERR_PTR(-ENOMEM);
1149
1150 ret = -ENOMEM;
a3bce90e 1151 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1152 if (!pages)
1153 goto out;
1154
f1970baf
JB
1155 for (i = 0; i < iov_count; i++) {
1156 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1157 unsigned long len = iov[i].iov_len;
1158 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1159 unsigned long start = uaddr >> PAGE_SHIFT;
1160 const int local_nr_pages = end - start;
1161 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1162
f5dd33c4
NP
1163 ret = get_user_pages_fast(uaddr, local_nr_pages,
1164 write_to_vm, &pages[cur_page]);
99172157
JA
1165 if (ret < local_nr_pages) {
1166 ret = -EFAULT;
f1970baf 1167 goto out_unmap;
99172157 1168 }
f1970baf
JB
1169
1170 offset = uaddr & ~PAGE_MASK;
1171 for (j = cur_page; j < page_limit; j++) {
1172 unsigned int bytes = PAGE_SIZE - offset;
1173
1174 if (len <= 0)
1175 break;
1176
1177 if (bytes > len)
1178 bytes = len;
1179
1180 /*
1181 * sorry...
1182 */
defd94b7
MC
1183 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1184 bytes)
f1970baf
JB
1185 break;
1186
1187 len -= bytes;
1188 offset = 0;
1189 }
1da177e4 1190
f1970baf 1191 cur_page = j;
1da177e4 1192 /*
f1970baf 1193 * release the pages we didn't map into the bio, if any
1da177e4 1194 */
f1970baf
JB
1195 while (j < page_limit)
1196 page_cache_release(pages[j++]);
1da177e4
LT
1197 }
1198
1da177e4
LT
1199 kfree(pages);
1200
1201 /*
1202 * set data direction, and check if mapped pages need bouncing
1203 */
1204 if (!write_to_vm)
7b6d91da 1205 bio->bi_rw |= REQ_WRITE;
1da177e4 1206
f1970baf 1207 bio->bi_bdev = bdev;
1da177e4
LT
1208 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1209 return bio;
f1970baf
JB
1210
1211 out_unmap:
1212 for (i = 0; i < nr_pages; i++) {
1213 if(!pages[i])
1214 break;
1215 page_cache_release(pages[i]);
1216 }
1217 out:
1da177e4
LT
1218 kfree(pages);
1219 bio_put(bio);
1220 return ERR_PTR(ret);
1221}
1222
1223/**
1224 * bio_map_user - map user address into bio
165125e1 1225 * @q: the struct request_queue for the bio
1da177e4
LT
1226 * @bdev: destination block device
1227 * @uaddr: start of user address
1228 * @len: length in bytes
1229 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1230 * @gfp_mask: memory allocation flags
1da177e4
LT
1231 *
1232 * Map the user space address into a bio suitable for io to a block
1233 * device. Returns an error pointer in case of error.
1234 */
165125e1 1235struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1236 unsigned long uaddr, unsigned int len, int write_to_vm,
1237 gfp_t gfp_mask)
f1970baf
JB
1238{
1239 struct sg_iovec iov;
1240
3f70353e 1241 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1242 iov.iov_len = len;
1243
a3bce90e 1244 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1245}
a112a71d 1246EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1247
1248/**
1249 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1250 * @q: the struct request_queue for the bio
f1970baf
JB
1251 * @bdev: destination block device
1252 * @iov: the iovec.
1253 * @iov_count: number of elements in the iovec
1254 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1255 * @gfp_mask: memory allocation flags
f1970baf
JB
1256 *
1257 * Map the user space address into a bio suitable for io to a block
1258 * device. Returns an error pointer in case of error.
1259 */
165125e1 1260struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1261 struct sg_iovec *iov, int iov_count,
a3bce90e 1262 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1263{
1264 struct bio *bio;
1265
a3bce90e
FT
1266 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1267 gfp_mask);
1da177e4
LT
1268 if (IS_ERR(bio))
1269 return bio;
1270
1271 /*
1272 * subtle -- if __bio_map_user() ended up bouncing a bio,
1273 * it would normally disappear when its bi_end_io is run.
1274 * however, we need it for the unmap, so grab an extra
1275 * reference to it
1276 */
1277 bio_get(bio);
1278
0e75f906 1279 return bio;
1da177e4
LT
1280}
1281
1282static void __bio_unmap_user(struct bio *bio)
1283{
1284 struct bio_vec *bvec;
1285 int i;
1286
1287 /*
1288 * make sure we dirty pages we wrote to
1289 */
1290 __bio_for_each_segment(bvec, bio, i, 0) {
1291 if (bio_data_dir(bio) == READ)
1292 set_page_dirty_lock(bvec->bv_page);
1293
1294 page_cache_release(bvec->bv_page);
1295 }
1296
1297 bio_put(bio);
1298}
1299
1300/**
1301 * bio_unmap_user - unmap a bio
1302 * @bio: the bio being unmapped
1303 *
1304 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1305 * a process context.
1306 *
1307 * bio_unmap_user() may sleep.
1308 */
1309void bio_unmap_user(struct bio *bio)
1310{
1311 __bio_unmap_user(bio);
1312 bio_put(bio);
1313}
a112a71d 1314EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1315
6712ecf8 1316static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1317{
b823825e 1318 bio_put(bio);
b823825e
JA
1319}
1320
165125e1 1321static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1322 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1323{
1324 unsigned long kaddr = (unsigned long)data;
1325 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1326 unsigned long start = kaddr >> PAGE_SHIFT;
1327 const int nr_pages = end - start;
1328 int offset, i;
1329 struct bio *bio;
1330
a9e9dc24 1331 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1332 if (!bio)
1333 return ERR_PTR(-ENOMEM);
1334
1335 offset = offset_in_page(kaddr);
1336 for (i = 0; i < nr_pages; i++) {
1337 unsigned int bytes = PAGE_SIZE - offset;
1338
1339 if (len <= 0)
1340 break;
1341
1342 if (bytes > len)
1343 bytes = len;
1344
defd94b7
MC
1345 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1346 offset) < bytes)
df46b9a4
MC
1347 break;
1348
1349 data += bytes;
1350 len -= bytes;
1351 offset = 0;
1352 }
1353
b823825e 1354 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1355 return bio;
1356}
1357
1358/**
1359 * bio_map_kern - map kernel address into bio
165125e1 1360 * @q: the struct request_queue for the bio
df46b9a4
MC
1361 * @data: pointer to buffer to map
1362 * @len: length in bytes
1363 * @gfp_mask: allocation flags for bio allocation
1364 *
1365 * Map the kernel address into a bio suitable for io to a block
1366 * device. Returns an error pointer in case of error.
1367 */
165125e1 1368struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1369 gfp_t gfp_mask)
df46b9a4
MC
1370{
1371 struct bio *bio;
1372
1373 bio = __bio_map_kern(q, data, len, gfp_mask);
1374 if (IS_ERR(bio))
1375 return bio;
1376
1377 if (bio->bi_size == len)
1378 return bio;
1379
1380 /*
1381 * Don't support partial mappings.
1382 */
1383 bio_put(bio);
1384 return ERR_PTR(-EINVAL);
1385}
a112a71d 1386EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1387
68154e90
FT
1388static void bio_copy_kern_endio(struct bio *bio, int err)
1389{
1390 struct bio_vec *bvec;
1391 const int read = bio_data_dir(bio) == READ;
76029ff3 1392 struct bio_map_data *bmd = bio->bi_private;
68154e90 1393 int i;
76029ff3 1394 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
1395
1396 __bio_for_each_segment(bvec, bio, i, 0) {
1397 char *addr = page_address(bvec->bv_page);
76029ff3 1398 int len = bmd->iovecs[i].bv_len;
68154e90 1399
4fc981ef 1400 if (read)
76029ff3 1401 memcpy(p, addr, len);
68154e90
FT
1402
1403 __free_page(bvec->bv_page);
76029ff3 1404 p += len;
68154e90
FT
1405 }
1406
76029ff3 1407 bio_free_map_data(bmd);
68154e90
FT
1408 bio_put(bio);
1409}
1410
1411/**
1412 * bio_copy_kern - copy kernel address into bio
1413 * @q: the struct request_queue for the bio
1414 * @data: pointer to buffer to copy
1415 * @len: length in bytes
1416 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1417 * @reading: data direction is READ
68154e90
FT
1418 *
1419 * copy the kernel address into a bio suitable for io to a block
1420 * device. Returns an error pointer in case of error.
1421 */
1422struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1423 gfp_t gfp_mask, int reading)
1424{
68154e90
FT
1425 struct bio *bio;
1426 struct bio_vec *bvec;
4d8ab62e 1427 int i;
68154e90 1428
4d8ab62e
FT
1429 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1430 if (IS_ERR(bio))
1431 return bio;
68154e90
FT
1432
1433 if (!reading) {
1434 void *p = data;
1435
1436 bio_for_each_segment(bvec, bio, i) {
1437 char *addr = page_address(bvec->bv_page);
1438
1439 memcpy(addr, p, bvec->bv_len);
1440 p += bvec->bv_len;
1441 }
1442 }
1443
68154e90 1444 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1445
68154e90 1446 return bio;
68154e90 1447}
a112a71d 1448EXPORT_SYMBOL(bio_copy_kern);
68154e90 1449
1da177e4
LT
1450/*
1451 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1452 * for performing direct-IO in BIOs.
1453 *
1454 * The problem is that we cannot run set_page_dirty() from interrupt context
1455 * because the required locks are not interrupt-safe. So what we can do is to
1456 * mark the pages dirty _before_ performing IO. And in interrupt context,
1457 * check that the pages are still dirty. If so, fine. If not, redirty them
1458 * in process context.
1459 *
1460 * We special-case compound pages here: normally this means reads into hugetlb
1461 * pages. The logic in here doesn't really work right for compound pages
1462 * because the VM does not uniformly chase down the head page in all cases.
1463 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1464 * handle them at all. So we skip compound pages here at an early stage.
1465 *
1466 * Note that this code is very hard to test under normal circumstances because
1467 * direct-io pins the pages with get_user_pages(). This makes
1468 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1469 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1470 * pagecache.
1471 *
1472 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1473 * deferred bio dirtying paths.
1474 */
1475
1476/*
1477 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1478 */
1479void bio_set_pages_dirty(struct bio *bio)
1480{
1481 struct bio_vec *bvec = bio->bi_io_vec;
1482 int i;
1483
1484 for (i = 0; i < bio->bi_vcnt; i++) {
1485 struct page *page = bvec[i].bv_page;
1486
1487 if (page && !PageCompound(page))
1488 set_page_dirty_lock(page);
1489 }
1490}
1491
86b6c7a7 1492static void bio_release_pages(struct bio *bio)
1da177e4
LT
1493{
1494 struct bio_vec *bvec = bio->bi_io_vec;
1495 int i;
1496
1497 for (i = 0; i < bio->bi_vcnt; i++) {
1498 struct page *page = bvec[i].bv_page;
1499
1500 if (page)
1501 put_page(page);
1502 }
1503}
1504
1505/*
1506 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1507 * If they are, then fine. If, however, some pages are clean then they must
1508 * have been written out during the direct-IO read. So we take another ref on
1509 * the BIO and the offending pages and re-dirty the pages in process context.
1510 *
1511 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1512 * here on. It will run one page_cache_release() against each page and will
1513 * run one bio_put() against the BIO.
1514 */
1515
65f27f38 1516static void bio_dirty_fn(struct work_struct *work);
1da177e4 1517
65f27f38 1518static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1519static DEFINE_SPINLOCK(bio_dirty_lock);
1520static struct bio *bio_dirty_list;
1521
1522/*
1523 * This runs in process context
1524 */
65f27f38 1525static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1526{
1527 unsigned long flags;
1528 struct bio *bio;
1529
1530 spin_lock_irqsave(&bio_dirty_lock, flags);
1531 bio = bio_dirty_list;
1532 bio_dirty_list = NULL;
1533 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1534
1535 while (bio) {
1536 struct bio *next = bio->bi_private;
1537
1538 bio_set_pages_dirty(bio);
1539 bio_release_pages(bio);
1540 bio_put(bio);
1541 bio = next;
1542 }
1543}
1544
1545void bio_check_pages_dirty(struct bio *bio)
1546{
1547 struct bio_vec *bvec = bio->bi_io_vec;
1548 int nr_clean_pages = 0;
1549 int i;
1550
1551 for (i = 0; i < bio->bi_vcnt; i++) {
1552 struct page *page = bvec[i].bv_page;
1553
1554 if (PageDirty(page) || PageCompound(page)) {
1555 page_cache_release(page);
1556 bvec[i].bv_page = NULL;
1557 } else {
1558 nr_clean_pages++;
1559 }
1560 }
1561
1562 if (nr_clean_pages) {
1563 unsigned long flags;
1564
1565 spin_lock_irqsave(&bio_dirty_lock, flags);
1566 bio->bi_private = bio_dirty_list;
1567 bio_dirty_list = bio;
1568 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1569 schedule_work(&bio_dirty_work);
1570 } else {
1571 bio_put(bio);
1572 }
1573}
1574
2d4dc890
IL
1575#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1576void bio_flush_dcache_pages(struct bio *bi)
1577{
1578 int i;
1579 struct bio_vec *bvec;
1580
1581 bio_for_each_segment(bvec, bi, i)
1582 flush_dcache_page(bvec->bv_page);
1583}
1584EXPORT_SYMBOL(bio_flush_dcache_pages);
1585#endif
1586
1da177e4
LT
1587/**
1588 * bio_endio - end I/O on a bio
1589 * @bio: bio
1da177e4
LT
1590 * @error: error, if any
1591 *
1592 * Description:
6712ecf8 1593 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1594 * preferred way to end I/O on a bio, it takes care of clearing
1595 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1596 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1597 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1598 * bio unless they own it and thus know that it has an end_io
1599 * function.
1da177e4 1600 **/
6712ecf8 1601void bio_endio(struct bio *bio, int error)
1da177e4
LT
1602{
1603 if (error)
1604 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1605 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1606 error = -EIO;
1da177e4 1607
3a366e61
TH
1608 trace_block_bio_complete(bio, error);
1609
5bb23a68 1610 if (bio->bi_end_io)
6712ecf8 1611 bio->bi_end_io(bio, error);
1da177e4 1612}
a112a71d 1613EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1614
1615void bio_pair_release(struct bio_pair *bp)
1616{
1617 if (atomic_dec_and_test(&bp->cnt)) {
1618 struct bio *master = bp->bio1.bi_private;
1619
6712ecf8 1620 bio_endio(master, bp->error);
1da177e4
LT
1621 mempool_free(bp, bp->bio2.bi_private);
1622 }
1623}
a112a71d 1624EXPORT_SYMBOL(bio_pair_release);
1da177e4 1625
6712ecf8 1626static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1627{
1628 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1629
1630 if (err)
1631 bp->error = err;
1632
1da177e4 1633 bio_pair_release(bp);
1da177e4
LT
1634}
1635
6712ecf8 1636static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1637{
1638 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1639
1640 if (err)
1641 bp->error = err;
1642
1da177e4 1643 bio_pair_release(bp);
1da177e4
LT
1644}
1645
1646/*
c7eee1b8 1647 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1648 */
6feef531 1649struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1650{
6feef531 1651 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1652
1653 if (!bp)
1654 return bp;
1655
5f3ea37c 1656 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1657 bi->bi_sector + first_sectors);
1658
5b83636a 1659 BUG_ON(bio_segments(bi) > 1);
1da177e4
LT
1660 atomic_set(&bp->cnt, 3);
1661 bp->error = 0;
1662 bp->bio1 = *bi;
1663 bp->bio2 = *bi;
1664 bp->bio2.bi_sector += first_sectors;
1665 bp->bio2.bi_size -= first_sectors << 9;
1666 bp->bio1.bi_size = first_sectors << 9;
1667
02f3939e 1668 if (bi->bi_vcnt != 0) {
5b83636a
KO
1669 bp->bv1 = *bio_iovec(bi);
1670 bp->bv2 = *bio_iovec(bi);
4363ac7c 1671
02f3939e
SL
1672 if (bio_is_rw(bi)) {
1673 bp->bv2.bv_offset += first_sectors << 9;
1674 bp->bv2.bv_len -= first_sectors << 9;
1675 bp->bv1.bv_len = first_sectors << 9;
1676 }
1da177e4 1677
02f3939e
SL
1678 bp->bio1.bi_io_vec = &bp->bv1;
1679 bp->bio2.bi_io_vec = &bp->bv2;
1da177e4 1680
02f3939e
SL
1681 bp->bio1.bi_max_vecs = 1;
1682 bp->bio2.bi_max_vecs = 1;
1683 }
a2eb0c10 1684
1da177e4
LT
1685 bp->bio1.bi_end_io = bio_pair_end_1;
1686 bp->bio2.bi_end_io = bio_pair_end_2;
1687
1688 bp->bio1.bi_private = bi;
6feef531 1689 bp->bio2.bi_private = bio_split_pool;
1da177e4 1690
7ba1ba12
MP
1691 if (bio_integrity(bi))
1692 bio_integrity_split(bi, bp, first_sectors);
1693
1da177e4
LT
1694 return bp;
1695}
a112a71d 1696EXPORT_SYMBOL(bio_split);
1da177e4 1697
ad3316bf
MP
1698/**
1699 * bio_sector_offset - Find hardware sector offset in bio
1700 * @bio: bio to inspect
1701 * @index: bio_vec index
1702 * @offset: offset in bv_page
1703 *
1704 * Return the number of hardware sectors between beginning of bio
1705 * and an end point indicated by a bio_vec index and an offset
1706 * within that vector's page.
1707 */
1708sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1709 unsigned int offset)
1710{
e1defc4f 1711 unsigned int sector_sz;
ad3316bf
MP
1712 struct bio_vec *bv;
1713 sector_t sectors;
1714 int i;
1715
e1defc4f 1716 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1717 sectors = 0;
1718
1719 if (index >= bio->bi_idx)
1720 index = bio->bi_vcnt - 1;
1721
1722 __bio_for_each_segment(bv, bio, i, 0) {
1723 if (i == index) {
1724 if (offset > bv->bv_offset)
1725 sectors += (offset - bv->bv_offset) / sector_sz;
1726 break;
1727 }
1728
1729 sectors += bv->bv_len / sector_sz;
1730 }
1731
1732 return sectors;
1733}
1734EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1735
1736/*
1737 * create memory pools for biovec's in a bio_set.
1738 * use the global biovec slabs created for general use.
1739 */
9f060e22 1740mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1da177e4 1741{
7ff9345f 1742 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1743
9f060e22 1744 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1745}
1746
1747void bioset_free(struct bio_set *bs)
1748{
df2cb6da
KO
1749 if (bs->rescue_workqueue)
1750 destroy_workqueue(bs->rescue_workqueue);
1751
1da177e4
LT
1752 if (bs->bio_pool)
1753 mempool_destroy(bs->bio_pool);
1754
9f060e22
KO
1755 if (bs->bvec_pool)
1756 mempool_destroy(bs->bvec_pool);
1757
7878cba9 1758 bioset_integrity_free(bs);
bb799ca0 1759 bio_put_slab(bs);
1da177e4
LT
1760
1761 kfree(bs);
1762}
a112a71d 1763EXPORT_SYMBOL(bioset_free);
1da177e4 1764
bb799ca0
JA
1765/**
1766 * bioset_create - Create a bio_set
1767 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1768 * @front_pad: Number of bytes to allocate in front of the returned bio
1769 *
1770 * Description:
1771 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1772 * to ask for a number of bytes to be allocated in front of the bio.
1773 * Front pad allocation is useful for embedding the bio inside
1774 * another structure, to avoid allocating extra data to go with the bio.
1775 * Note that the bio must be embedded at the END of that structure always,
1776 * or things will break badly.
1777 */
1778struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1779{
392ddc32 1780 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1781 struct bio_set *bs;
1da177e4 1782
1b434498 1783 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1784 if (!bs)
1785 return NULL;
1786
bb799ca0 1787 bs->front_pad = front_pad;
1b434498 1788
df2cb6da
KO
1789 spin_lock_init(&bs->rescue_lock);
1790 bio_list_init(&bs->rescue_list);
1791 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1792
392ddc32 1793 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1794 if (!bs->bio_slab) {
1795 kfree(bs);
1796 return NULL;
1797 }
1798
1799 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1800 if (!bs->bio_pool)
1801 goto bad;
1802
9f060e22
KO
1803 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1804 if (!bs->bvec_pool)
df2cb6da
KO
1805 goto bad;
1806
1807 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1808 if (!bs->rescue_workqueue)
1809 goto bad;
1da177e4 1810
df2cb6da 1811 return bs;
1da177e4
LT
1812bad:
1813 bioset_free(bs);
1814 return NULL;
1815}
a112a71d 1816EXPORT_SYMBOL(bioset_create);
1da177e4 1817
852c788f
TH
1818#ifdef CONFIG_BLK_CGROUP
1819/**
1820 * bio_associate_current - associate a bio with %current
1821 * @bio: target bio
1822 *
1823 * Associate @bio with %current if it hasn't been associated yet. Block
1824 * layer will treat @bio as if it were issued by %current no matter which
1825 * task actually issues it.
1826 *
1827 * This function takes an extra reference of @task's io_context and blkcg
1828 * which will be put when @bio is released. The caller must own @bio,
1829 * ensure %current->io_context exists, and is responsible for synchronizing
1830 * calls to this function.
1831 */
1832int bio_associate_current(struct bio *bio)
1833{
1834 struct io_context *ioc;
1835 struct cgroup_subsys_state *css;
1836
1837 if (bio->bi_ioc)
1838 return -EBUSY;
1839
1840 ioc = current->io_context;
1841 if (!ioc)
1842 return -ENOENT;
1843
1844 /* acquire active ref on @ioc and associate */
1845 get_io_context_active(ioc);
1846 bio->bi_ioc = ioc;
1847
1848 /* associate blkcg if exists */
1849 rcu_read_lock();
1850 css = task_subsys_state(current, blkio_subsys_id);
1851 if (css && css_tryget(css))
1852 bio->bi_css = css;
1853 rcu_read_unlock();
1854
1855 return 0;
1856}
1857
1858/**
1859 * bio_disassociate_task - undo bio_associate_current()
1860 * @bio: target bio
1861 */
1862void bio_disassociate_task(struct bio *bio)
1863{
1864 if (bio->bi_ioc) {
1865 put_io_context(bio->bi_ioc);
1866 bio->bi_ioc = NULL;
1867 }
1868 if (bio->bi_css) {
1869 css_put(bio->bi_css);
1870 bio->bi_css = NULL;
1871 }
1872}
1873
1874#endif /* CONFIG_BLK_CGROUP */
1875
1da177e4
LT
1876static void __init biovec_init_slabs(void)
1877{
1878 int i;
1879
1880 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1881 int size;
1882 struct biovec_slab *bvs = bvec_slabs + i;
1883
a7fcd37c
JA
1884 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1885 bvs->slab = NULL;
1886 continue;
1887 }
a7fcd37c 1888
1da177e4
LT
1889 size = bvs->nr_vecs * sizeof(struct bio_vec);
1890 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1891 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1892 }
1893}
1894
1895static int __init init_bio(void)
1896{
bb799ca0
JA
1897 bio_slab_max = 2;
1898 bio_slab_nr = 0;
1899 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1900 if (!bio_slabs)
1901 panic("bio: can't allocate bios\n");
1da177e4 1902
7878cba9 1903 bio_integrity_init();
1da177e4
LT
1904 biovec_init_slabs();
1905
bb799ca0 1906 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1907 if (!fs_bio_set)
1908 panic("bio: can't allocate bios\n");
1909
a91a2785
MP
1910 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1911 panic("bio: can't create integrity pool\n");
1912
0eaae62a
MD
1913 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1914 sizeof(struct bio_pair));
1da177e4
LT
1915 if (!bio_split_pool)
1916 panic("bio: can't create split pool\n");
1917
1918 return 0;
1919}
1da177e4 1920subsys_initcall(init_bio);