]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/compression.c
btrfs: use predefined limits for calculating maximum number of pages for compression
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / compression.c
CommitLineData
c8b97818
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
c8b97818
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/bit_spinlock.h>
5a0e3ad6 34#include <linux/slab.h>
c8b97818
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "ordered-data.h"
c8b97818
CM
41#include "compression.h"
42#include "extent_io.h"
43#include "extent_map.h"
44
45struct compressed_bio {
46 /* number of bios pending for this compressed extent */
47 atomic_t pending_bios;
48
49 /* the pages with the compressed data on them */
50 struct page **compressed_pages;
51
52 /* inode that owns this data */
53 struct inode *inode;
54
55 /* starting offset in the inode for our pages */
56 u64 start;
57
58 /* number of bytes in the inode we're working on */
59 unsigned long len;
60
61 /* number of bytes on disk */
62 unsigned long compressed_len;
63
261507a0
LZ
64 /* the compression algorithm for this bio */
65 int compress_type;
66
c8b97818
CM
67 /* number of compressed pages in the array */
68 unsigned long nr_pages;
69
70 /* IO errors */
71 int errors;
d20f7043 72 int mirror_num;
c8b97818
CM
73
74 /* for reads, this is the bio we are copying the data into */
75 struct bio *orig_bio;
d20f7043
CM
76
77 /*
78 * the start of a variable length array of checksums only
79 * used by reads
80 */
81 u32 sums;
c8b97818
CM
82};
83
974b1adc
CH
84static int btrfs_decompress_bio(int type, struct page **pages_in,
85 u64 disk_start, struct bio *orig_bio,
86 size_t srclen);
48a3b636 87
2ff7e61e 88static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
d20f7043
CM
89 unsigned long disk_size)
90{
0b246afa 91 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
6c41761f 92
d20f7043 93 return sizeof(struct compressed_bio) +
0b246afa 94 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
d20f7043
CM
95}
96
c8b97818
CM
97static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 u64 first_byte, gfp_t gfp_flags)
99{
b54ffb73 100 return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
c8b97818
CM
101}
102
f898ac6a 103static int check_compressed_csum(struct btrfs_inode *inode,
d20f7043
CM
104 struct compressed_bio *cb,
105 u64 disk_start)
106{
107 int ret;
d20f7043
CM
108 struct page *page;
109 unsigned long i;
110 char *kaddr;
111 u32 csum;
112 u32 *cb_sum = &cb->sums;
113
f898ac6a 114 if (inode->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
115 return 0;
116
117 for (i = 0; i < cb->nr_pages; i++) {
118 page = cb->compressed_pages[i];
119 csum = ~(u32)0;
120
7ac687d9 121 kaddr = kmap_atomic(page);
09cbfeaf 122 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
0b5e3daf 123 btrfs_csum_final(csum, (u8 *)&csum);
7ac687d9 124 kunmap_atomic(kaddr);
d20f7043
CM
125
126 if (csum != *cb_sum) {
f898ac6a 127 btrfs_print_data_csum_error(inode, disk_start, csum,
0970a22e 128 *cb_sum, cb->mirror_num);
d20f7043
CM
129 ret = -EIO;
130 goto fail;
131 }
132 cb_sum++;
133
134 }
135 ret = 0;
136fail:
137 return ret;
138}
139
c8b97818
CM
140/* when we finish reading compressed pages from the disk, we
141 * decompress them and then run the bio end_io routines on the
142 * decompressed pages (in the inode address space).
143 *
144 * This allows the checksumming and other IO error handling routines
145 * to work normally
146 *
147 * The compressed pages are freed here, and it must be run
148 * in process context
149 */
4246a0b6 150static void end_compressed_bio_read(struct bio *bio)
c8b97818 151{
c8b97818
CM
152 struct compressed_bio *cb = bio->bi_private;
153 struct inode *inode;
154 struct page *page;
155 unsigned long index;
156 int ret;
157
4246a0b6 158 if (bio->bi_error)
c8b97818
CM
159 cb->errors = 1;
160
161 /* if there are more bios still pending for this compressed
162 * extent, just exit
163 */
164 if (!atomic_dec_and_test(&cb->pending_bios))
165 goto out;
166
d20f7043 167 inode = cb->inode;
f898ac6a 168 ret = check_compressed_csum(BTRFS_I(inode), cb,
4f024f37 169 (u64)bio->bi_iter.bi_sector << 9);
d20f7043
CM
170 if (ret)
171 goto csum_failed;
172
c8b97818
CM
173 /* ok, we're the last bio for this extent, lets start
174 * the decompression.
175 */
974b1adc 176 ret = btrfs_decompress_bio(cb->compress_type,
261507a0
LZ
177 cb->compressed_pages,
178 cb->start,
974b1adc 179 cb->orig_bio,
261507a0 180 cb->compressed_len);
d20f7043 181csum_failed:
c8b97818
CM
182 if (ret)
183 cb->errors = 1;
184
185 /* release the compressed pages */
186 index = 0;
187 for (index = 0; index < cb->nr_pages; index++) {
188 page = cb->compressed_pages[index];
189 page->mapping = NULL;
09cbfeaf 190 put_page(page);
c8b97818
CM
191 }
192
193 /* do io completion on the original bio */
771ed689 194 if (cb->errors) {
c8b97818 195 bio_io_error(cb->orig_bio);
d20f7043 196 } else {
2c30c71b
KO
197 int i;
198 struct bio_vec *bvec;
d20f7043
CM
199
200 /*
201 * we have verified the checksum already, set page
202 * checked so the end_io handlers know about it
203 */
2c30c71b 204 bio_for_each_segment_all(bvec, cb->orig_bio, i)
d20f7043 205 SetPageChecked(bvec->bv_page);
2c30c71b 206
4246a0b6 207 bio_endio(cb->orig_bio);
d20f7043 208 }
c8b97818
CM
209
210 /* finally free the cb struct */
211 kfree(cb->compressed_pages);
212 kfree(cb);
213out:
214 bio_put(bio);
215}
216
217/*
218 * Clear the writeback bits on all of the file
219 * pages for a compressed write
220 */
7bdcefc1
FM
221static noinline void end_compressed_writeback(struct inode *inode,
222 const struct compressed_bio *cb)
c8b97818 223{
09cbfeaf
KS
224 unsigned long index = cb->start >> PAGE_SHIFT;
225 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
226 struct page *pages[16];
227 unsigned long nr_pages = end_index - index + 1;
228 int i;
229 int ret;
230
7bdcefc1
FM
231 if (cb->errors)
232 mapping_set_error(inode->i_mapping, -EIO);
233
d397712b 234 while (nr_pages > 0) {
c8b97818 235 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
236 min_t(unsigned long,
237 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
238 if (ret == 0) {
239 nr_pages -= 1;
240 index += 1;
241 continue;
242 }
243 for (i = 0; i < ret; i++) {
7bdcefc1
FM
244 if (cb->errors)
245 SetPageError(pages[i]);
c8b97818 246 end_page_writeback(pages[i]);
09cbfeaf 247 put_page(pages[i]);
c8b97818
CM
248 }
249 nr_pages -= ret;
250 index += ret;
251 }
252 /* the inode may be gone now */
c8b97818
CM
253}
254
255/*
256 * do the cleanup once all the compressed pages hit the disk.
257 * This will clear writeback on the file pages and free the compressed
258 * pages.
259 *
260 * This also calls the writeback end hooks for the file pages so that
261 * metadata and checksums can be updated in the file.
262 */
4246a0b6 263static void end_compressed_bio_write(struct bio *bio)
c8b97818
CM
264{
265 struct extent_io_tree *tree;
266 struct compressed_bio *cb = bio->bi_private;
267 struct inode *inode;
268 struct page *page;
269 unsigned long index;
270
4246a0b6 271 if (bio->bi_error)
c8b97818
CM
272 cb->errors = 1;
273
274 /* if there are more bios still pending for this compressed
275 * extent, just exit
276 */
277 if (!atomic_dec_and_test(&cb->pending_bios))
278 goto out;
279
280 /* ok, we're the last bio for this extent, step one is to
281 * call back into the FS and do all the end_io operations
282 */
283 inode = cb->inode;
284 tree = &BTRFS_I(inode)->io_tree;
70b99e69 285 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
286 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
287 cb->start,
288 cb->start + cb->len - 1,
7bdcefc1 289 NULL,
4246a0b6 290 bio->bi_error ? 0 : 1);
70b99e69 291 cb->compressed_pages[0]->mapping = NULL;
c8b97818 292
7bdcefc1 293 end_compressed_writeback(inode, cb);
c8b97818
CM
294 /* note, our inode could be gone now */
295
296 /*
297 * release the compressed pages, these came from alloc_page and
298 * are not attached to the inode at all
299 */
300 index = 0;
301 for (index = 0; index < cb->nr_pages; index++) {
302 page = cb->compressed_pages[index];
303 page->mapping = NULL;
09cbfeaf 304 put_page(page);
c8b97818
CM
305 }
306
307 /* finally free the cb struct */
308 kfree(cb->compressed_pages);
309 kfree(cb);
310out:
311 bio_put(bio);
312}
313
314/*
315 * worker function to build and submit bios for previously compressed pages.
316 * The corresponding pages in the inode should be marked for writeback
317 * and the compressed pages should have a reference on them for dropping
318 * when the IO is complete.
319 *
320 * This also checksums the file bytes and gets things ready for
321 * the end io hooks.
322 */
323int btrfs_submit_compressed_write(struct inode *inode, u64 start,
324 unsigned long len, u64 disk_start,
325 unsigned long compressed_len,
326 struct page **compressed_pages,
327 unsigned long nr_pages)
328{
0b246afa 329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818 330 struct bio *bio = NULL;
c8b97818
CM
331 struct compressed_bio *cb;
332 unsigned long bytes_left;
333 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306e16ce 334 int pg_index = 0;
c8b97818
CM
335 struct page *page;
336 u64 first_byte = disk_start;
337 struct block_device *bdev;
338 int ret;
e55179b3 339 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818 340
09cbfeaf 341 WARN_ON(start & ((u64)PAGE_SIZE - 1));
2ff7e61e 342 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
dac97e51
YS
343 if (!cb)
344 return -ENOMEM;
c8b97818
CM
345 atomic_set(&cb->pending_bios, 0);
346 cb->errors = 0;
347 cb->inode = inode;
348 cb->start = start;
349 cb->len = len;
d20f7043 350 cb->mirror_num = 0;
c8b97818
CM
351 cb->compressed_pages = compressed_pages;
352 cb->compressed_len = compressed_len;
353 cb->orig_bio = NULL;
354 cb->nr_pages = nr_pages;
355
0b246afa 356 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 357
c8b97818 358 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
67871254 359 if (!bio) {
dac97e51
YS
360 kfree(cb);
361 return -ENOMEM;
362 }
37226b21 363 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
c8b97818
CM
364 bio->bi_private = cb;
365 bio->bi_end_io = end_compressed_bio_write;
366 atomic_inc(&cb->pending_bios);
367
368 /* create and submit bios for the compressed pages */
369 bytes_left = compressed_len;
306e16ce
DS
370 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
371 page = compressed_pages[pg_index];
c8b97818 372 page->mapping = inode->i_mapping;
4f024f37 373 if (bio->bi_iter.bi_size)
81a75f67 374 ret = io_tree->ops->merge_bio_hook(page, 0,
09cbfeaf 375 PAGE_SIZE,
c8b97818
CM
376 bio, 0);
377 else
378 ret = 0;
379
70b99e69 380 page->mapping = NULL;
09cbfeaf
KS
381 if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
382 PAGE_SIZE) {
c8b97818
CM
383 bio_get(bio);
384
af09abfe
CM
385 /*
386 * inc the count before we submit the bio so
387 * we know the end IO handler won't happen before
388 * we inc the count. Otherwise, the cb might get
389 * freed before we're done setting it up
390 */
391 atomic_inc(&cb->pending_bios);
0b246afa
JM
392 ret = btrfs_bio_wq_end_io(fs_info, bio,
393 BTRFS_WQ_ENDIO_DATA);
79787eaa 394 BUG_ON(ret); /* -ENOMEM */
c8b97818 395
e55179b3 396 if (!skip_sum) {
2ff7e61e 397 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 398 BUG_ON(ret); /* -ENOMEM */
e55179b3 399 }
d20f7043 400
2ff7e61e 401 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7
LB
402 if (ret) {
403 bio->bi_error = ret;
404 bio_endio(bio);
405 }
c8b97818
CM
406
407 bio_put(bio);
408
409 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
e627ee7b 410 BUG_ON(!bio);
37226b21 411 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
c8b97818
CM
412 bio->bi_private = cb;
413 bio->bi_end_io = end_compressed_bio_write;
09cbfeaf 414 bio_add_page(bio, page, PAGE_SIZE, 0);
c8b97818 415 }
09cbfeaf 416 if (bytes_left < PAGE_SIZE) {
0b246afa 417 btrfs_info(fs_info,
efe120a0 418 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
419 bytes_left, cb->compressed_len, cb->nr_pages);
420 }
09cbfeaf
KS
421 bytes_left -= PAGE_SIZE;
422 first_byte += PAGE_SIZE;
771ed689 423 cond_resched();
c8b97818
CM
424 }
425 bio_get(bio);
426
0b246afa 427 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 428 BUG_ON(ret); /* -ENOMEM */
c8b97818 429
e55179b3 430 if (!skip_sum) {
2ff7e61e 431 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 432 BUG_ON(ret); /* -ENOMEM */
e55179b3 433 }
d20f7043 434
2ff7e61e 435 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7
LB
436 if (ret) {
437 bio->bi_error = ret;
438 bio_endio(bio);
439 }
c8b97818
CM
440
441 bio_put(bio);
442 return 0;
443}
444
2a4d0c90
CH
445static u64 bio_end_offset(struct bio *bio)
446{
447 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
448
449 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
450}
451
771ed689
CM
452static noinline int add_ra_bio_pages(struct inode *inode,
453 u64 compressed_end,
454 struct compressed_bio *cb)
455{
456 unsigned long end_index;
306e16ce 457 unsigned long pg_index;
771ed689
CM
458 u64 last_offset;
459 u64 isize = i_size_read(inode);
460 int ret;
461 struct page *page;
462 unsigned long nr_pages = 0;
463 struct extent_map *em;
464 struct address_space *mapping = inode->i_mapping;
771ed689
CM
465 struct extent_map_tree *em_tree;
466 struct extent_io_tree *tree;
467 u64 end;
468 int misses = 0;
469
2a4d0c90 470 last_offset = bio_end_offset(cb->orig_bio);
771ed689
CM
471 em_tree = &BTRFS_I(inode)->extent_tree;
472 tree = &BTRFS_I(inode)->io_tree;
473
474 if (isize == 0)
475 return 0;
476
09cbfeaf 477 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 478
d397712b 479 while (last_offset < compressed_end) {
09cbfeaf 480 pg_index = last_offset >> PAGE_SHIFT;
771ed689 481
306e16ce 482 if (pg_index > end_index)
771ed689
CM
483 break;
484
485 rcu_read_lock();
306e16ce 486 page = radix_tree_lookup(&mapping->page_tree, pg_index);
771ed689 487 rcu_read_unlock();
0cd6144a 488 if (page && !radix_tree_exceptional_entry(page)) {
771ed689
CM
489 misses++;
490 if (misses > 4)
491 break;
492 goto next;
493 }
494
c62d2555
MH
495 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
496 ~__GFP_FS));
771ed689
CM
497 if (!page)
498 break;
499
c62d2555 500 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 501 put_page(page);
771ed689
CM
502 goto next;
503 }
504
09cbfeaf 505 end = last_offset + PAGE_SIZE - 1;
771ed689
CM
506 /*
507 * at this point, we have a locked page in the page cache
508 * for these bytes in the file. But, we have to make
509 * sure they map to this compressed extent on disk.
510 */
511 set_page_extent_mapped(page);
d0082371 512 lock_extent(tree, last_offset, end);
890871be 513 read_lock(&em_tree->lock);
771ed689 514 em = lookup_extent_mapping(em_tree, last_offset,
09cbfeaf 515 PAGE_SIZE);
890871be 516 read_unlock(&em_tree->lock);
771ed689
CM
517
518 if (!em || last_offset < em->start ||
09cbfeaf 519 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
4f024f37 520 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 521 free_extent_map(em);
d0082371 522 unlock_extent(tree, last_offset, end);
771ed689 523 unlock_page(page);
09cbfeaf 524 put_page(page);
771ed689
CM
525 break;
526 }
527 free_extent_map(em);
528
529 if (page->index == end_index) {
530 char *userpage;
09cbfeaf 531 size_t zero_offset = isize & (PAGE_SIZE - 1);
771ed689
CM
532
533 if (zero_offset) {
534 int zeros;
09cbfeaf 535 zeros = PAGE_SIZE - zero_offset;
7ac687d9 536 userpage = kmap_atomic(page);
771ed689
CM
537 memset(userpage + zero_offset, 0, zeros);
538 flush_dcache_page(page);
7ac687d9 539 kunmap_atomic(userpage);
771ed689
CM
540 }
541 }
542
543 ret = bio_add_page(cb->orig_bio, page,
09cbfeaf 544 PAGE_SIZE, 0);
771ed689 545
09cbfeaf 546 if (ret == PAGE_SIZE) {
771ed689 547 nr_pages++;
09cbfeaf 548 put_page(page);
771ed689 549 } else {
d0082371 550 unlock_extent(tree, last_offset, end);
771ed689 551 unlock_page(page);
09cbfeaf 552 put_page(page);
771ed689
CM
553 break;
554 }
555next:
09cbfeaf 556 last_offset += PAGE_SIZE;
771ed689 557 }
771ed689
CM
558 return 0;
559}
560
c8b97818
CM
561/*
562 * for a compressed read, the bio we get passed has all the inode pages
563 * in it. We don't actually do IO on those pages but allocate new ones
564 * to hold the compressed pages on disk.
565 *
4f024f37 566 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 567 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
568 *
569 * After the compressed pages are read, we copy the bytes into the
570 * bio we were passed and then call the bio end_io calls
571 */
572int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
573 int mirror_num, unsigned long bio_flags)
574{
0b246afa 575 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
576 struct extent_io_tree *tree;
577 struct extent_map_tree *em_tree;
578 struct compressed_bio *cb;
c8b97818
CM
579 unsigned long compressed_len;
580 unsigned long nr_pages;
306e16ce 581 unsigned long pg_index;
c8b97818
CM
582 struct page *page;
583 struct block_device *bdev;
584 struct bio *comp_bio;
4f024f37 585 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
e04ca626
CM
586 u64 em_len;
587 u64 em_start;
c8b97818 588 struct extent_map *em;
6b82ce8d 589 int ret = -ENOMEM;
15e3004a 590 int faili = 0;
d20f7043 591 u32 *sums;
c8b97818
CM
592
593 tree = &BTRFS_I(inode)->io_tree;
594 em_tree = &BTRFS_I(inode)->extent_tree;
595
596 /* we need the actual starting offset of this extent in the file */
890871be 597 read_lock(&em_tree->lock);
c8b97818
CM
598 em = lookup_extent_mapping(em_tree,
599 page_offset(bio->bi_io_vec->bv_page),
09cbfeaf 600 PAGE_SIZE);
890871be 601 read_unlock(&em_tree->lock);
285190d9
TI
602 if (!em)
603 return -EIO;
c8b97818 604
d20f7043 605 compressed_len = em->block_len;
2ff7e61e 606 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
6b82ce8d 607 if (!cb)
608 goto out;
609
c8b97818
CM
610 atomic_set(&cb->pending_bios, 0);
611 cb->errors = 0;
612 cb->inode = inode;
d20f7043
CM
613 cb->mirror_num = mirror_num;
614 sums = &cb->sums;
c8b97818 615
ff5b7ee3 616 cb->start = em->orig_start;
e04ca626
CM
617 em_len = em->len;
618 em_start = em->start;
d20f7043 619
c8b97818 620 free_extent_map(em);
e04ca626 621 em = NULL;
c8b97818 622
81381053 623 cb->len = bio->bi_iter.bi_size;
c8b97818 624 cb->compressed_len = compressed_len;
261507a0 625 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
626 cb->orig_bio = bio;
627
09cbfeaf 628 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 629 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 630 GFP_NOFS);
6b82ce8d 631 if (!cb->compressed_pages)
632 goto fail1;
633
0b246afa 634 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 635
306e16ce
DS
636 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
637 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 638 __GFP_HIGHMEM);
15e3004a
JB
639 if (!cb->compressed_pages[pg_index]) {
640 faili = pg_index - 1;
641 ret = -ENOMEM;
6b82ce8d 642 goto fail2;
15e3004a 643 }
c8b97818 644 }
15e3004a 645 faili = nr_pages - 1;
c8b97818
CM
646 cb->nr_pages = nr_pages;
647
7f042a83 648 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 649
771ed689 650 /* include any pages we added in add_ra-bio_pages */
81381053 651 cb->len = bio->bi_iter.bi_size;
771ed689 652
c8b97818 653 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
6b82ce8d 654 if (!comp_bio)
655 goto fail2;
37226b21 656 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
c8b97818
CM
657 comp_bio->bi_private = cb;
658 comp_bio->bi_end_io = end_compressed_bio_read;
659 atomic_inc(&cb->pending_bios);
660
306e16ce
DS
661 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
662 page = cb->compressed_pages[pg_index];
c8b97818 663 page->mapping = inode->i_mapping;
09cbfeaf 664 page->index = em_start >> PAGE_SHIFT;
d20f7043 665
4f024f37 666 if (comp_bio->bi_iter.bi_size)
81a75f67 667 ret = tree->ops->merge_bio_hook(page, 0,
09cbfeaf 668 PAGE_SIZE,
c8b97818
CM
669 comp_bio, 0);
670 else
671 ret = 0;
672
70b99e69 673 page->mapping = NULL;
09cbfeaf
KS
674 if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
675 PAGE_SIZE) {
c8b97818
CM
676 bio_get(comp_bio);
677
0b246afa
JM
678 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
679 BTRFS_WQ_ENDIO_DATA);
79787eaa 680 BUG_ON(ret); /* -ENOMEM */
c8b97818 681
af09abfe
CM
682 /*
683 * inc the count before we submit the bio so
684 * we know the end IO handler won't happen before
685 * we inc the count. Otherwise, the cb might get
686 * freed before we're done setting it up
687 */
688 atomic_inc(&cb->pending_bios);
689
6cbff00f 690 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e
JM
691 ret = btrfs_lookup_bio_sums(inode, comp_bio,
692 sums);
79787eaa 693 BUG_ON(ret); /* -ENOMEM */
d20f7043 694 }
ed6078f7 695 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
0b246afa 696 fs_info->sectorsize);
d20f7043 697
2ff7e61e 698 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 699 if (ret) {
14155caf 700 comp_bio->bi_error = ret;
4246a0b6
CH
701 bio_endio(comp_bio);
702 }
c8b97818
CM
703
704 bio_put(comp_bio);
705
706 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
707 GFP_NOFS);
e627ee7b 708 BUG_ON(!comp_bio);
37226b21 709 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
771ed689
CM
710 comp_bio->bi_private = cb;
711 comp_bio->bi_end_io = end_compressed_bio_read;
712
09cbfeaf 713 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
c8b97818 714 }
09cbfeaf 715 cur_disk_byte += PAGE_SIZE;
c8b97818
CM
716 }
717 bio_get(comp_bio);
718
0b246afa 719 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 720 BUG_ON(ret); /* -ENOMEM */
c8b97818 721
c2db1073 722 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e 723 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
79787eaa 724 BUG_ON(ret); /* -ENOMEM */
c2db1073 725 }
d20f7043 726
2ff7e61e 727 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 728 if (ret) {
14155caf 729 comp_bio->bi_error = ret;
4246a0b6
CH
730 bio_endio(comp_bio);
731 }
c8b97818
CM
732
733 bio_put(comp_bio);
734 return 0;
6b82ce8d 735
736fail2:
15e3004a
JB
737 while (faili >= 0) {
738 __free_page(cb->compressed_pages[faili]);
739 faili--;
740 }
6b82ce8d 741
742 kfree(cb->compressed_pages);
743fail1:
744 kfree(cb);
745out:
746 free_extent_map(em);
747 return ret;
c8b97818 748}
261507a0 749
d9187649
BL
750static struct {
751 struct list_head idle_ws;
752 spinlock_t ws_lock;
6ac10a6a
DS
753 /* Number of free workspaces */
754 int free_ws;
755 /* Total number of allocated workspaces */
756 atomic_t total_ws;
757 /* Waiters for a free workspace */
d9187649
BL
758 wait_queue_head_t ws_wait;
759} btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
261507a0 760
e8c9f186 761static const struct btrfs_compress_op * const btrfs_compress_op[] = {
261507a0 762 &btrfs_zlib_compress,
a6fa6fae 763 &btrfs_lzo_compress,
261507a0
LZ
764};
765
143bede5 766void __init btrfs_init_compress(void)
261507a0
LZ
767{
768 int i;
769
770 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
f77dd0d6
DS
771 struct list_head *workspace;
772
d9187649
BL
773 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
774 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
6ac10a6a 775 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
d9187649 776 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
f77dd0d6
DS
777
778 /*
779 * Preallocate one workspace for each compression type so
780 * we can guarantee forward progress in the worst case
781 */
782 workspace = btrfs_compress_op[i]->alloc_workspace();
783 if (IS_ERR(workspace)) {
62e85577 784 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
f77dd0d6
DS
785 } else {
786 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
787 btrfs_comp_ws[i].free_ws = 1;
788 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
789 }
261507a0 790 }
261507a0
LZ
791}
792
793/*
e721e49d
DS
794 * This finds an available workspace or allocates a new one.
795 * If it's not possible to allocate a new one, waits until there's one.
796 * Preallocation makes a forward progress guarantees and we do not return
797 * errors.
261507a0
LZ
798 */
799static struct list_head *find_workspace(int type)
800{
801 struct list_head *workspace;
802 int cpus = num_online_cpus();
803 int idx = type - 1;
804
d9187649
BL
805 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
806 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
6ac10a6a 807 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
d9187649 808 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
6ac10a6a 809 int *free_ws = &btrfs_comp_ws[idx].free_ws;
261507a0 810again:
d9187649
BL
811 spin_lock(ws_lock);
812 if (!list_empty(idle_ws)) {
813 workspace = idle_ws->next;
261507a0 814 list_del(workspace);
6ac10a6a 815 (*free_ws)--;
d9187649 816 spin_unlock(ws_lock);
261507a0
LZ
817 return workspace;
818
819 }
6ac10a6a 820 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
821 DEFINE_WAIT(wait);
822
d9187649
BL
823 spin_unlock(ws_lock);
824 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 825 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 826 schedule();
d9187649 827 finish_wait(ws_wait, &wait);
261507a0
LZ
828 goto again;
829 }
6ac10a6a 830 atomic_inc(total_ws);
d9187649 831 spin_unlock(ws_lock);
261507a0
LZ
832
833 workspace = btrfs_compress_op[idx]->alloc_workspace();
834 if (IS_ERR(workspace)) {
6ac10a6a 835 atomic_dec(total_ws);
d9187649 836 wake_up(ws_wait);
e721e49d
DS
837
838 /*
839 * Do not return the error but go back to waiting. There's a
840 * workspace preallocated for each type and the compression
841 * time is bounded so we get to a workspace eventually. This
842 * makes our caller's life easier.
52356716
DS
843 *
844 * To prevent silent and low-probability deadlocks (when the
845 * initial preallocation fails), check if there are any
846 * workspaces at all.
e721e49d 847 */
52356716
DS
848 if (atomic_read(total_ws) == 0) {
849 static DEFINE_RATELIMIT_STATE(_rs,
850 /* once per minute */ 60 * HZ,
851 /* no burst */ 1);
852
853 if (__ratelimit(&_rs)) {
ab8d0fc4 854 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
855 }
856 }
e721e49d 857 goto again;
261507a0
LZ
858 }
859 return workspace;
860}
861
862/*
863 * put a workspace struct back on the list or free it if we have enough
864 * idle ones sitting around
865 */
866static void free_workspace(int type, struct list_head *workspace)
867{
868 int idx = type - 1;
d9187649
BL
869 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
870 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
6ac10a6a 871 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
d9187649 872 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
6ac10a6a 873 int *free_ws = &btrfs_comp_ws[idx].free_ws;
d9187649
BL
874
875 spin_lock(ws_lock);
6ac10a6a 876 if (*free_ws < num_online_cpus()) {
d9187649 877 list_add(workspace, idle_ws);
6ac10a6a 878 (*free_ws)++;
d9187649 879 spin_unlock(ws_lock);
261507a0
LZ
880 goto wake;
881 }
d9187649 882 spin_unlock(ws_lock);
261507a0
LZ
883
884 btrfs_compress_op[idx]->free_workspace(workspace);
6ac10a6a 885 atomic_dec(total_ws);
261507a0 886wake:
a83342aa
DS
887 /*
888 * Make sure counter is updated before we wake up waiters.
889 */
66657b31 890 smp_mb();
d9187649
BL
891 if (waitqueue_active(ws_wait))
892 wake_up(ws_wait);
261507a0
LZ
893}
894
895/*
896 * cleanup function for module exit
897 */
898static void free_workspaces(void)
899{
900 struct list_head *workspace;
901 int i;
902
903 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
d9187649
BL
904 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
905 workspace = btrfs_comp_ws[i].idle_ws.next;
261507a0
LZ
906 list_del(workspace);
907 btrfs_compress_op[i]->free_workspace(workspace);
6ac10a6a 908 atomic_dec(&btrfs_comp_ws[i].total_ws);
261507a0
LZ
909 }
910 }
911}
912
913/*
38c31464
DS
914 * Given an address space and start and length, compress the bytes into @pages
915 * that are allocated on demand.
261507a0 916 *
4d3a800e
DS
917 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
918 * and returns number of actually allocated pages
261507a0 919 *
38c31464
DS
920 * @total_in is used to return the number of bytes actually read. It
921 * may be smaller than the input length if we had to exit early because we
261507a0
LZ
922 * ran out of room in the pages array or because we cross the
923 * max_out threshold.
924 *
38c31464
DS
925 * @total_out is an in/out parameter, must be set to the input length and will
926 * be also used to return the total number of compressed bytes
261507a0 927 *
38c31464 928 * @max_out tells us the max number of bytes that we're allowed to
261507a0
LZ
929 * stuff into pages
930 */
931int btrfs_compress_pages(int type, struct address_space *mapping,
38c31464 932 u64 start, struct page **pages,
261507a0
LZ
933 unsigned long *out_pages,
934 unsigned long *total_in,
935 unsigned long *total_out,
936 unsigned long max_out)
937{
938 struct list_head *workspace;
939 int ret;
940
941 workspace = find_workspace(type);
261507a0
LZ
942
943 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
38c31464 944 start, pages,
4d3a800e 945 out_pages,
261507a0
LZ
946 total_in, total_out,
947 max_out);
948 free_workspace(type, workspace);
949 return ret;
950}
951
952/*
953 * pages_in is an array of pages with compressed data.
954 *
955 * disk_start is the starting logical offset of this array in the file
956 *
974b1adc 957 * orig_bio contains the pages from the file that we want to decompress into
261507a0
LZ
958 *
959 * srclen is the number of bytes in pages_in
960 *
961 * The basic idea is that we have a bio that was created by readpages.
962 * The pages in the bio are for the uncompressed data, and they may not
963 * be contiguous. They all correspond to the range of bytes covered by
964 * the compressed extent.
965 */
974b1adc
CH
966static int btrfs_decompress_bio(int type, struct page **pages_in,
967 u64 disk_start, struct bio *orig_bio,
968 size_t srclen)
261507a0
LZ
969{
970 struct list_head *workspace;
971 int ret;
972
973 workspace = find_workspace(type);
261507a0 974
974b1adc
CH
975 ret = btrfs_compress_op[type-1]->decompress_bio(workspace, pages_in,
976 disk_start, orig_bio,
977 srclen);
261507a0
LZ
978 free_workspace(type, workspace);
979 return ret;
980}
981
982/*
983 * a less complex decompression routine. Our compressed data fits in a
984 * single page, and we want to read a single page out of it.
985 * start_byte tells us the offset into the compressed data we're interested in
986 */
987int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
988 unsigned long start_byte, size_t srclen, size_t destlen)
989{
990 struct list_head *workspace;
991 int ret;
992
993 workspace = find_workspace(type);
261507a0
LZ
994
995 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
996 dest_page, start_byte,
997 srclen, destlen);
998
999 free_workspace(type, workspace);
1000 return ret;
1001}
1002
8e4eef7a 1003void btrfs_exit_compress(void)
261507a0
LZ
1004{
1005 free_workspaces();
1006}
3a39c18d
LZ
1007
1008/*
1009 * Copy uncompressed data from working buffer to pages.
1010 *
1011 * buf_start is the byte offset we're of the start of our workspace buffer.
1012 *
1013 * total_out is the last byte of the buffer
1014 */
14a3357b 1015int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
3a39c18d 1016 unsigned long total_out, u64 disk_start,
974b1adc 1017 struct bio *bio)
3a39c18d
LZ
1018{
1019 unsigned long buf_offset;
1020 unsigned long current_buf_start;
1021 unsigned long start_byte;
6e78b3f7 1022 unsigned long prev_start_byte;
3a39c18d
LZ
1023 unsigned long working_bytes = total_out - buf_start;
1024 unsigned long bytes;
1025 char *kaddr;
974b1adc 1026 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d
LZ
1027
1028 /*
1029 * start byte is the first byte of the page we're currently
1030 * copying into relative to the start of the compressed data.
1031 */
974b1adc 1032 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d
LZ
1033
1034 /* we haven't yet hit data corresponding to this page */
1035 if (total_out <= start_byte)
1036 return 1;
1037
1038 /*
1039 * the start of the data we care about is offset into
1040 * the middle of our working buffer
1041 */
1042 if (total_out > start_byte && buf_start < start_byte) {
1043 buf_offset = start_byte - buf_start;
1044 working_bytes -= buf_offset;
1045 } else {
1046 buf_offset = 0;
1047 }
1048 current_buf_start = buf_start;
1049
1050 /* copy bytes from the working buffer into the pages */
1051 while (working_bytes > 0) {
974b1adc
CH
1052 bytes = min_t(unsigned long, bvec.bv_len,
1053 PAGE_SIZE - buf_offset);
3a39c18d 1054 bytes = min(bytes, working_bytes);
974b1adc
CH
1055
1056 kaddr = kmap_atomic(bvec.bv_page);
1057 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
7ac687d9 1058 kunmap_atomic(kaddr);
974b1adc 1059 flush_dcache_page(bvec.bv_page);
3a39c18d 1060
3a39c18d
LZ
1061 buf_offset += bytes;
1062 working_bytes -= bytes;
1063 current_buf_start += bytes;
1064
1065 /* check if we need to pick another page */
974b1adc
CH
1066 bio_advance(bio, bytes);
1067 if (!bio->bi_iter.bi_size)
1068 return 0;
1069 bvec = bio_iter_iovec(bio, bio->bi_iter);
6e78b3f7 1070 prev_start_byte = start_byte;
974b1adc 1071 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d 1072
974b1adc 1073 /*
6e78b3f7
OS
1074 * We need to make sure we're only adjusting
1075 * our offset into compression working buffer when
1076 * we're switching pages. Otherwise we can incorrectly
1077 * keep copying when we were actually done.
974b1adc 1078 */
6e78b3f7
OS
1079 if (start_byte != prev_start_byte) {
1080 /*
1081 * make sure our new page is covered by this
1082 * working buffer
1083 */
1084 if (total_out <= start_byte)
1085 return 1;
3a39c18d 1086
6e78b3f7
OS
1087 /*
1088 * the next page in the biovec might not be adjacent
1089 * to the last page, but it might still be found
1090 * inside this working buffer. bump our offset pointer
1091 */
1092 if (total_out > start_byte &&
1093 current_buf_start < start_byte) {
1094 buf_offset = start_byte - buf_start;
1095 working_bytes = total_out - start_byte;
1096 current_buf_start = buf_start + buf_offset;
1097 }
3a39c18d
LZ
1098 }
1099 }
1100
1101 return 1;
1102}