]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/btrfs/compression.c
Btrfs: Remove superfluous casts from u64 to unsigned long long
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / compression.c
CommitLineData
c8b97818
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
c8b97818
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/bit_spinlock.h>
5a0e3ad6 34#include <linux/slab.h>
4b4e25f2 35#include "compat.h"
c8b97818
CM
36#include "ctree.h"
37#include "disk-io.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
40#include "volumes.h"
41#include "ordered-data.h"
c8b97818
CM
42#include "compression.h"
43#include "extent_io.h"
44#include "extent_map.h"
45
46struct compressed_bio {
47 /* number of bios pending for this compressed extent */
48 atomic_t pending_bios;
49
50 /* the pages with the compressed data on them */
51 struct page **compressed_pages;
52
53 /* inode that owns this data */
54 struct inode *inode;
55
56 /* starting offset in the inode for our pages */
57 u64 start;
58
59 /* number of bytes in the inode we're working on */
60 unsigned long len;
61
62 /* number of bytes on disk */
63 unsigned long compressed_len;
64
261507a0
LZ
65 /* the compression algorithm for this bio */
66 int compress_type;
67
c8b97818
CM
68 /* number of compressed pages in the array */
69 unsigned long nr_pages;
70
71 /* IO errors */
72 int errors;
d20f7043 73 int mirror_num;
c8b97818
CM
74
75 /* for reads, this is the bio we are copying the data into */
76 struct bio *orig_bio;
d20f7043
CM
77
78 /*
79 * the start of a variable length array of checksums only
80 * used by reads
81 */
82 u32 sums;
c8b97818
CM
83};
84
48a3b636
ES
85static int btrfs_decompress_biovec(int type, struct page **pages_in,
86 u64 disk_start, struct bio_vec *bvec,
87 int vcnt, size_t srclen);
88
d20f7043
CM
89static inline int compressed_bio_size(struct btrfs_root *root,
90 unsigned long disk_size)
91{
6c41761f
DS
92 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
93
d20f7043
CM
94 return sizeof(struct compressed_bio) +
95 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
96 csum_size;
97}
98
c8b97818
CM
99static struct bio *compressed_bio_alloc(struct block_device *bdev,
100 u64 first_byte, gfp_t gfp_flags)
101{
c8b97818
CM
102 int nr_vecs;
103
104 nr_vecs = bio_get_nr_vecs(bdev);
88f794ed 105 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
c8b97818
CM
106}
107
d20f7043
CM
108static int check_compressed_csum(struct inode *inode,
109 struct compressed_bio *cb,
110 u64 disk_start)
111{
112 int ret;
d20f7043
CM
113 struct page *page;
114 unsigned long i;
115 char *kaddr;
116 u32 csum;
117 u32 *cb_sum = &cb->sums;
118
6cbff00f 119 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
120 return 0;
121
122 for (i = 0; i < cb->nr_pages; i++) {
123 page = cb->compressed_pages[i];
124 csum = ~(u32)0;
125
7ac687d9 126 kaddr = kmap_atomic(page);
b0496686 127 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
d20f7043 128 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 129 kunmap_atomic(kaddr);
d20f7043
CM
130
131 if (csum != *cb_sum) {
33345d01 132 printk(KERN_INFO "btrfs csum failed ino %llu "
d397712b 133 "extent %llu csum %u "
33345d01 134 "wanted %u mirror %d\n",
c1c9ff7c
GU
135 btrfs_ino(inode), disk_start, csum, *cb_sum,
136 cb->mirror_num);
d20f7043
CM
137 ret = -EIO;
138 goto fail;
139 }
140 cb_sum++;
141
142 }
143 ret = 0;
144fail:
145 return ret;
146}
147
c8b97818
CM
148/* when we finish reading compressed pages from the disk, we
149 * decompress them and then run the bio end_io routines on the
150 * decompressed pages (in the inode address space).
151 *
152 * This allows the checksumming and other IO error handling routines
153 * to work normally
154 *
155 * The compressed pages are freed here, and it must be run
156 * in process context
157 */
158static void end_compressed_bio_read(struct bio *bio, int err)
159{
c8b97818
CM
160 struct compressed_bio *cb = bio->bi_private;
161 struct inode *inode;
162 struct page *page;
163 unsigned long index;
164 int ret;
165
166 if (err)
167 cb->errors = 1;
168
169 /* if there are more bios still pending for this compressed
170 * extent, just exit
171 */
172 if (!atomic_dec_and_test(&cb->pending_bios))
173 goto out;
174
d20f7043
CM
175 inode = cb->inode;
176 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
177 if (ret)
178 goto csum_failed;
179
c8b97818
CM
180 /* ok, we're the last bio for this extent, lets start
181 * the decompression.
182 */
261507a0
LZ
183 ret = btrfs_decompress_biovec(cb->compress_type,
184 cb->compressed_pages,
185 cb->start,
186 cb->orig_bio->bi_io_vec,
187 cb->orig_bio->bi_vcnt,
188 cb->compressed_len);
d20f7043 189csum_failed:
c8b97818
CM
190 if (ret)
191 cb->errors = 1;
192
193 /* release the compressed pages */
194 index = 0;
195 for (index = 0; index < cb->nr_pages; index++) {
196 page = cb->compressed_pages[index];
197 page->mapping = NULL;
198 page_cache_release(page);
199 }
200
201 /* do io completion on the original bio */
771ed689 202 if (cb->errors) {
c8b97818 203 bio_io_error(cb->orig_bio);
d20f7043
CM
204 } else {
205 int bio_index = 0;
206 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
207
208 /*
209 * we have verified the checksum already, set page
210 * checked so the end_io handlers know about it
211 */
d397712b 212 while (bio_index < cb->orig_bio->bi_vcnt) {
d20f7043
CM
213 SetPageChecked(bvec->bv_page);
214 bvec++;
215 bio_index++;
216 }
c8b97818 217 bio_endio(cb->orig_bio, 0);
d20f7043 218 }
c8b97818
CM
219
220 /* finally free the cb struct */
221 kfree(cb->compressed_pages);
222 kfree(cb);
223out:
224 bio_put(bio);
225}
226
227/*
228 * Clear the writeback bits on all of the file
229 * pages for a compressed write
230 */
143bede5
JM
231static noinline void end_compressed_writeback(struct inode *inode, u64 start,
232 unsigned long ram_size)
c8b97818
CM
233{
234 unsigned long index = start >> PAGE_CACHE_SHIFT;
235 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
236 struct page *pages[16];
237 unsigned long nr_pages = end_index - index + 1;
238 int i;
239 int ret;
240
d397712b 241 while (nr_pages > 0) {
c8b97818 242 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
243 min_t(unsigned long,
244 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
245 if (ret == 0) {
246 nr_pages -= 1;
247 index += 1;
248 continue;
249 }
250 for (i = 0; i < ret; i++) {
251 end_page_writeback(pages[i]);
252 page_cache_release(pages[i]);
253 }
254 nr_pages -= ret;
255 index += ret;
256 }
257 /* the inode may be gone now */
c8b97818
CM
258}
259
260/*
261 * do the cleanup once all the compressed pages hit the disk.
262 * This will clear writeback on the file pages and free the compressed
263 * pages.
264 *
265 * This also calls the writeback end hooks for the file pages so that
266 * metadata and checksums can be updated in the file.
267 */
268static void end_compressed_bio_write(struct bio *bio, int err)
269{
270 struct extent_io_tree *tree;
271 struct compressed_bio *cb = bio->bi_private;
272 struct inode *inode;
273 struct page *page;
274 unsigned long index;
275
276 if (err)
277 cb->errors = 1;
278
279 /* if there are more bios still pending for this compressed
280 * extent, just exit
281 */
282 if (!atomic_dec_and_test(&cb->pending_bios))
283 goto out;
284
285 /* ok, we're the last bio for this extent, step one is to
286 * call back into the FS and do all the end_io operations
287 */
288 inode = cb->inode;
289 tree = &BTRFS_I(inode)->io_tree;
70b99e69 290 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
291 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
292 cb->start,
293 cb->start + cb->len - 1,
294 NULL, 1);
70b99e69 295 cb->compressed_pages[0]->mapping = NULL;
c8b97818
CM
296
297 end_compressed_writeback(inode, cb->start, cb->len);
298 /* note, our inode could be gone now */
299
300 /*
301 * release the compressed pages, these came from alloc_page and
302 * are not attached to the inode at all
303 */
304 index = 0;
305 for (index = 0; index < cb->nr_pages; index++) {
306 page = cb->compressed_pages[index];
307 page->mapping = NULL;
308 page_cache_release(page);
309 }
310
311 /* finally free the cb struct */
312 kfree(cb->compressed_pages);
313 kfree(cb);
314out:
315 bio_put(bio);
316}
317
318/*
319 * worker function to build and submit bios for previously compressed pages.
320 * The corresponding pages in the inode should be marked for writeback
321 * and the compressed pages should have a reference on them for dropping
322 * when the IO is complete.
323 *
324 * This also checksums the file bytes and gets things ready for
325 * the end io hooks.
326 */
327int btrfs_submit_compressed_write(struct inode *inode, u64 start,
328 unsigned long len, u64 disk_start,
329 unsigned long compressed_len,
330 struct page **compressed_pages,
331 unsigned long nr_pages)
332{
333 struct bio *bio = NULL;
334 struct btrfs_root *root = BTRFS_I(inode)->root;
335 struct compressed_bio *cb;
336 unsigned long bytes_left;
337 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306e16ce 338 int pg_index = 0;
c8b97818
CM
339 struct page *page;
340 u64 first_byte = disk_start;
341 struct block_device *bdev;
342 int ret;
e55179b3 343 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818
CM
344
345 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
d20f7043 346 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
dac97e51
YS
347 if (!cb)
348 return -ENOMEM;
c8b97818
CM
349 atomic_set(&cb->pending_bios, 0);
350 cb->errors = 0;
351 cb->inode = inode;
352 cb->start = start;
353 cb->len = len;
d20f7043 354 cb->mirror_num = 0;
c8b97818
CM
355 cb->compressed_pages = compressed_pages;
356 cb->compressed_len = compressed_len;
357 cb->orig_bio = NULL;
358 cb->nr_pages = nr_pages;
359
360 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
361
c8b97818 362 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
dac97e51
YS
363 if(!bio) {
364 kfree(cb);
365 return -ENOMEM;
366 }
c8b97818
CM
367 bio->bi_private = cb;
368 bio->bi_end_io = end_compressed_bio_write;
369 atomic_inc(&cb->pending_bios);
370
371 /* create and submit bios for the compressed pages */
372 bytes_left = compressed_len;
306e16ce
DS
373 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
374 page = compressed_pages[pg_index];
c8b97818
CM
375 page->mapping = inode->i_mapping;
376 if (bio->bi_size)
64a16701 377 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
c8b97818
CM
378 PAGE_CACHE_SIZE,
379 bio, 0);
380 else
381 ret = 0;
382
70b99e69 383 page->mapping = NULL;
c8b97818
CM
384 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
385 PAGE_CACHE_SIZE) {
386 bio_get(bio);
387
af09abfe
CM
388 /*
389 * inc the count before we submit the bio so
390 * we know the end IO handler won't happen before
391 * we inc the count. Otherwise, the cb might get
392 * freed before we're done setting it up
393 */
394 atomic_inc(&cb->pending_bios);
c8b97818 395 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
79787eaa 396 BUG_ON(ret); /* -ENOMEM */
c8b97818 397
e55179b3
LZ
398 if (!skip_sum) {
399 ret = btrfs_csum_one_bio(root, inode, bio,
400 start, 1);
79787eaa 401 BUG_ON(ret); /* -ENOMEM */
e55179b3 402 }
d20f7043 403
c8b97818 404 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
79787eaa 405 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
406
407 bio_put(bio);
408
409 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
e627ee7b 410 BUG_ON(!bio);
c8b97818
CM
411 bio->bi_private = cb;
412 bio->bi_end_io = end_compressed_bio_write;
413 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
414 }
cfbc246e
CM
415 if (bytes_left < PAGE_CACHE_SIZE) {
416 printk("bytes left %lu compress len %lu nr %lu\n",
417 bytes_left, cb->compressed_len, cb->nr_pages);
418 }
c8b97818
CM
419 bytes_left -= PAGE_CACHE_SIZE;
420 first_byte += PAGE_CACHE_SIZE;
771ed689 421 cond_resched();
c8b97818
CM
422 }
423 bio_get(bio);
424
425 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
79787eaa 426 BUG_ON(ret); /* -ENOMEM */
c8b97818 427
e55179b3
LZ
428 if (!skip_sum) {
429 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
79787eaa 430 BUG_ON(ret); /* -ENOMEM */
e55179b3 431 }
d20f7043 432
c8b97818 433 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
79787eaa 434 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
435
436 bio_put(bio);
437 return 0;
438}
439
771ed689
CM
440static noinline int add_ra_bio_pages(struct inode *inode,
441 u64 compressed_end,
442 struct compressed_bio *cb)
443{
444 unsigned long end_index;
306e16ce 445 unsigned long pg_index;
771ed689
CM
446 u64 last_offset;
447 u64 isize = i_size_read(inode);
448 int ret;
449 struct page *page;
450 unsigned long nr_pages = 0;
451 struct extent_map *em;
452 struct address_space *mapping = inode->i_mapping;
771ed689
CM
453 struct extent_map_tree *em_tree;
454 struct extent_io_tree *tree;
455 u64 end;
456 int misses = 0;
457
458 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
459 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
460 em_tree = &BTRFS_I(inode)->extent_tree;
461 tree = &BTRFS_I(inode)->io_tree;
462
463 if (isize == 0)
464 return 0;
465
466 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
467
d397712b 468 while (last_offset < compressed_end) {
306e16ce 469 pg_index = last_offset >> PAGE_CACHE_SHIFT;
771ed689 470
306e16ce 471 if (pg_index > end_index)
771ed689
CM
472 break;
473
474 rcu_read_lock();
306e16ce 475 page = radix_tree_lookup(&mapping->page_tree, pg_index);
771ed689
CM
476 rcu_read_unlock();
477 if (page) {
478 misses++;
479 if (misses > 4)
480 break;
481 goto next;
482 }
483
28ecb609
NP
484 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
485 ~__GFP_FS);
771ed689
CM
486 if (!page)
487 break;
488
306e16ce 489 if (add_to_page_cache_lru(page, mapping, pg_index,
28ecb609 490 GFP_NOFS)) {
771ed689
CM
491 page_cache_release(page);
492 goto next;
493 }
494
771ed689
CM
495 end = last_offset + PAGE_CACHE_SIZE - 1;
496 /*
497 * at this point, we have a locked page in the page cache
498 * for these bytes in the file. But, we have to make
499 * sure they map to this compressed extent on disk.
500 */
501 set_page_extent_mapped(page);
d0082371 502 lock_extent(tree, last_offset, end);
890871be 503 read_lock(&em_tree->lock);
771ed689
CM
504 em = lookup_extent_mapping(em_tree, last_offset,
505 PAGE_CACHE_SIZE);
890871be 506 read_unlock(&em_tree->lock);
771ed689
CM
507
508 if (!em || last_offset < em->start ||
509 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
510 (em->block_start >> 9) != cb->orig_bio->bi_sector) {
511 free_extent_map(em);
d0082371 512 unlock_extent(tree, last_offset, end);
771ed689
CM
513 unlock_page(page);
514 page_cache_release(page);
515 break;
516 }
517 free_extent_map(em);
518
519 if (page->index == end_index) {
520 char *userpage;
521 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
522
523 if (zero_offset) {
524 int zeros;
525 zeros = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 526 userpage = kmap_atomic(page);
771ed689
CM
527 memset(userpage + zero_offset, 0, zeros);
528 flush_dcache_page(page);
7ac687d9 529 kunmap_atomic(userpage);
771ed689
CM
530 }
531 }
532
533 ret = bio_add_page(cb->orig_bio, page,
534 PAGE_CACHE_SIZE, 0);
535
536 if (ret == PAGE_CACHE_SIZE) {
537 nr_pages++;
538 page_cache_release(page);
539 } else {
d0082371 540 unlock_extent(tree, last_offset, end);
771ed689
CM
541 unlock_page(page);
542 page_cache_release(page);
543 break;
544 }
545next:
546 last_offset += PAGE_CACHE_SIZE;
547 }
771ed689
CM
548 return 0;
549}
550
c8b97818
CM
551/*
552 * for a compressed read, the bio we get passed has all the inode pages
553 * in it. We don't actually do IO on those pages but allocate new ones
554 * to hold the compressed pages on disk.
555 *
556 * bio->bi_sector points to the compressed extent on disk
557 * bio->bi_io_vec points to all of the inode pages
558 * bio->bi_vcnt is a count of pages
559 *
560 * After the compressed pages are read, we copy the bytes into the
561 * bio we were passed and then call the bio end_io calls
562 */
563int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
564 int mirror_num, unsigned long bio_flags)
565{
566 struct extent_io_tree *tree;
567 struct extent_map_tree *em_tree;
568 struct compressed_bio *cb;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
571 unsigned long compressed_len;
572 unsigned long nr_pages;
306e16ce 573 unsigned long pg_index;
c8b97818
CM
574 struct page *page;
575 struct block_device *bdev;
576 struct bio *comp_bio;
577 u64 cur_disk_byte = (u64)bio->bi_sector << 9;
e04ca626
CM
578 u64 em_len;
579 u64 em_start;
c8b97818 580 struct extent_map *em;
6b82ce8d 581 int ret = -ENOMEM;
15e3004a 582 int faili = 0;
d20f7043 583 u32 *sums;
c8b97818
CM
584
585 tree = &BTRFS_I(inode)->io_tree;
586 em_tree = &BTRFS_I(inode)->extent_tree;
587
588 /* we need the actual starting offset of this extent in the file */
890871be 589 read_lock(&em_tree->lock);
c8b97818
CM
590 em = lookup_extent_mapping(em_tree,
591 page_offset(bio->bi_io_vec->bv_page),
592 PAGE_CACHE_SIZE);
890871be 593 read_unlock(&em_tree->lock);
285190d9
TI
594 if (!em)
595 return -EIO;
c8b97818 596
d20f7043
CM
597 compressed_len = em->block_len;
598 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
6b82ce8d 599 if (!cb)
600 goto out;
601
c8b97818
CM
602 atomic_set(&cb->pending_bios, 0);
603 cb->errors = 0;
604 cb->inode = inode;
d20f7043
CM
605 cb->mirror_num = mirror_num;
606 sums = &cb->sums;
c8b97818 607
ff5b7ee3 608 cb->start = em->orig_start;
e04ca626
CM
609 em_len = em->len;
610 em_start = em->start;
d20f7043 611
c8b97818 612 free_extent_map(em);
e04ca626 613 em = NULL;
c8b97818
CM
614
615 cb->len = uncompressed_len;
616 cb->compressed_len = compressed_len;
261507a0 617 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
618 cb->orig_bio = bio;
619
620 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
621 PAGE_CACHE_SIZE;
6b82ce8d 622 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
c8b97818 623 GFP_NOFS);
6b82ce8d 624 if (!cb->compressed_pages)
625 goto fail1;
626
c8b97818
CM
627 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
628
306e16ce
DS
629 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
630 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 631 __GFP_HIGHMEM);
15e3004a
JB
632 if (!cb->compressed_pages[pg_index]) {
633 faili = pg_index - 1;
634 ret = -ENOMEM;
6b82ce8d 635 goto fail2;
15e3004a 636 }
c8b97818 637 }
15e3004a 638 faili = nr_pages - 1;
c8b97818
CM
639 cb->nr_pages = nr_pages;
640
4b384318
MF
641 /* In the parent-locked case, we only locked the range we are
642 * interested in. In all other cases, we can opportunistically
643 * cache decompressed data that goes beyond the requested range. */
644 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
645 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 646
771ed689
CM
647 /* include any pages we added in add_ra-bio_pages */
648 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
649 cb->len = uncompressed_len;
650
c8b97818 651 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
6b82ce8d 652 if (!comp_bio)
653 goto fail2;
c8b97818
CM
654 comp_bio->bi_private = cb;
655 comp_bio->bi_end_io = end_compressed_bio_read;
656 atomic_inc(&cb->pending_bios);
657
306e16ce
DS
658 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
659 page = cb->compressed_pages[pg_index];
c8b97818 660 page->mapping = inode->i_mapping;
d20f7043
CM
661 page->index = em_start >> PAGE_CACHE_SHIFT;
662
c8b97818 663 if (comp_bio->bi_size)
64a16701 664 ret = tree->ops->merge_bio_hook(READ, page, 0,
c8b97818
CM
665 PAGE_CACHE_SIZE,
666 comp_bio, 0);
667 else
668 ret = 0;
669
70b99e69 670 page->mapping = NULL;
c8b97818
CM
671 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
672 PAGE_CACHE_SIZE) {
673 bio_get(comp_bio);
674
675 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
79787eaa 676 BUG_ON(ret); /* -ENOMEM */
c8b97818 677
af09abfe
CM
678 /*
679 * inc the count before we submit the bio so
680 * we know the end IO handler won't happen before
681 * we inc the count. Otherwise, the cb might get
682 * freed before we're done setting it up
683 */
684 atomic_inc(&cb->pending_bios);
685
6cbff00f 686 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
c2db1073
TI
687 ret = btrfs_lookup_bio_sums(root, inode,
688 comp_bio, sums);
79787eaa 689 BUG_ON(ret); /* -ENOMEM */
d20f7043
CM
690 }
691 sums += (comp_bio->bi_size + root->sectorsize - 1) /
692 root->sectorsize;
693
694 ret = btrfs_map_bio(root, READ, comp_bio,
695 mirror_num, 0);
61891923
SB
696 if (ret)
697 bio_endio(comp_bio, ret);
c8b97818
CM
698
699 bio_put(comp_bio);
700
701 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
702 GFP_NOFS);
e627ee7b 703 BUG_ON(!comp_bio);
771ed689
CM
704 comp_bio->bi_private = cb;
705 comp_bio->bi_end_io = end_compressed_bio_read;
706
707 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
c8b97818
CM
708 }
709 cur_disk_byte += PAGE_CACHE_SIZE;
710 }
711 bio_get(comp_bio);
712
713 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
79787eaa 714 BUG_ON(ret); /* -ENOMEM */
c8b97818 715
c2db1073
TI
716 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
717 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
79787eaa 718 BUG_ON(ret); /* -ENOMEM */
c2db1073 719 }
d20f7043
CM
720
721 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
61891923
SB
722 if (ret)
723 bio_endio(comp_bio, ret);
c8b97818
CM
724
725 bio_put(comp_bio);
726 return 0;
6b82ce8d 727
728fail2:
15e3004a
JB
729 while (faili >= 0) {
730 __free_page(cb->compressed_pages[faili]);
731 faili--;
732 }
6b82ce8d 733
734 kfree(cb->compressed_pages);
735fail1:
736 kfree(cb);
737out:
738 free_extent_map(em);
739 return ret;
c8b97818 740}
261507a0
LZ
741
742static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
743static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
744static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
745static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
746static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
747
48a3b636 748static struct btrfs_compress_op *btrfs_compress_op[] = {
261507a0 749 &btrfs_zlib_compress,
a6fa6fae 750 &btrfs_lzo_compress,
261507a0
LZ
751};
752
143bede5 753void __init btrfs_init_compress(void)
261507a0
LZ
754{
755 int i;
756
757 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
758 INIT_LIST_HEAD(&comp_idle_workspace[i]);
759 spin_lock_init(&comp_workspace_lock[i]);
760 atomic_set(&comp_alloc_workspace[i], 0);
761 init_waitqueue_head(&comp_workspace_wait[i]);
762 }
261507a0
LZ
763}
764
765/*
766 * this finds an available workspace or allocates a new one
767 * ERR_PTR is returned if things go bad.
768 */
769static struct list_head *find_workspace(int type)
770{
771 struct list_head *workspace;
772 int cpus = num_online_cpus();
773 int idx = type - 1;
774
775 struct list_head *idle_workspace = &comp_idle_workspace[idx];
776 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
777 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
778 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
779 int *num_workspace = &comp_num_workspace[idx];
780again:
781 spin_lock(workspace_lock);
782 if (!list_empty(idle_workspace)) {
783 workspace = idle_workspace->next;
784 list_del(workspace);
785 (*num_workspace)--;
786 spin_unlock(workspace_lock);
787 return workspace;
788
789 }
790 if (atomic_read(alloc_workspace) > cpus) {
791 DEFINE_WAIT(wait);
792
793 spin_unlock(workspace_lock);
794 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
795 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
796 schedule();
797 finish_wait(workspace_wait, &wait);
798 goto again;
799 }
800 atomic_inc(alloc_workspace);
801 spin_unlock(workspace_lock);
802
803 workspace = btrfs_compress_op[idx]->alloc_workspace();
804 if (IS_ERR(workspace)) {
805 atomic_dec(alloc_workspace);
806 wake_up(workspace_wait);
807 }
808 return workspace;
809}
810
811/*
812 * put a workspace struct back on the list or free it if we have enough
813 * idle ones sitting around
814 */
815static void free_workspace(int type, struct list_head *workspace)
816{
817 int idx = type - 1;
818 struct list_head *idle_workspace = &comp_idle_workspace[idx];
819 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
820 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
821 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
822 int *num_workspace = &comp_num_workspace[idx];
823
824 spin_lock(workspace_lock);
825 if (*num_workspace < num_online_cpus()) {
826 list_add_tail(workspace, idle_workspace);
827 (*num_workspace)++;
828 spin_unlock(workspace_lock);
829 goto wake;
830 }
831 spin_unlock(workspace_lock);
832
833 btrfs_compress_op[idx]->free_workspace(workspace);
834 atomic_dec(alloc_workspace);
835wake:
66657b31 836 smp_mb();
261507a0
LZ
837 if (waitqueue_active(workspace_wait))
838 wake_up(workspace_wait);
839}
840
841/*
842 * cleanup function for module exit
843 */
844static void free_workspaces(void)
845{
846 struct list_head *workspace;
847 int i;
848
849 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
850 while (!list_empty(&comp_idle_workspace[i])) {
851 workspace = comp_idle_workspace[i].next;
852 list_del(workspace);
853 btrfs_compress_op[i]->free_workspace(workspace);
854 atomic_dec(&comp_alloc_workspace[i]);
855 }
856 }
857}
858
859/*
860 * given an address space and start/len, compress the bytes.
861 *
862 * pages are allocated to hold the compressed result and stored
863 * in 'pages'
864 *
865 * out_pages is used to return the number of pages allocated. There
866 * may be pages allocated even if we return an error
867 *
868 * total_in is used to return the number of bytes actually read. It
869 * may be smaller then len if we had to exit early because we
870 * ran out of room in the pages array or because we cross the
871 * max_out threshold.
872 *
873 * total_out is used to return the total number of compressed bytes
874 *
875 * max_out tells us the max number of bytes that we're allowed to
876 * stuff into pages
877 */
878int btrfs_compress_pages(int type, struct address_space *mapping,
879 u64 start, unsigned long len,
880 struct page **pages,
881 unsigned long nr_dest_pages,
882 unsigned long *out_pages,
883 unsigned long *total_in,
884 unsigned long *total_out,
885 unsigned long max_out)
886{
887 struct list_head *workspace;
888 int ret;
889
890 workspace = find_workspace(type);
891 if (IS_ERR(workspace))
892 return -1;
893
894 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
895 start, len, pages,
896 nr_dest_pages, out_pages,
897 total_in, total_out,
898 max_out);
899 free_workspace(type, workspace);
900 return ret;
901}
902
903/*
904 * pages_in is an array of pages with compressed data.
905 *
906 * disk_start is the starting logical offset of this array in the file
907 *
908 * bvec is a bio_vec of pages from the file that we want to decompress into
909 *
910 * vcnt is the count of pages in the biovec
911 *
912 * srclen is the number of bytes in pages_in
913 *
914 * The basic idea is that we have a bio that was created by readpages.
915 * The pages in the bio are for the uncompressed data, and they may not
916 * be contiguous. They all correspond to the range of bytes covered by
917 * the compressed extent.
918 */
48a3b636
ES
919static int btrfs_decompress_biovec(int type, struct page **pages_in,
920 u64 disk_start, struct bio_vec *bvec,
921 int vcnt, size_t srclen)
261507a0
LZ
922{
923 struct list_head *workspace;
924 int ret;
925
926 workspace = find_workspace(type);
927 if (IS_ERR(workspace))
928 return -ENOMEM;
929
930 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
931 disk_start,
932 bvec, vcnt, srclen);
933 free_workspace(type, workspace);
934 return ret;
935}
936
937/*
938 * a less complex decompression routine. Our compressed data fits in a
939 * single page, and we want to read a single page out of it.
940 * start_byte tells us the offset into the compressed data we're interested in
941 */
942int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
943 unsigned long start_byte, size_t srclen, size_t destlen)
944{
945 struct list_head *workspace;
946 int ret;
947
948 workspace = find_workspace(type);
949 if (IS_ERR(workspace))
950 return -ENOMEM;
951
952 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
953 dest_page, start_byte,
954 srclen, destlen);
955
956 free_workspace(type, workspace);
957 return ret;
958}
959
8e4eef7a 960void btrfs_exit_compress(void)
261507a0
LZ
961{
962 free_workspaces();
963}
3a39c18d
LZ
964
965/*
966 * Copy uncompressed data from working buffer to pages.
967 *
968 * buf_start is the byte offset we're of the start of our workspace buffer.
969 *
970 * total_out is the last byte of the buffer
971 */
972int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
973 unsigned long total_out, u64 disk_start,
974 struct bio_vec *bvec, int vcnt,
306e16ce 975 unsigned long *pg_index,
3a39c18d
LZ
976 unsigned long *pg_offset)
977{
978 unsigned long buf_offset;
979 unsigned long current_buf_start;
980 unsigned long start_byte;
981 unsigned long working_bytes = total_out - buf_start;
982 unsigned long bytes;
983 char *kaddr;
306e16ce 984 struct page *page_out = bvec[*pg_index].bv_page;
3a39c18d
LZ
985
986 /*
987 * start byte is the first byte of the page we're currently
988 * copying into relative to the start of the compressed data.
989 */
990 start_byte = page_offset(page_out) - disk_start;
991
992 /* we haven't yet hit data corresponding to this page */
993 if (total_out <= start_byte)
994 return 1;
995
996 /*
997 * the start of the data we care about is offset into
998 * the middle of our working buffer
999 */
1000 if (total_out > start_byte && buf_start < start_byte) {
1001 buf_offset = start_byte - buf_start;
1002 working_bytes -= buf_offset;
1003 } else {
1004 buf_offset = 0;
1005 }
1006 current_buf_start = buf_start;
1007
1008 /* copy bytes from the working buffer into the pages */
1009 while (working_bytes > 0) {
1010 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1011 PAGE_CACHE_SIZE - buf_offset);
1012 bytes = min(bytes, working_bytes);
7ac687d9 1013 kaddr = kmap_atomic(page_out);
3a39c18d 1014 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
7ac687d9 1015 kunmap_atomic(kaddr);
3a39c18d
LZ
1016 flush_dcache_page(page_out);
1017
1018 *pg_offset += bytes;
1019 buf_offset += bytes;
1020 working_bytes -= bytes;
1021 current_buf_start += bytes;
1022
1023 /* check if we need to pick another page */
1024 if (*pg_offset == PAGE_CACHE_SIZE) {
306e16ce
DS
1025 (*pg_index)++;
1026 if (*pg_index >= vcnt)
3a39c18d
LZ
1027 return 0;
1028
306e16ce 1029 page_out = bvec[*pg_index].bv_page;
3a39c18d
LZ
1030 *pg_offset = 0;
1031 start_byte = page_offset(page_out) - disk_start;
1032
1033 /*
1034 * make sure our new page is covered by this
1035 * working buffer
1036 */
1037 if (total_out <= start_byte)
1038 return 1;
1039
1040 /*
1041 * the next page in the biovec might not be adjacent
1042 * to the last page, but it might still be found
1043 * inside this working buffer. bump our offset pointer
1044 */
1045 if (total_out > start_byte &&
1046 current_buf_start < start_byte) {
1047 buf_offset = start_byte - buf_start;
1048 working_bytes = total_out - start_byte;
1049 current_buf_start = buf_start + buf_offset;
1050 }
1051 }
1052 }
1053
1054 return 1;
1055}