]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/compression.c
block: add a bi_error field to struct bio
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / compression.c
CommitLineData
c8b97818
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
c8b97818
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/bit_spinlock.h>
5a0e3ad6 34#include <linux/slab.h>
c8b97818
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "ordered-data.h"
c8b97818
CM
41#include "compression.h"
42#include "extent_io.h"
43#include "extent_map.h"
44
45struct compressed_bio {
46 /* number of bios pending for this compressed extent */
47 atomic_t pending_bios;
48
49 /* the pages with the compressed data on them */
50 struct page **compressed_pages;
51
52 /* inode that owns this data */
53 struct inode *inode;
54
55 /* starting offset in the inode for our pages */
56 u64 start;
57
58 /* number of bytes in the inode we're working on */
59 unsigned long len;
60
61 /* number of bytes on disk */
62 unsigned long compressed_len;
63
261507a0
LZ
64 /* the compression algorithm for this bio */
65 int compress_type;
66
c8b97818
CM
67 /* number of compressed pages in the array */
68 unsigned long nr_pages;
69
70 /* IO errors */
71 int errors;
d20f7043 72 int mirror_num;
c8b97818
CM
73
74 /* for reads, this is the bio we are copying the data into */
75 struct bio *orig_bio;
d20f7043
CM
76
77 /*
78 * the start of a variable length array of checksums only
79 * used by reads
80 */
81 u32 sums;
c8b97818
CM
82};
83
48a3b636
ES
84static int btrfs_decompress_biovec(int type, struct page **pages_in,
85 u64 disk_start, struct bio_vec *bvec,
86 int vcnt, size_t srclen);
87
d20f7043
CM
88static inline int compressed_bio_size(struct btrfs_root *root,
89 unsigned long disk_size)
90{
6c41761f
DS
91 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92
d20f7043 93 return sizeof(struct compressed_bio) +
ed6078f7 94 (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
d20f7043
CM
95}
96
c8b97818
CM
97static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 u64 first_byte, gfp_t gfp_flags)
99{
c8b97818
CM
100 int nr_vecs;
101
102 nr_vecs = bio_get_nr_vecs(bdev);
88f794ed 103 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
c8b97818
CM
104}
105
d20f7043
CM
106static int check_compressed_csum(struct inode *inode,
107 struct compressed_bio *cb,
108 u64 disk_start)
109{
110 int ret;
d20f7043
CM
111 struct page *page;
112 unsigned long i;
113 char *kaddr;
114 u32 csum;
115 u32 *cb_sum = &cb->sums;
116
6cbff00f 117 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
118 return 0;
119
120 for (i = 0; i < cb->nr_pages; i++) {
121 page = cb->compressed_pages[i];
122 csum = ~(u32)0;
123
7ac687d9 124 kaddr = kmap_atomic(page);
b0496686 125 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
d20f7043 126 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 127 kunmap_atomic(kaddr);
d20f7043
CM
128
129 if (csum != *cb_sum) {
efe120a0
FH
130 btrfs_info(BTRFS_I(inode)->root->fs_info,
131 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
132 btrfs_ino(inode), disk_start, csum, *cb_sum,
133 cb->mirror_num);
d20f7043
CM
134 ret = -EIO;
135 goto fail;
136 }
137 cb_sum++;
138
139 }
140 ret = 0;
141fail:
142 return ret;
143}
144
c8b97818
CM
145/* when we finish reading compressed pages from the disk, we
146 * decompress them and then run the bio end_io routines on the
147 * decompressed pages (in the inode address space).
148 *
149 * This allows the checksumming and other IO error handling routines
150 * to work normally
151 *
152 * The compressed pages are freed here, and it must be run
153 * in process context
154 */
4246a0b6 155static void end_compressed_bio_read(struct bio *bio)
c8b97818 156{
c8b97818
CM
157 struct compressed_bio *cb = bio->bi_private;
158 struct inode *inode;
159 struct page *page;
160 unsigned long index;
161 int ret;
162
4246a0b6 163 if (bio->bi_error)
c8b97818
CM
164 cb->errors = 1;
165
166 /* if there are more bios still pending for this compressed
167 * extent, just exit
168 */
169 if (!atomic_dec_and_test(&cb->pending_bios))
170 goto out;
171
d20f7043 172 inode = cb->inode;
4f024f37
KO
173 ret = check_compressed_csum(inode, cb,
174 (u64)bio->bi_iter.bi_sector << 9);
d20f7043
CM
175 if (ret)
176 goto csum_failed;
177
c8b97818
CM
178 /* ok, we're the last bio for this extent, lets start
179 * the decompression.
180 */
261507a0
LZ
181 ret = btrfs_decompress_biovec(cb->compress_type,
182 cb->compressed_pages,
183 cb->start,
184 cb->orig_bio->bi_io_vec,
185 cb->orig_bio->bi_vcnt,
186 cb->compressed_len);
d20f7043 187csum_failed:
c8b97818
CM
188 if (ret)
189 cb->errors = 1;
190
191 /* release the compressed pages */
192 index = 0;
193 for (index = 0; index < cb->nr_pages; index++) {
194 page = cb->compressed_pages[index];
195 page->mapping = NULL;
196 page_cache_release(page);
197 }
198
199 /* do io completion on the original bio */
771ed689 200 if (cb->errors) {
c8b97818 201 bio_io_error(cb->orig_bio);
d20f7043 202 } else {
2c30c71b
KO
203 int i;
204 struct bio_vec *bvec;
d20f7043
CM
205
206 /*
207 * we have verified the checksum already, set page
208 * checked so the end_io handlers know about it
209 */
2c30c71b 210 bio_for_each_segment_all(bvec, cb->orig_bio, i)
d20f7043 211 SetPageChecked(bvec->bv_page);
2c30c71b 212
4246a0b6 213 bio_endio(cb->orig_bio);
d20f7043 214 }
c8b97818
CM
215
216 /* finally free the cb struct */
217 kfree(cb->compressed_pages);
218 kfree(cb);
219out:
220 bio_put(bio);
221}
222
223/*
224 * Clear the writeback bits on all of the file
225 * pages for a compressed write
226 */
7bdcefc1
FM
227static noinline void end_compressed_writeback(struct inode *inode,
228 const struct compressed_bio *cb)
c8b97818 229{
7bdcefc1
FM
230 unsigned long index = cb->start >> PAGE_CACHE_SHIFT;
231 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT;
c8b97818
CM
232 struct page *pages[16];
233 unsigned long nr_pages = end_index - index + 1;
234 int i;
235 int ret;
236
7bdcefc1
FM
237 if (cb->errors)
238 mapping_set_error(inode->i_mapping, -EIO);
239
d397712b 240 while (nr_pages > 0) {
c8b97818 241 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
242 min_t(unsigned long,
243 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
244 if (ret == 0) {
245 nr_pages -= 1;
246 index += 1;
247 continue;
248 }
249 for (i = 0; i < ret; i++) {
7bdcefc1
FM
250 if (cb->errors)
251 SetPageError(pages[i]);
c8b97818
CM
252 end_page_writeback(pages[i]);
253 page_cache_release(pages[i]);
254 }
255 nr_pages -= ret;
256 index += ret;
257 }
258 /* the inode may be gone now */
c8b97818
CM
259}
260
261/*
262 * do the cleanup once all the compressed pages hit the disk.
263 * This will clear writeback on the file pages and free the compressed
264 * pages.
265 *
266 * This also calls the writeback end hooks for the file pages so that
267 * metadata and checksums can be updated in the file.
268 */
4246a0b6 269static void end_compressed_bio_write(struct bio *bio)
c8b97818
CM
270{
271 struct extent_io_tree *tree;
272 struct compressed_bio *cb = bio->bi_private;
273 struct inode *inode;
274 struct page *page;
275 unsigned long index;
276
4246a0b6 277 if (bio->bi_error)
c8b97818
CM
278 cb->errors = 1;
279
280 /* if there are more bios still pending for this compressed
281 * extent, just exit
282 */
283 if (!atomic_dec_and_test(&cb->pending_bios))
284 goto out;
285
286 /* ok, we're the last bio for this extent, step one is to
287 * call back into the FS and do all the end_io operations
288 */
289 inode = cb->inode;
290 tree = &BTRFS_I(inode)->io_tree;
70b99e69 291 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
292 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
293 cb->start,
294 cb->start + cb->len - 1,
7bdcefc1 295 NULL,
4246a0b6 296 bio->bi_error ? 0 : 1);
70b99e69 297 cb->compressed_pages[0]->mapping = NULL;
c8b97818 298
7bdcefc1 299 end_compressed_writeback(inode, cb);
c8b97818
CM
300 /* note, our inode could be gone now */
301
302 /*
303 * release the compressed pages, these came from alloc_page and
304 * are not attached to the inode at all
305 */
306 index = 0;
307 for (index = 0; index < cb->nr_pages; index++) {
308 page = cb->compressed_pages[index];
309 page->mapping = NULL;
310 page_cache_release(page);
311 }
312
313 /* finally free the cb struct */
314 kfree(cb->compressed_pages);
315 kfree(cb);
316out:
317 bio_put(bio);
318}
319
320/*
321 * worker function to build and submit bios for previously compressed pages.
322 * The corresponding pages in the inode should be marked for writeback
323 * and the compressed pages should have a reference on them for dropping
324 * when the IO is complete.
325 *
326 * This also checksums the file bytes and gets things ready for
327 * the end io hooks.
328 */
329int btrfs_submit_compressed_write(struct inode *inode, u64 start,
330 unsigned long len, u64 disk_start,
331 unsigned long compressed_len,
332 struct page **compressed_pages,
333 unsigned long nr_pages)
334{
335 struct bio *bio = NULL;
336 struct btrfs_root *root = BTRFS_I(inode)->root;
337 struct compressed_bio *cb;
338 unsigned long bytes_left;
339 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306e16ce 340 int pg_index = 0;
c8b97818
CM
341 struct page *page;
342 u64 first_byte = disk_start;
343 struct block_device *bdev;
344 int ret;
e55179b3 345 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818
CM
346
347 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
d20f7043 348 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
dac97e51
YS
349 if (!cb)
350 return -ENOMEM;
c8b97818
CM
351 atomic_set(&cb->pending_bios, 0);
352 cb->errors = 0;
353 cb->inode = inode;
354 cb->start = start;
355 cb->len = len;
d20f7043 356 cb->mirror_num = 0;
c8b97818
CM
357 cb->compressed_pages = compressed_pages;
358 cb->compressed_len = compressed_len;
359 cb->orig_bio = NULL;
360 cb->nr_pages = nr_pages;
361
362 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
363
c8b97818 364 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
67871254 365 if (!bio) {
dac97e51
YS
366 kfree(cb);
367 return -ENOMEM;
368 }
c8b97818
CM
369 bio->bi_private = cb;
370 bio->bi_end_io = end_compressed_bio_write;
371 atomic_inc(&cb->pending_bios);
372
373 /* create and submit bios for the compressed pages */
374 bytes_left = compressed_len;
306e16ce
DS
375 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
376 page = compressed_pages[pg_index];
c8b97818 377 page->mapping = inode->i_mapping;
4f024f37 378 if (bio->bi_iter.bi_size)
64a16701 379 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
c8b97818
CM
380 PAGE_CACHE_SIZE,
381 bio, 0);
382 else
383 ret = 0;
384
70b99e69 385 page->mapping = NULL;
c8b97818
CM
386 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
387 PAGE_CACHE_SIZE) {
388 bio_get(bio);
389
af09abfe
CM
390 /*
391 * inc the count before we submit the bio so
392 * we know the end IO handler won't happen before
393 * we inc the count. Otherwise, the cb might get
394 * freed before we're done setting it up
395 */
396 atomic_inc(&cb->pending_bios);
bfebd8b5
DS
397 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
398 BTRFS_WQ_ENDIO_DATA);
79787eaa 399 BUG_ON(ret); /* -ENOMEM */
c8b97818 400
e55179b3
LZ
401 if (!skip_sum) {
402 ret = btrfs_csum_one_bio(root, inode, bio,
403 start, 1);
79787eaa 404 BUG_ON(ret); /* -ENOMEM */
e55179b3 405 }
d20f7043 406
c8b97818 407 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
79787eaa 408 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
409
410 bio_put(bio);
411
412 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
e627ee7b 413 BUG_ON(!bio);
c8b97818
CM
414 bio->bi_private = cb;
415 bio->bi_end_io = end_compressed_bio_write;
416 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
417 }
cfbc246e 418 if (bytes_left < PAGE_CACHE_SIZE) {
efe120a0
FH
419 btrfs_info(BTRFS_I(inode)->root->fs_info,
420 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
421 bytes_left, cb->compressed_len, cb->nr_pages);
422 }
c8b97818
CM
423 bytes_left -= PAGE_CACHE_SIZE;
424 first_byte += PAGE_CACHE_SIZE;
771ed689 425 cond_resched();
c8b97818
CM
426 }
427 bio_get(bio);
428
bfebd8b5 429 ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 430 BUG_ON(ret); /* -ENOMEM */
c8b97818 431
e55179b3
LZ
432 if (!skip_sum) {
433 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
79787eaa 434 BUG_ON(ret); /* -ENOMEM */
e55179b3 435 }
d20f7043 436
c8b97818 437 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
79787eaa 438 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
439
440 bio_put(bio);
441 return 0;
442}
443
771ed689
CM
444static noinline int add_ra_bio_pages(struct inode *inode,
445 u64 compressed_end,
446 struct compressed_bio *cb)
447{
448 unsigned long end_index;
306e16ce 449 unsigned long pg_index;
771ed689
CM
450 u64 last_offset;
451 u64 isize = i_size_read(inode);
452 int ret;
453 struct page *page;
454 unsigned long nr_pages = 0;
455 struct extent_map *em;
456 struct address_space *mapping = inode->i_mapping;
771ed689
CM
457 struct extent_map_tree *em_tree;
458 struct extent_io_tree *tree;
459 u64 end;
460 int misses = 0;
461
462 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
463 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
464 em_tree = &BTRFS_I(inode)->extent_tree;
465 tree = &BTRFS_I(inode)->io_tree;
466
467 if (isize == 0)
468 return 0;
469
470 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
471
d397712b 472 while (last_offset < compressed_end) {
306e16ce 473 pg_index = last_offset >> PAGE_CACHE_SHIFT;
771ed689 474
306e16ce 475 if (pg_index > end_index)
771ed689
CM
476 break;
477
478 rcu_read_lock();
306e16ce 479 page = radix_tree_lookup(&mapping->page_tree, pg_index);
771ed689 480 rcu_read_unlock();
0cd6144a 481 if (page && !radix_tree_exceptional_entry(page)) {
771ed689
CM
482 misses++;
483 if (misses > 4)
484 break;
485 goto next;
486 }
487
28ecb609
NP
488 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
489 ~__GFP_FS);
771ed689
CM
490 if (!page)
491 break;
492
306e16ce 493 if (add_to_page_cache_lru(page, mapping, pg_index,
28ecb609 494 GFP_NOFS)) {
771ed689
CM
495 page_cache_release(page);
496 goto next;
497 }
498
771ed689
CM
499 end = last_offset + PAGE_CACHE_SIZE - 1;
500 /*
501 * at this point, we have a locked page in the page cache
502 * for these bytes in the file. But, we have to make
503 * sure they map to this compressed extent on disk.
504 */
505 set_page_extent_mapped(page);
d0082371 506 lock_extent(tree, last_offset, end);
890871be 507 read_lock(&em_tree->lock);
771ed689
CM
508 em = lookup_extent_mapping(em_tree, last_offset,
509 PAGE_CACHE_SIZE);
890871be 510 read_unlock(&em_tree->lock);
771ed689
CM
511
512 if (!em || last_offset < em->start ||
513 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
4f024f37 514 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 515 free_extent_map(em);
d0082371 516 unlock_extent(tree, last_offset, end);
771ed689
CM
517 unlock_page(page);
518 page_cache_release(page);
519 break;
520 }
521 free_extent_map(em);
522
523 if (page->index == end_index) {
524 char *userpage;
525 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
526
527 if (zero_offset) {
528 int zeros;
529 zeros = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 530 userpage = kmap_atomic(page);
771ed689
CM
531 memset(userpage + zero_offset, 0, zeros);
532 flush_dcache_page(page);
7ac687d9 533 kunmap_atomic(userpage);
771ed689
CM
534 }
535 }
536
537 ret = bio_add_page(cb->orig_bio, page,
538 PAGE_CACHE_SIZE, 0);
539
540 if (ret == PAGE_CACHE_SIZE) {
541 nr_pages++;
542 page_cache_release(page);
543 } else {
d0082371 544 unlock_extent(tree, last_offset, end);
771ed689
CM
545 unlock_page(page);
546 page_cache_release(page);
547 break;
548 }
549next:
550 last_offset += PAGE_CACHE_SIZE;
551 }
771ed689
CM
552 return 0;
553}
554
c8b97818
CM
555/*
556 * for a compressed read, the bio we get passed has all the inode pages
557 * in it. We don't actually do IO on those pages but allocate new ones
558 * to hold the compressed pages on disk.
559 *
4f024f37 560 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818
CM
561 * bio->bi_io_vec points to all of the inode pages
562 * bio->bi_vcnt is a count of pages
563 *
564 * After the compressed pages are read, we copy the bytes into the
565 * bio we were passed and then call the bio end_io calls
566 */
567int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
568 int mirror_num, unsigned long bio_flags)
569{
570 struct extent_io_tree *tree;
571 struct extent_map_tree *em_tree;
572 struct compressed_bio *cb;
573 struct btrfs_root *root = BTRFS_I(inode)->root;
574 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
575 unsigned long compressed_len;
576 unsigned long nr_pages;
306e16ce 577 unsigned long pg_index;
c8b97818
CM
578 struct page *page;
579 struct block_device *bdev;
580 struct bio *comp_bio;
4f024f37 581 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
e04ca626
CM
582 u64 em_len;
583 u64 em_start;
c8b97818 584 struct extent_map *em;
6b82ce8d 585 int ret = -ENOMEM;
15e3004a 586 int faili = 0;
d20f7043 587 u32 *sums;
c8b97818
CM
588
589 tree = &BTRFS_I(inode)->io_tree;
590 em_tree = &BTRFS_I(inode)->extent_tree;
591
592 /* we need the actual starting offset of this extent in the file */
890871be 593 read_lock(&em_tree->lock);
c8b97818
CM
594 em = lookup_extent_mapping(em_tree,
595 page_offset(bio->bi_io_vec->bv_page),
596 PAGE_CACHE_SIZE);
890871be 597 read_unlock(&em_tree->lock);
285190d9
TI
598 if (!em)
599 return -EIO;
c8b97818 600
d20f7043
CM
601 compressed_len = em->block_len;
602 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
6b82ce8d 603 if (!cb)
604 goto out;
605
c8b97818
CM
606 atomic_set(&cb->pending_bios, 0);
607 cb->errors = 0;
608 cb->inode = inode;
d20f7043
CM
609 cb->mirror_num = mirror_num;
610 sums = &cb->sums;
c8b97818 611
ff5b7ee3 612 cb->start = em->orig_start;
e04ca626
CM
613 em_len = em->len;
614 em_start = em->start;
d20f7043 615
c8b97818 616 free_extent_map(em);
e04ca626 617 em = NULL;
c8b97818
CM
618
619 cb->len = uncompressed_len;
620 cb->compressed_len = compressed_len;
261507a0 621 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
622 cb->orig_bio = bio;
623
ed6078f7 624 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
31e818fe 625 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 626 GFP_NOFS);
6b82ce8d 627 if (!cb->compressed_pages)
628 goto fail1;
629
c8b97818
CM
630 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
631
306e16ce
DS
632 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
633 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 634 __GFP_HIGHMEM);
15e3004a
JB
635 if (!cb->compressed_pages[pg_index]) {
636 faili = pg_index - 1;
637 ret = -ENOMEM;
6b82ce8d 638 goto fail2;
15e3004a 639 }
c8b97818 640 }
15e3004a 641 faili = nr_pages - 1;
c8b97818
CM
642 cb->nr_pages = nr_pages;
643
4b384318
MF
644 /* In the parent-locked case, we only locked the range we are
645 * interested in. In all other cases, we can opportunistically
646 * cache decompressed data that goes beyond the requested range. */
647 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
648 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 649
771ed689
CM
650 /* include any pages we added in add_ra-bio_pages */
651 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
652 cb->len = uncompressed_len;
653
c8b97818 654 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
6b82ce8d 655 if (!comp_bio)
656 goto fail2;
c8b97818
CM
657 comp_bio->bi_private = cb;
658 comp_bio->bi_end_io = end_compressed_bio_read;
659 atomic_inc(&cb->pending_bios);
660
306e16ce
DS
661 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
662 page = cb->compressed_pages[pg_index];
c8b97818 663 page->mapping = inode->i_mapping;
d20f7043
CM
664 page->index = em_start >> PAGE_CACHE_SHIFT;
665
4f024f37 666 if (comp_bio->bi_iter.bi_size)
64a16701 667 ret = tree->ops->merge_bio_hook(READ, page, 0,
c8b97818
CM
668 PAGE_CACHE_SIZE,
669 comp_bio, 0);
670 else
671 ret = 0;
672
70b99e69 673 page->mapping = NULL;
c8b97818
CM
674 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
675 PAGE_CACHE_SIZE) {
676 bio_get(comp_bio);
677
bfebd8b5
DS
678 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
679 BTRFS_WQ_ENDIO_DATA);
79787eaa 680 BUG_ON(ret); /* -ENOMEM */
c8b97818 681
af09abfe
CM
682 /*
683 * inc the count before we submit the bio so
684 * we know the end IO handler won't happen before
685 * we inc the count. Otherwise, the cb might get
686 * freed before we're done setting it up
687 */
688 atomic_inc(&cb->pending_bios);
689
6cbff00f 690 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
c2db1073
TI
691 ret = btrfs_lookup_bio_sums(root, inode,
692 comp_bio, sums);
79787eaa 693 BUG_ON(ret); /* -ENOMEM */
d20f7043 694 }
ed6078f7
DS
695 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
696 root->sectorsize);
d20f7043
CM
697
698 ret = btrfs_map_bio(root, READ, comp_bio,
699 mirror_num, 0);
4246a0b6
CH
700 if (ret) {
701 bio->bi_error = ret;
702 bio_endio(comp_bio);
703 }
c8b97818
CM
704
705 bio_put(comp_bio);
706
707 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
708 GFP_NOFS);
e627ee7b 709 BUG_ON(!comp_bio);
771ed689
CM
710 comp_bio->bi_private = cb;
711 comp_bio->bi_end_io = end_compressed_bio_read;
712
713 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
c8b97818
CM
714 }
715 cur_disk_byte += PAGE_CACHE_SIZE;
716 }
717 bio_get(comp_bio);
718
bfebd8b5
DS
719 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
720 BTRFS_WQ_ENDIO_DATA);
79787eaa 721 BUG_ON(ret); /* -ENOMEM */
c8b97818 722
c2db1073
TI
723 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
724 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
79787eaa 725 BUG_ON(ret); /* -ENOMEM */
c2db1073 726 }
d20f7043
CM
727
728 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
4246a0b6
CH
729 if (ret) {
730 bio->bi_error = ret;
731 bio_endio(comp_bio);
732 }
c8b97818
CM
733
734 bio_put(comp_bio);
735 return 0;
6b82ce8d 736
737fail2:
15e3004a
JB
738 while (faili >= 0) {
739 __free_page(cb->compressed_pages[faili]);
740 faili--;
741 }
6b82ce8d 742
743 kfree(cb->compressed_pages);
744fail1:
745 kfree(cb);
746out:
747 free_extent_map(em);
748 return ret;
c8b97818 749}
261507a0
LZ
750
751static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
752static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
753static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
754static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
755static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
756
e8c9f186 757static const struct btrfs_compress_op * const btrfs_compress_op[] = {
261507a0 758 &btrfs_zlib_compress,
a6fa6fae 759 &btrfs_lzo_compress,
261507a0
LZ
760};
761
143bede5 762void __init btrfs_init_compress(void)
261507a0
LZ
763{
764 int i;
765
766 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
767 INIT_LIST_HEAD(&comp_idle_workspace[i]);
768 spin_lock_init(&comp_workspace_lock[i]);
769 atomic_set(&comp_alloc_workspace[i], 0);
770 init_waitqueue_head(&comp_workspace_wait[i]);
771 }
261507a0
LZ
772}
773
774/*
775 * this finds an available workspace or allocates a new one
776 * ERR_PTR is returned if things go bad.
777 */
778static struct list_head *find_workspace(int type)
779{
780 struct list_head *workspace;
781 int cpus = num_online_cpus();
782 int idx = type - 1;
783
784 struct list_head *idle_workspace = &comp_idle_workspace[idx];
785 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
786 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
787 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
788 int *num_workspace = &comp_num_workspace[idx];
789again:
790 spin_lock(workspace_lock);
791 if (!list_empty(idle_workspace)) {
792 workspace = idle_workspace->next;
793 list_del(workspace);
794 (*num_workspace)--;
795 spin_unlock(workspace_lock);
796 return workspace;
797
798 }
799 if (atomic_read(alloc_workspace) > cpus) {
800 DEFINE_WAIT(wait);
801
802 spin_unlock(workspace_lock);
803 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
804 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
805 schedule();
806 finish_wait(workspace_wait, &wait);
807 goto again;
808 }
809 atomic_inc(alloc_workspace);
810 spin_unlock(workspace_lock);
811
812 workspace = btrfs_compress_op[idx]->alloc_workspace();
813 if (IS_ERR(workspace)) {
814 atomic_dec(alloc_workspace);
815 wake_up(workspace_wait);
816 }
817 return workspace;
818}
819
820/*
821 * put a workspace struct back on the list or free it if we have enough
822 * idle ones sitting around
823 */
824static void free_workspace(int type, struct list_head *workspace)
825{
826 int idx = type - 1;
827 struct list_head *idle_workspace = &comp_idle_workspace[idx];
828 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
829 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
830 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
831 int *num_workspace = &comp_num_workspace[idx];
832
833 spin_lock(workspace_lock);
834 if (*num_workspace < num_online_cpus()) {
c39aa705 835 list_add(workspace, idle_workspace);
261507a0
LZ
836 (*num_workspace)++;
837 spin_unlock(workspace_lock);
838 goto wake;
839 }
840 spin_unlock(workspace_lock);
841
842 btrfs_compress_op[idx]->free_workspace(workspace);
843 atomic_dec(alloc_workspace);
844wake:
66657b31 845 smp_mb();
261507a0
LZ
846 if (waitqueue_active(workspace_wait))
847 wake_up(workspace_wait);
848}
849
850/*
851 * cleanup function for module exit
852 */
853static void free_workspaces(void)
854{
855 struct list_head *workspace;
856 int i;
857
858 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
859 while (!list_empty(&comp_idle_workspace[i])) {
860 workspace = comp_idle_workspace[i].next;
861 list_del(workspace);
862 btrfs_compress_op[i]->free_workspace(workspace);
863 atomic_dec(&comp_alloc_workspace[i]);
864 }
865 }
866}
867
868/*
869 * given an address space and start/len, compress the bytes.
870 *
871 * pages are allocated to hold the compressed result and stored
872 * in 'pages'
873 *
874 * out_pages is used to return the number of pages allocated. There
875 * may be pages allocated even if we return an error
876 *
877 * total_in is used to return the number of bytes actually read. It
878 * may be smaller then len if we had to exit early because we
879 * ran out of room in the pages array or because we cross the
880 * max_out threshold.
881 *
882 * total_out is used to return the total number of compressed bytes
883 *
884 * max_out tells us the max number of bytes that we're allowed to
885 * stuff into pages
886 */
887int btrfs_compress_pages(int type, struct address_space *mapping,
888 u64 start, unsigned long len,
889 struct page **pages,
890 unsigned long nr_dest_pages,
891 unsigned long *out_pages,
892 unsigned long *total_in,
893 unsigned long *total_out,
894 unsigned long max_out)
895{
896 struct list_head *workspace;
897 int ret;
898
899 workspace = find_workspace(type);
900 if (IS_ERR(workspace))
774bcb35 901 return PTR_ERR(workspace);
261507a0
LZ
902
903 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
904 start, len, pages,
905 nr_dest_pages, out_pages,
906 total_in, total_out,
907 max_out);
908 free_workspace(type, workspace);
909 return ret;
910}
911
912/*
913 * pages_in is an array of pages with compressed data.
914 *
915 * disk_start is the starting logical offset of this array in the file
916 *
917 * bvec is a bio_vec of pages from the file that we want to decompress into
918 *
919 * vcnt is the count of pages in the biovec
920 *
921 * srclen is the number of bytes in pages_in
922 *
923 * The basic idea is that we have a bio that was created by readpages.
924 * The pages in the bio are for the uncompressed data, and they may not
925 * be contiguous. They all correspond to the range of bytes covered by
926 * the compressed extent.
927 */
48a3b636
ES
928static int btrfs_decompress_biovec(int type, struct page **pages_in,
929 u64 disk_start, struct bio_vec *bvec,
930 int vcnt, size_t srclen)
261507a0
LZ
931{
932 struct list_head *workspace;
933 int ret;
934
935 workspace = find_workspace(type);
936 if (IS_ERR(workspace))
774bcb35 937 return PTR_ERR(workspace);
261507a0
LZ
938
939 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
940 disk_start,
941 bvec, vcnt, srclen);
942 free_workspace(type, workspace);
943 return ret;
944}
945
946/*
947 * a less complex decompression routine. Our compressed data fits in a
948 * single page, and we want to read a single page out of it.
949 * start_byte tells us the offset into the compressed data we're interested in
950 */
951int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
952 unsigned long start_byte, size_t srclen, size_t destlen)
953{
954 struct list_head *workspace;
955 int ret;
956
957 workspace = find_workspace(type);
958 if (IS_ERR(workspace))
774bcb35 959 return PTR_ERR(workspace);
261507a0
LZ
960
961 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
962 dest_page, start_byte,
963 srclen, destlen);
964
965 free_workspace(type, workspace);
966 return ret;
967}
968
8e4eef7a 969void btrfs_exit_compress(void)
261507a0
LZ
970{
971 free_workspaces();
972}
3a39c18d
LZ
973
974/*
975 * Copy uncompressed data from working buffer to pages.
976 *
977 * buf_start is the byte offset we're of the start of our workspace buffer.
978 *
979 * total_out is the last byte of the buffer
980 */
981int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
982 unsigned long total_out, u64 disk_start,
983 struct bio_vec *bvec, int vcnt,
306e16ce 984 unsigned long *pg_index,
3a39c18d
LZ
985 unsigned long *pg_offset)
986{
987 unsigned long buf_offset;
988 unsigned long current_buf_start;
989 unsigned long start_byte;
990 unsigned long working_bytes = total_out - buf_start;
991 unsigned long bytes;
992 char *kaddr;
306e16ce 993 struct page *page_out = bvec[*pg_index].bv_page;
3a39c18d
LZ
994
995 /*
996 * start byte is the first byte of the page we're currently
997 * copying into relative to the start of the compressed data.
998 */
999 start_byte = page_offset(page_out) - disk_start;
1000
1001 /* we haven't yet hit data corresponding to this page */
1002 if (total_out <= start_byte)
1003 return 1;
1004
1005 /*
1006 * the start of the data we care about is offset into
1007 * the middle of our working buffer
1008 */
1009 if (total_out > start_byte && buf_start < start_byte) {
1010 buf_offset = start_byte - buf_start;
1011 working_bytes -= buf_offset;
1012 } else {
1013 buf_offset = 0;
1014 }
1015 current_buf_start = buf_start;
1016
1017 /* copy bytes from the working buffer into the pages */
1018 while (working_bytes > 0) {
1019 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1020 PAGE_CACHE_SIZE - buf_offset);
1021 bytes = min(bytes, working_bytes);
7ac687d9 1022 kaddr = kmap_atomic(page_out);
3a39c18d 1023 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
7ac687d9 1024 kunmap_atomic(kaddr);
3a39c18d
LZ
1025 flush_dcache_page(page_out);
1026
1027 *pg_offset += bytes;
1028 buf_offset += bytes;
1029 working_bytes -= bytes;
1030 current_buf_start += bytes;
1031
1032 /* check if we need to pick another page */
1033 if (*pg_offset == PAGE_CACHE_SIZE) {
306e16ce
DS
1034 (*pg_index)++;
1035 if (*pg_index >= vcnt)
3a39c18d
LZ
1036 return 0;
1037
306e16ce 1038 page_out = bvec[*pg_index].bv_page;
3a39c18d
LZ
1039 *pg_offset = 0;
1040 start_byte = page_offset(page_out) - disk_start;
1041
1042 /*
1043 * make sure our new page is covered by this
1044 * working buffer
1045 */
1046 if (total_out <= start_byte)
1047 return 1;
1048
1049 /*
1050 * the next page in the biovec might not be adjacent
1051 * to the last page, but it might still be found
1052 * inside this working buffer. bump our offset pointer
1053 */
1054 if (total_out > start_byte &&
1055 current_buf_start < start_byte) {
1056 buf_offset = start_byte - buf_start;
1057 working_bytes = total_out - start_byte;
1058 current_buf_start = buf_start + buf_offset;
1059 }
1060 }
1061 }
1062
1063 return 1;
1064}
2f19cad9
CM
1065
1066/*
1067 * When uncompressing data, we need to make sure and zero any parts of
1068 * the biovec that were not filled in by the decompression code. pg_index
1069 * and pg_offset indicate the last page and the last offset of that page
1070 * that have been filled in. This will zero everything remaining in the
1071 * biovec.
1072 */
1073void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1074 unsigned long pg_index,
1075 unsigned long pg_offset)
1076{
1077 while (pg_index < vcnt) {
1078 struct page *page = bvec[pg_index].bv_page;
1079 unsigned long off = bvec[pg_index].bv_offset;
1080 unsigned long len = bvec[pg_index].bv_len;
1081
1082 if (pg_offset < off)
1083 pg_offset = off;
1084 if (pg_offset < off + len) {
1085 unsigned long bytes = off + len - pg_offset;
1086 char *kaddr;
1087
1088 kaddr = kmap_atomic(page);
1089 memset(kaddr + pg_offset, 0, bytes);
1090 kunmap_atomic(kaddr);
1091 }
1092 pg_index++;
1093 pg_offset = 0;
1094 }
1095}