]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/bio.c
block: Add bio_for_each_segment_all()
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
852c788f 22#include <linux/iocontext.h>
1da177e4
LT
23#include <linux/slab.h>
24#include <linux/init.h>
25#include <linux/kernel.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mempool.h>
28#include <linux/workqueue.h>
852c788f 29#include <linux/cgroup.h>
f1970baf 30#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 31
55782138 32#include <trace/events/block.h>
0bfc2455 33
392ddc32
JA
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
6feef531 40static mempool_t *bio_split_pool __read_mostly;
1da177e4 41
1da177e4
LT
42/*
43 * if you change this list, also change bvec_alloc or things will
44 * break badly! cannot be bigger than what you can fit into an
45 * unsigned short
46 */
1da177e4 47#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 48static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
49 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
50};
51#undef BV
52
1da177e4
LT
53/*
54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55 * IO code that does not need private memory pools.
56 */
51d654e1 57struct bio_set *fs_bio_set;
3f86a82a 58EXPORT_SYMBOL(fs_bio_set);
1da177e4 59
bb799ca0
JA
60/*
61 * Our slab pool management
62 */
63struct bio_slab {
64 struct kmem_cache *slab;
65 unsigned int slab_ref;
66 unsigned int slab_size;
67 char name[8];
68};
69static DEFINE_MUTEX(bio_slab_lock);
70static struct bio_slab *bio_slabs;
71static unsigned int bio_slab_nr, bio_slab_max;
72
73static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
74{
75 unsigned int sz = sizeof(struct bio) + extra_size;
76 struct kmem_cache *slab = NULL;
389d7b26 77 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 78 unsigned int new_bio_slab_max;
bb799ca0
JA
79 unsigned int i, entry = -1;
80
81 mutex_lock(&bio_slab_lock);
82
83 i = 0;
84 while (i < bio_slab_nr) {
f06f135d 85 bslab = &bio_slabs[i];
bb799ca0
JA
86
87 if (!bslab->slab && entry == -1)
88 entry = i;
89 else if (bslab->slab_size == sz) {
90 slab = bslab->slab;
91 bslab->slab_ref++;
92 break;
93 }
94 i++;
95 }
96
97 if (slab)
98 goto out_unlock;
99
100 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 101 new_bio_slab_max = bio_slab_max << 1;
389d7b26 102 new_bio_slabs = krealloc(bio_slabs,
386bc35a 103 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
104 GFP_KERNEL);
105 if (!new_bio_slabs)
bb799ca0 106 goto out_unlock;
386bc35a 107 bio_slab_max = new_bio_slab_max;
389d7b26 108 bio_slabs = new_bio_slabs;
bb799ca0
JA
109 }
110 if (entry == -1)
111 entry = bio_slab_nr++;
112
113 bslab = &bio_slabs[entry];
114
115 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
116 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
117 if (!slab)
118 goto out_unlock;
119
80cdc6da 120 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
bb799ca0
JA
121 bslab->slab = slab;
122 bslab->slab_ref = 1;
123 bslab->slab_size = sz;
124out_unlock:
125 mutex_unlock(&bio_slab_lock);
126 return slab;
127}
128
129static void bio_put_slab(struct bio_set *bs)
130{
131 struct bio_slab *bslab = NULL;
132 unsigned int i;
133
134 mutex_lock(&bio_slab_lock);
135
136 for (i = 0; i < bio_slab_nr; i++) {
137 if (bs->bio_slab == bio_slabs[i].slab) {
138 bslab = &bio_slabs[i];
139 break;
140 }
141 }
142
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
146 WARN_ON(!bslab->slab_ref);
147
148 if (--bslab->slab_ref)
149 goto out;
150
151 kmem_cache_destroy(bslab->slab);
152 bslab->slab = NULL;
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7ba1ba12
MP
158unsigned int bvec_nr_vecs(unsigned short idx)
159{
160 return bvec_slabs[idx].nr_vecs;
161}
162
9f060e22 163void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0
JA
164{
165 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
166
167 if (idx == BIOVEC_MAX_IDX)
9f060e22 168 mempool_free(bv, pool);
bb799ca0
JA
169 else {
170 struct biovec_slab *bvs = bvec_slabs + idx;
171
172 kmem_cache_free(bvs->slab, bv);
173 }
174}
175
9f060e22
KO
176struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
177 mempool_t *pool)
1da177e4
LT
178{
179 struct bio_vec *bvl;
1da177e4 180
7ff9345f
JA
181 /*
182 * see comment near bvec_array define!
183 */
184 switch (nr) {
185 case 1:
186 *idx = 0;
187 break;
188 case 2 ... 4:
189 *idx = 1;
190 break;
191 case 5 ... 16:
192 *idx = 2;
193 break;
194 case 17 ... 64:
195 *idx = 3;
196 break;
197 case 65 ... 128:
198 *idx = 4;
199 break;
200 case 129 ... BIO_MAX_PAGES:
201 *idx = 5;
202 break;
203 default:
204 return NULL;
205 }
206
207 /*
208 * idx now points to the pool we want to allocate from. only the
209 * 1-vec entry pool is mempool backed.
210 */
211 if (*idx == BIOVEC_MAX_IDX) {
212fallback:
9f060e22 213 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
214 } else {
215 struct biovec_slab *bvs = bvec_slabs + *idx;
216 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
217
0a0d96b0 218 /*
7ff9345f
JA
219 * Make this allocation restricted and don't dump info on
220 * allocation failures, since we'll fallback to the mempool
221 * in case of failure.
0a0d96b0 222 */
7ff9345f 223 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 224
0a0d96b0 225 /*
7ff9345f
JA
226 * Try a slab allocation. If this fails and __GFP_WAIT
227 * is set, retry with the 1-entry mempool
0a0d96b0 228 */
7ff9345f
JA
229 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
230 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
231 *idx = BIOVEC_MAX_IDX;
232 goto fallback;
233 }
234 }
235
1da177e4
LT
236 return bvl;
237}
238
4254bba1 239static void __bio_free(struct bio *bio)
1da177e4 240{
4254bba1 241 bio_disassociate_task(bio);
1da177e4 242
7ba1ba12 243 if (bio_integrity(bio))
1e2a410f 244 bio_integrity_free(bio);
4254bba1 245}
7ba1ba12 246
4254bba1
KO
247static void bio_free(struct bio *bio)
248{
249 struct bio_set *bs = bio->bi_pool;
250 void *p;
251
252 __bio_free(bio);
253
254 if (bs) {
255 if (bio_has_allocated_vec(bio))
9f060e22 256 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
4254bba1
KO
257
258 /*
259 * If we have front padding, adjust the bio pointer before freeing
260 */
261 p = bio;
bb799ca0
JA
262 p -= bs->front_pad;
263
4254bba1
KO
264 mempool_free(p, bs->bio_pool);
265 } else {
266 /* Bio was allocated by bio_kmalloc() */
267 kfree(bio);
268 }
3676347a
PO
269}
270
858119e1 271void bio_init(struct bio *bio)
1da177e4 272{
2b94de55 273 memset(bio, 0, sizeof(*bio));
1da177e4 274 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 275 atomic_set(&bio->bi_cnt, 1);
1da177e4 276}
a112a71d 277EXPORT_SYMBOL(bio_init);
1da177e4 278
f44b48c7
KO
279/**
280 * bio_reset - reinitialize a bio
281 * @bio: bio to reset
282 *
283 * Description:
284 * After calling bio_reset(), @bio will be in the same state as a freshly
285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
286 * preserved are the ones that are initialized by bio_alloc_bioset(). See
287 * comment in struct bio.
288 */
289void bio_reset(struct bio *bio)
290{
291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
292
4254bba1 293 __bio_free(bio);
f44b48c7
KO
294
295 memset(bio, 0, BIO_RESET_BYTES);
296 bio->bi_flags = flags|(1 << BIO_UPTODATE);
297}
298EXPORT_SYMBOL(bio_reset);
299
df2cb6da
KO
300static void bio_alloc_rescue(struct work_struct *work)
301{
302 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
303 struct bio *bio;
304
305 while (1) {
306 spin_lock(&bs->rescue_lock);
307 bio = bio_list_pop(&bs->rescue_list);
308 spin_unlock(&bs->rescue_lock);
309
310 if (!bio)
311 break;
312
313 generic_make_request(bio);
314 }
315}
316
317static void punt_bios_to_rescuer(struct bio_set *bs)
318{
319 struct bio_list punt, nopunt;
320 struct bio *bio;
321
322 /*
323 * In order to guarantee forward progress we must punt only bios that
324 * were allocated from this bio_set; otherwise, if there was a bio on
325 * there for a stacking driver higher up in the stack, processing it
326 * could require allocating bios from this bio_set, and doing that from
327 * our own rescuer would be bad.
328 *
329 * Since bio lists are singly linked, pop them all instead of trying to
330 * remove from the middle of the list:
331 */
332
333 bio_list_init(&punt);
334 bio_list_init(&nopunt);
335
336 while ((bio = bio_list_pop(current->bio_list)))
337 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
338
339 *current->bio_list = nopunt;
340
341 spin_lock(&bs->rescue_lock);
342 bio_list_merge(&bs->rescue_list, &punt);
343 spin_unlock(&bs->rescue_lock);
344
345 queue_work(bs->rescue_workqueue, &bs->rescue_work);
346}
347
1da177e4
LT
348/**
349 * bio_alloc_bioset - allocate a bio for I/O
350 * @gfp_mask: the GFP_ mask given to the slab allocator
351 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 352 * @bs: the bio_set to allocate from.
1da177e4
LT
353 *
354 * Description:
3f86a82a
KO
355 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
356 * backed by the @bs's mempool.
357 *
358 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
359 * able to allocate a bio. This is due to the mempool guarantees. To make this
360 * work, callers must never allocate more than 1 bio at a time from this pool.
361 * Callers that need to allocate more than 1 bio must always submit the
362 * previously allocated bio for IO before attempting to allocate a new one.
363 * Failure to do so can cause deadlocks under memory pressure.
364 *
df2cb6da
KO
365 * Note that when running under generic_make_request() (i.e. any block
366 * driver), bios are not submitted until after you return - see the code in
367 * generic_make_request() that converts recursion into iteration, to prevent
368 * stack overflows.
369 *
370 * This would normally mean allocating multiple bios under
371 * generic_make_request() would be susceptible to deadlocks, but we have
372 * deadlock avoidance code that resubmits any blocked bios from a rescuer
373 * thread.
374 *
375 * However, we do not guarantee forward progress for allocations from other
376 * mempools. Doing multiple allocations from the same mempool under
377 * generic_make_request() should be avoided - instead, use bio_set's front_pad
378 * for per bio allocations.
379 *
3f86a82a
KO
380 * RETURNS:
381 * Pointer to new bio on success, NULL on failure.
382 */
dd0fc66f 383struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 384{
df2cb6da 385 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
386 unsigned front_pad;
387 unsigned inline_vecs;
451a9ebf 388 unsigned long idx = BIO_POOL_NONE;
34053979 389 struct bio_vec *bvl = NULL;
451a9ebf
TH
390 struct bio *bio;
391 void *p;
392
3f86a82a
KO
393 if (!bs) {
394 if (nr_iovecs > UIO_MAXIOV)
395 return NULL;
396
397 p = kmalloc(sizeof(struct bio) +
398 nr_iovecs * sizeof(struct bio_vec),
399 gfp_mask);
400 front_pad = 0;
401 inline_vecs = nr_iovecs;
402 } else {
df2cb6da
KO
403 /*
404 * generic_make_request() converts recursion to iteration; this
405 * means if we're running beneath it, any bios we allocate and
406 * submit will not be submitted (and thus freed) until after we
407 * return.
408 *
409 * This exposes us to a potential deadlock if we allocate
410 * multiple bios from the same bio_set() while running
411 * underneath generic_make_request(). If we were to allocate
412 * multiple bios (say a stacking block driver that was splitting
413 * bios), we would deadlock if we exhausted the mempool's
414 * reserve.
415 *
416 * We solve this, and guarantee forward progress, with a rescuer
417 * workqueue per bio_set. If we go to allocate and there are
418 * bios on current->bio_list, we first try the allocation
419 * without __GFP_WAIT; if that fails, we punt those bios we
420 * would be blocking to the rescuer workqueue before we retry
421 * with the original gfp_flags.
422 */
423
424 if (current->bio_list && !bio_list_empty(current->bio_list))
425 gfp_mask &= ~__GFP_WAIT;
426
3f86a82a 427 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
428 if (!p && gfp_mask != saved_gfp) {
429 punt_bios_to_rescuer(bs);
430 gfp_mask = saved_gfp;
431 p = mempool_alloc(bs->bio_pool, gfp_mask);
432 }
433
3f86a82a
KO
434 front_pad = bs->front_pad;
435 inline_vecs = BIO_INLINE_VECS;
436 }
437
451a9ebf
TH
438 if (unlikely(!p))
439 return NULL;
1da177e4 440
3f86a82a 441 bio = p + front_pad;
34053979
IM
442 bio_init(bio);
443
3f86a82a 444 if (nr_iovecs > inline_vecs) {
9f060e22 445 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
446 if (!bvl && gfp_mask != saved_gfp) {
447 punt_bios_to_rescuer(bs);
448 gfp_mask = saved_gfp;
9f060e22 449 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
450 }
451
34053979
IM
452 if (unlikely(!bvl))
453 goto err_free;
3f86a82a
KO
454 } else if (nr_iovecs) {
455 bvl = bio->bi_inline_vecs;
1da177e4 456 }
3f86a82a
KO
457
458 bio->bi_pool = bs;
34053979
IM
459 bio->bi_flags |= idx << BIO_POOL_OFFSET;
460 bio->bi_max_vecs = nr_iovecs;
34053979 461 bio->bi_io_vec = bvl;
1da177e4 462 return bio;
34053979
IM
463
464err_free:
451a9ebf 465 mempool_free(p, bs->bio_pool);
34053979 466 return NULL;
1da177e4 467}
a112a71d 468EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 469
1da177e4
LT
470void zero_fill_bio(struct bio *bio)
471{
472 unsigned long flags;
473 struct bio_vec *bv;
474 int i;
475
476 bio_for_each_segment(bv, bio, i) {
477 char *data = bvec_kmap_irq(bv, &flags);
478 memset(data, 0, bv->bv_len);
479 flush_dcache_page(bv->bv_page);
480 bvec_kunmap_irq(data, &flags);
481 }
482}
483EXPORT_SYMBOL(zero_fill_bio);
484
485/**
486 * bio_put - release a reference to a bio
487 * @bio: bio to release reference to
488 *
489 * Description:
490 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 491 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
492 **/
493void bio_put(struct bio *bio)
494{
495 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
496
497 /*
498 * last put frees it
499 */
4254bba1
KO
500 if (atomic_dec_and_test(&bio->bi_cnt))
501 bio_free(bio);
1da177e4 502}
a112a71d 503EXPORT_SYMBOL(bio_put);
1da177e4 504
165125e1 505inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
506{
507 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
508 blk_recount_segments(q, bio);
509
510 return bio->bi_phys_segments;
511}
a112a71d 512EXPORT_SYMBOL(bio_phys_segments);
1da177e4 513
1da177e4
LT
514/**
515 * __bio_clone - clone a bio
516 * @bio: destination bio
517 * @bio_src: bio to clone
518 *
519 * Clone a &bio. Caller will own the returned bio, but not
520 * the actual data it points to. Reference count of returned
521 * bio will be one.
522 */
858119e1 523void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 524{
e525e153
AM
525 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
526 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 527
5d84070e
JA
528 /*
529 * most users will be overriding ->bi_bdev with a new target,
530 * so we don't set nor calculate new physical/hw segment counts here
531 */
1da177e4
LT
532 bio->bi_sector = bio_src->bi_sector;
533 bio->bi_bdev = bio_src->bi_bdev;
534 bio->bi_flags |= 1 << BIO_CLONED;
535 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
536 bio->bi_vcnt = bio_src->bi_vcnt;
537 bio->bi_size = bio_src->bi_size;
a5453be4 538 bio->bi_idx = bio_src->bi_idx;
1da177e4 539}
a112a71d 540EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
541
542/**
bf800ef1 543 * bio_clone_bioset - clone a bio
1da177e4
LT
544 * @bio: bio to clone
545 * @gfp_mask: allocation priority
bf800ef1 546 * @bs: bio_set to allocate from
1da177e4
LT
547 *
548 * Like __bio_clone, only also allocates the returned bio
549 */
bf800ef1
KO
550struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
551 struct bio_set *bs)
1da177e4 552{
bf800ef1 553 struct bio *b;
1da177e4 554
bf800ef1 555 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
7ba1ba12
MP
556 if (!b)
557 return NULL;
558
7ba1ba12
MP
559 __bio_clone(b, bio);
560
561 if (bio_integrity(bio)) {
562 int ret;
563
1e2a410f 564 ret = bio_integrity_clone(b, bio, gfp_mask);
7ba1ba12 565
059ea331
LZ
566 if (ret < 0) {
567 bio_put(b);
7ba1ba12 568 return NULL;
059ea331 569 }
3676347a 570 }
1da177e4
LT
571
572 return b;
573}
bf800ef1 574EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
575
576/**
577 * bio_get_nr_vecs - return approx number of vecs
578 * @bdev: I/O target
579 *
580 * Return the approximate number of pages we can send to this target.
581 * There's no guarantee that you will be able to fit this number of pages
582 * into a bio, it does not account for dynamic restrictions that vary
583 * on offset.
584 */
585int bio_get_nr_vecs(struct block_device *bdev)
586{
165125e1 587 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
588 int nr_pages;
589
590 nr_pages = min_t(unsigned,
5abebfdd
KO
591 queue_max_segments(q),
592 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
593
594 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
595
1da177e4 596}
a112a71d 597EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 598
165125e1 599static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
600 *page, unsigned int len, unsigned int offset,
601 unsigned short max_sectors)
1da177e4
LT
602{
603 int retried_segments = 0;
604 struct bio_vec *bvec;
605
606 /*
607 * cloned bio must not modify vec list
608 */
609 if (unlikely(bio_flagged(bio, BIO_CLONED)))
610 return 0;
611
80cfd548 612 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
613 return 0;
614
80cfd548
JA
615 /*
616 * For filesystems with a blocksize smaller than the pagesize
617 * we will often be called with the same page as last time and
618 * a consecutive offset. Optimize this special case.
619 */
620 if (bio->bi_vcnt > 0) {
621 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
622
623 if (page == prev->bv_page &&
624 offset == prev->bv_offset + prev->bv_len) {
1d616585 625 unsigned int prev_bv_len = prev->bv_len;
80cfd548 626 prev->bv_len += len;
cc371e66
AK
627
628 if (q->merge_bvec_fn) {
629 struct bvec_merge_data bvm = {
1d616585
DM
630 /* prev_bvec is already charged in
631 bi_size, discharge it in order to
632 simulate merging updated prev_bvec
633 as new bvec. */
cc371e66
AK
634 .bi_bdev = bio->bi_bdev,
635 .bi_sector = bio->bi_sector,
1d616585 636 .bi_size = bio->bi_size - prev_bv_len,
cc371e66
AK
637 .bi_rw = bio->bi_rw,
638 };
639
8bf8c376 640 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
641 prev->bv_len -= len;
642 return 0;
643 }
80cfd548
JA
644 }
645
646 goto done;
647 }
648 }
649
650 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
651 return 0;
652
653 /*
654 * we might lose a segment or two here, but rather that than
655 * make this too complex.
656 */
657
8a78362c 658 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
659
660 if (retried_segments)
661 return 0;
662
663 retried_segments = 1;
664 blk_recount_segments(q, bio);
665 }
666
667 /*
668 * setup the new entry, we might clear it again later if we
669 * cannot add the page
670 */
671 bvec = &bio->bi_io_vec[bio->bi_vcnt];
672 bvec->bv_page = page;
673 bvec->bv_len = len;
674 bvec->bv_offset = offset;
675
676 /*
677 * if queue has other restrictions (eg varying max sector size
678 * depending on offset), it can specify a merge_bvec_fn in the
679 * queue to get further control
680 */
681 if (q->merge_bvec_fn) {
cc371e66
AK
682 struct bvec_merge_data bvm = {
683 .bi_bdev = bio->bi_bdev,
684 .bi_sector = bio->bi_sector,
685 .bi_size = bio->bi_size,
686 .bi_rw = bio->bi_rw,
687 };
688
1da177e4
LT
689 /*
690 * merge_bvec_fn() returns number of bytes it can accept
691 * at this offset
692 */
8bf8c376 693 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
694 bvec->bv_page = NULL;
695 bvec->bv_len = 0;
696 bvec->bv_offset = 0;
697 return 0;
698 }
699 }
700
701 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 702 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
703 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
704
705 bio->bi_vcnt++;
706 bio->bi_phys_segments++;
80cfd548 707 done:
1da177e4
LT
708 bio->bi_size += len;
709 return len;
710}
711
6e68af66
MC
712/**
713 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 714 * @q: the target queue
6e68af66
MC
715 * @bio: destination bio
716 * @page: page to add
717 * @len: vec entry length
718 * @offset: vec entry offset
719 *
720 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
721 * number of reasons, such as the bio being full or target block device
722 * limitations. The target block device must allow bio's up to PAGE_SIZE,
723 * so it is always possible to add a single page to an empty bio.
724 *
725 * This should only be used by REQ_PC bios.
6e68af66 726 */
165125e1 727int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
728 unsigned int len, unsigned int offset)
729{
ae03bf63
MP
730 return __bio_add_page(q, bio, page, len, offset,
731 queue_max_hw_sectors(q));
6e68af66 732}
a112a71d 733EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 734
1da177e4
LT
735/**
736 * bio_add_page - attempt to add page to bio
737 * @bio: destination bio
738 * @page: page to add
739 * @len: vec entry length
740 * @offset: vec entry offset
741 *
742 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
743 * number of reasons, such as the bio being full or target block device
744 * limitations. The target block device must allow bio's up to PAGE_SIZE,
745 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
746 */
747int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
748 unsigned int offset)
749{
defd94b7 750 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 751 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 752}
a112a71d 753EXPORT_SYMBOL(bio_add_page);
1da177e4 754
9e882242
KO
755struct submit_bio_ret {
756 struct completion event;
757 int error;
758};
759
760static void submit_bio_wait_endio(struct bio *bio, int error)
761{
762 struct submit_bio_ret *ret = bio->bi_private;
763
764 ret->error = error;
765 complete(&ret->event);
766}
767
768/**
769 * submit_bio_wait - submit a bio, and wait until it completes
770 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
771 * @bio: The &struct bio which describes the I/O
772 *
773 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
774 * bio_endio() on failure.
775 */
776int submit_bio_wait(int rw, struct bio *bio)
777{
778 struct submit_bio_ret ret;
779
780 rw |= REQ_SYNC;
781 init_completion(&ret.event);
782 bio->bi_private = &ret;
783 bio->bi_end_io = submit_bio_wait_endio;
784 submit_bio(rw, bio);
785 wait_for_completion(&ret.event);
786
787 return ret.error;
788}
789EXPORT_SYMBOL(submit_bio_wait);
790
054bdf64
KO
791/**
792 * bio_advance - increment/complete a bio by some number of bytes
793 * @bio: bio to advance
794 * @bytes: number of bytes to complete
795 *
796 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
797 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
798 * be updated on the last bvec as well.
799 *
800 * @bio will then represent the remaining, uncompleted portion of the io.
801 */
802void bio_advance(struct bio *bio, unsigned bytes)
803{
804 if (bio_integrity(bio))
805 bio_integrity_advance(bio, bytes);
806
807 bio->bi_sector += bytes >> 9;
808 bio->bi_size -= bytes;
809
810 if (bio->bi_rw & BIO_NO_ADVANCE_ITER_MASK)
811 return;
812
813 while (bytes) {
814 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
815 WARN_ONCE(1, "bio idx %d >= vcnt %d\n",
816 bio->bi_idx, bio->bi_vcnt);
817 break;
818 }
819
820 if (bytes >= bio_iovec(bio)->bv_len) {
821 bytes -= bio_iovec(bio)->bv_len;
822 bio->bi_idx++;
823 } else {
824 bio_iovec(bio)->bv_len -= bytes;
825 bio_iovec(bio)->bv_offset += bytes;
826 bytes = 0;
827 }
828 }
829}
830EXPORT_SYMBOL(bio_advance);
831
16ac3d63
KO
832/**
833 * bio_copy_data - copy contents of data buffers from one chain of bios to
834 * another
835 * @src: source bio list
836 * @dst: destination bio list
837 *
838 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
839 * @src and @dst as linked lists of bios.
840 *
841 * Stops when it reaches the end of either @src or @dst - that is, copies
842 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
843 */
844void bio_copy_data(struct bio *dst, struct bio *src)
845{
846 struct bio_vec *src_bv, *dst_bv;
847 unsigned src_offset, dst_offset, bytes;
848 void *src_p, *dst_p;
849
850 src_bv = bio_iovec(src);
851 dst_bv = bio_iovec(dst);
852
853 src_offset = src_bv->bv_offset;
854 dst_offset = dst_bv->bv_offset;
855
856 while (1) {
857 if (src_offset == src_bv->bv_offset + src_bv->bv_len) {
858 src_bv++;
859 if (src_bv == bio_iovec_idx(src, src->bi_vcnt)) {
860 src = src->bi_next;
861 if (!src)
862 break;
863
864 src_bv = bio_iovec(src);
865 }
866
867 src_offset = src_bv->bv_offset;
868 }
869
870 if (dst_offset == dst_bv->bv_offset + dst_bv->bv_len) {
871 dst_bv++;
872 if (dst_bv == bio_iovec_idx(dst, dst->bi_vcnt)) {
873 dst = dst->bi_next;
874 if (!dst)
875 break;
876
877 dst_bv = bio_iovec(dst);
878 }
879
880 dst_offset = dst_bv->bv_offset;
881 }
882
883 bytes = min(dst_bv->bv_offset + dst_bv->bv_len - dst_offset,
884 src_bv->bv_offset + src_bv->bv_len - src_offset);
885
886 src_p = kmap_atomic(src_bv->bv_page);
887 dst_p = kmap_atomic(dst_bv->bv_page);
888
889 memcpy(dst_p + dst_bv->bv_offset,
890 src_p + src_bv->bv_offset,
891 bytes);
892
893 kunmap_atomic(dst_p);
894 kunmap_atomic(src_p);
895
896 src_offset += bytes;
897 dst_offset += bytes;
898 }
899}
900EXPORT_SYMBOL(bio_copy_data);
901
1da177e4
LT
902struct bio_map_data {
903 struct bio_vec *iovecs;
c5dec1c3 904 struct sg_iovec *sgvecs;
152e283f
FT
905 int nr_sgvecs;
906 int is_our_pages;
1da177e4
LT
907};
908
c5dec1c3 909static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
910 struct sg_iovec *iov, int iov_count,
911 int is_our_pages)
1da177e4
LT
912{
913 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
914 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
915 bmd->nr_sgvecs = iov_count;
152e283f 916 bmd->is_our_pages = is_our_pages;
1da177e4
LT
917 bio->bi_private = bmd;
918}
919
920static void bio_free_map_data(struct bio_map_data *bmd)
921{
922 kfree(bmd->iovecs);
c5dec1c3 923 kfree(bmd->sgvecs);
1da177e4
LT
924 kfree(bmd);
925}
926
121f0994
DC
927static struct bio_map_data *bio_alloc_map_data(int nr_segs,
928 unsigned int iov_count,
76029ff3 929 gfp_t gfp_mask)
1da177e4 930{
f3f63c1c
JA
931 struct bio_map_data *bmd;
932
933 if (iov_count > UIO_MAXIOV)
934 return NULL;
1da177e4 935
f3f63c1c 936 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
937 if (!bmd)
938 return NULL;
939
76029ff3 940 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
941 if (!bmd->iovecs) {
942 kfree(bmd);
943 return NULL;
944 }
945
76029ff3 946 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 947 if (bmd->sgvecs)
1da177e4
LT
948 return bmd;
949
c5dec1c3 950 kfree(bmd->iovecs);
1da177e4
LT
951 kfree(bmd);
952 return NULL;
953}
954
aefcc28a 955static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
956 struct sg_iovec *iov, int iov_count,
957 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
958{
959 int ret = 0, i;
960 struct bio_vec *bvec;
961 int iov_idx = 0;
962 unsigned int iov_off = 0;
c5dec1c3 963
d74c6d51 964 bio_for_each_segment_all(bvec, bio, i) {
c5dec1c3 965 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 966 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
967
968 while (bv_len && iov_idx < iov_count) {
969 unsigned int bytes;
0e0c6212 970 char __user *iov_addr;
c5dec1c3
FT
971
972 bytes = min_t(unsigned int,
973 iov[iov_idx].iov_len - iov_off, bv_len);
974 iov_addr = iov[iov_idx].iov_base + iov_off;
975
976 if (!ret) {
ecb554a8 977 if (to_user)
c5dec1c3
FT
978 ret = copy_to_user(iov_addr, bv_addr,
979 bytes);
980
ecb554a8
FT
981 if (from_user)
982 ret = copy_from_user(bv_addr, iov_addr,
983 bytes);
984
c5dec1c3
FT
985 if (ret)
986 ret = -EFAULT;
987 }
988
989 bv_len -= bytes;
990 bv_addr += bytes;
991 iov_addr += bytes;
992 iov_off += bytes;
993
994 if (iov[iov_idx].iov_len == iov_off) {
995 iov_idx++;
996 iov_off = 0;
997 }
998 }
999
152e283f 1000 if (do_free_page)
c5dec1c3
FT
1001 __free_page(bvec->bv_page);
1002 }
1003
1004 return ret;
1005}
1006
1da177e4
LT
1007/**
1008 * bio_uncopy_user - finish previously mapped bio
1009 * @bio: bio being terminated
1010 *
1011 * Free pages allocated from bio_copy_user() and write back data
1012 * to user space in case of a read.
1013 */
1014int bio_uncopy_user(struct bio *bio)
1015{
1016 struct bio_map_data *bmd = bio->bi_private;
81882766 1017 int ret = 0;
1da177e4 1018
81882766
FT
1019 if (!bio_flagged(bio, BIO_NULL_MAPPED))
1020 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
ecb554a8
FT
1021 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
1022 0, bmd->is_our_pages);
1da177e4
LT
1023 bio_free_map_data(bmd);
1024 bio_put(bio);
1025 return ret;
1026}
a112a71d 1027EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
1028
1029/**
c5dec1c3 1030 * bio_copy_user_iov - copy user data to bio
1da177e4 1031 * @q: destination block queue
152e283f 1032 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1033 * @iov: the iovec.
1034 * @iov_count: number of elements in the iovec
1da177e4 1035 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1036 * @gfp_mask: memory allocation flags
1da177e4
LT
1037 *
1038 * Prepares and returns a bio for indirect user io, bouncing data
1039 * to/from kernel pages as necessary. Must be paired with
1040 * call bio_uncopy_user() on io completion.
1041 */
152e283f
FT
1042struct bio *bio_copy_user_iov(struct request_queue *q,
1043 struct rq_map_data *map_data,
1044 struct sg_iovec *iov, int iov_count,
1045 int write_to_vm, gfp_t gfp_mask)
1da177e4 1046{
1da177e4
LT
1047 struct bio_map_data *bmd;
1048 struct bio_vec *bvec;
1049 struct page *page;
1050 struct bio *bio;
1051 int i, ret;
c5dec1c3
FT
1052 int nr_pages = 0;
1053 unsigned int len = 0;
56c451f4 1054 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 1055
c5dec1c3
FT
1056 for (i = 0; i < iov_count; i++) {
1057 unsigned long uaddr;
1058 unsigned long end;
1059 unsigned long start;
1060
1061 uaddr = (unsigned long)iov[i].iov_base;
1062 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1063 start = uaddr >> PAGE_SHIFT;
1064
cb4644ca
JA
1065 /*
1066 * Overflow, abort
1067 */
1068 if (end < start)
1069 return ERR_PTR(-EINVAL);
1070
c5dec1c3
FT
1071 nr_pages += end - start;
1072 len += iov[i].iov_len;
1073 }
1074
69838727
FT
1075 if (offset)
1076 nr_pages++;
1077
a3bce90e 1078 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
1079 if (!bmd)
1080 return ERR_PTR(-ENOMEM);
1081
1da177e4 1082 ret = -ENOMEM;
a9e9dc24 1083 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1084 if (!bio)
1085 goto out_bmd;
1086
7b6d91da
CH
1087 if (!write_to_vm)
1088 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
1089
1090 ret = 0;
56c451f4
FT
1091
1092 if (map_data) {
e623ddb4 1093 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1094 i = map_data->offset / PAGE_SIZE;
1095 }
1da177e4 1096 while (len) {
e623ddb4 1097 unsigned int bytes = PAGE_SIZE;
1da177e4 1098
56c451f4
FT
1099 bytes -= offset;
1100
1da177e4
LT
1101 if (bytes > len)
1102 bytes = len;
1103
152e283f 1104 if (map_data) {
e623ddb4 1105 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1106 ret = -ENOMEM;
1107 break;
1108 }
e623ddb4
FT
1109
1110 page = map_data->pages[i / nr_pages];
1111 page += (i % nr_pages);
1112
1113 i++;
1114 } else {
152e283f 1115 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1116 if (!page) {
1117 ret = -ENOMEM;
1118 break;
1119 }
1da177e4
LT
1120 }
1121
56c451f4 1122 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1123 break;
1da177e4
LT
1124
1125 len -= bytes;
56c451f4 1126 offset = 0;
1da177e4
LT
1127 }
1128
1129 if (ret)
1130 goto cleanup;
1131
1132 /*
1133 * success
1134 */
ecb554a8
FT
1135 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1136 (map_data && map_data->from_user)) {
1137 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
1138 if (ret)
1139 goto cleanup;
1da177e4
LT
1140 }
1141
152e283f 1142 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
1143 return bio;
1144cleanup:
152e283f 1145 if (!map_data)
d74c6d51 1146 bio_for_each_segment_all(bvec, bio, i)
152e283f 1147 __free_page(bvec->bv_page);
1da177e4
LT
1148
1149 bio_put(bio);
1150out_bmd:
1151 bio_free_map_data(bmd);
1152 return ERR_PTR(ret);
1153}
1154
c5dec1c3
FT
1155/**
1156 * bio_copy_user - copy user data to bio
1157 * @q: destination block queue
152e283f 1158 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1159 * @uaddr: start of user address
1160 * @len: length in bytes
1161 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1162 * @gfp_mask: memory allocation flags
c5dec1c3
FT
1163 *
1164 * Prepares and returns a bio for indirect user io, bouncing data
1165 * to/from kernel pages as necessary. Must be paired with
1166 * call bio_uncopy_user() on io completion.
1167 */
152e283f
FT
1168struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1169 unsigned long uaddr, unsigned int len,
1170 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
1171{
1172 struct sg_iovec iov;
1173
1174 iov.iov_base = (void __user *)uaddr;
1175 iov.iov_len = len;
1176
152e283f 1177 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 1178}
a112a71d 1179EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 1180
165125e1 1181static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
1182 struct block_device *bdev,
1183 struct sg_iovec *iov, int iov_count,
a3bce90e 1184 int write_to_vm, gfp_t gfp_mask)
1da177e4 1185{
f1970baf
JB
1186 int i, j;
1187 int nr_pages = 0;
1da177e4
LT
1188 struct page **pages;
1189 struct bio *bio;
f1970baf
JB
1190 int cur_page = 0;
1191 int ret, offset;
1da177e4 1192
f1970baf
JB
1193 for (i = 0; i < iov_count; i++) {
1194 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1195 unsigned long len = iov[i].iov_len;
1196 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1197 unsigned long start = uaddr >> PAGE_SHIFT;
1198
cb4644ca
JA
1199 /*
1200 * Overflow, abort
1201 */
1202 if (end < start)
1203 return ERR_PTR(-EINVAL);
1204
f1970baf
JB
1205 nr_pages += end - start;
1206 /*
ad2d7225 1207 * buffer must be aligned to at least hardsector size for now
f1970baf 1208 */
ad2d7225 1209 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1210 return ERR_PTR(-EINVAL);
1211 }
1212
1213 if (!nr_pages)
1da177e4
LT
1214 return ERR_PTR(-EINVAL);
1215
a9e9dc24 1216 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1217 if (!bio)
1218 return ERR_PTR(-ENOMEM);
1219
1220 ret = -ENOMEM;
a3bce90e 1221 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1222 if (!pages)
1223 goto out;
1224
f1970baf
JB
1225 for (i = 0; i < iov_count; i++) {
1226 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1227 unsigned long len = iov[i].iov_len;
1228 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1229 unsigned long start = uaddr >> PAGE_SHIFT;
1230 const int local_nr_pages = end - start;
1231 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1232
f5dd33c4
NP
1233 ret = get_user_pages_fast(uaddr, local_nr_pages,
1234 write_to_vm, &pages[cur_page]);
99172157
JA
1235 if (ret < local_nr_pages) {
1236 ret = -EFAULT;
f1970baf 1237 goto out_unmap;
99172157 1238 }
f1970baf
JB
1239
1240 offset = uaddr & ~PAGE_MASK;
1241 for (j = cur_page; j < page_limit; j++) {
1242 unsigned int bytes = PAGE_SIZE - offset;
1243
1244 if (len <= 0)
1245 break;
1246
1247 if (bytes > len)
1248 bytes = len;
1249
1250 /*
1251 * sorry...
1252 */
defd94b7
MC
1253 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1254 bytes)
f1970baf
JB
1255 break;
1256
1257 len -= bytes;
1258 offset = 0;
1259 }
1da177e4 1260
f1970baf 1261 cur_page = j;
1da177e4 1262 /*
f1970baf 1263 * release the pages we didn't map into the bio, if any
1da177e4 1264 */
f1970baf
JB
1265 while (j < page_limit)
1266 page_cache_release(pages[j++]);
1da177e4
LT
1267 }
1268
1da177e4
LT
1269 kfree(pages);
1270
1271 /*
1272 * set data direction, and check if mapped pages need bouncing
1273 */
1274 if (!write_to_vm)
7b6d91da 1275 bio->bi_rw |= REQ_WRITE;
1da177e4 1276
f1970baf 1277 bio->bi_bdev = bdev;
1da177e4
LT
1278 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1279 return bio;
f1970baf
JB
1280
1281 out_unmap:
1282 for (i = 0; i < nr_pages; i++) {
1283 if(!pages[i])
1284 break;
1285 page_cache_release(pages[i]);
1286 }
1287 out:
1da177e4
LT
1288 kfree(pages);
1289 bio_put(bio);
1290 return ERR_PTR(ret);
1291}
1292
1293/**
1294 * bio_map_user - map user address into bio
165125e1 1295 * @q: the struct request_queue for the bio
1da177e4
LT
1296 * @bdev: destination block device
1297 * @uaddr: start of user address
1298 * @len: length in bytes
1299 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1300 * @gfp_mask: memory allocation flags
1da177e4
LT
1301 *
1302 * Map the user space address into a bio suitable for io to a block
1303 * device. Returns an error pointer in case of error.
1304 */
165125e1 1305struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1306 unsigned long uaddr, unsigned int len, int write_to_vm,
1307 gfp_t gfp_mask)
f1970baf
JB
1308{
1309 struct sg_iovec iov;
1310
3f70353e 1311 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1312 iov.iov_len = len;
1313
a3bce90e 1314 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1315}
a112a71d 1316EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1317
1318/**
1319 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1320 * @q: the struct request_queue for the bio
f1970baf
JB
1321 * @bdev: destination block device
1322 * @iov: the iovec.
1323 * @iov_count: number of elements in the iovec
1324 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1325 * @gfp_mask: memory allocation flags
f1970baf
JB
1326 *
1327 * Map the user space address into a bio suitable for io to a block
1328 * device. Returns an error pointer in case of error.
1329 */
165125e1 1330struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1331 struct sg_iovec *iov, int iov_count,
a3bce90e 1332 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1333{
1334 struct bio *bio;
1335
a3bce90e
FT
1336 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1337 gfp_mask);
1da177e4
LT
1338 if (IS_ERR(bio))
1339 return bio;
1340
1341 /*
1342 * subtle -- if __bio_map_user() ended up bouncing a bio,
1343 * it would normally disappear when its bi_end_io is run.
1344 * however, we need it for the unmap, so grab an extra
1345 * reference to it
1346 */
1347 bio_get(bio);
1348
0e75f906 1349 return bio;
1da177e4
LT
1350}
1351
1352static void __bio_unmap_user(struct bio *bio)
1353{
1354 struct bio_vec *bvec;
1355 int i;
1356
1357 /*
1358 * make sure we dirty pages we wrote to
1359 */
d74c6d51 1360 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1361 if (bio_data_dir(bio) == READ)
1362 set_page_dirty_lock(bvec->bv_page);
1363
1364 page_cache_release(bvec->bv_page);
1365 }
1366
1367 bio_put(bio);
1368}
1369
1370/**
1371 * bio_unmap_user - unmap a bio
1372 * @bio: the bio being unmapped
1373 *
1374 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1375 * a process context.
1376 *
1377 * bio_unmap_user() may sleep.
1378 */
1379void bio_unmap_user(struct bio *bio)
1380{
1381 __bio_unmap_user(bio);
1382 bio_put(bio);
1383}
a112a71d 1384EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1385
6712ecf8 1386static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1387{
b823825e 1388 bio_put(bio);
b823825e
JA
1389}
1390
165125e1 1391static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1392 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1393{
1394 unsigned long kaddr = (unsigned long)data;
1395 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1396 unsigned long start = kaddr >> PAGE_SHIFT;
1397 const int nr_pages = end - start;
1398 int offset, i;
1399 struct bio *bio;
1400
a9e9dc24 1401 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1402 if (!bio)
1403 return ERR_PTR(-ENOMEM);
1404
1405 offset = offset_in_page(kaddr);
1406 for (i = 0; i < nr_pages; i++) {
1407 unsigned int bytes = PAGE_SIZE - offset;
1408
1409 if (len <= 0)
1410 break;
1411
1412 if (bytes > len)
1413 bytes = len;
1414
defd94b7
MC
1415 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1416 offset) < bytes)
df46b9a4
MC
1417 break;
1418
1419 data += bytes;
1420 len -= bytes;
1421 offset = 0;
1422 }
1423
b823825e 1424 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1425 return bio;
1426}
1427
1428/**
1429 * bio_map_kern - map kernel address into bio
165125e1 1430 * @q: the struct request_queue for the bio
df46b9a4
MC
1431 * @data: pointer to buffer to map
1432 * @len: length in bytes
1433 * @gfp_mask: allocation flags for bio allocation
1434 *
1435 * Map the kernel address into a bio suitable for io to a block
1436 * device. Returns an error pointer in case of error.
1437 */
165125e1 1438struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1439 gfp_t gfp_mask)
df46b9a4
MC
1440{
1441 struct bio *bio;
1442
1443 bio = __bio_map_kern(q, data, len, gfp_mask);
1444 if (IS_ERR(bio))
1445 return bio;
1446
1447 if (bio->bi_size == len)
1448 return bio;
1449
1450 /*
1451 * Don't support partial mappings.
1452 */
1453 bio_put(bio);
1454 return ERR_PTR(-EINVAL);
1455}
a112a71d 1456EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1457
68154e90
FT
1458static void bio_copy_kern_endio(struct bio *bio, int err)
1459{
1460 struct bio_vec *bvec;
1461 const int read = bio_data_dir(bio) == READ;
76029ff3 1462 struct bio_map_data *bmd = bio->bi_private;
68154e90 1463 int i;
76029ff3 1464 char *p = bmd->sgvecs[0].iov_base;
68154e90 1465
d74c6d51 1466 bio_for_each_segment_all(bvec, bio, i) {
68154e90 1467 char *addr = page_address(bvec->bv_page);
76029ff3 1468 int len = bmd->iovecs[i].bv_len;
68154e90 1469
4fc981ef 1470 if (read)
76029ff3 1471 memcpy(p, addr, len);
68154e90
FT
1472
1473 __free_page(bvec->bv_page);
76029ff3 1474 p += len;
68154e90
FT
1475 }
1476
76029ff3 1477 bio_free_map_data(bmd);
68154e90
FT
1478 bio_put(bio);
1479}
1480
1481/**
1482 * bio_copy_kern - copy kernel address into bio
1483 * @q: the struct request_queue for the bio
1484 * @data: pointer to buffer to copy
1485 * @len: length in bytes
1486 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1487 * @reading: data direction is READ
68154e90
FT
1488 *
1489 * copy the kernel address into a bio suitable for io to a block
1490 * device. Returns an error pointer in case of error.
1491 */
1492struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1493 gfp_t gfp_mask, int reading)
1494{
68154e90
FT
1495 struct bio *bio;
1496 struct bio_vec *bvec;
4d8ab62e 1497 int i;
68154e90 1498
4d8ab62e
FT
1499 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1500 if (IS_ERR(bio))
1501 return bio;
68154e90
FT
1502
1503 if (!reading) {
1504 void *p = data;
1505
d74c6d51 1506 bio_for_each_segment_all(bvec, bio, i) {
68154e90
FT
1507 char *addr = page_address(bvec->bv_page);
1508
1509 memcpy(addr, p, bvec->bv_len);
1510 p += bvec->bv_len;
1511 }
1512 }
1513
68154e90 1514 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1515
68154e90 1516 return bio;
68154e90 1517}
a112a71d 1518EXPORT_SYMBOL(bio_copy_kern);
68154e90 1519
1da177e4
LT
1520/*
1521 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1522 * for performing direct-IO in BIOs.
1523 *
1524 * The problem is that we cannot run set_page_dirty() from interrupt context
1525 * because the required locks are not interrupt-safe. So what we can do is to
1526 * mark the pages dirty _before_ performing IO. And in interrupt context,
1527 * check that the pages are still dirty. If so, fine. If not, redirty them
1528 * in process context.
1529 *
1530 * We special-case compound pages here: normally this means reads into hugetlb
1531 * pages. The logic in here doesn't really work right for compound pages
1532 * because the VM does not uniformly chase down the head page in all cases.
1533 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1534 * handle them at all. So we skip compound pages here at an early stage.
1535 *
1536 * Note that this code is very hard to test under normal circumstances because
1537 * direct-io pins the pages with get_user_pages(). This makes
1538 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1539 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1540 * pagecache.
1541 *
1542 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1543 * deferred bio dirtying paths.
1544 */
1545
1546/*
1547 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1548 */
1549void bio_set_pages_dirty(struct bio *bio)
1550{
1551 struct bio_vec *bvec = bio->bi_io_vec;
1552 int i;
1553
1554 for (i = 0; i < bio->bi_vcnt; i++) {
1555 struct page *page = bvec[i].bv_page;
1556
1557 if (page && !PageCompound(page))
1558 set_page_dirty_lock(page);
1559 }
1560}
1561
86b6c7a7 1562static void bio_release_pages(struct bio *bio)
1da177e4
LT
1563{
1564 struct bio_vec *bvec = bio->bi_io_vec;
1565 int i;
1566
1567 for (i = 0; i < bio->bi_vcnt; i++) {
1568 struct page *page = bvec[i].bv_page;
1569
1570 if (page)
1571 put_page(page);
1572 }
1573}
1574
1575/*
1576 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1577 * If they are, then fine. If, however, some pages are clean then they must
1578 * have been written out during the direct-IO read. So we take another ref on
1579 * the BIO and the offending pages and re-dirty the pages in process context.
1580 *
1581 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1582 * here on. It will run one page_cache_release() against each page and will
1583 * run one bio_put() against the BIO.
1584 */
1585
65f27f38 1586static void bio_dirty_fn(struct work_struct *work);
1da177e4 1587
65f27f38 1588static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1589static DEFINE_SPINLOCK(bio_dirty_lock);
1590static struct bio *bio_dirty_list;
1591
1592/*
1593 * This runs in process context
1594 */
65f27f38 1595static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1596{
1597 unsigned long flags;
1598 struct bio *bio;
1599
1600 spin_lock_irqsave(&bio_dirty_lock, flags);
1601 bio = bio_dirty_list;
1602 bio_dirty_list = NULL;
1603 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1604
1605 while (bio) {
1606 struct bio *next = bio->bi_private;
1607
1608 bio_set_pages_dirty(bio);
1609 bio_release_pages(bio);
1610 bio_put(bio);
1611 bio = next;
1612 }
1613}
1614
1615void bio_check_pages_dirty(struct bio *bio)
1616{
1617 struct bio_vec *bvec = bio->bi_io_vec;
1618 int nr_clean_pages = 0;
1619 int i;
1620
1621 for (i = 0; i < bio->bi_vcnt; i++) {
1622 struct page *page = bvec[i].bv_page;
1623
1624 if (PageDirty(page) || PageCompound(page)) {
1625 page_cache_release(page);
1626 bvec[i].bv_page = NULL;
1627 } else {
1628 nr_clean_pages++;
1629 }
1630 }
1631
1632 if (nr_clean_pages) {
1633 unsigned long flags;
1634
1635 spin_lock_irqsave(&bio_dirty_lock, flags);
1636 bio->bi_private = bio_dirty_list;
1637 bio_dirty_list = bio;
1638 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1639 schedule_work(&bio_dirty_work);
1640 } else {
1641 bio_put(bio);
1642 }
1643}
1644
2d4dc890
IL
1645#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1646void bio_flush_dcache_pages(struct bio *bi)
1647{
1648 int i;
1649 struct bio_vec *bvec;
1650
1651 bio_for_each_segment(bvec, bi, i)
1652 flush_dcache_page(bvec->bv_page);
1653}
1654EXPORT_SYMBOL(bio_flush_dcache_pages);
1655#endif
1656
1da177e4
LT
1657/**
1658 * bio_endio - end I/O on a bio
1659 * @bio: bio
1da177e4
LT
1660 * @error: error, if any
1661 *
1662 * Description:
6712ecf8 1663 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1664 * preferred way to end I/O on a bio, it takes care of clearing
1665 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1666 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1667 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1668 * bio unless they own it and thus know that it has an end_io
1669 * function.
1da177e4 1670 **/
6712ecf8 1671void bio_endio(struct bio *bio, int error)
1da177e4
LT
1672{
1673 if (error)
1674 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1675 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1676 error = -EIO;
1da177e4 1677
3a366e61
TH
1678 trace_block_bio_complete(bio, error);
1679
5bb23a68 1680 if (bio->bi_end_io)
6712ecf8 1681 bio->bi_end_io(bio, error);
1da177e4 1682}
a112a71d 1683EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1684
1685void bio_pair_release(struct bio_pair *bp)
1686{
1687 if (atomic_dec_and_test(&bp->cnt)) {
1688 struct bio *master = bp->bio1.bi_private;
1689
6712ecf8 1690 bio_endio(master, bp->error);
1da177e4
LT
1691 mempool_free(bp, bp->bio2.bi_private);
1692 }
1693}
a112a71d 1694EXPORT_SYMBOL(bio_pair_release);
1da177e4 1695
6712ecf8 1696static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1697{
1698 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1699
1700 if (err)
1701 bp->error = err;
1702
1da177e4 1703 bio_pair_release(bp);
1da177e4
LT
1704}
1705
6712ecf8 1706static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1707{
1708 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1709
1710 if (err)
1711 bp->error = err;
1712
1da177e4 1713 bio_pair_release(bp);
1da177e4
LT
1714}
1715
1716/*
c7eee1b8 1717 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1718 */
6feef531 1719struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1720{
6feef531 1721 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1722
1723 if (!bp)
1724 return bp;
1725
5f3ea37c 1726 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1727 bi->bi_sector + first_sectors);
1728
5b83636a 1729 BUG_ON(bio_segments(bi) > 1);
1da177e4
LT
1730 atomic_set(&bp->cnt, 3);
1731 bp->error = 0;
1732 bp->bio1 = *bi;
1733 bp->bio2 = *bi;
1734 bp->bio2.bi_sector += first_sectors;
1735 bp->bio2.bi_size -= first_sectors << 9;
1736 bp->bio1.bi_size = first_sectors << 9;
1737
02f3939e 1738 if (bi->bi_vcnt != 0) {
5b83636a
KO
1739 bp->bv1 = *bio_iovec(bi);
1740 bp->bv2 = *bio_iovec(bi);
4363ac7c 1741
02f3939e
SL
1742 if (bio_is_rw(bi)) {
1743 bp->bv2.bv_offset += first_sectors << 9;
1744 bp->bv2.bv_len -= first_sectors << 9;
1745 bp->bv1.bv_len = first_sectors << 9;
1746 }
1da177e4 1747
02f3939e
SL
1748 bp->bio1.bi_io_vec = &bp->bv1;
1749 bp->bio2.bi_io_vec = &bp->bv2;
1da177e4 1750
02f3939e
SL
1751 bp->bio1.bi_max_vecs = 1;
1752 bp->bio2.bi_max_vecs = 1;
1753 }
a2eb0c10 1754
1da177e4
LT
1755 bp->bio1.bi_end_io = bio_pair_end_1;
1756 bp->bio2.bi_end_io = bio_pair_end_2;
1757
1758 bp->bio1.bi_private = bi;
6feef531 1759 bp->bio2.bi_private = bio_split_pool;
1da177e4 1760
7ba1ba12
MP
1761 if (bio_integrity(bi))
1762 bio_integrity_split(bi, bp, first_sectors);
1763
1da177e4
LT
1764 return bp;
1765}
a112a71d 1766EXPORT_SYMBOL(bio_split);
1da177e4 1767
ad3316bf
MP
1768/**
1769 * bio_sector_offset - Find hardware sector offset in bio
1770 * @bio: bio to inspect
1771 * @index: bio_vec index
1772 * @offset: offset in bv_page
1773 *
1774 * Return the number of hardware sectors between beginning of bio
1775 * and an end point indicated by a bio_vec index and an offset
1776 * within that vector's page.
1777 */
1778sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1779 unsigned int offset)
1780{
e1defc4f 1781 unsigned int sector_sz;
ad3316bf
MP
1782 struct bio_vec *bv;
1783 sector_t sectors;
1784 int i;
1785
e1defc4f 1786 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1787 sectors = 0;
1788
1789 if (index >= bio->bi_idx)
1790 index = bio->bi_vcnt - 1;
1791
d74c6d51 1792 bio_for_each_segment_all(bv, bio, i) {
ad3316bf
MP
1793 if (i == index) {
1794 if (offset > bv->bv_offset)
1795 sectors += (offset - bv->bv_offset) / sector_sz;
1796 break;
1797 }
1798
1799 sectors += bv->bv_len / sector_sz;
1800 }
1801
1802 return sectors;
1803}
1804EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1805
1806/*
1807 * create memory pools for biovec's in a bio_set.
1808 * use the global biovec slabs created for general use.
1809 */
9f060e22 1810mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1da177e4 1811{
7ff9345f 1812 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1813
9f060e22 1814 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1815}
1816
1817void bioset_free(struct bio_set *bs)
1818{
df2cb6da
KO
1819 if (bs->rescue_workqueue)
1820 destroy_workqueue(bs->rescue_workqueue);
1821
1da177e4
LT
1822 if (bs->bio_pool)
1823 mempool_destroy(bs->bio_pool);
1824
9f060e22
KO
1825 if (bs->bvec_pool)
1826 mempool_destroy(bs->bvec_pool);
1827
7878cba9 1828 bioset_integrity_free(bs);
bb799ca0 1829 bio_put_slab(bs);
1da177e4
LT
1830
1831 kfree(bs);
1832}
a112a71d 1833EXPORT_SYMBOL(bioset_free);
1da177e4 1834
bb799ca0
JA
1835/**
1836 * bioset_create - Create a bio_set
1837 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1838 * @front_pad: Number of bytes to allocate in front of the returned bio
1839 *
1840 * Description:
1841 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1842 * to ask for a number of bytes to be allocated in front of the bio.
1843 * Front pad allocation is useful for embedding the bio inside
1844 * another structure, to avoid allocating extra data to go with the bio.
1845 * Note that the bio must be embedded at the END of that structure always,
1846 * or things will break badly.
1847 */
1848struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1849{
392ddc32 1850 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1851 struct bio_set *bs;
1da177e4 1852
1b434498 1853 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1854 if (!bs)
1855 return NULL;
1856
bb799ca0 1857 bs->front_pad = front_pad;
1b434498 1858
df2cb6da
KO
1859 spin_lock_init(&bs->rescue_lock);
1860 bio_list_init(&bs->rescue_list);
1861 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1862
392ddc32 1863 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1864 if (!bs->bio_slab) {
1865 kfree(bs);
1866 return NULL;
1867 }
1868
1869 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1870 if (!bs->bio_pool)
1871 goto bad;
1872
9f060e22
KO
1873 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1874 if (!bs->bvec_pool)
df2cb6da
KO
1875 goto bad;
1876
1877 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1878 if (!bs->rescue_workqueue)
1879 goto bad;
1da177e4 1880
df2cb6da 1881 return bs;
1da177e4
LT
1882bad:
1883 bioset_free(bs);
1884 return NULL;
1885}
a112a71d 1886EXPORT_SYMBOL(bioset_create);
1da177e4 1887
852c788f
TH
1888#ifdef CONFIG_BLK_CGROUP
1889/**
1890 * bio_associate_current - associate a bio with %current
1891 * @bio: target bio
1892 *
1893 * Associate @bio with %current if it hasn't been associated yet. Block
1894 * layer will treat @bio as if it were issued by %current no matter which
1895 * task actually issues it.
1896 *
1897 * This function takes an extra reference of @task's io_context and blkcg
1898 * which will be put when @bio is released. The caller must own @bio,
1899 * ensure %current->io_context exists, and is responsible for synchronizing
1900 * calls to this function.
1901 */
1902int bio_associate_current(struct bio *bio)
1903{
1904 struct io_context *ioc;
1905 struct cgroup_subsys_state *css;
1906
1907 if (bio->bi_ioc)
1908 return -EBUSY;
1909
1910 ioc = current->io_context;
1911 if (!ioc)
1912 return -ENOENT;
1913
1914 /* acquire active ref on @ioc and associate */
1915 get_io_context_active(ioc);
1916 bio->bi_ioc = ioc;
1917
1918 /* associate blkcg if exists */
1919 rcu_read_lock();
1920 css = task_subsys_state(current, blkio_subsys_id);
1921 if (css && css_tryget(css))
1922 bio->bi_css = css;
1923 rcu_read_unlock();
1924
1925 return 0;
1926}
1927
1928/**
1929 * bio_disassociate_task - undo bio_associate_current()
1930 * @bio: target bio
1931 */
1932void bio_disassociate_task(struct bio *bio)
1933{
1934 if (bio->bi_ioc) {
1935 put_io_context(bio->bi_ioc);
1936 bio->bi_ioc = NULL;
1937 }
1938 if (bio->bi_css) {
1939 css_put(bio->bi_css);
1940 bio->bi_css = NULL;
1941 }
1942}
1943
1944#endif /* CONFIG_BLK_CGROUP */
1945
1da177e4
LT
1946static void __init biovec_init_slabs(void)
1947{
1948 int i;
1949
1950 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1951 int size;
1952 struct biovec_slab *bvs = bvec_slabs + i;
1953
a7fcd37c
JA
1954 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1955 bvs->slab = NULL;
1956 continue;
1957 }
a7fcd37c 1958
1da177e4
LT
1959 size = bvs->nr_vecs * sizeof(struct bio_vec);
1960 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1961 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1962 }
1963}
1964
1965static int __init init_bio(void)
1966{
bb799ca0
JA
1967 bio_slab_max = 2;
1968 bio_slab_nr = 0;
1969 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1970 if (!bio_slabs)
1971 panic("bio: can't allocate bios\n");
1da177e4 1972
7878cba9 1973 bio_integrity_init();
1da177e4
LT
1974 biovec_init_slabs();
1975
bb799ca0 1976 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1977 if (!fs_bio_set)
1978 panic("bio: can't allocate bios\n");
1979
a91a2785
MP
1980 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1981 panic("bio: can't create integrity pool\n");
1982
0eaae62a
MD
1983 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1984 sizeof(struct bio_pair));
1da177e4
LT
1985 if (!bio_split_pool)
1986 panic("bio: can't create split pool\n");
1987
1988 return 0;
1989}
1da177e4 1990subsys_initcall(init_bio);