]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/bio.c
pktcdvd: Switch to bio_kmalloc()
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
852c788f 22#include <linux/iocontext.h>
1da177e4
LT
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/kernel.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mempool.h>
28#include <linux/workqueue.h>
852c788f 29#include <linux/cgroup.h>
f1970baf 30#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
6feef531 40static mempool_t *bio_split_pool __read_mostly;
1da177e4 41
1da177e4
LT
42/*
43 * if you change this list, also change bvec_alloc or things will
44 * break badly! cannot be bigger than what you can fit into an
45 * unsigned short
46 */
1da177e4 47#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 48static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
49 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
50};
51#undef BV
52
1da177e4
LT
53/*
54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55 * IO code that does not need private memory pools.
56 */
51d654e1 57struct bio_set *fs_bio_set;
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
389d7b26 76 struct bio_slab *bslab, *new_bio_slabs;
bb799ca0
JA
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
f06f135d 83 bslab = &bio_slabs[i];
bb799ca0
JA
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 bio_slab_max <<= 1;
389d7b26
AK
100 new_bio_slabs = krealloc(bio_slabs,
101 bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
bb799ca0 104 goto out_unlock;
389d7b26 105 bio_slabs = new_bio_slabs;
bb799ca0
JA
106 }
107 if (entry == -1)
108 entry = bio_slab_nr++;
109
110 bslab = &bio_slabs[entry];
111
112 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
113 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
114 if (!slab)
115 goto out_unlock;
116
80cdc6da 117 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
bb799ca0
JA
118 bslab->slab = slab;
119 bslab->slab_ref = 1;
120 bslab->slab_size = sz;
121out_unlock:
122 mutex_unlock(&bio_slab_lock);
123 return slab;
124}
125
126static void bio_put_slab(struct bio_set *bs)
127{
128 struct bio_slab *bslab = NULL;
129 unsigned int i;
130
131 mutex_lock(&bio_slab_lock);
132
133 for (i = 0; i < bio_slab_nr; i++) {
134 if (bs->bio_slab == bio_slabs[i].slab) {
135 bslab = &bio_slabs[i];
136 break;
137 }
138 }
139
140 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
141 goto out;
142
143 WARN_ON(!bslab->slab_ref);
144
145 if (--bslab->slab_ref)
146 goto out;
147
148 kmem_cache_destroy(bslab->slab);
149 bslab->slab = NULL;
150
151out:
152 mutex_unlock(&bio_slab_lock);
153}
154
7ba1ba12
MP
155unsigned int bvec_nr_vecs(unsigned short idx)
156{
157 return bvec_slabs[idx].nr_vecs;
158}
159
bb799ca0
JA
160void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
161{
162 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
163
164 if (idx == BIOVEC_MAX_IDX)
165 mempool_free(bv, bs->bvec_pool);
166 else {
167 struct biovec_slab *bvs = bvec_slabs + idx;
168
169 kmem_cache_free(bvs->slab, bv);
170 }
171}
172
7ff9345f
JA
173struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
174 struct bio_set *bs)
1da177e4
LT
175{
176 struct bio_vec *bvl;
1da177e4 177
7ff9345f
JA
178 /*
179 * see comment near bvec_array define!
180 */
181 switch (nr) {
182 case 1:
183 *idx = 0;
184 break;
185 case 2 ... 4:
186 *idx = 1;
187 break;
188 case 5 ... 16:
189 *idx = 2;
190 break;
191 case 17 ... 64:
192 *idx = 3;
193 break;
194 case 65 ... 128:
195 *idx = 4;
196 break;
197 case 129 ... BIO_MAX_PAGES:
198 *idx = 5;
199 break;
200 default:
201 return NULL;
202 }
203
204 /*
205 * idx now points to the pool we want to allocate from. only the
206 * 1-vec entry pool is mempool backed.
207 */
208 if (*idx == BIOVEC_MAX_IDX) {
209fallback:
210 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
211 } else {
212 struct biovec_slab *bvs = bvec_slabs + *idx;
213 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
214
0a0d96b0 215 /*
7ff9345f
JA
216 * Make this allocation restricted and don't dump info on
217 * allocation failures, since we'll fallback to the mempool
218 * in case of failure.
0a0d96b0 219 */
7ff9345f 220 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 221
0a0d96b0 222 /*
7ff9345f
JA
223 * Try a slab allocation. If this fails and __GFP_WAIT
224 * is set, retry with the 1-entry mempool
0a0d96b0 225 */
7ff9345f
JA
226 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
227 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
228 *idx = BIOVEC_MAX_IDX;
229 goto fallback;
230 }
231 }
232
1da177e4
LT
233 return bvl;
234}
235
7ff9345f 236void bio_free(struct bio *bio, struct bio_set *bs)
1da177e4 237{
bb799ca0 238 void *p;
1da177e4 239
392ddc32 240 if (bio_has_allocated_vec(bio))
bb799ca0 241 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
1da177e4 242
7ba1ba12 243 if (bio_integrity(bio))
1e2a410f 244 bio_integrity_free(bio);
7ba1ba12 245
bb799ca0
JA
246 /*
247 * If we have front padding, adjust the bio pointer before freeing
248 */
249 p = bio;
250 if (bs->front_pad)
251 p -= bs->front_pad;
252
253 mempool_free(p, bs->bio_pool);
3676347a 254}
a112a71d 255EXPORT_SYMBOL(bio_free);
3676347a 256
858119e1 257void bio_init(struct bio *bio)
1da177e4 258{
2b94de55 259 memset(bio, 0, sizeof(*bio));
1da177e4 260 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 261 atomic_set(&bio->bi_cnt, 1);
1da177e4 262}
a112a71d 263EXPORT_SYMBOL(bio_init);
1da177e4 264
f44b48c7
KO
265/**
266 * bio_reset - reinitialize a bio
267 * @bio: bio to reset
268 *
269 * Description:
270 * After calling bio_reset(), @bio will be in the same state as a freshly
271 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
272 * preserved are the ones that are initialized by bio_alloc_bioset(). See
273 * comment in struct bio.
274 */
275void bio_reset(struct bio *bio)
276{
277 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
278
279 if (bio_integrity(bio))
280 bio_integrity_free(bio);
281
282 bio_disassociate_task(bio);
283
284 memset(bio, 0, BIO_RESET_BYTES);
285 bio->bi_flags = flags|(1 << BIO_UPTODATE);
286}
287EXPORT_SYMBOL(bio_reset);
288
1da177e4
LT
289/**
290 * bio_alloc_bioset - allocate a bio for I/O
291 * @gfp_mask: the GFP_ mask given to the slab allocator
292 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 293 * @bs: the bio_set to allocate from.
1da177e4
LT
294 *
295 * Description:
db18efac 296 * bio_alloc_bioset will try its own mempool to satisfy the allocation.
1da177e4 297 * If %__GFP_WAIT is set then we will block on the internal pool waiting
db18efac 298 * for a &struct bio to become free.
1da177e4 299 **/
dd0fc66f 300struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 301{
451a9ebf 302 unsigned long idx = BIO_POOL_NONE;
34053979 303 struct bio_vec *bvl = NULL;
451a9ebf
TH
304 struct bio *bio;
305 void *p;
306
307 p = mempool_alloc(bs->bio_pool, gfp_mask);
308 if (unlikely(!p))
309 return NULL;
310 bio = p + bs->front_pad;
1da177e4 311
34053979 312 bio_init(bio);
395c72a7 313 bio->bi_pool = bs;
34053979
IM
314
315 if (unlikely(!nr_iovecs))
316 goto out_set;
317
318 if (nr_iovecs <= BIO_INLINE_VECS) {
319 bvl = bio->bi_inline_vecs;
320 nr_iovecs = BIO_INLINE_VECS;
321 } else {
322 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
323 if (unlikely(!bvl))
324 goto err_free;
325
326 nr_iovecs = bvec_nr_vecs(idx);
1da177e4 327 }
451a9ebf 328out_set:
34053979
IM
329 bio->bi_flags |= idx << BIO_POOL_OFFSET;
330 bio->bi_max_vecs = nr_iovecs;
34053979 331 bio->bi_io_vec = bvl;
1da177e4 332 return bio;
34053979
IM
333
334err_free:
451a9ebf 335 mempool_free(p, bs->bio_pool);
34053979 336 return NULL;
1da177e4 337}
a112a71d 338EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 339
451a9ebf
TH
340/**
341 * bio_alloc - allocate a new bio, memory pool backed
342 * @gfp_mask: allocation mask to use
343 * @nr_iovecs: number of iovecs
344 *
5f04eeb8
AB
345 * bio_alloc will allocate a bio and associated bio_vec array that can hold
346 * at least @nr_iovecs entries. Allocations will be done from the
347 * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
348 *
349 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
350 * a bio. This is due to the mempool guarantees. To make this work, callers
351 * must never allocate more than 1 bio at a time from this pool. Callers
352 * that need to allocate more than 1 bio must always submit the previously
353 * allocated bio for IO before attempting to allocate a new one. Failure to
354 * do so can cause livelocks under memory pressure.
451a9ebf
TH
355 *
356 * RETURNS:
357 * Pointer to new bio on success, NULL on failure.
358 */
121f0994 359struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
451a9ebf 360{
395c72a7 361 return bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
451a9ebf 362}
a112a71d 363EXPORT_SYMBOL(bio_alloc);
451a9ebf
TH
364
365static void bio_kmalloc_destructor(struct bio *bio)
366{
367 if (bio_integrity(bio))
1e2a410f 368 bio_integrity_free(bio);
451a9ebf
TH
369 kfree(bio);
370}
371
86c824b9 372/**
5f04eeb8 373 * bio_kmalloc - allocate a bio for I/O using kmalloc()
86c824b9
JA
374 * @gfp_mask: the GFP_ mask given to the slab allocator
375 * @nr_iovecs: number of iovecs to pre-allocate
376 *
377 * Description:
5f04eeb8
AB
378 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
379 * %__GFP_WAIT, the allocation is guaranteed to succeed.
86c824b9
JA
380 *
381 **/
121f0994 382struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
0a0d96b0 383{
451a9ebf 384 struct bio *bio;
0a0d96b0 385
f3f63c1c
JA
386 if (nr_iovecs > UIO_MAXIOV)
387 return NULL;
388
451a9ebf
TH
389 bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
390 gfp_mask);
391 if (unlikely(!bio))
392 return NULL;
393
394 bio_init(bio);
395 bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
396 bio->bi_max_vecs = nr_iovecs;
397 bio->bi_io_vec = bio->bi_inline_vecs;
398 bio->bi_destructor = bio_kmalloc_destructor;
0a0d96b0
JA
399
400 return bio;
401}
a112a71d 402EXPORT_SYMBOL(bio_kmalloc);
0a0d96b0 403
1da177e4
LT
404void zero_fill_bio(struct bio *bio)
405{
406 unsigned long flags;
407 struct bio_vec *bv;
408 int i;
409
410 bio_for_each_segment(bv, bio, i) {
411 char *data = bvec_kmap_irq(bv, &flags);
412 memset(data, 0, bv->bv_len);
413 flush_dcache_page(bv->bv_page);
414 bvec_kunmap_irq(data, &flags);
415 }
416}
417EXPORT_SYMBOL(zero_fill_bio);
418
419/**
420 * bio_put - release a reference to a bio
421 * @bio: bio to release reference to
422 *
423 * Description:
424 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 425 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
426 **/
427void bio_put(struct bio *bio)
428{
429 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
430
431 /*
432 * last put frees it
433 */
434 if (atomic_dec_and_test(&bio->bi_cnt)) {
852c788f 435 bio_disassociate_task(bio);
1da177e4 436 bio->bi_next = NULL;
395c72a7
KO
437
438 /*
439 * This if statement is temporary - bi_pool is replacing
440 * bi_destructor, but bi_destructor will be taken out in another
441 * patch.
442 */
443 if (bio->bi_pool)
444 bio_free(bio, bio->bi_pool);
445 else
446 bio->bi_destructor(bio);
1da177e4
LT
447 }
448}
a112a71d 449EXPORT_SYMBOL(bio_put);
1da177e4 450
165125e1 451inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
452{
453 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
454 blk_recount_segments(q, bio);
455
456 return bio->bi_phys_segments;
457}
a112a71d 458EXPORT_SYMBOL(bio_phys_segments);
1da177e4 459
1da177e4
LT
460/**
461 * __bio_clone - clone a bio
462 * @bio: destination bio
463 * @bio_src: bio to clone
464 *
465 * Clone a &bio. Caller will own the returned bio, but not
466 * the actual data it points to. Reference count of returned
467 * bio will be one.
468 */
858119e1 469void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 470{
e525e153
AM
471 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
472 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 473
5d84070e
JA
474 /*
475 * most users will be overriding ->bi_bdev with a new target,
476 * so we don't set nor calculate new physical/hw segment counts here
477 */
1da177e4
LT
478 bio->bi_sector = bio_src->bi_sector;
479 bio->bi_bdev = bio_src->bi_bdev;
480 bio->bi_flags |= 1 << BIO_CLONED;
481 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
482 bio->bi_vcnt = bio_src->bi_vcnt;
483 bio->bi_size = bio_src->bi_size;
a5453be4 484 bio->bi_idx = bio_src->bi_idx;
1da177e4 485}
a112a71d 486EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
487
488/**
489 * bio_clone - clone a bio
490 * @bio: bio to clone
491 * @gfp_mask: allocation priority
492 *
493 * Like __bio_clone, only also allocates the returned bio
494 */
dd0fc66f 495struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4 496{
395c72a7 497 struct bio *b = bio_alloc(gfp_mask, bio->bi_max_vecs);
1da177e4 498
7ba1ba12
MP
499 if (!b)
500 return NULL;
501
7ba1ba12
MP
502 __bio_clone(b, bio);
503
504 if (bio_integrity(bio)) {
505 int ret;
506
1e2a410f 507 ret = bio_integrity_clone(b, bio, gfp_mask);
7ba1ba12 508
059ea331
LZ
509 if (ret < 0) {
510 bio_put(b);
7ba1ba12 511 return NULL;
059ea331 512 }
3676347a 513 }
1da177e4
LT
514
515 return b;
516}
a112a71d 517EXPORT_SYMBOL(bio_clone);
1da177e4
LT
518
519/**
520 * bio_get_nr_vecs - return approx number of vecs
521 * @bdev: I/O target
522 *
523 * Return the approximate number of pages we can send to this target.
524 * There's no guarantee that you will be able to fit this number of pages
525 * into a bio, it does not account for dynamic restrictions that vary
526 * on offset.
527 */
528int bio_get_nr_vecs(struct block_device *bdev)
529{
165125e1 530 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
531 int nr_pages;
532
533 nr_pages = min_t(unsigned,
5abebfdd
KO
534 queue_max_segments(q),
535 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
536
537 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
538
1da177e4 539}
a112a71d 540EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 541
165125e1 542static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
543 *page, unsigned int len, unsigned int offset,
544 unsigned short max_sectors)
1da177e4
LT
545{
546 int retried_segments = 0;
547 struct bio_vec *bvec;
548
549 /*
550 * cloned bio must not modify vec list
551 */
552 if (unlikely(bio_flagged(bio, BIO_CLONED)))
553 return 0;
554
80cfd548 555 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
556 return 0;
557
80cfd548
JA
558 /*
559 * For filesystems with a blocksize smaller than the pagesize
560 * we will often be called with the same page as last time and
561 * a consecutive offset. Optimize this special case.
562 */
563 if (bio->bi_vcnt > 0) {
564 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
565
566 if (page == prev->bv_page &&
567 offset == prev->bv_offset + prev->bv_len) {
1d616585 568 unsigned int prev_bv_len = prev->bv_len;
80cfd548 569 prev->bv_len += len;
cc371e66
AK
570
571 if (q->merge_bvec_fn) {
572 struct bvec_merge_data bvm = {
1d616585
DM
573 /* prev_bvec is already charged in
574 bi_size, discharge it in order to
575 simulate merging updated prev_bvec
576 as new bvec. */
cc371e66
AK
577 .bi_bdev = bio->bi_bdev,
578 .bi_sector = bio->bi_sector,
1d616585 579 .bi_size = bio->bi_size - prev_bv_len,
cc371e66
AK
580 .bi_rw = bio->bi_rw,
581 };
582
8bf8c376 583 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
584 prev->bv_len -= len;
585 return 0;
586 }
80cfd548
JA
587 }
588
589 goto done;
590 }
591 }
592
593 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
594 return 0;
595
596 /*
597 * we might lose a segment or two here, but rather that than
598 * make this too complex.
599 */
600
8a78362c 601 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
602
603 if (retried_segments)
604 return 0;
605
606 retried_segments = 1;
607 blk_recount_segments(q, bio);
608 }
609
610 /*
611 * setup the new entry, we might clear it again later if we
612 * cannot add the page
613 */
614 bvec = &bio->bi_io_vec[bio->bi_vcnt];
615 bvec->bv_page = page;
616 bvec->bv_len = len;
617 bvec->bv_offset = offset;
618
619 /*
620 * if queue has other restrictions (eg varying max sector size
621 * depending on offset), it can specify a merge_bvec_fn in the
622 * queue to get further control
623 */
624 if (q->merge_bvec_fn) {
cc371e66
AK
625 struct bvec_merge_data bvm = {
626 .bi_bdev = bio->bi_bdev,
627 .bi_sector = bio->bi_sector,
628 .bi_size = bio->bi_size,
629 .bi_rw = bio->bi_rw,
630 };
631
1da177e4
LT
632 /*
633 * merge_bvec_fn() returns number of bytes it can accept
634 * at this offset
635 */
8bf8c376 636 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
637 bvec->bv_page = NULL;
638 bvec->bv_len = 0;
639 bvec->bv_offset = 0;
640 return 0;
641 }
642 }
643
644 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 645 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
646 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
647
648 bio->bi_vcnt++;
649 bio->bi_phys_segments++;
80cfd548 650 done:
1da177e4
LT
651 bio->bi_size += len;
652 return len;
653}
654
6e68af66
MC
655/**
656 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 657 * @q: the target queue
6e68af66
MC
658 * @bio: destination bio
659 * @page: page to add
660 * @len: vec entry length
661 * @offset: vec entry offset
662 *
663 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
664 * number of reasons, such as the bio being full or target block device
665 * limitations. The target block device must allow bio's up to PAGE_SIZE,
666 * so it is always possible to add a single page to an empty bio.
667 *
668 * This should only be used by REQ_PC bios.
6e68af66 669 */
165125e1 670int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
671 unsigned int len, unsigned int offset)
672{
ae03bf63
MP
673 return __bio_add_page(q, bio, page, len, offset,
674 queue_max_hw_sectors(q));
6e68af66 675}
a112a71d 676EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 677
1da177e4
LT
678/**
679 * bio_add_page - attempt to add page to bio
680 * @bio: destination bio
681 * @page: page to add
682 * @len: vec entry length
683 * @offset: vec entry offset
684 *
685 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
686 * number of reasons, such as the bio being full or target block device
687 * limitations. The target block device must allow bio's up to PAGE_SIZE,
688 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
689 */
690int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
691 unsigned int offset)
692{
defd94b7 693 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 694 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 695}
a112a71d 696EXPORT_SYMBOL(bio_add_page);
1da177e4
LT
697
698struct bio_map_data {
699 struct bio_vec *iovecs;
c5dec1c3 700 struct sg_iovec *sgvecs;
152e283f
FT
701 int nr_sgvecs;
702 int is_our_pages;
1da177e4
LT
703};
704
c5dec1c3 705static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
706 struct sg_iovec *iov, int iov_count,
707 int is_our_pages)
1da177e4
LT
708{
709 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
710 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
711 bmd->nr_sgvecs = iov_count;
152e283f 712 bmd->is_our_pages = is_our_pages;
1da177e4
LT
713 bio->bi_private = bmd;
714}
715
716static void bio_free_map_data(struct bio_map_data *bmd)
717{
718 kfree(bmd->iovecs);
c5dec1c3 719 kfree(bmd->sgvecs);
1da177e4
LT
720 kfree(bmd);
721}
722
121f0994
DC
723static struct bio_map_data *bio_alloc_map_data(int nr_segs,
724 unsigned int iov_count,
76029ff3 725 gfp_t gfp_mask)
1da177e4 726{
f3f63c1c
JA
727 struct bio_map_data *bmd;
728
729 if (iov_count > UIO_MAXIOV)
730 return NULL;
1da177e4 731
f3f63c1c 732 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
733 if (!bmd)
734 return NULL;
735
76029ff3 736 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
737 if (!bmd->iovecs) {
738 kfree(bmd);
739 return NULL;
740 }
741
76029ff3 742 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 743 if (bmd->sgvecs)
1da177e4
LT
744 return bmd;
745
c5dec1c3 746 kfree(bmd->iovecs);
1da177e4
LT
747 kfree(bmd);
748 return NULL;
749}
750
aefcc28a 751static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
752 struct sg_iovec *iov, int iov_count,
753 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
754{
755 int ret = 0, i;
756 struct bio_vec *bvec;
757 int iov_idx = 0;
758 unsigned int iov_off = 0;
c5dec1c3
FT
759
760 __bio_for_each_segment(bvec, bio, i, 0) {
761 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 762 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
763
764 while (bv_len && iov_idx < iov_count) {
765 unsigned int bytes;
0e0c6212 766 char __user *iov_addr;
c5dec1c3
FT
767
768 bytes = min_t(unsigned int,
769 iov[iov_idx].iov_len - iov_off, bv_len);
770 iov_addr = iov[iov_idx].iov_base + iov_off;
771
772 if (!ret) {
ecb554a8 773 if (to_user)
c5dec1c3
FT
774 ret = copy_to_user(iov_addr, bv_addr,
775 bytes);
776
ecb554a8
FT
777 if (from_user)
778 ret = copy_from_user(bv_addr, iov_addr,
779 bytes);
780
c5dec1c3
FT
781 if (ret)
782 ret = -EFAULT;
783 }
784
785 bv_len -= bytes;
786 bv_addr += bytes;
787 iov_addr += bytes;
788 iov_off += bytes;
789
790 if (iov[iov_idx].iov_len == iov_off) {
791 iov_idx++;
792 iov_off = 0;
793 }
794 }
795
152e283f 796 if (do_free_page)
c5dec1c3
FT
797 __free_page(bvec->bv_page);
798 }
799
800 return ret;
801}
802
1da177e4
LT
803/**
804 * bio_uncopy_user - finish previously mapped bio
805 * @bio: bio being terminated
806 *
807 * Free pages allocated from bio_copy_user() and write back data
808 * to user space in case of a read.
809 */
810int bio_uncopy_user(struct bio *bio)
811{
812 struct bio_map_data *bmd = bio->bi_private;
81882766 813 int ret = 0;
1da177e4 814
81882766
FT
815 if (!bio_flagged(bio, BIO_NULL_MAPPED))
816 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
ecb554a8
FT
817 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
818 0, bmd->is_our_pages);
1da177e4
LT
819 bio_free_map_data(bmd);
820 bio_put(bio);
821 return ret;
822}
a112a71d 823EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
824
825/**
c5dec1c3 826 * bio_copy_user_iov - copy user data to bio
1da177e4 827 * @q: destination block queue
152e283f 828 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
829 * @iov: the iovec.
830 * @iov_count: number of elements in the iovec
1da177e4 831 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 832 * @gfp_mask: memory allocation flags
1da177e4
LT
833 *
834 * Prepares and returns a bio for indirect user io, bouncing data
835 * to/from kernel pages as necessary. Must be paired with
836 * call bio_uncopy_user() on io completion.
837 */
152e283f
FT
838struct bio *bio_copy_user_iov(struct request_queue *q,
839 struct rq_map_data *map_data,
840 struct sg_iovec *iov, int iov_count,
841 int write_to_vm, gfp_t gfp_mask)
1da177e4 842{
1da177e4
LT
843 struct bio_map_data *bmd;
844 struct bio_vec *bvec;
845 struct page *page;
846 struct bio *bio;
847 int i, ret;
c5dec1c3
FT
848 int nr_pages = 0;
849 unsigned int len = 0;
56c451f4 850 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 851
c5dec1c3
FT
852 for (i = 0; i < iov_count; i++) {
853 unsigned long uaddr;
854 unsigned long end;
855 unsigned long start;
856
857 uaddr = (unsigned long)iov[i].iov_base;
858 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
859 start = uaddr >> PAGE_SHIFT;
860
cb4644ca
JA
861 /*
862 * Overflow, abort
863 */
864 if (end < start)
865 return ERR_PTR(-EINVAL);
866
c5dec1c3
FT
867 nr_pages += end - start;
868 len += iov[i].iov_len;
869 }
870
69838727
FT
871 if (offset)
872 nr_pages++;
873
a3bce90e 874 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
875 if (!bmd)
876 return ERR_PTR(-ENOMEM);
877
1da177e4 878 ret = -ENOMEM;
a9e9dc24 879 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
880 if (!bio)
881 goto out_bmd;
882
7b6d91da
CH
883 if (!write_to_vm)
884 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
885
886 ret = 0;
56c451f4
FT
887
888 if (map_data) {
e623ddb4 889 nr_pages = 1 << map_data->page_order;
56c451f4
FT
890 i = map_data->offset / PAGE_SIZE;
891 }
1da177e4 892 while (len) {
e623ddb4 893 unsigned int bytes = PAGE_SIZE;
1da177e4 894
56c451f4
FT
895 bytes -= offset;
896
1da177e4
LT
897 if (bytes > len)
898 bytes = len;
899
152e283f 900 if (map_data) {
e623ddb4 901 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
902 ret = -ENOMEM;
903 break;
904 }
e623ddb4
FT
905
906 page = map_data->pages[i / nr_pages];
907 page += (i % nr_pages);
908
909 i++;
910 } else {
152e283f 911 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
912 if (!page) {
913 ret = -ENOMEM;
914 break;
915 }
1da177e4
LT
916 }
917
56c451f4 918 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 919 break;
1da177e4
LT
920
921 len -= bytes;
56c451f4 922 offset = 0;
1da177e4
LT
923 }
924
925 if (ret)
926 goto cleanup;
927
928 /*
929 * success
930 */
ecb554a8
FT
931 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
932 (map_data && map_data->from_user)) {
933 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
934 if (ret)
935 goto cleanup;
1da177e4
LT
936 }
937
152e283f 938 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
939 return bio;
940cleanup:
152e283f
FT
941 if (!map_data)
942 bio_for_each_segment(bvec, bio, i)
943 __free_page(bvec->bv_page);
1da177e4
LT
944
945 bio_put(bio);
946out_bmd:
947 bio_free_map_data(bmd);
948 return ERR_PTR(ret);
949}
950
c5dec1c3
FT
951/**
952 * bio_copy_user - copy user data to bio
953 * @q: destination block queue
152e283f 954 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
955 * @uaddr: start of user address
956 * @len: length in bytes
957 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 958 * @gfp_mask: memory allocation flags
c5dec1c3
FT
959 *
960 * Prepares and returns a bio for indirect user io, bouncing data
961 * to/from kernel pages as necessary. Must be paired with
962 * call bio_uncopy_user() on io completion.
963 */
152e283f
FT
964struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
965 unsigned long uaddr, unsigned int len,
966 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
967{
968 struct sg_iovec iov;
969
970 iov.iov_base = (void __user *)uaddr;
971 iov.iov_len = len;
972
152e283f 973 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 974}
a112a71d 975EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 976
165125e1 977static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
978 struct block_device *bdev,
979 struct sg_iovec *iov, int iov_count,
a3bce90e 980 int write_to_vm, gfp_t gfp_mask)
1da177e4 981{
f1970baf
JB
982 int i, j;
983 int nr_pages = 0;
1da177e4
LT
984 struct page **pages;
985 struct bio *bio;
f1970baf
JB
986 int cur_page = 0;
987 int ret, offset;
1da177e4 988
f1970baf
JB
989 for (i = 0; i < iov_count; i++) {
990 unsigned long uaddr = (unsigned long)iov[i].iov_base;
991 unsigned long len = iov[i].iov_len;
992 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
993 unsigned long start = uaddr >> PAGE_SHIFT;
994
cb4644ca
JA
995 /*
996 * Overflow, abort
997 */
998 if (end < start)
999 return ERR_PTR(-EINVAL);
1000
f1970baf
JB
1001 nr_pages += end - start;
1002 /*
ad2d7225 1003 * buffer must be aligned to at least hardsector size for now
f1970baf 1004 */
ad2d7225 1005 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1006 return ERR_PTR(-EINVAL);
1007 }
1008
1009 if (!nr_pages)
1da177e4
LT
1010 return ERR_PTR(-EINVAL);
1011
a9e9dc24 1012 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1013 if (!bio)
1014 return ERR_PTR(-ENOMEM);
1015
1016 ret = -ENOMEM;
a3bce90e 1017 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1018 if (!pages)
1019 goto out;
1020
f1970baf
JB
1021 for (i = 0; i < iov_count; i++) {
1022 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1023 unsigned long len = iov[i].iov_len;
1024 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1025 unsigned long start = uaddr >> PAGE_SHIFT;
1026 const int local_nr_pages = end - start;
1027 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1028
f5dd33c4
NP
1029 ret = get_user_pages_fast(uaddr, local_nr_pages,
1030 write_to_vm, &pages[cur_page]);
99172157
JA
1031 if (ret < local_nr_pages) {
1032 ret = -EFAULT;
f1970baf 1033 goto out_unmap;
99172157 1034 }
f1970baf
JB
1035
1036 offset = uaddr & ~PAGE_MASK;
1037 for (j = cur_page; j < page_limit; j++) {
1038 unsigned int bytes = PAGE_SIZE - offset;
1039
1040 if (len <= 0)
1041 break;
1042
1043 if (bytes > len)
1044 bytes = len;
1045
1046 /*
1047 * sorry...
1048 */
defd94b7
MC
1049 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1050 bytes)
f1970baf
JB
1051 break;
1052
1053 len -= bytes;
1054 offset = 0;
1055 }
1da177e4 1056
f1970baf 1057 cur_page = j;
1da177e4 1058 /*
f1970baf 1059 * release the pages we didn't map into the bio, if any
1da177e4 1060 */
f1970baf
JB
1061 while (j < page_limit)
1062 page_cache_release(pages[j++]);
1da177e4
LT
1063 }
1064
1da177e4
LT
1065 kfree(pages);
1066
1067 /*
1068 * set data direction, and check if mapped pages need bouncing
1069 */
1070 if (!write_to_vm)
7b6d91da 1071 bio->bi_rw |= REQ_WRITE;
1da177e4 1072
f1970baf 1073 bio->bi_bdev = bdev;
1da177e4
LT
1074 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1075 return bio;
f1970baf
JB
1076
1077 out_unmap:
1078 for (i = 0; i < nr_pages; i++) {
1079 if(!pages[i])
1080 break;
1081 page_cache_release(pages[i]);
1082 }
1083 out:
1da177e4
LT
1084 kfree(pages);
1085 bio_put(bio);
1086 return ERR_PTR(ret);
1087}
1088
1089/**
1090 * bio_map_user - map user address into bio
165125e1 1091 * @q: the struct request_queue for the bio
1da177e4
LT
1092 * @bdev: destination block device
1093 * @uaddr: start of user address
1094 * @len: length in bytes
1095 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1096 * @gfp_mask: memory allocation flags
1da177e4
LT
1097 *
1098 * Map the user space address into a bio suitable for io to a block
1099 * device. Returns an error pointer in case of error.
1100 */
165125e1 1101struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1102 unsigned long uaddr, unsigned int len, int write_to_vm,
1103 gfp_t gfp_mask)
f1970baf
JB
1104{
1105 struct sg_iovec iov;
1106
3f70353e 1107 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1108 iov.iov_len = len;
1109
a3bce90e 1110 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1111}
a112a71d 1112EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1113
1114/**
1115 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1116 * @q: the struct request_queue for the bio
f1970baf
JB
1117 * @bdev: destination block device
1118 * @iov: the iovec.
1119 * @iov_count: number of elements in the iovec
1120 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1121 * @gfp_mask: memory allocation flags
f1970baf
JB
1122 *
1123 * Map the user space address into a bio suitable for io to a block
1124 * device. Returns an error pointer in case of error.
1125 */
165125e1 1126struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1127 struct sg_iovec *iov, int iov_count,
a3bce90e 1128 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1129{
1130 struct bio *bio;
1131
a3bce90e
FT
1132 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1133 gfp_mask);
1da177e4
LT
1134 if (IS_ERR(bio))
1135 return bio;
1136
1137 /*
1138 * subtle -- if __bio_map_user() ended up bouncing a bio,
1139 * it would normally disappear when its bi_end_io is run.
1140 * however, we need it for the unmap, so grab an extra
1141 * reference to it
1142 */
1143 bio_get(bio);
1144
0e75f906 1145 return bio;
1da177e4
LT
1146}
1147
1148static void __bio_unmap_user(struct bio *bio)
1149{
1150 struct bio_vec *bvec;
1151 int i;
1152
1153 /*
1154 * make sure we dirty pages we wrote to
1155 */
1156 __bio_for_each_segment(bvec, bio, i, 0) {
1157 if (bio_data_dir(bio) == READ)
1158 set_page_dirty_lock(bvec->bv_page);
1159
1160 page_cache_release(bvec->bv_page);
1161 }
1162
1163 bio_put(bio);
1164}
1165
1166/**
1167 * bio_unmap_user - unmap a bio
1168 * @bio: the bio being unmapped
1169 *
1170 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1171 * a process context.
1172 *
1173 * bio_unmap_user() may sleep.
1174 */
1175void bio_unmap_user(struct bio *bio)
1176{
1177 __bio_unmap_user(bio);
1178 bio_put(bio);
1179}
a112a71d 1180EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1181
6712ecf8 1182static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1183{
b823825e 1184 bio_put(bio);
b823825e
JA
1185}
1186
165125e1 1187static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1188 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1189{
1190 unsigned long kaddr = (unsigned long)data;
1191 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1192 unsigned long start = kaddr >> PAGE_SHIFT;
1193 const int nr_pages = end - start;
1194 int offset, i;
1195 struct bio *bio;
1196
a9e9dc24 1197 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1198 if (!bio)
1199 return ERR_PTR(-ENOMEM);
1200
1201 offset = offset_in_page(kaddr);
1202 for (i = 0; i < nr_pages; i++) {
1203 unsigned int bytes = PAGE_SIZE - offset;
1204
1205 if (len <= 0)
1206 break;
1207
1208 if (bytes > len)
1209 bytes = len;
1210
defd94b7
MC
1211 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1212 offset) < bytes)
df46b9a4
MC
1213 break;
1214
1215 data += bytes;
1216 len -= bytes;
1217 offset = 0;
1218 }
1219
b823825e 1220 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1221 return bio;
1222}
1223
1224/**
1225 * bio_map_kern - map kernel address into bio
165125e1 1226 * @q: the struct request_queue for the bio
df46b9a4
MC
1227 * @data: pointer to buffer to map
1228 * @len: length in bytes
1229 * @gfp_mask: allocation flags for bio allocation
1230 *
1231 * Map the kernel address into a bio suitable for io to a block
1232 * device. Returns an error pointer in case of error.
1233 */
165125e1 1234struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1235 gfp_t gfp_mask)
df46b9a4
MC
1236{
1237 struct bio *bio;
1238
1239 bio = __bio_map_kern(q, data, len, gfp_mask);
1240 if (IS_ERR(bio))
1241 return bio;
1242
1243 if (bio->bi_size == len)
1244 return bio;
1245
1246 /*
1247 * Don't support partial mappings.
1248 */
1249 bio_put(bio);
1250 return ERR_PTR(-EINVAL);
1251}
a112a71d 1252EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1253
68154e90
FT
1254static void bio_copy_kern_endio(struct bio *bio, int err)
1255{
1256 struct bio_vec *bvec;
1257 const int read = bio_data_dir(bio) == READ;
76029ff3 1258 struct bio_map_data *bmd = bio->bi_private;
68154e90 1259 int i;
76029ff3 1260 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
1261
1262 __bio_for_each_segment(bvec, bio, i, 0) {
1263 char *addr = page_address(bvec->bv_page);
76029ff3 1264 int len = bmd->iovecs[i].bv_len;
68154e90 1265
4fc981ef 1266 if (read)
76029ff3 1267 memcpy(p, addr, len);
68154e90
FT
1268
1269 __free_page(bvec->bv_page);
76029ff3 1270 p += len;
68154e90
FT
1271 }
1272
76029ff3 1273 bio_free_map_data(bmd);
68154e90
FT
1274 bio_put(bio);
1275}
1276
1277/**
1278 * bio_copy_kern - copy kernel address into bio
1279 * @q: the struct request_queue for the bio
1280 * @data: pointer to buffer to copy
1281 * @len: length in bytes
1282 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1283 * @reading: data direction is READ
68154e90
FT
1284 *
1285 * copy the kernel address into a bio suitable for io to a block
1286 * device. Returns an error pointer in case of error.
1287 */
1288struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1289 gfp_t gfp_mask, int reading)
1290{
68154e90
FT
1291 struct bio *bio;
1292 struct bio_vec *bvec;
4d8ab62e 1293 int i;
68154e90 1294
4d8ab62e
FT
1295 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1296 if (IS_ERR(bio))
1297 return bio;
68154e90
FT
1298
1299 if (!reading) {
1300 void *p = data;
1301
1302 bio_for_each_segment(bvec, bio, i) {
1303 char *addr = page_address(bvec->bv_page);
1304
1305 memcpy(addr, p, bvec->bv_len);
1306 p += bvec->bv_len;
1307 }
1308 }
1309
68154e90 1310 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1311
68154e90 1312 return bio;
68154e90 1313}
a112a71d 1314EXPORT_SYMBOL(bio_copy_kern);
68154e90 1315
1da177e4
LT
1316/*
1317 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1318 * for performing direct-IO in BIOs.
1319 *
1320 * The problem is that we cannot run set_page_dirty() from interrupt context
1321 * because the required locks are not interrupt-safe. So what we can do is to
1322 * mark the pages dirty _before_ performing IO. And in interrupt context,
1323 * check that the pages are still dirty. If so, fine. If not, redirty them
1324 * in process context.
1325 *
1326 * We special-case compound pages here: normally this means reads into hugetlb
1327 * pages. The logic in here doesn't really work right for compound pages
1328 * because the VM does not uniformly chase down the head page in all cases.
1329 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1330 * handle them at all. So we skip compound pages here at an early stage.
1331 *
1332 * Note that this code is very hard to test under normal circumstances because
1333 * direct-io pins the pages with get_user_pages(). This makes
1334 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1335 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1336 * pagecache.
1337 *
1338 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1339 * deferred bio dirtying paths.
1340 */
1341
1342/*
1343 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1344 */
1345void bio_set_pages_dirty(struct bio *bio)
1346{
1347 struct bio_vec *bvec = bio->bi_io_vec;
1348 int i;
1349
1350 for (i = 0; i < bio->bi_vcnt; i++) {
1351 struct page *page = bvec[i].bv_page;
1352
1353 if (page && !PageCompound(page))
1354 set_page_dirty_lock(page);
1355 }
1356}
1357
86b6c7a7 1358static void bio_release_pages(struct bio *bio)
1da177e4
LT
1359{
1360 struct bio_vec *bvec = bio->bi_io_vec;
1361 int i;
1362
1363 for (i = 0; i < bio->bi_vcnt; i++) {
1364 struct page *page = bvec[i].bv_page;
1365
1366 if (page)
1367 put_page(page);
1368 }
1369}
1370
1371/*
1372 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1373 * If they are, then fine. If, however, some pages are clean then they must
1374 * have been written out during the direct-IO read. So we take another ref on
1375 * the BIO and the offending pages and re-dirty the pages in process context.
1376 *
1377 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1378 * here on. It will run one page_cache_release() against each page and will
1379 * run one bio_put() against the BIO.
1380 */
1381
65f27f38 1382static void bio_dirty_fn(struct work_struct *work);
1da177e4 1383
65f27f38 1384static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1385static DEFINE_SPINLOCK(bio_dirty_lock);
1386static struct bio *bio_dirty_list;
1387
1388/*
1389 * This runs in process context
1390 */
65f27f38 1391static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1392{
1393 unsigned long flags;
1394 struct bio *bio;
1395
1396 spin_lock_irqsave(&bio_dirty_lock, flags);
1397 bio = bio_dirty_list;
1398 bio_dirty_list = NULL;
1399 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1400
1401 while (bio) {
1402 struct bio *next = bio->bi_private;
1403
1404 bio_set_pages_dirty(bio);
1405 bio_release_pages(bio);
1406 bio_put(bio);
1407 bio = next;
1408 }
1409}
1410
1411void bio_check_pages_dirty(struct bio *bio)
1412{
1413 struct bio_vec *bvec = bio->bi_io_vec;
1414 int nr_clean_pages = 0;
1415 int i;
1416
1417 for (i = 0; i < bio->bi_vcnt; i++) {
1418 struct page *page = bvec[i].bv_page;
1419
1420 if (PageDirty(page) || PageCompound(page)) {
1421 page_cache_release(page);
1422 bvec[i].bv_page = NULL;
1423 } else {
1424 nr_clean_pages++;
1425 }
1426 }
1427
1428 if (nr_clean_pages) {
1429 unsigned long flags;
1430
1431 spin_lock_irqsave(&bio_dirty_lock, flags);
1432 bio->bi_private = bio_dirty_list;
1433 bio_dirty_list = bio;
1434 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1435 schedule_work(&bio_dirty_work);
1436 } else {
1437 bio_put(bio);
1438 }
1439}
1440
2d4dc890
IL
1441#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1442void bio_flush_dcache_pages(struct bio *bi)
1443{
1444 int i;
1445 struct bio_vec *bvec;
1446
1447 bio_for_each_segment(bvec, bi, i)
1448 flush_dcache_page(bvec->bv_page);
1449}
1450EXPORT_SYMBOL(bio_flush_dcache_pages);
1451#endif
1452
1da177e4
LT
1453/**
1454 * bio_endio - end I/O on a bio
1455 * @bio: bio
1da177e4
LT
1456 * @error: error, if any
1457 *
1458 * Description:
6712ecf8 1459 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1460 * preferred way to end I/O on a bio, it takes care of clearing
1461 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1462 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1463 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1464 * bio unless they own it and thus know that it has an end_io
1465 * function.
1da177e4 1466 **/
6712ecf8 1467void bio_endio(struct bio *bio, int error)
1da177e4
LT
1468{
1469 if (error)
1470 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1471 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1472 error = -EIO;
1da177e4 1473
5bb23a68 1474 if (bio->bi_end_io)
6712ecf8 1475 bio->bi_end_io(bio, error);
1da177e4 1476}
a112a71d 1477EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1478
1479void bio_pair_release(struct bio_pair *bp)
1480{
1481 if (atomic_dec_and_test(&bp->cnt)) {
1482 struct bio *master = bp->bio1.bi_private;
1483
6712ecf8 1484 bio_endio(master, bp->error);
1da177e4
LT
1485 mempool_free(bp, bp->bio2.bi_private);
1486 }
1487}
a112a71d 1488EXPORT_SYMBOL(bio_pair_release);
1da177e4 1489
6712ecf8 1490static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1491{
1492 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1493
1494 if (err)
1495 bp->error = err;
1496
1da177e4 1497 bio_pair_release(bp);
1da177e4
LT
1498}
1499
6712ecf8 1500static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1501{
1502 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1503
1504 if (err)
1505 bp->error = err;
1506
1da177e4 1507 bio_pair_release(bp);
1da177e4
LT
1508}
1509
1510/*
c7eee1b8 1511 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1512 */
6feef531 1513struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1514{
6feef531 1515 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1516
1517 if (!bp)
1518 return bp;
1519
5f3ea37c 1520 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1521 bi->bi_sector + first_sectors);
1522
1da177e4
LT
1523 BUG_ON(bi->bi_vcnt != 1);
1524 BUG_ON(bi->bi_idx != 0);
1525 atomic_set(&bp->cnt, 3);
1526 bp->error = 0;
1527 bp->bio1 = *bi;
1528 bp->bio2 = *bi;
1529 bp->bio2.bi_sector += first_sectors;
1530 bp->bio2.bi_size -= first_sectors << 9;
1531 bp->bio1.bi_size = first_sectors << 9;
1532
1533 bp->bv1 = bi->bi_io_vec[0];
1534 bp->bv2 = bi->bi_io_vec[0];
1535 bp->bv2.bv_offset += first_sectors << 9;
1536 bp->bv2.bv_len -= first_sectors << 9;
1537 bp->bv1.bv_len = first_sectors << 9;
1538
1539 bp->bio1.bi_io_vec = &bp->bv1;
1540 bp->bio2.bi_io_vec = &bp->bv2;
1541
a2eb0c10
N
1542 bp->bio1.bi_max_vecs = 1;
1543 bp->bio2.bi_max_vecs = 1;
1544
1da177e4
LT
1545 bp->bio1.bi_end_io = bio_pair_end_1;
1546 bp->bio2.bi_end_io = bio_pair_end_2;
1547
1548 bp->bio1.bi_private = bi;
6feef531 1549 bp->bio2.bi_private = bio_split_pool;
1da177e4 1550
7ba1ba12
MP
1551 if (bio_integrity(bi))
1552 bio_integrity_split(bi, bp, first_sectors);
1553
1da177e4
LT
1554 return bp;
1555}
a112a71d 1556EXPORT_SYMBOL(bio_split);
1da177e4 1557
ad3316bf
MP
1558/**
1559 * bio_sector_offset - Find hardware sector offset in bio
1560 * @bio: bio to inspect
1561 * @index: bio_vec index
1562 * @offset: offset in bv_page
1563 *
1564 * Return the number of hardware sectors between beginning of bio
1565 * and an end point indicated by a bio_vec index and an offset
1566 * within that vector's page.
1567 */
1568sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1569 unsigned int offset)
1570{
e1defc4f 1571 unsigned int sector_sz;
ad3316bf
MP
1572 struct bio_vec *bv;
1573 sector_t sectors;
1574 int i;
1575
e1defc4f 1576 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1577 sectors = 0;
1578
1579 if (index >= bio->bi_idx)
1580 index = bio->bi_vcnt - 1;
1581
1582 __bio_for_each_segment(bv, bio, i, 0) {
1583 if (i == index) {
1584 if (offset > bv->bv_offset)
1585 sectors += (offset - bv->bv_offset) / sector_sz;
1586 break;
1587 }
1588
1589 sectors += bv->bv_len / sector_sz;
1590 }
1591
1592 return sectors;
1593}
1594EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1595
1596/*
1597 * create memory pools for biovec's in a bio_set.
1598 * use the global biovec slabs created for general use.
1599 */
5972511b 1600static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4 1601{
7ff9345f 1602 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1603
7ff9345f
JA
1604 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1605 if (!bs->bvec_pool)
1606 return -ENOMEM;
1da177e4 1607
1da177e4
LT
1608 return 0;
1609}
1610
1611static void biovec_free_pools(struct bio_set *bs)
1612{
7ff9345f 1613 mempool_destroy(bs->bvec_pool);
1da177e4
LT
1614}
1615
1616void bioset_free(struct bio_set *bs)
1617{
1618 if (bs->bio_pool)
1619 mempool_destroy(bs->bio_pool);
1620
7878cba9 1621 bioset_integrity_free(bs);
1da177e4 1622 biovec_free_pools(bs);
bb799ca0 1623 bio_put_slab(bs);
1da177e4
LT
1624
1625 kfree(bs);
1626}
a112a71d 1627EXPORT_SYMBOL(bioset_free);
1da177e4 1628
bb799ca0
JA
1629/**
1630 * bioset_create - Create a bio_set
1631 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1632 * @front_pad: Number of bytes to allocate in front of the returned bio
1633 *
1634 * Description:
1635 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1636 * to ask for a number of bytes to be allocated in front of the bio.
1637 * Front pad allocation is useful for embedding the bio inside
1638 * another structure, to avoid allocating extra data to go with the bio.
1639 * Note that the bio must be embedded at the END of that structure always,
1640 * or things will break badly.
1641 */
1642struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1643{
392ddc32 1644 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1645 struct bio_set *bs;
1da177e4 1646
1b434498 1647 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1648 if (!bs)
1649 return NULL;
1650
bb799ca0 1651 bs->front_pad = front_pad;
1b434498 1652
392ddc32 1653 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1654 if (!bs->bio_slab) {
1655 kfree(bs);
1656 return NULL;
1657 }
1658
1659 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1660 if (!bs->bio_pool)
1661 goto bad;
1662
bb799ca0 1663 if (!biovec_create_pools(bs, pool_size))
1da177e4
LT
1664 return bs;
1665
1666bad:
1667 bioset_free(bs);
1668 return NULL;
1669}
a112a71d 1670EXPORT_SYMBOL(bioset_create);
1da177e4 1671
852c788f
TH
1672#ifdef CONFIG_BLK_CGROUP
1673/**
1674 * bio_associate_current - associate a bio with %current
1675 * @bio: target bio
1676 *
1677 * Associate @bio with %current if it hasn't been associated yet. Block
1678 * layer will treat @bio as if it were issued by %current no matter which
1679 * task actually issues it.
1680 *
1681 * This function takes an extra reference of @task's io_context and blkcg
1682 * which will be put when @bio is released. The caller must own @bio,
1683 * ensure %current->io_context exists, and is responsible for synchronizing
1684 * calls to this function.
1685 */
1686int bio_associate_current(struct bio *bio)
1687{
1688 struct io_context *ioc;
1689 struct cgroup_subsys_state *css;
1690
1691 if (bio->bi_ioc)
1692 return -EBUSY;
1693
1694 ioc = current->io_context;
1695 if (!ioc)
1696 return -ENOENT;
1697
1698 /* acquire active ref on @ioc and associate */
1699 get_io_context_active(ioc);
1700 bio->bi_ioc = ioc;
1701
1702 /* associate blkcg if exists */
1703 rcu_read_lock();
1704 css = task_subsys_state(current, blkio_subsys_id);
1705 if (css && css_tryget(css))
1706 bio->bi_css = css;
1707 rcu_read_unlock();
1708
1709 return 0;
1710}
1711
1712/**
1713 * bio_disassociate_task - undo bio_associate_current()
1714 * @bio: target bio
1715 */
1716void bio_disassociate_task(struct bio *bio)
1717{
1718 if (bio->bi_ioc) {
1719 put_io_context(bio->bi_ioc);
1720 bio->bi_ioc = NULL;
1721 }
1722 if (bio->bi_css) {
1723 css_put(bio->bi_css);
1724 bio->bi_css = NULL;
1725 }
1726}
1727
1728#endif /* CONFIG_BLK_CGROUP */
1729
1da177e4
LT
1730static void __init biovec_init_slabs(void)
1731{
1732 int i;
1733
1734 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1735 int size;
1736 struct biovec_slab *bvs = bvec_slabs + i;
1737
a7fcd37c
JA
1738 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1739 bvs->slab = NULL;
1740 continue;
1741 }
a7fcd37c 1742
1da177e4
LT
1743 size = bvs->nr_vecs * sizeof(struct bio_vec);
1744 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1745 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1746 }
1747}
1748
1749static int __init init_bio(void)
1750{
bb799ca0
JA
1751 bio_slab_max = 2;
1752 bio_slab_nr = 0;
1753 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1754 if (!bio_slabs)
1755 panic("bio: can't allocate bios\n");
1da177e4 1756
7878cba9 1757 bio_integrity_init();
1da177e4
LT
1758 biovec_init_slabs();
1759
bb799ca0 1760 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1761 if (!fs_bio_set)
1762 panic("bio: can't allocate bios\n");
1763
a91a2785
MP
1764 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1765 panic("bio: can't create integrity pool\n");
1766
0eaae62a
MD
1767 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1768 sizeof(struct bio_pair));
1da177e4
LT
1769 if (!bio_split_pool)
1770 panic("bio: can't create split pool\n");
1771
1772 return 0;
1773}
1da177e4 1774subsys_initcall(init_bio);