]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/compression.c
btrfs: root->fs_info cleanup, update_block_group{,flags}
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / compression.c
CommitLineData
c8b97818
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
c8b97818
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/bit_spinlock.h>
5a0e3ad6 34#include <linux/slab.h>
c8b97818
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "ordered-data.h"
c8b97818
CM
41#include "compression.h"
42#include "extent_io.h"
43#include "extent_map.h"
44
45struct compressed_bio {
46 /* number of bios pending for this compressed extent */
47 atomic_t pending_bios;
48
49 /* the pages with the compressed data on them */
50 struct page **compressed_pages;
51
52 /* inode that owns this data */
53 struct inode *inode;
54
55 /* starting offset in the inode for our pages */
56 u64 start;
57
58 /* number of bytes in the inode we're working on */
59 unsigned long len;
60
61 /* number of bytes on disk */
62 unsigned long compressed_len;
63
261507a0
LZ
64 /* the compression algorithm for this bio */
65 int compress_type;
66
c8b97818
CM
67 /* number of compressed pages in the array */
68 unsigned long nr_pages;
69
70 /* IO errors */
71 int errors;
d20f7043 72 int mirror_num;
c8b97818
CM
73
74 /* for reads, this is the bio we are copying the data into */
75 struct bio *orig_bio;
d20f7043
CM
76
77 /*
78 * the start of a variable length array of checksums only
79 * used by reads
80 */
81 u32 sums;
c8b97818
CM
82};
83
974b1adc
CH
84static int btrfs_decompress_bio(int type, struct page **pages_in,
85 u64 disk_start, struct bio *orig_bio,
86 size_t srclen);
48a3b636 87
d20f7043
CM
88static inline int compressed_bio_size(struct btrfs_root *root,
89 unsigned long disk_size)
90{
6c41761f
DS
91 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92
d20f7043 93 return sizeof(struct compressed_bio) +
da17066c 94 (DIV_ROUND_UP(disk_size, root->fs_info->sectorsize)) * csum_size;
d20f7043
CM
95}
96
c8b97818
CM
97static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 u64 first_byte, gfp_t gfp_flags)
99{
b54ffb73 100 return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
c8b97818
CM
101}
102
d20f7043
CM
103static int check_compressed_csum(struct inode *inode,
104 struct compressed_bio *cb,
105 u64 disk_start)
106{
107 int ret;
d20f7043
CM
108 struct page *page;
109 unsigned long i;
110 char *kaddr;
111 u32 csum;
112 u32 *cb_sum = &cb->sums;
113
6cbff00f 114 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
115 return 0;
116
117 for (i = 0; i < cb->nr_pages; i++) {
118 page = cb->compressed_pages[i];
119 csum = ~(u32)0;
120
7ac687d9 121 kaddr = kmap_atomic(page);
09cbfeaf 122 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
0b5e3daf 123 btrfs_csum_final(csum, (u8 *)&csum);
7ac687d9 124 kunmap_atomic(kaddr);
d20f7043
CM
125
126 if (csum != *cb_sum) {
efe120a0
FH
127 btrfs_info(BTRFS_I(inode)->root->fs_info,
128 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
129 btrfs_ino(inode), disk_start, csum, *cb_sum,
130 cb->mirror_num);
d20f7043
CM
131 ret = -EIO;
132 goto fail;
133 }
134 cb_sum++;
135
136 }
137 ret = 0;
138fail:
139 return ret;
140}
141
c8b97818
CM
142/* when we finish reading compressed pages from the disk, we
143 * decompress them and then run the bio end_io routines on the
144 * decompressed pages (in the inode address space).
145 *
146 * This allows the checksumming and other IO error handling routines
147 * to work normally
148 *
149 * The compressed pages are freed here, and it must be run
150 * in process context
151 */
4246a0b6 152static void end_compressed_bio_read(struct bio *bio)
c8b97818 153{
c8b97818
CM
154 struct compressed_bio *cb = bio->bi_private;
155 struct inode *inode;
156 struct page *page;
157 unsigned long index;
158 int ret;
159
4246a0b6 160 if (bio->bi_error)
c8b97818
CM
161 cb->errors = 1;
162
163 /* if there are more bios still pending for this compressed
164 * extent, just exit
165 */
166 if (!atomic_dec_and_test(&cb->pending_bios))
167 goto out;
168
d20f7043 169 inode = cb->inode;
4f024f37
KO
170 ret = check_compressed_csum(inode, cb,
171 (u64)bio->bi_iter.bi_sector << 9);
d20f7043
CM
172 if (ret)
173 goto csum_failed;
174
c8b97818
CM
175 /* ok, we're the last bio for this extent, lets start
176 * the decompression.
177 */
974b1adc 178 ret = btrfs_decompress_bio(cb->compress_type,
261507a0
LZ
179 cb->compressed_pages,
180 cb->start,
974b1adc 181 cb->orig_bio,
261507a0 182 cb->compressed_len);
d20f7043 183csum_failed:
c8b97818
CM
184 if (ret)
185 cb->errors = 1;
186
187 /* release the compressed pages */
188 index = 0;
189 for (index = 0; index < cb->nr_pages; index++) {
190 page = cb->compressed_pages[index];
191 page->mapping = NULL;
09cbfeaf 192 put_page(page);
c8b97818
CM
193 }
194
195 /* do io completion on the original bio */
771ed689 196 if (cb->errors) {
c8b97818 197 bio_io_error(cb->orig_bio);
d20f7043 198 } else {
2c30c71b
KO
199 int i;
200 struct bio_vec *bvec;
d20f7043
CM
201
202 /*
203 * we have verified the checksum already, set page
204 * checked so the end_io handlers know about it
205 */
2c30c71b 206 bio_for_each_segment_all(bvec, cb->orig_bio, i)
d20f7043 207 SetPageChecked(bvec->bv_page);
2c30c71b 208
4246a0b6 209 bio_endio(cb->orig_bio);
d20f7043 210 }
c8b97818
CM
211
212 /* finally free the cb struct */
213 kfree(cb->compressed_pages);
214 kfree(cb);
215out:
216 bio_put(bio);
217}
218
219/*
220 * Clear the writeback bits on all of the file
221 * pages for a compressed write
222 */
7bdcefc1
FM
223static noinline void end_compressed_writeback(struct inode *inode,
224 const struct compressed_bio *cb)
c8b97818 225{
09cbfeaf
KS
226 unsigned long index = cb->start >> PAGE_SHIFT;
227 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
228 struct page *pages[16];
229 unsigned long nr_pages = end_index - index + 1;
230 int i;
231 int ret;
232
7bdcefc1
FM
233 if (cb->errors)
234 mapping_set_error(inode->i_mapping, -EIO);
235
d397712b 236 while (nr_pages > 0) {
c8b97818 237 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
238 min_t(unsigned long,
239 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
240 if (ret == 0) {
241 nr_pages -= 1;
242 index += 1;
243 continue;
244 }
245 for (i = 0; i < ret; i++) {
7bdcefc1
FM
246 if (cb->errors)
247 SetPageError(pages[i]);
c8b97818 248 end_page_writeback(pages[i]);
09cbfeaf 249 put_page(pages[i]);
c8b97818
CM
250 }
251 nr_pages -= ret;
252 index += ret;
253 }
254 /* the inode may be gone now */
c8b97818
CM
255}
256
257/*
258 * do the cleanup once all the compressed pages hit the disk.
259 * This will clear writeback on the file pages and free the compressed
260 * pages.
261 *
262 * This also calls the writeback end hooks for the file pages so that
263 * metadata and checksums can be updated in the file.
264 */
4246a0b6 265static void end_compressed_bio_write(struct bio *bio)
c8b97818
CM
266{
267 struct extent_io_tree *tree;
268 struct compressed_bio *cb = bio->bi_private;
269 struct inode *inode;
270 struct page *page;
271 unsigned long index;
272
4246a0b6 273 if (bio->bi_error)
c8b97818
CM
274 cb->errors = 1;
275
276 /* if there are more bios still pending for this compressed
277 * extent, just exit
278 */
279 if (!atomic_dec_and_test(&cb->pending_bios))
280 goto out;
281
282 /* ok, we're the last bio for this extent, step one is to
283 * call back into the FS and do all the end_io operations
284 */
285 inode = cb->inode;
286 tree = &BTRFS_I(inode)->io_tree;
70b99e69 287 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
288 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
289 cb->start,
290 cb->start + cb->len - 1,
7bdcefc1 291 NULL,
4246a0b6 292 bio->bi_error ? 0 : 1);
70b99e69 293 cb->compressed_pages[0]->mapping = NULL;
c8b97818 294
7bdcefc1 295 end_compressed_writeback(inode, cb);
c8b97818
CM
296 /* note, our inode could be gone now */
297
298 /*
299 * release the compressed pages, these came from alloc_page and
300 * are not attached to the inode at all
301 */
302 index = 0;
303 for (index = 0; index < cb->nr_pages; index++) {
304 page = cb->compressed_pages[index];
305 page->mapping = NULL;
09cbfeaf 306 put_page(page);
c8b97818
CM
307 }
308
309 /* finally free the cb struct */
310 kfree(cb->compressed_pages);
311 kfree(cb);
312out:
313 bio_put(bio);
314}
315
316/*
317 * worker function to build and submit bios for previously compressed pages.
318 * The corresponding pages in the inode should be marked for writeback
319 * and the compressed pages should have a reference on them for dropping
320 * when the IO is complete.
321 *
322 * This also checksums the file bytes and gets things ready for
323 * the end io hooks.
324 */
325int btrfs_submit_compressed_write(struct inode *inode, u64 start,
326 unsigned long len, u64 disk_start,
327 unsigned long compressed_len,
328 struct page **compressed_pages,
329 unsigned long nr_pages)
330{
331 struct bio *bio = NULL;
332 struct btrfs_root *root = BTRFS_I(inode)->root;
333 struct compressed_bio *cb;
334 unsigned long bytes_left;
335 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306e16ce 336 int pg_index = 0;
c8b97818
CM
337 struct page *page;
338 u64 first_byte = disk_start;
339 struct block_device *bdev;
340 int ret;
e55179b3 341 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818 342
09cbfeaf 343 WARN_ON(start & ((u64)PAGE_SIZE - 1));
d20f7043 344 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
dac97e51
YS
345 if (!cb)
346 return -ENOMEM;
c8b97818
CM
347 atomic_set(&cb->pending_bios, 0);
348 cb->errors = 0;
349 cb->inode = inode;
350 cb->start = start;
351 cb->len = len;
d20f7043 352 cb->mirror_num = 0;
c8b97818
CM
353 cb->compressed_pages = compressed_pages;
354 cb->compressed_len = compressed_len;
355 cb->orig_bio = NULL;
356 cb->nr_pages = nr_pages;
357
358 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
359
c8b97818 360 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
67871254 361 if (!bio) {
dac97e51
YS
362 kfree(cb);
363 return -ENOMEM;
364 }
37226b21 365 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
c8b97818
CM
366 bio->bi_private = cb;
367 bio->bi_end_io = end_compressed_bio_write;
368 atomic_inc(&cb->pending_bios);
369
370 /* create and submit bios for the compressed pages */
371 bytes_left = compressed_len;
306e16ce
DS
372 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
373 page = compressed_pages[pg_index];
c8b97818 374 page->mapping = inode->i_mapping;
4f024f37 375 if (bio->bi_iter.bi_size)
81a75f67 376 ret = io_tree->ops->merge_bio_hook(page, 0,
09cbfeaf 377 PAGE_SIZE,
c8b97818
CM
378 bio, 0);
379 else
380 ret = 0;
381
70b99e69 382 page->mapping = NULL;
09cbfeaf
KS
383 if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
384 PAGE_SIZE) {
c8b97818
CM
385 bio_get(bio);
386
af09abfe
CM
387 /*
388 * inc the count before we submit the bio so
389 * we know the end IO handler won't happen before
390 * we inc the count. Otherwise, the cb might get
391 * freed before we're done setting it up
392 */
393 atomic_inc(&cb->pending_bios);
bfebd8b5
DS
394 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
395 BTRFS_WQ_ENDIO_DATA);
79787eaa 396 BUG_ON(ret); /* -ENOMEM */
c8b97818 397
e55179b3
LZ
398 if (!skip_sum) {
399 ret = btrfs_csum_one_bio(root, inode, bio,
400 start, 1);
79787eaa 401 BUG_ON(ret); /* -ENOMEM */
e55179b3 402 }
d20f7043 403
81a75f67 404 ret = btrfs_map_bio(root, bio, 0, 1);
f5daf2c7
LB
405 if (ret) {
406 bio->bi_error = ret;
407 bio_endio(bio);
408 }
c8b97818
CM
409
410 bio_put(bio);
411
412 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
e627ee7b 413 BUG_ON(!bio);
37226b21 414 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
c8b97818
CM
415 bio->bi_private = cb;
416 bio->bi_end_io = end_compressed_bio_write;
09cbfeaf 417 bio_add_page(bio, page, PAGE_SIZE, 0);
c8b97818 418 }
09cbfeaf 419 if (bytes_left < PAGE_SIZE) {
efe120a0
FH
420 btrfs_info(BTRFS_I(inode)->root->fs_info,
421 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
422 bytes_left, cb->compressed_len, cb->nr_pages);
423 }
09cbfeaf
KS
424 bytes_left -= PAGE_SIZE;
425 first_byte += PAGE_SIZE;
771ed689 426 cond_resched();
c8b97818
CM
427 }
428 bio_get(bio);
429
bfebd8b5 430 ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 431 BUG_ON(ret); /* -ENOMEM */
c8b97818 432
e55179b3
LZ
433 if (!skip_sum) {
434 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
79787eaa 435 BUG_ON(ret); /* -ENOMEM */
e55179b3 436 }
d20f7043 437
81a75f67 438 ret = btrfs_map_bio(root, bio, 0, 1);
f5daf2c7
LB
439 if (ret) {
440 bio->bi_error = ret;
441 bio_endio(bio);
442 }
c8b97818
CM
443
444 bio_put(bio);
445 return 0;
446}
447
2a4d0c90
CH
448static u64 bio_end_offset(struct bio *bio)
449{
450 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
451
452 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
453}
454
771ed689
CM
455static noinline int add_ra_bio_pages(struct inode *inode,
456 u64 compressed_end,
457 struct compressed_bio *cb)
458{
459 unsigned long end_index;
306e16ce 460 unsigned long pg_index;
771ed689
CM
461 u64 last_offset;
462 u64 isize = i_size_read(inode);
463 int ret;
464 struct page *page;
465 unsigned long nr_pages = 0;
466 struct extent_map *em;
467 struct address_space *mapping = inode->i_mapping;
771ed689
CM
468 struct extent_map_tree *em_tree;
469 struct extent_io_tree *tree;
470 u64 end;
471 int misses = 0;
472
2a4d0c90 473 last_offset = bio_end_offset(cb->orig_bio);
771ed689
CM
474 em_tree = &BTRFS_I(inode)->extent_tree;
475 tree = &BTRFS_I(inode)->io_tree;
476
477 if (isize == 0)
478 return 0;
479
09cbfeaf 480 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 481
d397712b 482 while (last_offset < compressed_end) {
09cbfeaf 483 pg_index = last_offset >> PAGE_SHIFT;
771ed689 484
306e16ce 485 if (pg_index > end_index)
771ed689
CM
486 break;
487
488 rcu_read_lock();
306e16ce 489 page = radix_tree_lookup(&mapping->page_tree, pg_index);
771ed689 490 rcu_read_unlock();
0cd6144a 491 if (page && !radix_tree_exceptional_entry(page)) {
771ed689
CM
492 misses++;
493 if (misses > 4)
494 break;
495 goto next;
496 }
497
c62d2555
MH
498 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
499 ~__GFP_FS));
771ed689
CM
500 if (!page)
501 break;
502
c62d2555 503 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 504 put_page(page);
771ed689
CM
505 goto next;
506 }
507
09cbfeaf 508 end = last_offset + PAGE_SIZE - 1;
771ed689
CM
509 /*
510 * at this point, we have a locked page in the page cache
511 * for these bytes in the file. But, we have to make
512 * sure they map to this compressed extent on disk.
513 */
514 set_page_extent_mapped(page);
d0082371 515 lock_extent(tree, last_offset, end);
890871be 516 read_lock(&em_tree->lock);
771ed689 517 em = lookup_extent_mapping(em_tree, last_offset,
09cbfeaf 518 PAGE_SIZE);
890871be 519 read_unlock(&em_tree->lock);
771ed689
CM
520
521 if (!em || last_offset < em->start ||
09cbfeaf 522 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
4f024f37 523 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 524 free_extent_map(em);
d0082371 525 unlock_extent(tree, last_offset, end);
771ed689 526 unlock_page(page);
09cbfeaf 527 put_page(page);
771ed689
CM
528 break;
529 }
530 free_extent_map(em);
531
532 if (page->index == end_index) {
533 char *userpage;
09cbfeaf 534 size_t zero_offset = isize & (PAGE_SIZE - 1);
771ed689
CM
535
536 if (zero_offset) {
537 int zeros;
09cbfeaf 538 zeros = PAGE_SIZE - zero_offset;
7ac687d9 539 userpage = kmap_atomic(page);
771ed689
CM
540 memset(userpage + zero_offset, 0, zeros);
541 flush_dcache_page(page);
7ac687d9 542 kunmap_atomic(userpage);
771ed689
CM
543 }
544 }
545
546 ret = bio_add_page(cb->orig_bio, page,
09cbfeaf 547 PAGE_SIZE, 0);
771ed689 548
09cbfeaf 549 if (ret == PAGE_SIZE) {
771ed689 550 nr_pages++;
09cbfeaf 551 put_page(page);
771ed689 552 } else {
d0082371 553 unlock_extent(tree, last_offset, end);
771ed689 554 unlock_page(page);
09cbfeaf 555 put_page(page);
771ed689
CM
556 break;
557 }
558next:
09cbfeaf 559 last_offset += PAGE_SIZE;
771ed689 560 }
771ed689
CM
561 return 0;
562}
563
c8b97818
CM
564/*
565 * for a compressed read, the bio we get passed has all the inode pages
566 * in it. We don't actually do IO on those pages but allocate new ones
567 * to hold the compressed pages on disk.
568 *
4f024f37 569 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 570 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
571 *
572 * After the compressed pages are read, we copy the bytes into the
573 * bio we were passed and then call the bio end_io calls
574 */
575int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
576 int mirror_num, unsigned long bio_flags)
577{
578 struct extent_io_tree *tree;
579 struct extent_map_tree *em_tree;
580 struct compressed_bio *cb;
581 struct btrfs_root *root = BTRFS_I(inode)->root;
c8b97818
CM
582 unsigned long compressed_len;
583 unsigned long nr_pages;
306e16ce 584 unsigned long pg_index;
c8b97818
CM
585 struct page *page;
586 struct block_device *bdev;
587 struct bio *comp_bio;
4f024f37 588 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
e04ca626
CM
589 u64 em_len;
590 u64 em_start;
c8b97818 591 struct extent_map *em;
6b82ce8d 592 int ret = -ENOMEM;
15e3004a 593 int faili = 0;
d20f7043 594 u32 *sums;
c8b97818
CM
595
596 tree = &BTRFS_I(inode)->io_tree;
597 em_tree = &BTRFS_I(inode)->extent_tree;
598
599 /* we need the actual starting offset of this extent in the file */
890871be 600 read_lock(&em_tree->lock);
c8b97818
CM
601 em = lookup_extent_mapping(em_tree,
602 page_offset(bio->bi_io_vec->bv_page),
09cbfeaf 603 PAGE_SIZE);
890871be 604 read_unlock(&em_tree->lock);
285190d9
TI
605 if (!em)
606 return -EIO;
c8b97818 607
d20f7043
CM
608 compressed_len = em->block_len;
609 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
6b82ce8d 610 if (!cb)
611 goto out;
612
c8b97818
CM
613 atomic_set(&cb->pending_bios, 0);
614 cb->errors = 0;
615 cb->inode = inode;
d20f7043
CM
616 cb->mirror_num = mirror_num;
617 sums = &cb->sums;
c8b97818 618
ff5b7ee3 619 cb->start = em->orig_start;
e04ca626
CM
620 em_len = em->len;
621 em_start = em->start;
d20f7043 622
c8b97818 623 free_extent_map(em);
e04ca626 624 em = NULL;
c8b97818 625
81381053 626 cb->len = bio->bi_iter.bi_size;
c8b97818 627 cb->compressed_len = compressed_len;
261507a0 628 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
629 cb->orig_bio = bio;
630
09cbfeaf 631 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 632 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 633 GFP_NOFS);
6b82ce8d 634 if (!cb->compressed_pages)
635 goto fail1;
636
c8b97818
CM
637 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
638
306e16ce
DS
639 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
640 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 641 __GFP_HIGHMEM);
15e3004a
JB
642 if (!cb->compressed_pages[pg_index]) {
643 faili = pg_index - 1;
644 ret = -ENOMEM;
6b82ce8d 645 goto fail2;
15e3004a 646 }
c8b97818 647 }
15e3004a 648 faili = nr_pages - 1;
c8b97818
CM
649 cb->nr_pages = nr_pages;
650
7f042a83 651 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 652
771ed689 653 /* include any pages we added in add_ra-bio_pages */
81381053 654 cb->len = bio->bi_iter.bi_size;
771ed689 655
c8b97818 656 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
6b82ce8d 657 if (!comp_bio)
658 goto fail2;
37226b21 659 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
c8b97818
CM
660 comp_bio->bi_private = cb;
661 comp_bio->bi_end_io = end_compressed_bio_read;
662 atomic_inc(&cb->pending_bios);
663
306e16ce
DS
664 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
665 page = cb->compressed_pages[pg_index];
c8b97818 666 page->mapping = inode->i_mapping;
09cbfeaf 667 page->index = em_start >> PAGE_SHIFT;
d20f7043 668
4f024f37 669 if (comp_bio->bi_iter.bi_size)
81a75f67 670 ret = tree->ops->merge_bio_hook(page, 0,
09cbfeaf 671 PAGE_SIZE,
c8b97818
CM
672 comp_bio, 0);
673 else
674 ret = 0;
675
70b99e69 676 page->mapping = NULL;
09cbfeaf
KS
677 if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
678 PAGE_SIZE) {
c8b97818
CM
679 bio_get(comp_bio);
680
bfebd8b5
DS
681 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
682 BTRFS_WQ_ENDIO_DATA);
79787eaa 683 BUG_ON(ret); /* -ENOMEM */
c8b97818 684
af09abfe
CM
685 /*
686 * inc the count before we submit the bio so
687 * we know the end IO handler won't happen before
688 * we inc the count. Otherwise, the cb might get
689 * freed before we're done setting it up
690 */
691 atomic_inc(&cb->pending_bios);
692
6cbff00f 693 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
c2db1073
TI
694 ret = btrfs_lookup_bio_sums(root, inode,
695 comp_bio, sums);
79787eaa 696 BUG_ON(ret); /* -ENOMEM */
d20f7043 697 }
ed6078f7 698 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
da17066c 699 root->fs_info->sectorsize);
d20f7043 700
81a75f67 701 ret = btrfs_map_bio(root, comp_bio, mirror_num, 0);
4246a0b6 702 if (ret) {
14155caf 703 comp_bio->bi_error = ret;
4246a0b6
CH
704 bio_endio(comp_bio);
705 }
c8b97818
CM
706
707 bio_put(comp_bio);
708
709 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
710 GFP_NOFS);
e627ee7b 711 BUG_ON(!comp_bio);
37226b21 712 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
771ed689
CM
713 comp_bio->bi_private = cb;
714 comp_bio->bi_end_io = end_compressed_bio_read;
715
09cbfeaf 716 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
c8b97818 717 }
09cbfeaf 718 cur_disk_byte += PAGE_SIZE;
c8b97818
CM
719 }
720 bio_get(comp_bio);
721
bfebd8b5
DS
722 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
723 BTRFS_WQ_ENDIO_DATA);
79787eaa 724 BUG_ON(ret); /* -ENOMEM */
c8b97818 725
c2db1073
TI
726 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
727 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
79787eaa 728 BUG_ON(ret); /* -ENOMEM */
c2db1073 729 }
d20f7043 730
81a75f67 731 ret = btrfs_map_bio(root, comp_bio, mirror_num, 0);
4246a0b6 732 if (ret) {
14155caf 733 comp_bio->bi_error = ret;
4246a0b6
CH
734 bio_endio(comp_bio);
735 }
c8b97818
CM
736
737 bio_put(comp_bio);
738 return 0;
6b82ce8d 739
740fail2:
15e3004a
JB
741 while (faili >= 0) {
742 __free_page(cb->compressed_pages[faili]);
743 faili--;
744 }
6b82ce8d 745
746 kfree(cb->compressed_pages);
747fail1:
748 kfree(cb);
749out:
750 free_extent_map(em);
751 return ret;
c8b97818 752}
261507a0 753
d9187649
BL
754static struct {
755 struct list_head idle_ws;
756 spinlock_t ws_lock;
6ac10a6a
DS
757 /* Number of free workspaces */
758 int free_ws;
759 /* Total number of allocated workspaces */
760 atomic_t total_ws;
761 /* Waiters for a free workspace */
d9187649
BL
762 wait_queue_head_t ws_wait;
763} btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
261507a0 764
e8c9f186 765static const struct btrfs_compress_op * const btrfs_compress_op[] = {
261507a0 766 &btrfs_zlib_compress,
a6fa6fae 767 &btrfs_lzo_compress,
261507a0
LZ
768};
769
143bede5 770void __init btrfs_init_compress(void)
261507a0
LZ
771{
772 int i;
773
774 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
f77dd0d6
DS
775 struct list_head *workspace;
776
d9187649
BL
777 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
778 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
6ac10a6a 779 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
d9187649 780 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
f77dd0d6
DS
781
782 /*
783 * Preallocate one workspace for each compression type so
784 * we can guarantee forward progress in the worst case
785 */
786 workspace = btrfs_compress_op[i]->alloc_workspace();
787 if (IS_ERR(workspace)) {
62e85577 788 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
f77dd0d6
DS
789 } else {
790 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
791 btrfs_comp_ws[i].free_ws = 1;
792 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
793 }
261507a0 794 }
261507a0
LZ
795}
796
797/*
e721e49d
DS
798 * This finds an available workspace or allocates a new one.
799 * If it's not possible to allocate a new one, waits until there's one.
800 * Preallocation makes a forward progress guarantees and we do not return
801 * errors.
261507a0
LZ
802 */
803static struct list_head *find_workspace(int type)
804{
805 struct list_head *workspace;
806 int cpus = num_online_cpus();
807 int idx = type - 1;
808
d9187649
BL
809 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
810 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
6ac10a6a 811 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
d9187649 812 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
6ac10a6a 813 int *free_ws = &btrfs_comp_ws[idx].free_ws;
261507a0 814again:
d9187649
BL
815 spin_lock(ws_lock);
816 if (!list_empty(idle_ws)) {
817 workspace = idle_ws->next;
261507a0 818 list_del(workspace);
6ac10a6a 819 (*free_ws)--;
d9187649 820 spin_unlock(ws_lock);
261507a0
LZ
821 return workspace;
822
823 }
6ac10a6a 824 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
825 DEFINE_WAIT(wait);
826
d9187649
BL
827 spin_unlock(ws_lock);
828 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 829 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 830 schedule();
d9187649 831 finish_wait(ws_wait, &wait);
261507a0
LZ
832 goto again;
833 }
6ac10a6a 834 atomic_inc(total_ws);
d9187649 835 spin_unlock(ws_lock);
261507a0
LZ
836
837 workspace = btrfs_compress_op[idx]->alloc_workspace();
838 if (IS_ERR(workspace)) {
6ac10a6a 839 atomic_dec(total_ws);
d9187649 840 wake_up(ws_wait);
e721e49d
DS
841
842 /*
843 * Do not return the error but go back to waiting. There's a
844 * workspace preallocated for each type and the compression
845 * time is bounded so we get to a workspace eventually. This
846 * makes our caller's life easier.
52356716
DS
847 *
848 * To prevent silent and low-probability deadlocks (when the
849 * initial preallocation fails), check if there are any
850 * workspaces at all.
e721e49d 851 */
52356716
DS
852 if (atomic_read(total_ws) == 0) {
853 static DEFINE_RATELIMIT_STATE(_rs,
854 /* once per minute */ 60 * HZ,
855 /* no burst */ 1);
856
857 if (__ratelimit(&_rs)) {
ab8d0fc4 858 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
859 }
860 }
e721e49d 861 goto again;
261507a0
LZ
862 }
863 return workspace;
864}
865
866/*
867 * put a workspace struct back on the list or free it if we have enough
868 * idle ones sitting around
869 */
870static void free_workspace(int type, struct list_head *workspace)
871{
872 int idx = type - 1;
d9187649
BL
873 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws;
874 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock;
6ac10a6a 875 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws;
d9187649 876 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait;
6ac10a6a 877 int *free_ws = &btrfs_comp_ws[idx].free_ws;
d9187649
BL
878
879 spin_lock(ws_lock);
6ac10a6a 880 if (*free_ws < num_online_cpus()) {
d9187649 881 list_add(workspace, idle_ws);
6ac10a6a 882 (*free_ws)++;
d9187649 883 spin_unlock(ws_lock);
261507a0
LZ
884 goto wake;
885 }
d9187649 886 spin_unlock(ws_lock);
261507a0
LZ
887
888 btrfs_compress_op[idx]->free_workspace(workspace);
6ac10a6a 889 atomic_dec(total_ws);
261507a0 890wake:
a83342aa
DS
891 /*
892 * Make sure counter is updated before we wake up waiters.
893 */
66657b31 894 smp_mb();
d9187649
BL
895 if (waitqueue_active(ws_wait))
896 wake_up(ws_wait);
261507a0
LZ
897}
898
899/*
900 * cleanup function for module exit
901 */
902static void free_workspaces(void)
903{
904 struct list_head *workspace;
905 int i;
906
907 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
d9187649
BL
908 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
909 workspace = btrfs_comp_ws[i].idle_ws.next;
261507a0
LZ
910 list_del(workspace);
911 btrfs_compress_op[i]->free_workspace(workspace);
6ac10a6a 912 atomic_dec(&btrfs_comp_ws[i].total_ws);
261507a0
LZ
913 }
914 }
915}
916
917/*
918 * given an address space and start/len, compress the bytes.
919 *
920 * pages are allocated to hold the compressed result and stored
921 * in 'pages'
922 *
923 * out_pages is used to return the number of pages allocated. There
924 * may be pages allocated even if we return an error
925 *
926 * total_in is used to return the number of bytes actually read. It
927 * may be smaller then len if we had to exit early because we
928 * ran out of room in the pages array or because we cross the
929 * max_out threshold.
930 *
931 * total_out is used to return the total number of compressed bytes
932 *
933 * max_out tells us the max number of bytes that we're allowed to
934 * stuff into pages
935 */
936int btrfs_compress_pages(int type, struct address_space *mapping,
937 u64 start, unsigned long len,
938 struct page **pages,
939 unsigned long nr_dest_pages,
940 unsigned long *out_pages,
941 unsigned long *total_in,
942 unsigned long *total_out,
943 unsigned long max_out)
944{
945 struct list_head *workspace;
946 int ret;
947
948 workspace = find_workspace(type);
261507a0
LZ
949
950 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
951 start, len, pages,
952 nr_dest_pages, out_pages,
953 total_in, total_out,
954 max_out);
955 free_workspace(type, workspace);
956 return ret;
957}
958
959/*
960 * pages_in is an array of pages with compressed data.
961 *
962 * disk_start is the starting logical offset of this array in the file
963 *
974b1adc 964 * orig_bio contains the pages from the file that we want to decompress into
261507a0
LZ
965 *
966 * srclen is the number of bytes in pages_in
967 *
968 * The basic idea is that we have a bio that was created by readpages.
969 * The pages in the bio are for the uncompressed data, and they may not
970 * be contiguous. They all correspond to the range of bytes covered by
971 * the compressed extent.
972 */
974b1adc
CH
973static int btrfs_decompress_bio(int type, struct page **pages_in,
974 u64 disk_start, struct bio *orig_bio,
975 size_t srclen)
261507a0
LZ
976{
977 struct list_head *workspace;
978 int ret;
979
980 workspace = find_workspace(type);
261507a0 981
974b1adc
CH
982 ret = btrfs_compress_op[type-1]->decompress_bio(workspace, pages_in,
983 disk_start, orig_bio,
984 srclen);
261507a0
LZ
985 free_workspace(type, workspace);
986 return ret;
987}
988
989/*
990 * a less complex decompression routine. Our compressed data fits in a
991 * single page, and we want to read a single page out of it.
992 * start_byte tells us the offset into the compressed data we're interested in
993 */
994int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
995 unsigned long start_byte, size_t srclen, size_t destlen)
996{
997 struct list_head *workspace;
998 int ret;
999
1000 workspace = find_workspace(type);
261507a0
LZ
1001
1002 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1003 dest_page, start_byte,
1004 srclen, destlen);
1005
1006 free_workspace(type, workspace);
1007 return ret;
1008}
1009
8e4eef7a 1010void btrfs_exit_compress(void)
261507a0
LZ
1011{
1012 free_workspaces();
1013}
3a39c18d
LZ
1014
1015/*
1016 * Copy uncompressed data from working buffer to pages.
1017 *
1018 * buf_start is the byte offset we're of the start of our workspace buffer.
1019 *
1020 * total_out is the last byte of the buffer
1021 */
1022int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
1023 unsigned long total_out, u64 disk_start,
974b1adc 1024 struct bio *bio)
3a39c18d
LZ
1025{
1026 unsigned long buf_offset;
1027 unsigned long current_buf_start;
1028 unsigned long start_byte;
1029 unsigned long working_bytes = total_out - buf_start;
1030 unsigned long bytes;
1031 char *kaddr;
974b1adc 1032 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d
LZ
1033
1034 /*
1035 * start byte is the first byte of the page we're currently
1036 * copying into relative to the start of the compressed data.
1037 */
974b1adc 1038 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d
LZ
1039
1040 /* we haven't yet hit data corresponding to this page */
1041 if (total_out <= start_byte)
1042 return 1;
1043
1044 /*
1045 * the start of the data we care about is offset into
1046 * the middle of our working buffer
1047 */
1048 if (total_out > start_byte && buf_start < start_byte) {
1049 buf_offset = start_byte - buf_start;
1050 working_bytes -= buf_offset;
1051 } else {
1052 buf_offset = 0;
1053 }
1054 current_buf_start = buf_start;
1055
1056 /* copy bytes from the working buffer into the pages */
1057 while (working_bytes > 0) {
974b1adc
CH
1058 bytes = min_t(unsigned long, bvec.bv_len,
1059 PAGE_SIZE - buf_offset);
3a39c18d 1060 bytes = min(bytes, working_bytes);
974b1adc
CH
1061
1062 kaddr = kmap_atomic(bvec.bv_page);
1063 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
7ac687d9 1064 kunmap_atomic(kaddr);
974b1adc 1065 flush_dcache_page(bvec.bv_page);
3a39c18d 1066
3a39c18d
LZ
1067 buf_offset += bytes;
1068 working_bytes -= bytes;
1069 current_buf_start += bytes;
1070
1071 /* check if we need to pick another page */
974b1adc
CH
1072 bio_advance(bio, bytes);
1073 if (!bio->bi_iter.bi_size)
1074 return 0;
1075 bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d 1076
974b1adc 1077 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d 1078
974b1adc
CH
1079 /*
1080 * make sure our new page is covered by this
1081 * working buffer
1082 */
1083 if (total_out <= start_byte)
1084 return 1;
3a39c18d 1085
974b1adc
CH
1086 /*
1087 * the next page in the biovec might not be adjacent
1088 * to the last page, but it might still be found
1089 * inside this working buffer. bump our offset pointer
1090 */
1091 if (total_out > start_byte &&
1092 current_buf_start < start_byte) {
1093 buf_offset = start_byte - buf_start;
1094 working_bytes = total_out - start_byte;
1095 current_buf_start = buf_start + buf_offset;
3a39c18d
LZ
1096 }
1097 }
1098
1099 return 1;
1100}