]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/bio.c
block: Kill bio_iovec_idx(), __bio_iovec()
[mirror_ubuntu-zesty-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
f1970baf 31#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 32
55782138 33#include <trace/events/block.h>
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
6feef531 41static mempool_t *bio_split_pool __read_mostly;
1da177e4 42
1da177e4
LT
43/*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
1da177e4 48#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 49static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
50 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
51};
52#undef BV
53
1da177e4
LT
54/*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
51d654e1 58struct bio_set *fs_bio_set;
3f86a82a 59EXPORT_SYMBOL(fs_bio_set);
1da177e4 60
bb799ca0
JA
61/*
62 * Our slab pool management
63 */
64struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69};
70static DEFINE_MUTEX(bio_slab_lock);
71static struct bio_slab *bio_slabs;
72static unsigned int bio_slab_nr, bio_slab_max;
73
74static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75{
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
389d7b26 78 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 79 unsigned int new_bio_slab_max;
bb799ca0
JA
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
f06f135d 86 bslab = &bio_slabs[i];
bb799ca0
JA
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 102 new_bio_slab_max = bio_slab_max << 1;
389d7b26 103 new_bio_slabs = krealloc(bio_slabs,
386bc35a 104 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
105 GFP_KERNEL);
106 if (!new_bio_slabs)
bb799ca0 107 goto out_unlock;
386bc35a 108 bio_slab_max = new_bio_slab_max;
389d7b26 109 bio_slabs = new_bio_slabs;
bb799ca0
JA
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
118 if (!slab)
119 goto out_unlock;
120
80cdc6da 121 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
bb799ca0
JA
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128}
129
130static void bio_put_slab(struct bio_set *bs)
131{
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155out:
156 mutex_unlock(&bio_slab_lock);
157}
158
7ba1ba12
MP
159unsigned int bvec_nr_vecs(unsigned short idx)
160{
161 return bvec_slabs[idx].nr_vecs;
162}
163
9f060e22 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0
JA
165{
166 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
167
168 if (idx == BIOVEC_MAX_IDX)
9f060e22 169 mempool_free(bv, pool);
bb799ca0
JA
170 else {
171 struct biovec_slab *bvs = bvec_slabs + idx;
172
173 kmem_cache_free(bvs->slab, bv);
174 }
175}
176
9f060e22
KO
177struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
178 mempool_t *pool)
1da177e4
LT
179{
180 struct bio_vec *bvl;
1da177e4 181
7ff9345f
JA
182 /*
183 * see comment near bvec_array define!
184 */
185 switch (nr) {
186 case 1:
187 *idx = 0;
188 break;
189 case 2 ... 4:
190 *idx = 1;
191 break;
192 case 5 ... 16:
193 *idx = 2;
194 break;
195 case 17 ... 64:
196 *idx = 3;
197 break;
198 case 65 ... 128:
199 *idx = 4;
200 break;
201 case 129 ... BIO_MAX_PAGES:
202 *idx = 5;
203 break;
204 default:
205 return NULL;
206 }
207
208 /*
209 * idx now points to the pool we want to allocate from. only the
210 * 1-vec entry pool is mempool backed.
211 */
212 if (*idx == BIOVEC_MAX_IDX) {
213fallback:
9f060e22 214 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
215 } else {
216 struct biovec_slab *bvs = bvec_slabs + *idx;
217 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
218
0a0d96b0 219 /*
7ff9345f
JA
220 * Make this allocation restricted and don't dump info on
221 * allocation failures, since we'll fallback to the mempool
222 * in case of failure.
0a0d96b0 223 */
7ff9345f 224 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 225
0a0d96b0 226 /*
7ff9345f
JA
227 * Try a slab allocation. If this fails and __GFP_WAIT
228 * is set, retry with the 1-entry mempool
0a0d96b0 229 */
7ff9345f
JA
230 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
231 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
232 *idx = BIOVEC_MAX_IDX;
233 goto fallback;
234 }
235 }
236
1da177e4
LT
237 return bvl;
238}
239
4254bba1 240static void __bio_free(struct bio *bio)
1da177e4 241{
4254bba1 242 bio_disassociate_task(bio);
1da177e4 243
7ba1ba12 244 if (bio_integrity(bio))
1e2a410f 245 bio_integrity_free(bio);
4254bba1 246}
7ba1ba12 247
4254bba1
KO
248static void bio_free(struct bio *bio)
249{
250 struct bio_set *bs = bio->bi_pool;
251 void *p;
252
253 __bio_free(bio);
254
255 if (bs) {
a38352e0 256 if (bio_flagged(bio, BIO_OWNS_VEC))
9f060e22 257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
4254bba1
KO
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
bb799ca0
JA
263 p -= bs->front_pad;
264
4254bba1
KO
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
3676347a
PO
270}
271
858119e1 272void bio_init(struct bio *bio)
1da177e4 273{
2b94de55 274 memset(bio, 0, sizeof(*bio));
1da177e4 275 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 276 atomic_set(&bio->bi_cnt, 1);
1da177e4 277}
a112a71d 278EXPORT_SYMBOL(bio_init);
1da177e4 279
f44b48c7
KO
280/**
281 * bio_reset - reinitialize a bio
282 * @bio: bio to reset
283 *
284 * Description:
285 * After calling bio_reset(), @bio will be in the same state as a freshly
286 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
287 * preserved are the ones that are initialized by bio_alloc_bioset(). See
288 * comment in struct bio.
289 */
290void bio_reset(struct bio *bio)
291{
292 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
293
4254bba1 294 __bio_free(bio);
f44b48c7
KO
295
296 memset(bio, 0, BIO_RESET_BYTES);
297 bio->bi_flags = flags|(1 << BIO_UPTODATE);
298}
299EXPORT_SYMBOL(bio_reset);
300
df2cb6da
KO
301static void bio_alloc_rescue(struct work_struct *work)
302{
303 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
304 struct bio *bio;
305
306 while (1) {
307 spin_lock(&bs->rescue_lock);
308 bio = bio_list_pop(&bs->rescue_list);
309 spin_unlock(&bs->rescue_lock);
310
311 if (!bio)
312 break;
313
314 generic_make_request(bio);
315 }
316}
317
318static void punt_bios_to_rescuer(struct bio_set *bs)
319{
320 struct bio_list punt, nopunt;
321 struct bio *bio;
322
323 /*
324 * In order to guarantee forward progress we must punt only bios that
325 * were allocated from this bio_set; otherwise, if there was a bio on
326 * there for a stacking driver higher up in the stack, processing it
327 * could require allocating bios from this bio_set, and doing that from
328 * our own rescuer would be bad.
329 *
330 * Since bio lists are singly linked, pop them all instead of trying to
331 * remove from the middle of the list:
332 */
333
334 bio_list_init(&punt);
335 bio_list_init(&nopunt);
336
337 while ((bio = bio_list_pop(current->bio_list)))
338 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
339
340 *current->bio_list = nopunt;
341
342 spin_lock(&bs->rescue_lock);
343 bio_list_merge(&bs->rescue_list, &punt);
344 spin_unlock(&bs->rescue_lock);
345
346 queue_work(bs->rescue_workqueue, &bs->rescue_work);
347}
348
1da177e4
LT
349/**
350 * bio_alloc_bioset - allocate a bio for I/O
351 * @gfp_mask: the GFP_ mask given to the slab allocator
352 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 353 * @bs: the bio_set to allocate from.
1da177e4
LT
354 *
355 * Description:
3f86a82a
KO
356 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
357 * backed by the @bs's mempool.
358 *
359 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
360 * able to allocate a bio. This is due to the mempool guarantees. To make this
361 * work, callers must never allocate more than 1 bio at a time from this pool.
362 * Callers that need to allocate more than 1 bio must always submit the
363 * previously allocated bio for IO before attempting to allocate a new one.
364 * Failure to do so can cause deadlocks under memory pressure.
365 *
df2cb6da
KO
366 * Note that when running under generic_make_request() (i.e. any block
367 * driver), bios are not submitted until after you return - see the code in
368 * generic_make_request() that converts recursion into iteration, to prevent
369 * stack overflows.
370 *
371 * This would normally mean allocating multiple bios under
372 * generic_make_request() would be susceptible to deadlocks, but we have
373 * deadlock avoidance code that resubmits any blocked bios from a rescuer
374 * thread.
375 *
376 * However, we do not guarantee forward progress for allocations from other
377 * mempools. Doing multiple allocations from the same mempool under
378 * generic_make_request() should be avoided - instead, use bio_set's front_pad
379 * for per bio allocations.
380 *
3f86a82a
KO
381 * RETURNS:
382 * Pointer to new bio on success, NULL on failure.
383 */
dd0fc66f 384struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 385{
df2cb6da 386 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
387 unsigned front_pad;
388 unsigned inline_vecs;
451a9ebf 389 unsigned long idx = BIO_POOL_NONE;
34053979 390 struct bio_vec *bvl = NULL;
451a9ebf
TH
391 struct bio *bio;
392 void *p;
393
3f86a82a
KO
394 if (!bs) {
395 if (nr_iovecs > UIO_MAXIOV)
396 return NULL;
397
398 p = kmalloc(sizeof(struct bio) +
399 nr_iovecs * sizeof(struct bio_vec),
400 gfp_mask);
401 front_pad = 0;
402 inline_vecs = nr_iovecs;
403 } else {
df2cb6da
KO
404 /*
405 * generic_make_request() converts recursion to iteration; this
406 * means if we're running beneath it, any bios we allocate and
407 * submit will not be submitted (and thus freed) until after we
408 * return.
409 *
410 * This exposes us to a potential deadlock if we allocate
411 * multiple bios from the same bio_set() while running
412 * underneath generic_make_request(). If we were to allocate
413 * multiple bios (say a stacking block driver that was splitting
414 * bios), we would deadlock if we exhausted the mempool's
415 * reserve.
416 *
417 * We solve this, and guarantee forward progress, with a rescuer
418 * workqueue per bio_set. If we go to allocate and there are
419 * bios on current->bio_list, we first try the allocation
420 * without __GFP_WAIT; if that fails, we punt those bios we
421 * would be blocking to the rescuer workqueue before we retry
422 * with the original gfp_flags.
423 */
424
425 if (current->bio_list && !bio_list_empty(current->bio_list))
426 gfp_mask &= ~__GFP_WAIT;
427
3f86a82a 428 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
429 if (!p && gfp_mask != saved_gfp) {
430 punt_bios_to_rescuer(bs);
431 gfp_mask = saved_gfp;
432 p = mempool_alloc(bs->bio_pool, gfp_mask);
433 }
434
3f86a82a
KO
435 front_pad = bs->front_pad;
436 inline_vecs = BIO_INLINE_VECS;
437 }
438
451a9ebf
TH
439 if (unlikely(!p))
440 return NULL;
1da177e4 441
3f86a82a 442 bio = p + front_pad;
34053979
IM
443 bio_init(bio);
444
3f86a82a 445 if (nr_iovecs > inline_vecs) {
9f060e22 446 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
447 if (!bvl && gfp_mask != saved_gfp) {
448 punt_bios_to_rescuer(bs);
449 gfp_mask = saved_gfp;
9f060e22 450 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
451 }
452
34053979
IM
453 if (unlikely(!bvl))
454 goto err_free;
a38352e0
KO
455
456 bio->bi_flags |= 1 << BIO_OWNS_VEC;
3f86a82a
KO
457 } else if (nr_iovecs) {
458 bvl = bio->bi_inline_vecs;
1da177e4 459 }
3f86a82a
KO
460
461 bio->bi_pool = bs;
34053979
IM
462 bio->bi_flags |= idx << BIO_POOL_OFFSET;
463 bio->bi_max_vecs = nr_iovecs;
34053979 464 bio->bi_io_vec = bvl;
1da177e4 465 return bio;
34053979
IM
466
467err_free:
451a9ebf 468 mempool_free(p, bs->bio_pool);
34053979 469 return NULL;
1da177e4 470}
a112a71d 471EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 472
1da177e4
LT
473void zero_fill_bio(struct bio *bio)
474{
475 unsigned long flags;
7988613b
KO
476 struct bio_vec bv;
477 struct bvec_iter iter;
1da177e4 478
7988613b
KO
479 bio_for_each_segment(bv, bio, iter) {
480 char *data = bvec_kmap_irq(&bv, &flags);
481 memset(data, 0, bv.bv_len);
482 flush_dcache_page(bv.bv_page);
1da177e4
LT
483 bvec_kunmap_irq(data, &flags);
484 }
485}
486EXPORT_SYMBOL(zero_fill_bio);
487
488/**
489 * bio_put - release a reference to a bio
490 * @bio: bio to release reference to
491 *
492 * Description:
493 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 494 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
495 **/
496void bio_put(struct bio *bio)
497{
498 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
499
500 /*
501 * last put frees it
502 */
4254bba1
KO
503 if (atomic_dec_and_test(&bio->bi_cnt))
504 bio_free(bio);
1da177e4 505}
a112a71d 506EXPORT_SYMBOL(bio_put);
1da177e4 507
165125e1 508inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
509{
510 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
511 blk_recount_segments(q, bio);
512
513 return bio->bi_phys_segments;
514}
a112a71d 515EXPORT_SYMBOL(bio_phys_segments);
1da177e4 516
1da177e4
LT
517/**
518 * __bio_clone - clone a bio
519 * @bio: destination bio
520 * @bio_src: bio to clone
521 *
522 * Clone a &bio. Caller will own the returned bio, but not
523 * the actual data it points to. Reference count of returned
524 * bio will be one.
525 */
858119e1 526void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 527{
003b5c57
KO
528 if (bio_is_rw(bio_src)) {
529 struct bio_vec bv;
530 struct bvec_iter iter;
531
532 bio_for_each_segment(bv, bio_src, iter)
533 bio->bi_io_vec[bio->bi_vcnt++] = bv;
534 } else if (bio_has_data(bio_src)) {
535 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
536 bio_src->bi_max_vecs * sizeof(struct bio_vec));
537 bio->bi_vcnt = bio_src->bi_vcnt;
538 }
1da177e4 539
5d84070e
JA
540 /*
541 * most users will be overriding ->bi_bdev with a new target,
542 * so we don't set nor calculate new physical/hw segment counts here
543 */
1da177e4
LT
544 bio->bi_bdev = bio_src->bi_bdev;
545 bio->bi_flags |= 1 << BIO_CLONED;
546 bio->bi_rw = bio_src->bi_rw;
4550dd6c 547 bio->bi_iter = bio_src->bi_iter;
1da177e4 548}
a112a71d 549EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
550
551/**
bf800ef1 552 * bio_clone_bioset - clone a bio
1da177e4
LT
553 * @bio: bio to clone
554 * @gfp_mask: allocation priority
bf800ef1 555 * @bs: bio_set to allocate from
1da177e4
LT
556 *
557 * Like __bio_clone, only also allocates the returned bio
558 */
bf800ef1
KO
559struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
560 struct bio_set *bs)
1da177e4 561{
bf800ef1 562 struct bio *b;
1da177e4 563
bf800ef1 564 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
7ba1ba12
MP
565 if (!b)
566 return NULL;
567
7ba1ba12
MP
568 __bio_clone(b, bio);
569
570 if (bio_integrity(bio)) {
571 int ret;
572
1e2a410f 573 ret = bio_integrity_clone(b, bio, gfp_mask);
7ba1ba12 574
059ea331
LZ
575 if (ret < 0) {
576 bio_put(b);
7ba1ba12 577 return NULL;
059ea331 578 }
3676347a 579 }
1da177e4
LT
580
581 return b;
582}
bf800ef1 583EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
584
585/**
586 * bio_get_nr_vecs - return approx number of vecs
587 * @bdev: I/O target
588 *
589 * Return the approximate number of pages we can send to this target.
590 * There's no guarantee that you will be able to fit this number of pages
591 * into a bio, it does not account for dynamic restrictions that vary
592 * on offset.
593 */
594int bio_get_nr_vecs(struct block_device *bdev)
595{
165125e1 596 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
597 int nr_pages;
598
599 nr_pages = min_t(unsigned,
5abebfdd
KO
600 queue_max_segments(q),
601 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
602
603 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
604
1da177e4 605}
a112a71d 606EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 607
165125e1 608static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7 609 *page, unsigned int len, unsigned int offset,
34f2fd8d 610 unsigned int max_sectors)
1da177e4
LT
611{
612 int retried_segments = 0;
613 struct bio_vec *bvec;
614
615 /*
616 * cloned bio must not modify vec list
617 */
618 if (unlikely(bio_flagged(bio, BIO_CLONED)))
619 return 0;
620
4f024f37 621 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
622 return 0;
623
80cfd548
JA
624 /*
625 * For filesystems with a blocksize smaller than the pagesize
626 * we will often be called with the same page as last time and
627 * a consecutive offset. Optimize this special case.
628 */
629 if (bio->bi_vcnt > 0) {
630 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
631
632 if (page == prev->bv_page &&
633 offset == prev->bv_offset + prev->bv_len) {
1d616585 634 unsigned int prev_bv_len = prev->bv_len;
80cfd548 635 prev->bv_len += len;
cc371e66
AK
636
637 if (q->merge_bvec_fn) {
638 struct bvec_merge_data bvm = {
1d616585
DM
639 /* prev_bvec is already charged in
640 bi_size, discharge it in order to
641 simulate merging updated prev_bvec
642 as new bvec. */
cc371e66 643 .bi_bdev = bio->bi_bdev,
4f024f37
KO
644 .bi_sector = bio->bi_iter.bi_sector,
645 .bi_size = bio->bi_iter.bi_size -
646 prev_bv_len,
cc371e66
AK
647 .bi_rw = bio->bi_rw,
648 };
649
8bf8c376 650 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
651 prev->bv_len -= len;
652 return 0;
653 }
80cfd548
JA
654 }
655
656 goto done;
657 }
658 }
659
660 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
661 return 0;
662
663 /*
664 * we might lose a segment or two here, but rather that than
665 * make this too complex.
666 */
667
8a78362c 668 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
669
670 if (retried_segments)
671 return 0;
672
673 retried_segments = 1;
674 blk_recount_segments(q, bio);
675 }
676
677 /*
678 * setup the new entry, we might clear it again later if we
679 * cannot add the page
680 */
681 bvec = &bio->bi_io_vec[bio->bi_vcnt];
682 bvec->bv_page = page;
683 bvec->bv_len = len;
684 bvec->bv_offset = offset;
685
686 /*
687 * if queue has other restrictions (eg varying max sector size
688 * depending on offset), it can specify a merge_bvec_fn in the
689 * queue to get further control
690 */
691 if (q->merge_bvec_fn) {
cc371e66
AK
692 struct bvec_merge_data bvm = {
693 .bi_bdev = bio->bi_bdev,
4f024f37
KO
694 .bi_sector = bio->bi_iter.bi_sector,
695 .bi_size = bio->bi_iter.bi_size,
cc371e66
AK
696 .bi_rw = bio->bi_rw,
697 };
698
1da177e4
LT
699 /*
700 * merge_bvec_fn() returns number of bytes it can accept
701 * at this offset
702 */
8bf8c376 703 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
704 bvec->bv_page = NULL;
705 bvec->bv_len = 0;
706 bvec->bv_offset = 0;
707 return 0;
708 }
709 }
710
711 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 712 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
713 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
714
715 bio->bi_vcnt++;
716 bio->bi_phys_segments++;
80cfd548 717 done:
4f024f37 718 bio->bi_iter.bi_size += len;
1da177e4
LT
719 return len;
720}
721
6e68af66
MC
722/**
723 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 724 * @q: the target queue
6e68af66
MC
725 * @bio: destination bio
726 * @page: page to add
727 * @len: vec entry length
728 * @offset: vec entry offset
729 *
730 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
731 * number of reasons, such as the bio being full or target block device
732 * limitations. The target block device must allow bio's up to PAGE_SIZE,
733 * so it is always possible to add a single page to an empty bio.
734 *
735 * This should only be used by REQ_PC bios.
6e68af66 736 */
165125e1 737int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
738 unsigned int len, unsigned int offset)
739{
ae03bf63
MP
740 return __bio_add_page(q, bio, page, len, offset,
741 queue_max_hw_sectors(q));
6e68af66 742}
a112a71d 743EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 744
1da177e4
LT
745/**
746 * bio_add_page - attempt to add page to bio
747 * @bio: destination bio
748 * @page: page to add
749 * @len: vec entry length
750 * @offset: vec entry offset
751 *
752 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
753 * number of reasons, such as the bio being full or target block device
754 * limitations. The target block device must allow bio's up to PAGE_SIZE,
755 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
756 */
757int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
758 unsigned int offset)
759{
defd94b7 760 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 761 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 762}
a112a71d 763EXPORT_SYMBOL(bio_add_page);
1da177e4 764
9e882242
KO
765struct submit_bio_ret {
766 struct completion event;
767 int error;
768};
769
770static void submit_bio_wait_endio(struct bio *bio, int error)
771{
772 struct submit_bio_ret *ret = bio->bi_private;
773
774 ret->error = error;
775 complete(&ret->event);
776}
777
778/**
779 * submit_bio_wait - submit a bio, and wait until it completes
780 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
781 * @bio: The &struct bio which describes the I/O
782 *
783 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
784 * bio_endio() on failure.
785 */
786int submit_bio_wait(int rw, struct bio *bio)
787{
788 struct submit_bio_ret ret;
789
790 rw |= REQ_SYNC;
791 init_completion(&ret.event);
792 bio->bi_private = &ret;
793 bio->bi_end_io = submit_bio_wait_endio;
794 submit_bio(rw, bio);
795 wait_for_completion(&ret.event);
796
797 return ret.error;
798}
799EXPORT_SYMBOL(submit_bio_wait);
800
054bdf64
KO
801/**
802 * bio_advance - increment/complete a bio by some number of bytes
803 * @bio: bio to advance
804 * @bytes: number of bytes to complete
805 *
806 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
807 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
808 * be updated on the last bvec as well.
809 *
810 * @bio will then represent the remaining, uncompleted portion of the io.
811 */
812void bio_advance(struct bio *bio, unsigned bytes)
813{
814 if (bio_integrity(bio))
815 bio_integrity_advance(bio, bytes);
816
4550dd6c 817 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
818}
819EXPORT_SYMBOL(bio_advance);
820
a0787606
KO
821/**
822 * bio_alloc_pages - allocates a single page for each bvec in a bio
823 * @bio: bio to allocate pages for
824 * @gfp_mask: flags for allocation
825 *
826 * Allocates pages up to @bio->bi_vcnt.
827 *
828 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
829 * freed.
830 */
831int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
832{
833 int i;
834 struct bio_vec *bv;
835
836 bio_for_each_segment_all(bv, bio, i) {
837 bv->bv_page = alloc_page(gfp_mask);
838 if (!bv->bv_page) {
839 while (--bv >= bio->bi_io_vec)
840 __free_page(bv->bv_page);
841 return -ENOMEM;
842 }
843 }
844
845 return 0;
846}
847EXPORT_SYMBOL(bio_alloc_pages);
848
16ac3d63
KO
849/**
850 * bio_copy_data - copy contents of data buffers from one chain of bios to
851 * another
852 * @src: source bio list
853 * @dst: destination bio list
854 *
855 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
856 * @src and @dst as linked lists of bios.
857 *
858 * Stops when it reaches the end of either @src or @dst - that is, copies
859 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
860 */
861void bio_copy_data(struct bio *dst, struct bio *src)
862{
1cb9dda4
KO
863 struct bvec_iter src_iter, dst_iter;
864 struct bio_vec src_bv, dst_bv;
16ac3d63 865 void *src_p, *dst_p;
1cb9dda4 866 unsigned bytes;
16ac3d63 867
1cb9dda4
KO
868 src_iter = src->bi_iter;
869 dst_iter = dst->bi_iter;
16ac3d63
KO
870
871 while (1) {
1cb9dda4
KO
872 if (!src_iter.bi_size) {
873 src = src->bi_next;
874 if (!src)
875 break;
16ac3d63 876
1cb9dda4 877 src_iter = src->bi_iter;
16ac3d63
KO
878 }
879
1cb9dda4
KO
880 if (!dst_iter.bi_size) {
881 dst = dst->bi_next;
882 if (!dst)
883 break;
16ac3d63 884
1cb9dda4 885 dst_iter = dst->bi_iter;
16ac3d63
KO
886 }
887
1cb9dda4
KO
888 src_bv = bio_iter_iovec(src, src_iter);
889 dst_bv = bio_iter_iovec(dst, dst_iter);
890
891 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 892
1cb9dda4
KO
893 src_p = kmap_atomic(src_bv.bv_page);
894 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 895
1cb9dda4
KO
896 memcpy(dst_p + dst_bv.bv_offset,
897 src_p + src_bv.bv_offset,
16ac3d63
KO
898 bytes);
899
900 kunmap_atomic(dst_p);
901 kunmap_atomic(src_p);
902
1cb9dda4
KO
903 bio_advance_iter(src, &src_iter, bytes);
904 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
905 }
906}
907EXPORT_SYMBOL(bio_copy_data);
908
1da177e4
LT
909struct bio_map_data {
910 struct bio_vec *iovecs;
c5dec1c3 911 struct sg_iovec *sgvecs;
152e283f
FT
912 int nr_sgvecs;
913 int is_our_pages;
1da177e4
LT
914};
915
c5dec1c3 916static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
917 struct sg_iovec *iov, int iov_count,
918 int is_our_pages)
1da177e4
LT
919{
920 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
921 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
922 bmd->nr_sgvecs = iov_count;
152e283f 923 bmd->is_our_pages = is_our_pages;
1da177e4
LT
924 bio->bi_private = bmd;
925}
926
927static void bio_free_map_data(struct bio_map_data *bmd)
928{
929 kfree(bmd->iovecs);
c5dec1c3 930 kfree(bmd->sgvecs);
1da177e4
LT
931 kfree(bmd);
932}
933
121f0994
DC
934static struct bio_map_data *bio_alloc_map_data(int nr_segs,
935 unsigned int iov_count,
76029ff3 936 gfp_t gfp_mask)
1da177e4 937{
f3f63c1c
JA
938 struct bio_map_data *bmd;
939
940 if (iov_count > UIO_MAXIOV)
941 return NULL;
1da177e4 942
f3f63c1c 943 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
944 if (!bmd)
945 return NULL;
946
76029ff3 947 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
948 if (!bmd->iovecs) {
949 kfree(bmd);
950 return NULL;
951 }
952
76029ff3 953 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 954 if (bmd->sgvecs)
1da177e4
LT
955 return bmd;
956
c5dec1c3 957 kfree(bmd->iovecs);
1da177e4
LT
958 kfree(bmd);
959 return NULL;
960}
961
aefcc28a 962static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
963 struct sg_iovec *iov, int iov_count,
964 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
965{
966 int ret = 0, i;
967 struct bio_vec *bvec;
968 int iov_idx = 0;
969 unsigned int iov_off = 0;
c5dec1c3 970
d74c6d51 971 bio_for_each_segment_all(bvec, bio, i) {
c5dec1c3 972 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 973 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
974
975 while (bv_len && iov_idx < iov_count) {
976 unsigned int bytes;
0e0c6212 977 char __user *iov_addr;
c5dec1c3
FT
978
979 bytes = min_t(unsigned int,
980 iov[iov_idx].iov_len - iov_off, bv_len);
981 iov_addr = iov[iov_idx].iov_base + iov_off;
982
983 if (!ret) {
ecb554a8 984 if (to_user)
c5dec1c3
FT
985 ret = copy_to_user(iov_addr, bv_addr,
986 bytes);
987
ecb554a8
FT
988 if (from_user)
989 ret = copy_from_user(bv_addr, iov_addr,
990 bytes);
991
c5dec1c3
FT
992 if (ret)
993 ret = -EFAULT;
994 }
995
996 bv_len -= bytes;
997 bv_addr += bytes;
998 iov_addr += bytes;
999 iov_off += bytes;
1000
1001 if (iov[iov_idx].iov_len == iov_off) {
1002 iov_idx++;
1003 iov_off = 0;
1004 }
1005 }
1006
152e283f 1007 if (do_free_page)
c5dec1c3
FT
1008 __free_page(bvec->bv_page);
1009 }
1010
1011 return ret;
1012}
1013
1da177e4
LT
1014/**
1015 * bio_uncopy_user - finish previously mapped bio
1016 * @bio: bio being terminated
1017 *
1018 * Free pages allocated from bio_copy_user() and write back data
1019 * to user space in case of a read.
1020 */
1021int bio_uncopy_user(struct bio *bio)
1022{
1023 struct bio_map_data *bmd = bio->bi_private;
35dc2483
RD
1024 struct bio_vec *bvec;
1025 int ret = 0, i;
1da177e4 1026
35dc2483
RD
1027 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1028 /*
1029 * if we're in a workqueue, the request is orphaned, so
1030 * don't copy into a random user address space, just free.
1031 */
1032 if (current->mm)
1033 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
1034 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
1035 0, bmd->is_our_pages);
1036 else if (bmd->is_our_pages)
1037 bio_for_each_segment_all(bvec, bio, i)
1038 __free_page(bvec->bv_page);
1039 }
1da177e4
LT
1040 bio_free_map_data(bmd);
1041 bio_put(bio);
1042 return ret;
1043}
a112a71d 1044EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
1045
1046/**
c5dec1c3 1047 * bio_copy_user_iov - copy user data to bio
1da177e4 1048 * @q: destination block queue
152e283f 1049 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1050 * @iov: the iovec.
1051 * @iov_count: number of elements in the iovec
1da177e4 1052 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1053 * @gfp_mask: memory allocation flags
1da177e4
LT
1054 *
1055 * Prepares and returns a bio for indirect user io, bouncing data
1056 * to/from kernel pages as necessary. Must be paired with
1057 * call bio_uncopy_user() on io completion.
1058 */
152e283f
FT
1059struct bio *bio_copy_user_iov(struct request_queue *q,
1060 struct rq_map_data *map_data,
1061 struct sg_iovec *iov, int iov_count,
1062 int write_to_vm, gfp_t gfp_mask)
1da177e4 1063{
1da177e4
LT
1064 struct bio_map_data *bmd;
1065 struct bio_vec *bvec;
1066 struct page *page;
1067 struct bio *bio;
1068 int i, ret;
c5dec1c3
FT
1069 int nr_pages = 0;
1070 unsigned int len = 0;
56c451f4 1071 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 1072
c5dec1c3
FT
1073 for (i = 0; i < iov_count; i++) {
1074 unsigned long uaddr;
1075 unsigned long end;
1076 unsigned long start;
1077
1078 uaddr = (unsigned long)iov[i].iov_base;
1079 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1080 start = uaddr >> PAGE_SHIFT;
1081
cb4644ca
JA
1082 /*
1083 * Overflow, abort
1084 */
1085 if (end < start)
1086 return ERR_PTR(-EINVAL);
1087
c5dec1c3
FT
1088 nr_pages += end - start;
1089 len += iov[i].iov_len;
1090 }
1091
69838727
FT
1092 if (offset)
1093 nr_pages++;
1094
a3bce90e 1095 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
1096 if (!bmd)
1097 return ERR_PTR(-ENOMEM);
1098
1da177e4 1099 ret = -ENOMEM;
a9e9dc24 1100 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1101 if (!bio)
1102 goto out_bmd;
1103
7b6d91da
CH
1104 if (!write_to_vm)
1105 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
1106
1107 ret = 0;
56c451f4
FT
1108
1109 if (map_data) {
e623ddb4 1110 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1111 i = map_data->offset / PAGE_SIZE;
1112 }
1da177e4 1113 while (len) {
e623ddb4 1114 unsigned int bytes = PAGE_SIZE;
1da177e4 1115
56c451f4
FT
1116 bytes -= offset;
1117
1da177e4
LT
1118 if (bytes > len)
1119 bytes = len;
1120
152e283f 1121 if (map_data) {
e623ddb4 1122 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1123 ret = -ENOMEM;
1124 break;
1125 }
e623ddb4
FT
1126
1127 page = map_data->pages[i / nr_pages];
1128 page += (i % nr_pages);
1129
1130 i++;
1131 } else {
152e283f 1132 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1133 if (!page) {
1134 ret = -ENOMEM;
1135 break;
1136 }
1da177e4
LT
1137 }
1138
56c451f4 1139 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1140 break;
1da177e4
LT
1141
1142 len -= bytes;
56c451f4 1143 offset = 0;
1da177e4
LT
1144 }
1145
1146 if (ret)
1147 goto cleanup;
1148
1149 /*
1150 * success
1151 */
ecb554a8
FT
1152 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1153 (map_data && map_data->from_user)) {
1154 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
1155 if (ret)
1156 goto cleanup;
1da177e4
LT
1157 }
1158
152e283f 1159 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
1160 return bio;
1161cleanup:
152e283f 1162 if (!map_data)
d74c6d51 1163 bio_for_each_segment_all(bvec, bio, i)
152e283f 1164 __free_page(bvec->bv_page);
1da177e4
LT
1165
1166 bio_put(bio);
1167out_bmd:
1168 bio_free_map_data(bmd);
1169 return ERR_PTR(ret);
1170}
1171
c5dec1c3
FT
1172/**
1173 * bio_copy_user - copy user data to bio
1174 * @q: destination block queue
152e283f 1175 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
1176 * @uaddr: start of user address
1177 * @len: length in bytes
1178 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1179 * @gfp_mask: memory allocation flags
c5dec1c3
FT
1180 *
1181 * Prepares and returns a bio for indirect user io, bouncing data
1182 * to/from kernel pages as necessary. Must be paired with
1183 * call bio_uncopy_user() on io completion.
1184 */
152e283f
FT
1185struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1186 unsigned long uaddr, unsigned int len,
1187 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
1188{
1189 struct sg_iovec iov;
1190
1191 iov.iov_base = (void __user *)uaddr;
1192 iov.iov_len = len;
1193
152e283f 1194 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 1195}
a112a71d 1196EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 1197
165125e1 1198static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
1199 struct block_device *bdev,
1200 struct sg_iovec *iov, int iov_count,
a3bce90e 1201 int write_to_vm, gfp_t gfp_mask)
1da177e4 1202{
f1970baf
JB
1203 int i, j;
1204 int nr_pages = 0;
1da177e4
LT
1205 struct page **pages;
1206 struct bio *bio;
f1970baf
JB
1207 int cur_page = 0;
1208 int ret, offset;
1da177e4 1209
f1970baf
JB
1210 for (i = 0; i < iov_count; i++) {
1211 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1212 unsigned long len = iov[i].iov_len;
1213 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1214 unsigned long start = uaddr >> PAGE_SHIFT;
1215
cb4644ca
JA
1216 /*
1217 * Overflow, abort
1218 */
1219 if (end < start)
1220 return ERR_PTR(-EINVAL);
1221
f1970baf
JB
1222 nr_pages += end - start;
1223 /*
ad2d7225 1224 * buffer must be aligned to at least hardsector size for now
f1970baf 1225 */
ad2d7225 1226 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1227 return ERR_PTR(-EINVAL);
1228 }
1229
1230 if (!nr_pages)
1da177e4
LT
1231 return ERR_PTR(-EINVAL);
1232
a9e9dc24 1233 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1234 if (!bio)
1235 return ERR_PTR(-ENOMEM);
1236
1237 ret = -ENOMEM;
a3bce90e 1238 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1239 if (!pages)
1240 goto out;
1241
f1970baf
JB
1242 for (i = 0; i < iov_count; i++) {
1243 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1244 unsigned long len = iov[i].iov_len;
1245 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1246 unsigned long start = uaddr >> PAGE_SHIFT;
1247 const int local_nr_pages = end - start;
1248 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1249
f5dd33c4
NP
1250 ret = get_user_pages_fast(uaddr, local_nr_pages,
1251 write_to_vm, &pages[cur_page]);
99172157
JA
1252 if (ret < local_nr_pages) {
1253 ret = -EFAULT;
f1970baf 1254 goto out_unmap;
99172157 1255 }
f1970baf
JB
1256
1257 offset = uaddr & ~PAGE_MASK;
1258 for (j = cur_page; j < page_limit; j++) {
1259 unsigned int bytes = PAGE_SIZE - offset;
1260
1261 if (len <= 0)
1262 break;
1263
1264 if (bytes > len)
1265 bytes = len;
1266
1267 /*
1268 * sorry...
1269 */
defd94b7
MC
1270 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1271 bytes)
f1970baf
JB
1272 break;
1273
1274 len -= bytes;
1275 offset = 0;
1276 }
1da177e4 1277
f1970baf 1278 cur_page = j;
1da177e4 1279 /*
f1970baf 1280 * release the pages we didn't map into the bio, if any
1da177e4 1281 */
f1970baf
JB
1282 while (j < page_limit)
1283 page_cache_release(pages[j++]);
1da177e4
LT
1284 }
1285
1da177e4
LT
1286 kfree(pages);
1287
1288 /*
1289 * set data direction, and check if mapped pages need bouncing
1290 */
1291 if (!write_to_vm)
7b6d91da 1292 bio->bi_rw |= REQ_WRITE;
1da177e4 1293
f1970baf 1294 bio->bi_bdev = bdev;
1da177e4
LT
1295 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1296 return bio;
f1970baf
JB
1297
1298 out_unmap:
1299 for (i = 0; i < nr_pages; i++) {
1300 if(!pages[i])
1301 break;
1302 page_cache_release(pages[i]);
1303 }
1304 out:
1da177e4
LT
1305 kfree(pages);
1306 bio_put(bio);
1307 return ERR_PTR(ret);
1308}
1309
1310/**
1311 * bio_map_user - map user address into bio
165125e1 1312 * @q: the struct request_queue for the bio
1da177e4
LT
1313 * @bdev: destination block device
1314 * @uaddr: start of user address
1315 * @len: length in bytes
1316 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1317 * @gfp_mask: memory allocation flags
1da177e4
LT
1318 *
1319 * Map the user space address into a bio suitable for io to a block
1320 * device. Returns an error pointer in case of error.
1321 */
165125e1 1322struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1323 unsigned long uaddr, unsigned int len, int write_to_vm,
1324 gfp_t gfp_mask)
f1970baf
JB
1325{
1326 struct sg_iovec iov;
1327
3f70353e 1328 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1329 iov.iov_len = len;
1330
a3bce90e 1331 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1332}
a112a71d 1333EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1334
1335/**
1336 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1337 * @q: the struct request_queue for the bio
f1970baf
JB
1338 * @bdev: destination block device
1339 * @iov: the iovec.
1340 * @iov_count: number of elements in the iovec
1341 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1342 * @gfp_mask: memory allocation flags
f1970baf
JB
1343 *
1344 * Map the user space address into a bio suitable for io to a block
1345 * device. Returns an error pointer in case of error.
1346 */
165125e1 1347struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1348 struct sg_iovec *iov, int iov_count,
a3bce90e 1349 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1350{
1351 struct bio *bio;
1352
a3bce90e
FT
1353 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1354 gfp_mask);
1da177e4
LT
1355 if (IS_ERR(bio))
1356 return bio;
1357
1358 /*
1359 * subtle -- if __bio_map_user() ended up bouncing a bio,
1360 * it would normally disappear when its bi_end_io is run.
1361 * however, we need it for the unmap, so grab an extra
1362 * reference to it
1363 */
1364 bio_get(bio);
1365
0e75f906 1366 return bio;
1da177e4
LT
1367}
1368
1369static void __bio_unmap_user(struct bio *bio)
1370{
1371 struct bio_vec *bvec;
1372 int i;
1373
1374 /*
1375 * make sure we dirty pages we wrote to
1376 */
d74c6d51 1377 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1378 if (bio_data_dir(bio) == READ)
1379 set_page_dirty_lock(bvec->bv_page);
1380
1381 page_cache_release(bvec->bv_page);
1382 }
1383
1384 bio_put(bio);
1385}
1386
1387/**
1388 * bio_unmap_user - unmap a bio
1389 * @bio: the bio being unmapped
1390 *
1391 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1392 * a process context.
1393 *
1394 * bio_unmap_user() may sleep.
1395 */
1396void bio_unmap_user(struct bio *bio)
1397{
1398 __bio_unmap_user(bio);
1399 bio_put(bio);
1400}
a112a71d 1401EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1402
6712ecf8 1403static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1404{
b823825e 1405 bio_put(bio);
b823825e
JA
1406}
1407
165125e1 1408static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1409 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1410{
1411 unsigned long kaddr = (unsigned long)data;
1412 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1413 unsigned long start = kaddr >> PAGE_SHIFT;
1414 const int nr_pages = end - start;
1415 int offset, i;
1416 struct bio *bio;
1417
a9e9dc24 1418 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1419 if (!bio)
1420 return ERR_PTR(-ENOMEM);
1421
1422 offset = offset_in_page(kaddr);
1423 for (i = 0; i < nr_pages; i++) {
1424 unsigned int bytes = PAGE_SIZE - offset;
1425
1426 if (len <= 0)
1427 break;
1428
1429 if (bytes > len)
1430 bytes = len;
1431
defd94b7
MC
1432 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1433 offset) < bytes)
df46b9a4
MC
1434 break;
1435
1436 data += bytes;
1437 len -= bytes;
1438 offset = 0;
1439 }
1440
b823825e 1441 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1442 return bio;
1443}
1444
1445/**
1446 * bio_map_kern - map kernel address into bio
165125e1 1447 * @q: the struct request_queue for the bio
df46b9a4
MC
1448 * @data: pointer to buffer to map
1449 * @len: length in bytes
1450 * @gfp_mask: allocation flags for bio allocation
1451 *
1452 * Map the kernel address into a bio suitable for io to a block
1453 * device. Returns an error pointer in case of error.
1454 */
165125e1 1455struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1456 gfp_t gfp_mask)
df46b9a4
MC
1457{
1458 struct bio *bio;
1459
1460 bio = __bio_map_kern(q, data, len, gfp_mask);
1461 if (IS_ERR(bio))
1462 return bio;
1463
4f024f37 1464 if (bio->bi_iter.bi_size == len)
df46b9a4
MC
1465 return bio;
1466
1467 /*
1468 * Don't support partial mappings.
1469 */
1470 bio_put(bio);
1471 return ERR_PTR(-EINVAL);
1472}
a112a71d 1473EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1474
68154e90
FT
1475static void bio_copy_kern_endio(struct bio *bio, int err)
1476{
1477 struct bio_vec *bvec;
1478 const int read = bio_data_dir(bio) == READ;
76029ff3 1479 struct bio_map_data *bmd = bio->bi_private;
68154e90 1480 int i;
76029ff3 1481 char *p = bmd->sgvecs[0].iov_base;
68154e90 1482
d74c6d51 1483 bio_for_each_segment_all(bvec, bio, i) {
68154e90 1484 char *addr = page_address(bvec->bv_page);
76029ff3 1485 int len = bmd->iovecs[i].bv_len;
68154e90 1486
4fc981ef 1487 if (read)
76029ff3 1488 memcpy(p, addr, len);
68154e90
FT
1489
1490 __free_page(bvec->bv_page);
76029ff3 1491 p += len;
68154e90
FT
1492 }
1493
76029ff3 1494 bio_free_map_data(bmd);
68154e90
FT
1495 bio_put(bio);
1496}
1497
1498/**
1499 * bio_copy_kern - copy kernel address into bio
1500 * @q: the struct request_queue for the bio
1501 * @data: pointer to buffer to copy
1502 * @len: length in bytes
1503 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1504 * @reading: data direction is READ
68154e90
FT
1505 *
1506 * copy the kernel address into a bio suitable for io to a block
1507 * device. Returns an error pointer in case of error.
1508 */
1509struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1510 gfp_t gfp_mask, int reading)
1511{
68154e90
FT
1512 struct bio *bio;
1513 struct bio_vec *bvec;
4d8ab62e 1514 int i;
68154e90 1515
4d8ab62e
FT
1516 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1517 if (IS_ERR(bio))
1518 return bio;
68154e90
FT
1519
1520 if (!reading) {
1521 void *p = data;
1522
d74c6d51 1523 bio_for_each_segment_all(bvec, bio, i) {
68154e90
FT
1524 char *addr = page_address(bvec->bv_page);
1525
1526 memcpy(addr, p, bvec->bv_len);
1527 p += bvec->bv_len;
1528 }
1529 }
1530
68154e90 1531 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1532
68154e90 1533 return bio;
68154e90 1534}
a112a71d 1535EXPORT_SYMBOL(bio_copy_kern);
68154e90 1536
1da177e4
LT
1537/*
1538 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1539 * for performing direct-IO in BIOs.
1540 *
1541 * The problem is that we cannot run set_page_dirty() from interrupt context
1542 * because the required locks are not interrupt-safe. So what we can do is to
1543 * mark the pages dirty _before_ performing IO. And in interrupt context,
1544 * check that the pages are still dirty. If so, fine. If not, redirty them
1545 * in process context.
1546 *
1547 * We special-case compound pages here: normally this means reads into hugetlb
1548 * pages. The logic in here doesn't really work right for compound pages
1549 * because the VM does not uniformly chase down the head page in all cases.
1550 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1551 * handle them at all. So we skip compound pages here at an early stage.
1552 *
1553 * Note that this code is very hard to test under normal circumstances because
1554 * direct-io pins the pages with get_user_pages(). This makes
1555 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1556 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1557 * pagecache.
1558 *
1559 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1560 * deferred bio dirtying paths.
1561 */
1562
1563/*
1564 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1565 */
1566void bio_set_pages_dirty(struct bio *bio)
1567{
cb34e057 1568 struct bio_vec *bvec;
1da177e4
LT
1569 int i;
1570
cb34e057
KO
1571 bio_for_each_segment_all(bvec, bio, i) {
1572 struct page *page = bvec->bv_page;
1da177e4
LT
1573
1574 if (page && !PageCompound(page))
1575 set_page_dirty_lock(page);
1576 }
1577}
1578
86b6c7a7 1579static void bio_release_pages(struct bio *bio)
1da177e4 1580{
cb34e057 1581 struct bio_vec *bvec;
1da177e4
LT
1582 int i;
1583
cb34e057
KO
1584 bio_for_each_segment_all(bvec, bio, i) {
1585 struct page *page = bvec->bv_page;
1da177e4
LT
1586
1587 if (page)
1588 put_page(page);
1589 }
1590}
1591
1592/*
1593 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1594 * If they are, then fine. If, however, some pages are clean then they must
1595 * have been written out during the direct-IO read. So we take another ref on
1596 * the BIO and the offending pages and re-dirty the pages in process context.
1597 *
1598 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1599 * here on. It will run one page_cache_release() against each page and will
1600 * run one bio_put() against the BIO.
1601 */
1602
65f27f38 1603static void bio_dirty_fn(struct work_struct *work);
1da177e4 1604
65f27f38 1605static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1606static DEFINE_SPINLOCK(bio_dirty_lock);
1607static struct bio *bio_dirty_list;
1608
1609/*
1610 * This runs in process context
1611 */
65f27f38 1612static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1613{
1614 unsigned long flags;
1615 struct bio *bio;
1616
1617 spin_lock_irqsave(&bio_dirty_lock, flags);
1618 bio = bio_dirty_list;
1619 bio_dirty_list = NULL;
1620 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1621
1622 while (bio) {
1623 struct bio *next = bio->bi_private;
1624
1625 bio_set_pages_dirty(bio);
1626 bio_release_pages(bio);
1627 bio_put(bio);
1628 bio = next;
1629 }
1630}
1631
1632void bio_check_pages_dirty(struct bio *bio)
1633{
cb34e057 1634 struct bio_vec *bvec;
1da177e4
LT
1635 int nr_clean_pages = 0;
1636 int i;
1637
cb34e057
KO
1638 bio_for_each_segment_all(bvec, bio, i) {
1639 struct page *page = bvec->bv_page;
1da177e4
LT
1640
1641 if (PageDirty(page) || PageCompound(page)) {
1642 page_cache_release(page);
cb34e057 1643 bvec->bv_page = NULL;
1da177e4
LT
1644 } else {
1645 nr_clean_pages++;
1646 }
1647 }
1648
1649 if (nr_clean_pages) {
1650 unsigned long flags;
1651
1652 spin_lock_irqsave(&bio_dirty_lock, flags);
1653 bio->bi_private = bio_dirty_list;
1654 bio_dirty_list = bio;
1655 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1656 schedule_work(&bio_dirty_work);
1657 } else {
1658 bio_put(bio);
1659 }
1660}
1661
2d4dc890
IL
1662#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1663void bio_flush_dcache_pages(struct bio *bi)
1664{
7988613b
KO
1665 struct bio_vec bvec;
1666 struct bvec_iter iter;
2d4dc890 1667
7988613b
KO
1668 bio_for_each_segment(bvec, bi, iter)
1669 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1670}
1671EXPORT_SYMBOL(bio_flush_dcache_pages);
1672#endif
1673
1da177e4
LT
1674/**
1675 * bio_endio - end I/O on a bio
1676 * @bio: bio
1da177e4
LT
1677 * @error: error, if any
1678 *
1679 * Description:
6712ecf8 1680 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1681 * preferred way to end I/O on a bio, it takes care of clearing
1682 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1683 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1684 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1685 * bio unless they own it and thus know that it has an end_io
1686 * function.
1da177e4 1687 **/
6712ecf8 1688void bio_endio(struct bio *bio, int error)
1da177e4
LT
1689{
1690 if (error)
1691 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1692 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1693 error = -EIO;
1da177e4 1694
5bb23a68 1695 if (bio->bi_end_io)
6712ecf8 1696 bio->bi_end_io(bio, error);
1da177e4 1697}
a112a71d 1698EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1699
1700void bio_pair_release(struct bio_pair *bp)
1701{
1702 if (atomic_dec_and_test(&bp->cnt)) {
1703 struct bio *master = bp->bio1.bi_private;
1704
6712ecf8 1705 bio_endio(master, bp->error);
1da177e4
LT
1706 mempool_free(bp, bp->bio2.bi_private);
1707 }
1708}
a112a71d 1709EXPORT_SYMBOL(bio_pair_release);
1da177e4 1710
6712ecf8 1711static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1712{
1713 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1714
1715 if (err)
1716 bp->error = err;
1717
1da177e4 1718 bio_pair_release(bp);
1da177e4
LT
1719}
1720
6712ecf8 1721static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1722{
1723 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1724
1725 if (err)
1726 bp->error = err;
1727
1da177e4 1728 bio_pair_release(bp);
1da177e4
LT
1729}
1730
1731/*
c7eee1b8 1732 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1733 */
6feef531 1734struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1735{
6feef531 1736 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1737
1738 if (!bp)
1739 return bp;
1740
5f3ea37c 1741 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
4f024f37 1742 bi->bi_iter.bi_sector + first_sectors);
2056a782 1743
458b76ed 1744 BUG_ON(bio_multiple_segments(bi));
1da177e4
LT
1745 atomic_set(&bp->cnt, 3);
1746 bp->error = 0;
1747 bp->bio1 = *bi;
1748 bp->bio2 = *bi;
4f024f37
KO
1749 bp->bio2.bi_iter.bi_sector += first_sectors;
1750 bp->bio2.bi_iter.bi_size -= first_sectors << 9;
1751 bp->bio1.bi_iter.bi_size = first_sectors << 9;
1da177e4 1752
02f3939e 1753 if (bi->bi_vcnt != 0) {
a4ad39b1
KO
1754 bp->bv1 = bio_iovec(bi);
1755 bp->bv2 = bio_iovec(bi);
4363ac7c 1756
02f3939e
SL
1757 if (bio_is_rw(bi)) {
1758 bp->bv2.bv_offset += first_sectors << 9;
1759 bp->bv2.bv_len -= first_sectors << 9;
1760 bp->bv1.bv_len = first_sectors << 9;
1761 }
1da177e4 1762
02f3939e
SL
1763 bp->bio1.bi_io_vec = &bp->bv1;
1764 bp->bio2.bi_io_vec = &bp->bv2;
1da177e4 1765
02f3939e
SL
1766 bp->bio1.bi_max_vecs = 1;
1767 bp->bio2.bi_max_vecs = 1;
1768 }
a2eb0c10 1769
1da177e4
LT
1770 bp->bio1.bi_end_io = bio_pair_end_1;
1771 bp->bio2.bi_end_io = bio_pair_end_2;
1772
1773 bp->bio1.bi_private = bi;
6feef531 1774 bp->bio2.bi_private = bio_split_pool;
1da177e4 1775
7ba1ba12
MP
1776 if (bio_integrity(bi))
1777 bio_integrity_split(bi, bp, first_sectors);
1778
1da177e4
LT
1779 return bp;
1780}
a112a71d 1781EXPORT_SYMBOL(bio_split);
1da177e4 1782
6678d83f
KO
1783/**
1784 * bio_trim - trim a bio
1785 * @bio: bio to trim
1786 * @offset: number of sectors to trim from the front of @bio
1787 * @size: size we want to trim @bio to, in sectors
1788 */
1789void bio_trim(struct bio *bio, int offset, int size)
1790{
1791 /* 'bio' is a cloned bio which we need to trim to match
1792 * the given offset and size.
1793 * This requires adjusting bi_sector, bi_size, and bi_io_vec
1794 */
1795 int i;
1796 struct bio_vec *bvec;
1797 int sofar = 0;
1798
1799 size <<= 9;
4f024f37 1800 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1801 return;
1802
1803 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1804
1805 bio_advance(bio, offset << 9);
1806
4f024f37 1807 bio->bi_iter.bi_size = size;
6678d83f
KO
1808
1809 /* avoid any complications with bi_idx being non-zero*/
4f024f37
KO
1810 if (bio->bi_iter.bi_idx) {
1811 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_iter.bi_idx,
1812 (bio->bi_vcnt - bio->bi_iter.bi_idx) *
1813 sizeof(struct bio_vec));
1814 bio->bi_vcnt -= bio->bi_iter.bi_idx;
1815 bio->bi_iter.bi_idx = 0;
6678d83f
KO
1816 }
1817 /* Make sure vcnt and last bv are not too big */
7988613b 1818 bio_for_each_segment_all(bvec, bio, i) {
6678d83f
KO
1819 if (sofar + bvec->bv_len > size)
1820 bvec->bv_len = size - sofar;
1821 if (bvec->bv_len == 0) {
1822 bio->bi_vcnt = i;
1823 break;
1824 }
1825 sofar += bvec->bv_len;
1826 }
1827}
1828EXPORT_SYMBOL_GPL(bio_trim);
1829
ad3316bf
MP
1830/**
1831 * bio_sector_offset - Find hardware sector offset in bio
1832 * @bio: bio to inspect
1833 * @index: bio_vec index
1834 * @offset: offset in bv_page
1835 *
1836 * Return the number of hardware sectors between beginning of bio
1837 * and an end point indicated by a bio_vec index and an offset
1838 * within that vector's page.
1839 */
1840sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1841 unsigned int offset)
1842{
e1defc4f 1843 unsigned int sector_sz;
ad3316bf
MP
1844 struct bio_vec *bv;
1845 sector_t sectors;
1846 int i;
1847
e1defc4f 1848 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1849 sectors = 0;
1850
4f024f37 1851 if (index >= bio->bi_iter.bi_idx)
ad3316bf
MP
1852 index = bio->bi_vcnt - 1;
1853
d74c6d51 1854 bio_for_each_segment_all(bv, bio, i) {
ad3316bf
MP
1855 if (i == index) {
1856 if (offset > bv->bv_offset)
1857 sectors += (offset - bv->bv_offset) / sector_sz;
1858 break;
1859 }
1860
1861 sectors += bv->bv_len / sector_sz;
1862 }
1863
1864 return sectors;
1865}
1866EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1867
1868/*
1869 * create memory pools for biovec's in a bio_set.
1870 * use the global biovec slabs created for general use.
1871 */
9f060e22 1872mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1da177e4 1873{
7ff9345f 1874 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1875
9f060e22 1876 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1877}
1878
1879void bioset_free(struct bio_set *bs)
1880{
df2cb6da
KO
1881 if (bs->rescue_workqueue)
1882 destroy_workqueue(bs->rescue_workqueue);
1883
1da177e4
LT
1884 if (bs->bio_pool)
1885 mempool_destroy(bs->bio_pool);
1886
9f060e22
KO
1887 if (bs->bvec_pool)
1888 mempool_destroy(bs->bvec_pool);
1889
7878cba9 1890 bioset_integrity_free(bs);
bb799ca0 1891 bio_put_slab(bs);
1da177e4
LT
1892
1893 kfree(bs);
1894}
a112a71d 1895EXPORT_SYMBOL(bioset_free);
1da177e4 1896
bb799ca0
JA
1897/**
1898 * bioset_create - Create a bio_set
1899 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1900 * @front_pad: Number of bytes to allocate in front of the returned bio
1901 *
1902 * Description:
1903 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1904 * to ask for a number of bytes to be allocated in front of the bio.
1905 * Front pad allocation is useful for embedding the bio inside
1906 * another structure, to avoid allocating extra data to go with the bio.
1907 * Note that the bio must be embedded at the END of that structure always,
1908 * or things will break badly.
1909 */
1910struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1911{
392ddc32 1912 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1913 struct bio_set *bs;
1da177e4 1914
1b434498 1915 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1916 if (!bs)
1917 return NULL;
1918
bb799ca0 1919 bs->front_pad = front_pad;
1b434498 1920
df2cb6da
KO
1921 spin_lock_init(&bs->rescue_lock);
1922 bio_list_init(&bs->rescue_list);
1923 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1924
392ddc32 1925 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1926 if (!bs->bio_slab) {
1927 kfree(bs);
1928 return NULL;
1929 }
1930
1931 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1932 if (!bs->bio_pool)
1933 goto bad;
1934
9f060e22
KO
1935 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1936 if (!bs->bvec_pool)
df2cb6da
KO
1937 goto bad;
1938
1939 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1940 if (!bs->rescue_workqueue)
1941 goto bad;
1da177e4 1942
df2cb6da 1943 return bs;
1da177e4
LT
1944bad:
1945 bioset_free(bs);
1946 return NULL;
1947}
a112a71d 1948EXPORT_SYMBOL(bioset_create);
1da177e4 1949
852c788f
TH
1950#ifdef CONFIG_BLK_CGROUP
1951/**
1952 * bio_associate_current - associate a bio with %current
1953 * @bio: target bio
1954 *
1955 * Associate @bio with %current if it hasn't been associated yet. Block
1956 * layer will treat @bio as if it were issued by %current no matter which
1957 * task actually issues it.
1958 *
1959 * This function takes an extra reference of @task's io_context and blkcg
1960 * which will be put when @bio is released. The caller must own @bio,
1961 * ensure %current->io_context exists, and is responsible for synchronizing
1962 * calls to this function.
1963 */
1964int bio_associate_current(struct bio *bio)
1965{
1966 struct io_context *ioc;
1967 struct cgroup_subsys_state *css;
1968
1969 if (bio->bi_ioc)
1970 return -EBUSY;
1971
1972 ioc = current->io_context;
1973 if (!ioc)
1974 return -ENOENT;
1975
1976 /* acquire active ref on @ioc and associate */
1977 get_io_context_active(ioc);
1978 bio->bi_ioc = ioc;
1979
1980 /* associate blkcg if exists */
1981 rcu_read_lock();
8af01f56 1982 css = task_css(current, blkio_subsys_id);
852c788f
TH
1983 if (css && css_tryget(css))
1984 bio->bi_css = css;
1985 rcu_read_unlock();
1986
1987 return 0;
1988}
1989
1990/**
1991 * bio_disassociate_task - undo bio_associate_current()
1992 * @bio: target bio
1993 */
1994void bio_disassociate_task(struct bio *bio)
1995{
1996 if (bio->bi_ioc) {
1997 put_io_context(bio->bi_ioc);
1998 bio->bi_ioc = NULL;
1999 }
2000 if (bio->bi_css) {
2001 css_put(bio->bi_css);
2002 bio->bi_css = NULL;
2003 }
2004}
2005
2006#endif /* CONFIG_BLK_CGROUP */
2007
1da177e4
LT
2008static void __init biovec_init_slabs(void)
2009{
2010 int i;
2011
2012 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2013 int size;
2014 struct biovec_slab *bvs = bvec_slabs + i;
2015
a7fcd37c
JA
2016 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2017 bvs->slab = NULL;
2018 continue;
2019 }
a7fcd37c 2020
1da177e4
LT
2021 size = bvs->nr_vecs * sizeof(struct bio_vec);
2022 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2023 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2024 }
2025}
2026
2027static int __init init_bio(void)
2028{
bb799ca0
JA
2029 bio_slab_max = 2;
2030 bio_slab_nr = 0;
2031 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2032 if (!bio_slabs)
2033 panic("bio: can't allocate bios\n");
1da177e4 2034
7878cba9 2035 bio_integrity_init();
1da177e4
LT
2036 biovec_init_slabs();
2037
bb799ca0 2038 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2039 if (!fs_bio_set)
2040 panic("bio: can't allocate bios\n");
2041
a91a2785
MP
2042 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2043 panic("bio: can't create integrity pool\n");
2044
0eaae62a
MD
2045 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
2046 sizeof(struct bio_pair));
1da177e4
LT
2047 if (!bio_split_pool)
2048 panic("bio: can't create split pool\n");
2049
2050 return 0;
2051}
1da177e4 2052subsys_initcall(init_bio);