]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/backref.c
Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / backref.c
CommitLineData
a542ad1b
JS
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
425d17a2 19#include <linux/vmalloc.h>
a542ad1b
JS
20#include "ctree.h"
21#include "disk-io.h"
22#include "backref.h"
8da6d581
JS
23#include "ulist.h"
24#include "transaction.h"
25#include "delayed-ref.h"
b916a59a 26#include "locking.h"
a542ad1b 27
976b1908
JS
28struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 struct extent_inode_elem *next;
32};
33
34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 struct btrfs_file_extent_item *fi,
36 u64 extent_item_pos,
37 struct extent_inode_elem **eie)
38{
39 u64 data_offset;
40 u64 data_len;
41 struct extent_inode_elem *e;
42
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
48 return 1;
49
50 e = kmalloc(sizeof(*e), GFP_NOFS);
51 if (!e)
52 return -ENOMEM;
53
54 e->next = *eie;
55 e->inum = key->objectid;
56 e->offset = key->offset + (extent_item_pos - data_offset);
57 *eie = e;
58
59 return 0;
60}
61
62static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
63 u64 extent_item_pos,
64 struct extent_inode_elem **eie)
65{
66 u64 disk_byte;
67 struct btrfs_key key;
68 struct btrfs_file_extent_item *fi;
69 int slot;
70 int nritems;
71 int extent_type;
72 int ret;
73
74 /*
75 * from the shared data ref, we only have the leaf but we need
76 * the key. thus, we must look into all items and see that we
77 * find one (some) with a reference to our extent item.
78 */
79 nritems = btrfs_header_nritems(eb);
80 for (slot = 0; slot < nritems; ++slot) {
81 btrfs_item_key_to_cpu(eb, &key, slot);
82 if (key.type != BTRFS_EXTENT_DATA_KEY)
83 continue;
84 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
85 extent_type = btrfs_file_extent_type(eb, fi);
86 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
87 continue;
88 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
89 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
90 if (disk_byte != wanted_disk_byte)
91 continue;
92
93 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
94 if (ret < 0)
95 return ret;
96 }
97
98 return 0;
99}
100
8da6d581
JS
101/*
102 * this structure records all encountered refs on the way up to the root
103 */
104struct __prelim_ref {
105 struct list_head list;
106 u64 root_id;
d5c88b73 107 struct btrfs_key key_for_search;
8da6d581
JS
108 int level;
109 int count;
3301958b 110 struct extent_inode_elem *inode_list;
8da6d581
JS
111 u64 parent;
112 u64 wanted_disk_byte;
113};
114
d5c88b73
JS
115/*
116 * the rules for all callers of this function are:
117 * - obtaining the parent is the goal
118 * - if you add a key, you must know that it is a correct key
119 * - if you cannot add the parent or a correct key, then we will look into the
120 * block later to set a correct key
121 *
122 * delayed refs
123 * ============
124 * backref type | shared | indirect | shared | indirect
125 * information | tree | tree | data | data
126 * --------------------+--------+----------+--------+----------
127 * parent logical | y | - | - | -
128 * key to resolve | - | y | y | y
129 * tree block logical | - | - | - | -
130 * root for resolving | y | y | y | y
131 *
132 * - column 1: we've the parent -> done
133 * - column 2, 3, 4: we use the key to find the parent
134 *
135 * on disk refs (inline or keyed)
136 * ==============================
137 * backref type | shared | indirect | shared | indirect
138 * information | tree | tree | data | data
139 * --------------------+--------+----------+--------+----------
140 * parent logical | y | - | y | -
141 * key to resolve | - | - | - | y
142 * tree block logical | y | y | y | y
143 * root for resolving | - | y | y | y
144 *
145 * - column 1, 3: we've the parent -> done
146 * - column 2: we take the first key from the block to find the parent
147 * (see __add_missing_keys)
148 * - column 4: we use the key to find the parent
149 *
150 * additional information that's available but not required to find the parent
151 * block might help in merging entries to gain some speed.
152 */
153
8da6d581 154static int __add_prelim_ref(struct list_head *head, u64 root_id,
d5c88b73
JS
155 struct btrfs_key *key, int level,
156 u64 parent, u64 wanted_disk_byte, int count)
8da6d581
JS
157{
158 struct __prelim_ref *ref;
159
160 /* in case we're adding delayed refs, we're holding the refs spinlock */
161 ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
162 if (!ref)
163 return -ENOMEM;
164
165 ref->root_id = root_id;
166 if (key)
d5c88b73 167 ref->key_for_search = *key;
8da6d581 168 else
d5c88b73 169 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
8da6d581 170
3301958b 171 ref->inode_list = NULL;
8da6d581
JS
172 ref->level = level;
173 ref->count = count;
174 ref->parent = parent;
175 ref->wanted_disk_byte = wanted_disk_byte;
176 list_add_tail(&ref->list, head);
177
178 return 0;
179}
180
181static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
976b1908 182 struct ulist *parents, int level,
69bca40d 183 struct btrfs_key *key_for_search, u64 time_seq,
3d7806ec 184 u64 wanted_disk_byte,
976b1908 185 const u64 *extent_item_pos)
8da6d581 186{
69bca40d
AB
187 int ret = 0;
188 int slot;
189 struct extent_buffer *eb;
190 struct btrfs_key key;
8da6d581 191 struct btrfs_file_extent_item *fi;
3301958b 192 struct extent_inode_elem *eie = NULL;
8da6d581
JS
193 u64 disk_byte;
194
69bca40d
AB
195 if (level != 0) {
196 eb = path->nodes[level];
197 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
3301958b
JS
198 if (ret < 0)
199 return ret;
8da6d581 200 return 0;
69bca40d 201 }
8da6d581
JS
202
203 /*
69bca40d
AB
204 * We normally enter this function with the path already pointing to
205 * the first item to check. But sometimes, we may enter it with
206 * slot==nritems. In that case, go to the next leaf before we continue.
8da6d581 207 */
69bca40d 208 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
3d7806ec 209 ret = btrfs_next_old_leaf(root, path, time_seq);
8da6d581 210
69bca40d 211 while (!ret) {
8da6d581 212 eb = path->nodes[0];
69bca40d
AB
213 slot = path->slots[0];
214
215 btrfs_item_key_to_cpu(eb, &key, slot);
216
217 if (key.objectid != key_for_search->objectid ||
218 key.type != BTRFS_EXTENT_DATA_KEY)
219 break;
220
221 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
222 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
223
224 if (disk_byte == wanted_disk_byte) {
225 eie = NULL;
226 if (extent_item_pos) {
227 ret = check_extent_in_eb(&key, eb, fi,
228 *extent_item_pos,
229 &eie);
230 if (ret < 0)
231 break;
232 }
233 if (!ret) {
234 ret = ulist_add(parents, eb->start,
995e01b7 235 (uintptr_t)eie, GFP_NOFS);
69bca40d
AB
236 if (ret < 0)
237 break;
238 if (!extent_item_pos) {
239 ret = btrfs_next_old_leaf(root, path,
240 time_seq);
241 continue;
242 }
243 }
8da6d581 244 }
69bca40d 245 ret = btrfs_next_old_item(root, path, time_seq);
8da6d581
JS
246 }
247
69bca40d
AB
248 if (ret > 0)
249 ret = 0;
250 return ret;
8da6d581
JS
251}
252
253/*
254 * resolve an indirect backref in the form (root_id, key, level)
255 * to a logical address
256 */
257static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
da61d31a
JB
258 struct btrfs_path *path, u64 time_seq,
259 struct __prelim_ref *ref,
260 struct ulist *parents,
261 const u64 *extent_item_pos)
8da6d581 262{
8da6d581
JS
263 struct btrfs_root *root;
264 struct btrfs_key root_key;
8da6d581
JS
265 struct extent_buffer *eb;
266 int ret = 0;
267 int root_level;
268 int level = ref->level;
269
8da6d581
JS
270 root_key.objectid = ref->root_id;
271 root_key.type = BTRFS_ROOT_ITEM_KEY;
272 root_key.offset = (u64)-1;
273 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
274 if (IS_ERR(root)) {
275 ret = PTR_ERR(root);
276 goto out;
277 }
278
5b6602e7 279 root_level = btrfs_old_root_level(root, time_seq);
8da6d581
JS
280
281 if (root_level + 1 == level)
282 goto out;
283
284 path->lowest_level = level;
8445f61c 285 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
8da6d581
JS
286 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
287 "%d for key (%llu %u %llu)\n",
288 (unsigned long long)ref->root_id, level, ref->count, ret,
d5c88b73
JS
289 (unsigned long long)ref->key_for_search.objectid,
290 ref->key_for_search.type,
291 (unsigned long long)ref->key_for_search.offset);
8da6d581
JS
292 if (ret < 0)
293 goto out;
294
295 eb = path->nodes[level];
9345457f
JS
296 while (!eb) {
297 if (!level) {
298 WARN_ON(1);
299 ret = 1;
300 goto out;
301 }
302 level--;
303 eb = path->nodes[level];
8da6d581
JS
304 }
305
69bca40d
AB
306 ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
307 time_seq, ref->wanted_disk_byte,
308 extent_item_pos);
8da6d581 309out:
da61d31a
JB
310 path->lowest_level = 0;
311 btrfs_release_path(path);
8da6d581
JS
312 return ret;
313}
314
315/*
316 * resolve all indirect backrefs from the list
317 */
318static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
da61d31a 319 struct btrfs_path *path, u64 time_seq,
976b1908
JS
320 struct list_head *head,
321 const u64 *extent_item_pos)
8da6d581
JS
322{
323 int err;
324 int ret = 0;
325 struct __prelim_ref *ref;
326 struct __prelim_ref *ref_safe;
327 struct __prelim_ref *new_ref;
328 struct ulist *parents;
329 struct ulist_node *node;
cd1b413c 330 struct ulist_iterator uiter;
8da6d581
JS
331
332 parents = ulist_alloc(GFP_NOFS);
333 if (!parents)
334 return -ENOMEM;
335
336 /*
337 * _safe allows us to insert directly after the current item without
338 * iterating over the newly inserted items.
339 * we're also allowed to re-assign ref during iteration.
340 */
341 list_for_each_entry_safe(ref, ref_safe, head, list) {
342 if (ref->parent) /* already direct */
343 continue;
344 if (ref->count == 0)
345 continue;
da61d31a
JB
346 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
347 parents, extent_item_pos);
e36902d4
WS
348 if (err == -ENOMEM)
349 goto out;
ca60ebfa 350 if (err)
8da6d581 351 continue;
8da6d581
JS
352
353 /* we put the first parent into the ref at hand */
cd1b413c
JS
354 ULIST_ITER_INIT(&uiter);
355 node = ulist_next(parents, &uiter);
8da6d581 356 ref->parent = node ? node->val : 0;
995e01b7
JS
357 ref->inode_list = node ?
358 (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
8da6d581
JS
359
360 /* additional parents require new refs being added here */
cd1b413c 361 while ((node = ulist_next(parents, &uiter))) {
8da6d581
JS
362 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
363 if (!new_ref) {
364 ret = -ENOMEM;
e36902d4 365 goto out;
8da6d581
JS
366 }
367 memcpy(new_ref, ref, sizeof(*ref));
368 new_ref->parent = node->val;
995e01b7
JS
369 new_ref->inode_list = (struct extent_inode_elem *)
370 (uintptr_t)node->aux;
8da6d581
JS
371 list_add(&new_ref->list, &ref->list);
372 }
373 ulist_reinit(parents);
374 }
e36902d4 375out:
8da6d581
JS
376 ulist_free(parents);
377 return ret;
378}
379
d5c88b73
JS
380static inline int ref_for_same_block(struct __prelim_ref *ref1,
381 struct __prelim_ref *ref2)
382{
383 if (ref1->level != ref2->level)
384 return 0;
385 if (ref1->root_id != ref2->root_id)
386 return 0;
387 if (ref1->key_for_search.type != ref2->key_for_search.type)
388 return 0;
389 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
390 return 0;
391 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
392 return 0;
393 if (ref1->parent != ref2->parent)
394 return 0;
395
396 return 1;
397}
398
399/*
400 * read tree blocks and add keys where required.
401 */
402static int __add_missing_keys(struct btrfs_fs_info *fs_info,
403 struct list_head *head)
404{
405 struct list_head *pos;
406 struct extent_buffer *eb;
407
408 list_for_each(pos, head) {
409 struct __prelim_ref *ref;
410 ref = list_entry(pos, struct __prelim_ref, list);
411
412 if (ref->parent)
413 continue;
414 if (ref->key_for_search.type)
415 continue;
416 BUG_ON(!ref->wanted_disk_byte);
417 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
418 fs_info->tree_root->leafsize, 0);
416bc658
JB
419 if (!eb || !extent_buffer_uptodate(eb)) {
420 free_extent_buffer(eb);
421 return -EIO;
422 }
d5c88b73
JS
423 btrfs_tree_read_lock(eb);
424 if (btrfs_header_level(eb) == 0)
425 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
426 else
427 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
428 btrfs_tree_read_unlock(eb);
429 free_extent_buffer(eb);
430 }
431 return 0;
432}
433
8da6d581
JS
434/*
435 * merge two lists of backrefs and adjust counts accordingly
436 *
437 * mode = 1: merge identical keys, if key is set
d5c88b73
JS
438 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
439 * additionally, we could even add a key range for the blocks we
440 * looked into to merge even more (-> replace unresolved refs by those
441 * having a parent).
8da6d581
JS
442 * mode = 2: merge identical parents
443 */
692206b1 444static void __merge_refs(struct list_head *head, int mode)
8da6d581
JS
445{
446 struct list_head *pos1;
447
448 list_for_each(pos1, head) {
449 struct list_head *n2;
450 struct list_head *pos2;
451 struct __prelim_ref *ref1;
452
453 ref1 = list_entry(pos1, struct __prelim_ref, list);
454
8da6d581
JS
455 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
456 pos2 = n2, n2 = pos2->next) {
457 struct __prelim_ref *ref2;
d5c88b73 458 struct __prelim_ref *xchg;
3ef5969c 459 struct extent_inode_elem *eie;
8da6d581
JS
460
461 ref2 = list_entry(pos2, struct __prelim_ref, list);
462
463 if (mode == 1) {
d5c88b73 464 if (!ref_for_same_block(ref1, ref2))
8da6d581 465 continue;
d5c88b73
JS
466 if (!ref1->parent && ref2->parent) {
467 xchg = ref1;
468 ref1 = ref2;
469 ref2 = xchg;
470 }
8da6d581
JS
471 } else {
472 if (ref1->parent != ref2->parent)
473 continue;
8da6d581 474 }
3ef5969c
AB
475
476 eie = ref1->inode_list;
477 while (eie && eie->next)
478 eie = eie->next;
479 if (eie)
480 eie->next = ref2->inode_list;
481 else
482 ref1->inode_list = ref2->inode_list;
483 ref1->count += ref2->count;
484
8da6d581
JS
485 list_del(&ref2->list);
486 kfree(ref2);
487 }
488
489 }
8da6d581
JS
490}
491
492/*
493 * add all currently queued delayed refs from this head whose seq nr is
494 * smaller or equal that seq to the list
495 */
496static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
8da6d581
JS
497 struct list_head *prefs)
498{
499 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
500 struct rb_node *n = &head->node.rb_node;
d5c88b73
JS
501 struct btrfs_key key;
502 struct btrfs_key op_key = {0};
8da6d581 503 int sgn;
b1375d64 504 int ret = 0;
8da6d581
JS
505
506 if (extent_op && extent_op->update_key)
d5c88b73 507 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
8da6d581
JS
508
509 while ((n = rb_prev(n))) {
510 struct btrfs_delayed_ref_node *node;
511 node = rb_entry(n, struct btrfs_delayed_ref_node,
512 rb_node);
513 if (node->bytenr != head->node.bytenr)
514 break;
515 WARN_ON(node->is_head);
516
517 if (node->seq > seq)
518 continue;
519
520 switch (node->action) {
521 case BTRFS_ADD_DELAYED_EXTENT:
522 case BTRFS_UPDATE_DELAYED_HEAD:
523 WARN_ON(1);
524 continue;
525 case BTRFS_ADD_DELAYED_REF:
526 sgn = 1;
527 break;
528 case BTRFS_DROP_DELAYED_REF:
529 sgn = -1;
530 break;
531 default:
532 BUG_ON(1);
533 }
534 switch (node->type) {
535 case BTRFS_TREE_BLOCK_REF_KEY: {
536 struct btrfs_delayed_tree_ref *ref;
537
538 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 539 ret = __add_prelim_ref(prefs, ref->root, &op_key,
8da6d581
JS
540 ref->level + 1, 0, node->bytenr,
541 node->ref_mod * sgn);
542 break;
543 }
544 case BTRFS_SHARED_BLOCK_REF_KEY: {
545 struct btrfs_delayed_tree_ref *ref;
546
547 ref = btrfs_delayed_node_to_tree_ref(node);
d5c88b73 548 ret = __add_prelim_ref(prefs, ref->root, NULL,
8da6d581
JS
549 ref->level + 1, ref->parent,
550 node->bytenr,
551 node->ref_mod * sgn);
552 break;
553 }
554 case BTRFS_EXTENT_DATA_REF_KEY: {
555 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
556 ref = btrfs_delayed_node_to_data_ref(node);
557
558 key.objectid = ref->objectid;
559 key.type = BTRFS_EXTENT_DATA_KEY;
560 key.offset = ref->offset;
561 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
562 node->bytenr,
563 node->ref_mod * sgn);
564 break;
565 }
566 case BTRFS_SHARED_DATA_REF_KEY: {
567 struct btrfs_delayed_data_ref *ref;
8da6d581
JS
568
569 ref = btrfs_delayed_node_to_data_ref(node);
570
571 key.objectid = ref->objectid;
572 key.type = BTRFS_EXTENT_DATA_KEY;
573 key.offset = ref->offset;
574 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
575 ref->parent, node->bytenr,
576 node->ref_mod * sgn);
577 break;
578 }
579 default:
580 WARN_ON(1);
581 }
1149ab6b
WS
582 if (ret)
583 return ret;
8da6d581
JS
584 }
585
586 return 0;
587}
588
589/*
590 * add all inline backrefs for bytenr to the list
591 */
592static int __add_inline_refs(struct btrfs_fs_info *fs_info,
593 struct btrfs_path *path, u64 bytenr,
d5c88b73 594 int *info_level, struct list_head *prefs)
8da6d581 595{
b1375d64 596 int ret = 0;
8da6d581
JS
597 int slot;
598 struct extent_buffer *leaf;
599 struct btrfs_key key;
261c84b6 600 struct btrfs_key found_key;
8da6d581
JS
601 unsigned long ptr;
602 unsigned long end;
603 struct btrfs_extent_item *ei;
604 u64 flags;
605 u64 item_size;
606
607 /*
608 * enumerate all inline refs
609 */
610 leaf = path->nodes[0];
dadcaf78 611 slot = path->slots[0];
8da6d581
JS
612
613 item_size = btrfs_item_size_nr(leaf, slot);
614 BUG_ON(item_size < sizeof(*ei));
615
616 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
617 flags = btrfs_extent_flags(leaf, ei);
261c84b6 618 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8da6d581
JS
619
620 ptr = (unsigned long)(ei + 1);
621 end = (unsigned long)ei + item_size;
622
261c84b6
JB
623 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
624 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
8da6d581 625 struct btrfs_tree_block_info *info;
8da6d581
JS
626
627 info = (struct btrfs_tree_block_info *)ptr;
628 *info_level = btrfs_tree_block_level(leaf, info);
8da6d581
JS
629 ptr += sizeof(struct btrfs_tree_block_info);
630 BUG_ON(ptr > end);
261c84b6
JB
631 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
632 *info_level = found_key.offset;
8da6d581
JS
633 } else {
634 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
635 }
636
637 while (ptr < end) {
638 struct btrfs_extent_inline_ref *iref;
639 u64 offset;
640 int type;
641
642 iref = (struct btrfs_extent_inline_ref *)ptr;
643 type = btrfs_extent_inline_ref_type(leaf, iref);
644 offset = btrfs_extent_inline_ref_offset(leaf, iref);
645
646 switch (type) {
647 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 648 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
649 *info_level + 1, offset,
650 bytenr, 1);
651 break;
652 case BTRFS_SHARED_DATA_REF_KEY: {
653 struct btrfs_shared_data_ref *sdref;
654 int count;
655
656 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
657 count = btrfs_shared_data_ref_count(leaf, sdref);
658 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
659 bytenr, count);
660 break;
661 }
662 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
663 ret = __add_prelim_ref(prefs, offset, NULL,
664 *info_level + 1, 0,
665 bytenr, 1);
8da6d581
JS
666 break;
667 case BTRFS_EXTENT_DATA_REF_KEY: {
668 struct btrfs_extent_data_ref *dref;
669 int count;
670 u64 root;
671
672 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
673 count = btrfs_extent_data_ref_count(leaf, dref);
674 key.objectid = btrfs_extent_data_ref_objectid(leaf,
675 dref);
676 key.type = BTRFS_EXTENT_DATA_KEY;
677 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
678 root = btrfs_extent_data_ref_root(leaf, dref);
d5c88b73
JS
679 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
680 bytenr, count);
8da6d581
JS
681 break;
682 }
683 default:
684 WARN_ON(1);
685 }
1149ab6b
WS
686 if (ret)
687 return ret;
8da6d581
JS
688 ptr += btrfs_extent_inline_ref_size(type);
689 }
690
691 return 0;
692}
693
694/*
695 * add all non-inline backrefs for bytenr to the list
696 */
697static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
698 struct btrfs_path *path, u64 bytenr,
d5c88b73 699 int info_level, struct list_head *prefs)
8da6d581
JS
700{
701 struct btrfs_root *extent_root = fs_info->extent_root;
702 int ret;
703 int slot;
704 struct extent_buffer *leaf;
705 struct btrfs_key key;
706
707 while (1) {
708 ret = btrfs_next_item(extent_root, path);
709 if (ret < 0)
710 break;
711 if (ret) {
712 ret = 0;
713 break;
714 }
715
716 slot = path->slots[0];
717 leaf = path->nodes[0];
718 btrfs_item_key_to_cpu(leaf, &key, slot);
719
720 if (key.objectid != bytenr)
721 break;
722 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
723 continue;
724 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
725 break;
726
727 switch (key.type) {
728 case BTRFS_SHARED_BLOCK_REF_KEY:
d5c88b73 729 ret = __add_prelim_ref(prefs, 0, NULL,
8da6d581
JS
730 info_level + 1, key.offset,
731 bytenr, 1);
732 break;
733 case BTRFS_SHARED_DATA_REF_KEY: {
734 struct btrfs_shared_data_ref *sdref;
735 int count;
736
737 sdref = btrfs_item_ptr(leaf, slot,
738 struct btrfs_shared_data_ref);
739 count = btrfs_shared_data_ref_count(leaf, sdref);
740 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
741 bytenr, count);
742 break;
743 }
744 case BTRFS_TREE_BLOCK_REF_KEY:
d5c88b73
JS
745 ret = __add_prelim_ref(prefs, key.offset, NULL,
746 info_level + 1, 0,
747 bytenr, 1);
8da6d581
JS
748 break;
749 case BTRFS_EXTENT_DATA_REF_KEY: {
750 struct btrfs_extent_data_ref *dref;
751 int count;
752 u64 root;
753
754 dref = btrfs_item_ptr(leaf, slot,
755 struct btrfs_extent_data_ref);
756 count = btrfs_extent_data_ref_count(leaf, dref);
757 key.objectid = btrfs_extent_data_ref_objectid(leaf,
758 dref);
759 key.type = BTRFS_EXTENT_DATA_KEY;
760 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
761 root = btrfs_extent_data_ref_root(leaf, dref);
762 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
d5c88b73 763 bytenr, count);
8da6d581
JS
764 break;
765 }
766 default:
767 WARN_ON(1);
768 }
1149ab6b
WS
769 if (ret)
770 return ret;
771
8da6d581
JS
772 }
773
774 return ret;
775}
776
777/*
778 * this adds all existing backrefs (inline backrefs, backrefs and delayed
779 * refs) for the given bytenr to the refs list, merges duplicates and resolves
780 * indirect refs to their parent bytenr.
781 * When roots are found, they're added to the roots list
782 *
783 * FIXME some caching might speed things up
784 */
785static int find_parent_nodes(struct btrfs_trans_handle *trans,
786 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c
JS
787 u64 time_seq, struct ulist *refs,
788 struct ulist *roots, const u64 *extent_item_pos)
8da6d581
JS
789{
790 struct btrfs_key key;
791 struct btrfs_path *path;
8da6d581 792 struct btrfs_delayed_ref_root *delayed_refs = NULL;
d3b01064 793 struct btrfs_delayed_ref_head *head;
8da6d581
JS
794 int info_level = 0;
795 int ret;
796 struct list_head prefs_delayed;
797 struct list_head prefs;
798 struct __prelim_ref *ref;
799
800 INIT_LIST_HEAD(&prefs);
801 INIT_LIST_HEAD(&prefs_delayed);
802
803 key.objectid = bytenr;
8da6d581 804 key.offset = (u64)-1;
261c84b6
JB
805 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
806 key.type = BTRFS_METADATA_ITEM_KEY;
807 else
808 key.type = BTRFS_EXTENT_ITEM_KEY;
8da6d581
JS
809
810 path = btrfs_alloc_path();
811 if (!path)
812 return -ENOMEM;
da61d31a
JB
813 if (!trans)
814 path->search_commit_root = 1;
8da6d581
JS
815
816 /*
817 * grab both a lock on the path and a lock on the delayed ref head.
818 * We need both to get a consistent picture of how the refs look
819 * at a specified point in time
820 */
821again:
d3b01064
LZ
822 head = NULL;
823
8da6d581
JS
824 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
825 if (ret < 0)
826 goto out;
827 BUG_ON(ret == 0);
828
da61d31a 829 if (trans) {
7a3ae2f8
JS
830 /*
831 * look if there are updates for this ref queued and lock the
832 * head
833 */
834 delayed_refs = &trans->transaction->delayed_refs;
835 spin_lock(&delayed_refs->lock);
836 head = btrfs_find_delayed_ref_head(trans, bytenr);
837 if (head) {
838 if (!mutex_trylock(&head->mutex)) {
839 atomic_inc(&head->node.refs);
840 spin_unlock(&delayed_refs->lock);
841
842 btrfs_release_path(path);
843
844 /*
845 * Mutex was contended, block until it's
846 * released and try again
847 */
848 mutex_lock(&head->mutex);
849 mutex_unlock(&head->mutex);
850 btrfs_put_delayed_ref(&head->node);
851 goto again;
852 }
097b8a7c 853 ret = __add_delayed_refs(head, time_seq,
8445f61c 854 &prefs_delayed);
155725c9 855 mutex_unlock(&head->mutex);
7a3ae2f8
JS
856 if (ret) {
857 spin_unlock(&delayed_refs->lock);
858 goto out;
859 }
d3b01064 860 }
7a3ae2f8 861 spin_unlock(&delayed_refs->lock);
8da6d581 862 }
8da6d581
JS
863
864 if (path->slots[0]) {
865 struct extent_buffer *leaf;
866 int slot;
867
dadcaf78 868 path->slots[0]--;
8da6d581 869 leaf = path->nodes[0];
dadcaf78 870 slot = path->slots[0];
8da6d581
JS
871 btrfs_item_key_to_cpu(leaf, &key, slot);
872 if (key.objectid == bytenr &&
261c84b6
JB
873 (key.type == BTRFS_EXTENT_ITEM_KEY ||
874 key.type == BTRFS_METADATA_ITEM_KEY)) {
8da6d581 875 ret = __add_inline_refs(fs_info, path, bytenr,
d5c88b73 876 &info_level, &prefs);
8da6d581
JS
877 if (ret)
878 goto out;
d5c88b73 879 ret = __add_keyed_refs(fs_info, path, bytenr,
8da6d581
JS
880 info_level, &prefs);
881 if (ret)
882 goto out;
883 }
884 }
885 btrfs_release_path(path);
886
8da6d581
JS
887 list_splice_init(&prefs_delayed, &prefs);
888
d5c88b73
JS
889 ret = __add_missing_keys(fs_info, &prefs);
890 if (ret)
891 goto out;
892
692206b1 893 __merge_refs(&prefs, 1);
8da6d581 894
da61d31a
JB
895 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
896 extent_item_pos);
8da6d581
JS
897 if (ret)
898 goto out;
899
692206b1 900 __merge_refs(&prefs, 2);
8da6d581
JS
901
902 while (!list_empty(&prefs)) {
903 ref = list_first_entry(&prefs, struct __prelim_ref, list);
904 list_del(&ref->list);
6c1500f2 905 WARN_ON(ref->count < 0);
8da6d581
JS
906 if (ref->count && ref->root_id && ref->parent == 0) {
907 /* no parent == root of tree */
908 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
f1723939
WS
909 if (ret < 0)
910 goto out;
8da6d581
JS
911 }
912 if (ref->count && ref->parent) {
976b1908 913 struct extent_inode_elem *eie = NULL;
3301958b 914 if (extent_item_pos && !ref->inode_list) {
976b1908
JS
915 u32 bsz;
916 struct extent_buffer *eb;
917 bsz = btrfs_level_size(fs_info->extent_root,
918 info_level);
919 eb = read_tree_block(fs_info->extent_root,
920 ref->parent, bsz, 0);
416bc658
JB
921 if (!eb || !extent_buffer_uptodate(eb)) {
922 free_extent_buffer(eb);
c16c2e2e
WS
923 ret = -EIO;
924 goto out;
416bc658 925 }
976b1908
JS
926 ret = find_extent_in_eb(eb, bytenr,
927 *extent_item_pos, &eie);
3301958b 928 ref->inode_list = eie;
976b1908
JS
929 free_extent_buffer(eb);
930 }
3301958b 931 ret = ulist_add_merge(refs, ref->parent,
995e01b7 932 (uintptr_t)ref->inode_list,
34d73f54 933 (u64 *)&eie, GFP_NOFS);
f1723939
WS
934 if (ret < 0)
935 goto out;
3301958b
JS
936 if (!ret && extent_item_pos) {
937 /*
938 * we've recorded that parent, so we must extend
939 * its inode list here
940 */
941 BUG_ON(!eie);
942 while (eie->next)
943 eie = eie->next;
944 eie->next = ref->inode_list;
945 }
8da6d581
JS
946 }
947 kfree(ref);
948 }
949
950out:
8da6d581
JS
951 btrfs_free_path(path);
952 while (!list_empty(&prefs)) {
953 ref = list_first_entry(&prefs, struct __prelim_ref, list);
954 list_del(&ref->list);
955 kfree(ref);
956 }
957 while (!list_empty(&prefs_delayed)) {
958 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
959 list);
960 list_del(&ref->list);
961 kfree(ref);
962 }
963
964 return ret;
965}
966
976b1908
JS
967static void free_leaf_list(struct ulist *blocks)
968{
969 struct ulist_node *node = NULL;
970 struct extent_inode_elem *eie;
971 struct extent_inode_elem *eie_next;
972 struct ulist_iterator uiter;
973
974 ULIST_ITER_INIT(&uiter);
975 while ((node = ulist_next(blocks, &uiter))) {
976 if (!node->aux)
977 continue;
995e01b7 978 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
976b1908
JS
979 for (; eie; eie = eie_next) {
980 eie_next = eie->next;
981 kfree(eie);
982 }
983 node->aux = 0;
984 }
985
986 ulist_free(blocks);
987}
988
8da6d581
JS
989/*
990 * Finds all leafs with a reference to the specified combination of bytenr and
991 * offset. key_list_head will point to a list of corresponding keys (caller must
992 * free each list element). The leafs will be stored in the leafs ulist, which
993 * must be freed with ulist_free.
994 *
995 * returns 0 on success, <0 on error
996 */
997static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
998 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 999 u64 time_seq, struct ulist **leafs,
976b1908 1000 const u64 *extent_item_pos)
8da6d581
JS
1001{
1002 struct ulist *tmp;
1003 int ret;
1004
1005 tmp = ulist_alloc(GFP_NOFS);
1006 if (!tmp)
1007 return -ENOMEM;
1008 *leafs = ulist_alloc(GFP_NOFS);
1009 if (!*leafs) {
1010 ulist_free(tmp);
1011 return -ENOMEM;
1012 }
1013
097b8a7c 1014 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1015 time_seq, *leafs, tmp, extent_item_pos);
8da6d581
JS
1016 ulist_free(tmp);
1017
1018 if (ret < 0 && ret != -ENOENT) {
976b1908 1019 free_leaf_list(*leafs);
8da6d581
JS
1020 return ret;
1021 }
1022
1023 return 0;
1024}
1025
1026/*
1027 * walk all backrefs for a given extent to find all roots that reference this
1028 * extent. Walking a backref means finding all extents that reference this
1029 * extent and in turn walk the backrefs of those, too. Naturally this is a
1030 * recursive process, but here it is implemented in an iterative fashion: We
1031 * find all referencing extents for the extent in question and put them on a
1032 * list. In turn, we find all referencing extents for those, further appending
1033 * to the list. The way we iterate the list allows adding more elements after
1034 * the current while iterating. The process stops when we reach the end of the
1035 * list. Found roots are added to the roots list.
1036 *
1037 * returns 0 on success, < 0 on error.
1038 */
1039int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1040 struct btrfs_fs_info *fs_info, u64 bytenr,
097b8a7c 1041 u64 time_seq, struct ulist **roots)
8da6d581
JS
1042{
1043 struct ulist *tmp;
1044 struct ulist_node *node = NULL;
cd1b413c 1045 struct ulist_iterator uiter;
8da6d581
JS
1046 int ret;
1047
1048 tmp = ulist_alloc(GFP_NOFS);
1049 if (!tmp)
1050 return -ENOMEM;
1051 *roots = ulist_alloc(GFP_NOFS);
1052 if (!*roots) {
1053 ulist_free(tmp);
1054 return -ENOMEM;
1055 }
1056
cd1b413c 1057 ULIST_ITER_INIT(&uiter);
8da6d581 1058 while (1) {
097b8a7c 1059 ret = find_parent_nodes(trans, fs_info, bytenr,
8445f61c 1060 time_seq, tmp, *roots, NULL);
8da6d581
JS
1061 if (ret < 0 && ret != -ENOENT) {
1062 ulist_free(tmp);
1063 ulist_free(*roots);
1064 return ret;
1065 }
cd1b413c 1066 node = ulist_next(tmp, &uiter);
8da6d581
JS
1067 if (!node)
1068 break;
1069 bytenr = node->val;
1070 }
1071
1072 ulist_free(tmp);
1073 return 0;
1074}
1075
1076
a542ad1b
JS
1077static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1078 struct btrfs_root *fs_root, struct btrfs_path *path,
1079 struct btrfs_key *found_key)
1080{
1081 int ret;
1082 struct btrfs_key key;
1083 struct extent_buffer *eb;
1084
1085 key.type = key_type;
1086 key.objectid = inum;
1087 key.offset = ioff;
1088
1089 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1090 if (ret < 0)
1091 return ret;
1092
1093 eb = path->nodes[0];
1094 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1095 ret = btrfs_next_leaf(fs_root, path);
1096 if (ret)
1097 return ret;
1098 eb = path->nodes[0];
1099 }
1100
1101 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1102 if (found_key->type != key.type || found_key->objectid != key.objectid)
1103 return 1;
1104
1105 return 0;
1106}
1107
1108/*
1109 * this makes the path point to (inum INODE_ITEM ioff)
1110 */
1111int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1112 struct btrfs_path *path)
1113{
1114 struct btrfs_key key;
1115 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1116 &key);
1117}
1118
1119static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1120 struct btrfs_path *path,
1121 struct btrfs_key *found_key)
1122{
1123 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1124 found_key);
1125}
1126
f186373f
MF
1127int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1128 u64 start_off, struct btrfs_path *path,
1129 struct btrfs_inode_extref **ret_extref,
1130 u64 *found_off)
1131{
1132 int ret, slot;
1133 struct btrfs_key key;
1134 struct btrfs_key found_key;
1135 struct btrfs_inode_extref *extref;
1136 struct extent_buffer *leaf;
1137 unsigned long ptr;
1138
1139 key.objectid = inode_objectid;
1140 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1141 key.offset = start_off;
1142
1143 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1144 if (ret < 0)
1145 return ret;
1146
1147 while (1) {
1148 leaf = path->nodes[0];
1149 slot = path->slots[0];
1150 if (slot >= btrfs_header_nritems(leaf)) {
1151 /*
1152 * If the item at offset is not found,
1153 * btrfs_search_slot will point us to the slot
1154 * where it should be inserted. In our case
1155 * that will be the slot directly before the
1156 * next INODE_REF_KEY_V2 item. In the case
1157 * that we're pointing to the last slot in a
1158 * leaf, we must move one leaf over.
1159 */
1160 ret = btrfs_next_leaf(root, path);
1161 if (ret) {
1162 if (ret >= 1)
1163 ret = -ENOENT;
1164 break;
1165 }
1166 continue;
1167 }
1168
1169 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1170
1171 /*
1172 * Check that we're still looking at an extended ref key for
1173 * this particular objectid. If we have different
1174 * objectid or type then there are no more to be found
1175 * in the tree and we can exit.
1176 */
1177 ret = -ENOENT;
1178 if (found_key.objectid != inode_objectid)
1179 break;
1180 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1181 break;
1182
1183 ret = 0;
1184 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1185 extref = (struct btrfs_inode_extref *)ptr;
1186 *ret_extref = extref;
1187 if (found_off)
1188 *found_off = found_key.offset;
1189 break;
1190 }
1191
1192 return ret;
1193}
1194
48a3b636
ES
1195/*
1196 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1197 * Elements of the path are separated by '/' and the path is guaranteed to be
1198 * 0-terminated. the path is only given within the current file system.
1199 * Therefore, it never starts with a '/'. the caller is responsible to provide
1200 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1201 * the start point of the resulting string is returned. this pointer is within
1202 * dest, normally.
1203 * in case the path buffer would overflow, the pointer is decremented further
1204 * as if output was written to the buffer, though no more output is actually
1205 * generated. that way, the caller can determine how much space would be
1206 * required for the path to fit into the buffer. in that case, the returned
1207 * value will be smaller than dest. callers must check this!
1208 */
96b5bd77
JS
1209char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1210 u32 name_len, unsigned long name_off,
1211 struct extent_buffer *eb_in, u64 parent,
1212 char *dest, u32 size)
a542ad1b 1213{
a542ad1b
JS
1214 int slot;
1215 u64 next_inum;
1216 int ret;
661bec6b 1217 s64 bytes_left = ((s64)size) - 1;
a542ad1b
JS
1218 struct extent_buffer *eb = eb_in;
1219 struct btrfs_key found_key;
b916a59a 1220 int leave_spinning = path->leave_spinning;
d24bec3a 1221 struct btrfs_inode_ref *iref;
a542ad1b
JS
1222
1223 if (bytes_left >= 0)
1224 dest[bytes_left] = '\0';
1225
b916a59a 1226 path->leave_spinning = 1;
a542ad1b 1227 while (1) {
d24bec3a 1228 bytes_left -= name_len;
a542ad1b
JS
1229 if (bytes_left >= 0)
1230 read_extent_buffer(eb, dest + bytes_left,
d24bec3a 1231 name_off, name_len);
b916a59a
JS
1232 if (eb != eb_in) {
1233 btrfs_tree_read_unlock_blocking(eb);
a542ad1b 1234 free_extent_buffer(eb);
b916a59a 1235 }
a542ad1b 1236 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
8f24b496
JS
1237 if (ret > 0)
1238 ret = -ENOENT;
a542ad1b
JS
1239 if (ret)
1240 break;
d24bec3a 1241
a542ad1b
JS
1242 next_inum = found_key.offset;
1243
1244 /* regular exit ahead */
1245 if (parent == next_inum)
1246 break;
1247
1248 slot = path->slots[0];
1249 eb = path->nodes[0];
1250 /* make sure we can use eb after releasing the path */
b916a59a 1251 if (eb != eb_in) {
a542ad1b 1252 atomic_inc(&eb->refs);
b916a59a
JS
1253 btrfs_tree_read_lock(eb);
1254 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1255 }
a542ad1b 1256 btrfs_release_path(path);
a542ad1b 1257 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
d24bec3a
MF
1258
1259 name_len = btrfs_inode_ref_name_len(eb, iref);
1260 name_off = (unsigned long)(iref + 1);
1261
a542ad1b
JS
1262 parent = next_inum;
1263 --bytes_left;
1264 if (bytes_left >= 0)
1265 dest[bytes_left] = '/';
1266 }
1267
1268 btrfs_release_path(path);
b916a59a 1269 path->leave_spinning = leave_spinning;
a542ad1b
JS
1270
1271 if (ret)
1272 return ERR_PTR(ret);
1273
1274 return dest + bytes_left;
1275}
1276
1277/*
1278 * this makes the path point to (logical EXTENT_ITEM *)
1279 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1280 * tree blocks and <0 on error.
1281 */
1282int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
69917e43
LB
1283 struct btrfs_path *path, struct btrfs_key *found_key,
1284 u64 *flags_ret)
a542ad1b
JS
1285{
1286 int ret;
1287 u64 flags;
261c84b6 1288 u64 size = 0;
a542ad1b
JS
1289 u32 item_size;
1290 struct extent_buffer *eb;
1291 struct btrfs_extent_item *ei;
1292 struct btrfs_key key;
1293
261c84b6
JB
1294 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1295 key.type = BTRFS_METADATA_ITEM_KEY;
1296 else
1297 key.type = BTRFS_EXTENT_ITEM_KEY;
a542ad1b
JS
1298 key.objectid = logical;
1299 key.offset = (u64)-1;
1300
1301 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1302 if (ret < 0)
1303 return ret;
1304 ret = btrfs_previous_item(fs_info->extent_root, path,
1305 0, BTRFS_EXTENT_ITEM_KEY);
1306 if (ret < 0)
1307 return ret;
1308
1309 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
261c84b6
JB
1310 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1311 size = fs_info->extent_root->leafsize;
1312 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1313 size = found_key->offset;
1314
1315 if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
1316 found_key->type != BTRFS_METADATA_ITEM_KEY) ||
a542ad1b 1317 found_key->objectid > logical ||
261c84b6 1318 found_key->objectid + size <= logical) {
4692cf58
JS
1319 pr_debug("logical %llu is not within any extent\n",
1320 (unsigned long long)logical);
a542ad1b 1321 return -ENOENT;
4692cf58 1322 }
a542ad1b
JS
1323
1324 eb = path->nodes[0];
1325 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1326 BUG_ON(item_size < sizeof(*ei));
1327
1328 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1329 flags = btrfs_extent_flags(eb, ei);
1330
4692cf58
JS
1331 pr_debug("logical %llu is at position %llu within the extent (%llu "
1332 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1333 (unsigned long long)logical,
1334 (unsigned long long)(logical - found_key->objectid),
1335 (unsigned long long)found_key->objectid,
1336 (unsigned long long)found_key->offset,
1337 (unsigned long long)flags, item_size);
69917e43
LB
1338
1339 WARN_ON(!flags_ret);
1340 if (flags_ret) {
1341 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1342 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1343 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1344 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1345 else
1346 BUG_ON(1);
1347 return 0;
1348 }
a542ad1b
JS
1349
1350 return -EIO;
1351}
1352
1353/*
1354 * helper function to iterate extent inline refs. ptr must point to a 0 value
1355 * for the first call and may be modified. it is used to track state.
1356 * if more refs exist, 0 is returned and the next call to
1357 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1358 * next ref. after the last ref was processed, 1 is returned.
1359 * returns <0 on error
1360 */
1361static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1362 struct btrfs_extent_item *ei, u32 item_size,
1363 struct btrfs_extent_inline_ref **out_eiref,
1364 int *out_type)
1365{
1366 unsigned long end;
1367 u64 flags;
1368 struct btrfs_tree_block_info *info;
1369
1370 if (!*ptr) {
1371 /* first call */
1372 flags = btrfs_extent_flags(eb, ei);
1373 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1374 info = (struct btrfs_tree_block_info *)(ei + 1);
1375 *out_eiref =
1376 (struct btrfs_extent_inline_ref *)(info + 1);
1377 } else {
1378 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1379 }
1380 *ptr = (unsigned long)*out_eiref;
1381 if ((void *)*ptr >= (void *)ei + item_size)
1382 return -ENOENT;
1383 }
1384
1385 end = (unsigned long)ei + item_size;
1386 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1387 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1388
1389 *ptr += btrfs_extent_inline_ref_size(*out_type);
1390 WARN_ON(*ptr > end);
1391 if (*ptr == end)
1392 return 1; /* last */
1393
1394 return 0;
1395}
1396
1397/*
1398 * reads the tree block backref for an extent. tree level and root are returned
1399 * through out_level and out_root. ptr must point to a 0 value for the first
1400 * call and may be modified (see __get_extent_inline_ref comment).
1401 * returns 0 if data was provided, 1 if there was no more data to provide or
1402 * <0 on error.
1403 */
1404int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1405 struct btrfs_extent_item *ei, u32 item_size,
1406 u64 *out_root, u8 *out_level)
1407{
1408 int ret;
1409 int type;
1410 struct btrfs_tree_block_info *info;
1411 struct btrfs_extent_inline_ref *eiref;
1412
1413 if (*ptr == (unsigned long)-1)
1414 return 1;
1415
1416 while (1) {
1417 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1418 &eiref, &type);
1419 if (ret < 0)
1420 return ret;
1421
1422 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1423 type == BTRFS_SHARED_BLOCK_REF_KEY)
1424 break;
1425
1426 if (ret == 1)
1427 return 1;
1428 }
1429
1430 /* we can treat both ref types equally here */
1431 info = (struct btrfs_tree_block_info *)(ei + 1);
1432 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1433 *out_level = btrfs_tree_block_level(eb, info);
1434
1435 if (ret == 1)
1436 *ptr = (unsigned long)-1;
1437
1438 return 0;
1439}
1440
976b1908
JS
1441static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1442 u64 root, u64 extent_item_objectid,
4692cf58 1443 iterate_extent_inodes_t *iterate, void *ctx)
a542ad1b 1444{
976b1908 1445 struct extent_inode_elem *eie;
4692cf58 1446 int ret = 0;
4692cf58 1447
976b1908 1448 for (eie = inode_list; eie; eie = eie->next) {
4692cf58 1449 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
976b1908
JS
1450 "root %llu\n", extent_item_objectid,
1451 eie->inum, eie->offset, root);
1452 ret = iterate(eie->inum, eie->offset, root, ctx);
4692cf58 1453 if (ret) {
976b1908
JS
1454 pr_debug("stopping iteration for %llu due to ret=%d\n",
1455 extent_item_objectid, ret);
4692cf58
JS
1456 break;
1457 }
a542ad1b
JS
1458 }
1459
a542ad1b
JS
1460 return ret;
1461}
1462
1463/*
1464 * calls iterate() for every inode that references the extent identified by
4692cf58 1465 * the given parameters.
a542ad1b
JS
1466 * when the iterator function returns a non-zero value, iteration stops.
1467 */
1468int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
4692cf58 1469 u64 extent_item_objectid, u64 extent_item_pos,
7a3ae2f8 1470 int search_commit_root,
a542ad1b
JS
1471 iterate_extent_inodes_t *iterate, void *ctx)
1472{
a542ad1b 1473 int ret;
da61d31a 1474 struct btrfs_trans_handle *trans = NULL;
7a3ae2f8
JS
1475 struct ulist *refs = NULL;
1476 struct ulist *roots = NULL;
4692cf58
JS
1477 struct ulist_node *ref_node = NULL;
1478 struct ulist_node *root_node = NULL;
8445f61c 1479 struct seq_list tree_mod_seq_elem = {};
cd1b413c
JS
1480 struct ulist_iterator ref_uiter;
1481 struct ulist_iterator root_uiter;
a542ad1b 1482
4692cf58
JS
1483 pr_debug("resolving all inodes for extent %llu\n",
1484 extent_item_objectid);
a542ad1b 1485
da61d31a 1486 if (!search_commit_root) {
7a3ae2f8
JS
1487 trans = btrfs_join_transaction(fs_info->extent_root);
1488 if (IS_ERR(trans))
1489 return PTR_ERR(trans);
8445f61c 1490 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8 1491 }
a542ad1b 1492
4692cf58 1493 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
097b8a7c 1494 tree_mod_seq_elem.seq, &refs,
8445f61c 1495 &extent_item_pos);
4692cf58
JS
1496 if (ret)
1497 goto out;
a542ad1b 1498
cd1b413c
JS
1499 ULIST_ITER_INIT(&ref_uiter);
1500 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
976b1908 1501 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
097b8a7c 1502 tree_mod_seq_elem.seq, &roots);
4692cf58
JS
1503 if (ret)
1504 break;
cd1b413c
JS
1505 ULIST_ITER_INIT(&root_uiter);
1506 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
976b1908 1507 pr_debug("root %llu references leaf %llu, data list "
34d73f54 1508 "%#llx\n", root_node->val, ref_node->val,
995e01b7
JS
1509 (long long)ref_node->aux);
1510 ret = iterate_leaf_refs((struct extent_inode_elem *)
1511 (uintptr_t)ref_node->aux,
1512 root_node->val,
1513 extent_item_objectid,
1514 iterate, ctx);
4692cf58 1515 }
976b1908 1516 ulist_free(roots);
a542ad1b
JS
1517 }
1518
976b1908 1519 free_leaf_list(refs);
4692cf58 1520out:
7a3ae2f8 1521 if (!search_commit_root) {
8445f61c 1522 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
7a3ae2f8
JS
1523 btrfs_end_transaction(trans, fs_info->extent_root);
1524 }
1525
a542ad1b
JS
1526 return ret;
1527}
1528
1529int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1530 struct btrfs_path *path,
1531 iterate_extent_inodes_t *iterate, void *ctx)
1532{
1533 int ret;
4692cf58 1534 u64 extent_item_pos;
69917e43 1535 u64 flags = 0;
a542ad1b 1536 struct btrfs_key found_key;
7a3ae2f8 1537 int search_commit_root = path->search_commit_root;
a542ad1b 1538
69917e43 1539 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
4692cf58 1540 btrfs_release_path(path);
a542ad1b
JS
1541 if (ret < 0)
1542 return ret;
69917e43 1543 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3627bf45 1544 return -EINVAL;
a542ad1b 1545
4692cf58 1546 extent_item_pos = logical - found_key.objectid;
7a3ae2f8
JS
1547 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1548 extent_item_pos, search_commit_root,
1549 iterate, ctx);
a542ad1b
JS
1550
1551 return ret;
1552}
1553
d24bec3a
MF
1554typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1555 struct extent_buffer *eb, void *ctx);
1556
1557static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1558 struct btrfs_path *path,
1559 iterate_irefs_t *iterate, void *ctx)
a542ad1b 1560{
aefc1eb1 1561 int ret = 0;
a542ad1b
JS
1562 int slot;
1563 u32 cur;
1564 u32 len;
1565 u32 name_len;
1566 u64 parent = 0;
1567 int found = 0;
1568 struct extent_buffer *eb;
1569 struct btrfs_item *item;
1570 struct btrfs_inode_ref *iref;
1571 struct btrfs_key found_key;
1572
aefc1eb1 1573 while (!ret) {
b916a59a 1574 path->leave_spinning = 1;
a542ad1b 1575 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
d24bec3a 1576 &found_key);
a542ad1b
JS
1577 if (ret < 0)
1578 break;
1579 if (ret) {
1580 ret = found ? 0 : -ENOENT;
1581 break;
1582 }
1583 ++found;
1584
1585 parent = found_key.offset;
1586 slot = path->slots[0];
1587 eb = path->nodes[0];
1588 /* make sure we can use eb after releasing the path */
1589 atomic_inc(&eb->refs);
b916a59a
JS
1590 btrfs_tree_read_lock(eb);
1591 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
a542ad1b
JS
1592 btrfs_release_path(path);
1593
1594 item = btrfs_item_nr(eb, slot);
1595 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1596
1597 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1598 name_len = btrfs_inode_ref_name_len(eb, iref);
1599 /* path must be released before calling iterate()! */
4692cf58
JS
1600 pr_debug("following ref at offset %u for inode %llu in "
1601 "tree %llu\n", cur,
1602 (unsigned long long)found_key.objectid,
1603 (unsigned long long)fs_root->objectid);
d24bec3a
MF
1604 ret = iterate(parent, name_len,
1605 (unsigned long)(iref + 1), eb, ctx);
aefc1eb1 1606 if (ret)
a542ad1b 1607 break;
a542ad1b
JS
1608 len = sizeof(*iref) + name_len;
1609 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1610 }
b916a59a 1611 btrfs_tree_read_unlock_blocking(eb);
a542ad1b
JS
1612 free_extent_buffer(eb);
1613 }
1614
1615 btrfs_release_path(path);
1616
1617 return ret;
1618}
1619
d24bec3a
MF
1620static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1621 struct btrfs_path *path,
1622 iterate_irefs_t *iterate, void *ctx)
1623{
1624 int ret;
1625 int slot;
1626 u64 offset = 0;
1627 u64 parent;
1628 int found = 0;
1629 struct extent_buffer *eb;
1630 struct btrfs_inode_extref *extref;
1631 struct extent_buffer *leaf;
1632 u32 item_size;
1633 u32 cur_offset;
1634 unsigned long ptr;
1635
1636 while (1) {
1637 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1638 &offset);
1639 if (ret < 0)
1640 break;
1641 if (ret) {
1642 ret = found ? 0 : -ENOENT;
1643 break;
1644 }
1645 ++found;
1646
1647 slot = path->slots[0];
1648 eb = path->nodes[0];
1649 /* make sure we can use eb after releasing the path */
1650 atomic_inc(&eb->refs);
1651
1652 btrfs_tree_read_lock(eb);
1653 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1654 btrfs_release_path(path);
1655
1656 leaf = path->nodes[0];
1657 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1658 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1659 cur_offset = 0;
1660
1661 while (cur_offset < item_size) {
1662 u32 name_len;
1663
1664 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1665 parent = btrfs_inode_extref_parent(eb, extref);
1666 name_len = btrfs_inode_extref_name_len(eb, extref);
1667 ret = iterate(parent, name_len,
1668 (unsigned long)&extref->name, eb, ctx);
1669 if (ret)
1670 break;
1671
1672 cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1673 cur_offset += sizeof(*extref);
1674 }
1675 btrfs_tree_read_unlock_blocking(eb);
1676 free_extent_buffer(eb);
1677
1678 offset++;
1679 }
1680
1681 btrfs_release_path(path);
1682
1683 return ret;
1684}
1685
1686static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1687 struct btrfs_path *path, iterate_irefs_t *iterate,
1688 void *ctx)
1689{
1690 int ret;
1691 int found_refs = 0;
1692
1693 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1694 if (!ret)
1695 ++found_refs;
1696 else if (ret != -ENOENT)
1697 return ret;
1698
1699 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1700 if (ret == -ENOENT && found_refs)
1701 return 0;
1702
1703 return ret;
1704}
1705
a542ad1b
JS
1706/*
1707 * returns 0 if the path could be dumped (probably truncated)
1708 * returns <0 in case of an error
1709 */
d24bec3a
MF
1710static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1711 struct extent_buffer *eb, void *ctx)
a542ad1b
JS
1712{
1713 struct inode_fs_paths *ipath = ctx;
1714 char *fspath;
1715 char *fspath_min;
1716 int i = ipath->fspath->elem_cnt;
1717 const int s_ptr = sizeof(char *);
1718 u32 bytes_left;
1719
1720 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1721 ipath->fspath->bytes_left - s_ptr : 0;
1722
740c3d22 1723 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
96b5bd77
JS
1724 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1725 name_off, eb, inum, fspath_min, bytes_left);
a542ad1b
JS
1726 if (IS_ERR(fspath))
1727 return PTR_ERR(fspath);
1728
1729 if (fspath > fspath_min) {
745c4d8e 1730 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
a542ad1b
JS
1731 ++ipath->fspath->elem_cnt;
1732 ipath->fspath->bytes_left = fspath - fspath_min;
1733 } else {
1734 ++ipath->fspath->elem_missed;
1735 ipath->fspath->bytes_missing += fspath_min - fspath;
1736 ipath->fspath->bytes_left = 0;
1737 }
1738
1739 return 0;
1740}
1741
1742/*
1743 * this dumps all file system paths to the inode into the ipath struct, provided
1744 * is has been created large enough. each path is zero-terminated and accessed
740c3d22 1745 * from ipath->fspath->val[i].
a542ad1b 1746 * when it returns, there are ipath->fspath->elem_cnt number of paths available
740c3d22 1747 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
a542ad1b
JS
1748 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1749 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1750 * have been needed to return all paths.
1751 */
1752int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1753{
1754 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
d24bec3a 1755 inode_to_path, ipath);
a542ad1b
JS
1756}
1757
a542ad1b
JS
1758struct btrfs_data_container *init_data_container(u32 total_bytes)
1759{
1760 struct btrfs_data_container *data;
1761 size_t alloc_bytes;
1762
1763 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
425d17a2 1764 data = vmalloc(alloc_bytes);
a542ad1b
JS
1765 if (!data)
1766 return ERR_PTR(-ENOMEM);
1767
1768 if (total_bytes >= sizeof(*data)) {
1769 data->bytes_left = total_bytes - sizeof(*data);
1770 data->bytes_missing = 0;
1771 } else {
1772 data->bytes_missing = sizeof(*data) - total_bytes;
1773 data->bytes_left = 0;
1774 }
1775
1776 data->elem_cnt = 0;
1777 data->elem_missed = 0;
1778
1779 return data;
1780}
1781
1782/*
1783 * allocates space to return multiple file system paths for an inode.
1784 * total_bytes to allocate are passed, note that space usable for actual path
1785 * information will be total_bytes - sizeof(struct inode_fs_paths).
1786 * the returned pointer must be freed with free_ipath() in the end.
1787 */
1788struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1789 struct btrfs_path *path)
1790{
1791 struct inode_fs_paths *ifp;
1792 struct btrfs_data_container *fspath;
1793
1794 fspath = init_data_container(total_bytes);
1795 if (IS_ERR(fspath))
1796 return (void *)fspath;
1797
1798 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1799 if (!ifp) {
1800 kfree(fspath);
1801 return ERR_PTR(-ENOMEM);
1802 }
1803
1804 ifp->btrfs_path = path;
1805 ifp->fspath = fspath;
1806 ifp->fs_root = fs_root;
1807
1808 return ifp;
1809}
1810
1811void free_ipath(struct inode_fs_paths *ipath)
1812{
4735fb28
JJ
1813 if (!ipath)
1814 return;
425d17a2 1815 vfree(ipath->fspath);
a542ad1b
JS
1816 kfree(ipath);
1817}