]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/ctree.c
btrfs: propagate error to btrfs_cmp_data_prepare caller
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
adf02123 22#include <linux/mm.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
7f5c1516 25#include "transaction.h"
5f39d397 26#include "print-tree.h"
925baedd 27#include "locking.h"
9a8dd150 28
e089f05c
CM
29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
310712b2
OS
31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
5f39d397 34static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
35 struct btrfs_fs_info *fs_info,
36 struct extent_buffer *dst,
971a1f66 37 struct extent_buffer *src, int empty);
5f39d397 38static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 39 struct btrfs_fs_info *fs_info,
5f39d397
CM
40 struct extent_buffer *dst_buf,
41 struct extent_buffer *src_buf);
afe5fea7
TI
42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 int level, int slot);
5de865ee 44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
f230475e 45 struct extent_buffer *eb);
d97e63b6 46
df24a2b9 47struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 48{
e2c89907 49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
50}
51
b4ce94de
CM
52/*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57{
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
67 }
68}
69
70/*
71 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
b4ce94de 77 */
4008c04a 78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 79 struct extent_buffer *held, int held_rw)
b4ce94de
CM
80{
81 int i;
4008c04a 82
bd681513
CM
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
4008c04a 90 btrfs_set_path_blocking(p);
4008c04a
CM
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
b4ce94de 100 }
4008c04a 101
4008c04a 102 if (held)
bd681513 103 btrfs_clear_lock_blocking_rw(held, held_rw);
b4ce94de
CM
104}
105
d352ac68 106/* this also releases the path */
df24a2b9 107void btrfs_free_path(struct btrfs_path *p)
be0e5c09 108{
ff175d57
JJ
109 if (!p)
110 return;
b3b4aa74 111 btrfs_release_path(p);
df24a2b9 112 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
113}
114
d352ac68
CM
115/*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
b3b4aa74 121noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
122{
123 int i;
a2135011 124
234b63a0 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 126 p->slots[i] = 0;
eb60ceac 127 if (!p->nodes[i])
925baedd
CM
128 continue;
129 if (p->locks[i]) {
bd681513 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
131 p->locks[i] = 0;
132 }
5f39d397 133 free_extent_buffer(p->nodes[i]);
3f157a2f 134 p->nodes[i] = NULL;
eb60ceac
CM
135 }
136}
137
d352ac68
CM
138/*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
925baedd
CM
148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149{
150 struct extent_buffer *eb;
240f62c8 151
3083ee2e
JB
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
01327610 158 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
925baedd
CM
169 return eb;
170}
171
d352ac68
CM
172/* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
925baedd
CM
176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177{
178 struct extent_buffer *eb;
179
d397712b 180 while (1) {
925baedd
CM
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
240f62c8 183 if (eb == root->node)
925baedd 184 break;
925baedd
CM
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189}
190
bd681513
CM
191/* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
48a3b636 195static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
196{
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208}
209
d352ac68
CM
210/* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
0b86a832
CM
214static void add_root_to_dirty_list(struct btrfs_root *root)
215{
0b246afa
JM
216 struct btrfs_fs_info *fs_info = root->fs_info;
217
e7070be1
JB
218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
220 return;
221
0b246afa 222 spin_lock(&fs_info->trans_lock);
e7070be1
JB
223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
224 /* Want the extent tree to be the last on the list */
225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
226 list_move_tail(&root->dirty_list,
0b246afa 227 &fs_info->dirty_cowonly_roots);
e7070be1
JB
228 else
229 list_move(&root->dirty_list,
0b246afa 230 &fs_info->dirty_cowonly_roots);
0b86a832 231 }
0b246afa 232 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
233}
234
d352ac68
CM
235/*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
be20aa9d
CM
240int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244{
0b246afa 245 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 246 struct extent_buffer *cow;
be20aa9d
CM
247 int ret = 0;
248 int level;
5d4f98a2 249 struct btrfs_disk_key disk_key;
be20aa9d 250
27cdeb70 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 252 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
254 trans->transid != root->last_trans);
be20aa9d
CM
255
256 level = btrfs_header_level(buf);
5d4f98a2
YZ
257 if (level == 0)
258 btrfs_item_key(buf, &disk_key, 0);
259 else
260 btrfs_node_key(buf, &disk_key, 0);
31840ae1 261
4d75f8a9
DS
262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
263 &disk_key, level, buf->start, 0);
5d4f98a2 264 if (IS_ERR(cow))
be20aa9d
CM
265 return PTR_ERR(cow);
266
58e8012c 267 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 else
276 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 277
0b246afa 278 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 279
be20aa9d 280 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 282 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 283 else
e339a6b0 284 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 285
be20aa9d
CM
286 if (ret)
287 return ret;
288
289 btrfs_mark_buffer_dirty(cow);
290 *cow_ret = cow;
291 return 0;
292}
293
bd989ba3
JS
294enum mod_log_op {
295 MOD_LOG_KEY_REPLACE,
296 MOD_LOG_KEY_ADD,
297 MOD_LOG_KEY_REMOVE,
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_MOVE_KEYS,
301 MOD_LOG_ROOT_REPLACE,
302};
303
304struct tree_mod_move {
305 int dst_slot;
306 int nr_items;
307};
308
309struct tree_mod_root {
310 u64 logical;
311 u8 level;
312};
313
314struct tree_mod_elem {
315 struct rb_node node;
298cfd36 316 u64 logical;
097b8a7c 317 u64 seq;
bd989ba3
JS
318 enum mod_log_op op;
319
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 int slot;
322
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 u64 generation;
325
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key;
328 u64 blockptr;
329
330 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move;
332
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root;
335};
336
097b8a7c 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 338{
097b8a7c 339 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
340}
341
097b8a7c
JS
342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343{
344 read_unlock(&fs_info->tree_mod_log_lock);
345}
346
347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348{
349 write_lock(&fs_info->tree_mod_log_lock);
350}
351
352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353{
354 write_unlock(&fs_info->tree_mod_log_lock);
355}
356
fc36ed7e 357/*
fcebe456 358 * Pull a new tree mod seq number for our operation.
fc36ed7e 359 */
fcebe456 360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
361{
362 return atomic64_inc_return(&fs_info->tree_mod_seq);
363}
364
097b8a7c
JS
365/*
366 * This adds a new blocker to the tree mod log's blocker list if the @elem
367 * passed does not already have a sequence number set. So when a caller expects
368 * to record tree modifications, it should ensure to set elem->seq to zero
369 * before calling btrfs_get_tree_mod_seq.
370 * Returns a fresh, unused tree log modification sequence number, even if no new
371 * blocker was added.
372 */
373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374 struct seq_list *elem)
bd989ba3 375{
097b8a7c 376 tree_mod_log_write_lock(fs_info);
bd989ba3 377 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 378 if (!elem->seq) {
fcebe456 379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
bd989ba3 382 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
383 tree_mod_log_write_unlock(fs_info);
384
fcebe456 385 return elem->seq;
bd989ba3
JS
386}
387
388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389 struct seq_list *elem)
390{
391 struct rb_root *tm_root;
392 struct rb_node *node;
393 struct rb_node *next;
394 struct seq_list *cur_elem;
395 struct tree_mod_elem *tm;
396 u64 min_seq = (u64)-1;
397 u64 seq_putting = elem->seq;
398
399 if (!seq_putting)
400 return;
401
bd989ba3
JS
402 spin_lock(&fs_info->tree_mod_seq_lock);
403 list_del(&elem->list);
097b8a7c 404 elem->seq = 0;
bd989ba3
JS
405
406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 407 if (cur_elem->seq < min_seq) {
bd989ba3
JS
408 if (seq_putting > cur_elem->seq) {
409 /*
410 * blocker with lower sequence number exists, we
411 * cannot remove anything from the log
412 */
097b8a7c
JS
413 spin_unlock(&fs_info->tree_mod_seq_lock);
414 return;
bd989ba3
JS
415 }
416 min_seq = cur_elem->seq;
417 }
418 }
097b8a7c
JS
419 spin_unlock(&fs_info->tree_mod_seq_lock);
420
bd989ba3
JS
421 /*
422 * anything that's lower than the lowest existing (read: blocked)
423 * sequence number can be removed from the tree.
424 */
097b8a7c 425 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
426 tm_root = &fs_info->tree_mod_log;
427 for (node = rb_first(tm_root); node; node = next) {
428 next = rb_next(node);
6b4df8b6 429 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 430 if (tm->seq > min_seq)
bd989ba3
JS
431 continue;
432 rb_erase(node, tm_root);
bd989ba3
JS
433 kfree(tm);
434 }
097b8a7c 435 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
436}
437
438/*
439 * key order of the log:
298cfd36 440 * node/leaf start address -> sequence
bd989ba3 441 *
298cfd36
CR
442 * The 'start address' is the logical address of the *new* root node
443 * for root replace operations, or the logical address of the affected
444 * block for all other operations.
5de865ee
FDBM
445 *
446 * Note: must be called with write lock (tree_mod_log_write_lock).
bd989ba3
JS
447 */
448static noinline int
449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450{
451 struct rb_root *tm_root;
452 struct rb_node **new;
453 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur;
c8cc6341 455
fcebe456 456 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 457
bd989ba3
JS
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
6b4df8b6 461 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 462 parent = *new;
298cfd36 463 if (cur->logical < tm->logical)
bd989ba3 464 new = &((*new)->rb_left);
298cfd36 465 else if (cur->logical > tm->logical)
bd989ba3 466 new = &((*new)->rb_right);
097b8a7c 467 else if (cur->seq < tm->seq)
bd989ba3 468 new = &((*new)->rb_left);
097b8a7c 469 else if (cur->seq > tm->seq)
bd989ba3 470 new = &((*new)->rb_right);
5de865ee
FDBM
471 else
472 return -EEXIST;
bd989ba3
JS
473 }
474
475 rb_link_node(&tm->node, parent, new);
476 rb_insert_color(&tm->node, tm_root);
5de865ee 477 return 0;
bd989ba3
JS
478}
479
097b8a7c
JS
480/*
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
485 */
e9b7fd4d
JS
486static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 struct extent_buffer *eb) {
488 smp_mb();
489 if (list_empty(&(fs_info)->tree_mod_seq_list))
490 return 1;
097b8a7c
JS
491 if (eb && btrfs_header_level(eb) == 0)
492 return 1;
5de865ee
FDBM
493
494 tree_mod_log_write_lock(fs_info);
495 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 tree_mod_log_write_unlock(fs_info);
497 return 1;
498 }
499
e9b7fd4d
JS
500 return 0;
501}
502
5de865ee
FDBM
503/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 struct extent_buffer *eb)
506{
507 smp_mb();
508 if (list_empty(&(fs_info)->tree_mod_seq_list))
509 return 0;
510 if (eb && btrfs_header_level(eb) == 0)
511 return 0;
512
513 return 1;
514}
515
516static struct tree_mod_elem *
517alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
bd989ba3 519{
097b8a7c 520 struct tree_mod_elem *tm;
bd989ba3 521
c8cc6341
JB
522 tm = kzalloc(sizeof(*tm), flags);
523 if (!tm)
5de865ee 524 return NULL;
bd989ba3 525
298cfd36 526 tm->logical = eb->start;
bd989ba3
JS
527 if (op != MOD_LOG_KEY_ADD) {
528 btrfs_node_key(eb, &tm->key, slot);
529 tm->blockptr = btrfs_node_blockptr(eb, slot);
530 }
531 tm->op = op;
532 tm->slot = slot;
533 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 534 RB_CLEAR_NODE(&tm->node);
bd989ba3 535
5de865ee 536 return tm;
097b8a7c
JS
537}
538
539static noinline int
c8cc6341
JB
540tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb, int slot,
542 enum mod_log_op op, gfp_t flags)
097b8a7c 543{
5de865ee
FDBM
544 struct tree_mod_elem *tm;
545 int ret;
546
547 if (!tree_mod_need_log(fs_info, eb))
548 return 0;
549
550 tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 if (!tm)
552 return -ENOMEM;
553
554 if (tree_mod_dont_log(fs_info, eb)) {
555 kfree(tm);
097b8a7c 556 return 0;
5de865ee
FDBM
557 }
558
559 ret = __tree_mod_log_insert(fs_info, tm);
560 tree_mod_log_write_unlock(fs_info);
561 if (ret)
562 kfree(tm);
097b8a7c 563
5de865ee 564 return ret;
097b8a7c
JS
565}
566
bd989ba3
JS
567static noinline int
568tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int dst_slot, int src_slot,
176ef8f5 570 int nr_items)
bd989ba3 571{
5de865ee
FDBM
572 struct tree_mod_elem *tm = NULL;
573 struct tree_mod_elem **tm_list = NULL;
574 int ret = 0;
bd989ba3 575 int i;
5de865ee 576 int locked = 0;
bd989ba3 577
5de865ee 578 if (!tree_mod_need_log(fs_info, eb))
f395694c 579 return 0;
bd989ba3 580
176ef8f5 581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
582 if (!tm_list)
583 return -ENOMEM;
584
176ef8f5 585 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
586 if (!tm) {
587 ret = -ENOMEM;
588 goto free_tms;
589 }
590
298cfd36 591 tm->logical = eb->start;
5de865ee
FDBM
592 tm->slot = src_slot;
593 tm->move.dst_slot = dst_slot;
594 tm->move.nr_items = nr_items;
595 tm->op = MOD_LOG_MOVE_KEYS;
596
597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
600 if (!tm_list[i]) {
601 ret = -ENOMEM;
602 goto free_tms;
603 }
604 }
605
606 if (tree_mod_dont_log(fs_info, eb))
607 goto free_tms;
608 locked = 1;
609
01763a2e
JS
610 /*
611 * When we override something during the move, we log these removals.
612 * This can only happen when we move towards the beginning of the
613 * buffer, i.e. dst_slot < src_slot.
614 */
bd989ba3 615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
5de865ee
FDBM
616 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617 if (ret)
618 goto free_tms;
bd989ba3
JS
619 }
620
5de865ee
FDBM
621 ret = __tree_mod_log_insert(fs_info, tm);
622 if (ret)
623 goto free_tms;
624 tree_mod_log_write_unlock(fs_info);
625 kfree(tm_list);
f395694c 626
5de865ee
FDBM
627 return 0;
628free_tms:
629 for (i = 0; i < nr_items; i++) {
630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632 kfree(tm_list[i]);
633 }
634 if (locked)
635 tree_mod_log_write_unlock(fs_info);
636 kfree(tm_list);
637 kfree(tm);
bd989ba3 638
5de865ee 639 return ret;
bd989ba3
JS
640}
641
5de865ee
FDBM
642static inline int
643__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 struct tree_mod_elem **tm_list,
645 int nritems)
097b8a7c 646{
5de865ee 647 int i, j;
097b8a7c
JS
648 int ret;
649
097b8a7c 650 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
651 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652 if (ret) {
653 for (j = nritems - 1; j > i; j--)
654 rb_erase(&tm_list[j]->node,
655 &fs_info->tree_mod_log);
656 return ret;
657 }
097b8a7c 658 }
5de865ee
FDBM
659
660 return 0;
097b8a7c
JS
661}
662
bd989ba3
JS
663static noinline int
664tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 struct extent_buffer *old_root,
bcc8e07f 666 struct extent_buffer *new_root,
90f8d62e 667 int log_removal)
bd989ba3 668{
5de865ee
FDBM
669 struct tree_mod_elem *tm = NULL;
670 struct tree_mod_elem **tm_list = NULL;
671 int nritems = 0;
672 int ret = 0;
673 int i;
bd989ba3 674
5de865ee 675 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
676 return 0;
677
5de865ee
FDBM
678 if (log_removal && btrfs_header_level(old_root) > 0) {
679 nritems = btrfs_header_nritems(old_root);
31e818fe 680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 681 GFP_NOFS);
5de865ee
FDBM
682 if (!tm_list) {
683 ret = -ENOMEM;
684 goto free_tms;
685 }
686 for (i = 0; i < nritems; i++) {
687 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
689 if (!tm_list[i]) {
690 ret = -ENOMEM;
691 goto free_tms;
692 }
693 }
694 }
d9abbf1c 695
bcc8e07f 696 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
697 if (!tm) {
698 ret = -ENOMEM;
699 goto free_tms;
700 }
bd989ba3 701
298cfd36 702 tm->logical = new_root->start;
bd989ba3
JS
703 tm->old_root.logical = old_root->start;
704 tm->old_root.level = btrfs_header_level(old_root);
705 tm->generation = btrfs_header_generation(old_root);
706 tm->op = MOD_LOG_ROOT_REPLACE;
707
5de865ee
FDBM
708 if (tree_mod_dont_log(fs_info, NULL))
709 goto free_tms;
710
711 if (tm_list)
712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713 if (!ret)
714 ret = __tree_mod_log_insert(fs_info, tm);
715
716 tree_mod_log_write_unlock(fs_info);
717 if (ret)
718 goto free_tms;
719 kfree(tm_list);
720
721 return ret;
722
723free_tms:
724 if (tm_list) {
725 for (i = 0; i < nritems; i++)
726 kfree(tm_list[i]);
727 kfree(tm_list);
728 }
729 kfree(tm);
730
731 return ret;
bd989ba3
JS
732}
733
734static struct tree_mod_elem *
735__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 int smallest)
737{
738 struct rb_root *tm_root;
739 struct rb_node *node;
740 struct tree_mod_elem *cur = NULL;
741 struct tree_mod_elem *found = NULL;
bd989ba3 742
097b8a7c 743 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
744 tm_root = &fs_info->tree_mod_log;
745 node = tm_root->rb_node;
746 while (node) {
6b4df8b6 747 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 748 if (cur->logical < start) {
bd989ba3 749 node = node->rb_left;
298cfd36 750 } else if (cur->logical > start) {
bd989ba3 751 node = node->rb_right;
097b8a7c 752 } else if (cur->seq < min_seq) {
bd989ba3
JS
753 node = node->rb_left;
754 } else if (!smallest) {
755 /* we want the node with the highest seq */
756 if (found)
097b8a7c 757 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
758 found = cur;
759 node = node->rb_left;
097b8a7c 760 } else if (cur->seq > min_seq) {
bd989ba3
JS
761 /* we want the node with the smallest seq */
762 if (found)
097b8a7c 763 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
764 found = cur;
765 node = node->rb_right;
766 } else {
767 found = cur;
768 break;
769 }
770 }
097b8a7c 771 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
772
773 return found;
774}
775
776/*
777 * this returns the element from the log with the smallest time sequence
778 * value that's in the log (the oldest log item). any element with a time
779 * sequence lower than min_seq will be ignored.
780 */
781static struct tree_mod_elem *
782tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
783 u64 min_seq)
784{
785 return __tree_mod_log_search(fs_info, start, min_seq, 1);
786}
787
788/*
789 * this returns the element from the log with the largest time sequence
790 * value that's in the log (the most recent log item). any element with
791 * a time sequence lower than min_seq will be ignored.
792 */
793static struct tree_mod_elem *
794tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
795{
796 return __tree_mod_log_search(fs_info, start, min_seq, 0);
797}
798
5de865ee 799static noinline int
bd989ba3
JS
800tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
801 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 802 unsigned long src_offset, int nr_items)
bd989ba3 803{
5de865ee
FDBM
804 int ret = 0;
805 struct tree_mod_elem **tm_list = NULL;
806 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 807 int i;
5de865ee 808 int locked = 0;
bd989ba3 809
5de865ee
FDBM
810 if (!tree_mod_need_log(fs_info, NULL))
811 return 0;
bd989ba3 812
c8cc6341 813 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
814 return 0;
815
31e818fe 816 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
817 GFP_NOFS);
818 if (!tm_list)
819 return -ENOMEM;
bd989ba3 820
5de865ee
FDBM
821 tm_list_add = tm_list;
822 tm_list_rem = tm_list + nr_items;
bd989ba3 823 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
824 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
825 MOD_LOG_KEY_REMOVE, GFP_NOFS);
826 if (!tm_list_rem[i]) {
827 ret = -ENOMEM;
828 goto free_tms;
829 }
830
831 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
832 MOD_LOG_KEY_ADD, GFP_NOFS);
833 if (!tm_list_add[i]) {
834 ret = -ENOMEM;
835 goto free_tms;
836 }
837 }
838
839 if (tree_mod_dont_log(fs_info, NULL))
840 goto free_tms;
841 locked = 1;
842
843 for (i = 0; i < nr_items; i++) {
844 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
845 if (ret)
846 goto free_tms;
847 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
848 if (ret)
849 goto free_tms;
bd989ba3 850 }
5de865ee
FDBM
851
852 tree_mod_log_write_unlock(fs_info);
853 kfree(tm_list);
854
855 return 0;
856
857free_tms:
858 for (i = 0; i < nr_items * 2; i++) {
859 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
860 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
861 kfree(tm_list[i]);
862 }
863 if (locked)
864 tree_mod_log_write_unlock(fs_info);
865 kfree(tm_list);
866
867 return ret;
bd989ba3
JS
868}
869
870static inline void
871tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
872 int dst_offset, int src_offset, int nr_items)
873{
874 int ret;
875 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
176ef8f5 876 nr_items);
bd989ba3
JS
877 BUG_ON(ret < 0);
878}
879
097b8a7c 880static noinline void
bd989ba3 881tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 882 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
883{
884 int ret;
885
78357766 886 ret = tree_mod_log_insert_key(fs_info, eb, slot,
c8cc6341
JB
887 MOD_LOG_KEY_REPLACE,
888 atomic ? GFP_ATOMIC : GFP_NOFS);
bd989ba3
JS
889 BUG_ON(ret < 0);
890}
891
5de865ee 892static noinline int
097b8a7c 893tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 894{
5de865ee
FDBM
895 struct tree_mod_elem **tm_list = NULL;
896 int nritems = 0;
897 int i;
898 int ret = 0;
899
900 if (btrfs_header_level(eb) == 0)
901 return 0;
902
903 if (!tree_mod_need_log(fs_info, NULL))
904 return 0;
905
906 nritems = btrfs_header_nritems(eb);
31e818fe 907 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
908 if (!tm_list)
909 return -ENOMEM;
910
911 for (i = 0; i < nritems; i++) {
912 tm_list[i] = alloc_tree_mod_elem(eb, i,
913 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
914 if (!tm_list[i]) {
915 ret = -ENOMEM;
916 goto free_tms;
917 }
918 }
919
e9b7fd4d 920 if (tree_mod_dont_log(fs_info, eb))
5de865ee
FDBM
921 goto free_tms;
922
923 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
924 tree_mod_log_write_unlock(fs_info);
925 if (ret)
926 goto free_tms;
927 kfree(tm_list);
928
929 return 0;
930
931free_tms:
932 for (i = 0; i < nritems; i++)
933 kfree(tm_list[i]);
934 kfree(tm_list);
935
936 return ret;
bd989ba3
JS
937}
938
097b8a7c 939static noinline void
bd989ba3 940tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
941 struct extent_buffer *new_root_node,
942 int log_removal)
bd989ba3
JS
943{
944 int ret;
bd989ba3 945 ret = tree_mod_log_insert_root(root->fs_info, root->node,
bcc8e07f 946 new_root_node, log_removal);
bd989ba3
JS
947 BUG_ON(ret < 0);
948}
949
5d4f98a2
YZ
950/*
951 * check if the tree block can be shared by multiple trees
952 */
953int btrfs_block_can_be_shared(struct btrfs_root *root,
954 struct extent_buffer *buf)
955{
956 /*
01327610 957 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
958 * are never shared. If a block was allocated after the last
959 * snapshot and the block was not allocated by tree relocation,
960 * we know the block is not shared.
961 */
27cdeb70 962 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
963 buf != root->node && buf != root->commit_root &&
964 (btrfs_header_generation(buf) <=
965 btrfs_root_last_snapshot(&root->root_item) ||
966 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
967 return 1;
968#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 969 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
970 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
971 return 1;
972#endif
973 return 0;
974}
975
976static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
977 struct btrfs_root *root,
978 struct extent_buffer *buf,
f0486c68
YZ
979 struct extent_buffer *cow,
980 int *last_ref)
5d4f98a2 981{
0b246afa 982 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
988
989 /*
990 * Backrefs update rules:
991 *
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
994 *
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
998 *
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1004 */
1005
1006 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 1007 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
be1a5564
MF
1010 if (ret)
1011 return ret;
e5df9573
MF
1012 if (refs == 0) {
1013 ret = -EROFS;
0b246afa 1014 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
1015 return ret;
1016 }
5d4f98a2
YZ
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1024 }
1025
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 1034 ret = btrfs_inc_ref(trans, root, buf, 1);
79787eaa 1035 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1036
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 1039 ret = btrfs_dec_ref(trans, root, buf, 0);
79787eaa 1040 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1041 ret = btrfs_inc_ref(trans, root, cow, 1);
79787eaa 1042 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1043 }
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 } else {
1046
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1049 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1050 else
e339a6b0 1051 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1052 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1053 }
1054 if (new_flags != 0) {
b1c79e09
JB
1055 int level = btrfs_header_level(buf);
1056
2ff7e61e 1057 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
1058 buf->start,
1059 buf->len,
b1c79e09 1060 new_flags, level, 0);
be1a5564
MF
1061 if (ret)
1062 return ret;
5d4f98a2
YZ
1063 }
1064 } else {
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1068 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1069 else
e339a6b0 1070 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1071 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1072 ret = btrfs_dec_ref(trans, root, buf, 1);
79787eaa 1073 BUG_ON(ret); /* -ENOMEM */
5d4f98a2 1074 }
7c302b49 1075 clean_tree_block(fs_info, buf);
f0486c68 1076 *last_ref = 1;
5d4f98a2
YZ
1077 }
1078 return 0;
1079}
1080
d352ac68 1081/*
d397712b
CM
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1085 * dirty again.
d352ac68
CM
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
d397712b
CM
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
d352ac68 1092 */
d397712b 1093static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
9fa8cfe7 1098 u64 search_start, u64 empty_size)
02217ed2 1099{
0b246afa 1100 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 1101 struct btrfs_disk_key disk_key;
5f39d397 1102 struct extent_buffer *cow;
be1a5564 1103 int level, ret;
f0486c68 1104 int last_ref = 0;
925baedd 1105 int unlock_orig = 0;
0f5053eb 1106 u64 parent_start = 0;
7bb86316 1107
925baedd
CM
1108 if (*cow_ret == buf)
1109 unlock_orig = 1;
1110
b9447ef8 1111 btrfs_assert_tree_locked(buf);
925baedd 1112
27cdeb70 1113 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1114 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1115 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116 trans->transid != root->last_trans);
5f39d397 1117
7bb86316 1118 level = btrfs_header_level(buf);
31840ae1 1119
5d4f98a2
YZ
1120 if (level == 0)
1121 btrfs_item_key(buf, &disk_key, 0);
1122 else
1123 btrfs_node_key(buf, &disk_key, 0);
1124
0f5053eb
GR
1125 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1126 parent_start = parent->start;
5d4f98a2 1127
4d75f8a9
DS
1128 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1129 root->root_key.objectid, &disk_key, level,
1130 search_start, empty_size);
54aa1f4d
CM
1131 if (IS_ERR(cow))
1132 return PTR_ERR(cow);
6702ed49 1133
b4ce94de
CM
1134 /* cow is set to blocking by btrfs_init_new_buffer */
1135
58e8012c 1136 copy_extent_buffer_full(cow, buf);
db94535d 1137 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1138 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1139 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1140 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1141 BTRFS_HEADER_FLAG_RELOC);
1142 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1143 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1144 else
1145 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1146
0b246afa 1147 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 1148
be1a5564 1149 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1150 if (ret) {
66642832 1151 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1152 return ret;
1153 }
1a40e23b 1154
27cdeb70 1155 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1156 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1157 if (ret) {
66642832 1158 btrfs_abort_transaction(trans, ret);
83d4cfd4 1159 return ret;
93314e3b 1160 }
83d4cfd4 1161 }
3fd0a558 1162
02217ed2 1163 if (buf == root->node) {
925baedd 1164 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1165 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1166 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1167 parent_start = buf->start;
925baedd 1168
5f39d397 1169 extent_buffer_get(cow);
90f8d62e 1170 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1171 rcu_assign_pointer(root->node, cow);
925baedd 1172
f0486c68 1173 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1174 last_ref);
5f39d397 1175 free_extent_buffer(buf);
0b86a832 1176 add_root_to_dirty_list(root);
02217ed2 1177 } else {
5d4f98a2 1178 WARN_ON(trans->transid != btrfs_header_generation(parent));
0b246afa 1179 tree_mod_log_insert_key(fs_info, parent, parent_slot,
c8cc6341 1180 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1181 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1182 cow->start);
74493f7a
CM
1183 btrfs_set_node_ptr_generation(parent, parent_slot,
1184 trans->transid);
d6025579 1185 btrfs_mark_buffer_dirty(parent);
5de865ee 1186 if (last_ref) {
0b246afa 1187 ret = tree_mod_log_free_eb(fs_info, buf);
5de865ee 1188 if (ret) {
66642832 1189 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1190 return ret;
1191 }
1192 }
f0486c68 1193 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1194 last_ref);
02217ed2 1195 }
925baedd
CM
1196 if (unlock_orig)
1197 btrfs_tree_unlock(buf);
3083ee2e 1198 free_extent_buffer_stale(buf);
ccd467d6 1199 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1200 *cow_ret = cow;
02217ed2
CM
1201 return 0;
1202}
1203
5d9e75c4
JS
1204/*
1205 * returns the logical address of the oldest predecessor of the given root.
1206 * entries older than time_seq are ignored.
1207 */
1208static struct tree_mod_elem *
1209__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
30b0463a 1210 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1211{
1212 struct tree_mod_elem *tm;
1213 struct tree_mod_elem *found = NULL;
30b0463a 1214 u64 root_logical = eb_root->start;
5d9e75c4
JS
1215 int looped = 0;
1216
1217 if (!time_seq)
35a3621b 1218 return NULL;
5d9e75c4
JS
1219
1220 /*
298cfd36
CR
1221 * the very last operation that's logged for a root is the
1222 * replacement operation (if it is replaced at all). this has
1223 * the logical address of the *new* root, making it the very
1224 * first operation that's logged for this root.
5d9e75c4
JS
1225 */
1226 while (1) {
1227 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1228 time_seq);
1229 if (!looped && !tm)
35a3621b 1230 return NULL;
5d9e75c4 1231 /*
28da9fb4
JS
1232 * if there are no tree operation for the oldest root, we simply
1233 * return it. this should only happen if that (old) root is at
1234 * level 0.
5d9e75c4 1235 */
28da9fb4
JS
1236 if (!tm)
1237 break;
5d9e75c4 1238
28da9fb4
JS
1239 /*
1240 * if there's an operation that's not a root replacement, we
1241 * found the oldest version of our root. normally, we'll find a
1242 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1243 */
5d9e75c4
JS
1244 if (tm->op != MOD_LOG_ROOT_REPLACE)
1245 break;
1246
1247 found = tm;
1248 root_logical = tm->old_root.logical;
5d9e75c4
JS
1249 looped = 1;
1250 }
1251
a95236d9
JS
1252 /* if there's no old root to return, return what we found instead */
1253 if (!found)
1254 found = tm;
1255
5d9e75c4
JS
1256 return found;
1257}
1258
1259/*
1260 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1261 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1262 * time_seq).
1263 */
1264static void
f1ca7e98
JB
1265__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1266 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1267{
1268 u32 n;
1269 struct rb_node *next;
1270 struct tree_mod_elem *tm = first_tm;
1271 unsigned long o_dst;
1272 unsigned long o_src;
1273 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1274
1275 n = btrfs_header_nritems(eb);
f1ca7e98 1276 tree_mod_log_read_lock(fs_info);
097b8a7c 1277 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1278 /*
1279 * all the operations are recorded with the operator used for
1280 * the modification. as we're going backwards, we do the
1281 * opposite of each operation here.
1282 */
1283 switch (tm->op) {
1284 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1285 BUG_ON(tm->slot < n);
1c697d4a 1286 /* Fallthrough */
95c80bb1 1287 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1288 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1289 btrfs_set_node_key(eb, &tm->key, tm->slot);
1290 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1291 btrfs_set_node_ptr_generation(eb, tm->slot,
1292 tm->generation);
4c3e6969 1293 n++;
5d9e75c4
JS
1294 break;
1295 case MOD_LOG_KEY_REPLACE:
1296 BUG_ON(tm->slot >= n);
1297 btrfs_set_node_key(eb, &tm->key, tm->slot);
1298 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1299 btrfs_set_node_ptr_generation(eb, tm->slot,
1300 tm->generation);
1301 break;
1302 case MOD_LOG_KEY_ADD:
19956c7e 1303 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1304 n--;
1305 break;
1306 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1307 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1308 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1309 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1310 tm->move.nr_items * p_size);
1311 break;
1312 case MOD_LOG_ROOT_REPLACE:
1313 /*
1314 * this operation is special. for roots, this must be
1315 * handled explicitly before rewinding.
1316 * for non-roots, this operation may exist if the node
1317 * was a root: root A -> child B; then A gets empty and
1318 * B is promoted to the new root. in the mod log, we'll
1319 * have a root-replace operation for B, a tree block
1320 * that is no root. we simply ignore that operation.
1321 */
1322 break;
1323 }
1324 next = rb_next(&tm->node);
1325 if (!next)
1326 break;
6b4df8b6 1327 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1328 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1329 break;
1330 }
f1ca7e98 1331 tree_mod_log_read_unlock(fs_info);
5d9e75c4
JS
1332 btrfs_set_header_nritems(eb, n);
1333}
1334
47fb091f 1335/*
01327610 1336 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1337 * is returned. If rewind operations happen, a fresh buffer is returned. The
1338 * returned buffer is always read-locked. If the returned buffer is not the
1339 * input buffer, the lock on the input buffer is released and the input buffer
1340 * is freed (its refcount is decremented).
1341 */
5d9e75c4 1342static struct extent_buffer *
9ec72677
JB
1343tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1344 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1345{
1346 struct extent_buffer *eb_rewin;
1347 struct tree_mod_elem *tm;
1348
1349 if (!time_seq)
1350 return eb;
1351
1352 if (btrfs_header_level(eb) == 0)
1353 return eb;
1354
1355 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1356 if (!tm)
1357 return eb;
1358
9ec72677
JB
1359 btrfs_set_path_blocking(path);
1360 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1361
5d9e75c4
JS
1362 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1363 BUG_ON(tm->slot != 0);
da17066c 1364 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1365 if (!eb_rewin) {
9ec72677 1366 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1367 free_extent_buffer(eb);
1368 return NULL;
1369 }
5d9e75c4
JS
1370 btrfs_set_header_bytenr(eb_rewin, eb->start);
1371 btrfs_set_header_backref_rev(eb_rewin,
1372 btrfs_header_backref_rev(eb));
1373 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1374 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1375 } else {
1376 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1377 if (!eb_rewin) {
9ec72677 1378 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1379 free_extent_buffer(eb);
1380 return NULL;
1381 }
5d9e75c4
JS
1382 }
1383
9ec72677
JB
1384 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1385 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1386 free_extent_buffer(eb);
1387
47fb091f
JS
1388 extent_buffer_get(eb_rewin);
1389 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1390 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1391 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1392 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1393
1394 return eb_rewin;
1395}
1396
8ba97a15
JS
1397/*
1398 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1399 * value. If there are no changes, the current root->root_node is returned. If
1400 * anything changed in between, there's a fresh buffer allocated on which the
1401 * rewind operations are done. In any case, the returned buffer is read locked.
1402 * Returns NULL on error (with no locks held).
1403 */
5d9e75c4
JS
1404static inline struct extent_buffer *
1405get_old_root(struct btrfs_root *root, u64 time_seq)
1406{
0b246afa 1407 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1408 struct tree_mod_elem *tm;
30b0463a
JS
1409 struct extent_buffer *eb = NULL;
1410 struct extent_buffer *eb_root;
7bfdcf7f 1411 struct extent_buffer *old;
a95236d9 1412 struct tree_mod_root *old_root = NULL;
4325edd0 1413 u64 old_generation = 0;
a95236d9 1414 u64 logical;
5d9e75c4 1415
30b0463a 1416 eb_root = btrfs_read_lock_root_node(root);
0b246afa 1417 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
5d9e75c4 1418 if (!tm)
30b0463a 1419 return eb_root;
5d9e75c4 1420
a95236d9
JS
1421 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1422 old_root = &tm->old_root;
1423 old_generation = tm->generation;
1424 logical = old_root->logical;
1425 } else {
30b0463a 1426 logical = eb_root->start;
a95236d9 1427 }
5d9e75c4 1428
0b246afa 1429 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1430 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1431 btrfs_tree_read_unlock(eb_root);
1432 free_extent_buffer(eb_root);
2ff7e61e 1433 old = read_tree_block(fs_info, logical, 0);
64c043de
LB
1434 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1435 if (!IS_ERR(old))
1436 free_extent_buffer(old);
0b246afa
JM
1437 btrfs_warn(fs_info,
1438 "failed to read tree block %llu from get_old_root",
1439 logical);
834328a8 1440 } else {
7bfdcf7f
LB
1441 eb = btrfs_clone_extent_buffer(old);
1442 free_extent_buffer(old);
834328a8
JS
1443 }
1444 } else if (old_root) {
30b0463a
JS
1445 btrfs_tree_read_unlock(eb_root);
1446 free_extent_buffer(eb_root);
0b246afa 1447 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1448 } else {
9ec72677 1449 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1450 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1451 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1452 free_extent_buffer(eb_root);
834328a8
JS
1453 }
1454
8ba97a15
JS
1455 if (!eb)
1456 return NULL;
d6381084 1457 extent_buffer_get(eb);
8ba97a15 1458 btrfs_tree_read_lock(eb);
a95236d9 1459 if (old_root) {
5d9e75c4
JS
1460 btrfs_set_header_bytenr(eb, eb->start);
1461 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1462 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1463 btrfs_set_header_level(eb, old_root->level);
1464 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1465 }
28da9fb4 1466 if (tm)
0b246afa 1467 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1468 else
1469 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1470 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1471
1472 return eb;
1473}
1474
5b6602e7
JS
1475int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1476{
1477 struct tree_mod_elem *tm;
1478 int level;
30b0463a 1479 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1480
30b0463a 1481 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5b6602e7
JS
1482 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1483 level = tm->old_root.level;
1484 } else {
30b0463a 1485 level = btrfs_header_level(eb_root);
5b6602e7 1486 }
30b0463a 1487 free_extent_buffer(eb_root);
5b6602e7
JS
1488
1489 return level;
1490}
1491
5d4f98a2
YZ
1492static inline int should_cow_block(struct btrfs_trans_handle *trans,
1493 struct btrfs_root *root,
1494 struct extent_buffer *buf)
1495{
f5ee5c9a 1496 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1497 return 0;
fccb84c9 1498
f1ebcc74
LB
1499 /* ensure we can see the force_cow */
1500 smp_rmb();
1501
1502 /*
1503 * We do not need to cow a block if
1504 * 1) this block is not created or changed in this transaction;
1505 * 2) this block does not belong to TREE_RELOC tree;
1506 * 3) the root is not forced COW.
1507 *
1508 * What is forced COW:
01327610 1509 * when we create snapshot during committing the transaction,
f1ebcc74
LB
1510 * after we've finished coping src root, we must COW the shared
1511 * block to ensure the metadata consistency.
1512 */
5d4f98a2
YZ
1513 if (btrfs_header_generation(buf) == trans->transid &&
1514 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1515 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1516 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1517 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1518 return 0;
1519 return 1;
1520}
1521
d352ac68
CM
1522/*
1523 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1524 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1525 * once per transaction, as long as it hasn't been written yet
1526 */
d397712b 1527noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1528 struct btrfs_root *root, struct extent_buffer *buf,
1529 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1530 struct extent_buffer **cow_ret)
6702ed49 1531{
0b246afa 1532 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1533 u64 search_start;
f510cfec 1534 int ret;
dc17ff8f 1535
0b246afa 1536 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1537 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1538 trans->transid,
0b246afa 1539 fs_info->running_transaction->transid);
31b1a2bd 1540
0b246afa 1541 if (trans->transid != fs_info->generation)
31b1a2bd 1542 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1543 trans->transid, fs_info->generation);
dc17ff8f 1544
5d4f98a2 1545 if (!should_cow_block(trans, root, buf)) {
64c12921 1546 trans->dirty = true;
6702ed49
CM
1547 *cow_ret = buf;
1548 return 0;
1549 }
c487685d 1550
ee22184b 1551 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1552
1553 if (parent)
1554 btrfs_set_lock_blocking(parent);
1555 btrfs_set_lock_blocking(buf);
1556
f510cfec 1557 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1558 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1559
1560 trace_btrfs_cow_block(root, buf, *cow_ret);
1561
f510cfec 1562 return ret;
6702ed49
CM
1563}
1564
d352ac68
CM
1565/*
1566 * helper function for defrag to decide if two blocks pointed to by a
1567 * node are actually close by
1568 */
6b80053d 1569static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1570{
6b80053d 1571 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1572 return 1;
6b80053d 1573 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1574 return 1;
1575 return 0;
1576}
1577
081e9573
CM
1578/*
1579 * compare two keys in a memcmp fashion
1580 */
310712b2
OS
1581static int comp_keys(const struct btrfs_disk_key *disk,
1582 const struct btrfs_key *k2)
081e9573
CM
1583{
1584 struct btrfs_key k1;
1585
1586 btrfs_disk_key_to_cpu(&k1, disk);
1587
20736aba 1588 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1589}
1590
f3465ca4
JB
1591/*
1592 * same as comp_keys only with two btrfs_key's
1593 */
310712b2 1594int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1595{
1596 if (k1->objectid > k2->objectid)
1597 return 1;
1598 if (k1->objectid < k2->objectid)
1599 return -1;
1600 if (k1->type > k2->type)
1601 return 1;
1602 if (k1->type < k2->type)
1603 return -1;
1604 if (k1->offset > k2->offset)
1605 return 1;
1606 if (k1->offset < k2->offset)
1607 return -1;
1608 return 0;
1609}
081e9573 1610
d352ac68
CM
1611/*
1612 * this is used by the defrag code to go through all the
1613 * leaves pointed to by a node and reallocate them so that
1614 * disk order is close to key order
1615 */
6702ed49 1616int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1617 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1618 int start_slot, u64 *last_ret,
a6b6e75e 1619 struct btrfs_key *progress)
6702ed49 1620{
0b246afa 1621 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1622 struct extent_buffer *cur;
6702ed49 1623 u64 blocknr;
ca7a79ad 1624 u64 gen;
e9d0b13b
CM
1625 u64 search_start = *last_ret;
1626 u64 last_block = 0;
6702ed49
CM
1627 u64 other;
1628 u32 parent_nritems;
6702ed49
CM
1629 int end_slot;
1630 int i;
1631 int err = 0;
f2183bde 1632 int parent_level;
6b80053d
CM
1633 int uptodate;
1634 u32 blocksize;
081e9573
CM
1635 int progress_passed = 0;
1636 struct btrfs_disk_key disk_key;
6702ed49 1637
5708b959 1638 parent_level = btrfs_header_level(parent);
5708b959 1639
0b246afa
JM
1640 WARN_ON(trans->transaction != fs_info->running_transaction);
1641 WARN_ON(trans->transid != fs_info->generation);
86479a04 1642
6b80053d 1643 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1644 blocksize = fs_info->nodesize;
5dfe2be7 1645 end_slot = parent_nritems - 1;
6702ed49 1646
5dfe2be7 1647 if (parent_nritems <= 1)
6702ed49
CM
1648 return 0;
1649
b4ce94de
CM
1650 btrfs_set_lock_blocking(parent);
1651
5dfe2be7 1652 for (i = start_slot; i <= end_slot; i++) {
6702ed49 1653 int close = 1;
a6b6e75e 1654
081e9573
CM
1655 btrfs_node_key(parent, &disk_key, i);
1656 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1657 continue;
1658
1659 progress_passed = 1;
6b80053d 1660 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1661 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1662 if (last_block == 0)
1663 last_block = blocknr;
5708b959 1664
6702ed49 1665 if (i > 0) {
6b80053d
CM
1666 other = btrfs_node_blockptr(parent, i - 1);
1667 close = close_blocks(blocknr, other, blocksize);
6702ed49 1668 }
5dfe2be7 1669 if (!close && i < end_slot) {
6b80053d
CM
1670 other = btrfs_node_blockptr(parent, i + 1);
1671 close = close_blocks(blocknr, other, blocksize);
6702ed49 1672 }
e9d0b13b
CM
1673 if (close) {
1674 last_block = blocknr;
6702ed49 1675 continue;
e9d0b13b 1676 }
6702ed49 1677
0b246afa 1678 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1679 if (cur)
b9fab919 1680 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1681 else
1682 uptodate = 0;
5708b959 1683 if (!cur || !uptodate) {
6b80053d 1684 if (!cur) {
2ff7e61e 1685 cur = read_tree_block(fs_info, blocknr, gen);
64c043de
LB
1686 if (IS_ERR(cur)) {
1687 return PTR_ERR(cur);
1688 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1689 free_extent_buffer(cur);
97d9a8a4 1690 return -EIO;
416bc658 1691 }
6b80053d 1692 } else if (!uptodate) {
018642a1
TI
1693 err = btrfs_read_buffer(cur, gen);
1694 if (err) {
1695 free_extent_buffer(cur);
1696 return err;
1697 }
f2183bde 1698 }
6702ed49 1699 }
e9d0b13b 1700 if (search_start == 0)
6b80053d 1701 search_start = last_block;
e9d0b13b 1702
e7a84565 1703 btrfs_tree_lock(cur);
b4ce94de 1704 btrfs_set_lock_blocking(cur);
6b80053d 1705 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1706 &cur, search_start,
6b80053d 1707 min(16 * blocksize,
9fa8cfe7 1708 (end_slot - i) * blocksize));
252c38f0 1709 if (err) {
e7a84565 1710 btrfs_tree_unlock(cur);
6b80053d 1711 free_extent_buffer(cur);
6702ed49 1712 break;
252c38f0 1713 }
e7a84565
CM
1714 search_start = cur->start;
1715 last_block = cur->start;
f2183bde 1716 *last_ret = search_start;
e7a84565
CM
1717 btrfs_tree_unlock(cur);
1718 free_extent_buffer(cur);
6702ed49
CM
1719 }
1720 return err;
1721}
1722
74123bd7 1723/*
5f39d397
CM
1724 * search for key in the extent_buffer. The items start at offset p,
1725 * and they are item_size apart. There are 'max' items in p.
1726 *
74123bd7
CM
1727 * the slot in the array is returned via slot, and it points to
1728 * the place where you would insert key if it is not found in
1729 * the array.
1730 *
1731 * slot may point to max if the key is bigger than all of the keys
1732 */
e02119d5 1733static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1734 unsigned long p, int item_size,
1735 const struct btrfs_key *key,
e02119d5 1736 int max, int *slot)
be0e5c09
CM
1737{
1738 int low = 0;
1739 int high = max;
1740 int mid;
1741 int ret;
479965d6 1742 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1743 struct btrfs_disk_key unaligned;
1744 unsigned long offset;
5f39d397
CM
1745 char *kaddr = NULL;
1746 unsigned long map_start = 0;
1747 unsigned long map_len = 0;
479965d6 1748 int err;
be0e5c09 1749
5e24e9af
LB
1750 if (low > high) {
1751 btrfs_err(eb->fs_info,
1752 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1753 __func__, low, high, eb->start,
1754 btrfs_header_owner(eb), btrfs_header_level(eb));
1755 return -EINVAL;
1756 }
1757
d397712b 1758 while (low < high) {
be0e5c09 1759 mid = (low + high) / 2;
5f39d397
CM
1760 offset = p + mid * item_size;
1761
a6591715 1762 if (!kaddr || offset < map_start ||
5f39d397
CM
1763 (offset + sizeof(struct btrfs_disk_key)) >
1764 map_start + map_len) {
934d375b
CM
1765
1766 err = map_private_extent_buffer(eb, offset,
479965d6 1767 sizeof(struct btrfs_disk_key),
a6591715 1768 &kaddr, &map_start, &map_len);
479965d6
CM
1769
1770 if (!err) {
1771 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1772 map_start);
415b35a5 1773 } else if (err == 1) {
479965d6
CM
1774 read_extent_buffer(eb, &unaligned,
1775 offset, sizeof(unaligned));
1776 tmp = &unaligned;
415b35a5
LB
1777 } else {
1778 return err;
479965d6 1779 }
5f39d397 1780
5f39d397
CM
1781 } else {
1782 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1783 map_start);
1784 }
be0e5c09
CM
1785 ret = comp_keys(tmp, key);
1786
1787 if (ret < 0)
1788 low = mid + 1;
1789 else if (ret > 0)
1790 high = mid;
1791 else {
1792 *slot = mid;
1793 return 0;
1794 }
1795 }
1796 *slot = low;
1797 return 1;
1798}
1799
97571fd0
CM
1800/*
1801 * simple bin_search frontend that does the right thing for
1802 * leaves vs nodes
1803 */
310712b2 1804static int bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
5f39d397 1805 int level, int *slot)
be0e5c09 1806{
f775738f 1807 if (level == 0)
5f39d397
CM
1808 return generic_bin_search(eb,
1809 offsetof(struct btrfs_leaf, items),
0783fcfc 1810 sizeof(struct btrfs_item),
5f39d397 1811 key, btrfs_header_nritems(eb),
7518a238 1812 slot);
f775738f 1813 else
5f39d397
CM
1814 return generic_bin_search(eb,
1815 offsetof(struct btrfs_node, ptrs),
123abc88 1816 sizeof(struct btrfs_key_ptr),
5f39d397 1817 key, btrfs_header_nritems(eb),
7518a238 1818 slot);
be0e5c09
CM
1819}
1820
310712b2 1821int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
5d4f98a2
YZ
1822 int level, int *slot)
1823{
1824 return bin_search(eb, key, level, slot);
1825}
1826
f0486c68
YZ
1827static void root_add_used(struct btrfs_root *root, u32 size)
1828{
1829 spin_lock(&root->accounting_lock);
1830 btrfs_set_root_used(&root->root_item,
1831 btrfs_root_used(&root->root_item) + size);
1832 spin_unlock(&root->accounting_lock);
1833}
1834
1835static void root_sub_used(struct btrfs_root *root, u32 size)
1836{
1837 spin_lock(&root->accounting_lock);
1838 btrfs_set_root_used(&root->root_item,
1839 btrfs_root_used(&root->root_item) - size);
1840 spin_unlock(&root->accounting_lock);
1841}
1842
d352ac68
CM
1843/* given a node and slot number, this reads the blocks it points to. The
1844 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1845 */
2ff7e61e
JM
1846static noinline struct extent_buffer *
1847read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1848 int slot)
bb803951 1849{
ca7a79ad 1850 int level = btrfs_header_level(parent);
416bc658
JB
1851 struct extent_buffer *eb;
1852
fb770ae4
LB
1853 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1854 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1855
1856 BUG_ON(level == 0);
1857
2ff7e61e 1858 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
416bc658 1859 btrfs_node_ptr_generation(parent, slot));
fb770ae4
LB
1860 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1861 free_extent_buffer(eb);
1862 eb = ERR_PTR(-EIO);
416bc658
JB
1863 }
1864
1865 return eb;
bb803951
CM
1866}
1867
d352ac68
CM
1868/*
1869 * node level balancing, used to make sure nodes are in proper order for
1870 * item deletion. We balance from the top down, so we have to make sure
1871 * that a deletion won't leave an node completely empty later on.
1872 */
e02119d5 1873static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1874 struct btrfs_root *root,
1875 struct btrfs_path *path, int level)
bb803951 1876{
0b246afa 1877 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1878 struct extent_buffer *right = NULL;
1879 struct extent_buffer *mid;
1880 struct extent_buffer *left = NULL;
1881 struct extent_buffer *parent = NULL;
bb803951
CM
1882 int ret = 0;
1883 int wret;
1884 int pslot;
bb803951 1885 int orig_slot = path->slots[level];
79f95c82 1886 u64 orig_ptr;
bb803951
CM
1887
1888 if (level == 0)
1889 return 0;
1890
5f39d397 1891 mid = path->nodes[level];
b4ce94de 1892
bd681513
CM
1893 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1894 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1895 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1896
1d4f8a0c 1897 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1898
a05a9bb1 1899 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1900 parent = path->nodes[level + 1];
a05a9bb1
LZ
1901 pslot = path->slots[level + 1];
1902 }
bb803951 1903
40689478
CM
1904 /*
1905 * deal with the case where there is only one pointer in the root
1906 * by promoting the node below to a root
1907 */
5f39d397
CM
1908 if (!parent) {
1909 struct extent_buffer *child;
bb803951 1910
5f39d397 1911 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1912 return 0;
1913
1914 /* promote the child to a root */
2ff7e61e 1915 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1916 if (IS_ERR(child)) {
1917 ret = PTR_ERR(child);
0b246afa 1918 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1919 goto enospc;
1920 }
1921
925baedd 1922 btrfs_tree_lock(child);
b4ce94de 1923 btrfs_set_lock_blocking(child);
9fa8cfe7 1924 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1925 if (ret) {
1926 btrfs_tree_unlock(child);
1927 free_extent_buffer(child);
1928 goto enospc;
1929 }
2f375ab9 1930
90f8d62e 1931 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1932 rcu_assign_pointer(root->node, child);
925baedd 1933
0b86a832 1934 add_root_to_dirty_list(root);
925baedd 1935 btrfs_tree_unlock(child);
b4ce94de 1936
925baedd 1937 path->locks[level] = 0;
bb803951 1938 path->nodes[level] = NULL;
7c302b49 1939 clean_tree_block(fs_info, mid);
925baedd 1940 btrfs_tree_unlock(mid);
bb803951 1941 /* once for the path */
5f39d397 1942 free_extent_buffer(mid);
f0486c68
YZ
1943
1944 root_sub_used(root, mid->len);
5581a51a 1945 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1946 /* once for the root ptr */
3083ee2e 1947 free_extent_buffer_stale(mid);
f0486c68 1948 return 0;
bb803951 1949 }
5f39d397 1950 if (btrfs_header_nritems(mid) >
0b246afa 1951 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1952 return 0;
1953
2ff7e61e 1954 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1955 if (IS_ERR(left))
1956 left = NULL;
1957
5f39d397 1958 if (left) {
925baedd 1959 btrfs_tree_lock(left);
b4ce94de 1960 btrfs_set_lock_blocking(left);
5f39d397 1961 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1962 parent, pslot - 1, &left);
54aa1f4d
CM
1963 if (wret) {
1964 ret = wret;
1965 goto enospc;
1966 }
2cc58cf2 1967 }
fb770ae4 1968
2ff7e61e 1969 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1970 if (IS_ERR(right))
1971 right = NULL;
1972
5f39d397 1973 if (right) {
925baedd 1974 btrfs_tree_lock(right);
b4ce94de 1975 btrfs_set_lock_blocking(right);
5f39d397 1976 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1977 parent, pslot + 1, &right);
2cc58cf2
CM
1978 if (wret) {
1979 ret = wret;
1980 goto enospc;
1981 }
1982 }
1983
1984 /* first, try to make some room in the middle buffer */
5f39d397
CM
1985 if (left) {
1986 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1987 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1988 if (wret < 0)
1989 ret = wret;
bb803951 1990 }
79f95c82
CM
1991
1992 /*
1993 * then try to empty the right most buffer into the middle
1994 */
5f39d397 1995 if (right) {
2ff7e61e 1996 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 1997 if (wret < 0 && wret != -ENOSPC)
79f95c82 1998 ret = wret;
5f39d397 1999 if (btrfs_header_nritems(right) == 0) {
7c302b49 2000 clean_tree_block(fs_info, right);
925baedd 2001 btrfs_tree_unlock(right);
afe5fea7 2002 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 2003 root_sub_used(root, right->len);
5581a51a 2004 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 2005 free_extent_buffer_stale(right);
f0486c68 2006 right = NULL;
bb803951 2007 } else {
5f39d397
CM
2008 struct btrfs_disk_key right_key;
2009 btrfs_node_key(right, &right_key, 0);
0b246afa 2010 tree_mod_log_set_node_key(fs_info, parent,
32adf090 2011 pslot + 1, 0);
5f39d397
CM
2012 btrfs_set_node_key(parent, &right_key, pslot + 1);
2013 btrfs_mark_buffer_dirty(parent);
bb803951
CM
2014 }
2015 }
5f39d397 2016 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
2017 /*
2018 * we're not allowed to leave a node with one item in the
2019 * tree during a delete. A deletion from lower in the tree
2020 * could try to delete the only pointer in this node.
2021 * So, pull some keys from the left.
2022 * There has to be a left pointer at this point because
2023 * otherwise we would have pulled some pointers from the
2024 * right
2025 */
305a26af
MF
2026 if (!left) {
2027 ret = -EROFS;
0b246afa 2028 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
2029 goto enospc;
2030 }
2ff7e61e 2031 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 2032 if (wret < 0) {
79f95c82 2033 ret = wret;
54aa1f4d
CM
2034 goto enospc;
2035 }
bce4eae9 2036 if (wret == 1) {
2ff7e61e 2037 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
2038 if (wret < 0)
2039 ret = wret;
2040 }
79f95c82
CM
2041 BUG_ON(wret == 1);
2042 }
5f39d397 2043 if (btrfs_header_nritems(mid) == 0) {
7c302b49 2044 clean_tree_block(fs_info, mid);
925baedd 2045 btrfs_tree_unlock(mid);
afe5fea7 2046 del_ptr(root, path, level + 1, pslot);
f0486c68 2047 root_sub_used(root, mid->len);
5581a51a 2048 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2049 free_extent_buffer_stale(mid);
f0486c68 2050 mid = NULL;
79f95c82
CM
2051 } else {
2052 /* update the parent key to reflect our changes */
5f39d397
CM
2053 struct btrfs_disk_key mid_key;
2054 btrfs_node_key(mid, &mid_key, 0);
0b246afa 2055 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
5f39d397
CM
2056 btrfs_set_node_key(parent, &mid_key, pslot);
2057 btrfs_mark_buffer_dirty(parent);
79f95c82 2058 }
bb803951 2059
79f95c82 2060 /* update the path */
5f39d397
CM
2061 if (left) {
2062 if (btrfs_header_nritems(left) > orig_slot) {
2063 extent_buffer_get(left);
925baedd 2064 /* left was locked after cow */
5f39d397 2065 path->nodes[level] = left;
bb803951
CM
2066 path->slots[level + 1] -= 1;
2067 path->slots[level] = orig_slot;
925baedd
CM
2068 if (mid) {
2069 btrfs_tree_unlock(mid);
5f39d397 2070 free_extent_buffer(mid);
925baedd 2071 }
bb803951 2072 } else {
5f39d397 2073 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2074 path->slots[level] = orig_slot;
2075 }
2076 }
79f95c82 2077 /* double check we haven't messed things up */
e20d96d6 2078 if (orig_ptr !=
5f39d397 2079 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2080 BUG();
54aa1f4d 2081enospc:
925baedd
CM
2082 if (right) {
2083 btrfs_tree_unlock(right);
5f39d397 2084 free_extent_buffer(right);
925baedd
CM
2085 }
2086 if (left) {
2087 if (path->nodes[level] != left)
2088 btrfs_tree_unlock(left);
5f39d397 2089 free_extent_buffer(left);
925baedd 2090 }
bb803951
CM
2091 return ret;
2092}
2093
d352ac68
CM
2094/* Node balancing for insertion. Here we only split or push nodes around
2095 * when they are completely full. This is also done top down, so we
2096 * have to be pessimistic.
2097 */
d397712b 2098static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2099 struct btrfs_root *root,
2100 struct btrfs_path *path, int level)
e66f709b 2101{
0b246afa 2102 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2103 struct extent_buffer *right = NULL;
2104 struct extent_buffer *mid;
2105 struct extent_buffer *left = NULL;
2106 struct extent_buffer *parent = NULL;
e66f709b
CM
2107 int ret = 0;
2108 int wret;
2109 int pslot;
2110 int orig_slot = path->slots[level];
e66f709b
CM
2111
2112 if (level == 0)
2113 return 1;
2114
5f39d397 2115 mid = path->nodes[level];
7bb86316 2116 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2117
a05a9bb1 2118 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2119 parent = path->nodes[level + 1];
a05a9bb1
LZ
2120 pslot = path->slots[level + 1];
2121 }
e66f709b 2122
5f39d397 2123 if (!parent)
e66f709b 2124 return 1;
e66f709b 2125
2ff7e61e 2126 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2127 if (IS_ERR(left))
2128 left = NULL;
e66f709b
CM
2129
2130 /* first, try to make some room in the middle buffer */
5f39d397 2131 if (left) {
e66f709b 2132 u32 left_nr;
925baedd
CM
2133
2134 btrfs_tree_lock(left);
b4ce94de
CM
2135 btrfs_set_lock_blocking(left);
2136
5f39d397 2137 left_nr = btrfs_header_nritems(left);
0b246afa 2138 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2139 wret = 1;
2140 } else {
5f39d397 2141 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2142 pslot - 1, &left);
54aa1f4d
CM
2143 if (ret)
2144 wret = 1;
2145 else {
2ff7e61e 2146 wret = push_node_left(trans, fs_info,
971a1f66 2147 left, mid, 0);
54aa1f4d 2148 }
33ade1f8 2149 }
e66f709b
CM
2150 if (wret < 0)
2151 ret = wret;
2152 if (wret == 0) {
5f39d397 2153 struct btrfs_disk_key disk_key;
e66f709b 2154 orig_slot += left_nr;
5f39d397 2155 btrfs_node_key(mid, &disk_key, 0);
0b246afa 2156 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
5f39d397
CM
2157 btrfs_set_node_key(parent, &disk_key, pslot);
2158 btrfs_mark_buffer_dirty(parent);
2159 if (btrfs_header_nritems(left) > orig_slot) {
2160 path->nodes[level] = left;
e66f709b
CM
2161 path->slots[level + 1] -= 1;
2162 path->slots[level] = orig_slot;
925baedd 2163 btrfs_tree_unlock(mid);
5f39d397 2164 free_extent_buffer(mid);
e66f709b
CM
2165 } else {
2166 orig_slot -=
5f39d397 2167 btrfs_header_nritems(left);
e66f709b 2168 path->slots[level] = orig_slot;
925baedd 2169 btrfs_tree_unlock(left);
5f39d397 2170 free_extent_buffer(left);
e66f709b 2171 }
e66f709b
CM
2172 return 0;
2173 }
925baedd 2174 btrfs_tree_unlock(left);
5f39d397 2175 free_extent_buffer(left);
e66f709b 2176 }
2ff7e61e 2177 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2178 if (IS_ERR(right))
2179 right = NULL;
e66f709b
CM
2180
2181 /*
2182 * then try to empty the right most buffer into the middle
2183 */
5f39d397 2184 if (right) {
33ade1f8 2185 u32 right_nr;
b4ce94de 2186
925baedd 2187 btrfs_tree_lock(right);
b4ce94de
CM
2188 btrfs_set_lock_blocking(right);
2189
5f39d397 2190 right_nr = btrfs_header_nritems(right);
0b246afa 2191 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2192 wret = 1;
2193 } else {
5f39d397
CM
2194 ret = btrfs_cow_block(trans, root, right,
2195 parent, pslot + 1,
9fa8cfe7 2196 &right);
54aa1f4d
CM
2197 if (ret)
2198 wret = 1;
2199 else {
2ff7e61e 2200 wret = balance_node_right(trans, fs_info,
5f39d397 2201 right, mid);
54aa1f4d 2202 }
33ade1f8 2203 }
e66f709b
CM
2204 if (wret < 0)
2205 ret = wret;
2206 if (wret == 0) {
5f39d397
CM
2207 struct btrfs_disk_key disk_key;
2208
2209 btrfs_node_key(right, &disk_key, 0);
0b246afa 2210 tree_mod_log_set_node_key(fs_info, parent,
32adf090 2211 pslot + 1, 0);
5f39d397
CM
2212 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2213 btrfs_mark_buffer_dirty(parent);
2214
2215 if (btrfs_header_nritems(mid) <= orig_slot) {
2216 path->nodes[level] = right;
e66f709b
CM
2217 path->slots[level + 1] += 1;
2218 path->slots[level] = orig_slot -
5f39d397 2219 btrfs_header_nritems(mid);
925baedd 2220 btrfs_tree_unlock(mid);
5f39d397 2221 free_extent_buffer(mid);
e66f709b 2222 } else {
925baedd 2223 btrfs_tree_unlock(right);
5f39d397 2224 free_extent_buffer(right);
e66f709b 2225 }
e66f709b
CM
2226 return 0;
2227 }
925baedd 2228 btrfs_tree_unlock(right);
5f39d397 2229 free_extent_buffer(right);
e66f709b 2230 }
e66f709b
CM
2231 return 1;
2232}
2233
3c69faec 2234/*
d352ac68
CM
2235 * readahead one full node of leaves, finding things that are close
2236 * to the block in 'slot', and triggering ra on them.
3c69faec 2237 */
2ff7e61e 2238static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2239 struct btrfs_path *path,
2240 int level, int slot, u64 objectid)
3c69faec 2241{
5f39d397 2242 struct extent_buffer *node;
01f46658 2243 struct btrfs_disk_key disk_key;
3c69faec 2244 u32 nritems;
3c69faec 2245 u64 search;
a7175319 2246 u64 target;
6b80053d 2247 u64 nread = 0;
5f39d397 2248 struct extent_buffer *eb;
6b80053d
CM
2249 u32 nr;
2250 u32 blocksize;
2251 u32 nscan = 0;
db94535d 2252
a6b6e75e 2253 if (level != 1)
6702ed49
CM
2254 return;
2255
2256 if (!path->nodes[level])
3c69faec
CM
2257 return;
2258
5f39d397 2259 node = path->nodes[level];
925baedd 2260
3c69faec 2261 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2262 blocksize = fs_info->nodesize;
2263 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2264 if (eb) {
2265 free_extent_buffer(eb);
3c69faec
CM
2266 return;
2267 }
2268
a7175319 2269 target = search;
6b80053d 2270
5f39d397 2271 nritems = btrfs_header_nritems(node);
6b80053d 2272 nr = slot;
25b8b936 2273
d397712b 2274 while (1) {
e4058b54 2275 if (path->reada == READA_BACK) {
6b80053d
CM
2276 if (nr == 0)
2277 break;
2278 nr--;
e4058b54 2279 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2280 nr++;
2281 if (nr >= nritems)
2282 break;
3c69faec 2283 }
e4058b54 2284 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2285 btrfs_node_key(node, &disk_key, nr);
2286 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2287 break;
2288 }
6b80053d 2289 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2290 if ((search <= target && target - search <= 65536) ||
2291 (search > target && search - target <= 65536)) {
2ff7e61e 2292 readahead_tree_block(fs_info, search);
6b80053d
CM
2293 nread += blocksize;
2294 }
2295 nscan++;
a7175319 2296 if ((nread > 65536 || nscan > 32))
6b80053d 2297 break;
3c69faec
CM
2298 }
2299}
925baedd 2300
2ff7e61e 2301static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2302 struct btrfs_path *path, int level)
b4ce94de
CM
2303{
2304 int slot;
2305 int nritems;
2306 struct extent_buffer *parent;
2307 struct extent_buffer *eb;
2308 u64 gen;
2309 u64 block1 = 0;
2310 u64 block2 = 0;
b4ce94de 2311
8c594ea8 2312 parent = path->nodes[level + 1];
b4ce94de 2313 if (!parent)
0b08851f 2314 return;
b4ce94de
CM
2315
2316 nritems = btrfs_header_nritems(parent);
8c594ea8 2317 slot = path->slots[level + 1];
b4ce94de
CM
2318
2319 if (slot > 0) {
2320 block1 = btrfs_node_blockptr(parent, slot - 1);
2321 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2322 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2323 /*
2324 * if we get -eagain from btrfs_buffer_uptodate, we
2325 * don't want to return eagain here. That will loop
2326 * forever
2327 */
2328 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2329 block1 = 0;
2330 free_extent_buffer(eb);
2331 }
8c594ea8 2332 if (slot + 1 < nritems) {
b4ce94de
CM
2333 block2 = btrfs_node_blockptr(parent, slot + 1);
2334 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2335 eb = find_extent_buffer(fs_info, block2);
b9fab919 2336 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2337 block2 = 0;
2338 free_extent_buffer(eb);
2339 }
8c594ea8 2340
0b08851f 2341 if (block1)
2ff7e61e 2342 readahead_tree_block(fs_info, block1);
0b08851f 2343 if (block2)
2ff7e61e 2344 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2345}
2346
2347
d352ac68 2348/*
d397712b
CM
2349 * when we walk down the tree, it is usually safe to unlock the higher layers
2350 * in the tree. The exceptions are when our path goes through slot 0, because
2351 * operations on the tree might require changing key pointers higher up in the
2352 * tree.
d352ac68 2353 *
d397712b
CM
2354 * callers might also have set path->keep_locks, which tells this code to keep
2355 * the lock if the path points to the last slot in the block. This is part of
2356 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2357 *
d397712b
CM
2358 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2359 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2360 */
e02119d5 2361static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2362 int lowest_unlock, int min_write_lock_level,
2363 int *write_lock_level)
925baedd
CM
2364{
2365 int i;
2366 int skip_level = level;
051e1b9f 2367 int no_skips = 0;
925baedd
CM
2368 struct extent_buffer *t;
2369
2370 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2371 if (!path->nodes[i])
2372 break;
2373 if (!path->locks[i])
2374 break;
051e1b9f 2375 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2376 skip_level = i + 1;
2377 continue;
2378 }
051e1b9f 2379 if (!no_skips && path->keep_locks) {
925baedd
CM
2380 u32 nritems;
2381 t = path->nodes[i];
2382 nritems = btrfs_header_nritems(t);
051e1b9f 2383 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2384 skip_level = i + 1;
2385 continue;
2386 }
2387 }
051e1b9f
CM
2388 if (skip_level < i && i >= lowest_unlock)
2389 no_skips = 1;
2390
925baedd
CM
2391 t = path->nodes[i];
2392 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2393 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2394 path->locks[i] = 0;
f7c79f30
CM
2395 if (write_lock_level &&
2396 i > min_write_lock_level &&
2397 i <= *write_lock_level) {
2398 *write_lock_level = i - 1;
2399 }
925baedd
CM
2400 }
2401 }
2402}
2403
b4ce94de
CM
2404/*
2405 * This releases any locks held in the path starting at level and
2406 * going all the way up to the root.
2407 *
2408 * btrfs_search_slot will keep the lock held on higher nodes in a few
2409 * corner cases, such as COW of the block at slot zero in the node. This
2410 * ignores those rules, and it should only be called when there are no
2411 * more updates to be done higher up in the tree.
2412 */
2413noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2414{
2415 int i;
2416
09a2a8f9 2417 if (path->keep_locks)
b4ce94de
CM
2418 return;
2419
2420 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2421 if (!path->nodes[i])
12f4dacc 2422 continue;
b4ce94de 2423 if (!path->locks[i])
12f4dacc 2424 continue;
bd681513 2425 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2426 path->locks[i] = 0;
2427 }
2428}
2429
c8c42864
CM
2430/*
2431 * helper function for btrfs_search_slot. The goal is to find a block
2432 * in cache without setting the path to blocking. If we find the block
2433 * we return zero and the path is unchanged.
2434 *
2435 * If we can't find the block, we set the path blocking and do some
2436 * reada. -EAGAIN is returned and the search must be repeated.
2437 */
2438static int
d07b8528
LB
2439read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2440 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2441 const struct btrfs_key *key)
c8c42864 2442{
0b246afa 2443 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2444 u64 blocknr;
2445 u64 gen;
c8c42864
CM
2446 struct extent_buffer *b = *eb_ret;
2447 struct extent_buffer *tmp;
76a05b35 2448 int ret;
c8c42864
CM
2449
2450 blocknr = btrfs_node_blockptr(b, slot);
2451 gen = btrfs_node_ptr_generation(b, slot);
c8c42864 2452
0b246afa 2453 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2454 if (tmp) {
b9fab919 2455 /* first we do an atomic uptodate check */
bdf7c00e
JB
2456 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2457 *eb_ret = tmp;
2458 return 0;
2459 }
2460
2461 /* the pages were up to date, but we failed
2462 * the generation number check. Do a full
2463 * read for the generation number that is correct.
2464 * We must do this without dropping locks so
2465 * we can trust our generation number
2466 */
2467 btrfs_set_path_blocking(p);
2468
2469 /* now we're allowed to do a blocking uptodate check */
2470 ret = btrfs_read_buffer(tmp, gen);
2471 if (!ret) {
2472 *eb_ret = tmp;
2473 return 0;
cb44921a 2474 }
bdf7c00e
JB
2475 free_extent_buffer(tmp);
2476 btrfs_release_path(p);
2477 return -EIO;
c8c42864
CM
2478 }
2479
2480 /*
2481 * reduce lock contention at high levels
2482 * of the btree by dropping locks before
76a05b35
CM
2483 * we read. Don't release the lock on the current
2484 * level because we need to walk this node to figure
2485 * out which blocks to read.
c8c42864 2486 */
8c594ea8
CM
2487 btrfs_unlock_up_safe(p, level + 1);
2488 btrfs_set_path_blocking(p);
2489
cb44921a 2490 free_extent_buffer(tmp);
e4058b54 2491 if (p->reada != READA_NONE)
2ff7e61e 2492 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2493
b3b4aa74 2494 btrfs_release_path(p);
76a05b35
CM
2495
2496 ret = -EAGAIN;
2ff7e61e 2497 tmp = read_tree_block(fs_info, blocknr, 0);
64c043de 2498 if (!IS_ERR(tmp)) {
76a05b35
CM
2499 /*
2500 * If the read above didn't mark this buffer up to date,
2501 * it will never end up being up to date. Set ret to EIO now
2502 * and give up so that our caller doesn't loop forever
2503 * on our EAGAINs.
2504 */
b9fab919 2505 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2506 ret = -EIO;
c8c42864 2507 free_extent_buffer(tmp);
c871b0f2
LB
2508 } else {
2509 ret = PTR_ERR(tmp);
76a05b35
CM
2510 }
2511 return ret;
c8c42864
CM
2512}
2513
2514/*
2515 * helper function for btrfs_search_slot. This does all of the checks
2516 * for node-level blocks and does any balancing required based on
2517 * the ins_len.
2518 *
2519 * If no extra work was required, zero is returned. If we had to
2520 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2521 * start over
2522 */
2523static int
2524setup_nodes_for_search(struct btrfs_trans_handle *trans,
2525 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2526 struct extent_buffer *b, int level, int ins_len,
2527 int *write_lock_level)
c8c42864 2528{
0b246afa 2529 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2530 int ret;
0b246afa 2531
c8c42864 2532 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2533 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2534 int sret;
2535
bd681513
CM
2536 if (*write_lock_level < level + 1) {
2537 *write_lock_level = level + 1;
2538 btrfs_release_path(p);
2539 goto again;
2540 }
2541
c8c42864 2542 btrfs_set_path_blocking(p);
2ff7e61e 2543 reada_for_balance(fs_info, p, level);
c8c42864 2544 sret = split_node(trans, root, p, level);
bd681513 2545 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2546
2547 BUG_ON(sret > 0);
2548 if (sret) {
2549 ret = sret;
2550 goto done;
2551 }
2552 b = p->nodes[level];
2553 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2554 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2555 int sret;
2556
bd681513
CM
2557 if (*write_lock_level < level + 1) {
2558 *write_lock_level = level + 1;
2559 btrfs_release_path(p);
2560 goto again;
2561 }
2562
c8c42864 2563 btrfs_set_path_blocking(p);
2ff7e61e 2564 reada_for_balance(fs_info, p, level);
c8c42864 2565 sret = balance_level(trans, root, p, level);
bd681513 2566 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2567
2568 if (sret) {
2569 ret = sret;
2570 goto done;
2571 }
2572 b = p->nodes[level];
2573 if (!b) {
b3b4aa74 2574 btrfs_release_path(p);
c8c42864
CM
2575 goto again;
2576 }
2577 BUG_ON(btrfs_header_nritems(b) == 1);
2578 }
2579 return 0;
2580
2581again:
2582 ret = -EAGAIN;
2583done:
2584 return ret;
2585}
2586
d7396f07 2587static void key_search_validate(struct extent_buffer *b,
310712b2 2588 const struct btrfs_key *key,
d7396f07
FDBM
2589 int level)
2590{
2591#ifdef CONFIG_BTRFS_ASSERT
2592 struct btrfs_disk_key disk_key;
2593
2594 btrfs_cpu_key_to_disk(&disk_key, key);
2595
2596 if (level == 0)
2597 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2598 offsetof(struct btrfs_leaf, items[0].key),
2599 sizeof(disk_key)));
2600 else
2601 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2602 offsetof(struct btrfs_node, ptrs[0].key),
2603 sizeof(disk_key)));
2604#endif
2605}
2606
310712b2 2607static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2608 int level, int *prev_cmp, int *slot)
2609{
2610 if (*prev_cmp != 0) {
2611 *prev_cmp = bin_search(b, key, level, slot);
2612 return *prev_cmp;
2613 }
2614
2615 key_search_validate(b, key, level);
2616 *slot = 0;
2617
2618 return 0;
2619}
2620
381cf658 2621int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2622 u64 iobjectid, u64 ioff, u8 key_type,
2623 struct btrfs_key *found_key)
2624{
2625 int ret;
2626 struct btrfs_key key;
2627 struct extent_buffer *eb;
381cf658
DS
2628
2629 ASSERT(path);
1d4c08e0 2630 ASSERT(found_key);
e33d5c3d
KN
2631
2632 key.type = key_type;
2633 key.objectid = iobjectid;
2634 key.offset = ioff;
2635
2636 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2637 if (ret < 0)
e33d5c3d
KN
2638 return ret;
2639
2640 eb = path->nodes[0];
2641 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2642 ret = btrfs_next_leaf(fs_root, path);
2643 if (ret)
2644 return ret;
2645 eb = path->nodes[0];
2646 }
2647
2648 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2649 if (found_key->type != key.type ||
2650 found_key->objectid != key.objectid)
2651 return 1;
2652
2653 return 0;
2654}
2655
74123bd7
CM
2656/*
2657 * look for key in the tree. path is filled in with nodes along the way
2658 * if key is found, we return zero and you can find the item in the leaf
2659 * level of the path (level 0)
2660 *
2661 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2662 * be inserted, and 1 is returned. If there are other errors during the
2663 * search a negative error number is returned.
97571fd0
CM
2664 *
2665 * if ins_len > 0, nodes and leaves will be split as we walk down the
2666 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2667 * possible)
74123bd7 2668 */
310712b2
OS
2669int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2670 const struct btrfs_key *key, struct btrfs_path *p,
2671 int ins_len, int cow)
be0e5c09 2672{
0b246afa 2673 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2674 struct extent_buffer *b;
be0e5c09
CM
2675 int slot;
2676 int ret;
33c66f43 2677 int err;
be0e5c09 2678 int level;
925baedd 2679 int lowest_unlock = 1;
bd681513
CM
2680 int root_lock;
2681 /* everything at write_lock_level or lower must be write locked */
2682 int write_lock_level = 0;
9f3a7427 2683 u8 lowest_level = 0;
f7c79f30 2684 int min_write_lock_level;
d7396f07 2685 int prev_cmp;
9f3a7427 2686
6702ed49 2687 lowest_level = p->lowest_level;
323ac95b 2688 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2689 WARN_ON(p->nodes[0] != NULL);
eb653de1 2690 BUG_ON(!cow && ins_len);
25179201 2691
bd681513 2692 if (ins_len < 0) {
925baedd 2693 lowest_unlock = 2;
65b51a00 2694
bd681513
CM
2695 /* when we are removing items, we might have to go up to level
2696 * two as we update tree pointers Make sure we keep write
2697 * for those levels as well
2698 */
2699 write_lock_level = 2;
2700 } else if (ins_len > 0) {
2701 /*
2702 * for inserting items, make sure we have a write lock on
2703 * level 1 so we can update keys
2704 */
2705 write_lock_level = 1;
2706 }
2707
2708 if (!cow)
2709 write_lock_level = -1;
2710
09a2a8f9 2711 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2712 write_lock_level = BTRFS_MAX_LEVEL;
2713
f7c79f30
CM
2714 min_write_lock_level = write_lock_level;
2715
bb803951 2716again:
d7396f07 2717 prev_cmp = -1;
bd681513
CM
2718 /*
2719 * we try very hard to do read locks on the root
2720 */
2721 root_lock = BTRFS_READ_LOCK;
2722 level = 0;
5d4f98a2 2723 if (p->search_commit_root) {
bd681513
CM
2724 /*
2725 * the commit roots are read only
2726 * so we always do read locks
2727 */
3f8a18cc 2728 if (p->need_commit_sem)
0b246afa 2729 down_read(&fs_info->commit_root_sem);
5d4f98a2
YZ
2730 b = root->commit_root;
2731 extent_buffer_get(b);
bd681513 2732 level = btrfs_header_level(b);
3f8a18cc 2733 if (p->need_commit_sem)
0b246afa 2734 up_read(&fs_info->commit_root_sem);
5d4f98a2 2735 if (!p->skip_locking)
bd681513 2736 btrfs_tree_read_lock(b);
5d4f98a2 2737 } else {
bd681513 2738 if (p->skip_locking) {
5d4f98a2 2739 b = btrfs_root_node(root);
bd681513
CM
2740 level = btrfs_header_level(b);
2741 } else {
2742 /* we don't know the level of the root node
2743 * until we actually have it read locked
2744 */
2745 b = btrfs_read_lock_root_node(root);
2746 level = btrfs_header_level(b);
2747 if (level <= write_lock_level) {
2748 /* whoops, must trade for write lock */
2749 btrfs_tree_read_unlock(b);
2750 free_extent_buffer(b);
2751 b = btrfs_lock_root_node(root);
2752 root_lock = BTRFS_WRITE_LOCK;
2753
2754 /* the level might have changed, check again */
2755 level = btrfs_header_level(b);
2756 }
2757 }
5d4f98a2 2758 }
bd681513
CM
2759 p->nodes[level] = b;
2760 if (!p->skip_locking)
2761 p->locks[level] = root_lock;
925baedd 2762
eb60ceac 2763 while (b) {
5f39d397 2764 level = btrfs_header_level(b);
65b51a00
CM
2765
2766 /*
2767 * setup the path here so we can release it under lock
2768 * contention with the cow code
2769 */
02217ed2 2770 if (cow) {
c8c42864
CM
2771 /*
2772 * if we don't really need to cow this block
2773 * then we don't want to set the path blocking,
2774 * so we test it here
2775 */
64c12921
JM
2776 if (!should_cow_block(trans, root, b)) {
2777 trans->dirty = true;
65b51a00 2778 goto cow_done;
64c12921 2779 }
5d4f98a2 2780
bd681513
CM
2781 /*
2782 * must have write locks on this node and the
2783 * parent
2784 */
5124e00e
JB
2785 if (level > write_lock_level ||
2786 (level + 1 > write_lock_level &&
2787 level + 1 < BTRFS_MAX_LEVEL &&
2788 p->nodes[level + 1])) {
bd681513
CM
2789 write_lock_level = level + 1;
2790 btrfs_release_path(p);
2791 goto again;
2792 }
2793
160f4089 2794 btrfs_set_path_blocking(p);
33c66f43
YZ
2795 err = btrfs_cow_block(trans, root, b,
2796 p->nodes[level + 1],
2797 p->slots[level + 1], &b);
2798 if (err) {
33c66f43 2799 ret = err;
65b51a00 2800 goto done;
54aa1f4d 2801 }
02217ed2 2802 }
65b51a00 2803cow_done:
eb60ceac 2804 p->nodes[level] = b;
bd681513 2805 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2806
2807 /*
2808 * we have a lock on b and as long as we aren't changing
2809 * the tree, there is no way to for the items in b to change.
2810 * It is safe to drop the lock on our parent before we
2811 * go through the expensive btree search on b.
2812 *
eb653de1
FDBM
2813 * If we're inserting or deleting (ins_len != 0), then we might
2814 * be changing slot zero, which may require changing the parent.
2815 * So, we can't drop the lock until after we know which slot
2816 * we're operating on.
b4ce94de 2817 */
eb653de1
FDBM
2818 if (!ins_len && !p->keep_locks) {
2819 int u = level + 1;
2820
2821 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2822 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2823 p->locks[u] = 0;
2824 }
2825 }
b4ce94de 2826
d7396f07 2827 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2828 if (ret < 0)
2829 goto done;
b4ce94de 2830
5f39d397 2831 if (level != 0) {
33c66f43
YZ
2832 int dec = 0;
2833 if (ret && slot > 0) {
2834 dec = 1;
be0e5c09 2835 slot -= 1;
33c66f43 2836 }
be0e5c09 2837 p->slots[level] = slot;
33c66f43 2838 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2839 ins_len, &write_lock_level);
33c66f43 2840 if (err == -EAGAIN)
c8c42864 2841 goto again;
33c66f43
YZ
2842 if (err) {
2843 ret = err;
c8c42864 2844 goto done;
33c66f43 2845 }
c8c42864
CM
2846 b = p->nodes[level];
2847 slot = p->slots[level];
b4ce94de 2848
bd681513
CM
2849 /*
2850 * slot 0 is special, if we change the key
2851 * we have to update the parent pointer
2852 * which means we must have a write lock
2853 * on the parent
2854 */
eb653de1 2855 if (slot == 0 && ins_len &&
bd681513
CM
2856 write_lock_level < level + 1) {
2857 write_lock_level = level + 1;
2858 btrfs_release_path(p);
2859 goto again;
2860 }
2861
f7c79f30
CM
2862 unlock_up(p, level, lowest_unlock,
2863 min_write_lock_level, &write_lock_level);
f9efa9c7 2864
925baedd 2865 if (level == lowest_level) {
33c66f43
YZ
2866 if (dec)
2867 p->slots[level]++;
5b21f2ed 2868 goto done;
925baedd 2869 }
ca7a79ad 2870
d07b8528 2871 err = read_block_for_search(root, p, &b, level,
cda79c54 2872 slot, key);
33c66f43 2873 if (err == -EAGAIN)
c8c42864 2874 goto again;
33c66f43
YZ
2875 if (err) {
2876 ret = err;
76a05b35 2877 goto done;
33c66f43 2878 }
76a05b35 2879
b4ce94de 2880 if (!p->skip_locking) {
bd681513
CM
2881 level = btrfs_header_level(b);
2882 if (level <= write_lock_level) {
2883 err = btrfs_try_tree_write_lock(b);
2884 if (!err) {
2885 btrfs_set_path_blocking(p);
2886 btrfs_tree_lock(b);
2887 btrfs_clear_path_blocking(p, b,
2888 BTRFS_WRITE_LOCK);
2889 }
2890 p->locks[level] = BTRFS_WRITE_LOCK;
2891 } else {
f82c458a 2892 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2893 if (!err) {
2894 btrfs_set_path_blocking(p);
2895 btrfs_tree_read_lock(b);
2896 btrfs_clear_path_blocking(p, b,
2897 BTRFS_READ_LOCK);
2898 }
2899 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2900 }
bd681513 2901 p->nodes[level] = b;
b4ce94de 2902 }
be0e5c09
CM
2903 } else {
2904 p->slots[level] = slot;
87b29b20 2905 if (ins_len > 0 &&
2ff7e61e 2906 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2907 if (write_lock_level < 1) {
2908 write_lock_level = 1;
2909 btrfs_release_path(p);
2910 goto again;
2911 }
2912
b4ce94de 2913 btrfs_set_path_blocking(p);
33c66f43
YZ
2914 err = split_leaf(trans, root, key,
2915 p, ins_len, ret == 0);
bd681513 2916 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2917
33c66f43
YZ
2918 BUG_ON(err > 0);
2919 if (err) {
2920 ret = err;
65b51a00
CM
2921 goto done;
2922 }
5c680ed6 2923 }
459931ec 2924 if (!p->search_for_split)
f7c79f30
CM
2925 unlock_up(p, level, lowest_unlock,
2926 min_write_lock_level, &write_lock_level);
65b51a00 2927 goto done;
be0e5c09
CM
2928 }
2929 }
65b51a00
CM
2930 ret = 1;
2931done:
b4ce94de
CM
2932 /*
2933 * we don't really know what they plan on doing with the path
2934 * from here on, so for now just mark it as blocking
2935 */
b9473439
CM
2936 if (!p->leave_spinning)
2937 btrfs_set_path_blocking(p);
5f5bc6b1 2938 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2939 btrfs_release_path(p);
65b51a00 2940 return ret;
be0e5c09
CM
2941}
2942
5d9e75c4
JS
2943/*
2944 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2945 * current state of the tree together with the operations recorded in the tree
2946 * modification log to search for the key in a previous version of this tree, as
2947 * denoted by the time_seq parameter.
2948 *
2949 * Naturally, there is no support for insert, delete or cow operations.
2950 *
2951 * The resulting path and return value will be set up as if we called
2952 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2953 */
310712b2 2954int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2955 struct btrfs_path *p, u64 time_seq)
2956{
0b246afa 2957 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2958 struct extent_buffer *b;
2959 int slot;
2960 int ret;
2961 int err;
2962 int level;
2963 int lowest_unlock = 1;
2964 u8 lowest_level = 0;
d4b4087c 2965 int prev_cmp = -1;
5d9e75c4
JS
2966
2967 lowest_level = p->lowest_level;
2968 WARN_ON(p->nodes[0] != NULL);
2969
2970 if (p->search_commit_root) {
2971 BUG_ON(time_seq);
2972 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2973 }
2974
2975again:
5d9e75c4 2976 b = get_old_root(root, time_seq);
5d9e75c4 2977 level = btrfs_header_level(b);
5d9e75c4
JS
2978 p->locks[level] = BTRFS_READ_LOCK;
2979
2980 while (b) {
2981 level = btrfs_header_level(b);
2982 p->nodes[level] = b;
2983 btrfs_clear_path_blocking(p, NULL, 0);
2984
2985 /*
2986 * we have a lock on b and as long as we aren't changing
2987 * the tree, there is no way to for the items in b to change.
2988 * It is safe to drop the lock on our parent before we
2989 * go through the expensive btree search on b.
2990 */
2991 btrfs_unlock_up_safe(p, level + 1);
2992
d4b4087c 2993 /*
01327610 2994 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
2995 * time.
2996 */
2997 prev_cmp = -1;
d7396f07 2998 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
2999
3000 if (level != 0) {
3001 int dec = 0;
3002 if (ret && slot > 0) {
3003 dec = 1;
3004 slot -= 1;
3005 }
3006 p->slots[level] = slot;
3007 unlock_up(p, level, lowest_unlock, 0, NULL);
3008
3009 if (level == lowest_level) {
3010 if (dec)
3011 p->slots[level]++;
3012 goto done;
3013 }
3014
d07b8528 3015 err = read_block_for_search(root, p, &b, level,
cda79c54 3016 slot, key);
5d9e75c4
JS
3017 if (err == -EAGAIN)
3018 goto again;
3019 if (err) {
3020 ret = err;
3021 goto done;
3022 }
3023
3024 level = btrfs_header_level(b);
f82c458a 3025 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3026 if (!err) {
3027 btrfs_set_path_blocking(p);
3028 btrfs_tree_read_lock(b);
3029 btrfs_clear_path_blocking(p, b,
3030 BTRFS_READ_LOCK);
3031 }
0b246afa 3032 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3033 if (!b) {
3034 ret = -ENOMEM;
3035 goto done;
3036 }
5d9e75c4
JS
3037 p->locks[level] = BTRFS_READ_LOCK;
3038 p->nodes[level] = b;
5d9e75c4
JS
3039 } else {
3040 p->slots[level] = slot;
3041 unlock_up(p, level, lowest_unlock, 0, NULL);
3042 goto done;
3043 }
3044 }
3045 ret = 1;
3046done:
3047 if (!p->leave_spinning)
3048 btrfs_set_path_blocking(p);
3049 if (ret < 0)
3050 btrfs_release_path(p);
3051
3052 return ret;
3053}
3054
2f38b3e1
AJ
3055/*
3056 * helper to use instead of search slot if no exact match is needed but
3057 * instead the next or previous item should be returned.
3058 * When find_higher is true, the next higher item is returned, the next lower
3059 * otherwise.
3060 * When return_any and find_higher are both true, and no higher item is found,
3061 * return the next lower instead.
3062 * When return_any is true and find_higher is false, and no lower item is found,
3063 * return the next higher instead.
3064 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3065 * < 0 on error
3066 */
3067int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3068 const struct btrfs_key *key,
3069 struct btrfs_path *p, int find_higher,
3070 int return_any)
2f38b3e1
AJ
3071{
3072 int ret;
3073 struct extent_buffer *leaf;
3074
3075again:
3076 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3077 if (ret <= 0)
3078 return ret;
3079 /*
3080 * a return value of 1 means the path is at the position where the
3081 * item should be inserted. Normally this is the next bigger item,
3082 * but in case the previous item is the last in a leaf, path points
3083 * to the first free slot in the previous leaf, i.e. at an invalid
3084 * item.
3085 */
3086 leaf = p->nodes[0];
3087
3088 if (find_higher) {
3089 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3090 ret = btrfs_next_leaf(root, p);
3091 if (ret <= 0)
3092 return ret;
3093 if (!return_any)
3094 return 1;
3095 /*
3096 * no higher item found, return the next
3097 * lower instead
3098 */
3099 return_any = 0;
3100 find_higher = 0;
3101 btrfs_release_path(p);
3102 goto again;
3103 }
3104 } else {
e6793769
AJ
3105 if (p->slots[0] == 0) {
3106 ret = btrfs_prev_leaf(root, p);
3107 if (ret < 0)
3108 return ret;
3109 if (!ret) {
23c6bf6a
FDBM
3110 leaf = p->nodes[0];
3111 if (p->slots[0] == btrfs_header_nritems(leaf))
3112 p->slots[0]--;
e6793769 3113 return 0;
2f38b3e1 3114 }
e6793769
AJ
3115 if (!return_any)
3116 return 1;
3117 /*
3118 * no lower item found, return the next
3119 * higher instead
3120 */
3121 return_any = 0;
3122 find_higher = 1;
3123 btrfs_release_path(p);
3124 goto again;
3125 } else {
2f38b3e1
AJ
3126 --p->slots[0];
3127 }
3128 }
3129 return 0;
3130}
3131
74123bd7
CM
3132/*
3133 * adjust the pointers going up the tree, starting at level
3134 * making sure the right key of each node is points to 'key'.
3135 * This is used after shifting pointers to the left, so it stops
3136 * fixing up pointers when a given leaf/node is not in slot 0 of the
3137 * higher levels
aa5d6bed 3138 *
74123bd7 3139 */
b7a0365e
DD
3140static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3141 struct btrfs_path *path,
143bede5 3142 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3143{
3144 int i;
5f39d397
CM
3145 struct extent_buffer *t;
3146
234b63a0 3147 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3148 int tslot = path->slots[i];
eb60ceac 3149 if (!path->nodes[i])
be0e5c09 3150 break;
5f39d397 3151 t = path->nodes[i];
b7a0365e 3152 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
5f39d397 3153 btrfs_set_node_key(t, key, tslot);
d6025579 3154 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3155 if (tslot != 0)
3156 break;
3157 }
3158}
3159
31840ae1
ZY
3160/*
3161 * update item key.
3162 *
3163 * This function isn't completely safe. It's the caller's responsibility
3164 * that the new key won't break the order
3165 */
b7a0365e
DD
3166void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3167 struct btrfs_path *path,
310712b2 3168 const struct btrfs_key *new_key)
31840ae1
ZY
3169{
3170 struct btrfs_disk_key disk_key;
3171 struct extent_buffer *eb;
3172 int slot;
3173
3174 eb = path->nodes[0];
3175 slot = path->slots[0];
3176 if (slot > 0) {
3177 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3178 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3179 }
3180 if (slot < btrfs_header_nritems(eb) - 1) {
3181 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3182 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3183 }
3184
3185 btrfs_cpu_key_to_disk(&disk_key, new_key);
3186 btrfs_set_item_key(eb, &disk_key, slot);
3187 btrfs_mark_buffer_dirty(eb);
3188 if (slot == 0)
b7a0365e 3189 fixup_low_keys(fs_info, path, &disk_key, 1);
31840ae1
ZY
3190}
3191
74123bd7
CM
3192/*
3193 * try to push data from one node into the next node left in the
79f95c82 3194 * tree.
aa5d6bed
CM
3195 *
3196 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3197 * error, and > 0 if there was no room in the left hand block.
74123bd7 3198 */
98ed5174 3199static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3200 struct btrfs_fs_info *fs_info,
3201 struct extent_buffer *dst,
971a1f66 3202 struct extent_buffer *src, int empty)
be0e5c09 3203{
be0e5c09 3204 int push_items = 0;
bb803951
CM
3205 int src_nritems;
3206 int dst_nritems;
aa5d6bed 3207 int ret = 0;
be0e5c09 3208
5f39d397
CM
3209 src_nritems = btrfs_header_nritems(src);
3210 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3211 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3212 WARN_ON(btrfs_header_generation(src) != trans->transid);
3213 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3214
bce4eae9 3215 if (!empty && src_nritems <= 8)
971a1f66
CM
3216 return 1;
3217
d397712b 3218 if (push_items <= 0)
be0e5c09
CM
3219 return 1;
3220
bce4eae9 3221 if (empty) {
971a1f66 3222 push_items = min(src_nritems, push_items);
bce4eae9
CM
3223 if (push_items < src_nritems) {
3224 /* leave at least 8 pointers in the node if
3225 * we aren't going to empty it
3226 */
3227 if (src_nritems - push_items < 8) {
3228 if (push_items <= 8)
3229 return 1;
3230 push_items -= 8;
3231 }
3232 }
3233 } else
3234 push_items = min(src_nritems - 8, push_items);
79f95c82 3235
0b246afa 3236 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3237 push_items);
3238 if (ret) {
66642832 3239 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3240 return ret;
3241 }
5f39d397
CM
3242 copy_extent_buffer(dst, src,
3243 btrfs_node_key_ptr_offset(dst_nritems),
3244 btrfs_node_key_ptr_offset(0),
d397712b 3245 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3246
bb803951 3247 if (push_items < src_nritems) {
57911b8b
JS
3248 /*
3249 * don't call tree_mod_log_eb_move here, key removal was already
3250 * fully logged by tree_mod_log_eb_copy above.
3251 */
5f39d397
CM
3252 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3253 btrfs_node_key_ptr_offset(push_items),
3254 (src_nritems - push_items) *
3255 sizeof(struct btrfs_key_ptr));
3256 }
3257 btrfs_set_header_nritems(src, src_nritems - push_items);
3258 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3259 btrfs_mark_buffer_dirty(src);
3260 btrfs_mark_buffer_dirty(dst);
31840ae1 3261
79f95c82
CM
3262 return ret;
3263}
3264
3265/*
3266 * try to push data from one node into the next node right in the
3267 * tree.
3268 *
3269 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3270 * error, and > 0 if there was no room in the right hand block.
3271 *
3272 * this will only push up to 1/2 the contents of the left node over
3273 */
5f39d397 3274static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3275 struct btrfs_fs_info *fs_info,
5f39d397
CM
3276 struct extent_buffer *dst,
3277 struct extent_buffer *src)
79f95c82 3278{
79f95c82
CM
3279 int push_items = 0;
3280 int max_push;
3281 int src_nritems;
3282 int dst_nritems;
3283 int ret = 0;
79f95c82 3284
7bb86316
CM
3285 WARN_ON(btrfs_header_generation(src) != trans->transid);
3286 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3287
5f39d397
CM
3288 src_nritems = btrfs_header_nritems(src);
3289 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3290 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3291 if (push_items <= 0)
79f95c82 3292 return 1;
bce4eae9 3293
d397712b 3294 if (src_nritems < 4)
bce4eae9 3295 return 1;
79f95c82
CM
3296
3297 max_push = src_nritems / 2 + 1;
3298 /* don't try to empty the node */
d397712b 3299 if (max_push >= src_nritems)
79f95c82 3300 return 1;
252c38f0 3301
79f95c82
CM
3302 if (max_push < push_items)
3303 push_items = max_push;
3304
0b246afa 3305 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3306 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3307 btrfs_node_key_ptr_offset(0),
3308 (dst_nritems) *
3309 sizeof(struct btrfs_key_ptr));
d6025579 3310
0b246afa 3311 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3312 src_nritems - push_items, push_items);
3313 if (ret) {
66642832 3314 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3315 return ret;
3316 }
5f39d397
CM
3317 copy_extent_buffer(dst, src,
3318 btrfs_node_key_ptr_offset(0),
3319 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3320 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3321
5f39d397
CM
3322 btrfs_set_header_nritems(src, src_nritems - push_items);
3323 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3324
5f39d397
CM
3325 btrfs_mark_buffer_dirty(src);
3326 btrfs_mark_buffer_dirty(dst);
31840ae1 3327
aa5d6bed 3328 return ret;
be0e5c09
CM
3329}
3330
97571fd0
CM
3331/*
3332 * helper function to insert a new root level in the tree.
3333 * A new node is allocated, and a single item is inserted to
3334 * point to the existing root
aa5d6bed
CM
3335 *
3336 * returns zero on success or < 0 on failure.
97571fd0 3337 */
d397712b 3338static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3339 struct btrfs_root *root,
fdd99c72 3340 struct btrfs_path *path, int level)
5c680ed6 3341{
0b246afa 3342 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3343 u64 lower_gen;
5f39d397
CM
3344 struct extent_buffer *lower;
3345 struct extent_buffer *c;
925baedd 3346 struct extent_buffer *old;
5f39d397 3347 struct btrfs_disk_key lower_key;
5c680ed6
CM
3348
3349 BUG_ON(path->nodes[level]);
3350 BUG_ON(path->nodes[level-1] != root->node);
3351
7bb86316
CM
3352 lower = path->nodes[level-1];
3353 if (level == 1)
3354 btrfs_item_key(lower, &lower_key, 0);
3355 else
3356 btrfs_node_key(lower, &lower_key, 0);
3357
4d75f8a9
DS
3358 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3359 &lower_key, level, root->node->start, 0);
5f39d397
CM
3360 if (IS_ERR(c))
3361 return PTR_ERR(c);
925baedd 3362
0b246afa 3363 root_add_used(root, fs_info->nodesize);
f0486c68 3364
b159fa28 3365 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
5f39d397
CM
3366 btrfs_set_header_nritems(c, 1);
3367 btrfs_set_header_level(c, level);
db94535d 3368 btrfs_set_header_bytenr(c, c->start);
5f39d397 3369 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3370 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3371 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3372
0b246afa
JM
3373 write_extent_buffer_fsid(c, fs_info->fsid);
3374 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
e17cade2 3375
5f39d397 3376 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3377 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3378 lower_gen = btrfs_header_generation(lower);
31840ae1 3379 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3380
3381 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3382
5f39d397 3383 btrfs_mark_buffer_dirty(c);
d5719762 3384
925baedd 3385 old = root->node;
fdd99c72 3386 tree_mod_log_set_root_pointer(root, c, 0);
240f62c8 3387 rcu_assign_pointer(root->node, c);
925baedd
CM
3388
3389 /* the super has an extra ref to root->node */
3390 free_extent_buffer(old);
3391
0b86a832 3392 add_root_to_dirty_list(root);
5f39d397
CM
3393 extent_buffer_get(c);
3394 path->nodes[level] = c;
95449a16 3395 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3396 path->slots[level] = 0;
3397 return 0;
3398}
3399
74123bd7
CM
3400/*
3401 * worker function to insert a single pointer in a node.
3402 * the node should have enough room for the pointer already
97571fd0 3403 *
74123bd7
CM
3404 * slot and level indicate where you want the key to go, and
3405 * blocknr is the block the key points to.
3406 */
143bede5 3407static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3408 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3409 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3410 int slot, int level)
74123bd7 3411{
5f39d397 3412 struct extent_buffer *lower;
74123bd7 3413 int nritems;
f3ea38da 3414 int ret;
5c680ed6
CM
3415
3416 BUG_ON(!path->nodes[level]);
f0486c68 3417 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3418 lower = path->nodes[level];
3419 nritems = btrfs_header_nritems(lower);
c293498b 3420 BUG_ON(slot > nritems);
0b246afa 3421 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3422 if (slot != nritems) {
c3e06965 3423 if (level)
0b246afa 3424 tree_mod_log_eb_move(fs_info, lower, slot + 1,
f3ea38da 3425 slot, nritems - slot);
5f39d397
CM
3426 memmove_extent_buffer(lower,
3427 btrfs_node_key_ptr_offset(slot + 1),
3428 btrfs_node_key_ptr_offset(slot),
d6025579 3429 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3430 }
c3e06965 3431 if (level) {
0b246afa 3432 ret = tree_mod_log_insert_key(fs_info, lower, slot,
c8cc6341 3433 MOD_LOG_KEY_ADD, GFP_NOFS);
f3ea38da
JS
3434 BUG_ON(ret < 0);
3435 }
5f39d397 3436 btrfs_set_node_key(lower, key, slot);
db94535d 3437 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3438 WARN_ON(trans->transid == 0);
3439 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3440 btrfs_set_header_nritems(lower, nritems + 1);
3441 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3442}
3443
97571fd0
CM
3444/*
3445 * split the node at the specified level in path in two.
3446 * The path is corrected to point to the appropriate node after the split
3447 *
3448 * Before splitting this tries to make some room in the node by pushing
3449 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3450 *
3451 * returns 0 on success and < 0 on failure
97571fd0 3452 */
e02119d5
CM
3453static noinline int split_node(struct btrfs_trans_handle *trans,
3454 struct btrfs_root *root,
3455 struct btrfs_path *path, int level)
be0e5c09 3456{
0b246afa 3457 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3458 struct extent_buffer *c;
3459 struct extent_buffer *split;
3460 struct btrfs_disk_key disk_key;
be0e5c09 3461 int mid;
5c680ed6 3462 int ret;
7518a238 3463 u32 c_nritems;
eb60ceac 3464
5f39d397 3465 c = path->nodes[level];
7bb86316 3466 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3467 if (c == root->node) {
d9abbf1c 3468 /*
90f8d62e
JS
3469 * trying to split the root, lets make a new one
3470 *
fdd99c72 3471 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3472 * insert_new_root, because that root buffer will be kept as a
3473 * normal node. We are going to log removal of half of the
3474 * elements below with tree_mod_log_eb_copy. We're holding a
3475 * tree lock on the buffer, which is why we cannot race with
3476 * other tree_mod_log users.
d9abbf1c 3477 */
fdd99c72 3478 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3479 if (ret)
3480 return ret;
b3612421 3481 } else {
e66f709b 3482 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3483 c = path->nodes[level];
3484 if (!ret && btrfs_header_nritems(c) <
0b246afa 3485 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3486 return 0;
54aa1f4d
CM
3487 if (ret < 0)
3488 return ret;
be0e5c09 3489 }
e66f709b 3490
5f39d397 3491 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3492 mid = (c_nritems + 1) / 2;
3493 btrfs_node_key(c, &disk_key, mid);
7bb86316 3494
4d75f8a9
DS
3495 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3496 &disk_key, level, c->start, 0);
5f39d397
CM
3497 if (IS_ERR(split))
3498 return PTR_ERR(split);
3499
0b246afa 3500 root_add_used(root, fs_info->nodesize);
f0486c68 3501
b159fa28 3502 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
5f39d397 3503 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3504 btrfs_set_header_bytenr(split, split->start);
5f39d397 3505 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3506 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397 3507 btrfs_set_header_owner(split, root->root_key.objectid);
0b246afa
JM
3508 write_extent_buffer_fsid(split, fs_info->fsid);
3509 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
54aa1f4d 3510
0b246afa 3511 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3512 if (ret) {
66642832 3513 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3514 return ret;
3515 }
5f39d397
CM
3516 copy_extent_buffer(split, c,
3517 btrfs_node_key_ptr_offset(0),
3518 btrfs_node_key_ptr_offset(mid),
3519 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3520 btrfs_set_header_nritems(split, c_nritems - mid);
3521 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3522 ret = 0;
3523
5f39d397
CM
3524 btrfs_mark_buffer_dirty(c);
3525 btrfs_mark_buffer_dirty(split);
3526
2ff7e61e 3527 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3528 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3529
5de08d7d 3530 if (path->slots[level] >= mid) {
5c680ed6 3531 path->slots[level] -= mid;
925baedd 3532 btrfs_tree_unlock(c);
5f39d397
CM
3533 free_extent_buffer(c);
3534 path->nodes[level] = split;
5c680ed6
CM
3535 path->slots[level + 1] += 1;
3536 } else {
925baedd 3537 btrfs_tree_unlock(split);
5f39d397 3538 free_extent_buffer(split);
be0e5c09 3539 }
aa5d6bed 3540 return ret;
be0e5c09
CM
3541}
3542
74123bd7
CM
3543/*
3544 * how many bytes are required to store the items in a leaf. start
3545 * and nr indicate which items in the leaf to check. This totals up the
3546 * space used both by the item structs and the item data
3547 */
5f39d397 3548static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3549{
41be1f3b
JB
3550 struct btrfs_item *start_item;
3551 struct btrfs_item *end_item;
3552 struct btrfs_map_token token;
be0e5c09 3553 int data_len;
5f39d397 3554 int nritems = btrfs_header_nritems(l);
d4dbff95 3555 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3556
3557 if (!nr)
3558 return 0;
41be1f3b 3559 btrfs_init_map_token(&token);
dd3cc16b
RK
3560 start_item = btrfs_item_nr(start);
3561 end_item = btrfs_item_nr(end);
41be1f3b
JB
3562 data_len = btrfs_token_item_offset(l, start_item, &token) +
3563 btrfs_token_item_size(l, start_item, &token);
3564 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3565 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3566 WARN_ON(data_len < 0);
be0e5c09
CM
3567 return data_len;
3568}
3569
d4dbff95
CM
3570/*
3571 * The space between the end of the leaf items and
3572 * the start of the leaf data. IOW, how much room
3573 * the leaf has left for both items and data
3574 */
2ff7e61e 3575noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3576 struct extent_buffer *leaf)
d4dbff95 3577{
5f39d397
CM
3578 int nritems = btrfs_header_nritems(leaf);
3579 int ret;
0b246afa
JM
3580
3581 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3582 if (ret < 0) {
0b246afa
JM
3583 btrfs_crit(fs_info,
3584 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3585 ret,
3586 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3587 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3588 }
3589 return ret;
d4dbff95
CM
3590}
3591
99d8f83c
CM
3592/*
3593 * min slot controls the lowest index we're willing to push to the
3594 * right. We'll push up to and including min_slot, but no lower
3595 */
1e47eef2 3596static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
44871b1b
CM
3597 struct btrfs_path *path,
3598 int data_size, int empty,
3599 struct extent_buffer *right,
99d8f83c
CM
3600 int free_space, u32 left_nritems,
3601 u32 min_slot)
00ec4c51 3602{
5f39d397 3603 struct extent_buffer *left = path->nodes[0];
44871b1b 3604 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3605 struct btrfs_map_token token;
5f39d397 3606 struct btrfs_disk_key disk_key;
00ec4c51 3607 int slot;
34a38218 3608 u32 i;
00ec4c51
CM
3609 int push_space = 0;
3610 int push_items = 0;
0783fcfc 3611 struct btrfs_item *item;
34a38218 3612 u32 nr;
7518a238 3613 u32 right_nritems;
5f39d397 3614 u32 data_end;
db94535d 3615 u32 this_item_size;
00ec4c51 3616
cfed81a0
CM
3617 btrfs_init_map_token(&token);
3618
34a38218
CM
3619 if (empty)
3620 nr = 0;
3621 else
99d8f83c 3622 nr = max_t(u32, 1, min_slot);
34a38218 3623
31840ae1 3624 if (path->slots[0] >= left_nritems)
87b29b20 3625 push_space += data_size;
31840ae1 3626
44871b1b 3627 slot = path->slots[1];
34a38218
CM
3628 i = left_nritems - 1;
3629 while (i >= nr) {
dd3cc16b 3630 item = btrfs_item_nr(i);
db94535d 3631
31840ae1
ZY
3632 if (!empty && push_items > 0) {
3633 if (path->slots[0] > i)
3634 break;
3635 if (path->slots[0] == i) {
2ff7e61e 3636 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3637 if (space + push_space * 2 > free_space)
3638 break;
3639 }
3640 }
3641
00ec4c51 3642 if (path->slots[0] == i)
87b29b20 3643 push_space += data_size;
db94535d 3644
db94535d
CM
3645 this_item_size = btrfs_item_size(left, item);
3646 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3647 break;
31840ae1 3648
00ec4c51 3649 push_items++;
db94535d 3650 push_space += this_item_size + sizeof(*item);
34a38218
CM
3651 if (i == 0)
3652 break;
3653 i--;
db94535d 3654 }
5f39d397 3655
925baedd
CM
3656 if (push_items == 0)
3657 goto out_unlock;
5f39d397 3658
6c1500f2 3659 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3660
00ec4c51 3661 /* push left to right */
5f39d397 3662 right_nritems = btrfs_header_nritems(right);
34a38218 3663
5f39d397 3664 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3665 push_space -= leaf_data_end(fs_info, left);
5f39d397 3666
00ec4c51 3667 /* make room in the right data area */
2ff7e61e 3668 data_end = leaf_data_end(fs_info, right);
5f39d397 3669 memmove_extent_buffer(right,
3d9ec8c4
NB
3670 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3671 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3672 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3673
00ec4c51 3674 /* copy from the left data area */
3d9ec8c4 3675 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3676 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3677 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
d6025579 3678 push_space);
5f39d397
CM
3679
3680 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3681 btrfs_item_nr_offset(0),
3682 right_nritems * sizeof(struct btrfs_item));
3683
00ec4c51 3684 /* copy the items from left to right */
5f39d397
CM
3685 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3686 btrfs_item_nr_offset(left_nritems - push_items),
3687 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3688
3689 /* update the item pointers */
7518a238 3690 right_nritems += push_items;
5f39d397 3691 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3692 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3693 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3694 item = btrfs_item_nr(i);
cfed81a0
CM
3695 push_space -= btrfs_token_item_size(right, item, &token);
3696 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3697 }
3698
7518a238 3699 left_nritems -= push_items;
5f39d397 3700 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3701
34a38218
CM
3702 if (left_nritems)
3703 btrfs_mark_buffer_dirty(left);
f0486c68 3704 else
7c302b49 3705 clean_tree_block(fs_info, left);
f0486c68 3706
5f39d397 3707 btrfs_mark_buffer_dirty(right);
a429e513 3708
5f39d397
CM
3709 btrfs_item_key(right, &disk_key, 0);
3710 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3711 btrfs_mark_buffer_dirty(upper);
02217ed2 3712
00ec4c51 3713 /* then fixup the leaf pointer in the path */
7518a238
CM
3714 if (path->slots[0] >= left_nritems) {
3715 path->slots[0] -= left_nritems;
925baedd 3716 if (btrfs_header_nritems(path->nodes[0]) == 0)
7c302b49 3717 clean_tree_block(fs_info, path->nodes[0]);
925baedd 3718 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3719 free_extent_buffer(path->nodes[0]);
3720 path->nodes[0] = right;
00ec4c51
CM
3721 path->slots[1] += 1;
3722 } else {
925baedd 3723 btrfs_tree_unlock(right);
5f39d397 3724 free_extent_buffer(right);
00ec4c51
CM
3725 }
3726 return 0;
925baedd
CM
3727
3728out_unlock:
3729 btrfs_tree_unlock(right);
3730 free_extent_buffer(right);
3731 return 1;
00ec4c51 3732}
925baedd 3733
44871b1b
CM
3734/*
3735 * push some data in the path leaf to the right, trying to free up at
3736 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3737 *
3738 * returns 1 if the push failed because the other node didn't have enough
3739 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3740 *
3741 * this will push starting from min_slot to the end of the leaf. It won't
3742 * push any slot lower than min_slot
44871b1b
CM
3743 */
3744static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3745 *root, struct btrfs_path *path,
3746 int min_data_size, int data_size,
3747 int empty, u32 min_slot)
44871b1b 3748{
2ff7e61e 3749 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3750 struct extent_buffer *left = path->nodes[0];
3751 struct extent_buffer *right;
3752 struct extent_buffer *upper;
3753 int slot;
3754 int free_space;
3755 u32 left_nritems;
3756 int ret;
3757
3758 if (!path->nodes[1])
3759 return 1;
3760
3761 slot = path->slots[1];
3762 upper = path->nodes[1];
3763 if (slot >= btrfs_header_nritems(upper) - 1)
3764 return 1;
3765
3766 btrfs_assert_tree_locked(path->nodes[1]);
3767
2ff7e61e 3768 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3769 /*
3770 * slot + 1 is not valid or we fail to read the right node,
3771 * no big deal, just return.
3772 */
3773 if (IS_ERR(right))
91ca338d
TI
3774 return 1;
3775
44871b1b
CM
3776 btrfs_tree_lock(right);
3777 btrfs_set_lock_blocking(right);
3778
2ff7e61e 3779 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3780 if (free_space < data_size)
3781 goto out_unlock;
3782
3783 /* cow and double check */
3784 ret = btrfs_cow_block(trans, root, right, upper,
3785 slot + 1, &right);
3786 if (ret)
3787 goto out_unlock;
3788
2ff7e61e 3789 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3790 if (free_space < data_size)
3791 goto out_unlock;
3792
3793 left_nritems = btrfs_header_nritems(left);
3794 if (left_nritems == 0)
3795 goto out_unlock;
3796
2ef1fed2
FDBM
3797 if (path->slots[0] == left_nritems && !empty) {
3798 /* Key greater than all keys in the leaf, right neighbor has
3799 * enough room for it and we're not emptying our leaf to delete
3800 * it, therefore use right neighbor to insert the new item and
3801 * no need to touch/dirty our left leaft. */
3802 btrfs_tree_unlock(left);
3803 free_extent_buffer(left);
3804 path->nodes[0] = right;
3805 path->slots[0] = 0;
3806 path->slots[1]++;
3807 return 0;
3808 }
3809
1e47eef2 3810 return __push_leaf_right(fs_info, path, min_data_size, empty,
99d8f83c 3811 right, free_space, left_nritems, min_slot);
44871b1b
CM
3812out_unlock:
3813 btrfs_tree_unlock(right);
3814 free_extent_buffer(right);
3815 return 1;
3816}
3817
74123bd7
CM
3818/*
3819 * push some data in the path leaf to the left, trying to free up at
3820 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3821 *
3822 * max_slot can put a limit on how far into the leaf we'll push items. The
3823 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3824 * items
74123bd7 3825 */
66cb7ddb 3826static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
44871b1b
CM
3827 struct btrfs_path *path, int data_size,
3828 int empty, struct extent_buffer *left,
99d8f83c
CM
3829 int free_space, u32 right_nritems,
3830 u32 max_slot)
be0e5c09 3831{
5f39d397
CM
3832 struct btrfs_disk_key disk_key;
3833 struct extent_buffer *right = path->nodes[0];
be0e5c09 3834 int i;
be0e5c09
CM
3835 int push_space = 0;
3836 int push_items = 0;
0783fcfc 3837 struct btrfs_item *item;
7518a238 3838 u32 old_left_nritems;
34a38218 3839 u32 nr;
aa5d6bed 3840 int ret = 0;
db94535d
CM
3841 u32 this_item_size;
3842 u32 old_left_item_size;
cfed81a0
CM
3843 struct btrfs_map_token token;
3844
3845 btrfs_init_map_token(&token);
be0e5c09 3846
34a38218 3847 if (empty)
99d8f83c 3848 nr = min(right_nritems, max_slot);
34a38218 3849 else
99d8f83c 3850 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3851
3852 for (i = 0; i < nr; i++) {
dd3cc16b 3853 item = btrfs_item_nr(i);
db94535d 3854
31840ae1
ZY
3855 if (!empty && push_items > 0) {
3856 if (path->slots[0] < i)
3857 break;
3858 if (path->slots[0] == i) {
2ff7e61e 3859 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3860 if (space + push_space * 2 > free_space)
3861 break;
3862 }
3863 }
3864
be0e5c09 3865 if (path->slots[0] == i)
87b29b20 3866 push_space += data_size;
db94535d
CM
3867
3868 this_item_size = btrfs_item_size(right, item);
3869 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3870 break;
db94535d 3871
be0e5c09 3872 push_items++;
db94535d
CM
3873 push_space += this_item_size + sizeof(*item);
3874 }
3875
be0e5c09 3876 if (push_items == 0) {
925baedd
CM
3877 ret = 1;
3878 goto out;
be0e5c09 3879 }
fae7f21c 3880 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3881
be0e5c09 3882 /* push data from right to left */
5f39d397
CM
3883 copy_extent_buffer(left, right,
3884 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3885 btrfs_item_nr_offset(0),
3886 push_items * sizeof(struct btrfs_item));
3887
0b246afa 3888 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3889 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3890
3d9ec8c4 3891 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3892 leaf_data_end(fs_info, left) - push_space,
3d9ec8c4 3893 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3894 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3895 push_space);
5f39d397 3896 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3897 BUG_ON(old_left_nritems <= 0);
eb60ceac 3898
db94535d 3899 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3900 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3901 u32 ioff;
db94535d 3902
dd3cc16b 3903 item = btrfs_item_nr(i);
db94535d 3904
cfed81a0
CM
3905 ioff = btrfs_token_item_offset(left, item, &token);
3906 btrfs_set_token_item_offset(left, item,
0b246afa 3907 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3908 &token);
be0e5c09 3909 }
5f39d397 3910 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3911
3912 /* fixup right node */
31b1a2bd
JL
3913 if (push_items > right_nritems)
3914 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3915 right_nritems);
34a38218
CM
3916
3917 if (push_items < right_nritems) {
3918 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3919 leaf_data_end(fs_info, right);
3d9ec8c4 3920 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3921 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3922 BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3923 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3924
3925 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3926 btrfs_item_nr_offset(push_items),
3927 (btrfs_header_nritems(right) - push_items) *
3928 sizeof(struct btrfs_item));
34a38218 3929 }
eef1c494
Y
3930 right_nritems -= push_items;
3931 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3932 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3933 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3934 item = btrfs_item_nr(i);
db94535d 3935
cfed81a0
CM
3936 push_space = push_space - btrfs_token_item_size(right,
3937 item, &token);
3938 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3939 }
eb60ceac 3940
5f39d397 3941 btrfs_mark_buffer_dirty(left);
34a38218
CM
3942 if (right_nritems)
3943 btrfs_mark_buffer_dirty(right);
f0486c68 3944 else
7c302b49 3945 clean_tree_block(fs_info, right);
098f59c2 3946
5f39d397 3947 btrfs_item_key(right, &disk_key, 0);
0b246afa 3948 fixup_low_keys(fs_info, path, &disk_key, 1);
be0e5c09
CM
3949
3950 /* then fixup the leaf pointer in the path */
3951 if (path->slots[0] < push_items) {
3952 path->slots[0] += old_left_nritems;
925baedd 3953 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3954 free_extent_buffer(path->nodes[0]);
3955 path->nodes[0] = left;
be0e5c09
CM
3956 path->slots[1] -= 1;
3957 } else {
925baedd 3958 btrfs_tree_unlock(left);
5f39d397 3959 free_extent_buffer(left);
be0e5c09
CM
3960 path->slots[0] -= push_items;
3961 }
eb60ceac 3962 BUG_ON(path->slots[0] < 0);
aa5d6bed 3963 return ret;
925baedd
CM
3964out:
3965 btrfs_tree_unlock(left);
3966 free_extent_buffer(left);
3967 return ret;
be0e5c09
CM
3968}
3969
44871b1b
CM
3970/*
3971 * push some data in the path leaf to the left, trying to free up at
3972 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3973 *
3974 * max_slot can put a limit on how far into the leaf we'll push items. The
3975 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3976 * items
44871b1b
CM
3977 */
3978static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3979 *root, struct btrfs_path *path, int min_data_size,
3980 int data_size, int empty, u32 max_slot)
44871b1b 3981{
2ff7e61e 3982 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3983 struct extent_buffer *right = path->nodes[0];
3984 struct extent_buffer *left;
3985 int slot;
3986 int free_space;
3987 u32 right_nritems;
3988 int ret = 0;
3989
3990 slot = path->slots[1];
3991 if (slot == 0)
3992 return 1;
3993 if (!path->nodes[1])
3994 return 1;
3995
3996 right_nritems = btrfs_header_nritems(right);
3997 if (right_nritems == 0)
3998 return 1;
3999
4000 btrfs_assert_tree_locked(path->nodes[1]);
4001
2ff7e61e 4002 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
4003 /*
4004 * slot - 1 is not valid or we fail to read the left node,
4005 * no big deal, just return.
4006 */
4007 if (IS_ERR(left))
91ca338d
TI
4008 return 1;
4009
44871b1b
CM
4010 btrfs_tree_lock(left);
4011 btrfs_set_lock_blocking(left);
4012
2ff7e61e 4013 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4014 if (free_space < data_size) {
4015 ret = 1;
4016 goto out;
4017 }
4018
4019 /* cow and double check */
4020 ret = btrfs_cow_block(trans, root, left,
4021 path->nodes[1], slot - 1, &left);
4022 if (ret) {
4023 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4024 if (ret == -ENOSPC)
4025 ret = 1;
44871b1b
CM
4026 goto out;
4027 }
4028
2ff7e61e 4029 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4030 if (free_space < data_size) {
4031 ret = 1;
4032 goto out;
4033 }
4034
66cb7ddb 4035 return __push_leaf_left(fs_info, path, min_data_size,
99d8f83c
CM
4036 empty, left, free_space, right_nritems,
4037 max_slot);
44871b1b
CM
4038out:
4039 btrfs_tree_unlock(left);
4040 free_extent_buffer(left);
4041 return ret;
4042}
4043
4044/*
4045 * split the path's leaf in two, making sure there is at least data_size
4046 * available for the resulting leaf level of the path.
44871b1b 4047 */
143bede5 4048static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4049 struct btrfs_fs_info *fs_info,
143bede5
JM
4050 struct btrfs_path *path,
4051 struct extent_buffer *l,
4052 struct extent_buffer *right,
4053 int slot, int mid, int nritems)
44871b1b
CM
4054{
4055 int data_copy_size;
4056 int rt_data_off;
4057 int i;
44871b1b 4058 struct btrfs_disk_key disk_key;
cfed81a0
CM
4059 struct btrfs_map_token token;
4060
4061 btrfs_init_map_token(&token);
44871b1b
CM
4062
4063 nritems = nritems - mid;
4064 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4065 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4066
4067 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4068 btrfs_item_nr_offset(mid),
4069 nritems * sizeof(struct btrfs_item));
4070
4071 copy_extent_buffer(right, l,
3d9ec8c4
NB
4072 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4073 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 4074 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4075
0b246afa 4076 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4077
4078 for (i = 0; i < nritems; i++) {
dd3cc16b 4079 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4080 u32 ioff;
4081
cfed81a0
CM
4082 ioff = btrfs_token_item_offset(right, item, &token);
4083 btrfs_set_token_item_offset(right, item,
4084 ioff + rt_data_off, &token);
44871b1b
CM
4085 }
4086
44871b1b 4087 btrfs_set_header_nritems(l, mid);
44871b1b 4088 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4089 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4090 path->slots[1] + 1, 1);
44871b1b
CM
4091
4092 btrfs_mark_buffer_dirty(right);
4093 btrfs_mark_buffer_dirty(l);
4094 BUG_ON(path->slots[0] != slot);
4095
44871b1b
CM
4096 if (mid <= slot) {
4097 btrfs_tree_unlock(path->nodes[0]);
4098 free_extent_buffer(path->nodes[0]);
4099 path->nodes[0] = right;
4100 path->slots[0] -= mid;
4101 path->slots[1] += 1;
4102 } else {
4103 btrfs_tree_unlock(right);
4104 free_extent_buffer(right);
4105 }
4106
4107 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4108}
4109
99d8f83c
CM
4110/*
4111 * double splits happen when we need to insert a big item in the middle
4112 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4113 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4114 * A B C
4115 *
4116 * We avoid this by trying to push the items on either side of our target
4117 * into the adjacent leaves. If all goes well we can avoid the double split
4118 * completely.
4119 */
4120static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4121 struct btrfs_root *root,
4122 struct btrfs_path *path,
4123 int data_size)
4124{
2ff7e61e 4125 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4126 int ret;
4127 int progress = 0;
4128 int slot;
4129 u32 nritems;
5a4267ca 4130 int space_needed = data_size;
99d8f83c
CM
4131
4132 slot = path->slots[0];
5a4267ca 4133 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4134 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4135
4136 /*
4137 * try to push all the items after our slot into the
4138 * right leaf
4139 */
5a4267ca 4140 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4141 if (ret < 0)
4142 return ret;
4143
4144 if (ret == 0)
4145 progress++;
4146
4147 nritems = btrfs_header_nritems(path->nodes[0]);
4148 /*
4149 * our goal is to get our slot at the start or end of a leaf. If
4150 * we've done so we're done
4151 */
4152 if (path->slots[0] == 0 || path->slots[0] == nritems)
4153 return 0;
4154
2ff7e61e 4155 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4156 return 0;
4157
4158 /* try to push all the items before our slot into the next leaf */
4159 slot = path->slots[0];
263d3995
FM
4160 space_needed = data_size;
4161 if (slot > 0)
4162 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
5a4267ca 4163 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4164 if (ret < 0)
4165 return ret;
4166
4167 if (ret == 0)
4168 progress++;
4169
4170 if (progress)
4171 return 0;
4172 return 1;
4173}
4174
74123bd7
CM
4175/*
4176 * split the path's leaf in two, making sure there is at least data_size
4177 * available for the resulting leaf level of the path.
aa5d6bed
CM
4178 *
4179 * returns 0 if all went well and < 0 on failure.
74123bd7 4180 */
e02119d5
CM
4181static noinline int split_leaf(struct btrfs_trans_handle *trans,
4182 struct btrfs_root *root,
310712b2 4183 const struct btrfs_key *ins_key,
e02119d5
CM
4184 struct btrfs_path *path, int data_size,
4185 int extend)
be0e5c09 4186{
5d4f98a2 4187 struct btrfs_disk_key disk_key;
5f39d397 4188 struct extent_buffer *l;
7518a238 4189 u32 nritems;
eb60ceac
CM
4190 int mid;
4191 int slot;
5f39d397 4192 struct extent_buffer *right;
b7a0365e 4193 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4194 int ret = 0;
aa5d6bed 4195 int wret;
5d4f98a2 4196 int split;
cc0c5538 4197 int num_doubles = 0;
99d8f83c 4198 int tried_avoid_double = 0;
aa5d6bed 4199
a5719521
YZ
4200 l = path->nodes[0];
4201 slot = path->slots[0];
4202 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4203 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4204 return -EOVERFLOW;
4205
40689478 4206 /* first try to make some room by pushing left and right */
33157e05 4207 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4208 int space_needed = data_size;
4209
4210 if (slot < btrfs_header_nritems(l))
2ff7e61e 4211 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4212
4213 wret = push_leaf_right(trans, root, path, space_needed,
4214 space_needed, 0, 0);
d397712b 4215 if (wret < 0)
eaee50e8 4216 return wret;
3685f791 4217 if (wret) {
263d3995
FM
4218 space_needed = data_size;
4219 if (slot > 0)
4220 space_needed -= btrfs_leaf_free_space(fs_info,
4221 l);
5a4267ca
FDBM
4222 wret = push_leaf_left(trans, root, path, space_needed,
4223 space_needed, 0, (u32)-1);
3685f791
CM
4224 if (wret < 0)
4225 return wret;
4226 }
4227 l = path->nodes[0];
aa5d6bed 4228
3685f791 4229 /* did the pushes work? */
2ff7e61e 4230 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4231 return 0;
3326d1b0 4232 }
aa5d6bed 4233
5c680ed6 4234 if (!path->nodes[1]) {
fdd99c72 4235 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4236 if (ret)
4237 return ret;
4238 }
cc0c5538 4239again:
5d4f98a2 4240 split = 1;
cc0c5538 4241 l = path->nodes[0];
eb60ceac 4242 slot = path->slots[0];
5f39d397 4243 nritems = btrfs_header_nritems(l);
d397712b 4244 mid = (nritems + 1) / 2;
54aa1f4d 4245
5d4f98a2
YZ
4246 if (mid <= slot) {
4247 if (nritems == 1 ||
4248 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4249 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4250 if (slot >= nritems) {
4251 split = 0;
4252 } else {
4253 mid = slot;
4254 if (mid != nritems &&
4255 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4256 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4257 if (data_size && !tried_avoid_double)
4258 goto push_for_double;
5d4f98a2
YZ
4259 split = 2;
4260 }
4261 }
4262 }
4263 } else {
4264 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4265 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4266 if (!extend && data_size && slot == 0) {
4267 split = 0;
4268 } else if ((extend || !data_size) && slot == 0) {
4269 mid = 1;
4270 } else {
4271 mid = slot;
4272 if (mid != nritems &&
4273 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4274 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4275 if (data_size && !tried_avoid_double)
4276 goto push_for_double;
67871254 4277 split = 2;
5d4f98a2
YZ
4278 }
4279 }
4280 }
4281 }
4282
4283 if (split == 0)
4284 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4285 else
4286 btrfs_item_key(l, &disk_key, mid);
4287
4d75f8a9
DS
4288 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4289 &disk_key, 0, l->start, 0);
f0486c68 4290 if (IS_ERR(right))
5f39d397 4291 return PTR_ERR(right);
f0486c68 4292
0b246afa 4293 root_add_used(root, fs_info->nodesize);
5f39d397 4294
b159fa28 4295 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
db94535d 4296 btrfs_set_header_bytenr(right, right->start);
5f39d397 4297 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4298 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4299 btrfs_set_header_owner(right, root->root_key.objectid);
4300 btrfs_set_header_level(right, 0);
d24ee97b
DS
4301 write_extent_buffer_fsid(right, fs_info->fsid);
4302 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
44871b1b 4303
5d4f98a2
YZ
4304 if (split == 0) {
4305 if (mid <= slot) {
4306 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4307 insert_ptr(trans, fs_info, path, &disk_key,
4308 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4309 btrfs_tree_unlock(path->nodes[0]);
4310 free_extent_buffer(path->nodes[0]);
4311 path->nodes[0] = right;
4312 path->slots[0] = 0;
4313 path->slots[1] += 1;
4314 } else {
4315 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4316 insert_ptr(trans, fs_info, path, &disk_key,
4317 right->start, path->slots[1], 1);
5d4f98a2
YZ
4318 btrfs_tree_unlock(path->nodes[0]);
4319 free_extent_buffer(path->nodes[0]);
4320 path->nodes[0] = right;
4321 path->slots[0] = 0;
143bede5 4322 if (path->slots[1] == 0)
b7a0365e 4323 fixup_low_keys(fs_info, path, &disk_key, 1);
d4dbff95 4324 }
196e0249
LB
4325 /*
4326 * We create a new leaf 'right' for the required ins_len and
4327 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4328 * the content of ins_len to 'right'.
4329 */
5d4f98a2 4330 return ret;
d4dbff95 4331 }
74123bd7 4332
2ff7e61e 4333 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4334
5d4f98a2 4335 if (split == 2) {
cc0c5538
CM
4336 BUG_ON(num_doubles != 0);
4337 num_doubles++;
4338 goto again;
a429e513 4339 }
44871b1b 4340
143bede5 4341 return 0;
99d8f83c
CM
4342
4343push_for_double:
4344 push_for_double_split(trans, root, path, data_size);
4345 tried_avoid_double = 1;
2ff7e61e 4346 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4347 return 0;
4348 goto again;
be0e5c09
CM
4349}
4350
ad48fd75
YZ
4351static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4352 struct btrfs_root *root,
4353 struct btrfs_path *path, int ins_len)
459931ec 4354{
2ff7e61e 4355 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4356 struct btrfs_key key;
459931ec 4357 struct extent_buffer *leaf;
ad48fd75
YZ
4358 struct btrfs_file_extent_item *fi;
4359 u64 extent_len = 0;
4360 u32 item_size;
4361 int ret;
459931ec
CM
4362
4363 leaf = path->nodes[0];
ad48fd75
YZ
4364 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4365
4366 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4367 key.type != BTRFS_EXTENT_CSUM_KEY);
4368
2ff7e61e 4369 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4370 return 0;
459931ec
CM
4371
4372 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4373 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4374 fi = btrfs_item_ptr(leaf, path->slots[0],
4375 struct btrfs_file_extent_item);
4376 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4377 }
b3b4aa74 4378 btrfs_release_path(path);
459931ec 4379
459931ec 4380 path->keep_locks = 1;
ad48fd75
YZ
4381 path->search_for_split = 1;
4382 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4383 path->search_for_split = 0;
a8df6fe6
FM
4384 if (ret > 0)
4385 ret = -EAGAIN;
ad48fd75
YZ
4386 if (ret < 0)
4387 goto err;
459931ec 4388
ad48fd75
YZ
4389 ret = -EAGAIN;
4390 leaf = path->nodes[0];
a8df6fe6
FM
4391 /* if our item isn't there, return now */
4392 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4393 goto err;
4394
109f6aef 4395 /* the leaf has changed, it now has room. return now */
2ff7e61e 4396 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4397 goto err;
4398
ad48fd75
YZ
4399 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4400 fi = btrfs_item_ptr(leaf, path->slots[0],
4401 struct btrfs_file_extent_item);
4402 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4403 goto err;
459931ec
CM
4404 }
4405
b9473439 4406 btrfs_set_path_blocking(path);
ad48fd75 4407 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4408 if (ret)
4409 goto err;
459931ec 4410
ad48fd75 4411 path->keep_locks = 0;
b9473439 4412 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4413 return 0;
4414err:
4415 path->keep_locks = 0;
4416 return ret;
4417}
4418
4961e293 4419static noinline int split_item(struct btrfs_fs_info *fs_info,
ad48fd75 4420 struct btrfs_path *path,
310712b2 4421 const struct btrfs_key *new_key,
ad48fd75
YZ
4422 unsigned long split_offset)
4423{
4424 struct extent_buffer *leaf;
4425 struct btrfs_item *item;
4426 struct btrfs_item *new_item;
4427 int slot;
4428 char *buf;
4429 u32 nritems;
4430 u32 item_size;
4431 u32 orig_offset;
4432 struct btrfs_disk_key disk_key;
4433
b9473439 4434 leaf = path->nodes[0];
2ff7e61e 4435 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4436
b4ce94de
CM
4437 btrfs_set_path_blocking(path);
4438
dd3cc16b 4439 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4440 orig_offset = btrfs_item_offset(leaf, item);
4441 item_size = btrfs_item_size(leaf, item);
4442
459931ec 4443 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4444 if (!buf)
4445 return -ENOMEM;
4446
459931ec
CM
4447 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4448 path->slots[0]), item_size);
459931ec 4449
ad48fd75 4450 slot = path->slots[0] + 1;
459931ec 4451 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4452 if (slot != nritems) {
4453 /* shift the items */
4454 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4455 btrfs_item_nr_offset(slot),
4456 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4457 }
4458
4459 btrfs_cpu_key_to_disk(&disk_key, new_key);
4460 btrfs_set_item_key(leaf, &disk_key, slot);
4461
dd3cc16b 4462 new_item = btrfs_item_nr(slot);
459931ec
CM
4463
4464 btrfs_set_item_offset(leaf, new_item, orig_offset);
4465 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4466
4467 btrfs_set_item_offset(leaf, item,
4468 orig_offset + item_size - split_offset);
4469 btrfs_set_item_size(leaf, item, split_offset);
4470
4471 btrfs_set_header_nritems(leaf, nritems + 1);
4472
4473 /* write the data for the start of the original item */
4474 write_extent_buffer(leaf, buf,
4475 btrfs_item_ptr_offset(leaf, path->slots[0]),
4476 split_offset);
4477
4478 /* write the data for the new item */
4479 write_extent_buffer(leaf, buf + split_offset,
4480 btrfs_item_ptr_offset(leaf, slot),
4481 item_size - split_offset);
4482 btrfs_mark_buffer_dirty(leaf);
4483
2ff7e61e 4484 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4485 kfree(buf);
ad48fd75
YZ
4486 return 0;
4487}
4488
4489/*
4490 * This function splits a single item into two items,
4491 * giving 'new_key' to the new item and splitting the
4492 * old one at split_offset (from the start of the item).
4493 *
4494 * The path may be released by this operation. After
4495 * the split, the path is pointing to the old item. The
4496 * new item is going to be in the same node as the old one.
4497 *
4498 * Note, the item being split must be smaller enough to live alone on
4499 * a tree block with room for one extra struct btrfs_item
4500 *
4501 * This allows us to split the item in place, keeping a lock on the
4502 * leaf the entire time.
4503 */
4504int btrfs_split_item(struct btrfs_trans_handle *trans,
4505 struct btrfs_root *root,
4506 struct btrfs_path *path,
310712b2 4507 const struct btrfs_key *new_key,
ad48fd75
YZ
4508 unsigned long split_offset)
4509{
4510 int ret;
4511 ret = setup_leaf_for_split(trans, root, path,
4512 sizeof(struct btrfs_item));
4513 if (ret)
4514 return ret;
4515
4961e293 4516 ret = split_item(root->fs_info, path, new_key, split_offset);
459931ec
CM
4517 return ret;
4518}
4519
ad48fd75
YZ
4520/*
4521 * This function duplicate a item, giving 'new_key' to the new item.
4522 * It guarantees both items live in the same tree leaf and the new item
4523 * is contiguous with the original item.
4524 *
4525 * This allows us to split file extent in place, keeping a lock on the
4526 * leaf the entire time.
4527 */
4528int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4529 struct btrfs_root *root,
4530 struct btrfs_path *path,
310712b2 4531 const struct btrfs_key *new_key)
ad48fd75
YZ
4532{
4533 struct extent_buffer *leaf;
4534 int ret;
4535 u32 item_size;
4536
4537 leaf = path->nodes[0];
4538 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4539 ret = setup_leaf_for_split(trans, root, path,
4540 item_size + sizeof(struct btrfs_item));
4541 if (ret)
4542 return ret;
4543
4544 path->slots[0]++;
afe5fea7 4545 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4546 item_size, item_size +
4547 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4548 leaf = path->nodes[0];
4549 memcpy_extent_buffer(leaf,
4550 btrfs_item_ptr_offset(leaf, path->slots[0]),
4551 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4552 item_size);
4553 return 0;
4554}
4555
d352ac68
CM
4556/*
4557 * make the item pointed to by the path smaller. new_size indicates
4558 * how small to make it, and from_end tells us if we just chop bytes
4559 * off the end of the item or if we shift the item to chop bytes off
4560 * the front.
4561 */
2ff7e61e
JM
4562void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4563 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4564{
b18c6685 4565 int slot;
5f39d397
CM
4566 struct extent_buffer *leaf;
4567 struct btrfs_item *item;
b18c6685
CM
4568 u32 nritems;
4569 unsigned int data_end;
4570 unsigned int old_data_start;
4571 unsigned int old_size;
4572 unsigned int size_diff;
4573 int i;
cfed81a0
CM
4574 struct btrfs_map_token token;
4575
4576 btrfs_init_map_token(&token);
b18c6685 4577
5f39d397 4578 leaf = path->nodes[0];
179e29e4
CM
4579 slot = path->slots[0];
4580
4581 old_size = btrfs_item_size_nr(leaf, slot);
4582 if (old_size == new_size)
143bede5 4583 return;
b18c6685 4584
5f39d397 4585 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4586 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4587
5f39d397 4588 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4589
b18c6685
CM
4590 size_diff = old_size - new_size;
4591
4592 BUG_ON(slot < 0);
4593 BUG_ON(slot >= nritems);
4594
4595 /*
4596 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4597 */
4598 /* first correct the data pointers */
4599 for (i = slot; i < nritems; i++) {
5f39d397 4600 u32 ioff;
dd3cc16b 4601 item = btrfs_item_nr(i);
db94535d 4602
cfed81a0
CM
4603 ioff = btrfs_token_item_offset(leaf, item, &token);
4604 btrfs_set_token_item_offset(leaf, item,
4605 ioff + size_diff, &token);
b18c6685 4606 }
db94535d 4607
b18c6685 4608 /* shift the data */
179e29e4 4609 if (from_end) {
3d9ec8c4
NB
4610 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4611 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4612 data_end, old_data_start + new_size - data_end);
4613 } else {
4614 struct btrfs_disk_key disk_key;
4615 u64 offset;
4616
4617 btrfs_item_key(leaf, &disk_key, slot);
4618
4619 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4620 unsigned long ptr;
4621 struct btrfs_file_extent_item *fi;
4622
4623 fi = btrfs_item_ptr(leaf, slot,
4624 struct btrfs_file_extent_item);
4625 fi = (struct btrfs_file_extent_item *)(
4626 (unsigned long)fi - size_diff);
4627
4628 if (btrfs_file_extent_type(leaf, fi) ==
4629 BTRFS_FILE_EXTENT_INLINE) {
4630 ptr = btrfs_item_ptr_offset(leaf, slot);
4631 memmove_extent_buffer(leaf, ptr,
d397712b 4632 (unsigned long)fi,
7ec20afb 4633 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4634 }
4635 }
4636
3d9ec8c4
NB
4637 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4638 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4639 data_end, old_data_start - data_end);
4640
4641 offset = btrfs_disk_key_offset(&disk_key);
4642 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4643 btrfs_set_item_key(leaf, &disk_key, slot);
4644 if (slot == 0)
0b246afa 4645 fixup_low_keys(fs_info, path, &disk_key, 1);
179e29e4 4646 }
5f39d397 4647
dd3cc16b 4648 item = btrfs_item_nr(slot);
5f39d397
CM
4649 btrfs_set_item_size(leaf, item, new_size);
4650 btrfs_mark_buffer_dirty(leaf);
b18c6685 4651
2ff7e61e
JM
4652 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4653 btrfs_print_leaf(fs_info, leaf);
b18c6685 4654 BUG();
5f39d397 4655 }
b18c6685
CM
4656}
4657
d352ac68 4658/*
8f69dbd2 4659 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4660 */
2ff7e61e 4661void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4662 u32 data_size)
6567e837 4663{
6567e837 4664 int slot;
5f39d397
CM
4665 struct extent_buffer *leaf;
4666 struct btrfs_item *item;
6567e837
CM
4667 u32 nritems;
4668 unsigned int data_end;
4669 unsigned int old_data;
4670 unsigned int old_size;
4671 int i;
cfed81a0
CM
4672 struct btrfs_map_token token;
4673
4674 btrfs_init_map_token(&token);
6567e837 4675
5f39d397 4676 leaf = path->nodes[0];
6567e837 4677
5f39d397 4678 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4679 data_end = leaf_data_end(fs_info, leaf);
6567e837 4680
2ff7e61e
JM
4681 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4682 btrfs_print_leaf(fs_info, leaf);
6567e837 4683 BUG();
5f39d397 4684 }
6567e837 4685 slot = path->slots[0];
5f39d397 4686 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4687
4688 BUG_ON(slot < 0);
3326d1b0 4689 if (slot >= nritems) {
2ff7e61e 4690 btrfs_print_leaf(fs_info, leaf);
0b246afa
JM
4691 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4692 slot, nritems);
3326d1b0
CM
4693 BUG_ON(1);
4694 }
6567e837
CM
4695
4696 /*
4697 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4698 */
4699 /* first correct the data pointers */
4700 for (i = slot; i < nritems; i++) {
5f39d397 4701 u32 ioff;
dd3cc16b 4702 item = btrfs_item_nr(i);
db94535d 4703
cfed81a0
CM
4704 ioff = btrfs_token_item_offset(leaf, item, &token);
4705 btrfs_set_token_item_offset(leaf, item,
4706 ioff - data_size, &token);
6567e837 4707 }
5f39d397 4708
6567e837 4709 /* shift the data */
3d9ec8c4
NB
4710 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4711 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4712 data_end, old_data - data_end);
5f39d397 4713
6567e837 4714 data_end = old_data;
5f39d397 4715 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4716 item = btrfs_item_nr(slot);
5f39d397
CM
4717 btrfs_set_item_size(leaf, item, old_size + data_size);
4718 btrfs_mark_buffer_dirty(leaf);
6567e837 4719
2ff7e61e
JM
4720 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4721 btrfs_print_leaf(fs_info, leaf);
6567e837 4722 BUG();
5f39d397 4723 }
6567e837
CM
4724}
4725
74123bd7 4726/*
44871b1b
CM
4727 * this is a helper for btrfs_insert_empty_items, the main goal here is
4728 * to save stack depth by doing the bulk of the work in a function
4729 * that doesn't call btrfs_search_slot
74123bd7 4730 */
afe5fea7 4731void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4732 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4733 u32 total_data, u32 total_size, int nr)
be0e5c09 4734{
0b246afa 4735 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4736 struct btrfs_item *item;
9c58309d 4737 int i;
7518a238 4738 u32 nritems;
be0e5c09 4739 unsigned int data_end;
e2fa7227 4740 struct btrfs_disk_key disk_key;
44871b1b
CM
4741 struct extent_buffer *leaf;
4742 int slot;
cfed81a0
CM
4743 struct btrfs_map_token token;
4744
24cdc847
FM
4745 if (path->slots[0] == 0) {
4746 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
0b246afa 4747 fixup_low_keys(fs_info, path, &disk_key, 1);
24cdc847
FM
4748 }
4749 btrfs_unlock_up_safe(path, 1);
4750
cfed81a0 4751 btrfs_init_map_token(&token);
e2fa7227 4752
5f39d397 4753 leaf = path->nodes[0];
44871b1b 4754 slot = path->slots[0];
74123bd7 4755
5f39d397 4756 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4757 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4758
2ff7e61e
JM
4759 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4760 btrfs_print_leaf(fs_info, leaf);
0b246afa 4761 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4762 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4763 BUG();
d4dbff95 4764 }
5f39d397 4765
be0e5c09 4766 if (slot != nritems) {
5f39d397 4767 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4768
5f39d397 4769 if (old_data < data_end) {
2ff7e61e 4770 btrfs_print_leaf(fs_info, leaf);
0b246afa 4771 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4772 slot, old_data, data_end);
5f39d397
CM
4773 BUG_ON(1);
4774 }
be0e5c09
CM
4775 /*
4776 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4777 */
4778 /* first correct the data pointers */
0783fcfc 4779 for (i = slot; i < nritems; i++) {
5f39d397 4780 u32 ioff;
db94535d 4781
62e85577 4782 item = btrfs_item_nr(i);
cfed81a0
CM
4783 ioff = btrfs_token_item_offset(leaf, item, &token);
4784 btrfs_set_token_item_offset(leaf, item,
4785 ioff - total_data, &token);
0783fcfc 4786 }
be0e5c09 4787 /* shift the items */
9c58309d 4788 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4789 btrfs_item_nr_offset(slot),
d6025579 4790 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4791
4792 /* shift the data */
3d9ec8c4
NB
4793 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4794 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4795 data_end, old_data - data_end);
be0e5c09
CM
4796 data_end = old_data;
4797 }
5f39d397 4798
62e2749e 4799 /* setup the item for the new data */
9c58309d
CM
4800 for (i = 0; i < nr; i++) {
4801 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4802 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4803 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4804 btrfs_set_token_item_offset(leaf, item,
4805 data_end - data_size[i], &token);
9c58309d 4806 data_end -= data_size[i];
cfed81a0 4807 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4808 }
44871b1b 4809
9c58309d 4810 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4811 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4812
2ff7e61e
JM
4813 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4814 btrfs_print_leaf(fs_info, leaf);
be0e5c09 4815 BUG();
5f39d397 4816 }
44871b1b
CM
4817}
4818
4819/*
4820 * Given a key and some data, insert items into the tree.
4821 * This does all the path init required, making room in the tree if needed.
4822 */
4823int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4824 struct btrfs_root *root,
4825 struct btrfs_path *path,
310712b2 4826 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4827 int nr)
4828{
44871b1b
CM
4829 int ret = 0;
4830 int slot;
4831 int i;
4832 u32 total_size = 0;
4833 u32 total_data = 0;
4834
4835 for (i = 0; i < nr; i++)
4836 total_data += data_size[i];
4837
4838 total_size = total_data + (nr * sizeof(struct btrfs_item));
4839 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4840 if (ret == 0)
4841 return -EEXIST;
4842 if (ret < 0)
143bede5 4843 return ret;
44871b1b 4844
44871b1b
CM
4845 slot = path->slots[0];
4846 BUG_ON(slot < 0);
4847
afe5fea7 4848 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4849 total_data, total_size, nr);
143bede5 4850 return 0;
62e2749e
CM
4851}
4852
4853/*
4854 * Given a key and some data, insert an item into the tree.
4855 * This does all the path init required, making room in the tree if needed.
4856 */
310712b2
OS
4857int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4858 const struct btrfs_key *cpu_key, void *data,
4859 u32 data_size)
62e2749e
CM
4860{
4861 int ret = 0;
2c90e5d6 4862 struct btrfs_path *path;
5f39d397
CM
4863 struct extent_buffer *leaf;
4864 unsigned long ptr;
62e2749e 4865
2c90e5d6 4866 path = btrfs_alloc_path();
db5b493a
TI
4867 if (!path)
4868 return -ENOMEM;
2c90e5d6 4869 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4870 if (!ret) {
5f39d397
CM
4871 leaf = path->nodes[0];
4872 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4873 write_extent_buffer(leaf, data, ptr, data_size);
4874 btrfs_mark_buffer_dirty(leaf);
62e2749e 4875 }
2c90e5d6 4876 btrfs_free_path(path);
aa5d6bed 4877 return ret;
be0e5c09
CM
4878}
4879
74123bd7 4880/*
5de08d7d 4881 * delete the pointer from a given node.
74123bd7 4882 *
d352ac68
CM
4883 * the tree should have been previously balanced so the deletion does not
4884 * empty a node.
74123bd7 4885 */
afe5fea7
TI
4886static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4887 int level, int slot)
be0e5c09 4888{
0b246afa 4889 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4890 struct extent_buffer *parent = path->nodes[level];
7518a238 4891 u32 nritems;
f3ea38da 4892 int ret;
be0e5c09 4893
5f39d397 4894 nritems = btrfs_header_nritems(parent);
d397712b 4895 if (slot != nritems - 1) {
0e411ece 4896 if (level)
0b246afa 4897 tree_mod_log_eb_move(fs_info, parent, slot,
f3ea38da 4898 slot + 1, nritems - slot - 1);
5f39d397
CM
4899 memmove_extent_buffer(parent,
4900 btrfs_node_key_ptr_offset(slot),
4901 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4902 sizeof(struct btrfs_key_ptr) *
4903 (nritems - slot - 1));
57ba86c0 4904 } else if (level) {
0b246afa 4905 ret = tree_mod_log_insert_key(fs_info, parent, slot,
c8cc6341 4906 MOD_LOG_KEY_REMOVE, GFP_NOFS);
57ba86c0 4907 BUG_ON(ret < 0);
bb803951 4908 }
f3ea38da 4909
7518a238 4910 nritems--;
5f39d397 4911 btrfs_set_header_nritems(parent, nritems);
7518a238 4912 if (nritems == 0 && parent == root->node) {
5f39d397 4913 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4914 /* just turn the root into a leaf and break */
5f39d397 4915 btrfs_set_header_level(root->node, 0);
bb803951 4916 } else if (slot == 0) {
5f39d397
CM
4917 struct btrfs_disk_key disk_key;
4918
4919 btrfs_node_key(parent, &disk_key, 0);
0b246afa 4920 fixup_low_keys(fs_info, path, &disk_key, level + 1);
be0e5c09 4921 }
d6025579 4922 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4923}
4924
323ac95b
CM
4925/*
4926 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4927 * path->nodes[1].
323ac95b
CM
4928 *
4929 * This deletes the pointer in path->nodes[1] and frees the leaf
4930 * block extent. zero is returned if it all worked out, < 0 otherwise.
4931 *
4932 * The path must have already been setup for deleting the leaf, including
4933 * all the proper balancing. path->nodes[1] must be locked.
4934 */
143bede5
JM
4935static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4936 struct btrfs_root *root,
4937 struct btrfs_path *path,
4938 struct extent_buffer *leaf)
323ac95b 4939{
5d4f98a2 4940 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4941 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4942
4d081c41
CM
4943 /*
4944 * btrfs_free_extent is expensive, we want to make sure we
4945 * aren't holding any locks when we call it
4946 */
4947 btrfs_unlock_up_safe(path, 0);
4948
f0486c68
YZ
4949 root_sub_used(root, leaf->len);
4950
3083ee2e 4951 extent_buffer_get(leaf);
5581a51a 4952 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4953 free_extent_buffer_stale(leaf);
323ac95b 4954}
74123bd7
CM
4955/*
4956 * delete the item at the leaf level in path. If that empties
4957 * the leaf, remove it from the tree
4958 */
85e21bac
CM
4959int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4960 struct btrfs_path *path, int slot, int nr)
be0e5c09 4961{
0b246afa 4962 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4963 struct extent_buffer *leaf;
4964 struct btrfs_item *item;
ce0eac2a
AM
4965 u32 last_off;
4966 u32 dsize = 0;
aa5d6bed
CM
4967 int ret = 0;
4968 int wret;
85e21bac 4969 int i;
7518a238 4970 u32 nritems;
cfed81a0
CM
4971 struct btrfs_map_token token;
4972
4973 btrfs_init_map_token(&token);
be0e5c09 4974
5f39d397 4975 leaf = path->nodes[0];
85e21bac
CM
4976 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4977
4978 for (i = 0; i < nr; i++)
4979 dsize += btrfs_item_size_nr(leaf, slot + i);
4980
5f39d397 4981 nritems = btrfs_header_nritems(leaf);
be0e5c09 4982
85e21bac 4983 if (slot + nr != nritems) {
2ff7e61e 4984 int data_end = leaf_data_end(fs_info, leaf);
5f39d397 4985
3d9ec8c4 4986 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 4987 data_end + dsize,
3d9ec8c4 4988 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 4989 last_off - data_end);
5f39d397 4990
85e21bac 4991 for (i = slot + nr; i < nritems; i++) {
5f39d397 4992 u32 ioff;
db94535d 4993
dd3cc16b 4994 item = btrfs_item_nr(i);
cfed81a0
CM
4995 ioff = btrfs_token_item_offset(leaf, item, &token);
4996 btrfs_set_token_item_offset(leaf, item,
4997 ioff + dsize, &token);
0783fcfc 4998 }
db94535d 4999
5f39d397 5000 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 5001 btrfs_item_nr_offset(slot + nr),
d6025579 5002 sizeof(struct btrfs_item) *
85e21bac 5003 (nritems - slot - nr));
be0e5c09 5004 }
85e21bac
CM
5005 btrfs_set_header_nritems(leaf, nritems - nr);
5006 nritems -= nr;
5f39d397 5007
74123bd7 5008 /* delete the leaf if we've emptied it */
7518a238 5009 if (nritems == 0) {
5f39d397
CM
5010 if (leaf == root->node) {
5011 btrfs_set_header_level(leaf, 0);
9a8dd150 5012 } else {
f0486c68 5013 btrfs_set_path_blocking(path);
7c302b49 5014 clean_tree_block(fs_info, leaf);
143bede5 5015 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5016 }
be0e5c09 5017 } else {
7518a238 5018 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5019 if (slot == 0) {
5f39d397
CM
5020 struct btrfs_disk_key disk_key;
5021
5022 btrfs_item_key(leaf, &disk_key, 0);
0b246afa 5023 fixup_low_keys(fs_info, path, &disk_key, 1);
aa5d6bed 5024 }
aa5d6bed 5025
74123bd7 5026 /* delete the leaf if it is mostly empty */
0b246afa 5027 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
5028 /* push_leaf_left fixes the path.
5029 * make sure the path still points to our leaf
5030 * for possible call to del_ptr below
5031 */
4920c9ac 5032 slot = path->slots[1];
5f39d397
CM
5033 extent_buffer_get(leaf);
5034
b9473439 5035 btrfs_set_path_blocking(path);
99d8f83c
CM
5036 wret = push_leaf_left(trans, root, path, 1, 1,
5037 1, (u32)-1);
54aa1f4d 5038 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5039 ret = wret;
5f39d397
CM
5040
5041 if (path->nodes[0] == leaf &&
5042 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5043 wret = push_leaf_right(trans, root, path, 1,
5044 1, 1, 0);
54aa1f4d 5045 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5046 ret = wret;
5047 }
5f39d397
CM
5048
5049 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5050 path->slots[1] = slot;
143bede5 5051 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5052 free_extent_buffer(leaf);
143bede5 5053 ret = 0;
5de08d7d 5054 } else {
925baedd
CM
5055 /* if we're still in the path, make sure
5056 * we're dirty. Otherwise, one of the
5057 * push_leaf functions must have already
5058 * dirtied this buffer
5059 */
5060 if (path->nodes[0] == leaf)
5061 btrfs_mark_buffer_dirty(leaf);
5f39d397 5062 free_extent_buffer(leaf);
be0e5c09 5063 }
d5719762 5064 } else {
5f39d397 5065 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5066 }
5067 }
aa5d6bed 5068 return ret;
be0e5c09
CM
5069}
5070
7bb86316 5071/*
925baedd 5072 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5073 * returns 0 if it found something or 1 if there are no lesser leaves.
5074 * returns < 0 on io errors.
d352ac68
CM
5075 *
5076 * This may release the path, and so you may lose any locks held at the
5077 * time you call it.
7bb86316 5078 */
16e7549f 5079int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5080{
925baedd
CM
5081 struct btrfs_key key;
5082 struct btrfs_disk_key found_key;
5083 int ret;
7bb86316 5084
925baedd 5085 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5086
e8b0d724 5087 if (key.offset > 0) {
925baedd 5088 key.offset--;
e8b0d724 5089 } else if (key.type > 0) {
925baedd 5090 key.type--;
e8b0d724
FDBM
5091 key.offset = (u64)-1;
5092 } else if (key.objectid > 0) {
925baedd 5093 key.objectid--;
e8b0d724
FDBM
5094 key.type = (u8)-1;
5095 key.offset = (u64)-1;
5096 } else {
925baedd 5097 return 1;
e8b0d724 5098 }
7bb86316 5099
b3b4aa74 5100 btrfs_release_path(path);
925baedd
CM
5101 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5102 if (ret < 0)
5103 return ret;
5104 btrfs_item_key(path->nodes[0], &found_key, 0);
5105 ret = comp_keys(&found_key, &key);
337c6f68
FM
5106 /*
5107 * We might have had an item with the previous key in the tree right
5108 * before we released our path. And after we released our path, that
5109 * item might have been pushed to the first slot (0) of the leaf we
5110 * were holding due to a tree balance. Alternatively, an item with the
5111 * previous key can exist as the only element of a leaf (big fat item).
5112 * Therefore account for these 2 cases, so that our callers (like
5113 * btrfs_previous_item) don't miss an existing item with a key matching
5114 * the previous key we computed above.
5115 */
5116 if (ret <= 0)
925baedd
CM
5117 return 0;
5118 return 1;
7bb86316
CM
5119}
5120
3f157a2f
CM
5121/*
5122 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5123 * for nodes or leaves that are have a minimum transaction id.
5124 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5125 *
5126 * This does not cow, but it does stuff the starting key it finds back
5127 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5128 * key and get a writable path.
5129 *
5130 * This does lock as it descends, and path->keep_locks should be set
5131 * to 1 by the caller.
5132 *
5133 * This honors path->lowest_level to prevent descent past a given level
5134 * of the tree.
5135 *
d352ac68
CM
5136 * min_trans indicates the oldest transaction that you are interested
5137 * in walking through. Any nodes or leaves older than min_trans are
5138 * skipped over (without reading them).
5139 *
3f157a2f
CM
5140 * returns zero if something useful was found, < 0 on error and 1 if there
5141 * was nothing in the tree that matched the search criteria.
5142 */
5143int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5144 struct btrfs_path *path,
3f157a2f
CM
5145 u64 min_trans)
5146{
2ff7e61e 5147 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5148 struct extent_buffer *cur;
5149 struct btrfs_key found_key;
5150 int slot;
9652480b 5151 int sret;
3f157a2f
CM
5152 u32 nritems;
5153 int level;
5154 int ret = 1;
f98de9b9 5155 int keep_locks = path->keep_locks;
3f157a2f 5156
f98de9b9 5157 path->keep_locks = 1;
3f157a2f 5158again:
bd681513 5159 cur = btrfs_read_lock_root_node(root);
3f157a2f 5160 level = btrfs_header_level(cur);
e02119d5 5161 WARN_ON(path->nodes[level]);
3f157a2f 5162 path->nodes[level] = cur;
bd681513 5163 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5164
5165 if (btrfs_header_generation(cur) < min_trans) {
5166 ret = 1;
5167 goto out;
5168 }
d397712b 5169 while (1) {
3f157a2f
CM
5170 nritems = btrfs_header_nritems(cur);
5171 level = btrfs_header_level(cur);
9652480b 5172 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 5173
323ac95b
CM
5174 /* at the lowest level, we're done, setup the path and exit */
5175 if (level == path->lowest_level) {
e02119d5
CM
5176 if (slot >= nritems)
5177 goto find_next_key;
3f157a2f
CM
5178 ret = 0;
5179 path->slots[level] = slot;
5180 btrfs_item_key_to_cpu(cur, &found_key, slot);
5181 goto out;
5182 }
9652480b
Y
5183 if (sret && slot > 0)
5184 slot--;
3f157a2f 5185 /*
de78b51a
ES
5186 * check this node pointer against the min_trans parameters.
5187 * If it is too old, old, skip to the next one.
3f157a2f 5188 */
d397712b 5189 while (slot < nritems) {
3f157a2f 5190 u64 gen;
e02119d5 5191
3f157a2f
CM
5192 gen = btrfs_node_ptr_generation(cur, slot);
5193 if (gen < min_trans) {
5194 slot++;
5195 continue;
5196 }
de78b51a 5197 break;
3f157a2f 5198 }
e02119d5 5199find_next_key:
3f157a2f
CM
5200 /*
5201 * we didn't find a candidate key in this node, walk forward
5202 * and find another one
5203 */
5204 if (slot >= nritems) {
e02119d5 5205 path->slots[level] = slot;
b4ce94de 5206 btrfs_set_path_blocking(path);
e02119d5 5207 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5208 min_trans);
e02119d5 5209 if (sret == 0) {
b3b4aa74 5210 btrfs_release_path(path);
3f157a2f
CM
5211 goto again;
5212 } else {
5213 goto out;
5214 }
5215 }
5216 /* save our key for returning back */
5217 btrfs_node_key_to_cpu(cur, &found_key, slot);
5218 path->slots[level] = slot;
5219 if (level == path->lowest_level) {
5220 ret = 0;
3f157a2f
CM
5221 goto out;
5222 }
b4ce94de 5223 btrfs_set_path_blocking(path);
2ff7e61e 5224 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5225 if (IS_ERR(cur)) {
5226 ret = PTR_ERR(cur);
5227 goto out;
5228 }
3f157a2f 5229
bd681513 5230 btrfs_tree_read_lock(cur);
b4ce94de 5231
bd681513 5232 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5233 path->nodes[level - 1] = cur;
f7c79f30 5234 unlock_up(path, level, 1, 0, NULL);
bd681513 5235 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5236 }
5237out:
f98de9b9
FM
5238 path->keep_locks = keep_locks;
5239 if (ret == 0) {
5240 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5241 btrfs_set_path_blocking(path);
3f157a2f 5242 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5243 }
3f157a2f
CM
5244 return ret;
5245}
5246
2ff7e61e 5247static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a 5248 struct btrfs_path *path,
ab6a43e1 5249 int *level)
7069830a 5250{
fb770ae4
LB
5251 struct extent_buffer *eb;
5252
74dd17fb 5253 BUG_ON(*level == 0);
2ff7e61e 5254 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5255 if (IS_ERR(eb))
5256 return PTR_ERR(eb);
5257
5258 path->nodes[*level - 1] = eb;
7069830a
AB
5259 path->slots[*level - 1] = 0;
5260 (*level)--;
fb770ae4 5261 return 0;
7069830a
AB
5262}
5263
f1e30261 5264static int tree_move_next_or_upnext(struct btrfs_path *path,
7069830a
AB
5265 int *level, int root_level)
5266{
5267 int ret = 0;
5268 int nritems;
5269 nritems = btrfs_header_nritems(path->nodes[*level]);
5270
5271 path->slots[*level]++;
5272
74dd17fb 5273 while (path->slots[*level] >= nritems) {
7069830a
AB
5274 if (*level == root_level)
5275 return -1;
5276
5277 /* move upnext */
5278 path->slots[*level] = 0;
5279 free_extent_buffer(path->nodes[*level]);
5280 path->nodes[*level] = NULL;
5281 (*level)++;
5282 path->slots[*level]++;
5283
5284 nritems = btrfs_header_nritems(path->nodes[*level]);
5285 ret = 1;
5286 }
5287 return ret;
5288}
5289
5290/*
5291 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5292 * or down.
5293 */
2ff7e61e 5294static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5295 struct btrfs_path *path,
5296 int *level, int root_level,
5297 int allow_down,
5298 struct btrfs_key *key)
5299{
5300 int ret;
5301
5302 if (*level == 0 || !allow_down) {
f1e30261 5303 ret = tree_move_next_or_upnext(path, level, root_level);
7069830a 5304 } else {
ab6a43e1 5305 ret = tree_move_down(fs_info, path, level);
7069830a
AB
5306 }
5307 if (ret >= 0) {
5308 if (*level == 0)
5309 btrfs_item_key_to_cpu(path->nodes[*level], key,
5310 path->slots[*level]);
5311 else
5312 btrfs_node_key_to_cpu(path->nodes[*level], key,
5313 path->slots[*level]);
5314 }
5315 return ret;
5316}
5317
2ff7e61e 5318static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5319 struct btrfs_path *right_path,
5320 char *tmp_buf)
5321{
5322 int cmp;
5323 int len1, len2;
5324 unsigned long off1, off2;
5325
5326 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5327 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5328 if (len1 != len2)
5329 return 1;
5330
5331 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5332 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5333 right_path->slots[0]);
5334
5335 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5336
5337 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5338 if (cmp)
5339 return 1;
5340 return 0;
5341}
5342
5343#define ADVANCE 1
5344#define ADVANCE_ONLY_NEXT -1
5345
5346/*
5347 * This function compares two trees and calls the provided callback for
5348 * every changed/new/deleted item it finds.
5349 * If shared tree blocks are encountered, whole subtrees are skipped, making
5350 * the compare pretty fast on snapshotted subvolumes.
5351 *
5352 * This currently works on commit roots only. As commit roots are read only,
5353 * we don't do any locking. The commit roots are protected with transactions.
5354 * Transactions are ended and rejoined when a commit is tried in between.
5355 *
5356 * This function checks for modifications done to the trees while comparing.
5357 * If it detects a change, it aborts immediately.
5358 */
5359int btrfs_compare_trees(struct btrfs_root *left_root,
5360 struct btrfs_root *right_root,
5361 btrfs_changed_cb_t changed_cb, void *ctx)
5362{
0b246afa 5363 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5364 int ret;
5365 int cmp;
7069830a
AB
5366 struct btrfs_path *left_path = NULL;
5367 struct btrfs_path *right_path = NULL;
5368 struct btrfs_key left_key;
5369 struct btrfs_key right_key;
5370 char *tmp_buf = NULL;
5371 int left_root_level;
5372 int right_root_level;
5373 int left_level;
5374 int right_level;
5375 int left_end_reached;
5376 int right_end_reached;
5377 int advance_left;
5378 int advance_right;
5379 u64 left_blockptr;
5380 u64 right_blockptr;
6baa4293
FM
5381 u64 left_gen;
5382 u64 right_gen;
7069830a
AB
5383
5384 left_path = btrfs_alloc_path();
5385 if (!left_path) {
5386 ret = -ENOMEM;
5387 goto out;
5388 }
5389 right_path = btrfs_alloc_path();
5390 if (!right_path) {
5391 ret = -ENOMEM;
5392 goto out;
5393 }
5394
752ade68 5395 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7069830a 5396 if (!tmp_buf) {
752ade68
MH
5397 ret = -ENOMEM;
5398 goto out;
7069830a
AB
5399 }
5400
5401 left_path->search_commit_root = 1;
5402 left_path->skip_locking = 1;
5403 right_path->search_commit_root = 1;
5404 right_path->skip_locking = 1;
5405
7069830a
AB
5406 /*
5407 * Strategy: Go to the first items of both trees. Then do
5408 *
5409 * If both trees are at level 0
5410 * Compare keys of current items
5411 * If left < right treat left item as new, advance left tree
5412 * and repeat
5413 * If left > right treat right item as deleted, advance right tree
5414 * and repeat
5415 * If left == right do deep compare of items, treat as changed if
5416 * needed, advance both trees and repeat
5417 * If both trees are at the same level but not at level 0
5418 * Compare keys of current nodes/leafs
5419 * If left < right advance left tree and repeat
5420 * If left > right advance right tree and repeat
5421 * If left == right compare blockptrs of the next nodes/leafs
5422 * If they match advance both trees but stay at the same level
5423 * and repeat
5424 * If they don't match advance both trees while allowing to go
5425 * deeper and repeat
5426 * If tree levels are different
5427 * Advance the tree that needs it and repeat
5428 *
5429 * Advancing a tree means:
5430 * If we are at level 0, try to go to the next slot. If that's not
5431 * possible, go one level up and repeat. Stop when we found a level
5432 * where we could go to the next slot. We may at this point be on a
5433 * node or a leaf.
5434 *
5435 * If we are not at level 0 and not on shared tree blocks, go one
5436 * level deeper.
5437 *
5438 * If we are not at level 0 and on shared tree blocks, go one slot to
5439 * the right if possible or go up and right.
5440 */
5441
0b246afa 5442 down_read(&fs_info->commit_root_sem);
7069830a
AB
5443 left_level = btrfs_header_level(left_root->commit_root);
5444 left_root_level = left_level;
5445 left_path->nodes[left_level] = left_root->commit_root;
5446 extent_buffer_get(left_path->nodes[left_level]);
5447
5448 right_level = btrfs_header_level(right_root->commit_root);
5449 right_root_level = right_level;
5450 right_path->nodes[right_level] = right_root->commit_root;
5451 extent_buffer_get(right_path->nodes[right_level]);
0b246afa 5452 up_read(&fs_info->commit_root_sem);
7069830a
AB
5453
5454 if (left_level == 0)
5455 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5456 &left_key, left_path->slots[left_level]);
5457 else
5458 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5459 &left_key, left_path->slots[left_level]);
5460 if (right_level == 0)
5461 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5462 &right_key, right_path->slots[right_level]);
5463 else
5464 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5465 &right_key, right_path->slots[right_level]);
5466
5467 left_end_reached = right_end_reached = 0;
5468 advance_left = advance_right = 0;
5469
5470 while (1) {
7069830a 5471 if (advance_left && !left_end_reached) {
2ff7e61e 5472 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5473 left_root_level,
5474 advance_left != ADVANCE_ONLY_NEXT,
5475 &left_key);
fb770ae4 5476 if (ret == -1)
7069830a 5477 left_end_reached = ADVANCE;
fb770ae4
LB
5478 else if (ret < 0)
5479 goto out;
7069830a
AB
5480 advance_left = 0;
5481 }
5482 if (advance_right && !right_end_reached) {
2ff7e61e 5483 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5484 right_root_level,
5485 advance_right != ADVANCE_ONLY_NEXT,
5486 &right_key);
fb770ae4 5487 if (ret == -1)
7069830a 5488 right_end_reached = ADVANCE;
fb770ae4
LB
5489 else if (ret < 0)
5490 goto out;
7069830a
AB
5491 advance_right = 0;
5492 }
5493
5494 if (left_end_reached && right_end_reached) {
5495 ret = 0;
5496 goto out;
5497 } else if (left_end_reached) {
5498 if (right_level == 0) {
5499 ret = changed_cb(left_root, right_root,
5500 left_path, right_path,
5501 &right_key,
5502 BTRFS_COMPARE_TREE_DELETED,
5503 ctx);
5504 if (ret < 0)
5505 goto out;
5506 }
5507 advance_right = ADVANCE;
5508 continue;
5509 } else if (right_end_reached) {
5510 if (left_level == 0) {
5511 ret = changed_cb(left_root, right_root,
5512 left_path, right_path,
5513 &left_key,
5514 BTRFS_COMPARE_TREE_NEW,
5515 ctx);
5516 if (ret < 0)
5517 goto out;
5518 }
5519 advance_left = ADVANCE;
5520 continue;
5521 }
5522
5523 if (left_level == 0 && right_level == 0) {
5524 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5525 if (cmp < 0) {
5526 ret = changed_cb(left_root, right_root,
5527 left_path, right_path,
5528 &left_key,
5529 BTRFS_COMPARE_TREE_NEW,
5530 ctx);
5531 if (ret < 0)
5532 goto out;
5533 advance_left = ADVANCE;
5534 } else if (cmp > 0) {
5535 ret = changed_cb(left_root, right_root,
5536 left_path, right_path,
5537 &right_key,
5538 BTRFS_COMPARE_TREE_DELETED,
5539 ctx);
5540 if (ret < 0)
5541 goto out;
5542 advance_right = ADVANCE;
5543 } else {
b99d9a6a 5544 enum btrfs_compare_tree_result result;
ba5e8f2e 5545
74dd17fb 5546 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5547 ret = tree_compare_item(left_path, right_path,
5548 tmp_buf);
ba5e8f2e 5549 if (ret)
b99d9a6a 5550 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5551 else
b99d9a6a 5552 result = BTRFS_COMPARE_TREE_SAME;
ba5e8f2e
JB
5553 ret = changed_cb(left_root, right_root,
5554 left_path, right_path,
b99d9a6a 5555 &left_key, result, ctx);
ba5e8f2e
JB
5556 if (ret < 0)
5557 goto out;
7069830a
AB
5558 advance_left = ADVANCE;
5559 advance_right = ADVANCE;
5560 }
5561 } else if (left_level == right_level) {
5562 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5563 if (cmp < 0) {
5564 advance_left = ADVANCE;
5565 } else if (cmp > 0) {
5566 advance_right = ADVANCE;
5567 } else {
5568 left_blockptr = btrfs_node_blockptr(
5569 left_path->nodes[left_level],
5570 left_path->slots[left_level]);
5571 right_blockptr = btrfs_node_blockptr(
5572 right_path->nodes[right_level],
5573 right_path->slots[right_level]);
6baa4293
FM
5574 left_gen = btrfs_node_ptr_generation(
5575 left_path->nodes[left_level],
5576 left_path->slots[left_level]);
5577 right_gen = btrfs_node_ptr_generation(
5578 right_path->nodes[right_level],
5579 right_path->slots[right_level]);
5580 if (left_blockptr == right_blockptr &&
5581 left_gen == right_gen) {
7069830a
AB
5582 /*
5583 * As we're on a shared block, don't
5584 * allow to go deeper.
5585 */
5586 advance_left = ADVANCE_ONLY_NEXT;
5587 advance_right = ADVANCE_ONLY_NEXT;
5588 } else {
5589 advance_left = ADVANCE;
5590 advance_right = ADVANCE;
5591 }
5592 }
5593 } else if (left_level < right_level) {
5594 advance_right = ADVANCE;
5595 } else {
5596 advance_left = ADVANCE;
5597 }
5598 }
5599
5600out:
5601 btrfs_free_path(left_path);
5602 btrfs_free_path(right_path);
8f282f71 5603 kvfree(tmp_buf);
7069830a
AB
5604 return ret;
5605}
5606
3f157a2f
CM
5607/*
5608 * this is similar to btrfs_next_leaf, but does not try to preserve
5609 * and fixup the path. It looks for and returns the next key in the
de78b51a 5610 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5611 *
5612 * 0 is returned if another key is found, < 0 if there are any errors
5613 * and 1 is returned if there are no higher keys in the tree
5614 *
5615 * path->keep_locks should be set to 1 on the search made before
5616 * calling this function.
5617 */
e7a84565 5618int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5619 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5620{
e7a84565
CM
5621 int slot;
5622 struct extent_buffer *c;
5623
934d375b 5624 WARN_ON(!path->keep_locks);
d397712b 5625 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5626 if (!path->nodes[level])
5627 return 1;
5628
5629 slot = path->slots[level] + 1;
5630 c = path->nodes[level];
3f157a2f 5631next:
e7a84565 5632 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5633 int ret;
5634 int orig_lowest;
5635 struct btrfs_key cur_key;
5636 if (level + 1 >= BTRFS_MAX_LEVEL ||
5637 !path->nodes[level + 1])
e7a84565 5638 return 1;
33c66f43
YZ
5639
5640 if (path->locks[level + 1]) {
5641 level++;
5642 continue;
5643 }
5644
5645 slot = btrfs_header_nritems(c) - 1;
5646 if (level == 0)
5647 btrfs_item_key_to_cpu(c, &cur_key, slot);
5648 else
5649 btrfs_node_key_to_cpu(c, &cur_key, slot);
5650
5651 orig_lowest = path->lowest_level;
b3b4aa74 5652 btrfs_release_path(path);
33c66f43
YZ
5653 path->lowest_level = level;
5654 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5655 0, 0);
5656 path->lowest_level = orig_lowest;
5657 if (ret < 0)
5658 return ret;
5659
5660 c = path->nodes[level];
5661 slot = path->slots[level];
5662 if (ret == 0)
5663 slot++;
5664 goto next;
e7a84565 5665 }
33c66f43 5666
e7a84565
CM
5667 if (level == 0)
5668 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5669 else {
3f157a2f
CM
5670 u64 gen = btrfs_node_ptr_generation(c, slot);
5671
3f157a2f
CM
5672 if (gen < min_trans) {
5673 slot++;
5674 goto next;
5675 }
e7a84565 5676 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5677 }
e7a84565
CM
5678 return 0;
5679 }
5680 return 1;
5681}
5682
97571fd0 5683/*
925baedd 5684 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5685 * returns 0 if it found something or 1 if there are no greater leaves.
5686 * returns < 0 on io errors.
97571fd0 5687 */
234b63a0 5688int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5689{
5690 return btrfs_next_old_leaf(root, path, 0);
5691}
5692
5693int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5694 u64 time_seq)
d97e63b6
CM
5695{
5696 int slot;
8e73f275 5697 int level;
5f39d397 5698 struct extent_buffer *c;
8e73f275 5699 struct extent_buffer *next;
925baedd
CM
5700 struct btrfs_key key;
5701 u32 nritems;
5702 int ret;
8e73f275 5703 int old_spinning = path->leave_spinning;
bd681513 5704 int next_rw_lock = 0;
925baedd
CM
5705
5706 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5707 if (nritems == 0)
925baedd 5708 return 1;
925baedd 5709
8e73f275
CM
5710 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5711again:
5712 level = 1;
5713 next = NULL;
bd681513 5714 next_rw_lock = 0;
b3b4aa74 5715 btrfs_release_path(path);
8e73f275 5716
a2135011 5717 path->keep_locks = 1;
31533fb2 5718 path->leave_spinning = 1;
8e73f275 5719
3d7806ec
JS
5720 if (time_seq)
5721 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5722 else
5723 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5724 path->keep_locks = 0;
5725
5726 if (ret < 0)
5727 return ret;
5728
a2135011 5729 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5730 /*
5731 * by releasing the path above we dropped all our locks. A balance
5732 * could have added more items next to the key that used to be
5733 * at the very end of the block. So, check again here and
5734 * advance the path if there are now more items available.
5735 */
a2135011 5736 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5737 if (ret == 0)
5738 path->slots[0]++;
8e73f275 5739 ret = 0;
925baedd
CM
5740 goto done;
5741 }
0b43e04f
LB
5742 /*
5743 * So the above check misses one case:
5744 * - after releasing the path above, someone has removed the item that
5745 * used to be at the very end of the block, and balance between leafs
5746 * gets another one with bigger key.offset to replace it.
5747 *
5748 * This one should be returned as well, or we can get leaf corruption
5749 * later(esp. in __btrfs_drop_extents()).
5750 *
5751 * And a bit more explanation about this check,
5752 * with ret > 0, the key isn't found, the path points to the slot
5753 * where it should be inserted, so the path->slots[0] item must be the
5754 * bigger one.
5755 */
5756 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5757 ret = 0;
5758 goto done;
5759 }
d97e63b6 5760
d397712b 5761 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5762 if (!path->nodes[level]) {
5763 ret = 1;
5764 goto done;
5765 }
5f39d397 5766
d97e63b6
CM
5767 slot = path->slots[level] + 1;
5768 c = path->nodes[level];
5f39d397 5769 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5770 level++;
8e73f275
CM
5771 if (level == BTRFS_MAX_LEVEL) {
5772 ret = 1;
5773 goto done;
5774 }
d97e63b6
CM
5775 continue;
5776 }
5f39d397 5777
925baedd 5778 if (next) {
bd681513 5779 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5780 free_extent_buffer(next);
925baedd 5781 }
5f39d397 5782
8e73f275 5783 next = c;
bd681513 5784 next_rw_lock = path->locks[level];
d07b8528 5785 ret = read_block_for_search(root, path, &next, level,
cda79c54 5786 slot, &key);
8e73f275
CM
5787 if (ret == -EAGAIN)
5788 goto again;
5f39d397 5789
76a05b35 5790 if (ret < 0) {
b3b4aa74 5791 btrfs_release_path(path);
76a05b35
CM
5792 goto done;
5793 }
5794
5cd57b2c 5795 if (!path->skip_locking) {
bd681513 5796 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5797 if (!ret && time_seq) {
5798 /*
5799 * If we don't get the lock, we may be racing
5800 * with push_leaf_left, holding that lock while
5801 * itself waiting for the leaf we've currently
5802 * locked. To solve this situation, we give up
5803 * on our lock and cycle.
5804 */
cf538830 5805 free_extent_buffer(next);
d42244a0
JS
5806 btrfs_release_path(path);
5807 cond_resched();
5808 goto again;
5809 }
8e73f275
CM
5810 if (!ret) {
5811 btrfs_set_path_blocking(path);
bd681513 5812 btrfs_tree_read_lock(next);
31533fb2 5813 btrfs_clear_path_blocking(path, next,
bd681513 5814 BTRFS_READ_LOCK);
8e73f275 5815 }
31533fb2 5816 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5817 }
d97e63b6
CM
5818 break;
5819 }
5820 path->slots[level] = slot;
d397712b 5821 while (1) {
d97e63b6
CM
5822 level--;
5823 c = path->nodes[level];
925baedd 5824 if (path->locks[level])
bd681513 5825 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5826
5f39d397 5827 free_extent_buffer(c);
d97e63b6
CM
5828 path->nodes[level] = next;
5829 path->slots[level] = 0;
a74a4b97 5830 if (!path->skip_locking)
bd681513 5831 path->locks[level] = next_rw_lock;
d97e63b6
CM
5832 if (!level)
5833 break;
b4ce94de 5834
d07b8528 5835 ret = read_block_for_search(root, path, &next, level,
cda79c54 5836 0, &key);
8e73f275
CM
5837 if (ret == -EAGAIN)
5838 goto again;
5839
76a05b35 5840 if (ret < 0) {
b3b4aa74 5841 btrfs_release_path(path);
76a05b35
CM
5842 goto done;
5843 }
5844
5cd57b2c 5845 if (!path->skip_locking) {
bd681513 5846 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5847 if (!ret) {
5848 btrfs_set_path_blocking(path);
bd681513 5849 btrfs_tree_read_lock(next);
31533fb2 5850 btrfs_clear_path_blocking(path, next,
bd681513
CM
5851 BTRFS_READ_LOCK);
5852 }
31533fb2 5853 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5854 }
d97e63b6 5855 }
8e73f275 5856 ret = 0;
925baedd 5857done:
f7c79f30 5858 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5859 path->leave_spinning = old_spinning;
5860 if (!old_spinning)
5861 btrfs_set_path_blocking(path);
5862
5863 return ret;
d97e63b6 5864}
0b86a832 5865
3f157a2f
CM
5866/*
5867 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5868 * searching until it gets past min_objectid or finds an item of 'type'
5869 *
5870 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5871 */
0b86a832
CM
5872int btrfs_previous_item(struct btrfs_root *root,
5873 struct btrfs_path *path, u64 min_objectid,
5874 int type)
5875{
5876 struct btrfs_key found_key;
5877 struct extent_buffer *leaf;
e02119d5 5878 u32 nritems;
0b86a832
CM
5879 int ret;
5880
d397712b 5881 while (1) {
0b86a832 5882 if (path->slots[0] == 0) {
b4ce94de 5883 btrfs_set_path_blocking(path);
0b86a832
CM
5884 ret = btrfs_prev_leaf(root, path);
5885 if (ret != 0)
5886 return ret;
5887 } else {
5888 path->slots[0]--;
5889 }
5890 leaf = path->nodes[0];
e02119d5
CM
5891 nritems = btrfs_header_nritems(leaf);
5892 if (nritems == 0)
5893 return 1;
5894 if (path->slots[0] == nritems)
5895 path->slots[0]--;
5896
0b86a832 5897 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5898 if (found_key.objectid < min_objectid)
5899 break;
0a4eefbb
YZ
5900 if (found_key.type == type)
5901 return 0;
e02119d5
CM
5902 if (found_key.objectid == min_objectid &&
5903 found_key.type < type)
5904 break;
0b86a832
CM
5905 }
5906 return 1;
5907}
ade2e0b3
WS
5908
5909/*
5910 * search in extent tree to find a previous Metadata/Data extent item with
5911 * min objecitd.
5912 *
5913 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5914 */
5915int btrfs_previous_extent_item(struct btrfs_root *root,
5916 struct btrfs_path *path, u64 min_objectid)
5917{
5918 struct btrfs_key found_key;
5919 struct extent_buffer *leaf;
5920 u32 nritems;
5921 int ret;
5922
5923 while (1) {
5924 if (path->slots[0] == 0) {
5925 btrfs_set_path_blocking(path);
5926 ret = btrfs_prev_leaf(root, path);
5927 if (ret != 0)
5928 return ret;
5929 } else {
5930 path->slots[0]--;
5931 }
5932 leaf = path->nodes[0];
5933 nritems = btrfs_header_nritems(leaf);
5934 if (nritems == 0)
5935 return 1;
5936 if (path->slots[0] == nritems)
5937 path->slots[0]--;
5938
5939 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5940 if (found_key.objectid < min_objectid)
5941 break;
5942 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5943 found_key.type == BTRFS_METADATA_ITEM_KEY)
5944 return 0;
5945 if (found_key.objectid == min_objectid &&
5946 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5947 break;
5948 }
5949 return 1;
5950}