]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/compression.c
btrfs: comment waitqueue_active implied by locks
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / compression.c
CommitLineData
c8b97818
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
c8b97818
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/bit_spinlock.h>
5a0e3ad6 34#include <linux/slab.h>
c8b97818
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "ordered-data.h"
c8b97818
CM
41#include "compression.h"
42#include "extent_io.h"
43#include "extent_map.h"
44
45struct compressed_bio {
46 /* number of bios pending for this compressed extent */
47 atomic_t pending_bios;
48
49 /* the pages with the compressed data on them */
50 struct page **compressed_pages;
51
52 /* inode that owns this data */
53 struct inode *inode;
54
55 /* starting offset in the inode for our pages */
56 u64 start;
57
58 /* number of bytes in the inode we're working on */
59 unsigned long len;
60
61 /* number of bytes on disk */
62 unsigned long compressed_len;
63
261507a0
LZ
64 /* the compression algorithm for this bio */
65 int compress_type;
66
c8b97818
CM
67 /* number of compressed pages in the array */
68 unsigned long nr_pages;
69
70 /* IO errors */
71 int errors;
d20f7043 72 int mirror_num;
c8b97818
CM
73
74 /* for reads, this is the bio we are copying the data into */
75 struct bio *orig_bio;
d20f7043
CM
76
77 /*
78 * the start of a variable length array of checksums only
79 * used by reads
80 */
81 u32 sums;
c8b97818
CM
82};
83
48a3b636
ES
84static int btrfs_decompress_biovec(int type, struct page **pages_in,
85 u64 disk_start, struct bio_vec *bvec,
86 int vcnt, size_t srclen);
87
d20f7043
CM
88static inline int compressed_bio_size(struct btrfs_root *root,
89 unsigned long disk_size)
90{
6c41761f
DS
91 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92
d20f7043 93 return sizeof(struct compressed_bio) +
ed6078f7 94 (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
d20f7043
CM
95}
96
c8b97818
CM
97static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 u64 first_byte, gfp_t gfp_flags)
99{
b54ffb73 100 return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
c8b97818
CM
101}
102
d20f7043
CM
103static int check_compressed_csum(struct inode *inode,
104 struct compressed_bio *cb,
105 u64 disk_start)
106{
107 int ret;
d20f7043
CM
108 struct page *page;
109 unsigned long i;
110 char *kaddr;
111 u32 csum;
112 u32 *cb_sum = &cb->sums;
113
6cbff00f 114 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
115 return 0;
116
117 for (i = 0; i < cb->nr_pages; i++) {
118 page = cb->compressed_pages[i];
119 csum = ~(u32)0;
120
7ac687d9 121 kaddr = kmap_atomic(page);
b0496686 122 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
d20f7043 123 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 124 kunmap_atomic(kaddr);
d20f7043
CM
125
126 if (csum != *cb_sum) {
efe120a0
FH
127 btrfs_info(BTRFS_I(inode)->root->fs_info,
128 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
129 btrfs_ino(inode), disk_start, csum, *cb_sum,
130 cb->mirror_num);
d20f7043
CM
131 ret = -EIO;
132 goto fail;
133 }
134 cb_sum++;
135
136 }
137 ret = 0;
138fail:
139 return ret;
140}
141
c8b97818
CM
142/* when we finish reading compressed pages from the disk, we
143 * decompress them and then run the bio end_io routines on the
144 * decompressed pages (in the inode address space).
145 *
146 * This allows the checksumming and other IO error handling routines
147 * to work normally
148 *
149 * The compressed pages are freed here, and it must be run
150 * in process context
151 */
4246a0b6 152static void end_compressed_bio_read(struct bio *bio)
c8b97818 153{
c8b97818
CM
154 struct compressed_bio *cb = bio->bi_private;
155 struct inode *inode;
156 struct page *page;
157 unsigned long index;
158 int ret;
159
4246a0b6 160 if (bio->bi_error)
c8b97818
CM
161 cb->errors = 1;
162
163 /* if there are more bios still pending for this compressed
164 * extent, just exit
165 */
166 if (!atomic_dec_and_test(&cb->pending_bios))
167 goto out;
168
d20f7043 169 inode = cb->inode;
4f024f37
KO
170 ret = check_compressed_csum(inode, cb,
171 (u64)bio->bi_iter.bi_sector << 9);
d20f7043
CM
172 if (ret)
173 goto csum_failed;
174
c8b97818
CM
175 /* ok, we're the last bio for this extent, lets start
176 * the decompression.
177 */
261507a0
LZ
178 ret = btrfs_decompress_biovec(cb->compress_type,
179 cb->compressed_pages,
180 cb->start,
181 cb->orig_bio->bi_io_vec,
182 cb->orig_bio->bi_vcnt,
183 cb->compressed_len);
d20f7043 184csum_failed:
c8b97818
CM
185 if (ret)
186 cb->errors = 1;
187
188 /* release the compressed pages */
189 index = 0;
190 for (index = 0; index < cb->nr_pages; index++) {
191 page = cb->compressed_pages[index];
192 page->mapping = NULL;
193 page_cache_release(page);
194 }
195
196 /* do io completion on the original bio */
771ed689 197 if (cb->errors) {
c8b97818 198 bio_io_error(cb->orig_bio);
d20f7043 199 } else {
2c30c71b
KO
200 int i;
201 struct bio_vec *bvec;
d20f7043
CM
202
203 /*
204 * we have verified the checksum already, set page
205 * checked so the end_io handlers know about it
206 */
2c30c71b 207 bio_for_each_segment_all(bvec, cb->orig_bio, i)
d20f7043 208 SetPageChecked(bvec->bv_page);
2c30c71b 209
4246a0b6 210 bio_endio(cb->orig_bio);
d20f7043 211 }
c8b97818
CM
212
213 /* finally free the cb struct */
214 kfree(cb->compressed_pages);
215 kfree(cb);
216out:
217 bio_put(bio);
218}
219
220/*
221 * Clear the writeback bits on all of the file
222 * pages for a compressed write
223 */
7bdcefc1
FM
224static noinline void end_compressed_writeback(struct inode *inode,
225 const struct compressed_bio *cb)
c8b97818 226{
7bdcefc1
FM
227 unsigned long index = cb->start >> PAGE_CACHE_SHIFT;
228 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT;
c8b97818
CM
229 struct page *pages[16];
230 unsigned long nr_pages = end_index - index + 1;
231 int i;
232 int ret;
233
7bdcefc1
FM
234 if (cb->errors)
235 mapping_set_error(inode->i_mapping, -EIO);
236
d397712b 237 while (nr_pages > 0) {
c8b97818 238 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
239 min_t(unsigned long,
240 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
241 if (ret == 0) {
242 nr_pages -= 1;
243 index += 1;
244 continue;
245 }
246 for (i = 0; i < ret; i++) {
7bdcefc1
FM
247 if (cb->errors)
248 SetPageError(pages[i]);
c8b97818
CM
249 end_page_writeback(pages[i]);
250 page_cache_release(pages[i]);
251 }
252 nr_pages -= ret;
253 index += ret;
254 }
255 /* the inode may be gone now */
c8b97818
CM
256}
257
258/*
259 * do the cleanup once all the compressed pages hit the disk.
260 * This will clear writeback on the file pages and free the compressed
261 * pages.
262 *
263 * This also calls the writeback end hooks for the file pages so that
264 * metadata and checksums can be updated in the file.
265 */
4246a0b6 266static void end_compressed_bio_write(struct bio *bio)
c8b97818
CM
267{
268 struct extent_io_tree *tree;
269 struct compressed_bio *cb = bio->bi_private;
270 struct inode *inode;
271 struct page *page;
272 unsigned long index;
273
4246a0b6 274 if (bio->bi_error)
c8b97818
CM
275 cb->errors = 1;
276
277 /* if there are more bios still pending for this compressed
278 * extent, just exit
279 */
280 if (!atomic_dec_and_test(&cb->pending_bios))
281 goto out;
282
283 /* ok, we're the last bio for this extent, step one is to
284 * call back into the FS and do all the end_io operations
285 */
286 inode = cb->inode;
287 tree = &BTRFS_I(inode)->io_tree;
70b99e69 288 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
289 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290 cb->start,
291 cb->start + cb->len - 1,
7bdcefc1 292 NULL,
4246a0b6 293 bio->bi_error ? 0 : 1);
70b99e69 294 cb->compressed_pages[0]->mapping = NULL;
c8b97818 295
7bdcefc1 296 end_compressed_writeback(inode, cb);
c8b97818
CM
297 /* note, our inode could be gone now */
298
299 /*
300 * release the compressed pages, these came from alloc_page and
301 * are not attached to the inode at all
302 */
303 index = 0;
304 for (index = 0; index < cb->nr_pages; index++) {
305 page = cb->compressed_pages[index];
306 page->mapping = NULL;
307 page_cache_release(page);
308 }
309
310 /* finally free the cb struct */
311 kfree(cb->compressed_pages);
312 kfree(cb);
313out:
314 bio_put(bio);
315}
316
317/*
318 * worker function to build and submit bios for previously compressed pages.
319 * The corresponding pages in the inode should be marked for writeback
320 * and the compressed pages should have a reference on them for dropping
321 * when the IO is complete.
322 *
323 * This also checksums the file bytes and gets things ready for
324 * the end io hooks.
325 */
326int btrfs_submit_compressed_write(struct inode *inode, u64 start,
327 unsigned long len, u64 disk_start,
328 unsigned long compressed_len,
329 struct page **compressed_pages,
330 unsigned long nr_pages)
331{
332 struct bio *bio = NULL;
333 struct btrfs_root *root = BTRFS_I(inode)->root;
334 struct compressed_bio *cb;
335 unsigned long bytes_left;
336 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306e16ce 337 int pg_index = 0;
c8b97818
CM
338 struct page *page;
339 u64 first_byte = disk_start;
340 struct block_device *bdev;
341 int ret;
e55179b3 342 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818
CM
343
344 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
d20f7043 345 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
dac97e51
YS
346 if (!cb)
347 return -ENOMEM;
c8b97818
CM
348 atomic_set(&cb->pending_bios, 0);
349 cb->errors = 0;
350 cb->inode = inode;
351 cb->start = start;
352 cb->len = len;
d20f7043 353 cb->mirror_num = 0;
c8b97818
CM
354 cb->compressed_pages = compressed_pages;
355 cb->compressed_len = compressed_len;
356 cb->orig_bio = NULL;
357 cb->nr_pages = nr_pages;
358
359 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
360
c8b97818 361 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
67871254 362 if (!bio) {
dac97e51
YS
363 kfree(cb);
364 return -ENOMEM;
365 }
c8b97818
CM
366 bio->bi_private = cb;
367 bio->bi_end_io = end_compressed_bio_write;
368 atomic_inc(&cb->pending_bios);
369
370 /* create and submit bios for the compressed pages */
371 bytes_left = compressed_len;
306e16ce
DS
372 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
373 page = compressed_pages[pg_index];
c8b97818 374 page->mapping = inode->i_mapping;
4f024f37 375 if (bio->bi_iter.bi_size)
64a16701 376 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
c8b97818
CM
377 PAGE_CACHE_SIZE,
378 bio, 0);
379 else
380 ret = 0;
381
70b99e69 382 page->mapping = NULL;
c8b97818
CM
383 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
384 PAGE_CACHE_SIZE) {
385 bio_get(bio);
386
af09abfe
CM
387 /*
388 * inc the count before we submit the bio so
389 * we know the end IO handler won't happen before
390 * we inc the count. Otherwise, the cb might get
391 * freed before we're done setting it up
392 */
393 atomic_inc(&cb->pending_bios);
bfebd8b5
DS
394 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
395 BTRFS_WQ_ENDIO_DATA);
79787eaa 396 BUG_ON(ret); /* -ENOMEM */
c8b97818 397
e55179b3
LZ
398 if (!skip_sum) {
399 ret = btrfs_csum_one_bio(root, inode, bio,
400 start, 1);
79787eaa 401 BUG_ON(ret); /* -ENOMEM */
e55179b3 402 }
d20f7043 403
c8b97818 404 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
79787eaa 405 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
406
407 bio_put(bio);
408
409 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
e627ee7b 410 BUG_ON(!bio);
c8b97818
CM
411 bio->bi_private = cb;
412 bio->bi_end_io = end_compressed_bio_write;
413 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
414 }
cfbc246e 415 if (bytes_left < PAGE_CACHE_SIZE) {
efe120a0
FH
416 btrfs_info(BTRFS_I(inode)->root->fs_info,
417 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
418 bytes_left, cb->compressed_len, cb->nr_pages);
419 }
c8b97818
CM
420 bytes_left -= PAGE_CACHE_SIZE;
421 first_byte += PAGE_CACHE_SIZE;
771ed689 422 cond_resched();
c8b97818
CM
423 }
424 bio_get(bio);
425
bfebd8b5 426 ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 427 BUG_ON(ret); /* -ENOMEM */
c8b97818 428
e55179b3
LZ
429 if (!skip_sum) {
430 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
79787eaa 431 BUG_ON(ret); /* -ENOMEM */
e55179b3 432 }
d20f7043 433
c8b97818 434 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
79787eaa 435 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
436
437 bio_put(bio);
438 return 0;
439}
440
771ed689
CM
441static noinline int add_ra_bio_pages(struct inode *inode,
442 u64 compressed_end,
443 struct compressed_bio *cb)
444{
445 unsigned long end_index;
306e16ce 446 unsigned long pg_index;
771ed689
CM
447 u64 last_offset;
448 u64 isize = i_size_read(inode);
449 int ret;
450 struct page *page;
451 unsigned long nr_pages = 0;
452 struct extent_map *em;
453 struct address_space *mapping = inode->i_mapping;
771ed689
CM
454 struct extent_map_tree *em_tree;
455 struct extent_io_tree *tree;
456 u64 end;
457 int misses = 0;
458
459 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
460 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
461 em_tree = &BTRFS_I(inode)->extent_tree;
462 tree = &BTRFS_I(inode)->io_tree;
463
464 if (isize == 0)
465 return 0;
466
467 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
468
d397712b 469 while (last_offset < compressed_end) {
306e16ce 470 pg_index = last_offset >> PAGE_CACHE_SHIFT;
771ed689 471
306e16ce 472 if (pg_index > end_index)
771ed689
CM
473 break;
474
475 rcu_read_lock();
306e16ce 476 page = radix_tree_lookup(&mapping->page_tree, pg_index);
771ed689 477 rcu_read_unlock();
0cd6144a 478 if (page && !radix_tree_exceptional_entry(page)) {
771ed689
CM
479 misses++;
480 if (misses > 4)
481 break;
482 goto next;
483 }
484
28ecb609
NP
485 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
486 ~__GFP_FS);
771ed689
CM
487 if (!page)
488 break;
489
306e16ce 490 if (add_to_page_cache_lru(page, mapping, pg_index,
28ecb609 491 GFP_NOFS)) {
771ed689
CM
492 page_cache_release(page);
493 goto next;
494 }
495
771ed689
CM
496 end = last_offset + PAGE_CACHE_SIZE - 1;
497 /*
498 * at this point, we have a locked page in the page cache
499 * for these bytes in the file. But, we have to make
500 * sure they map to this compressed extent on disk.
501 */
502 set_page_extent_mapped(page);
d0082371 503 lock_extent(tree, last_offset, end);
890871be 504 read_lock(&em_tree->lock);
771ed689
CM
505 em = lookup_extent_mapping(em_tree, last_offset,
506 PAGE_CACHE_SIZE);
890871be 507 read_unlock(&em_tree->lock);
771ed689
CM
508
509 if (!em || last_offset < em->start ||
510 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
4f024f37 511 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 512 free_extent_map(em);
d0082371 513 unlock_extent(tree, last_offset, end);
771ed689
CM
514 unlock_page(page);
515 page_cache_release(page);
516 break;
517 }
518 free_extent_map(em);
519
520 if (page->index == end_index) {
521 char *userpage;
522 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
523
524 if (zero_offset) {
525 int zeros;
526 zeros = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 527 userpage = kmap_atomic(page);
771ed689
CM
528 memset(userpage + zero_offset, 0, zeros);
529 flush_dcache_page(page);
7ac687d9 530 kunmap_atomic(userpage);
771ed689
CM
531 }
532 }
533
534 ret = bio_add_page(cb->orig_bio, page,
535 PAGE_CACHE_SIZE, 0);
536
537 if (ret == PAGE_CACHE_SIZE) {
538 nr_pages++;
539 page_cache_release(page);
540 } else {
d0082371 541 unlock_extent(tree, last_offset, end);
771ed689
CM
542 unlock_page(page);
543 page_cache_release(page);
544 break;
545 }
546next:
547 last_offset += PAGE_CACHE_SIZE;
548 }
771ed689
CM
549 return 0;
550}
551
c8b97818
CM
552/*
553 * for a compressed read, the bio we get passed has all the inode pages
554 * in it. We don't actually do IO on those pages but allocate new ones
555 * to hold the compressed pages on disk.
556 *
4f024f37 557 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818
CM
558 * bio->bi_io_vec points to all of the inode pages
559 * bio->bi_vcnt is a count of pages
560 *
561 * After the compressed pages are read, we copy the bytes into the
562 * bio we were passed and then call the bio end_io calls
563 */
564int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
565 int mirror_num, unsigned long bio_flags)
566{
567 struct extent_io_tree *tree;
568 struct extent_map_tree *em_tree;
569 struct compressed_bio *cb;
570 struct btrfs_root *root = BTRFS_I(inode)->root;
571 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
572 unsigned long compressed_len;
573 unsigned long nr_pages;
306e16ce 574 unsigned long pg_index;
c8b97818
CM
575 struct page *page;
576 struct block_device *bdev;
577 struct bio *comp_bio;
4f024f37 578 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
e04ca626
CM
579 u64 em_len;
580 u64 em_start;
c8b97818 581 struct extent_map *em;
6b82ce8d 582 int ret = -ENOMEM;
15e3004a 583 int faili = 0;
d20f7043 584 u32 *sums;
c8b97818
CM
585
586 tree = &BTRFS_I(inode)->io_tree;
587 em_tree = &BTRFS_I(inode)->extent_tree;
588
589 /* we need the actual starting offset of this extent in the file */
890871be 590 read_lock(&em_tree->lock);
c8b97818
CM
591 em = lookup_extent_mapping(em_tree,
592 page_offset(bio->bi_io_vec->bv_page),
593 PAGE_CACHE_SIZE);
890871be 594 read_unlock(&em_tree->lock);
285190d9
TI
595 if (!em)
596 return -EIO;
c8b97818 597
d20f7043
CM
598 compressed_len = em->block_len;
599 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
6b82ce8d 600 if (!cb)
601 goto out;
602
c8b97818
CM
603 atomic_set(&cb->pending_bios, 0);
604 cb->errors = 0;
605 cb->inode = inode;
d20f7043
CM
606 cb->mirror_num = mirror_num;
607 sums = &cb->sums;
c8b97818 608
ff5b7ee3 609 cb->start = em->orig_start;
e04ca626
CM
610 em_len = em->len;
611 em_start = em->start;
d20f7043 612
c8b97818 613 free_extent_map(em);
e04ca626 614 em = NULL;
c8b97818
CM
615
616 cb->len = uncompressed_len;
617 cb->compressed_len = compressed_len;
261507a0 618 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
619 cb->orig_bio = bio;
620
ed6078f7 621 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
31e818fe 622 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 623 GFP_NOFS);
6b82ce8d 624 if (!cb->compressed_pages)
625 goto fail1;
626
c8b97818
CM
627 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
628
306e16ce
DS
629 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
630 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 631 __GFP_HIGHMEM);
15e3004a
JB
632 if (!cb->compressed_pages[pg_index]) {
633 faili = pg_index - 1;
634 ret = -ENOMEM;
6b82ce8d 635 goto fail2;
15e3004a 636 }
c8b97818 637 }
15e3004a 638 faili = nr_pages - 1;
c8b97818
CM
639 cb->nr_pages = nr_pages;
640
4b384318
MF
641 /* In the parent-locked case, we only locked the range we are
642 * interested in. In all other cases, we can opportunistically
643 * cache decompressed data that goes beyond the requested range. */
644 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
645 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 646
771ed689
CM
647 /* include any pages we added in add_ra-bio_pages */
648 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
649 cb->len = uncompressed_len;
650
c8b97818 651 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
6b82ce8d 652 if (!comp_bio)
653 goto fail2;
c8b97818
CM
654 comp_bio->bi_private = cb;
655 comp_bio->bi_end_io = end_compressed_bio_read;
656 atomic_inc(&cb->pending_bios);
657
306e16ce
DS
658 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
659 page = cb->compressed_pages[pg_index];
c8b97818 660 page->mapping = inode->i_mapping;
d20f7043
CM
661 page->index = em_start >> PAGE_CACHE_SHIFT;
662
4f024f37 663 if (comp_bio->bi_iter.bi_size)
64a16701 664 ret = tree->ops->merge_bio_hook(READ, page, 0,
c8b97818
CM
665 PAGE_CACHE_SIZE,
666 comp_bio, 0);
667 else
668 ret = 0;
669
70b99e69 670 page->mapping = NULL;
c8b97818
CM
671 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
672 PAGE_CACHE_SIZE) {
673 bio_get(comp_bio);
674
bfebd8b5
DS
675 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
676 BTRFS_WQ_ENDIO_DATA);
79787eaa 677 BUG_ON(ret); /* -ENOMEM */
c8b97818 678
af09abfe
CM
679 /*
680 * inc the count before we submit the bio so
681 * we know the end IO handler won't happen before
682 * we inc the count. Otherwise, the cb might get
683 * freed before we're done setting it up
684 */
685 atomic_inc(&cb->pending_bios);
686
6cbff00f 687 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
c2db1073
TI
688 ret = btrfs_lookup_bio_sums(root, inode,
689 comp_bio, sums);
79787eaa 690 BUG_ON(ret); /* -ENOMEM */
d20f7043 691 }
ed6078f7
DS
692 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
693 root->sectorsize);
d20f7043
CM
694
695 ret = btrfs_map_bio(root, READ, comp_bio,
696 mirror_num, 0);
4246a0b6
CH
697 if (ret) {
698 bio->bi_error = ret;
699 bio_endio(comp_bio);
700 }
c8b97818
CM
701
702 bio_put(comp_bio);
703
704 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
705 GFP_NOFS);
e627ee7b 706 BUG_ON(!comp_bio);
771ed689
CM
707 comp_bio->bi_private = cb;
708 comp_bio->bi_end_io = end_compressed_bio_read;
709
710 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
c8b97818
CM
711 }
712 cur_disk_byte += PAGE_CACHE_SIZE;
713 }
714 bio_get(comp_bio);
715
bfebd8b5
DS
716 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
717 BTRFS_WQ_ENDIO_DATA);
79787eaa 718 BUG_ON(ret); /* -ENOMEM */
c8b97818 719
c2db1073
TI
720 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
721 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
79787eaa 722 BUG_ON(ret); /* -ENOMEM */
c2db1073 723 }
d20f7043
CM
724
725 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
4246a0b6
CH
726 if (ret) {
727 bio->bi_error = ret;
728 bio_endio(comp_bio);
729 }
c8b97818
CM
730
731 bio_put(comp_bio);
732 return 0;
6b82ce8d 733
734fail2:
15e3004a
JB
735 while (faili >= 0) {
736 __free_page(cb->compressed_pages[faili]);
737 faili--;
738 }
6b82ce8d 739
740 kfree(cb->compressed_pages);
741fail1:
742 kfree(cb);
743out:
744 free_extent_map(em);
745 return ret;
c8b97818 746}
261507a0
LZ
747
748static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
749static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
750static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
751static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
752static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
753
e8c9f186 754static const struct btrfs_compress_op * const btrfs_compress_op[] = {
261507a0 755 &btrfs_zlib_compress,
a6fa6fae 756 &btrfs_lzo_compress,
261507a0
LZ
757};
758
143bede5 759void __init btrfs_init_compress(void)
261507a0
LZ
760{
761 int i;
762
763 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
764 INIT_LIST_HEAD(&comp_idle_workspace[i]);
765 spin_lock_init(&comp_workspace_lock[i]);
766 atomic_set(&comp_alloc_workspace[i], 0);
767 init_waitqueue_head(&comp_workspace_wait[i]);
768 }
261507a0
LZ
769}
770
771/*
772 * this finds an available workspace or allocates a new one
773 * ERR_PTR is returned if things go bad.
774 */
775static struct list_head *find_workspace(int type)
776{
777 struct list_head *workspace;
778 int cpus = num_online_cpus();
779 int idx = type - 1;
780
781 struct list_head *idle_workspace = &comp_idle_workspace[idx];
782 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
783 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
784 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
785 int *num_workspace = &comp_num_workspace[idx];
786again:
787 spin_lock(workspace_lock);
788 if (!list_empty(idle_workspace)) {
789 workspace = idle_workspace->next;
790 list_del(workspace);
791 (*num_workspace)--;
792 spin_unlock(workspace_lock);
793 return workspace;
794
795 }
796 if (atomic_read(alloc_workspace) > cpus) {
797 DEFINE_WAIT(wait);
798
799 spin_unlock(workspace_lock);
800 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
801 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
802 schedule();
803 finish_wait(workspace_wait, &wait);
804 goto again;
805 }
806 atomic_inc(alloc_workspace);
807 spin_unlock(workspace_lock);
808
809 workspace = btrfs_compress_op[idx]->alloc_workspace();
810 if (IS_ERR(workspace)) {
811 atomic_dec(alloc_workspace);
812 wake_up(workspace_wait);
813 }
814 return workspace;
815}
816
817/*
818 * put a workspace struct back on the list or free it if we have enough
819 * idle ones sitting around
820 */
821static void free_workspace(int type, struct list_head *workspace)
822{
823 int idx = type - 1;
824 struct list_head *idle_workspace = &comp_idle_workspace[idx];
825 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
826 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
827 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
828 int *num_workspace = &comp_num_workspace[idx];
829
830 spin_lock(workspace_lock);
831 if (*num_workspace < num_online_cpus()) {
c39aa705 832 list_add(workspace, idle_workspace);
261507a0
LZ
833 (*num_workspace)++;
834 spin_unlock(workspace_lock);
835 goto wake;
836 }
837 spin_unlock(workspace_lock);
838
839 btrfs_compress_op[idx]->free_workspace(workspace);
840 atomic_dec(alloc_workspace);
841wake:
66657b31 842 smp_mb();
261507a0
LZ
843 if (waitqueue_active(workspace_wait))
844 wake_up(workspace_wait);
845}
846
847/*
848 * cleanup function for module exit
849 */
850static void free_workspaces(void)
851{
852 struct list_head *workspace;
853 int i;
854
855 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
856 while (!list_empty(&comp_idle_workspace[i])) {
857 workspace = comp_idle_workspace[i].next;
858 list_del(workspace);
859 btrfs_compress_op[i]->free_workspace(workspace);
860 atomic_dec(&comp_alloc_workspace[i]);
861 }
862 }
863}
864
865/*
866 * given an address space and start/len, compress the bytes.
867 *
868 * pages are allocated to hold the compressed result and stored
869 * in 'pages'
870 *
871 * out_pages is used to return the number of pages allocated. There
872 * may be pages allocated even if we return an error
873 *
874 * total_in is used to return the number of bytes actually read. It
875 * may be smaller then len if we had to exit early because we
876 * ran out of room in the pages array or because we cross the
877 * max_out threshold.
878 *
879 * total_out is used to return the total number of compressed bytes
880 *
881 * max_out tells us the max number of bytes that we're allowed to
882 * stuff into pages
883 */
884int btrfs_compress_pages(int type, struct address_space *mapping,
885 u64 start, unsigned long len,
886 struct page **pages,
887 unsigned long nr_dest_pages,
888 unsigned long *out_pages,
889 unsigned long *total_in,
890 unsigned long *total_out,
891 unsigned long max_out)
892{
893 struct list_head *workspace;
894 int ret;
895
896 workspace = find_workspace(type);
897 if (IS_ERR(workspace))
774bcb35 898 return PTR_ERR(workspace);
261507a0
LZ
899
900 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
901 start, len, pages,
902 nr_dest_pages, out_pages,
903 total_in, total_out,
904 max_out);
905 free_workspace(type, workspace);
906 return ret;
907}
908
909/*
910 * pages_in is an array of pages with compressed data.
911 *
912 * disk_start is the starting logical offset of this array in the file
913 *
914 * bvec is a bio_vec of pages from the file that we want to decompress into
915 *
916 * vcnt is the count of pages in the biovec
917 *
918 * srclen is the number of bytes in pages_in
919 *
920 * The basic idea is that we have a bio that was created by readpages.
921 * The pages in the bio are for the uncompressed data, and they may not
922 * be contiguous. They all correspond to the range of bytes covered by
923 * the compressed extent.
924 */
48a3b636
ES
925static int btrfs_decompress_biovec(int type, struct page **pages_in,
926 u64 disk_start, struct bio_vec *bvec,
927 int vcnt, size_t srclen)
261507a0
LZ
928{
929 struct list_head *workspace;
930 int ret;
931
932 workspace = find_workspace(type);
933 if (IS_ERR(workspace))
774bcb35 934 return PTR_ERR(workspace);
261507a0
LZ
935
936 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
937 disk_start,
938 bvec, vcnt, srclen);
939 free_workspace(type, workspace);
940 return ret;
941}
942
943/*
944 * a less complex decompression routine. Our compressed data fits in a
945 * single page, and we want to read a single page out of it.
946 * start_byte tells us the offset into the compressed data we're interested in
947 */
948int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
949 unsigned long start_byte, size_t srclen, size_t destlen)
950{
951 struct list_head *workspace;
952 int ret;
953
954 workspace = find_workspace(type);
955 if (IS_ERR(workspace))
774bcb35 956 return PTR_ERR(workspace);
261507a0
LZ
957
958 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
959 dest_page, start_byte,
960 srclen, destlen);
961
962 free_workspace(type, workspace);
963 return ret;
964}
965
8e4eef7a 966void btrfs_exit_compress(void)
261507a0
LZ
967{
968 free_workspaces();
969}
3a39c18d
LZ
970
971/*
972 * Copy uncompressed data from working buffer to pages.
973 *
974 * buf_start is the byte offset we're of the start of our workspace buffer.
975 *
976 * total_out is the last byte of the buffer
977 */
978int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
979 unsigned long total_out, u64 disk_start,
980 struct bio_vec *bvec, int vcnt,
306e16ce 981 unsigned long *pg_index,
3a39c18d
LZ
982 unsigned long *pg_offset)
983{
984 unsigned long buf_offset;
985 unsigned long current_buf_start;
986 unsigned long start_byte;
987 unsigned long working_bytes = total_out - buf_start;
988 unsigned long bytes;
989 char *kaddr;
306e16ce 990 struct page *page_out = bvec[*pg_index].bv_page;
3a39c18d
LZ
991
992 /*
993 * start byte is the first byte of the page we're currently
994 * copying into relative to the start of the compressed data.
995 */
996 start_byte = page_offset(page_out) - disk_start;
997
998 /* we haven't yet hit data corresponding to this page */
999 if (total_out <= start_byte)
1000 return 1;
1001
1002 /*
1003 * the start of the data we care about is offset into
1004 * the middle of our working buffer
1005 */
1006 if (total_out > start_byte && buf_start < start_byte) {
1007 buf_offset = start_byte - buf_start;
1008 working_bytes -= buf_offset;
1009 } else {
1010 buf_offset = 0;
1011 }
1012 current_buf_start = buf_start;
1013
1014 /* copy bytes from the working buffer into the pages */
1015 while (working_bytes > 0) {
1016 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1017 PAGE_CACHE_SIZE - buf_offset);
1018 bytes = min(bytes, working_bytes);
7ac687d9 1019 kaddr = kmap_atomic(page_out);
3a39c18d 1020 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
7ac687d9 1021 kunmap_atomic(kaddr);
3a39c18d
LZ
1022 flush_dcache_page(page_out);
1023
1024 *pg_offset += bytes;
1025 buf_offset += bytes;
1026 working_bytes -= bytes;
1027 current_buf_start += bytes;
1028
1029 /* check if we need to pick another page */
1030 if (*pg_offset == PAGE_CACHE_SIZE) {
306e16ce
DS
1031 (*pg_index)++;
1032 if (*pg_index >= vcnt)
3a39c18d
LZ
1033 return 0;
1034
306e16ce 1035 page_out = bvec[*pg_index].bv_page;
3a39c18d
LZ
1036 *pg_offset = 0;
1037 start_byte = page_offset(page_out) - disk_start;
1038
1039 /*
1040 * make sure our new page is covered by this
1041 * working buffer
1042 */
1043 if (total_out <= start_byte)
1044 return 1;
1045
1046 /*
1047 * the next page in the biovec might not be adjacent
1048 * to the last page, but it might still be found
1049 * inside this working buffer. bump our offset pointer
1050 */
1051 if (total_out > start_byte &&
1052 current_buf_start < start_byte) {
1053 buf_offset = start_byte - buf_start;
1054 working_bytes = total_out - start_byte;
1055 current_buf_start = buf_start + buf_offset;
1056 }
1057 }
1058 }
1059
1060 return 1;
1061}
2f19cad9
CM
1062
1063/*
1064 * When uncompressing data, we need to make sure and zero any parts of
1065 * the biovec that were not filled in by the decompression code. pg_index
1066 * and pg_offset indicate the last page and the last offset of that page
1067 * that have been filled in. This will zero everything remaining in the
1068 * biovec.
1069 */
1070void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1071 unsigned long pg_index,
1072 unsigned long pg_offset)
1073{
1074 while (pg_index < vcnt) {
1075 struct page *page = bvec[pg_index].bv_page;
1076 unsigned long off = bvec[pg_index].bv_offset;
1077 unsigned long len = bvec[pg_index].bv_len;
1078
1079 if (pg_offset < off)
1080 pg_offset = off;
1081 if (pg_offset < off + len) {
1082 unsigned long bytes = off + len - pg_offset;
1083 char *kaddr;
1084
1085 kaddr = kmap_atomic(page);
1086 memset(kaddr + pg_offset, 0, bytes);
1087 kunmap_atomic(kaddr);
1088 }
1089 pg_index++;
1090 pg_offset = 0;
1091 }
1092}