]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/bio.c
block: Refactor bio_clone_bioset() for immutable biovecs
[mirror_ubuntu-bionic-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
f1970baf 31#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 32
55782138 33#include <trace/events/block.h>
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
6feef531 41static mempool_t *bio_split_pool __read_mostly;
1da177e4 42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
1da177e4 48#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 49static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
50 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
51d654e1 58struct bio_set *fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
118 if (!slab)
119 goto out_unlock;
120
80cdc6da 121 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
161 return bvec_slabs[idx].nr_vecs;
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0
JA
165{
166 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
167
168 if (idx == BIOVEC_MAX_IDX)
9f060e22 169 mempool_free(bv, pool);
bb799ca0
JA
170 else {
171 struct biovec_slab *bvs = bvec_slabs + idx;
172
173 kmem_cache_free(bvs->slab, bv);
174 }
175}
176
9f060e22
KO
177struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
178 mempool_t *pool)
1da177e4
LT
179{
180 struct bio_vec *bvl;
1da177e4 181
7ff9345f
JA
182 /*
183 * see comment near bvec_array define!
184 */
185 switch (nr) {
186 case 1:
187 *idx = 0;
188 break;
189 case 2 ... 4:
190 *idx = 1;
191 break;
192 case 5 ... 16:
193 *idx = 2;
194 break;
195 case 17 ... 64:
196 *idx = 3;
197 break;
198 case 65 ... 128:
199 *idx = 4;
200 break;
201 case 129 ... BIO_MAX_PAGES:
202 *idx = 5;
203 break;
204 default:
205 return NULL;
206 }
207
208 /*
209 * idx now points to the pool we want to allocate from. only the
210 * 1-vec entry pool is mempool backed.
211 */
212 if (*idx == BIOVEC_MAX_IDX) {
213fallback:
9f060e22 214 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
215 } else {
216 struct biovec_slab *bvs = bvec_slabs + *idx;
217 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
218
0a0d96b0 219 /*
7ff9345f
JA
220 * Make this allocation restricted and don't dump info on
221 * allocation failures, since we'll fallback to the mempool
222 * in case of failure.
0a0d96b0 223 */
7ff9345f 224 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 225
0a0d96b0 226 /*
7ff9345f
JA
227 * Try a slab allocation. If this fails and __GFP_WAIT
228 * is set, retry with the 1-entry mempool
0a0d96b0 229 */
7ff9345f
JA
230 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
231 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
232 *idx = BIOVEC_MAX_IDX;
233 goto fallback;
234 }
235 }
236
1da177e4
LT
237 return bvl;
238}
239
4254bba1 240static void __bio_free(struct bio *bio)
1da177e4 241{
4254bba1 242 bio_disassociate_task(bio);
1da177e4 243
7ba1ba12 244 if (bio_integrity(bio))
1e2a410f 245 bio_integrity_free(bio);
4254bba1 246}
7ba1ba12 247
4254bba1
KO
248static void bio_free(struct bio *bio)
249{
250 struct bio_set *bs = bio->bi_pool;
251 void *p;
252
253 __bio_free(bio);
254
255 if (bs) {
a38352e0 256 if (bio_flagged(bio, BIO_OWNS_VEC))
9f060e22 257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
4254bba1
KO
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
bb799ca0
JA
263 p -= bs->front_pad;
264
4254bba1
KO
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
3676347a
PO
270}
271
858119e1 272void bio_init(struct bio *bio)
1da177e4 273{
2b94de55 274 memset(bio, 0, sizeof(*bio));
1da177e4 275 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 276 atomic_set(&bio->bi_cnt, 1);
1da177e4 277}
a112a71d 278EXPORT_SYMBOL(bio_init);
1da177e4 279
f44b48c7
KO
280/**
281 * bio_reset - reinitialize a bio
282 * @bio: bio to reset
283 *
284 * Description:
285 * After calling bio_reset(), @bio will be in the same state as a freshly
286 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
287 * preserved are the ones that are initialized by bio_alloc_bioset(). See
288 * comment in struct bio.
289 */
290void bio_reset(struct bio *bio)
291{
292 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
293
4254bba1 294 __bio_free(bio);
f44b48c7
KO
295
296 memset(bio, 0, BIO_RESET_BYTES);
297 bio->bi_flags = flags|(1 << BIO_UPTODATE);
298}
299EXPORT_SYMBOL(bio_reset);
300
df2cb6da
KO
301static void bio_alloc_rescue(struct work_struct *work)
302{
303 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
304 struct bio *bio;
305
306 while (1) {
307 spin_lock(&bs->rescue_lock);
308 bio = bio_list_pop(&bs->rescue_list);
309 spin_unlock(&bs->rescue_lock);
310
311 if (!bio)
312 break;
313
314 generic_make_request(bio);
315 }
316}
317
318static void punt_bios_to_rescuer(struct bio_set *bs)
319{
320 struct bio_list punt, nopunt;
321 struct bio *bio;
322
323 /*
324 * In order to guarantee forward progress we must punt only bios that
325 * were allocated from this bio_set; otherwise, if there was a bio on
326 * there for a stacking driver higher up in the stack, processing it
327 * could require allocating bios from this bio_set, and doing that from
328 * our own rescuer would be bad.
329 *
330 * Since bio lists are singly linked, pop them all instead of trying to
331 * remove from the middle of the list:
332 */
333
334 bio_list_init(&punt);
335 bio_list_init(&nopunt);
336
337 while ((bio = bio_list_pop(current->bio_list)))
338 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
339
340 *current->bio_list = nopunt;
341
342 spin_lock(&bs->rescue_lock);
343 bio_list_merge(&bs->rescue_list, &punt);
344 spin_unlock(&bs->rescue_lock);
345
346 queue_work(bs->rescue_workqueue, &bs->rescue_work);
347}
348
1da177e4
LT
349/**
350 * bio_alloc_bioset - allocate a bio for I/O
351 * @gfp_mask: the GFP_ mask given to the slab allocator
352 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 353 * @bs: the bio_set to allocate from.
1da177e4
LT
354 *
355 * Description:
3f86a82a
KO
356 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
357 * backed by the @bs's mempool.
358 *
359 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
360 * able to allocate a bio. This is due to the mempool guarantees. To make this
361 * work, callers must never allocate more than 1 bio at a time from this pool.
362 * Callers that need to allocate more than 1 bio must always submit the
363 * previously allocated bio for IO before attempting to allocate a new one.
364 * Failure to do so can cause deadlocks under memory pressure.
365 *
df2cb6da
KO
366 * Note that when running under generic_make_request() (i.e. any block
367 * driver), bios are not submitted until after you return - see the code in
368 * generic_make_request() that converts recursion into iteration, to prevent
369 * stack overflows.
370 *
371 * This would normally mean allocating multiple bios under
372 * generic_make_request() would be susceptible to deadlocks, but we have
373 * deadlock avoidance code that resubmits any blocked bios from a rescuer
374 * thread.
375 *
376 * However, we do not guarantee forward progress for allocations from other
377 * mempools. Doing multiple allocations from the same mempool under
378 * generic_make_request() should be avoided - instead, use bio_set's front_pad
379 * for per bio allocations.
380 *
3f86a82a
KO
381 * RETURNS:
382 * Pointer to new bio on success, NULL on failure.
383 */
dd0fc66f 384struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 385{
df2cb6da 386 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
387 unsigned front_pad;
388 unsigned inline_vecs;
451a9ebf 389 unsigned long idx = BIO_POOL_NONE;
34053979 390 struct bio_vec *bvl = NULL;
451a9ebf
TH
391 struct bio *bio;
392 void *p;
393
3f86a82a
KO
394 if (!bs) {
395 if (nr_iovecs > UIO_MAXIOV)
396 return NULL;
397
398 p = kmalloc(sizeof(struct bio) +
399 nr_iovecs * sizeof(struct bio_vec),
400 gfp_mask);
401 front_pad = 0;
402 inline_vecs = nr_iovecs;
403 } else {
df2cb6da
KO
404 /*
405 * generic_make_request() converts recursion to iteration; this
406 * means if we're running beneath it, any bios we allocate and
407 * submit will not be submitted (and thus freed) until after we
408 * return.
409 *
410 * This exposes us to a potential deadlock if we allocate
411 * multiple bios from the same bio_set() while running
412 * underneath generic_make_request(). If we were to allocate
413 * multiple bios (say a stacking block driver that was splitting
414 * bios), we would deadlock if we exhausted the mempool's
415 * reserve.
416 *
417 * We solve this, and guarantee forward progress, with a rescuer
418 * workqueue per bio_set. If we go to allocate and there are
419 * bios on current->bio_list, we first try the allocation
420 * without __GFP_WAIT; if that fails, we punt those bios we
421 * would be blocking to the rescuer workqueue before we retry
422 * with the original gfp_flags.
423 */
424
425 if (current->bio_list && !bio_list_empty(current->bio_list))
426 gfp_mask &= ~__GFP_WAIT;
427
3f86a82a 428 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
429 if (!p && gfp_mask != saved_gfp) {
430 punt_bios_to_rescuer(bs);
431 gfp_mask = saved_gfp;
432 p = mempool_alloc(bs->bio_pool, gfp_mask);
433 }
434
3f86a82a
KO
435 front_pad = bs->front_pad;
436 inline_vecs = BIO_INLINE_VECS;
437 }
438
451a9ebf
TH
439 if (unlikely(!p))
440 return NULL;
1da177e4 441
3f86a82a 442 bio = p + front_pad;
34053979
IM
443 bio_init(bio);
444
3f86a82a 445 if (nr_iovecs > inline_vecs) {
9f060e22 446 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
447 if (!bvl && gfp_mask != saved_gfp) {
448 punt_bios_to_rescuer(bs);
449 gfp_mask = saved_gfp;
9f060e22 450 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
451 }
452
34053979
IM
453 if (unlikely(!bvl))
454 goto err_free;
a38352e0
KO
455
456 bio->bi_flags |= 1 << BIO_OWNS_VEC;
3f86a82a
KO
457 } else if (nr_iovecs) {
458 bvl = bio->bi_inline_vecs;
1da177e4 459 }
3f86a82a
KO
460
461 bio->bi_pool = bs;
34053979
IM
462 bio->bi_flags |= idx << BIO_POOL_OFFSET;
463 bio->bi_max_vecs = nr_iovecs;
34053979 464 bio->bi_io_vec = bvl;
1da177e4 465 return bio;
34053979
IM
466
467err_free:
451a9ebf 468 mempool_free(p, bs->bio_pool);
34053979 469 return NULL;
1da177e4 470}
a112a71d 471EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 472
1da177e4
LT
473void zero_fill_bio(struct bio *bio)
474{
475 unsigned long flags;
7988613b
KO
476 struct bio_vec bv;
477 struct bvec_iter iter;
1da177e4 478
7988613b
KO
479 bio_for_each_segment(bv, bio, iter) {
480 char *data = bvec_kmap_irq(&bv, &flags);
481 memset(data, 0, bv.bv_len);
482 flush_dcache_page(bv.bv_page);
1da177e4
LT
483 bvec_kunmap_irq(data, &flags);
484 }
485}
486EXPORT_SYMBOL(zero_fill_bio);
487
488/**
489 * bio_put - release a reference to a bio
490 * @bio: bio to release reference to
491 *
492 * Description:
493 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 494 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
495 **/
496void bio_put(struct bio *bio)
497{
498 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
499
500 /*
501 * last put frees it
502 */
4254bba1
KO
503 if (atomic_dec_and_test(&bio->bi_cnt))
504 bio_free(bio);
1da177e4 505}
a112a71d 506EXPORT_SYMBOL(bio_put);
1da177e4 507
165125e1 508inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
509{
510 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
511 blk_recount_segments(q, bio);
512
513 return bio->bi_phys_segments;
514}
a112a71d 515EXPORT_SYMBOL(bio_phys_segments);
1da177e4 516
1da177e4
LT
517/**
518 * __bio_clone - clone a bio
519 * @bio: destination bio
520 * @bio_src: bio to clone
521 *
522 * Clone a &bio. Caller will own the returned bio, but not
523 * the actual data it points to. Reference count of returned
524 * bio will be one.
525 */
858119e1 526void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 527{
003b5c57
KO
528 if (bio_is_rw(bio_src)) {
529 struct bio_vec bv;
530 struct bvec_iter iter;
531
532 bio_for_each_segment(bv, bio_src, iter)
533 bio->bi_io_vec[bio->bi_vcnt++] = bv;
534 } else if (bio_has_data(bio_src)) {
535 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
536 bio_src->bi_max_vecs * sizeof(struct bio_vec));
537 bio->bi_vcnt = bio_src->bi_vcnt;
538 }
1da177e4 539
5d84070e
JA
540 /*
541 * most users will be overriding ->bi_bdev with a new target,
542 * so we don't set nor calculate new physical/hw segment counts here
543 */
1da177e4
LT
544 bio->bi_bdev = bio_src->bi_bdev;
545 bio->bi_flags |= 1 << BIO_CLONED;
546 bio->bi_rw = bio_src->bi_rw;
4550dd6c 547 bio->bi_iter = bio_src->bi_iter;
1da177e4 548}
a112a71d 549EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
550
551/**
bdb53207
KO
552 * bio_clone_bioset - clone a bio
553 * @bio_src: bio to clone
1da177e4 554 * @gfp_mask: allocation priority
bf800ef1 555 * @bs: bio_set to allocate from
1da177e4 556 *
bdb53207
KO
557 * Clone bio. Caller will own the returned bio, but not the actual data it
558 * points to. Reference count of returned bio will be one.
1da177e4 559 */
bdb53207 560struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
bf800ef1 561 struct bio_set *bs)
1da177e4 562{
bdb53207
KO
563 unsigned nr_iovecs = 0;
564 struct bvec_iter iter;
565 struct bio_vec bv;
566 struct bio *bio;
1da177e4 567
bdb53207
KO
568 /*
569 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
570 * bio_src->bi_io_vec to bio->bi_io_vec.
571 *
572 * We can't do that anymore, because:
573 *
574 * - The point of cloning the biovec is to produce a bio with a biovec
575 * the caller can modify: bi_idx and bi_bvec_done should be 0.
576 *
577 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
578 * we tried to clone the whole thing bio_alloc_bioset() would fail.
579 * But the clone should succeed as long as the number of biovecs we
580 * actually need to allocate is fewer than BIO_MAX_PAGES.
581 *
582 * - Lastly, bi_vcnt should not be looked at or relied upon by code
583 * that does not own the bio - reason being drivers don't use it for
584 * iterating over the biovec anymore, so expecting it to be kept up
585 * to date (i.e. for clones that share the parent biovec) is just
586 * asking for trouble and would force extra work on
587 * __bio_clone_fast() anyways.
588 */
589
590 bio_for_each_segment(bv, bio_src, iter)
591 nr_iovecs++;
592
593 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, bs);
594 if (!bio)
7ba1ba12
MP
595 return NULL;
596
bdb53207
KO
597 bio->bi_bdev = bio_src->bi_bdev;
598 bio->bi_rw = bio_src->bi_rw;
599 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
600 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 601
bdb53207
KO
602 bio_for_each_segment(bv, bio_src, iter)
603 bio->bi_io_vec[bio->bi_vcnt++] = bv;
7ba1ba12 604
bdb53207
KO
605 if (bio_integrity(bio_src)) {
606 int ret;
7ba1ba12 607
bdb53207 608 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 609 if (ret < 0) {
bdb53207 610 bio_put(bio);
7ba1ba12 611 return NULL;
059ea331 612 }
3676347a 613 }
1da177e4 614
bdb53207 615 return bio;
1da177e4 616}
bf800ef1 617EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
618
619/**
620 * bio_get_nr_vecs - return approx number of vecs
621 * @bdev: I/O target
622 *
623 * Return the approximate number of pages we can send to this target.
624 * There's no guarantee that you will be able to fit this number of pages
625 * into a bio, it does not account for dynamic restrictions that vary
626 * on offset.
627 */
628int bio_get_nr_vecs(struct block_device *bdev)
629{
165125e1 630 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
631 int nr_pages;
632
633 nr_pages = min_t(unsigned,
5abebfdd
KO
634 queue_max_segments(q),
635 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
636
637 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
638
1da177e4 639}
a112a71d 640EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 641
165125e1 642static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7 643 *page, unsigned int len, unsigned int offset,
34f2fd8d 644 unsigned int max_sectors)
1da177e4
LT
645{
646 int retried_segments = 0;
647 struct bio_vec *bvec;
648
649 /*
650 * cloned bio must not modify vec list
651 */
652 if (unlikely(bio_flagged(bio, BIO_CLONED)))
653 return 0;
654
4f024f37 655 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
656 return 0;
657
80cfd548
JA
658 /*
659 * For filesystems with a blocksize smaller than the pagesize
660 * we will often be called with the same page as last time and
661 * a consecutive offset. Optimize this special case.
662 */
663 if (bio->bi_vcnt > 0) {
664 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
665
666 if (page == prev->bv_page &&
667 offset == prev->bv_offset + prev->bv_len) {
1d616585 668 unsigned int prev_bv_len = prev->bv_len;
80cfd548 669 prev->bv_len += len;
cc371e66
AK
670
671 if (q->merge_bvec_fn) {
672 struct bvec_merge_data bvm = {
1d616585
DM
673 /* prev_bvec is already charged in
674 bi_size, discharge it in order to
675 simulate merging updated prev_bvec
676 as new bvec. */
cc371e66 677 .bi_bdev = bio->bi_bdev,
4f024f37
KO
678 .bi_sector = bio->bi_iter.bi_sector,
679 .bi_size = bio->bi_iter.bi_size -
680 prev_bv_len,
cc371e66
AK
681 .bi_rw = bio->bi_rw,
682 };
683
8bf8c376 684 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
685 prev->bv_len -= len;
686 return 0;
687 }
80cfd548
JA
688 }
689
690 goto done;
691 }
692 }
693
694 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
695 return 0;
696
697 /*
698 * we might lose a segment or two here, but rather that than
699 * make this too complex.
700 */
701
8a78362c 702 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
703
704 if (retried_segments)
705 return 0;
706
707 retried_segments = 1;
708 blk_recount_segments(q, bio);
709 }
710
711 /*
712 * setup the new entry, we might clear it again later if we
713 * cannot add the page
714 */
715 bvec = &bio->bi_io_vec[bio->bi_vcnt];
716 bvec->bv_page = page;
717 bvec->bv_len = len;
718 bvec->bv_offset = offset;
719
720 /*
721 * if queue has other restrictions (eg varying max sector size
722 * depending on offset), it can specify a merge_bvec_fn in the
723 * queue to get further control
724 */
725 if (q->merge_bvec_fn) {
cc371e66
AK
726 struct bvec_merge_data bvm = {
727 .bi_bdev = bio->bi_bdev,
4f024f37
KO
728 .bi_sector = bio->bi_iter.bi_sector,
729 .bi_size = bio->bi_iter.bi_size,
cc371e66
AK
730 .bi_rw = bio->bi_rw,
731 };
732
1da177e4
LT
733 /*
734 * merge_bvec_fn() returns number of bytes it can accept
735 * at this offset
736 */
8bf8c376 737 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
738 bvec->bv_page = NULL;
739 bvec->bv_len = 0;
740 bvec->bv_offset = 0;
741 return 0;
742 }
743 }
744
745 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 746 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
747 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
748
749 bio->bi_vcnt++;
750 bio->bi_phys_segments++;
80cfd548 751 done:
4f024f37 752 bio->bi_iter.bi_size += len;
1da177e4
LT
753 return len;
754}
755
6e68af66
MC
756/**
757 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 758 * @q: the target queue
6e68af66
MC
759 * @bio: destination bio
760 * @page: page to add
761 * @len: vec entry length
762 * @offset: vec entry offset
763 *
764 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
765 * number of reasons, such as the bio being full or target block device
766 * limitations. The target block device must allow bio's up to PAGE_SIZE,
767 * so it is always possible to add a single page to an empty bio.
768 *
769 * This should only be used by REQ_PC bios.
6e68af66 770 */
165125e1 771int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
772 unsigned int len, unsigned int offset)
773{
ae03bf63
MP
774 return __bio_add_page(q, bio, page, len, offset,
775 queue_max_hw_sectors(q));
6e68af66 776}
a112a71d 777EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 778
1da177e4
LT
779/**
780 * bio_add_page - attempt to add page to bio
781 * @bio: destination bio
782 * @page: page to add
783 * @len: vec entry length
784 * @offset: vec entry offset
785 *
786 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
787 * number of reasons, such as the bio being full or target block device
788 * limitations. The target block device must allow bio's up to PAGE_SIZE,
789 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
790 */
791int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
792 unsigned int offset)
793{
defd94b7 794 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 795 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 796}
a112a71d 797EXPORT_SYMBOL(bio_add_page);
1da177e4 798
9e882242
KO
799struct submit_bio_ret {
800 struct completion event;
801 int error;
802};
803
804static void submit_bio_wait_endio(struct bio *bio, int error)
805{
806 struct submit_bio_ret *ret = bio->bi_private;
807
808 ret->error = error;
809 complete(&ret->event);
810}
811
812/**
813 * submit_bio_wait - submit a bio, and wait until it completes
814 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
815 * @bio: The &struct bio which describes the I/O
816 *
817 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
818 * bio_endio() on failure.
819 */
820int submit_bio_wait(int rw, struct bio *bio)
821{
822 struct submit_bio_ret ret;
823
824 rw |= REQ_SYNC;
825 init_completion(&ret.event);
826 bio->bi_private = &ret;
827 bio->bi_end_io = submit_bio_wait_endio;
828 submit_bio(rw, bio);
829 wait_for_completion(&ret.event);
830
831 return ret.error;
832}
833EXPORT_SYMBOL(submit_bio_wait);
834
054bdf64
KO
835/**
836 * bio_advance - increment/complete a bio by some number of bytes
837 * @bio: bio to advance
838 * @bytes: number of bytes to complete
839 *
840 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
841 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
842 * be updated on the last bvec as well.
843 *
844 * @bio will then represent the remaining, uncompleted portion of the io.
845 */
846void bio_advance(struct bio *bio, unsigned bytes)
847{
848 if (bio_integrity(bio))
849 bio_integrity_advance(bio, bytes);
850
4550dd6c 851 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
852}
853EXPORT_SYMBOL(bio_advance);
854
a0787606
KO
855/**
856 * bio_alloc_pages - allocates a single page for each bvec in a bio
857 * @bio: bio to allocate pages for
858 * @gfp_mask: flags for allocation
859 *
860 * Allocates pages up to @bio->bi_vcnt.
861 *
862 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
863 * freed.
864 */
865int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
866{
867 int i;
868 struct bio_vec *bv;
869
870 bio_for_each_segment_all(bv, bio, i) {
871 bv->bv_page = alloc_page(gfp_mask);
872 if (!bv->bv_page) {
873 while (--bv >= bio->bi_io_vec)
874 __free_page(bv->bv_page);
875 return -ENOMEM;
876 }
877 }
878
879 return 0;
880}
881EXPORT_SYMBOL(bio_alloc_pages);
882
16ac3d63
KO
883/**
884 * bio_copy_data - copy contents of data buffers from one chain of bios to
885 * another
886 * @src: source bio list
887 * @dst: destination bio list
888 *
889 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
890 * @src and @dst as linked lists of bios.
891 *
892 * Stops when it reaches the end of either @src or @dst - that is, copies
893 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
894 */
895void bio_copy_data(struct bio *dst, struct bio *src)
896{
1cb9dda4
KO
897 struct bvec_iter src_iter, dst_iter;
898 struct bio_vec src_bv, dst_bv;
16ac3d63 899 void *src_p, *dst_p;
1cb9dda4 900 unsigned bytes;
16ac3d63 901
1cb9dda4
KO
902 src_iter = src->bi_iter;
903 dst_iter = dst->bi_iter;
16ac3d63
KO
904
905 while (1) {
1cb9dda4
KO
906 if (!src_iter.bi_size) {
907 src = src->bi_next;
908 if (!src)
909 break;
16ac3d63 910
1cb9dda4 911 src_iter = src->bi_iter;
16ac3d63
KO
912 }
913
1cb9dda4
KO
914 if (!dst_iter.bi_size) {
915 dst = dst->bi_next;
916 if (!dst)
917 break;
16ac3d63 918
1cb9dda4 919 dst_iter = dst->bi_iter;
16ac3d63
KO
920 }
921
1cb9dda4
KO
922 src_bv = bio_iter_iovec(src, src_iter);
923 dst_bv = bio_iter_iovec(dst, dst_iter);
924
925 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 926
1cb9dda4
KO
927 src_p = kmap_atomic(src_bv.bv_page);
928 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 929
1cb9dda4
KO
930 memcpy(dst_p + dst_bv.bv_offset,
931 src_p + src_bv.bv_offset,
16ac3d63
KO
932 bytes);
933
934 kunmap_atomic(dst_p);
935 kunmap_atomic(src_p);
936
1cb9dda4
KO
937 bio_advance_iter(src, &src_iter, bytes);
938 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
939 }
940}
941EXPORT_SYMBOL(bio_copy_data);
942
1da177e4
LT
943struct bio_map_data {
944 struct bio_vec *iovecs;
c5dec1c3 945 struct sg_iovec *sgvecs;
152e283f
FT
946 int nr_sgvecs;
947 int is_our_pages;
1da177e4
LT
948};
949
c5dec1c3 950static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
951 struct sg_iovec *iov, int iov_count,
952 int is_our_pages)
1da177e4
LT
953{
954 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
955 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
956 bmd->nr_sgvecs = iov_count;
152e283f 957 bmd->is_our_pages = is_our_pages;
1da177e4
LT
958 bio->bi_private = bmd;
959}
960
961static void bio_free_map_data(struct bio_map_data *bmd)
962{
963 kfree(bmd->iovecs);
c5dec1c3 964 kfree(bmd->sgvecs);
1da177e4
LT
965 kfree(bmd);
966}
967
121f0994
DC
968static struct bio_map_data *bio_alloc_map_data(int nr_segs,
969 unsigned int iov_count,
76029ff3 970 gfp_t gfp_mask)
1da177e4 971{
f3f63c1c
JA
972 struct bio_map_data *bmd;
973
974 if (iov_count > UIO_MAXIOV)
975 return NULL;
1da177e4 976
f3f63c1c 977 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
978 if (!bmd)
979 return NULL;
980
76029ff3 981 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
982 if (!bmd->iovecs) {
983 kfree(bmd);
984 return NULL;
985 }
986
76029ff3 987 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 988 if (bmd->sgvecs)
1da177e4
LT
989 return bmd;
990
c5dec1c3 991 kfree(bmd->iovecs);
1da177e4
LT
992 kfree(bmd);
993 return NULL;
994}
995
aefcc28a 996static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
997 struct sg_iovec *iov, int iov_count,
998 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
999{
1000 int ret = 0, i;
1001 struct bio_vec *bvec;
1002 int iov_idx = 0;
1003 unsigned int iov_off = 0;
c5dec1c3 1004
d74c6d51 1005 bio_for_each_segment_all(bvec, bio, i) {
c5dec1c3 1006 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 1007 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
1008
1009 while (bv_len && iov_idx < iov_count) {
1010 unsigned int bytes;
0e0c6212 1011 char __user *iov_addr;
c5dec1c3
FT
1012
1013 bytes = min_t(unsigned int,
1014 iov[iov_idx].iov_len - iov_off, bv_len);
1015 iov_addr = iov[iov_idx].iov_base + iov_off;
1016
1017 if (!ret) {
ecb554a8 1018 if (to_user)
c5dec1c3
FT
1019 ret = copy_to_user(iov_addr, bv_addr,
1020 bytes);
1021
ecb554a8
FT
1022 if (from_user)
1023 ret = copy_from_user(bv_addr, iov_addr,
1024 bytes);
1025
c5dec1c3
FT
1026 if (ret)
1027 ret = -EFAULT;
1028 }
1029
1030 bv_len -= bytes;
1031 bv_addr += bytes;
1032 iov_addr += bytes;
1033 iov_off += bytes;
1034
1035 if (iov[iov_idx].iov_len == iov_off) {
1036 iov_idx++;
1037 iov_off = 0;
1038 }
1039 }
1040
152e283f 1041 if (do_free_page)
c5dec1c3
FT
1042 __free_page(bvec->bv_page);
1043 }
1044
1045 return ret;
1046}
1047
1da177e4
LT
1048/**
1049 * bio_uncopy_user - finish previously mapped bio
1050 * @bio: bio being terminated
1051 *
1052 * Free pages allocated from bio_copy_user() and write back data
1053 * to user space in case of a read.
1054 */
1055int bio_uncopy_user(struct bio *bio)
1056{
1057 struct bio_map_data *bmd = bio->bi_private;
35dc2483
RD
1058 struct bio_vec *bvec;
1059 int ret = 0, i;
1da177e4 1060
35dc2483
RD
1061 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1062 /*
1063 * if we're in a workqueue, the request is orphaned, so
1064 * don't copy into a random user address space, just free.
1065 */
1066 if (current->mm)
1067 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
1068 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
1069 0, bmd->is_our_pages);
1070 else if (bmd->is_our_pages)
1071 bio_for_each_segment_all(bvec, bio, i)
1072 __free_page(bvec->bv_page);
1073 }
1da177e4
LT
1074 bio_free_map_data(bmd);
1075 bio_put(bio);
1076 return ret;
1077}
a112a71d 1078EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
1079
1080/**
c5dec1c3 1081 * bio_copy_user_iov - copy user data to bio
1da177e4 1082 * @q: destination block queue
152e283f 1083 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1084 * @iov: the iovec.
1085 * @iov_count: number of elements in the iovec
1da177e4 1086 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1087 * @gfp_mask: memory allocation flags
1da177e4
LT
1088 *
1089 * Prepares and returns a bio for indirect user io, bouncing data
1090 * to/from kernel pages as necessary. Must be paired with
1091 * call bio_uncopy_user() on io completion.
1092 */
152e283f
FT
1093struct bio *bio_copy_user_iov(struct request_queue *q,
1094 struct rq_map_data *map_data,
1095 struct sg_iovec *iov, int iov_count,
1096 int write_to_vm, gfp_t gfp_mask)
1da177e4 1097{
1da177e4
LT
1098 struct bio_map_data *bmd;
1099 struct bio_vec *bvec;
1100 struct page *page;
1101 struct bio *bio;
1102 int i, ret;
c5dec1c3
FT
1103 int nr_pages = 0;
1104 unsigned int len = 0;
56c451f4 1105 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 1106
c5dec1c3
FT
1107 for (i = 0; i < iov_count; i++) {
1108 unsigned long uaddr;
1109 unsigned long end;
1110 unsigned long start;
1111
1112 uaddr = (unsigned long)iov[i].iov_base;
1113 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1114 start = uaddr >> PAGE_SHIFT;
1115
cb4644ca
JA
1116 /*
1117 * Overflow, abort
1118 */
1119 if (end < start)
1120 return ERR_PTR(-EINVAL);
1121
c5dec1c3
FT
1122 nr_pages += end - start;
1123 len += iov[i].iov_len;
1124 }
1125
69838727
FT
1126 if (offset)
1127 nr_pages++;
1128
a3bce90e 1129 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
1130 if (!bmd)
1131 return ERR_PTR(-ENOMEM);
1132
1da177e4 1133 ret = -ENOMEM;
a9e9dc24 1134 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1135 if (!bio)
1136 goto out_bmd;
1137
7b6d91da
CH
1138 if (!write_to_vm)
1139 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
1140
1141 ret = 0;
56c451f4
FT
1142
1143 if (map_data) {
e623ddb4 1144 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1145 i = map_data->offset / PAGE_SIZE;
1146 }
1da177e4 1147 while (len) {
e623ddb4 1148 unsigned int bytes = PAGE_SIZE;
1da177e4 1149
56c451f4
FT
1150 bytes -= offset;
1151
1da177e4
LT
1152 if (bytes > len)
1153 bytes = len;
1154
152e283f 1155 if (map_data) {
e623ddb4 1156 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1157 ret = -ENOMEM;
1158 break;
1159 }
e623ddb4
FT
1160
1161 page = map_data->pages[i / nr_pages];
1162 page += (i % nr_pages);
1163
1164 i++;
1165 } else {
152e283f 1166 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1167 if (!page) {
1168 ret = -ENOMEM;
1169 break;
1170 }
1da177e4
LT
1171 }
1172
56c451f4 1173 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1174 break;
1da177e4
LT
1175
1176 len -= bytes;
56c451f4 1177 offset = 0;
1da177e4
LT
1178 }
1179
1180 if (ret)
1181 goto cleanup;
1182
1183 /*
1184 * success
1185 */
ecb554a8
FT
1186 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1187 (map_data && map_data->from_user)) {
1188 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
1189 if (ret)
1190 goto cleanup;
1da177e4
LT
1191 }
1192
152e283f 1193 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
1194 return bio;
1195cleanup:
152e283f 1196 if (!map_data)
d74c6d51 1197 bio_for_each_segment_all(bvec, bio, i)
152e283f 1198 __free_page(bvec->bv_page);
1da177e4
LT
1199
1200 bio_put(bio);
1201out_bmd:
1202 bio_free_map_data(bmd);
1203 return ERR_PTR(ret);
1204}
1205
c5dec1c3
FT
1206/**
1207 * bio_copy_user - copy user data to bio
1208 * @q: destination block queue
152e283f 1209 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1210 * @uaddr: start of user address
1211 * @len: length in bytes
1212 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1213 * @gfp_mask: memory allocation flags
c5dec1c3
FT
1214 *
1215 * Prepares and returns a bio for indirect user io, bouncing data
1216 * to/from kernel pages as necessary. Must be paired with
1217 * call bio_uncopy_user() on io completion.
1218 */
152e283f
FT
1219struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1220 unsigned long uaddr, unsigned int len,
1221 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
1222{
1223 struct sg_iovec iov;
1224
1225 iov.iov_base = (void __user *)uaddr;
1226 iov.iov_len = len;
1227
152e283f 1228 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 1229}
a112a71d 1230EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 1231
165125e1 1232static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
1233 struct block_device *bdev,
1234 struct sg_iovec *iov, int iov_count,
a3bce90e 1235 int write_to_vm, gfp_t gfp_mask)
1da177e4 1236{
f1970baf
JB
1237 int i, j;
1238 int nr_pages = 0;
1da177e4
LT
1239 struct page **pages;
1240 struct bio *bio;
f1970baf
JB
1241 int cur_page = 0;
1242 int ret, offset;
1da177e4 1243
f1970baf
JB
1244 for (i = 0; i < iov_count; i++) {
1245 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1246 unsigned long len = iov[i].iov_len;
1247 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1248 unsigned long start = uaddr >> PAGE_SHIFT;
1249
cb4644ca
JA
1250 /*
1251 * Overflow, abort
1252 */
1253 if (end < start)
1254 return ERR_PTR(-EINVAL);
1255
f1970baf
JB
1256 nr_pages += end - start;
1257 /*
ad2d7225 1258 * buffer must be aligned to at least hardsector size for now
f1970baf 1259 */
ad2d7225 1260 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1261 return ERR_PTR(-EINVAL);
1262 }
1263
1264 if (!nr_pages)
1da177e4
LT
1265 return ERR_PTR(-EINVAL);
1266
a9e9dc24 1267 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1268 if (!bio)
1269 return ERR_PTR(-ENOMEM);
1270
1271 ret = -ENOMEM;
a3bce90e 1272 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1273 if (!pages)
1274 goto out;
1275
f1970baf
JB
1276 for (i = 0; i < iov_count; i++) {
1277 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1278 unsigned long len = iov[i].iov_len;
1279 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1280 unsigned long start = uaddr >> PAGE_SHIFT;
1281 const int local_nr_pages = end - start;
1282 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1283
f5dd33c4
NP
1284 ret = get_user_pages_fast(uaddr, local_nr_pages,
1285 write_to_vm, &pages[cur_page]);
99172157
JA
1286 if (ret < local_nr_pages) {
1287 ret = -EFAULT;
f1970baf 1288 goto out_unmap;
99172157 1289 }
f1970baf
JB
1290
1291 offset = uaddr & ~PAGE_MASK;
1292 for (j = cur_page; j < page_limit; j++) {
1293 unsigned int bytes = PAGE_SIZE - offset;
1294
1295 if (len <= 0)
1296 break;
1297
1298 if (bytes > len)
1299 bytes = len;
1300
1301 /*
1302 * sorry...
1303 */
defd94b7
MC
1304 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1305 bytes)
f1970baf
JB
1306 break;
1307
1308 len -= bytes;
1309 offset = 0;
1310 }
1da177e4 1311
f1970baf 1312 cur_page = j;
1da177e4 1313 /*
f1970baf 1314 * release the pages we didn't map into the bio, if any
1da177e4 1315 */
f1970baf
JB
1316 while (j < page_limit)
1317 page_cache_release(pages[j++]);
1da177e4
LT
1318 }
1319
1da177e4
LT
1320 kfree(pages);
1321
1322 /*
1323 * set data direction, and check if mapped pages need bouncing
1324 */
1325 if (!write_to_vm)
7b6d91da 1326 bio->bi_rw |= REQ_WRITE;
1da177e4 1327
f1970baf 1328 bio->bi_bdev = bdev;
1da177e4
LT
1329 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1330 return bio;
f1970baf
JB
1331
1332 out_unmap:
1333 for (i = 0; i < nr_pages; i++) {
1334 if(!pages[i])
1335 break;
1336 page_cache_release(pages[i]);
1337 }
1338 out:
1da177e4
LT
1339 kfree(pages);
1340 bio_put(bio);
1341 return ERR_PTR(ret);
1342}
1343
1344/**
1345 * bio_map_user - map user address into bio
165125e1 1346 * @q: the struct request_queue for the bio
1da177e4
LT
1347 * @bdev: destination block device
1348 * @uaddr: start of user address
1349 * @len: length in bytes
1350 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1351 * @gfp_mask: memory allocation flags
1da177e4
LT
1352 *
1353 * Map the user space address into a bio suitable for io to a block
1354 * device. Returns an error pointer in case of error.
1355 */
165125e1 1356struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1357 unsigned long uaddr, unsigned int len, int write_to_vm,
1358 gfp_t gfp_mask)
f1970baf
JB
1359{
1360 struct sg_iovec iov;
1361
3f70353e 1362 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1363 iov.iov_len = len;
1364
a3bce90e 1365 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1366}
a112a71d 1367EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1368
1369/**
1370 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1371 * @q: the struct request_queue for the bio
f1970baf
JB
1372 * @bdev: destination block device
1373 * @iov: the iovec.
1374 * @iov_count: number of elements in the iovec
1375 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1376 * @gfp_mask: memory allocation flags
f1970baf
JB
1377 *
1378 * Map the user space address into a bio suitable for io to a block
1379 * device. Returns an error pointer in case of error.
1380 */
165125e1 1381struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1382 struct sg_iovec *iov, int iov_count,
a3bce90e 1383 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1384{
1385 struct bio *bio;
1386
a3bce90e
FT
1387 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1388 gfp_mask);
1da177e4
LT
1389 if (IS_ERR(bio))
1390 return bio;
1391
1392 /*
1393 * subtle -- if __bio_map_user() ended up bouncing a bio,
1394 * it would normally disappear when its bi_end_io is run.
1395 * however, we need it for the unmap, so grab an extra
1396 * reference to it
1397 */
1398 bio_get(bio);
1399
0e75f906 1400 return bio;
1da177e4
LT
1401}
1402
1403static void __bio_unmap_user(struct bio *bio)
1404{
1405 struct bio_vec *bvec;
1406 int i;
1407
1408 /*
1409 * make sure we dirty pages we wrote to
1410 */
d74c6d51 1411 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1412 if (bio_data_dir(bio) == READ)
1413 set_page_dirty_lock(bvec->bv_page);
1414
1415 page_cache_release(bvec->bv_page);
1416 }
1417
1418 bio_put(bio);
1419}
1420
1421/**
1422 * bio_unmap_user - unmap a bio
1423 * @bio: the bio being unmapped
1424 *
1425 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1426 * a process context.
1427 *
1428 * bio_unmap_user() may sleep.
1429 */
1430void bio_unmap_user(struct bio *bio)
1431{
1432 __bio_unmap_user(bio);
1433 bio_put(bio);
1434}
a112a71d 1435EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1436
6712ecf8 1437static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1438{
b823825e 1439 bio_put(bio);
b823825e
JA
1440}
1441
165125e1 1442static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1443 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1444{
1445 unsigned long kaddr = (unsigned long)data;
1446 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1447 unsigned long start = kaddr >> PAGE_SHIFT;
1448 const int nr_pages = end - start;
1449 int offset, i;
1450 struct bio *bio;
1451
a9e9dc24 1452 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1453 if (!bio)
1454 return ERR_PTR(-ENOMEM);
1455
1456 offset = offset_in_page(kaddr);
1457 for (i = 0; i < nr_pages; i++) {
1458 unsigned int bytes = PAGE_SIZE - offset;
1459
1460 if (len <= 0)
1461 break;
1462
1463 if (bytes > len)
1464 bytes = len;
1465
defd94b7
MC
1466 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1467 offset) < bytes)
df46b9a4
MC
1468 break;
1469
1470 data += bytes;
1471 len -= bytes;
1472 offset = 0;
1473 }
1474
b823825e 1475 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1476 return bio;
1477}
1478
1479/**
1480 * bio_map_kern - map kernel address into bio
165125e1 1481 * @q: the struct request_queue for the bio
df46b9a4
MC
1482 * @data: pointer to buffer to map
1483 * @len: length in bytes
1484 * @gfp_mask: allocation flags for bio allocation
1485 *
1486 * Map the kernel address into a bio suitable for io to a block
1487 * device. Returns an error pointer in case of error.
1488 */
165125e1 1489struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1490 gfp_t gfp_mask)
df46b9a4
MC
1491{
1492 struct bio *bio;
1493
1494 bio = __bio_map_kern(q, data, len, gfp_mask);
1495 if (IS_ERR(bio))
1496 return bio;
1497
4f024f37 1498 if (bio->bi_iter.bi_size == len)
df46b9a4
MC
1499 return bio;
1500
1501 /*
1502 * Don't support partial mappings.
1503 */
1504 bio_put(bio);
1505 return ERR_PTR(-EINVAL);
1506}
a112a71d 1507EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1508
68154e90
FT
1509static void bio_copy_kern_endio(struct bio *bio, int err)
1510{
1511 struct bio_vec *bvec;
1512 const int read = bio_data_dir(bio) == READ;
76029ff3 1513 struct bio_map_data *bmd = bio->bi_private;
68154e90 1514 int i;
76029ff3 1515 char *p = bmd->sgvecs[0].iov_base;
68154e90 1516
d74c6d51 1517 bio_for_each_segment_all(bvec, bio, i) {
68154e90 1518 char *addr = page_address(bvec->bv_page);
76029ff3 1519 int len = bmd->iovecs[i].bv_len;
68154e90 1520
4fc981ef 1521 if (read)
76029ff3 1522 memcpy(p, addr, len);
68154e90
FT
1523
1524 __free_page(bvec->bv_page);
76029ff3 1525 p += len;
68154e90
FT
1526 }
1527
76029ff3 1528 bio_free_map_data(bmd);
68154e90
FT
1529 bio_put(bio);
1530}
1531
1532/**
1533 * bio_copy_kern - copy kernel address into bio
1534 * @q: the struct request_queue for the bio
1535 * @data: pointer to buffer to copy
1536 * @len: length in bytes
1537 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1538 * @reading: data direction is READ
68154e90
FT
1539 *
1540 * copy the kernel address into a bio suitable for io to a block
1541 * device. Returns an error pointer in case of error.
1542 */
1543struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1544 gfp_t gfp_mask, int reading)
1545{
68154e90
FT
1546 struct bio *bio;
1547 struct bio_vec *bvec;
4d8ab62e 1548 int i;
68154e90 1549
4d8ab62e
FT
1550 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1551 if (IS_ERR(bio))
1552 return bio;
68154e90
FT
1553
1554 if (!reading) {
1555 void *p = data;
1556
d74c6d51 1557 bio_for_each_segment_all(bvec, bio, i) {
68154e90
FT
1558 char *addr = page_address(bvec->bv_page);
1559
1560 memcpy(addr, p, bvec->bv_len);
1561 p += bvec->bv_len;
1562 }
1563 }
1564
68154e90 1565 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1566
68154e90 1567 return bio;
68154e90 1568}
a112a71d 1569EXPORT_SYMBOL(bio_copy_kern);
68154e90 1570
1da177e4
LT
1571/*
1572 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1573 * for performing direct-IO in BIOs.
1574 *
1575 * The problem is that we cannot run set_page_dirty() from interrupt context
1576 * because the required locks are not interrupt-safe. So what we can do is to
1577 * mark the pages dirty _before_ performing IO. And in interrupt context,
1578 * check that the pages are still dirty. If so, fine. If not, redirty them
1579 * in process context.
1580 *
1581 * We special-case compound pages here: normally this means reads into hugetlb
1582 * pages. The logic in here doesn't really work right for compound pages
1583 * because the VM does not uniformly chase down the head page in all cases.
1584 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1585 * handle them at all. So we skip compound pages here at an early stage.
1586 *
1587 * Note that this code is very hard to test under normal circumstances because
1588 * direct-io pins the pages with get_user_pages(). This makes
1589 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1590 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1591 * pagecache.
1592 *
1593 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1594 * deferred bio dirtying paths.
1595 */
1596
1597/*
1598 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1599 */
1600void bio_set_pages_dirty(struct bio *bio)
1601{
cb34e057 1602 struct bio_vec *bvec;
1da177e4
LT
1603 int i;
1604
cb34e057
KO
1605 bio_for_each_segment_all(bvec, bio, i) {
1606 struct page *page = bvec->bv_page;
1da177e4
LT
1607
1608 if (page && !PageCompound(page))
1609 set_page_dirty_lock(page);
1610 }
1611}
1612
86b6c7a7 1613static void bio_release_pages(struct bio *bio)
1da177e4 1614{
cb34e057 1615 struct bio_vec *bvec;
1da177e4
LT
1616 int i;
1617
cb34e057
KO
1618 bio_for_each_segment_all(bvec, bio, i) {
1619 struct page *page = bvec->bv_page;
1da177e4
LT
1620
1621 if (page)
1622 put_page(page);
1623 }
1624}
1625
1626/*
1627 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1628 * If they are, then fine. If, however, some pages are clean then they must
1629 * have been written out during the direct-IO read. So we take another ref on
1630 * the BIO and the offending pages and re-dirty the pages in process context.
1631 *
1632 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1633 * here on. It will run one page_cache_release() against each page and will
1634 * run one bio_put() against the BIO.
1635 */
1636
65f27f38 1637static void bio_dirty_fn(struct work_struct *work);
1da177e4 1638
65f27f38 1639static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1640static DEFINE_SPINLOCK(bio_dirty_lock);
1641static struct bio *bio_dirty_list;
1642
1643/*
1644 * This runs in process context
1645 */
65f27f38 1646static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1647{
1648 unsigned long flags;
1649 struct bio *bio;
1650
1651 spin_lock_irqsave(&bio_dirty_lock, flags);
1652 bio = bio_dirty_list;
1653 bio_dirty_list = NULL;
1654 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1655
1656 while (bio) {
1657 struct bio *next = bio->bi_private;
1658
1659 bio_set_pages_dirty(bio);
1660 bio_release_pages(bio);
1661 bio_put(bio);
1662 bio = next;
1663 }
1664}
1665
1666void bio_check_pages_dirty(struct bio *bio)
1667{
cb34e057 1668 struct bio_vec *bvec;
1da177e4
LT
1669 int nr_clean_pages = 0;
1670 int i;
1671
cb34e057
KO
1672 bio_for_each_segment_all(bvec, bio, i) {
1673 struct page *page = bvec->bv_page;
1da177e4
LT
1674
1675 if (PageDirty(page) || PageCompound(page)) {
1676 page_cache_release(page);
cb34e057 1677 bvec->bv_page = NULL;
1da177e4
LT
1678 } else {
1679 nr_clean_pages++;
1680 }
1681 }
1682
1683 if (nr_clean_pages) {
1684 unsigned long flags;
1685
1686 spin_lock_irqsave(&bio_dirty_lock, flags);
1687 bio->bi_private = bio_dirty_list;
1688 bio_dirty_list = bio;
1689 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1690 schedule_work(&bio_dirty_work);
1691 } else {
1692 bio_put(bio);
1693 }
1694}
1695
2d4dc890
IL
1696#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1697void bio_flush_dcache_pages(struct bio *bi)
1698{
7988613b
KO
1699 struct bio_vec bvec;
1700 struct bvec_iter iter;
2d4dc890 1701
7988613b
KO
1702 bio_for_each_segment(bvec, bi, iter)
1703 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1704}
1705EXPORT_SYMBOL(bio_flush_dcache_pages);
1706#endif
1707
1da177e4
LT
1708/**
1709 * bio_endio - end I/O on a bio
1710 * @bio: bio
1da177e4
LT
1711 * @error: error, if any
1712 *
1713 * Description:
6712ecf8 1714 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1715 * preferred way to end I/O on a bio, it takes care of clearing
1716 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1717 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1718 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1719 * bio unless they own it and thus know that it has an end_io
1720 * function.
1da177e4 1721 **/
6712ecf8 1722void bio_endio(struct bio *bio, int error)
1da177e4
LT
1723{
1724 if (error)
1725 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1726 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1727 error = -EIO;
1da177e4 1728
5bb23a68 1729 if (bio->bi_end_io)
6712ecf8 1730 bio->bi_end_io(bio, error);
1da177e4 1731}
a112a71d 1732EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1733
1734void bio_pair_release(struct bio_pair *bp)
1735{
1736 if (atomic_dec_and_test(&bp->cnt)) {
1737 struct bio *master = bp->bio1.bi_private;
1738
6712ecf8 1739 bio_endio(master, bp->error);
1da177e4
LT
1740 mempool_free(bp, bp->bio2.bi_private);
1741 }
1742}
a112a71d 1743EXPORT_SYMBOL(bio_pair_release);
1da177e4 1744
6712ecf8 1745static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1746{
1747 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1748
1749 if (err)
1750 bp->error = err;
1751
1da177e4 1752 bio_pair_release(bp);
1da177e4
LT
1753}
1754
6712ecf8 1755static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1756{
1757 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1758
1759 if (err)
1760 bp->error = err;
1761
1da177e4 1762 bio_pair_release(bp);
1da177e4
LT
1763}
1764
1765/*
c7eee1b8 1766 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1767 */
6feef531 1768struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1769{
6feef531 1770 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1771
1772 if (!bp)
1773 return bp;
1774
5f3ea37c 1775 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
4f024f37 1776 bi->bi_iter.bi_sector + first_sectors);
2056a782 1777
458b76ed 1778 BUG_ON(bio_multiple_segments(bi));
1da177e4
LT
1779 atomic_set(&bp->cnt, 3);
1780 bp->error = 0;
1781 bp->bio1 = *bi;
1782 bp->bio2 = *bi;
4f024f37
KO
1783 bp->bio2.bi_iter.bi_sector += first_sectors;
1784 bp->bio2.bi_iter.bi_size -= first_sectors << 9;
1785 bp->bio1.bi_iter.bi_size = first_sectors << 9;
1da177e4 1786
02f3939e 1787 if (bi->bi_vcnt != 0) {
a4ad39b1
KO
1788 bp->bv1 = bio_iovec(bi);
1789 bp->bv2 = bio_iovec(bi);
4363ac7c 1790
02f3939e
SL
1791 if (bio_is_rw(bi)) {
1792 bp->bv2.bv_offset += first_sectors << 9;
1793 bp->bv2.bv_len -= first_sectors << 9;
1794 bp->bv1.bv_len = first_sectors << 9;
1795 }
1da177e4 1796
02f3939e
SL
1797 bp->bio1.bi_io_vec = &bp->bv1;
1798 bp->bio2.bi_io_vec = &bp->bv2;
1da177e4 1799
02f3939e
SL
1800 bp->bio1.bi_max_vecs = 1;
1801 bp->bio2.bi_max_vecs = 1;
1802 }
a2eb0c10 1803
1da177e4
LT
1804 bp->bio1.bi_end_io = bio_pair_end_1;
1805 bp->bio2.bi_end_io = bio_pair_end_2;
1806
1807 bp->bio1.bi_private = bi;
6feef531 1808 bp->bio2.bi_private = bio_split_pool;
1da177e4 1809
7ba1ba12
MP
1810 if (bio_integrity(bi))
1811 bio_integrity_split(bi, bp, first_sectors);
1812
1da177e4
LT
1813 return bp;
1814}
a112a71d 1815EXPORT_SYMBOL(bio_split);
1da177e4 1816
6678d83f
KO
1817/**
1818 * bio_trim - trim a bio
1819 * @bio: bio to trim
1820 * @offset: number of sectors to trim from the front of @bio
1821 * @size: size we want to trim @bio to, in sectors
1822 */
1823void bio_trim(struct bio *bio, int offset, int size)
1824{
1825 /* 'bio' is a cloned bio which we need to trim to match
1826 * the given offset and size.
1827 * This requires adjusting bi_sector, bi_size, and bi_io_vec
1828 */
1829 int i;
1830 struct bio_vec *bvec;
1831 int sofar = 0;
1832
1833 size <<= 9;
4f024f37 1834 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1835 return;
1836
1837 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1838
1839 bio_advance(bio, offset << 9);
1840
4f024f37 1841 bio->bi_iter.bi_size = size;
6678d83f
KO
1842
1843 /* avoid any complications with bi_idx being non-zero*/
4f024f37
KO
1844 if (bio->bi_iter.bi_idx) {
1845 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_iter.bi_idx,
1846 (bio->bi_vcnt - bio->bi_iter.bi_idx) *
1847 sizeof(struct bio_vec));
1848 bio->bi_vcnt -= bio->bi_iter.bi_idx;
1849 bio->bi_iter.bi_idx = 0;
6678d83f
KO
1850 }
1851 /* Make sure vcnt and last bv are not too big */
7988613b 1852 bio_for_each_segment_all(bvec, bio, i) {
6678d83f
KO
1853 if (sofar + bvec->bv_len > size)
1854 bvec->bv_len = size - sofar;
1855 if (bvec->bv_len == 0) {
1856 bio->bi_vcnt = i;
1857 break;
1858 }
1859 sofar += bvec->bv_len;
1860 }
1861}
1862EXPORT_SYMBOL_GPL(bio_trim);
1863
ad3316bf
MP
1864/**
1865 * bio_sector_offset - Find hardware sector offset in bio
1866 * @bio: bio to inspect
1867 * @index: bio_vec index
1868 * @offset: offset in bv_page
1869 *
1870 * Return the number of hardware sectors between beginning of bio
1871 * and an end point indicated by a bio_vec index and an offset
1872 * within that vector's page.
1873 */
1874sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1875 unsigned int offset)
1876{
e1defc4f 1877 unsigned int sector_sz;
ad3316bf
MP
1878 struct bio_vec *bv;
1879 sector_t sectors;
1880 int i;
1881
e1defc4f 1882 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1883 sectors = 0;
1884
4f024f37 1885 if (index >= bio->bi_iter.bi_idx)
ad3316bf
MP
1886 index = bio->bi_vcnt - 1;
1887
d74c6d51 1888 bio_for_each_segment_all(bv, bio, i) {
ad3316bf
MP
1889 if (i == index) {
1890 if (offset > bv->bv_offset)
1891 sectors += (offset - bv->bv_offset) / sector_sz;
1892 break;
1893 }
1894
1895 sectors += bv->bv_len / sector_sz;
1896 }
1897
1898 return sectors;
1899}
1900EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1901
1902/*
1903 * create memory pools for biovec's in a bio_set.
1904 * use the global biovec slabs created for general use.
1905 */
9f060e22 1906mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1da177e4 1907{
7ff9345f 1908 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1909
9f060e22 1910 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1911}
1912
1913void bioset_free(struct bio_set *bs)
1914{
df2cb6da
KO
1915 if (bs->rescue_workqueue)
1916 destroy_workqueue(bs->rescue_workqueue);
1917
1da177e4
LT
1918 if (bs->bio_pool)
1919 mempool_destroy(bs->bio_pool);
1920
9f060e22
KO
1921 if (bs->bvec_pool)
1922 mempool_destroy(bs->bvec_pool);
1923
7878cba9 1924 bioset_integrity_free(bs);
bb799ca0 1925 bio_put_slab(bs);
1da177e4
LT
1926
1927 kfree(bs);
1928}
a112a71d 1929EXPORT_SYMBOL(bioset_free);
1da177e4 1930
bb799ca0
JA
1931/**
1932 * bioset_create - Create a bio_set
1933 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1934 * @front_pad: Number of bytes to allocate in front of the returned bio
1935 *
1936 * Description:
1937 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1938 * to ask for a number of bytes to be allocated in front of the bio.
1939 * Front pad allocation is useful for embedding the bio inside
1940 * another structure, to avoid allocating extra data to go with the bio.
1941 * Note that the bio must be embedded at the END of that structure always,
1942 * or things will break badly.
1943 */
1944struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1945{
392ddc32 1946 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1947 struct bio_set *bs;
1da177e4 1948
1b434498 1949 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1950 if (!bs)
1951 return NULL;
1952
bb799ca0 1953 bs->front_pad = front_pad;
1b434498 1954
df2cb6da
KO
1955 spin_lock_init(&bs->rescue_lock);
1956 bio_list_init(&bs->rescue_list);
1957 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1958
392ddc32 1959 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1960 if (!bs->bio_slab) {
1961 kfree(bs);
1962 return NULL;
1963 }
1964
1965 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1966 if (!bs->bio_pool)
1967 goto bad;
1968
9f060e22
KO
1969 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1970 if (!bs->bvec_pool)
df2cb6da
KO
1971 goto bad;
1972
1973 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1974 if (!bs->rescue_workqueue)
1975 goto bad;
1da177e4 1976
df2cb6da 1977 return bs;
1da177e4
LT
1978bad:
1979 bioset_free(bs);
1980 return NULL;
1981}
a112a71d 1982EXPORT_SYMBOL(bioset_create);
1da177e4 1983
852c788f
TH
1984#ifdef CONFIG_BLK_CGROUP
1985/**
1986 * bio_associate_current - associate a bio with %current
1987 * @bio: target bio
1988 *
1989 * Associate @bio with %current if it hasn't been associated yet. Block
1990 * layer will treat @bio as if it were issued by %current no matter which
1991 * task actually issues it.
1992 *
1993 * This function takes an extra reference of @task's io_context and blkcg
1994 * which will be put when @bio is released. The caller must own @bio,
1995 * ensure %current->io_context exists, and is responsible for synchronizing
1996 * calls to this function.
1997 */
1998int bio_associate_current(struct bio *bio)
1999{
2000 struct io_context *ioc;
2001 struct cgroup_subsys_state *css;
2002
2003 if (bio->bi_ioc)
2004 return -EBUSY;
2005
2006 ioc = current->io_context;
2007 if (!ioc)
2008 return -ENOENT;
2009
2010 /* acquire active ref on @ioc and associate */
2011 get_io_context_active(ioc);
2012 bio->bi_ioc = ioc;
2013
2014 /* associate blkcg if exists */
2015 rcu_read_lock();
8af01f56 2016 css = task_css(current, blkio_subsys_id);
852c788f
TH
2017 if (css && css_tryget(css))
2018 bio->bi_css = css;
2019 rcu_read_unlock();
2020
2021 return 0;
2022}
2023
2024/**
2025 * bio_disassociate_task - undo bio_associate_current()
2026 * @bio: target bio
2027 */
2028void bio_disassociate_task(struct bio *bio)
2029{
2030 if (bio->bi_ioc) {
2031 put_io_context(bio->bi_ioc);
2032 bio->bi_ioc = NULL;
2033 }
2034 if (bio->bi_css) {
2035 css_put(bio->bi_css);
2036 bio->bi_css = NULL;
2037 }
2038}
2039
2040#endif /* CONFIG_BLK_CGROUP */
2041
1da177e4
LT
2042static void __init biovec_init_slabs(void)
2043{
2044 int i;
2045
2046 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2047 int size;
2048 struct biovec_slab *bvs = bvec_slabs + i;
2049
a7fcd37c
JA
2050 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2051 bvs->slab = NULL;
2052 continue;
2053 }
a7fcd37c 2054
1da177e4
LT
2055 size = bvs->nr_vecs * sizeof(struct bio_vec);
2056 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2057 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2058 }
2059}
2060
2061static int __init init_bio(void)
2062{
bb799ca0
JA
2063 bio_slab_max = 2;
2064 bio_slab_nr = 0;
2065 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2066 if (!bio_slabs)
2067 panic("bio: can't allocate bios\n");
1da177e4 2068
7878cba9 2069 bio_integrity_init();
1da177e4
LT
2070 biovec_init_slabs();
2071
bb799ca0 2072 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2073 if (!fs_bio_set)
2074 panic("bio: can't allocate bios\n");
2075
a91a2785
MP
2076 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2077 panic("bio: can't create integrity pool\n");
2078
0eaae62a
MD
2079 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
2080 sizeof(struct bio_pair));
1da177e4
LT
2081 if (!bio_split_pool)
2082 panic("bio: can't create split pool\n");
2083
2084 return 0;
2085}
1da177e4 2086subsys_initcall(init_bio);