]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/ctree.c
UBUNTU: [Config] arm64: snapdragon: SND*=m
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
adf02123 22#include <linux/mm.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
7f5c1516 25#include "transaction.h"
5f39d397 26#include "print-tree.h"
925baedd 27#include "locking.h"
9a8dd150 28
e089f05c
CM
29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
310712b2
OS
31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
5f39d397 34static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
35 struct btrfs_fs_info *fs_info,
36 struct extent_buffer *dst,
971a1f66 37 struct extent_buffer *src, int empty);
5f39d397 38static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 39 struct btrfs_fs_info *fs_info,
5f39d397
CM
40 struct extent_buffer *dst_buf,
41 struct extent_buffer *src_buf);
afe5fea7
TI
42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 int level, int slot);
5de865ee 44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
f230475e 45 struct extent_buffer *eb);
d97e63b6 46
df24a2b9 47struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 48{
e2c89907 49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
50}
51
b4ce94de
CM
52/*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57{
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
67 }
68}
69
70/*
71 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
b4ce94de 77 */
4008c04a 78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 79 struct extent_buffer *held, int held_rw)
b4ce94de
CM
80{
81 int i;
4008c04a 82
bd681513
CM
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
4008c04a 90 btrfs_set_path_blocking(p);
4008c04a
CM
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
b4ce94de 100 }
4008c04a 101
4008c04a 102 if (held)
bd681513 103 btrfs_clear_lock_blocking_rw(held, held_rw);
b4ce94de
CM
104}
105
d352ac68 106/* this also releases the path */
df24a2b9 107void btrfs_free_path(struct btrfs_path *p)
be0e5c09 108{
ff175d57
JJ
109 if (!p)
110 return;
b3b4aa74 111 btrfs_release_path(p);
df24a2b9 112 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
113}
114
d352ac68
CM
115/*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
b3b4aa74 121noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
122{
123 int i;
a2135011 124
234b63a0 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 126 p->slots[i] = 0;
eb60ceac 127 if (!p->nodes[i])
925baedd
CM
128 continue;
129 if (p->locks[i]) {
bd681513 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
131 p->locks[i] = 0;
132 }
5f39d397 133 free_extent_buffer(p->nodes[i]);
3f157a2f 134 p->nodes[i] = NULL;
eb60ceac
CM
135 }
136}
137
d352ac68
CM
138/*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
925baedd
CM
148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149{
150 struct extent_buffer *eb;
240f62c8 151
3083ee2e
JB
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
01327610 158 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
925baedd
CM
169 return eb;
170}
171
d352ac68
CM
172/* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
925baedd
CM
176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177{
178 struct extent_buffer *eb;
179
d397712b 180 while (1) {
925baedd
CM
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
240f62c8 183 if (eb == root->node)
925baedd 184 break;
925baedd
CM
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189}
190
bd681513
CM
191/* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
84f7d8e6 195struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
196{
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208}
209
d352ac68
CM
210/* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
0b86a832
CM
214static void add_root_to_dirty_list(struct btrfs_root *root)
215{
0b246afa
JM
216 struct btrfs_fs_info *fs_info = root->fs_info;
217
e7070be1
JB
218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
220 return;
221
0b246afa 222 spin_lock(&fs_info->trans_lock);
e7070be1
JB
223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
224 /* Want the extent tree to be the last on the list */
225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
226 list_move_tail(&root->dirty_list,
0b246afa 227 &fs_info->dirty_cowonly_roots);
e7070be1
JB
228 else
229 list_move(&root->dirty_list,
0b246afa 230 &fs_info->dirty_cowonly_roots);
0b86a832 231 }
0b246afa 232 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
233}
234
d352ac68
CM
235/*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
be20aa9d
CM
240int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244{
0b246afa 245 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 246 struct extent_buffer *cow;
be20aa9d
CM
247 int ret = 0;
248 int level;
5d4f98a2 249 struct btrfs_disk_key disk_key;
be20aa9d 250
27cdeb70 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 252 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
254 trans->transid != root->last_trans);
be20aa9d
CM
255
256 level = btrfs_header_level(buf);
5d4f98a2
YZ
257 if (level == 0)
258 btrfs_item_key(buf, &disk_key, 0);
259 else
260 btrfs_node_key(buf, &disk_key, 0);
31840ae1 261
4d75f8a9
DS
262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
263 &disk_key, level, buf->start, 0);
5d4f98a2 264 if (IS_ERR(cow))
be20aa9d
CM
265 return PTR_ERR(cow);
266
58e8012c 267 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 else
276 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 277
0b246afa 278 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 279
be20aa9d 280 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 282 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 283 else
e339a6b0 284 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 285
be20aa9d
CM
286 if (ret)
287 return ret;
288
289 btrfs_mark_buffer_dirty(cow);
290 *cow_ret = cow;
291 return 0;
292}
293
bd989ba3
JS
294enum mod_log_op {
295 MOD_LOG_KEY_REPLACE,
296 MOD_LOG_KEY_ADD,
297 MOD_LOG_KEY_REMOVE,
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_MOVE_KEYS,
301 MOD_LOG_ROOT_REPLACE,
302};
303
304struct tree_mod_move {
305 int dst_slot;
306 int nr_items;
307};
308
309struct tree_mod_root {
310 u64 logical;
311 u8 level;
312};
313
314struct tree_mod_elem {
315 struct rb_node node;
298cfd36 316 u64 logical;
097b8a7c 317 u64 seq;
bd989ba3
JS
318 enum mod_log_op op;
319
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 int slot;
322
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 u64 generation;
325
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key;
328 u64 blockptr;
329
330 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move;
332
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root;
335};
336
097b8a7c 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 338{
097b8a7c 339 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
340}
341
097b8a7c
JS
342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343{
344 read_unlock(&fs_info->tree_mod_log_lock);
345}
346
347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348{
349 write_lock(&fs_info->tree_mod_log_lock);
350}
351
352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353{
354 write_unlock(&fs_info->tree_mod_log_lock);
355}
356
fc36ed7e 357/*
fcebe456 358 * Pull a new tree mod seq number for our operation.
fc36ed7e 359 */
fcebe456 360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
361{
362 return atomic64_inc_return(&fs_info->tree_mod_seq);
363}
364
097b8a7c
JS
365/*
366 * This adds a new blocker to the tree mod log's blocker list if the @elem
367 * passed does not already have a sequence number set. So when a caller expects
368 * to record tree modifications, it should ensure to set elem->seq to zero
369 * before calling btrfs_get_tree_mod_seq.
370 * Returns a fresh, unused tree log modification sequence number, even if no new
371 * blocker was added.
372 */
373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374 struct seq_list *elem)
bd989ba3 375{
097b8a7c 376 tree_mod_log_write_lock(fs_info);
bd989ba3 377 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 378 if (!elem->seq) {
fcebe456 379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
bd989ba3 382 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
383 tree_mod_log_write_unlock(fs_info);
384
fcebe456 385 return elem->seq;
bd989ba3
JS
386}
387
388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389 struct seq_list *elem)
390{
391 struct rb_root *tm_root;
392 struct rb_node *node;
393 struct rb_node *next;
394 struct seq_list *cur_elem;
395 struct tree_mod_elem *tm;
396 u64 min_seq = (u64)-1;
397 u64 seq_putting = elem->seq;
398
399 if (!seq_putting)
400 return;
401
bd989ba3
JS
402 spin_lock(&fs_info->tree_mod_seq_lock);
403 list_del(&elem->list);
097b8a7c 404 elem->seq = 0;
bd989ba3
JS
405
406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 407 if (cur_elem->seq < min_seq) {
bd989ba3
JS
408 if (seq_putting > cur_elem->seq) {
409 /*
410 * blocker with lower sequence number exists, we
411 * cannot remove anything from the log
412 */
097b8a7c
JS
413 spin_unlock(&fs_info->tree_mod_seq_lock);
414 return;
bd989ba3
JS
415 }
416 min_seq = cur_elem->seq;
417 }
418 }
097b8a7c
JS
419 spin_unlock(&fs_info->tree_mod_seq_lock);
420
bd989ba3
JS
421 /*
422 * anything that's lower than the lowest existing (read: blocked)
423 * sequence number can be removed from the tree.
424 */
097b8a7c 425 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
426 tm_root = &fs_info->tree_mod_log;
427 for (node = rb_first(tm_root); node; node = next) {
428 next = rb_next(node);
6b4df8b6 429 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 430 if (tm->seq > min_seq)
bd989ba3
JS
431 continue;
432 rb_erase(node, tm_root);
bd989ba3
JS
433 kfree(tm);
434 }
097b8a7c 435 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
436}
437
438/*
439 * key order of the log:
298cfd36 440 * node/leaf start address -> sequence
bd989ba3 441 *
298cfd36
CR
442 * The 'start address' is the logical address of the *new* root node
443 * for root replace operations, or the logical address of the affected
444 * block for all other operations.
5de865ee
FDBM
445 *
446 * Note: must be called with write lock (tree_mod_log_write_lock).
bd989ba3
JS
447 */
448static noinline int
449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450{
451 struct rb_root *tm_root;
452 struct rb_node **new;
453 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur;
c8cc6341 455
fcebe456 456 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 457
bd989ba3
JS
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
6b4df8b6 461 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 462 parent = *new;
298cfd36 463 if (cur->logical < tm->logical)
bd989ba3 464 new = &((*new)->rb_left);
298cfd36 465 else if (cur->logical > tm->logical)
bd989ba3 466 new = &((*new)->rb_right);
097b8a7c 467 else if (cur->seq < tm->seq)
bd989ba3 468 new = &((*new)->rb_left);
097b8a7c 469 else if (cur->seq > tm->seq)
bd989ba3 470 new = &((*new)->rb_right);
5de865ee
FDBM
471 else
472 return -EEXIST;
bd989ba3
JS
473 }
474
475 rb_link_node(&tm->node, parent, new);
476 rb_insert_color(&tm->node, tm_root);
5de865ee 477 return 0;
bd989ba3
JS
478}
479
097b8a7c
JS
480/*
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
485 */
e9b7fd4d
JS
486static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 struct extent_buffer *eb) {
488 smp_mb();
489 if (list_empty(&(fs_info)->tree_mod_seq_list))
490 return 1;
097b8a7c
JS
491 if (eb && btrfs_header_level(eb) == 0)
492 return 1;
5de865ee
FDBM
493
494 tree_mod_log_write_lock(fs_info);
495 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 tree_mod_log_write_unlock(fs_info);
497 return 1;
498 }
499
e9b7fd4d
JS
500 return 0;
501}
502
5de865ee
FDBM
503/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 struct extent_buffer *eb)
506{
507 smp_mb();
508 if (list_empty(&(fs_info)->tree_mod_seq_list))
509 return 0;
510 if (eb && btrfs_header_level(eb) == 0)
511 return 0;
512
513 return 1;
514}
515
516static struct tree_mod_elem *
517alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
bd989ba3 519{
097b8a7c 520 struct tree_mod_elem *tm;
bd989ba3 521
c8cc6341
JB
522 tm = kzalloc(sizeof(*tm), flags);
523 if (!tm)
5de865ee 524 return NULL;
bd989ba3 525
298cfd36 526 tm->logical = eb->start;
bd989ba3
JS
527 if (op != MOD_LOG_KEY_ADD) {
528 btrfs_node_key(eb, &tm->key, slot);
529 tm->blockptr = btrfs_node_blockptr(eb, slot);
530 }
531 tm->op = op;
532 tm->slot = slot;
533 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 534 RB_CLEAR_NODE(&tm->node);
bd989ba3 535
5de865ee 536 return tm;
097b8a7c
JS
537}
538
539static noinline int
c8cc6341
JB
540tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb, int slot,
542 enum mod_log_op op, gfp_t flags)
097b8a7c 543{
5de865ee
FDBM
544 struct tree_mod_elem *tm;
545 int ret;
546
547 if (!tree_mod_need_log(fs_info, eb))
548 return 0;
549
550 tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 if (!tm)
552 return -ENOMEM;
553
554 if (tree_mod_dont_log(fs_info, eb)) {
555 kfree(tm);
097b8a7c 556 return 0;
5de865ee
FDBM
557 }
558
559 ret = __tree_mod_log_insert(fs_info, tm);
560 tree_mod_log_write_unlock(fs_info);
561 if (ret)
562 kfree(tm);
097b8a7c 563
5de865ee 564 return ret;
097b8a7c
JS
565}
566
bd989ba3
JS
567static noinline int
568tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int dst_slot, int src_slot,
176ef8f5 570 int nr_items)
bd989ba3 571{
5de865ee
FDBM
572 struct tree_mod_elem *tm = NULL;
573 struct tree_mod_elem **tm_list = NULL;
574 int ret = 0;
bd989ba3 575 int i;
5de865ee 576 int locked = 0;
bd989ba3 577
5de865ee 578 if (!tree_mod_need_log(fs_info, eb))
f395694c 579 return 0;
bd989ba3 580
176ef8f5 581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
582 if (!tm_list)
583 return -ENOMEM;
584
176ef8f5 585 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
586 if (!tm) {
587 ret = -ENOMEM;
588 goto free_tms;
589 }
590
298cfd36 591 tm->logical = eb->start;
5de865ee
FDBM
592 tm->slot = src_slot;
593 tm->move.dst_slot = dst_slot;
594 tm->move.nr_items = nr_items;
595 tm->op = MOD_LOG_MOVE_KEYS;
596
597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
600 if (!tm_list[i]) {
601 ret = -ENOMEM;
602 goto free_tms;
603 }
604 }
605
606 if (tree_mod_dont_log(fs_info, eb))
607 goto free_tms;
608 locked = 1;
609
01763a2e
JS
610 /*
611 * When we override something during the move, we log these removals.
612 * This can only happen when we move towards the beginning of the
613 * buffer, i.e. dst_slot < src_slot.
614 */
bd989ba3 615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
5de865ee
FDBM
616 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617 if (ret)
618 goto free_tms;
bd989ba3
JS
619 }
620
5de865ee
FDBM
621 ret = __tree_mod_log_insert(fs_info, tm);
622 if (ret)
623 goto free_tms;
624 tree_mod_log_write_unlock(fs_info);
625 kfree(tm_list);
f395694c 626
5de865ee
FDBM
627 return 0;
628free_tms:
629 for (i = 0; i < nr_items; i++) {
630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632 kfree(tm_list[i]);
633 }
634 if (locked)
635 tree_mod_log_write_unlock(fs_info);
636 kfree(tm_list);
637 kfree(tm);
bd989ba3 638
5de865ee 639 return ret;
bd989ba3
JS
640}
641
5de865ee
FDBM
642static inline int
643__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 struct tree_mod_elem **tm_list,
645 int nritems)
097b8a7c 646{
5de865ee 647 int i, j;
097b8a7c
JS
648 int ret;
649
097b8a7c 650 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
651 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652 if (ret) {
653 for (j = nritems - 1; j > i; j--)
654 rb_erase(&tm_list[j]->node,
655 &fs_info->tree_mod_log);
656 return ret;
657 }
097b8a7c 658 }
5de865ee
FDBM
659
660 return 0;
097b8a7c
JS
661}
662
bd989ba3
JS
663static noinline int
664tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 struct extent_buffer *old_root,
bcc8e07f 666 struct extent_buffer *new_root,
90f8d62e 667 int log_removal)
bd989ba3 668{
5de865ee
FDBM
669 struct tree_mod_elem *tm = NULL;
670 struct tree_mod_elem **tm_list = NULL;
671 int nritems = 0;
672 int ret = 0;
673 int i;
bd989ba3 674
5de865ee 675 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
676 return 0;
677
5de865ee
FDBM
678 if (log_removal && btrfs_header_level(old_root) > 0) {
679 nritems = btrfs_header_nritems(old_root);
31e818fe 680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 681 GFP_NOFS);
5de865ee
FDBM
682 if (!tm_list) {
683 ret = -ENOMEM;
684 goto free_tms;
685 }
686 for (i = 0; i < nritems; i++) {
687 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
689 if (!tm_list[i]) {
690 ret = -ENOMEM;
691 goto free_tms;
692 }
693 }
694 }
d9abbf1c 695
bcc8e07f 696 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
697 if (!tm) {
698 ret = -ENOMEM;
699 goto free_tms;
700 }
bd989ba3 701
298cfd36 702 tm->logical = new_root->start;
bd989ba3
JS
703 tm->old_root.logical = old_root->start;
704 tm->old_root.level = btrfs_header_level(old_root);
705 tm->generation = btrfs_header_generation(old_root);
706 tm->op = MOD_LOG_ROOT_REPLACE;
707
5de865ee
FDBM
708 if (tree_mod_dont_log(fs_info, NULL))
709 goto free_tms;
710
711 if (tm_list)
712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713 if (!ret)
714 ret = __tree_mod_log_insert(fs_info, tm);
715
716 tree_mod_log_write_unlock(fs_info);
717 if (ret)
718 goto free_tms;
719 kfree(tm_list);
720
721 return ret;
722
723free_tms:
724 if (tm_list) {
725 for (i = 0; i < nritems; i++)
726 kfree(tm_list[i]);
727 kfree(tm_list);
728 }
729 kfree(tm);
730
731 return ret;
bd989ba3
JS
732}
733
734static struct tree_mod_elem *
735__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 int smallest)
737{
738 struct rb_root *tm_root;
739 struct rb_node *node;
740 struct tree_mod_elem *cur = NULL;
741 struct tree_mod_elem *found = NULL;
bd989ba3 742
097b8a7c 743 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
744 tm_root = &fs_info->tree_mod_log;
745 node = tm_root->rb_node;
746 while (node) {
6b4df8b6 747 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 748 if (cur->logical < start) {
bd989ba3 749 node = node->rb_left;
298cfd36 750 } else if (cur->logical > start) {
bd989ba3 751 node = node->rb_right;
097b8a7c 752 } else if (cur->seq < min_seq) {
bd989ba3
JS
753 node = node->rb_left;
754 } else if (!smallest) {
755 /* we want the node with the highest seq */
756 if (found)
097b8a7c 757 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
758 found = cur;
759 node = node->rb_left;
097b8a7c 760 } else if (cur->seq > min_seq) {
bd989ba3
JS
761 /* we want the node with the smallest seq */
762 if (found)
097b8a7c 763 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
764 found = cur;
765 node = node->rb_right;
766 } else {
767 found = cur;
768 break;
769 }
770 }
097b8a7c 771 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
772
773 return found;
774}
775
776/*
777 * this returns the element from the log with the smallest time sequence
778 * value that's in the log (the oldest log item). any element with a time
779 * sequence lower than min_seq will be ignored.
780 */
781static struct tree_mod_elem *
782tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
783 u64 min_seq)
784{
785 return __tree_mod_log_search(fs_info, start, min_seq, 1);
786}
787
788/*
789 * this returns the element from the log with the largest time sequence
790 * value that's in the log (the most recent log item). any element with
791 * a time sequence lower than min_seq will be ignored.
792 */
793static struct tree_mod_elem *
794tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
795{
796 return __tree_mod_log_search(fs_info, start, min_seq, 0);
797}
798
5de865ee 799static noinline int
bd989ba3
JS
800tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
801 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 802 unsigned long src_offset, int nr_items)
bd989ba3 803{
5de865ee
FDBM
804 int ret = 0;
805 struct tree_mod_elem **tm_list = NULL;
806 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 807 int i;
5de865ee 808 int locked = 0;
bd989ba3 809
5de865ee
FDBM
810 if (!tree_mod_need_log(fs_info, NULL))
811 return 0;
bd989ba3 812
c8cc6341 813 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
814 return 0;
815
31e818fe 816 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
817 GFP_NOFS);
818 if (!tm_list)
819 return -ENOMEM;
bd989ba3 820
5de865ee
FDBM
821 tm_list_add = tm_list;
822 tm_list_rem = tm_list + nr_items;
bd989ba3 823 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
824 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
825 MOD_LOG_KEY_REMOVE, GFP_NOFS);
826 if (!tm_list_rem[i]) {
827 ret = -ENOMEM;
828 goto free_tms;
829 }
830
831 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
832 MOD_LOG_KEY_ADD, GFP_NOFS);
833 if (!tm_list_add[i]) {
834 ret = -ENOMEM;
835 goto free_tms;
836 }
837 }
838
839 if (tree_mod_dont_log(fs_info, NULL))
840 goto free_tms;
841 locked = 1;
842
843 for (i = 0; i < nr_items; i++) {
844 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
845 if (ret)
846 goto free_tms;
847 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
848 if (ret)
849 goto free_tms;
bd989ba3 850 }
5de865ee
FDBM
851
852 tree_mod_log_write_unlock(fs_info);
853 kfree(tm_list);
854
855 return 0;
856
857free_tms:
858 for (i = 0; i < nr_items * 2; i++) {
859 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
860 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
861 kfree(tm_list[i]);
862 }
863 if (locked)
864 tree_mod_log_write_unlock(fs_info);
865 kfree(tm_list);
866
867 return ret;
bd989ba3
JS
868}
869
870static inline void
871tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
872 int dst_offset, int src_offset, int nr_items)
873{
874 int ret;
875 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
176ef8f5 876 nr_items);
bd989ba3
JS
877 BUG_ON(ret < 0);
878}
879
097b8a7c 880static noinline void
bd989ba3 881tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 882 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
883{
884 int ret;
885
78357766 886 ret = tree_mod_log_insert_key(fs_info, eb, slot,
c8cc6341
JB
887 MOD_LOG_KEY_REPLACE,
888 atomic ? GFP_ATOMIC : GFP_NOFS);
bd989ba3
JS
889 BUG_ON(ret < 0);
890}
891
5de865ee 892static noinline int
097b8a7c 893tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 894{
5de865ee
FDBM
895 struct tree_mod_elem **tm_list = NULL;
896 int nritems = 0;
897 int i;
898 int ret = 0;
899
900 if (btrfs_header_level(eb) == 0)
901 return 0;
902
903 if (!tree_mod_need_log(fs_info, NULL))
904 return 0;
905
906 nritems = btrfs_header_nritems(eb);
31e818fe 907 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
908 if (!tm_list)
909 return -ENOMEM;
910
911 for (i = 0; i < nritems; i++) {
912 tm_list[i] = alloc_tree_mod_elem(eb, i,
913 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
914 if (!tm_list[i]) {
915 ret = -ENOMEM;
916 goto free_tms;
917 }
918 }
919
e9b7fd4d 920 if (tree_mod_dont_log(fs_info, eb))
5de865ee
FDBM
921 goto free_tms;
922
923 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
924 tree_mod_log_write_unlock(fs_info);
925 if (ret)
926 goto free_tms;
927 kfree(tm_list);
928
929 return 0;
930
931free_tms:
932 for (i = 0; i < nritems; i++)
933 kfree(tm_list[i]);
934 kfree(tm_list);
935
936 return ret;
bd989ba3
JS
937}
938
097b8a7c 939static noinline void
bd989ba3 940tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
941 struct extent_buffer *new_root_node,
942 int log_removal)
bd989ba3
JS
943{
944 int ret;
bd989ba3 945 ret = tree_mod_log_insert_root(root->fs_info, root->node,
bcc8e07f 946 new_root_node, log_removal);
bd989ba3
JS
947 BUG_ON(ret < 0);
948}
949
5d4f98a2
YZ
950/*
951 * check if the tree block can be shared by multiple trees
952 */
953int btrfs_block_can_be_shared(struct btrfs_root *root,
954 struct extent_buffer *buf)
955{
956 /*
01327610 957 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
958 * are never shared. If a block was allocated after the last
959 * snapshot and the block was not allocated by tree relocation,
960 * we know the block is not shared.
961 */
27cdeb70 962 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
963 buf != root->node && buf != root->commit_root &&
964 (btrfs_header_generation(buf) <=
965 btrfs_root_last_snapshot(&root->root_item) ||
966 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
967 return 1;
968#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 969 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
970 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
971 return 1;
972#endif
973 return 0;
974}
975
976static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
977 struct btrfs_root *root,
978 struct extent_buffer *buf,
f0486c68
YZ
979 struct extent_buffer *cow,
980 int *last_ref)
5d4f98a2 981{
0b246afa 982 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
988
989 /*
990 * Backrefs update rules:
991 *
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
994 *
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
998 *
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1004 */
1005
1006 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 1007 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
be1a5564
MF
1010 if (ret)
1011 return ret;
e5df9573
MF
1012 if (refs == 0) {
1013 ret = -EROFS;
0b246afa 1014 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
1015 return ret;
1016 }
5d4f98a2
YZ
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1024 }
1025
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 1034 ret = btrfs_inc_ref(trans, root, buf, 1);
692826b2
JM
1035 if (ret)
1036 return ret;
5d4f98a2
YZ
1037
1038 if (root->root_key.objectid ==
1039 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 1040 ret = btrfs_dec_ref(trans, root, buf, 0);
692826b2
JM
1041 if (ret)
1042 return ret;
e339a6b0 1043 ret = btrfs_inc_ref(trans, root, cow, 1);
692826b2
JM
1044 if (ret)
1045 return ret;
5d4f98a2
YZ
1046 }
1047 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1048 } else {
1049
1050 if (root->root_key.objectid ==
1051 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1052 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1053 else
e339a6b0 1054 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
1055 if (ret)
1056 return ret;
5d4f98a2
YZ
1057 }
1058 if (new_flags != 0) {
b1c79e09
JB
1059 int level = btrfs_header_level(buf);
1060
2ff7e61e 1061 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
1062 buf->start,
1063 buf->len,
b1c79e09 1064 new_flags, level, 0);
be1a5564
MF
1065 if (ret)
1066 return ret;
5d4f98a2
YZ
1067 }
1068 } else {
1069 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1070 if (root->root_key.objectid ==
1071 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1072 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1073 else
e339a6b0 1074 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
1075 if (ret)
1076 return ret;
e339a6b0 1077 ret = btrfs_dec_ref(trans, root, buf, 1);
692826b2
JM
1078 if (ret)
1079 return ret;
5d4f98a2 1080 }
7c302b49 1081 clean_tree_block(fs_info, buf);
f0486c68 1082 *last_ref = 1;
5d4f98a2
YZ
1083 }
1084 return 0;
1085}
1086
d352ac68 1087/*
d397712b
CM
1088 * does the dirty work in cow of a single block. The parent block (if
1089 * supplied) is updated to point to the new cow copy. The new buffer is marked
1090 * dirty and returned locked. If you modify the block it needs to be marked
1091 * dirty again.
d352ac68
CM
1092 *
1093 * search_start -- an allocation hint for the new block
1094 *
d397712b
CM
1095 * empty_size -- a hint that you plan on doing more cow. This is the size in
1096 * bytes the allocator should try to find free next to the block it returns.
1097 * This is just a hint and may be ignored by the allocator.
d352ac68 1098 */
d397712b 1099static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1100 struct btrfs_root *root,
1101 struct extent_buffer *buf,
1102 struct extent_buffer *parent, int parent_slot,
1103 struct extent_buffer **cow_ret,
9fa8cfe7 1104 u64 search_start, u64 empty_size)
02217ed2 1105{
0b246afa 1106 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 1107 struct btrfs_disk_key disk_key;
5f39d397 1108 struct extent_buffer *cow;
be1a5564 1109 int level, ret;
f0486c68 1110 int last_ref = 0;
925baedd 1111 int unlock_orig = 0;
0f5053eb 1112 u64 parent_start = 0;
7bb86316 1113
925baedd
CM
1114 if (*cow_ret == buf)
1115 unlock_orig = 1;
1116
b9447ef8 1117 btrfs_assert_tree_locked(buf);
925baedd 1118
27cdeb70 1119 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1120 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1121 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1122 trans->transid != root->last_trans);
5f39d397 1123
7bb86316 1124 level = btrfs_header_level(buf);
31840ae1 1125
5d4f98a2
YZ
1126 if (level == 0)
1127 btrfs_item_key(buf, &disk_key, 0);
1128 else
1129 btrfs_node_key(buf, &disk_key, 0);
1130
0f5053eb
GR
1131 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1132 parent_start = parent->start;
5d4f98a2 1133
4d75f8a9
DS
1134 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1135 root->root_key.objectid, &disk_key, level,
1136 search_start, empty_size);
54aa1f4d
CM
1137 if (IS_ERR(cow))
1138 return PTR_ERR(cow);
6702ed49 1139
b4ce94de
CM
1140 /* cow is set to blocking by btrfs_init_new_buffer */
1141
58e8012c 1142 copy_extent_buffer_full(cow, buf);
db94535d 1143 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1144 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1145 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1146 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1147 BTRFS_HEADER_FLAG_RELOC);
1148 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1149 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1150 else
1151 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1152
0b246afa 1153 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 1154
be1a5564 1155 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1156 if (ret) {
66642832 1157 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1158 return ret;
1159 }
1a40e23b 1160
27cdeb70 1161 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1162 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1163 if (ret) {
66642832 1164 btrfs_abort_transaction(trans, ret);
83d4cfd4 1165 return ret;
93314e3b 1166 }
83d4cfd4 1167 }
3fd0a558 1168
02217ed2 1169 if (buf == root->node) {
925baedd 1170 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1171 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1172 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1173 parent_start = buf->start;
925baedd 1174
5f39d397 1175 extent_buffer_get(cow);
90f8d62e 1176 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1177 rcu_assign_pointer(root->node, cow);
925baedd 1178
f0486c68 1179 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1180 last_ref);
5f39d397 1181 free_extent_buffer(buf);
0b86a832 1182 add_root_to_dirty_list(root);
02217ed2 1183 } else {
5d4f98a2 1184 WARN_ON(trans->transid != btrfs_header_generation(parent));
0b246afa 1185 tree_mod_log_insert_key(fs_info, parent, parent_slot,
c8cc6341 1186 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1187 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1188 cow->start);
74493f7a
CM
1189 btrfs_set_node_ptr_generation(parent, parent_slot,
1190 trans->transid);
d6025579 1191 btrfs_mark_buffer_dirty(parent);
5de865ee 1192 if (last_ref) {
0b246afa 1193 ret = tree_mod_log_free_eb(fs_info, buf);
5de865ee 1194 if (ret) {
66642832 1195 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1196 return ret;
1197 }
1198 }
f0486c68 1199 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1200 last_ref);
02217ed2 1201 }
925baedd
CM
1202 if (unlock_orig)
1203 btrfs_tree_unlock(buf);
3083ee2e 1204 free_extent_buffer_stale(buf);
ccd467d6 1205 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1206 *cow_ret = cow;
02217ed2
CM
1207 return 0;
1208}
1209
5d9e75c4
JS
1210/*
1211 * returns the logical address of the oldest predecessor of the given root.
1212 * entries older than time_seq are ignored.
1213 */
1214static struct tree_mod_elem *
1215__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
30b0463a 1216 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1217{
1218 struct tree_mod_elem *tm;
1219 struct tree_mod_elem *found = NULL;
30b0463a 1220 u64 root_logical = eb_root->start;
5d9e75c4
JS
1221 int looped = 0;
1222
1223 if (!time_seq)
35a3621b 1224 return NULL;
5d9e75c4
JS
1225
1226 /*
298cfd36
CR
1227 * the very last operation that's logged for a root is the
1228 * replacement operation (if it is replaced at all). this has
1229 * the logical address of the *new* root, making it the very
1230 * first operation that's logged for this root.
5d9e75c4
JS
1231 */
1232 while (1) {
1233 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1234 time_seq);
1235 if (!looped && !tm)
35a3621b 1236 return NULL;
5d9e75c4 1237 /*
28da9fb4
JS
1238 * if there are no tree operation for the oldest root, we simply
1239 * return it. this should only happen if that (old) root is at
1240 * level 0.
5d9e75c4 1241 */
28da9fb4
JS
1242 if (!tm)
1243 break;
5d9e75c4 1244
28da9fb4
JS
1245 /*
1246 * if there's an operation that's not a root replacement, we
1247 * found the oldest version of our root. normally, we'll find a
1248 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1249 */
5d9e75c4
JS
1250 if (tm->op != MOD_LOG_ROOT_REPLACE)
1251 break;
1252
1253 found = tm;
1254 root_logical = tm->old_root.logical;
5d9e75c4
JS
1255 looped = 1;
1256 }
1257
a95236d9
JS
1258 /* if there's no old root to return, return what we found instead */
1259 if (!found)
1260 found = tm;
1261
5d9e75c4
JS
1262 return found;
1263}
1264
1265/*
1266 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1267 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1268 * time_seq).
1269 */
1270static void
f1ca7e98
JB
1271__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1272 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1273{
1274 u32 n;
1275 struct rb_node *next;
1276 struct tree_mod_elem *tm = first_tm;
1277 unsigned long o_dst;
1278 unsigned long o_src;
1279 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1280
1281 n = btrfs_header_nritems(eb);
f1ca7e98 1282 tree_mod_log_read_lock(fs_info);
097b8a7c 1283 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1284 /*
1285 * all the operations are recorded with the operator used for
1286 * the modification. as we're going backwards, we do the
1287 * opposite of each operation here.
1288 */
1289 switch (tm->op) {
1290 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1291 BUG_ON(tm->slot < n);
1c697d4a 1292 /* Fallthrough */
95c80bb1 1293 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1294 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1295 btrfs_set_node_key(eb, &tm->key, tm->slot);
1296 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1297 btrfs_set_node_ptr_generation(eb, tm->slot,
1298 tm->generation);
4c3e6969 1299 n++;
5d9e75c4
JS
1300 break;
1301 case MOD_LOG_KEY_REPLACE:
1302 BUG_ON(tm->slot >= n);
1303 btrfs_set_node_key(eb, &tm->key, tm->slot);
1304 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1305 btrfs_set_node_ptr_generation(eb, tm->slot,
1306 tm->generation);
1307 break;
1308 case MOD_LOG_KEY_ADD:
19956c7e 1309 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1310 n--;
1311 break;
1312 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1313 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1314 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1315 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1316 tm->move.nr_items * p_size);
1317 break;
1318 case MOD_LOG_ROOT_REPLACE:
1319 /*
1320 * this operation is special. for roots, this must be
1321 * handled explicitly before rewinding.
1322 * for non-roots, this operation may exist if the node
1323 * was a root: root A -> child B; then A gets empty and
1324 * B is promoted to the new root. in the mod log, we'll
1325 * have a root-replace operation for B, a tree block
1326 * that is no root. we simply ignore that operation.
1327 */
1328 break;
1329 }
1330 next = rb_next(&tm->node);
1331 if (!next)
1332 break;
6b4df8b6 1333 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1334 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1335 break;
1336 }
f1ca7e98 1337 tree_mod_log_read_unlock(fs_info);
5d9e75c4
JS
1338 btrfs_set_header_nritems(eb, n);
1339}
1340
47fb091f 1341/*
01327610 1342 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1343 * is returned. If rewind operations happen, a fresh buffer is returned. The
1344 * returned buffer is always read-locked. If the returned buffer is not the
1345 * input buffer, the lock on the input buffer is released and the input buffer
1346 * is freed (its refcount is decremented).
1347 */
5d9e75c4 1348static struct extent_buffer *
9ec72677
JB
1349tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1350 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1351{
1352 struct extent_buffer *eb_rewin;
1353 struct tree_mod_elem *tm;
1354
1355 if (!time_seq)
1356 return eb;
1357
1358 if (btrfs_header_level(eb) == 0)
1359 return eb;
1360
1361 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1362 if (!tm)
1363 return eb;
1364
9ec72677
JB
1365 btrfs_set_path_blocking(path);
1366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1367
5d9e75c4
JS
1368 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1369 BUG_ON(tm->slot != 0);
da17066c 1370 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1371 if (!eb_rewin) {
9ec72677 1372 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1373 free_extent_buffer(eb);
1374 return NULL;
1375 }
5d9e75c4
JS
1376 btrfs_set_header_bytenr(eb_rewin, eb->start);
1377 btrfs_set_header_backref_rev(eb_rewin,
1378 btrfs_header_backref_rev(eb));
1379 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1380 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1381 } else {
1382 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1383 if (!eb_rewin) {
9ec72677 1384 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1385 free_extent_buffer(eb);
1386 return NULL;
1387 }
5d9e75c4
JS
1388 }
1389
9ec72677
JB
1390 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1391 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1392 free_extent_buffer(eb);
1393
47fb091f
JS
1394 extent_buffer_get(eb_rewin);
1395 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1396 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1397 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1398 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1399
1400 return eb_rewin;
1401}
1402
8ba97a15
JS
1403/*
1404 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1405 * value. If there are no changes, the current root->root_node is returned. If
1406 * anything changed in between, there's a fresh buffer allocated on which the
1407 * rewind operations are done. In any case, the returned buffer is read locked.
1408 * Returns NULL on error (with no locks held).
1409 */
5d9e75c4
JS
1410static inline struct extent_buffer *
1411get_old_root(struct btrfs_root *root, u64 time_seq)
1412{
0b246afa 1413 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1414 struct tree_mod_elem *tm;
30b0463a
JS
1415 struct extent_buffer *eb = NULL;
1416 struct extent_buffer *eb_root;
7bfdcf7f 1417 struct extent_buffer *old;
a95236d9 1418 struct tree_mod_root *old_root = NULL;
4325edd0 1419 u64 old_generation = 0;
a95236d9 1420 u64 logical;
5d9e75c4 1421
30b0463a 1422 eb_root = btrfs_read_lock_root_node(root);
0b246afa 1423 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
5d9e75c4 1424 if (!tm)
30b0463a 1425 return eb_root;
5d9e75c4 1426
a95236d9
JS
1427 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1428 old_root = &tm->old_root;
1429 old_generation = tm->generation;
1430 logical = old_root->logical;
1431 } else {
30b0463a 1432 logical = eb_root->start;
a95236d9 1433 }
5d9e75c4 1434
0b246afa 1435 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1436 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1437 btrfs_tree_read_unlock(eb_root);
1438 free_extent_buffer(eb_root);
2ff7e61e 1439 old = read_tree_block(fs_info, logical, 0);
64c043de
LB
1440 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1441 if (!IS_ERR(old))
1442 free_extent_buffer(old);
0b246afa
JM
1443 btrfs_warn(fs_info,
1444 "failed to read tree block %llu from get_old_root",
1445 logical);
834328a8 1446 } else {
7bfdcf7f
LB
1447 eb = btrfs_clone_extent_buffer(old);
1448 free_extent_buffer(old);
834328a8
JS
1449 }
1450 } else if (old_root) {
30b0463a
JS
1451 btrfs_tree_read_unlock(eb_root);
1452 free_extent_buffer(eb_root);
0b246afa 1453 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1454 } else {
9ec72677 1455 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1456 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1457 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1458 free_extent_buffer(eb_root);
834328a8
JS
1459 }
1460
8ba97a15
JS
1461 if (!eb)
1462 return NULL;
d6381084 1463 extent_buffer_get(eb);
8ba97a15 1464 btrfs_tree_read_lock(eb);
a95236d9 1465 if (old_root) {
5d9e75c4
JS
1466 btrfs_set_header_bytenr(eb, eb->start);
1467 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1468 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1469 btrfs_set_header_level(eb, old_root->level);
1470 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1471 }
28da9fb4 1472 if (tm)
0b246afa 1473 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1474 else
1475 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1476 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1477
1478 return eb;
1479}
1480
5b6602e7
JS
1481int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1482{
1483 struct tree_mod_elem *tm;
1484 int level;
30b0463a 1485 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1486
30b0463a 1487 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5b6602e7
JS
1488 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1489 level = tm->old_root.level;
1490 } else {
30b0463a 1491 level = btrfs_header_level(eb_root);
5b6602e7 1492 }
30b0463a 1493 free_extent_buffer(eb_root);
5b6602e7
JS
1494
1495 return level;
1496}
1497
5d4f98a2
YZ
1498static inline int should_cow_block(struct btrfs_trans_handle *trans,
1499 struct btrfs_root *root,
1500 struct extent_buffer *buf)
1501{
f5ee5c9a 1502 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1503 return 0;
fccb84c9 1504
f1ebcc74
LB
1505 /* ensure we can see the force_cow */
1506 smp_rmb();
1507
1508 /*
1509 * We do not need to cow a block if
1510 * 1) this block is not created or changed in this transaction;
1511 * 2) this block does not belong to TREE_RELOC tree;
1512 * 3) the root is not forced COW.
1513 *
1514 * What is forced COW:
01327610 1515 * when we create snapshot during committing the transaction,
f1ebcc74
LB
1516 * after we've finished coping src root, we must COW the shared
1517 * block to ensure the metadata consistency.
1518 */
5d4f98a2
YZ
1519 if (btrfs_header_generation(buf) == trans->transid &&
1520 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1521 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1522 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1523 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1524 return 0;
1525 return 1;
1526}
1527
d352ac68
CM
1528/*
1529 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1530 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1531 * once per transaction, as long as it hasn't been written yet
1532 */
d397712b 1533noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1534 struct btrfs_root *root, struct extent_buffer *buf,
1535 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1536 struct extent_buffer **cow_ret)
6702ed49 1537{
0b246afa 1538 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1539 u64 search_start;
f510cfec 1540 int ret;
dc17ff8f 1541
0b246afa 1542 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1543 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1544 trans->transid,
0b246afa 1545 fs_info->running_transaction->transid);
31b1a2bd 1546
0b246afa 1547 if (trans->transid != fs_info->generation)
31b1a2bd 1548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1549 trans->transid, fs_info->generation);
dc17ff8f 1550
5d4f98a2 1551 if (!should_cow_block(trans, root, buf)) {
64c12921 1552 trans->dirty = true;
6702ed49
CM
1553 *cow_ret = buf;
1554 return 0;
1555 }
c487685d 1556
ee22184b 1557 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1558
1559 if (parent)
1560 btrfs_set_lock_blocking(parent);
1561 btrfs_set_lock_blocking(buf);
1562
f510cfec 1563 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1564 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1565
1566 trace_btrfs_cow_block(root, buf, *cow_ret);
1567
f510cfec 1568 return ret;
6702ed49
CM
1569}
1570
d352ac68
CM
1571/*
1572 * helper function for defrag to decide if two blocks pointed to by a
1573 * node are actually close by
1574 */
6b80053d 1575static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1576{
6b80053d 1577 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1578 return 1;
6b80053d 1579 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1580 return 1;
1581 return 0;
1582}
1583
081e9573
CM
1584/*
1585 * compare two keys in a memcmp fashion
1586 */
310712b2
OS
1587static int comp_keys(const struct btrfs_disk_key *disk,
1588 const struct btrfs_key *k2)
081e9573
CM
1589{
1590 struct btrfs_key k1;
1591
1592 btrfs_disk_key_to_cpu(&k1, disk);
1593
20736aba 1594 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1595}
1596
f3465ca4
JB
1597/*
1598 * same as comp_keys only with two btrfs_key's
1599 */
310712b2 1600int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1601{
1602 if (k1->objectid > k2->objectid)
1603 return 1;
1604 if (k1->objectid < k2->objectid)
1605 return -1;
1606 if (k1->type > k2->type)
1607 return 1;
1608 if (k1->type < k2->type)
1609 return -1;
1610 if (k1->offset > k2->offset)
1611 return 1;
1612 if (k1->offset < k2->offset)
1613 return -1;
1614 return 0;
1615}
081e9573 1616
d352ac68
CM
1617/*
1618 * this is used by the defrag code to go through all the
1619 * leaves pointed to by a node and reallocate them so that
1620 * disk order is close to key order
1621 */
6702ed49 1622int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1623 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1624 int start_slot, u64 *last_ret,
a6b6e75e 1625 struct btrfs_key *progress)
6702ed49 1626{
0b246afa 1627 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1628 struct extent_buffer *cur;
6702ed49 1629 u64 blocknr;
ca7a79ad 1630 u64 gen;
e9d0b13b
CM
1631 u64 search_start = *last_ret;
1632 u64 last_block = 0;
6702ed49
CM
1633 u64 other;
1634 u32 parent_nritems;
6702ed49
CM
1635 int end_slot;
1636 int i;
1637 int err = 0;
f2183bde 1638 int parent_level;
6b80053d
CM
1639 int uptodate;
1640 u32 blocksize;
081e9573
CM
1641 int progress_passed = 0;
1642 struct btrfs_disk_key disk_key;
6702ed49 1643
5708b959 1644 parent_level = btrfs_header_level(parent);
5708b959 1645
0b246afa
JM
1646 WARN_ON(trans->transaction != fs_info->running_transaction);
1647 WARN_ON(trans->transid != fs_info->generation);
86479a04 1648
6b80053d 1649 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1650 blocksize = fs_info->nodesize;
5dfe2be7 1651 end_slot = parent_nritems - 1;
6702ed49 1652
5dfe2be7 1653 if (parent_nritems <= 1)
6702ed49
CM
1654 return 0;
1655
b4ce94de
CM
1656 btrfs_set_lock_blocking(parent);
1657
5dfe2be7 1658 for (i = start_slot; i <= end_slot; i++) {
6702ed49 1659 int close = 1;
a6b6e75e 1660
081e9573
CM
1661 btrfs_node_key(parent, &disk_key, i);
1662 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1663 continue;
1664
1665 progress_passed = 1;
6b80053d 1666 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1667 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1668 if (last_block == 0)
1669 last_block = blocknr;
5708b959 1670
6702ed49 1671 if (i > 0) {
6b80053d
CM
1672 other = btrfs_node_blockptr(parent, i - 1);
1673 close = close_blocks(blocknr, other, blocksize);
6702ed49 1674 }
5dfe2be7 1675 if (!close && i < end_slot) {
6b80053d
CM
1676 other = btrfs_node_blockptr(parent, i + 1);
1677 close = close_blocks(blocknr, other, blocksize);
6702ed49 1678 }
e9d0b13b
CM
1679 if (close) {
1680 last_block = blocknr;
6702ed49 1681 continue;
e9d0b13b 1682 }
6702ed49 1683
0b246afa 1684 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1685 if (cur)
b9fab919 1686 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1687 else
1688 uptodate = 0;
5708b959 1689 if (!cur || !uptodate) {
6b80053d 1690 if (!cur) {
2ff7e61e 1691 cur = read_tree_block(fs_info, blocknr, gen);
64c043de
LB
1692 if (IS_ERR(cur)) {
1693 return PTR_ERR(cur);
1694 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1695 free_extent_buffer(cur);
97d9a8a4 1696 return -EIO;
416bc658 1697 }
6b80053d 1698 } else if (!uptodate) {
018642a1
TI
1699 err = btrfs_read_buffer(cur, gen);
1700 if (err) {
1701 free_extent_buffer(cur);
1702 return err;
1703 }
f2183bde 1704 }
6702ed49 1705 }
e9d0b13b 1706 if (search_start == 0)
6b80053d 1707 search_start = last_block;
e9d0b13b 1708
e7a84565 1709 btrfs_tree_lock(cur);
b4ce94de 1710 btrfs_set_lock_blocking(cur);
6b80053d 1711 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1712 &cur, search_start,
6b80053d 1713 min(16 * blocksize,
9fa8cfe7 1714 (end_slot - i) * blocksize));
252c38f0 1715 if (err) {
e7a84565 1716 btrfs_tree_unlock(cur);
6b80053d 1717 free_extent_buffer(cur);
6702ed49 1718 break;
252c38f0 1719 }
e7a84565
CM
1720 search_start = cur->start;
1721 last_block = cur->start;
f2183bde 1722 *last_ret = search_start;
e7a84565
CM
1723 btrfs_tree_unlock(cur);
1724 free_extent_buffer(cur);
6702ed49
CM
1725 }
1726 return err;
1727}
1728
74123bd7 1729/*
5f39d397
CM
1730 * search for key in the extent_buffer. The items start at offset p,
1731 * and they are item_size apart. There are 'max' items in p.
1732 *
74123bd7
CM
1733 * the slot in the array is returned via slot, and it points to
1734 * the place where you would insert key if it is not found in
1735 * the array.
1736 *
1737 * slot may point to max if the key is bigger than all of the keys
1738 */
e02119d5 1739static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1740 unsigned long p, int item_size,
1741 const struct btrfs_key *key,
e02119d5 1742 int max, int *slot)
be0e5c09
CM
1743{
1744 int low = 0;
1745 int high = max;
1746 int mid;
1747 int ret;
479965d6 1748 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1749 struct btrfs_disk_key unaligned;
1750 unsigned long offset;
5f39d397
CM
1751 char *kaddr = NULL;
1752 unsigned long map_start = 0;
1753 unsigned long map_len = 0;
479965d6 1754 int err;
be0e5c09 1755
5e24e9af
LB
1756 if (low > high) {
1757 btrfs_err(eb->fs_info,
1758 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1759 __func__, low, high, eb->start,
1760 btrfs_header_owner(eb), btrfs_header_level(eb));
1761 return -EINVAL;
1762 }
1763
d397712b 1764 while (low < high) {
be0e5c09 1765 mid = (low + high) / 2;
5f39d397
CM
1766 offset = p + mid * item_size;
1767
a6591715 1768 if (!kaddr || offset < map_start ||
5f39d397
CM
1769 (offset + sizeof(struct btrfs_disk_key)) >
1770 map_start + map_len) {
934d375b
CM
1771
1772 err = map_private_extent_buffer(eb, offset,
479965d6 1773 sizeof(struct btrfs_disk_key),
a6591715 1774 &kaddr, &map_start, &map_len);
479965d6
CM
1775
1776 if (!err) {
1777 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1778 map_start);
415b35a5 1779 } else if (err == 1) {
479965d6
CM
1780 read_extent_buffer(eb, &unaligned,
1781 offset, sizeof(unaligned));
1782 tmp = &unaligned;
415b35a5
LB
1783 } else {
1784 return err;
479965d6 1785 }
5f39d397 1786
5f39d397
CM
1787 } else {
1788 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1789 map_start);
1790 }
be0e5c09
CM
1791 ret = comp_keys(tmp, key);
1792
1793 if (ret < 0)
1794 low = mid + 1;
1795 else if (ret > 0)
1796 high = mid;
1797 else {
1798 *slot = mid;
1799 return 0;
1800 }
1801 }
1802 *slot = low;
1803 return 1;
1804}
1805
97571fd0
CM
1806/*
1807 * simple bin_search frontend that does the right thing for
1808 * leaves vs nodes
1809 */
310712b2 1810static int bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
5f39d397 1811 int level, int *slot)
be0e5c09 1812{
f775738f 1813 if (level == 0)
5f39d397
CM
1814 return generic_bin_search(eb,
1815 offsetof(struct btrfs_leaf, items),
0783fcfc 1816 sizeof(struct btrfs_item),
5f39d397 1817 key, btrfs_header_nritems(eb),
7518a238 1818 slot);
f775738f 1819 else
5f39d397
CM
1820 return generic_bin_search(eb,
1821 offsetof(struct btrfs_node, ptrs),
123abc88 1822 sizeof(struct btrfs_key_ptr),
5f39d397 1823 key, btrfs_header_nritems(eb),
7518a238 1824 slot);
be0e5c09
CM
1825}
1826
310712b2 1827int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
5d4f98a2
YZ
1828 int level, int *slot)
1829{
1830 return bin_search(eb, key, level, slot);
1831}
1832
f0486c68
YZ
1833static void root_add_used(struct btrfs_root *root, u32 size)
1834{
1835 spin_lock(&root->accounting_lock);
1836 btrfs_set_root_used(&root->root_item,
1837 btrfs_root_used(&root->root_item) + size);
1838 spin_unlock(&root->accounting_lock);
1839}
1840
1841static void root_sub_used(struct btrfs_root *root, u32 size)
1842{
1843 spin_lock(&root->accounting_lock);
1844 btrfs_set_root_used(&root->root_item,
1845 btrfs_root_used(&root->root_item) - size);
1846 spin_unlock(&root->accounting_lock);
1847}
1848
d352ac68
CM
1849/* given a node and slot number, this reads the blocks it points to. The
1850 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1851 */
2ff7e61e
JM
1852static noinline struct extent_buffer *
1853read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1854 int slot)
bb803951 1855{
ca7a79ad 1856 int level = btrfs_header_level(parent);
416bc658
JB
1857 struct extent_buffer *eb;
1858
fb770ae4
LB
1859 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1860 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1861
1862 BUG_ON(level == 0);
1863
2ff7e61e 1864 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
416bc658 1865 btrfs_node_ptr_generation(parent, slot));
fb770ae4
LB
1866 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1867 free_extent_buffer(eb);
1868 eb = ERR_PTR(-EIO);
416bc658
JB
1869 }
1870
1871 return eb;
bb803951
CM
1872}
1873
d352ac68
CM
1874/*
1875 * node level balancing, used to make sure nodes are in proper order for
1876 * item deletion. We balance from the top down, so we have to make sure
1877 * that a deletion won't leave an node completely empty later on.
1878 */
e02119d5 1879static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1880 struct btrfs_root *root,
1881 struct btrfs_path *path, int level)
bb803951 1882{
0b246afa 1883 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1884 struct extent_buffer *right = NULL;
1885 struct extent_buffer *mid;
1886 struct extent_buffer *left = NULL;
1887 struct extent_buffer *parent = NULL;
bb803951
CM
1888 int ret = 0;
1889 int wret;
1890 int pslot;
bb803951 1891 int orig_slot = path->slots[level];
79f95c82 1892 u64 orig_ptr;
bb803951
CM
1893
1894 if (level == 0)
1895 return 0;
1896
5f39d397 1897 mid = path->nodes[level];
b4ce94de 1898
bd681513
CM
1899 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1900 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1901 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1902
1d4f8a0c 1903 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1904
a05a9bb1 1905 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1906 parent = path->nodes[level + 1];
a05a9bb1
LZ
1907 pslot = path->slots[level + 1];
1908 }
bb803951 1909
40689478
CM
1910 /*
1911 * deal with the case where there is only one pointer in the root
1912 * by promoting the node below to a root
1913 */
5f39d397
CM
1914 if (!parent) {
1915 struct extent_buffer *child;
bb803951 1916
5f39d397 1917 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1918 return 0;
1919
1920 /* promote the child to a root */
2ff7e61e 1921 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1922 if (IS_ERR(child)) {
1923 ret = PTR_ERR(child);
0b246afa 1924 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1925 goto enospc;
1926 }
1927
925baedd 1928 btrfs_tree_lock(child);
b4ce94de 1929 btrfs_set_lock_blocking(child);
9fa8cfe7 1930 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1931 if (ret) {
1932 btrfs_tree_unlock(child);
1933 free_extent_buffer(child);
1934 goto enospc;
1935 }
2f375ab9 1936
90f8d62e 1937 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1938 rcu_assign_pointer(root->node, child);
925baedd 1939
0b86a832 1940 add_root_to_dirty_list(root);
925baedd 1941 btrfs_tree_unlock(child);
b4ce94de 1942
925baedd 1943 path->locks[level] = 0;
bb803951 1944 path->nodes[level] = NULL;
7c302b49 1945 clean_tree_block(fs_info, mid);
925baedd 1946 btrfs_tree_unlock(mid);
bb803951 1947 /* once for the path */
5f39d397 1948 free_extent_buffer(mid);
f0486c68
YZ
1949
1950 root_sub_used(root, mid->len);
5581a51a 1951 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1952 /* once for the root ptr */
3083ee2e 1953 free_extent_buffer_stale(mid);
f0486c68 1954 return 0;
bb803951 1955 }
5f39d397 1956 if (btrfs_header_nritems(mid) >
0b246afa 1957 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1958 return 0;
1959
2ff7e61e 1960 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1961 if (IS_ERR(left))
1962 left = NULL;
1963
5f39d397 1964 if (left) {
925baedd 1965 btrfs_tree_lock(left);
b4ce94de 1966 btrfs_set_lock_blocking(left);
5f39d397 1967 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1968 parent, pslot - 1, &left);
54aa1f4d
CM
1969 if (wret) {
1970 ret = wret;
1971 goto enospc;
1972 }
2cc58cf2 1973 }
fb770ae4 1974
2ff7e61e 1975 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1976 if (IS_ERR(right))
1977 right = NULL;
1978
5f39d397 1979 if (right) {
925baedd 1980 btrfs_tree_lock(right);
b4ce94de 1981 btrfs_set_lock_blocking(right);
5f39d397 1982 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1983 parent, pslot + 1, &right);
2cc58cf2
CM
1984 if (wret) {
1985 ret = wret;
1986 goto enospc;
1987 }
1988 }
1989
1990 /* first, try to make some room in the middle buffer */
5f39d397
CM
1991 if (left) {
1992 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1993 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1994 if (wret < 0)
1995 ret = wret;
bb803951 1996 }
79f95c82
CM
1997
1998 /*
1999 * then try to empty the right most buffer into the middle
2000 */
5f39d397 2001 if (right) {
2ff7e61e 2002 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 2003 if (wret < 0 && wret != -ENOSPC)
79f95c82 2004 ret = wret;
5f39d397 2005 if (btrfs_header_nritems(right) == 0) {
7c302b49 2006 clean_tree_block(fs_info, right);
925baedd 2007 btrfs_tree_unlock(right);
afe5fea7 2008 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 2009 root_sub_used(root, right->len);
5581a51a 2010 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 2011 free_extent_buffer_stale(right);
f0486c68 2012 right = NULL;
bb803951 2013 } else {
5f39d397
CM
2014 struct btrfs_disk_key right_key;
2015 btrfs_node_key(right, &right_key, 0);
0b246afa 2016 tree_mod_log_set_node_key(fs_info, parent,
32adf090 2017 pslot + 1, 0);
5f39d397
CM
2018 btrfs_set_node_key(parent, &right_key, pslot + 1);
2019 btrfs_mark_buffer_dirty(parent);
bb803951
CM
2020 }
2021 }
5f39d397 2022 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
2023 /*
2024 * we're not allowed to leave a node with one item in the
2025 * tree during a delete. A deletion from lower in the tree
2026 * could try to delete the only pointer in this node.
2027 * So, pull some keys from the left.
2028 * There has to be a left pointer at this point because
2029 * otherwise we would have pulled some pointers from the
2030 * right
2031 */
305a26af
MF
2032 if (!left) {
2033 ret = -EROFS;
0b246afa 2034 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
2035 goto enospc;
2036 }
2ff7e61e 2037 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 2038 if (wret < 0) {
79f95c82 2039 ret = wret;
54aa1f4d
CM
2040 goto enospc;
2041 }
bce4eae9 2042 if (wret == 1) {
2ff7e61e 2043 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
2044 if (wret < 0)
2045 ret = wret;
2046 }
79f95c82
CM
2047 BUG_ON(wret == 1);
2048 }
5f39d397 2049 if (btrfs_header_nritems(mid) == 0) {
7c302b49 2050 clean_tree_block(fs_info, mid);
925baedd 2051 btrfs_tree_unlock(mid);
afe5fea7 2052 del_ptr(root, path, level + 1, pslot);
f0486c68 2053 root_sub_used(root, mid->len);
5581a51a 2054 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2055 free_extent_buffer_stale(mid);
f0486c68 2056 mid = NULL;
79f95c82
CM
2057 } else {
2058 /* update the parent key to reflect our changes */
5f39d397
CM
2059 struct btrfs_disk_key mid_key;
2060 btrfs_node_key(mid, &mid_key, 0);
0b246afa 2061 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
5f39d397
CM
2062 btrfs_set_node_key(parent, &mid_key, pslot);
2063 btrfs_mark_buffer_dirty(parent);
79f95c82 2064 }
bb803951 2065
79f95c82 2066 /* update the path */
5f39d397
CM
2067 if (left) {
2068 if (btrfs_header_nritems(left) > orig_slot) {
2069 extent_buffer_get(left);
925baedd 2070 /* left was locked after cow */
5f39d397 2071 path->nodes[level] = left;
bb803951
CM
2072 path->slots[level + 1] -= 1;
2073 path->slots[level] = orig_slot;
925baedd
CM
2074 if (mid) {
2075 btrfs_tree_unlock(mid);
5f39d397 2076 free_extent_buffer(mid);
925baedd 2077 }
bb803951 2078 } else {
5f39d397 2079 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2080 path->slots[level] = orig_slot;
2081 }
2082 }
79f95c82 2083 /* double check we haven't messed things up */
e20d96d6 2084 if (orig_ptr !=
5f39d397 2085 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2086 BUG();
54aa1f4d 2087enospc:
925baedd
CM
2088 if (right) {
2089 btrfs_tree_unlock(right);
5f39d397 2090 free_extent_buffer(right);
925baedd
CM
2091 }
2092 if (left) {
2093 if (path->nodes[level] != left)
2094 btrfs_tree_unlock(left);
5f39d397 2095 free_extent_buffer(left);
925baedd 2096 }
bb803951
CM
2097 return ret;
2098}
2099
d352ac68
CM
2100/* Node balancing for insertion. Here we only split or push nodes around
2101 * when they are completely full. This is also done top down, so we
2102 * have to be pessimistic.
2103 */
d397712b 2104static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2105 struct btrfs_root *root,
2106 struct btrfs_path *path, int level)
e66f709b 2107{
0b246afa 2108 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2109 struct extent_buffer *right = NULL;
2110 struct extent_buffer *mid;
2111 struct extent_buffer *left = NULL;
2112 struct extent_buffer *parent = NULL;
e66f709b
CM
2113 int ret = 0;
2114 int wret;
2115 int pslot;
2116 int orig_slot = path->slots[level];
e66f709b
CM
2117
2118 if (level == 0)
2119 return 1;
2120
5f39d397 2121 mid = path->nodes[level];
7bb86316 2122 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2123
a05a9bb1 2124 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2125 parent = path->nodes[level + 1];
a05a9bb1
LZ
2126 pslot = path->slots[level + 1];
2127 }
e66f709b 2128
5f39d397 2129 if (!parent)
e66f709b 2130 return 1;
e66f709b 2131
2ff7e61e 2132 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2133 if (IS_ERR(left))
2134 left = NULL;
e66f709b
CM
2135
2136 /* first, try to make some room in the middle buffer */
5f39d397 2137 if (left) {
e66f709b 2138 u32 left_nr;
925baedd
CM
2139
2140 btrfs_tree_lock(left);
b4ce94de
CM
2141 btrfs_set_lock_blocking(left);
2142
5f39d397 2143 left_nr = btrfs_header_nritems(left);
0b246afa 2144 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2145 wret = 1;
2146 } else {
5f39d397 2147 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2148 pslot - 1, &left);
54aa1f4d
CM
2149 if (ret)
2150 wret = 1;
2151 else {
2ff7e61e 2152 wret = push_node_left(trans, fs_info,
971a1f66 2153 left, mid, 0);
54aa1f4d 2154 }
33ade1f8 2155 }
e66f709b
CM
2156 if (wret < 0)
2157 ret = wret;
2158 if (wret == 0) {
5f39d397 2159 struct btrfs_disk_key disk_key;
e66f709b 2160 orig_slot += left_nr;
5f39d397 2161 btrfs_node_key(mid, &disk_key, 0);
0b246afa 2162 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
5f39d397
CM
2163 btrfs_set_node_key(parent, &disk_key, pslot);
2164 btrfs_mark_buffer_dirty(parent);
2165 if (btrfs_header_nritems(left) > orig_slot) {
2166 path->nodes[level] = left;
e66f709b
CM
2167 path->slots[level + 1] -= 1;
2168 path->slots[level] = orig_slot;
925baedd 2169 btrfs_tree_unlock(mid);
5f39d397 2170 free_extent_buffer(mid);
e66f709b
CM
2171 } else {
2172 orig_slot -=
5f39d397 2173 btrfs_header_nritems(left);
e66f709b 2174 path->slots[level] = orig_slot;
925baedd 2175 btrfs_tree_unlock(left);
5f39d397 2176 free_extent_buffer(left);
e66f709b 2177 }
e66f709b
CM
2178 return 0;
2179 }
925baedd 2180 btrfs_tree_unlock(left);
5f39d397 2181 free_extent_buffer(left);
e66f709b 2182 }
2ff7e61e 2183 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2184 if (IS_ERR(right))
2185 right = NULL;
e66f709b
CM
2186
2187 /*
2188 * then try to empty the right most buffer into the middle
2189 */
5f39d397 2190 if (right) {
33ade1f8 2191 u32 right_nr;
b4ce94de 2192
925baedd 2193 btrfs_tree_lock(right);
b4ce94de
CM
2194 btrfs_set_lock_blocking(right);
2195
5f39d397 2196 right_nr = btrfs_header_nritems(right);
0b246afa 2197 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2198 wret = 1;
2199 } else {
5f39d397
CM
2200 ret = btrfs_cow_block(trans, root, right,
2201 parent, pslot + 1,
9fa8cfe7 2202 &right);
54aa1f4d
CM
2203 if (ret)
2204 wret = 1;
2205 else {
2ff7e61e 2206 wret = balance_node_right(trans, fs_info,
5f39d397 2207 right, mid);
54aa1f4d 2208 }
33ade1f8 2209 }
e66f709b
CM
2210 if (wret < 0)
2211 ret = wret;
2212 if (wret == 0) {
5f39d397
CM
2213 struct btrfs_disk_key disk_key;
2214
2215 btrfs_node_key(right, &disk_key, 0);
0b246afa 2216 tree_mod_log_set_node_key(fs_info, parent,
32adf090 2217 pslot + 1, 0);
5f39d397
CM
2218 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2219 btrfs_mark_buffer_dirty(parent);
2220
2221 if (btrfs_header_nritems(mid) <= orig_slot) {
2222 path->nodes[level] = right;
e66f709b
CM
2223 path->slots[level + 1] += 1;
2224 path->slots[level] = orig_slot -
5f39d397 2225 btrfs_header_nritems(mid);
925baedd 2226 btrfs_tree_unlock(mid);
5f39d397 2227 free_extent_buffer(mid);
e66f709b 2228 } else {
925baedd 2229 btrfs_tree_unlock(right);
5f39d397 2230 free_extent_buffer(right);
e66f709b 2231 }
e66f709b
CM
2232 return 0;
2233 }
925baedd 2234 btrfs_tree_unlock(right);
5f39d397 2235 free_extent_buffer(right);
e66f709b 2236 }
e66f709b
CM
2237 return 1;
2238}
2239
3c69faec 2240/*
d352ac68
CM
2241 * readahead one full node of leaves, finding things that are close
2242 * to the block in 'slot', and triggering ra on them.
3c69faec 2243 */
2ff7e61e 2244static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2245 struct btrfs_path *path,
2246 int level, int slot, u64 objectid)
3c69faec 2247{
5f39d397 2248 struct extent_buffer *node;
01f46658 2249 struct btrfs_disk_key disk_key;
3c69faec 2250 u32 nritems;
3c69faec 2251 u64 search;
a7175319 2252 u64 target;
6b80053d 2253 u64 nread = 0;
5f39d397 2254 struct extent_buffer *eb;
6b80053d
CM
2255 u32 nr;
2256 u32 blocksize;
2257 u32 nscan = 0;
db94535d 2258
a6b6e75e 2259 if (level != 1)
6702ed49
CM
2260 return;
2261
2262 if (!path->nodes[level])
3c69faec
CM
2263 return;
2264
5f39d397 2265 node = path->nodes[level];
925baedd 2266
3c69faec 2267 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2268 blocksize = fs_info->nodesize;
2269 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2270 if (eb) {
2271 free_extent_buffer(eb);
3c69faec
CM
2272 return;
2273 }
2274
a7175319 2275 target = search;
6b80053d 2276
5f39d397 2277 nritems = btrfs_header_nritems(node);
6b80053d 2278 nr = slot;
25b8b936 2279
d397712b 2280 while (1) {
e4058b54 2281 if (path->reada == READA_BACK) {
6b80053d
CM
2282 if (nr == 0)
2283 break;
2284 nr--;
e4058b54 2285 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2286 nr++;
2287 if (nr >= nritems)
2288 break;
3c69faec 2289 }
e4058b54 2290 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2291 btrfs_node_key(node, &disk_key, nr);
2292 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2293 break;
2294 }
6b80053d 2295 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2296 if ((search <= target && target - search <= 65536) ||
2297 (search > target && search - target <= 65536)) {
2ff7e61e 2298 readahead_tree_block(fs_info, search);
6b80053d
CM
2299 nread += blocksize;
2300 }
2301 nscan++;
a7175319 2302 if ((nread > 65536 || nscan > 32))
6b80053d 2303 break;
3c69faec
CM
2304 }
2305}
925baedd 2306
2ff7e61e 2307static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2308 struct btrfs_path *path, int level)
b4ce94de
CM
2309{
2310 int slot;
2311 int nritems;
2312 struct extent_buffer *parent;
2313 struct extent_buffer *eb;
2314 u64 gen;
2315 u64 block1 = 0;
2316 u64 block2 = 0;
b4ce94de 2317
8c594ea8 2318 parent = path->nodes[level + 1];
b4ce94de 2319 if (!parent)
0b08851f 2320 return;
b4ce94de
CM
2321
2322 nritems = btrfs_header_nritems(parent);
8c594ea8 2323 slot = path->slots[level + 1];
b4ce94de
CM
2324
2325 if (slot > 0) {
2326 block1 = btrfs_node_blockptr(parent, slot - 1);
2327 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2328 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2329 /*
2330 * if we get -eagain from btrfs_buffer_uptodate, we
2331 * don't want to return eagain here. That will loop
2332 * forever
2333 */
2334 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2335 block1 = 0;
2336 free_extent_buffer(eb);
2337 }
8c594ea8 2338 if (slot + 1 < nritems) {
b4ce94de
CM
2339 block2 = btrfs_node_blockptr(parent, slot + 1);
2340 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2341 eb = find_extent_buffer(fs_info, block2);
b9fab919 2342 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2343 block2 = 0;
2344 free_extent_buffer(eb);
2345 }
8c594ea8 2346
0b08851f 2347 if (block1)
2ff7e61e 2348 readahead_tree_block(fs_info, block1);
0b08851f 2349 if (block2)
2ff7e61e 2350 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2351}
2352
2353
d352ac68 2354/*
d397712b
CM
2355 * when we walk down the tree, it is usually safe to unlock the higher layers
2356 * in the tree. The exceptions are when our path goes through slot 0, because
2357 * operations on the tree might require changing key pointers higher up in the
2358 * tree.
d352ac68 2359 *
d397712b
CM
2360 * callers might also have set path->keep_locks, which tells this code to keep
2361 * the lock if the path points to the last slot in the block. This is part of
2362 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2363 *
d397712b
CM
2364 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2365 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2366 */
e02119d5 2367static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2368 int lowest_unlock, int min_write_lock_level,
2369 int *write_lock_level)
925baedd
CM
2370{
2371 int i;
2372 int skip_level = level;
051e1b9f 2373 int no_skips = 0;
925baedd
CM
2374 struct extent_buffer *t;
2375
2376 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2377 if (!path->nodes[i])
2378 break;
2379 if (!path->locks[i])
2380 break;
051e1b9f 2381 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2382 skip_level = i + 1;
2383 continue;
2384 }
051e1b9f 2385 if (!no_skips && path->keep_locks) {
925baedd
CM
2386 u32 nritems;
2387 t = path->nodes[i];
2388 nritems = btrfs_header_nritems(t);
051e1b9f 2389 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2390 skip_level = i + 1;
2391 continue;
2392 }
2393 }
051e1b9f
CM
2394 if (skip_level < i && i >= lowest_unlock)
2395 no_skips = 1;
2396
925baedd
CM
2397 t = path->nodes[i];
2398 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2399 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2400 path->locks[i] = 0;
f7c79f30
CM
2401 if (write_lock_level &&
2402 i > min_write_lock_level &&
2403 i <= *write_lock_level) {
2404 *write_lock_level = i - 1;
2405 }
925baedd
CM
2406 }
2407 }
2408}
2409
b4ce94de
CM
2410/*
2411 * This releases any locks held in the path starting at level and
2412 * going all the way up to the root.
2413 *
2414 * btrfs_search_slot will keep the lock held on higher nodes in a few
2415 * corner cases, such as COW of the block at slot zero in the node. This
2416 * ignores those rules, and it should only be called when there are no
2417 * more updates to be done higher up in the tree.
2418 */
2419noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2420{
2421 int i;
2422
09a2a8f9 2423 if (path->keep_locks)
b4ce94de
CM
2424 return;
2425
2426 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2427 if (!path->nodes[i])
12f4dacc 2428 continue;
b4ce94de 2429 if (!path->locks[i])
12f4dacc 2430 continue;
bd681513 2431 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2432 path->locks[i] = 0;
2433 }
2434}
2435
c8c42864
CM
2436/*
2437 * helper function for btrfs_search_slot. The goal is to find a block
2438 * in cache without setting the path to blocking. If we find the block
2439 * we return zero and the path is unchanged.
2440 *
2441 * If we can't find the block, we set the path blocking and do some
2442 * reada. -EAGAIN is returned and the search must be repeated.
2443 */
2444static int
d07b8528
LB
2445read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2446 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2447 const struct btrfs_key *key)
c8c42864 2448{
0b246afa 2449 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2450 u64 blocknr;
2451 u64 gen;
c8c42864
CM
2452 struct extent_buffer *b = *eb_ret;
2453 struct extent_buffer *tmp;
76a05b35 2454 int ret;
c8c42864
CM
2455
2456 blocknr = btrfs_node_blockptr(b, slot);
2457 gen = btrfs_node_ptr_generation(b, slot);
c8c42864 2458
0b246afa 2459 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2460 if (tmp) {
b9fab919 2461 /* first we do an atomic uptodate check */
bdf7c00e
JB
2462 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2463 *eb_ret = tmp;
2464 return 0;
2465 }
2466
2467 /* the pages were up to date, but we failed
2468 * the generation number check. Do a full
2469 * read for the generation number that is correct.
2470 * We must do this without dropping locks so
2471 * we can trust our generation number
2472 */
2473 btrfs_set_path_blocking(p);
2474
2475 /* now we're allowed to do a blocking uptodate check */
2476 ret = btrfs_read_buffer(tmp, gen);
2477 if (!ret) {
2478 *eb_ret = tmp;
2479 return 0;
cb44921a 2480 }
bdf7c00e
JB
2481 free_extent_buffer(tmp);
2482 btrfs_release_path(p);
2483 return -EIO;
c8c42864
CM
2484 }
2485
2486 /*
2487 * reduce lock contention at high levels
2488 * of the btree by dropping locks before
76a05b35
CM
2489 * we read. Don't release the lock on the current
2490 * level because we need to walk this node to figure
2491 * out which blocks to read.
c8c42864 2492 */
8c594ea8
CM
2493 btrfs_unlock_up_safe(p, level + 1);
2494 btrfs_set_path_blocking(p);
2495
cb44921a 2496 free_extent_buffer(tmp);
e4058b54 2497 if (p->reada != READA_NONE)
2ff7e61e 2498 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2499
76a05b35 2500 ret = -EAGAIN;
cde38fb8 2501 tmp = read_tree_block(fs_info, blocknr, gen);
64c043de 2502 if (!IS_ERR(tmp)) {
76a05b35
CM
2503 /*
2504 * If the read above didn't mark this buffer up to date,
2505 * it will never end up being up to date. Set ret to EIO now
2506 * and give up so that our caller doesn't loop forever
2507 * on our EAGAINs.
2508 */
b9fab919 2509 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2510 ret = -EIO;
c8c42864 2511 free_extent_buffer(tmp);
c871b0f2
LB
2512 } else {
2513 ret = PTR_ERR(tmp);
76a05b35 2514 }
cde38fb8
LB
2515
2516 btrfs_release_path(p);
76a05b35 2517 return ret;
c8c42864
CM
2518}
2519
2520/*
2521 * helper function for btrfs_search_slot. This does all of the checks
2522 * for node-level blocks and does any balancing required based on
2523 * the ins_len.
2524 *
2525 * If no extra work was required, zero is returned. If we had to
2526 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2527 * start over
2528 */
2529static int
2530setup_nodes_for_search(struct btrfs_trans_handle *trans,
2531 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2532 struct extent_buffer *b, int level, int ins_len,
2533 int *write_lock_level)
c8c42864 2534{
0b246afa 2535 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2536 int ret;
0b246afa 2537
c8c42864 2538 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2539 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2540 int sret;
2541
bd681513
CM
2542 if (*write_lock_level < level + 1) {
2543 *write_lock_level = level + 1;
2544 btrfs_release_path(p);
2545 goto again;
2546 }
2547
c8c42864 2548 btrfs_set_path_blocking(p);
2ff7e61e 2549 reada_for_balance(fs_info, p, level);
c8c42864 2550 sret = split_node(trans, root, p, level);
bd681513 2551 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2552
2553 BUG_ON(sret > 0);
2554 if (sret) {
2555 ret = sret;
2556 goto done;
2557 }
2558 b = p->nodes[level];
2559 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2560 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2561 int sret;
2562
bd681513
CM
2563 if (*write_lock_level < level + 1) {
2564 *write_lock_level = level + 1;
2565 btrfs_release_path(p);
2566 goto again;
2567 }
2568
c8c42864 2569 btrfs_set_path_blocking(p);
2ff7e61e 2570 reada_for_balance(fs_info, p, level);
c8c42864 2571 sret = balance_level(trans, root, p, level);
bd681513 2572 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2573
2574 if (sret) {
2575 ret = sret;
2576 goto done;
2577 }
2578 b = p->nodes[level];
2579 if (!b) {
b3b4aa74 2580 btrfs_release_path(p);
c8c42864
CM
2581 goto again;
2582 }
2583 BUG_ON(btrfs_header_nritems(b) == 1);
2584 }
2585 return 0;
2586
2587again:
2588 ret = -EAGAIN;
2589done:
2590 return ret;
2591}
2592
d7396f07 2593static void key_search_validate(struct extent_buffer *b,
310712b2 2594 const struct btrfs_key *key,
d7396f07
FDBM
2595 int level)
2596{
2597#ifdef CONFIG_BTRFS_ASSERT
2598 struct btrfs_disk_key disk_key;
2599
2600 btrfs_cpu_key_to_disk(&disk_key, key);
2601
2602 if (level == 0)
2603 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604 offsetof(struct btrfs_leaf, items[0].key),
2605 sizeof(disk_key)));
2606 else
2607 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2608 offsetof(struct btrfs_node, ptrs[0].key),
2609 sizeof(disk_key)));
2610#endif
2611}
2612
310712b2 2613static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2614 int level, int *prev_cmp, int *slot)
2615{
2616 if (*prev_cmp != 0) {
2617 *prev_cmp = bin_search(b, key, level, slot);
2618 return *prev_cmp;
2619 }
2620
2621 key_search_validate(b, key, level);
2622 *slot = 0;
2623
2624 return 0;
2625}
2626
381cf658 2627int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2628 u64 iobjectid, u64 ioff, u8 key_type,
2629 struct btrfs_key *found_key)
2630{
2631 int ret;
2632 struct btrfs_key key;
2633 struct extent_buffer *eb;
381cf658
DS
2634
2635 ASSERT(path);
1d4c08e0 2636 ASSERT(found_key);
e33d5c3d
KN
2637
2638 key.type = key_type;
2639 key.objectid = iobjectid;
2640 key.offset = ioff;
2641
2642 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2643 if (ret < 0)
e33d5c3d
KN
2644 return ret;
2645
2646 eb = path->nodes[0];
2647 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2648 ret = btrfs_next_leaf(fs_root, path);
2649 if (ret)
2650 return ret;
2651 eb = path->nodes[0];
2652 }
2653
2654 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2655 if (found_key->type != key.type ||
2656 found_key->objectid != key.objectid)
2657 return 1;
2658
2659 return 0;
2660}
2661
74123bd7
CM
2662/*
2663 * look for key in the tree. path is filled in with nodes along the way
2664 * if key is found, we return zero and you can find the item in the leaf
2665 * level of the path (level 0)
2666 *
2667 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2668 * be inserted, and 1 is returned. If there are other errors during the
2669 * search a negative error number is returned.
97571fd0
CM
2670 *
2671 * if ins_len > 0, nodes and leaves will be split as we walk down the
2672 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2673 * possible)
74123bd7 2674 */
310712b2
OS
2675int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2676 const struct btrfs_key *key, struct btrfs_path *p,
2677 int ins_len, int cow)
be0e5c09 2678{
0b246afa 2679 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2680 struct extent_buffer *b;
be0e5c09
CM
2681 int slot;
2682 int ret;
33c66f43 2683 int err;
be0e5c09 2684 int level;
925baedd 2685 int lowest_unlock = 1;
bd681513
CM
2686 int root_lock;
2687 /* everything at write_lock_level or lower must be write locked */
2688 int write_lock_level = 0;
9f3a7427 2689 u8 lowest_level = 0;
f7c79f30 2690 int min_write_lock_level;
d7396f07 2691 int prev_cmp;
9f3a7427 2692
6702ed49 2693 lowest_level = p->lowest_level;
323ac95b 2694 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2695 WARN_ON(p->nodes[0] != NULL);
eb653de1 2696 BUG_ON(!cow && ins_len);
25179201 2697
bd681513 2698 if (ins_len < 0) {
925baedd 2699 lowest_unlock = 2;
65b51a00 2700
bd681513
CM
2701 /* when we are removing items, we might have to go up to level
2702 * two as we update tree pointers Make sure we keep write
2703 * for those levels as well
2704 */
2705 write_lock_level = 2;
2706 } else if (ins_len > 0) {
2707 /*
2708 * for inserting items, make sure we have a write lock on
2709 * level 1 so we can update keys
2710 */
2711 write_lock_level = 1;
2712 }
2713
2714 if (!cow)
2715 write_lock_level = -1;
2716
09a2a8f9 2717 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2718 write_lock_level = BTRFS_MAX_LEVEL;
2719
f7c79f30
CM
2720 min_write_lock_level = write_lock_level;
2721
bb803951 2722again:
d7396f07 2723 prev_cmp = -1;
bd681513
CM
2724 /*
2725 * we try very hard to do read locks on the root
2726 */
2727 root_lock = BTRFS_READ_LOCK;
2728 level = 0;
5d4f98a2 2729 if (p->search_commit_root) {
bd681513
CM
2730 /*
2731 * the commit roots are read only
2732 * so we always do read locks
2733 */
3f8a18cc 2734 if (p->need_commit_sem)
0b246afa 2735 down_read(&fs_info->commit_root_sem);
5d4f98a2
YZ
2736 b = root->commit_root;
2737 extent_buffer_get(b);
bd681513 2738 level = btrfs_header_level(b);
3f8a18cc 2739 if (p->need_commit_sem)
0b246afa 2740 up_read(&fs_info->commit_root_sem);
5d4f98a2 2741 if (!p->skip_locking)
bd681513 2742 btrfs_tree_read_lock(b);
5d4f98a2 2743 } else {
bd681513 2744 if (p->skip_locking) {
5d4f98a2 2745 b = btrfs_root_node(root);
bd681513
CM
2746 level = btrfs_header_level(b);
2747 } else {
2748 /* we don't know the level of the root node
2749 * until we actually have it read locked
2750 */
2751 b = btrfs_read_lock_root_node(root);
2752 level = btrfs_header_level(b);
2753 if (level <= write_lock_level) {
2754 /* whoops, must trade for write lock */
2755 btrfs_tree_read_unlock(b);
2756 free_extent_buffer(b);
2757 b = btrfs_lock_root_node(root);
2758 root_lock = BTRFS_WRITE_LOCK;
2759
2760 /* the level might have changed, check again */
2761 level = btrfs_header_level(b);
2762 }
2763 }
5d4f98a2 2764 }
bd681513
CM
2765 p->nodes[level] = b;
2766 if (!p->skip_locking)
2767 p->locks[level] = root_lock;
925baedd 2768
eb60ceac 2769 while (b) {
5f39d397 2770 level = btrfs_header_level(b);
65b51a00
CM
2771
2772 /*
2773 * setup the path here so we can release it under lock
2774 * contention with the cow code
2775 */
02217ed2 2776 if (cow) {
96369112
NB
2777 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2778
c8c42864
CM
2779 /*
2780 * if we don't really need to cow this block
2781 * then we don't want to set the path blocking,
2782 * so we test it here
2783 */
64c12921
JM
2784 if (!should_cow_block(trans, root, b)) {
2785 trans->dirty = true;
65b51a00 2786 goto cow_done;
64c12921 2787 }
5d4f98a2 2788
bd681513
CM
2789 /*
2790 * must have write locks on this node and the
2791 * parent
2792 */
5124e00e
JB
2793 if (level > write_lock_level ||
2794 (level + 1 > write_lock_level &&
2795 level + 1 < BTRFS_MAX_LEVEL &&
2796 p->nodes[level + 1])) {
bd681513
CM
2797 write_lock_level = level + 1;
2798 btrfs_release_path(p);
2799 goto again;
2800 }
2801
160f4089 2802 btrfs_set_path_blocking(p);
96369112
NB
2803 if (last_level)
2804 err = btrfs_cow_block(trans, root, b, NULL, 0,
2805 &b);
2806 else
2807 err = btrfs_cow_block(trans, root, b,
2808 p->nodes[level + 1],
2809 p->slots[level + 1], &b);
33c66f43 2810 if (err) {
33c66f43 2811 ret = err;
65b51a00 2812 goto done;
54aa1f4d 2813 }
02217ed2 2814 }
65b51a00 2815cow_done:
eb60ceac 2816 p->nodes[level] = b;
bd681513 2817 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2818
2819 /*
2820 * we have a lock on b and as long as we aren't changing
2821 * the tree, there is no way to for the items in b to change.
2822 * It is safe to drop the lock on our parent before we
2823 * go through the expensive btree search on b.
2824 *
eb653de1
FDBM
2825 * If we're inserting or deleting (ins_len != 0), then we might
2826 * be changing slot zero, which may require changing the parent.
2827 * So, we can't drop the lock until after we know which slot
2828 * we're operating on.
b4ce94de 2829 */
eb653de1
FDBM
2830 if (!ins_len && !p->keep_locks) {
2831 int u = level + 1;
2832
2833 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2834 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2835 p->locks[u] = 0;
2836 }
2837 }
b4ce94de 2838
d7396f07 2839 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2840 if (ret < 0)
2841 goto done;
b4ce94de 2842
5f39d397 2843 if (level != 0) {
33c66f43
YZ
2844 int dec = 0;
2845 if (ret && slot > 0) {
2846 dec = 1;
be0e5c09 2847 slot -= 1;
33c66f43 2848 }
be0e5c09 2849 p->slots[level] = slot;
33c66f43 2850 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2851 ins_len, &write_lock_level);
33c66f43 2852 if (err == -EAGAIN)
c8c42864 2853 goto again;
33c66f43
YZ
2854 if (err) {
2855 ret = err;
c8c42864 2856 goto done;
33c66f43 2857 }
c8c42864
CM
2858 b = p->nodes[level];
2859 slot = p->slots[level];
b4ce94de 2860
bd681513
CM
2861 /*
2862 * slot 0 is special, if we change the key
2863 * we have to update the parent pointer
2864 * which means we must have a write lock
2865 * on the parent
2866 */
eb653de1 2867 if (slot == 0 && ins_len &&
bd681513
CM
2868 write_lock_level < level + 1) {
2869 write_lock_level = level + 1;
2870 btrfs_release_path(p);
2871 goto again;
2872 }
2873
f7c79f30
CM
2874 unlock_up(p, level, lowest_unlock,
2875 min_write_lock_level, &write_lock_level);
f9efa9c7 2876
925baedd 2877 if (level == lowest_level) {
33c66f43
YZ
2878 if (dec)
2879 p->slots[level]++;
5b21f2ed 2880 goto done;
925baedd 2881 }
ca7a79ad 2882
d07b8528 2883 err = read_block_for_search(root, p, &b, level,
cda79c54 2884 slot, key);
33c66f43 2885 if (err == -EAGAIN)
c8c42864 2886 goto again;
33c66f43
YZ
2887 if (err) {
2888 ret = err;
76a05b35 2889 goto done;
33c66f43 2890 }
76a05b35 2891
b4ce94de 2892 if (!p->skip_locking) {
bd681513
CM
2893 level = btrfs_header_level(b);
2894 if (level <= write_lock_level) {
2895 err = btrfs_try_tree_write_lock(b);
2896 if (!err) {
2897 btrfs_set_path_blocking(p);
2898 btrfs_tree_lock(b);
2899 btrfs_clear_path_blocking(p, b,
2900 BTRFS_WRITE_LOCK);
2901 }
2902 p->locks[level] = BTRFS_WRITE_LOCK;
2903 } else {
f82c458a 2904 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2905 if (!err) {
2906 btrfs_set_path_blocking(p);
2907 btrfs_tree_read_lock(b);
2908 btrfs_clear_path_blocking(p, b,
2909 BTRFS_READ_LOCK);
2910 }
2911 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2912 }
bd681513 2913 p->nodes[level] = b;
b4ce94de 2914 }
be0e5c09
CM
2915 } else {
2916 p->slots[level] = slot;
87b29b20 2917 if (ins_len > 0 &&
2ff7e61e 2918 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2919 if (write_lock_level < 1) {
2920 write_lock_level = 1;
2921 btrfs_release_path(p);
2922 goto again;
2923 }
2924
b4ce94de 2925 btrfs_set_path_blocking(p);
33c66f43
YZ
2926 err = split_leaf(trans, root, key,
2927 p, ins_len, ret == 0);
bd681513 2928 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2929
33c66f43
YZ
2930 BUG_ON(err > 0);
2931 if (err) {
2932 ret = err;
65b51a00
CM
2933 goto done;
2934 }
5c680ed6 2935 }
459931ec 2936 if (!p->search_for_split)
f7c79f30
CM
2937 unlock_up(p, level, lowest_unlock,
2938 min_write_lock_level, &write_lock_level);
65b51a00 2939 goto done;
be0e5c09
CM
2940 }
2941 }
65b51a00
CM
2942 ret = 1;
2943done:
b4ce94de
CM
2944 /*
2945 * we don't really know what they plan on doing with the path
2946 * from here on, so for now just mark it as blocking
2947 */
b9473439
CM
2948 if (!p->leave_spinning)
2949 btrfs_set_path_blocking(p);
5f5bc6b1 2950 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2951 btrfs_release_path(p);
65b51a00 2952 return ret;
be0e5c09
CM
2953}
2954
5d9e75c4
JS
2955/*
2956 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2957 * current state of the tree together with the operations recorded in the tree
2958 * modification log to search for the key in a previous version of this tree, as
2959 * denoted by the time_seq parameter.
2960 *
2961 * Naturally, there is no support for insert, delete or cow operations.
2962 *
2963 * The resulting path and return value will be set up as if we called
2964 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2965 */
310712b2 2966int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2967 struct btrfs_path *p, u64 time_seq)
2968{
0b246afa 2969 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2970 struct extent_buffer *b;
2971 int slot;
2972 int ret;
2973 int err;
2974 int level;
2975 int lowest_unlock = 1;
2976 u8 lowest_level = 0;
d4b4087c 2977 int prev_cmp = -1;
5d9e75c4
JS
2978
2979 lowest_level = p->lowest_level;
2980 WARN_ON(p->nodes[0] != NULL);
2981
2982 if (p->search_commit_root) {
2983 BUG_ON(time_seq);
2984 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2985 }
2986
2987again:
5d9e75c4 2988 b = get_old_root(root, time_seq);
5d9e75c4 2989 level = btrfs_header_level(b);
5d9e75c4
JS
2990 p->locks[level] = BTRFS_READ_LOCK;
2991
2992 while (b) {
2993 level = btrfs_header_level(b);
2994 p->nodes[level] = b;
2995 btrfs_clear_path_blocking(p, NULL, 0);
2996
2997 /*
2998 * we have a lock on b and as long as we aren't changing
2999 * the tree, there is no way to for the items in b to change.
3000 * It is safe to drop the lock on our parent before we
3001 * go through the expensive btree search on b.
3002 */
3003 btrfs_unlock_up_safe(p, level + 1);
3004
d4b4087c 3005 /*
01327610 3006 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
3007 * time.
3008 */
3009 prev_cmp = -1;
d7396f07 3010 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
3011
3012 if (level != 0) {
3013 int dec = 0;
3014 if (ret && slot > 0) {
3015 dec = 1;
3016 slot -= 1;
3017 }
3018 p->slots[level] = slot;
3019 unlock_up(p, level, lowest_unlock, 0, NULL);
3020
3021 if (level == lowest_level) {
3022 if (dec)
3023 p->slots[level]++;
3024 goto done;
3025 }
3026
d07b8528 3027 err = read_block_for_search(root, p, &b, level,
cda79c54 3028 slot, key);
5d9e75c4
JS
3029 if (err == -EAGAIN)
3030 goto again;
3031 if (err) {
3032 ret = err;
3033 goto done;
3034 }
3035
3036 level = btrfs_header_level(b);
f82c458a 3037 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3038 if (!err) {
3039 btrfs_set_path_blocking(p);
3040 btrfs_tree_read_lock(b);
3041 btrfs_clear_path_blocking(p, b,
3042 BTRFS_READ_LOCK);
3043 }
0b246afa 3044 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3045 if (!b) {
3046 ret = -ENOMEM;
3047 goto done;
3048 }
5d9e75c4
JS
3049 p->locks[level] = BTRFS_READ_LOCK;
3050 p->nodes[level] = b;
5d9e75c4
JS
3051 } else {
3052 p->slots[level] = slot;
3053 unlock_up(p, level, lowest_unlock, 0, NULL);
3054 goto done;
3055 }
3056 }
3057 ret = 1;
3058done:
3059 if (!p->leave_spinning)
3060 btrfs_set_path_blocking(p);
3061 if (ret < 0)
3062 btrfs_release_path(p);
3063
3064 return ret;
3065}
3066
2f38b3e1
AJ
3067/*
3068 * helper to use instead of search slot if no exact match is needed but
3069 * instead the next or previous item should be returned.
3070 * When find_higher is true, the next higher item is returned, the next lower
3071 * otherwise.
3072 * When return_any and find_higher are both true, and no higher item is found,
3073 * return the next lower instead.
3074 * When return_any is true and find_higher is false, and no lower item is found,
3075 * return the next higher instead.
3076 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3077 * < 0 on error
3078 */
3079int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3080 const struct btrfs_key *key,
3081 struct btrfs_path *p, int find_higher,
3082 int return_any)
2f38b3e1
AJ
3083{
3084 int ret;
3085 struct extent_buffer *leaf;
3086
3087again:
3088 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3089 if (ret <= 0)
3090 return ret;
3091 /*
3092 * a return value of 1 means the path is at the position where the
3093 * item should be inserted. Normally this is the next bigger item,
3094 * but in case the previous item is the last in a leaf, path points
3095 * to the first free slot in the previous leaf, i.e. at an invalid
3096 * item.
3097 */
3098 leaf = p->nodes[0];
3099
3100 if (find_higher) {
3101 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3102 ret = btrfs_next_leaf(root, p);
3103 if (ret <= 0)
3104 return ret;
3105 if (!return_any)
3106 return 1;
3107 /*
3108 * no higher item found, return the next
3109 * lower instead
3110 */
3111 return_any = 0;
3112 find_higher = 0;
3113 btrfs_release_path(p);
3114 goto again;
3115 }
3116 } else {
e6793769
AJ
3117 if (p->slots[0] == 0) {
3118 ret = btrfs_prev_leaf(root, p);
3119 if (ret < 0)
3120 return ret;
3121 if (!ret) {
23c6bf6a
FDBM
3122 leaf = p->nodes[0];
3123 if (p->slots[0] == btrfs_header_nritems(leaf))
3124 p->slots[0]--;
e6793769 3125 return 0;
2f38b3e1 3126 }
e6793769
AJ
3127 if (!return_any)
3128 return 1;
3129 /*
3130 * no lower item found, return the next
3131 * higher instead
3132 */
3133 return_any = 0;
3134 find_higher = 1;
3135 btrfs_release_path(p);
3136 goto again;
3137 } else {
2f38b3e1
AJ
3138 --p->slots[0];
3139 }
3140 }
3141 return 0;
3142}
3143
74123bd7
CM
3144/*
3145 * adjust the pointers going up the tree, starting at level
3146 * making sure the right key of each node is points to 'key'.
3147 * This is used after shifting pointers to the left, so it stops
3148 * fixing up pointers when a given leaf/node is not in slot 0 of the
3149 * higher levels
aa5d6bed 3150 *
74123bd7 3151 */
b7a0365e
DD
3152static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3153 struct btrfs_path *path,
143bede5 3154 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3155{
3156 int i;
5f39d397
CM
3157 struct extent_buffer *t;
3158
234b63a0 3159 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3160 int tslot = path->slots[i];
eb60ceac 3161 if (!path->nodes[i])
be0e5c09 3162 break;
5f39d397 3163 t = path->nodes[i];
b7a0365e 3164 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
5f39d397 3165 btrfs_set_node_key(t, key, tslot);
d6025579 3166 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3167 if (tslot != 0)
3168 break;
3169 }
3170}
3171
31840ae1
ZY
3172/*
3173 * update item key.
3174 *
3175 * This function isn't completely safe. It's the caller's responsibility
3176 * that the new key won't break the order
3177 */
b7a0365e
DD
3178void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3179 struct btrfs_path *path,
310712b2 3180 const struct btrfs_key *new_key)
31840ae1
ZY
3181{
3182 struct btrfs_disk_key disk_key;
3183 struct extent_buffer *eb;
3184 int slot;
3185
3186 eb = path->nodes[0];
3187 slot = path->slots[0];
3188 if (slot > 0) {
3189 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3190 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3191 }
3192 if (slot < btrfs_header_nritems(eb) - 1) {
3193 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3194 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3195 }
3196
3197 btrfs_cpu_key_to_disk(&disk_key, new_key);
3198 btrfs_set_item_key(eb, &disk_key, slot);
3199 btrfs_mark_buffer_dirty(eb);
3200 if (slot == 0)
b7a0365e 3201 fixup_low_keys(fs_info, path, &disk_key, 1);
31840ae1
ZY
3202}
3203
74123bd7
CM
3204/*
3205 * try to push data from one node into the next node left in the
79f95c82 3206 * tree.
aa5d6bed
CM
3207 *
3208 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3209 * error, and > 0 if there was no room in the left hand block.
74123bd7 3210 */
98ed5174 3211static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3212 struct btrfs_fs_info *fs_info,
3213 struct extent_buffer *dst,
971a1f66 3214 struct extent_buffer *src, int empty)
be0e5c09 3215{
be0e5c09 3216 int push_items = 0;
bb803951
CM
3217 int src_nritems;
3218 int dst_nritems;
aa5d6bed 3219 int ret = 0;
be0e5c09 3220
5f39d397
CM
3221 src_nritems = btrfs_header_nritems(src);
3222 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3223 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3224 WARN_ON(btrfs_header_generation(src) != trans->transid);
3225 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3226
bce4eae9 3227 if (!empty && src_nritems <= 8)
971a1f66
CM
3228 return 1;
3229
d397712b 3230 if (push_items <= 0)
be0e5c09
CM
3231 return 1;
3232
bce4eae9 3233 if (empty) {
971a1f66 3234 push_items = min(src_nritems, push_items);
bce4eae9
CM
3235 if (push_items < src_nritems) {
3236 /* leave at least 8 pointers in the node if
3237 * we aren't going to empty it
3238 */
3239 if (src_nritems - push_items < 8) {
3240 if (push_items <= 8)
3241 return 1;
3242 push_items -= 8;
3243 }
3244 }
3245 } else
3246 push_items = min(src_nritems - 8, push_items);
79f95c82 3247
0b246afa 3248 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3249 push_items);
3250 if (ret) {
66642832 3251 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3252 return ret;
3253 }
5f39d397
CM
3254 copy_extent_buffer(dst, src,
3255 btrfs_node_key_ptr_offset(dst_nritems),
3256 btrfs_node_key_ptr_offset(0),
d397712b 3257 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3258
bb803951 3259 if (push_items < src_nritems) {
57911b8b
JS
3260 /*
3261 * don't call tree_mod_log_eb_move here, key removal was already
3262 * fully logged by tree_mod_log_eb_copy above.
3263 */
5f39d397
CM
3264 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3265 btrfs_node_key_ptr_offset(push_items),
3266 (src_nritems - push_items) *
3267 sizeof(struct btrfs_key_ptr));
3268 }
3269 btrfs_set_header_nritems(src, src_nritems - push_items);
3270 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3271 btrfs_mark_buffer_dirty(src);
3272 btrfs_mark_buffer_dirty(dst);
31840ae1 3273
79f95c82
CM
3274 return ret;
3275}
3276
3277/*
3278 * try to push data from one node into the next node right in the
3279 * tree.
3280 *
3281 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3282 * error, and > 0 if there was no room in the right hand block.
3283 *
3284 * this will only push up to 1/2 the contents of the left node over
3285 */
5f39d397 3286static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3287 struct btrfs_fs_info *fs_info,
5f39d397
CM
3288 struct extent_buffer *dst,
3289 struct extent_buffer *src)
79f95c82 3290{
79f95c82
CM
3291 int push_items = 0;
3292 int max_push;
3293 int src_nritems;
3294 int dst_nritems;
3295 int ret = 0;
79f95c82 3296
7bb86316
CM
3297 WARN_ON(btrfs_header_generation(src) != trans->transid);
3298 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3299
5f39d397
CM
3300 src_nritems = btrfs_header_nritems(src);
3301 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3302 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3303 if (push_items <= 0)
79f95c82 3304 return 1;
bce4eae9 3305
d397712b 3306 if (src_nritems < 4)
bce4eae9 3307 return 1;
79f95c82
CM
3308
3309 max_push = src_nritems / 2 + 1;
3310 /* don't try to empty the node */
d397712b 3311 if (max_push >= src_nritems)
79f95c82 3312 return 1;
252c38f0 3313
79f95c82
CM
3314 if (max_push < push_items)
3315 push_items = max_push;
3316
0b246afa 3317 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3318 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3319 btrfs_node_key_ptr_offset(0),
3320 (dst_nritems) *
3321 sizeof(struct btrfs_key_ptr));
d6025579 3322
0b246afa 3323 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3324 src_nritems - push_items, push_items);
3325 if (ret) {
66642832 3326 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3327 return ret;
3328 }
5f39d397
CM
3329 copy_extent_buffer(dst, src,
3330 btrfs_node_key_ptr_offset(0),
3331 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3332 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3333
5f39d397
CM
3334 btrfs_set_header_nritems(src, src_nritems - push_items);
3335 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3336
5f39d397
CM
3337 btrfs_mark_buffer_dirty(src);
3338 btrfs_mark_buffer_dirty(dst);
31840ae1 3339
aa5d6bed 3340 return ret;
be0e5c09
CM
3341}
3342
97571fd0
CM
3343/*
3344 * helper function to insert a new root level in the tree.
3345 * A new node is allocated, and a single item is inserted to
3346 * point to the existing root
aa5d6bed
CM
3347 *
3348 * returns zero on success or < 0 on failure.
97571fd0 3349 */
d397712b 3350static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3351 struct btrfs_root *root,
fdd99c72 3352 struct btrfs_path *path, int level)
5c680ed6 3353{
0b246afa 3354 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3355 u64 lower_gen;
5f39d397
CM
3356 struct extent_buffer *lower;
3357 struct extent_buffer *c;
925baedd 3358 struct extent_buffer *old;
5f39d397 3359 struct btrfs_disk_key lower_key;
5c680ed6
CM
3360
3361 BUG_ON(path->nodes[level]);
3362 BUG_ON(path->nodes[level-1] != root->node);
3363
7bb86316
CM
3364 lower = path->nodes[level-1];
3365 if (level == 1)
3366 btrfs_item_key(lower, &lower_key, 0);
3367 else
3368 btrfs_node_key(lower, &lower_key, 0);
3369
4d75f8a9
DS
3370 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3371 &lower_key, level, root->node->start, 0);
5f39d397
CM
3372 if (IS_ERR(c))
3373 return PTR_ERR(c);
925baedd 3374
0b246afa 3375 root_add_used(root, fs_info->nodesize);
f0486c68 3376
b159fa28 3377 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
5f39d397
CM
3378 btrfs_set_header_nritems(c, 1);
3379 btrfs_set_header_level(c, level);
db94535d 3380 btrfs_set_header_bytenr(c, c->start);
5f39d397 3381 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3382 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3383 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3384
0b246afa
JM
3385 write_extent_buffer_fsid(c, fs_info->fsid);
3386 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
e17cade2 3387
5f39d397 3388 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3389 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3390 lower_gen = btrfs_header_generation(lower);
31840ae1 3391 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3392
3393 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3394
5f39d397 3395 btrfs_mark_buffer_dirty(c);
d5719762 3396
925baedd 3397 old = root->node;
fdd99c72 3398 tree_mod_log_set_root_pointer(root, c, 0);
240f62c8 3399 rcu_assign_pointer(root->node, c);
925baedd
CM
3400
3401 /* the super has an extra ref to root->node */
3402 free_extent_buffer(old);
3403
0b86a832 3404 add_root_to_dirty_list(root);
5f39d397
CM
3405 extent_buffer_get(c);
3406 path->nodes[level] = c;
95449a16 3407 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3408 path->slots[level] = 0;
3409 return 0;
3410}
3411
74123bd7
CM
3412/*
3413 * worker function to insert a single pointer in a node.
3414 * the node should have enough room for the pointer already
97571fd0 3415 *
74123bd7
CM
3416 * slot and level indicate where you want the key to go, and
3417 * blocknr is the block the key points to.
3418 */
143bede5 3419static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3420 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3421 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3422 int slot, int level)
74123bd7 3423{
5f39d397 3424 struct extent_buffer *lower;
74123bd7 3425 int nritems;
f3ea38da 3426 int ret;
5c680ed6
CM
3427
3428 BUG_ON(!path->nodes[level]);
f0486c68 3429 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3430 lower = path->nodes[level];
3431 nritems = btrfs_header_nritems(lower);
c293498b 3432 BUG_ON(slot > nritems);
0b246afa 3433 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3434 if (slot != nritems) {
c3e06965 3435 if (level)
0b246afa 3436 tree_mod_log_eb_move(fs_info, lower, slot + 1,
f3ea38da 3437 slot, nritems - slot);
5f39d397
CM
3438 memmove_extent_buffer(lower,
3439 btrfs_node_key_ptr_offset(slot + 1),
3440 btrfs_node_key_ptr_offset(slot),
d6025579 3441 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3442 }
c3e06965 3443 if (level) {
0b246afa 3444 ret = tree_mod_log_insert_key(fs_info, lower, slot,
c8cc6341 3445 MOD_LOG_KEY_ADD, GFP_NOFS);
f3ea38da
JS
3446 BUG_ON(ret < 0);
3447 }
5f39d397 3448 btrfs_set_node_key(lower, key, slot);
db94535d 3449 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3450 WARN_ON(trans->transid == 0);
3451 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3452 btrfs_set_header_nritems(lower, nritems + 1);
3453 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3454}
3455
97571fd0
CM
3456/*
3457 * split the node at the specified level in path in two.
3458 * The path is corrected to point to the appropriate node after the split
3459 *
3460 * Before splitting this tries to make some room in the node by pushing
3461 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3462 *
3463 * returns 0 on success and < 0 on failure
97571fd0 3464 */
e02119d5
CM
3465static noinline int split_node(struct btrfs_trans_handle *trans,
3466 struct btrfs_root *root,
3467 struct btrfs_path *path, int level)
be0e5c09 3468{
0b246afa 3469 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3470 struct extent_buffer *c;
3471 struct extent_buffer *split;
3472 struct btrfs_disk_key disk_key;
be0e5c09 3473 int mid;
5c680ed6 3474 int ret;
7518a238 3475 u32 c_nritems;
eb60ceac 3476
5f39d397 3477 c = path->nodes[level];
7bb86316 3478 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3479 if (c == root->node) {
d9abbf1c 3480 /*
90f8d62e
JS
3481 * trying to split the root, lets make a new one
3482 *
fdd99c72 3483 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3484 * insert_new_root, because that root buffer will be kept as a
3485 * normal node. We are going to log removal of half of the
3486 * elements below with tree_mod_log_eb_copy. We're holding a
3487 * tree lock on the buffer, which is why we cannot race with
3488 * other tree_mod_log users.
d9abbf1c 3489 */
fdd99c72 3490 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3491 if (ret)
3492 return ret;
b3612421 3493 } else {
e66f709b 3494 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3495 c = path->nodes[level];
3496 if (!ret && btrfs_header_nritems(c) <
0b246afa 3497 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3498 return 0;
54aa1f4d
CM
3499 if (ret < 0)
3500 return ret;
be0e5c09 3501 }
e66f709b 3502
5f39d397 3503 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3504 mid = (c_nritems + 1) / 2;
3505 btrfs_node_key(c, &disk_key, mid);
7bb86316 3506
4d75f8a9
DS
3507 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3508 &disk_key, level, c->start, 0);
5f39d397
CM
3509 if (IS_ERR(split))
3510 return PTR_ERR(split);
3511
0b246afa 3512 root_add_used(root, fs_info->nodesize);
f0486c68 3513
b159fa28 3514 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
5f39d397 3515 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3516 btrfs_set_header_bytenr(split, split->start);
5f39d397 3517 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3518 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397 3519 btrfs_set_header_owner(split, root->root_key.objectid);
0b246afa
JM
3520 write_extent_buffer_fsid(split, fs_info->fsid);
3521 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
54aa1f4d 3522
0b246afa 3523 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3524 if (ret) {
66642832 3525 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3526 return ret;
3527 }
5f39d397
CM
3528 copy_extent_buffer(split, c,
3529 btrfs_node_key_ptr_offset(0),
3530 btrfs_node_key_ptr_offset(mid),
3531 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3532 btrfs_set_header_nritems(split, c_nritems - mid);
3533 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3534 ret = 0;
3535
5f39d397
CM
3536 btrfs_mark_buffer_dirty(c);
3537 btrfs_mark_buffer_dirty(split);
3538
2ff7e61e 3539 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3540 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3541
5de08d7d 3542 if (path->slots[level] >= mid) {
5c680ed6 3543 path->slots[level] -= mid;
925baedd 3544 btrfs_tree_unlock(c);
5f39d397
CM
3545 free_extent_buffer(c);
3546 path->nodes[level] = split;
5c680ed6
CM
3547 path->slots[level + 1] += 1;
3548 } else {
925baedd 3549 btrfs_tree_unlock(split);
5f39d397 3550 free_extent_buffer(split);
be0e5c09 3551 }
aa5d6bed 3552 return ret;
be0e5c09
CM
3553}
3554
74123bd7
CM
3555/*
3556 * how many bytes are required to store the items in a leaf. start
3557 * and nr indicate which items in the leaf to check. This totals up the
3558 * space used both by the item structs and the item data
3559 */
5f39d397 3560static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3561{
41be1f3b
JB
3562 struct btrfs_item *start_item;
3563 struct btrfs_item *end_item;
3564 struct btrfs_map_token token;
be0e5c09 3565 int data_len;
5f39d397 3566 int nritems = btrfs_header_nritems(l);
d4dbff95 3567 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3568
3569 if (!nr)
3570 return 0;
41be1f3b 3571 btrfs_init_map_token(&token);
dd3cc16b
RK
3572 start_item = btrfs_item_nr(start);
3573 end_item = btrfs_item_nr(end);
41be1f3b
JB
3574 data_len = btrfs_token_item_offset(l, start_item, &token) +
3575 btrfs_token_item_size(l, start_item, &token);
3576 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3577 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3578 WARN_ON(data_len < 0);
be0e5c09
CM
3579 return data_len;
3580}
3581
d4dbff95
CM
3582/*
3583 * The space between the end of the leaf items and
3584 * the start of the leaf data. IOW, how much room
3585 * the leaf has left for both items and data
3586 */
2ff7e61e 3587noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3588 struct extent_buffer *leaf)
d4dbff95 3589{
5f39d397
CM
3590 int nritems = btrfs_header_nritems(leaf);
3591 int ret;
0b246afa
JM
3592
3593 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3594 if (ret < 0) {
0b246afa
JM
3595 btrfs_crit(fs_info,
3596 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3597 ret,
3598 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3599 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3600 }
3601 return ret;
d4dbff95
CM
3602}
3603
99d8f83c
CM
3604/*
3605 * min slot controls the lowest index we're willing to push to the
3606 * right. We'll push up to and including min_slot, but no lower
3607 */
1e47eef2 3608static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
44871b1b
CM
3609 struct btrfs_path *path,
3610 int data_size, int empty,
3611 struct extent_buffer *right,
99d8f83c
CM
3612 int free_space, u32 left_nritems,
3613 u32 min_slot)
00ec4c51 3614{
5f39d397 3615 struct extent_buffer *left = path->nodes[0];
44871b1b 3616 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3617 struct btrfs_map_token token;
5f39d397 3618 struct btrfs_disk_key disk_key;
00ec4c51 3619 int slot;
34a38218 3620 u32 i;
00ec4c51
CM
3621 int push_space = 0;
3622 int push_items = 0;
0783fcfc 3623 struct btrfs_item *item;
34a38218 3624 u32 nr;
7518a238 3625 u32 right_nritems;
5f39d397 3626 u32 data_end;
db94535d 3627 u32 this_item_size;
00ec4c51 3628
cfed81a0
CM
3629 btrfs_init_map_token(&token);
3630
34a38218
CM
3631 if (empty)
3632 nr = 0;
3633 else
99d8f83c 3634 nr = max_t(u32, 1, min_slot);
34a38218 3635
31840ae1 3636 if (path->slots[0] >= left_nritems)
87b29b20 3637 push_space += data_size;
31840ae1 3638
44871b1b 3639 slot = path->slots[1];
34a38218
CM
3640 i = left_nritems - 1;
3641 while (i >= nr) {
dd3cc16b 3642 item = btrfs_item_nr(i);
db94535d 3643
31840ae1
ZY
3644 if (!empty && push_items > 0) {
3645 if (path->slots[0] > i)
3646 break;
3647 if (path->slots[0] == i) {
2ff7e61e 3648 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3649 if (space + push_space * 2 > free_space)
3650 break;
3651 }
3652 }
3653
00ec4c51 3654 if (path->slots[0] == i)
87b29b20 3655 push_space += data_size;
db94535d 3656
db94535d
CM
3657 this_item_size = btrfs_item_size(left, item);
3658 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3659 break;
31840ae1 3660
00ec4c51 3661 push_items++;
db94535d 3662 push_space += this_item_size + sizeof(*item);
34a38218
CM
3663 if (i == 0)
3664 break;
3665 i--;
db94535d 3666 }
5f39d397 3667
925baedd
CM
3668 if (push_items == 0)
3669 goto out_unlock;
5f39d397 3670
6c1500f2 3671 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3672
00ec4c51 3673 /* push left to right */
5f39d397 3674 right_nritems = btrfs_header_nritems(right);
34a38218 3675
5f39d397 3676 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3677 push_space -= leaf_data_end(fs_info, left);
5f39d397 3678
00ec4c51 3679 /* make room in the right data area */
2ff7e61e 3680 data_end = leaf_data_end(fs_info, right);
5f39d397 3681 memmove_extent_buffer(right,
3d9ec8c4
NB
3682 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3683 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3684 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3685
00ec4c51 3686 /* copy from the left data area */
3d9ec8c4 3687 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3688 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3689 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
d6025579 3690 push_space);
5f39d397
CM
3691
3692 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3693 btrfs_item_nr_offset(0),
3694 right_nritems * sizeof(struct btrfs_item));
3695
00ec4c51 3696 /* copy the items from left to right */
5f39d397
CM
3697 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3698 btrfs_item_nr_offset(left_nritems - push_items),
3699 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3700
3701 /* update the item pointers */
7518a238 3702 right_nritems += push_items;
5f39d397 3703 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3704 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3705 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3706 item = btrfs_item_nr(i);
cfed81a0
CM
3707 push_space -= btrfs_token_item_size(right, item, &token);
3708 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3709 }
3710
7518a238 3711 left_nritems -= push_items;
5f39d397 3712 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3713
34a38218
CM
3714 if (left_nritems)
3715 btrfs_mark_buffer_dirty(left);
f0486c68 3716 else
7c302b49 3717 clean_tree_block(fs_info, left);
f0486c68 3718
5f39d397 3719 btrfs_mark_buffer_dirty(right);
a429e513 3720
5f39d397
CM
3721 btrfs_item_key(right, &disk_key, 0);
3722 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3723 btrfs_mark_buffer_dirty(upper);
02217ed2 3724
00ec4c51 3725 /* then fixup the leaf pointer in the path */
7518a238
CM
3726 if (path->slots[0] >= left_nritems) {
3727 path->slots[0] -= left_nritems;
925baedd 3728 if (btrfs_header_nritems(path->nodes[0]) == 0)
7c302b49 3729 clean_tree_block(fs_info, path->nodes[0]);
925baedd 3730 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3731 free_extent_buffer(path->nodes[0]);
3732 path->nodes[0] = right;
00ec4c51
CM
3733 path->slots[1] += 1;
3734 } else {
925baedd 3735 btrfs_tree_unlock(right);
5f39d397 3736 free_extent_buffer(right);
00ec4c51
CM
3737 }
3738 return 0;
925baedd
CM
3739
3740out_unlock:
3741 btrfs_tree_unlock(right);
3742 free_extent_buffer(right);
3743 return 1;
00ec4c51 3744}
925baedd 3745
44871b1b
CM
3746/*
3747 * push some data in the path leaf to the right, trying to free up at
3748 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3749 *
3750 * returns 1 if the push failed because the other node didn't have enough
3751 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3752 *
3753 * this will push starting from min_slot to the end of the leaf. It won't
3754 * push any slot lower than min_slot
44871b1b
CM
3755 */
3756static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3757 *root, struct btrfs_path *path,
3758 int min_data_size, int data_size,
3759 int empty, u32 min_slot)
44871b1b 3760{
2ff7e61e 3761 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3762 struct extent_buffer *left = path->nodes[0];
3763 struct extent_buffer *right;
3764 struct extent_buffer *upper;
3765 int slot;
3766 int free_space;
3767 u32 left_nritems;
3768 int ret;
3769
3770 if (!path->nodes[1])
3771 return 1;
3772
3773 slot = path->slots[1];
3774 upper = path->nodes[1];
3775 if (slot >= btrfs_header_nritems(upper) - 1)
3776 return 1;
3777
3778 btrfs_assert_tree_locked(path->nodes[1]);
3779
2ff7e61e 3780 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3781 /*
3782 * slot + 1 is not valid or we fail to read the right node,
3783 * no big deal, just return.
3784 */
3785 if (IS_ERR(right))
91ca338d
TI
3786 return 1;
3787
44871b1b
CM
3788 btrfs_tree_lock(right);
3789 btrfs_set_lock_blocking(right);
3790
2ff7e61e 3791 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3792 if (free_space < data_size)
3793 goto out_unlock;
3794
3795 /* cow and double check */
3796 ret = btrfs_cow_block(trans, root, right, upper,
3797 slot + 1, &right);
3798 if (ret)
3799 goto out_unlock;
3800
2ff7e61e 3801 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3802 if (free_space < data_size)
3803 goto out_unlock;
3804
3805 left_nritems = btrfs_header_nritems(left);
3806 if (left_nritems == 0)
3807 goto out_unlock;
3808
2ef1fed2
FDBM
3809 if (path->slots[0] == left_nritems && !empty) {
3810 /* Key greater than all keys in the leaf, right neighbor has
3811 * enough room for it and we're not emptying our leaf to delete
3812 * it, therefore use right neighbor to insert the new item and
3813 * no need to touch/dirty our left leaft. */
3814 btrfs_tree_unlock(left);
3815 free_extent_buffer(left);
3816 path->nodes[0] = right;
3817 path->slots[0] = 0;
3818 path->slots[1]++;
3819 return 0;
3820 }
3821
1e47eef2 3822 return __push_leaf_right(fs_info, path, min_data_size, empty,
99d8f83c 3823 right, free_space, left_nritems, min_slot);
44871b1b
CM
3824out_unlock:
3825 btrfs_tree_unlock(right);
3826 free_extent_buffer(right);
3827 return 1;
3828}
3829
74123bd7
CM
3830/*
3831 * push some data in the path leaf to the left, trying to free up at
3832 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3833 *
3834 * max_slot can put a limit on how far into the leaf we'll push items. The
3835 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3836 * items
74123bd7 3837 */
66cb7ddb 3838static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
44871b1b
CM
3839 struct btrfs_path *path, int data_size,
3840 int empty, struct extent_buffer *left,
99d8f83c
CM
3841 int free_space, u32 right_nritems,
3842 u32 max_slot)
be0e5c09 3843{
5f39d397
CM
3844 struct btrfs_disk_key disk_key;
3845 struct extent_buffer *right = path->nodes[0];
be0e5c09 3846 int i;
be0e5c09
CM
3847 int push_space = 0;
3848 int push_items = 0;
0783fcfc 3849 struct btrfs_item *item;
7518a238 3850 u32 old_left_nritems;
34a38218 3851 u32 nr;
aa5d6bed 3852 int ret = 0;
db94535d
CM
3853 u32 this_item_size;
3854 u32 old_left_item_size;
cfed81a0
CM
3855 struct btrfs_map_token token;
3856
3857 btrfs_init_map_token(&token);
be0e5c09 3858
34a38218 3859 if (empty)
99d8f83c 3860 nr = min(right_nritems, max_slot);
34a38218 3861 else
99d8f83c 3862 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3863
3864 for (i = 0; i < nr; i++) {
dd3cc16b 3865 item = btrfs_item_nr(i);
db94535d 3866
31840ae1
ZY
3867 if (!empty && push_items > 0) {
3868 if (path->slots[0] < i)
3869 break;
3870 if (path->slots[0] == i) {
2ff7e61e 3871 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3872 if (space + push_space * 2 > free_space)
3873 break;
3874 }
3875 }
3876
be0e5c09 3877 if (path->slots[0] == i)
87b29b20 3878 push_space += data_size;
db94535d
CM
3879
3880 this_item_size = btrfs_item_size(right, item);
3881 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3882 break;
db94535d 3883
be0e5c09 3884 push_items++;
db94535d
CM
3885 push_space += this_item_size + sizeof(*item);
3886 }
3887
be0e5c09 3888 if (push_items == 0) {
925baedd
CM
3889 ret = 1;
3890 goto out;
be0e5c09 3891 }
fae7f21c 3892 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3893
be0e5c09 3894 /* push data from right to left */
5f39d397
CM
3895 copy_extent_buffer(left, right,
3896 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3897 btrfs_item_nr_offset(0),
3898 push_items * sizeof(struct btrfs_item));
3899
0b246afa 3900 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3901 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3902
3d9ec8c4 3903 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3904 leaf_data_end(fs_info, left) - push_space,
3d9ec8c4 3905 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3906 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3907 push_space);
5f39d397 3908 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3909 BUG_ON(old_left_nritems <= 0);
eb60ceac 3910
db94535d 3911 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3912 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3913 u32 ioff;
db94535d 3914
dd3cc16b 3915 item = btrfs_item_nr(i);
db94535d 3916
cfed81a0
CM
3917 ioff = btrfs_token_item_offset(left, item, &token);
3918 btrfs_set_token_item_offset(left, item,
0b246afa 3919 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3920 &token);
be0e5c09 3921 }
5f39d397 3922 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3923
3924 /* fixup right node */
31b1a2bd
JL
3925 if (push_items > right_nritems)
3926 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3927 right_nritems);
34a38218
CM
3928
3929 if (push_items < right_nritems) {
3930 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3931 leaf_data_end(fs_info, right);
3d9ec8c4 3932 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3933 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3934 BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3935 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3936
3937 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3938 btrfs_item_nr_offset(push_items),
3939 (btrfs_header_nritems(right) - push_items) *
3940 sizeof(struct btrfs_item));
34a38218 3941 }
eef1c494
Y
3942 right_nritems -= push_items;
3943 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3944 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3945 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3946 item = btrfs_item_nr(i);
db94535d 3947
cfed81a0
CM
3948 push_space = push_space - btrfs_token_item_size(right,
3949 item, &token);
3950 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3951 }
eb60ceac 3952
5f39d397 3953 btrfs_mark_buffer_dirty(left);
34a38218
CM
3954 if (right_nritems)
3955 btrfs_mark_buffer_dirty(right);
f0486c68 3956 else
7c302b49 3957 clean_tree_block(fs_info, right);
098f59c2 3958
5f39d397 3959 btrfs_item_key(right, &disk_key, 0);
0b246afa 3960 fixup_low_keys(fs_info, path, &disk_key, 1);
be0e5c09
CM
3961
3962 /* then fixup the leaf pointer in the path */
3963 if (path->slots[0] < push_items) {
3964 path->slots[0] += old_left_nritems;
925baedd 3965 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3966 free_extent_buffer(path->nodes[0]);
3967 path->nodes[0] = left;
be0e5c09
CM
3968 path->slots[1] -= 1;
3969 } else {
925baedd 3970 btrfs_tree_unlock(left);
5f39d397 3971 free_extent_buffer(left);
be0e5c09
CM
3972 path->slots[0] -= push_items;
3973 }
eb60ceac 3974 BUG_ON(path->slots[0] < 0);
aa5d6bed 3975 return ret;
925baedd
CM
3976out:
3977 btrfs_tree_unlock(left);
3978 free_extent_buffer(left);
3979 return ret;
be0e5c09
CM
3980}
3981
44871b1b
CM
3982/*
3983 * push some data in the path leaf to the left, trying to free up at
3984 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3985 *
3986 * max_slot can put a limit on how far into the leaf we'll push items. The
3987 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3988 * items
44871b1b
CM
3989 */
3990static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3991 *root, struct btrfs_path *path, int min_data_size,
3992 int data_size, int empty, u32 max_slot)
44871b1b 3993{
2ff7e61e 3994 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3995 struct extent_buffer *right = path->nodes[0];
3996 struct extent_buffer *left;
3997 int slot;
3998 int free_space;
3999 u32 right_nritems;
4000 int ret = 0;
4001
4002 slot = path->slots[1];
4003 if (slot == 0)
4004 return 1;
4005 if (!path->nodes[1])
4006 return 1;
4007
4008 right_nritems = btrfs_header_nritems(right);
4009 if (right_nritems == 0)
4010 return 1;
4011
4012 btrfs_assert_tree_locked(path->nodes[1]);
4013
2ff7e61e 4014 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
4015 /*
4016 * slot - 1 is not valid or we fail to read the left node,
4017 * no big deal, just return.
4018 */
4019 if (IS_ERR(left))
91ca338d
TI
4020 return 1;
4021
44871b1b
CM
4022 btrfs_tree_lock(left);
4023 btrfs_set_lock_blocking(left);
4024
2ff7e61e 4025 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4026 if (free_space < data_size) {
4027 ret = 1;
4028 goto out;
4029 }
4030
4031 /* cow and double check */
4032 ret = btrfs_cow_block(trans, root, left,
4033 path->nodes[1], slot - 1, &left);
4034 if (ret) {
4035 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4036 if (ret == -ENOSPC)
4037 ret = 1;
44871b1b
CM
4038 goto out;
4039 }
4040
2ff7e61e 4041 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4042 if (free_space < data_size) {
4043 ret = 1;
4044 goto out;
4045 }
4046
66cb7ddb 4047 return __push_leaf_left(fs_info, path, min_data_size,
99d8f83c
CM
4048 empty, left, free_space, right_nritems,
4049 max_slot);
44871b1b
CM
4050out:
4051 btrfs_tree_unlock(left);
4052 free_extent_buffer(left);
4053 return ret;
4054}
4055
4056/*
4057 * split the path's leaf in two, making sure there is at least data_size
4058 * available for the resulting leaf level of the path.
44871b1b 4059 */
143bede5 4060static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4061 struct btrfs_fs_info *fs_info,
143bede5
JM
4062 struct btrfs_path *path,
4063 struct extent_buffer *l,
4064 struct extent_buffer *right,
4065 int slot, int mid, int nritems)
44871b1b
CM
4066{
4067 int data_copy_size;
4068 int rt_data_off;
4069 int i;
44871b1b 4070 struct btrfs_disk_key disk_key;
cfed81a0
CM
4071 struct btrfs_map_token token;
4072
4073 btrfs_init_map_token(&token);
44871b1b
CM
4074
4075 nritems = nritems - mid;
4076 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4077 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4078
4079 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4080 btrfs_item_nr_offset(mid),
4081 nritems * sizeof(struct btrfs_item));
4082
4083 copy_extent_buffer(right, l,
3d9ec8c4
NB
4084 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4085 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 4086 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4087
0b246afa 4088 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4089
4090 for (i = 0; i < nritems; i++) {
dd3cc16b 4091 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4092 u32 ioff;
4093
cfed81a0
CM
4094 ioff = btrfs_token_item_offset(right, item, &token);
4095 btrfs_set_token_item_offset(right, item,
4096 ioff + rt_data_off, &token);
44871b1b
CM
4097 }
4098
44871b1b 4099 btrfs_set_header_nritems(l, mid);
44871b1b 4100 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4101 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4102 path->slots[1] + 1, 1);
44871b1b
CM
4103
4104 btrfs_mark_buffer_dirty(right);
4105 btrfs_mark_buffer_dirty(l);
4106 BUG_ON(path->slots[0] != slot);
4107
44871b1b
CM
4108 if (mid <= slot) {
4109 btrfs_tree_unlock(path->nodes[0]);
4110 free_extent_buffer(path->nodes[0]);
4111 path->nodes[0] = right;
4112 path->slots[0] -= mid;
4113 path->slots[1] += 1;
4114 } else {
4115 btrfs_tree_unlock(right);
4116 free_extent_buffer(right);
4117 }
4118
4119 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4120}
4121
99d8f83c
CM
4122/*
4123 * double splits happen when we need to insert a big item in the middle
4124 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4125 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4126 * A B C
4127 *
4128 * We avoid this by trying to push the items on either side of our target
4129 * into the adjacent leaves. If all goes well we can avoid the double split
4130 * completely.
4131 */
4132static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4133 struct btrfs_root *root,
4134 struct btrfs_path *path,
4135 int data_size)
4136{
2ff7e61e 4137 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4138 int ret;
4139 int progress = 0;
4140 int slot;
4141 u32 nritems;
5a4267ca 4142 int space_needed = data_size;
99d8f83c
CM
4143
4144 slot = path->slots[0];
5a4267ca 4145 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4146 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4147
4148 /*
4149 * try to push all the items after our slot into the
4150 * right leaf
4151 */
5a4267ca 4152 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4153 if (ret < 0)
4154 return ret;
4155
4156 if (ret == 0)
4157 progress++;
4158
4159 nritems = btrfs_header_nritems(path->nodes[0]);
4160 /*
4161 * our goal is to get our slot at the start or end of a leaf. If
4162 * we've done so we're done
4163 */
4164 if (path->slots[0] == 0 || path->slots[0] == nritems)
4165 return 0;
4166
2ff7e61e 4167 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4168 return 0;
4169
4170 /* try to push all the items before our slot into the next leaf */
4171 slot = path->slots[0];
263d3995
FM
4172 space_needed = data_size;
4173 if (slot > 0)
4174 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
5a4267ca 4175 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4176 if (ret < 0)
4177 return ret;
4178
4179 if (ret == 0)
4180 progress++;
4181
4182 if (progress)
4183 return 0;
4184 return 1;
4185}
4186
74123bd7
CM
4187/*
4188 * split the path's leaf in two, making sure there is at least data_size
4189 * available for the resulting leaf level of the path.
aa5d6bed
CM
4190 *
4191 * returns 0 if all went well and < 0 on failure.
74123bd7 4192 */
e02119d5
CM
4193static noinline int split_leaf(struct btrfs_trans_handle *trans,
4194 struct btrfs_root *root,
310712b2 4195 const struct btrfs_key *ins_key,
e02119d5
CM
4196 struct btrfs_path *path, int data_size,
4197 int extend)
be0e5c09 4198{
5d4f98a2 4199 struct btrfs_disk_key disk_key;
5f39d397 4200 struct extent_buffer *l;
7518a238 4201 u32 nritems;
eb60ceac
CM
4202 int mid;
4203 int slot;
5f39d397 4204 struct extent_buffer *right;
b7a0365e 4205 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4206 int ret = 0;
aa5d6bed 4207 int wret;
5d4f98a2 4208 int split;
cc0c5538 4209 int num_doubles = 0;
99d8f83c 4210 int tried_avoid_double = 0;
aa5d6bed 4211
a5719521
YZ
4212 l = path->nodes[0];
4213 slot = path->slots[0];
4214 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4215 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4216 return -EOVERFLOW;
4217
40689478 4218 /* first try to make some room by pushing left and right */
33157e05 4219 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4220 int space_needed = data_size;
4221
4222 if (slot < btrfs_header_nritems(l))
2ff7e61e 4223 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4224
4225 wret = push_leaf_right(trans, root, path, space_needed,
4226 space_needed, 0, 0);
d397712b 4227 if (wret < 0)
eaee50e8 4228 return wret;
3685f791 4229 if (wret) {
263d3995
FM
4230 space_needed = data_size;
4231 if (slot > 0)
4232 space_needed -= btrfs_leaf_free_space(fs_info,
4233 l);
5a4267ca
FDBM
4234 wret = push_leaf_left(trans, root, path, space_needed,
4235 space_needed, 0, (u32)-1);
3685f791
CM
4236 if (wret < 0)
4237 return wret;
4238 }
4239 l = path->nodes[0];
aa5d6bed 4240
3685f791 4241 /* did the pushes work? */
2ff7e61e 4242 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4243 return 0;
3326d1b0 4244 }
aa5d6bed 4245
5c680ed6 4246 if (!path->nodes[1]) {
fdd99c72 4247 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4248 if (ret)
4249 return ret;
4250 }
cc0c5538 4251again:
5d4f98a2 4252 split = 1;
cc0c5538 4253 l = path->nodes[0];
eb60ceac 4254 slot = path->slots[0];
5f39d397 4255 nritems = btrfs_header_nritems(l);
d397712b 4256 mid = (nritems + 1) / 2;
54aa1f4d 4257
5d4f98a2
YZ
4258 if (mid <= slot) {
4259 if (nritems == 1 ||
4260 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4261 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4262 if (slot >= nritems) {
4263 split = 0;
4264 } else {
4265 mid = slot;
4266 if (mid != nritems &&
4267 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4268 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4269 if (data_size && !tried_avoid_double)
4270 goto push_for_double;
5d4f98a2
YZ
4271 split = 2;
4272 }
4273 }
4274 }
4275 } else {
4276 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4277 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4278 if (!extend && data_size && slot == 0) {
4279 split = 0;
4280 } else if ((extend || !data_size) && slot == 0) {
4281 mid = 1;
4282 } else {
4283 mid = slot;
4284 if (mid != nritems &&
4285 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4286 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4287 if (data_size && !tried_avoid_double)
4288 goto push_for_double;
67871254 4289 split = 2;
5d4f98a2
YZ
4290 }
4291 }
4292 }
4293 }
4294
4295 if (split == 0)
4296 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4297 else
4298 btrfs_item_key(l, &disk_key, mid);
4299
4d75f8a9
DS
4300 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4301 &disk_key, 0, l->start, 0);
f0486c68 4302 if (IS_ERR(right))
5f39d397 4303 return PTR_ERR(right);
f0486c68 4304
0b246afa 4305 root_add_used(root, fs_info->nodesize);
5f39d397 4306
b159fa28 4307 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
db94535d 4308 btrfs_set_header_bytenr(right, right->start);
5f39d397 4309 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4310 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4311 btrfs_set_header_owner(right, root->root_key.objectid);
4312 btrfs_set_header_level(right, 0);
d24ee97b
DS
4313 write_extent_buffer_fsid(right, fs_info->fsid);
4314 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
44871b1b 4315
5d4f98a2
YZ
4316 if (split == 0) {
4317 if (mid <= slot) {
4318 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4319 insert_ptr(trans, fs_info, path, &disk_key,
4320 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4321 btrfs_tree_unlock(path->nodes[0]);
4322 free_extent_buffer(path->nodes[0]);
4323 path->nodes[0] = right;
4324 path->slots[0] = 0;
4325 path->slots[1] += 1;
4326 } else {
4327 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4328 insert_ptr(trans, fs_info, path, &disk_key,
4329 right->start, path->slots[1], 1);
5d4f98a2
YZ
4330 btrfs_tree_unlock(path->nodes[0]);
4331 free_extent_buffer(path->nodes[0]);
4332 path->nodes[0] = right;
4333 path->slots[0] = 0;
143bede5 4334 if (path->slots[1] == 0)
b7a0365e 4335 fixup_low_keys(fs_info, path, &disk_key, 1);
d4dbff95 4336 }
196e0249
LB
4337 /*
4338 * We create a new leaf 'right' for the required ins_len and
4339 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4340 * the content of ins_len to 'right'.
4341 */
5d4f98a2 4342 return ret;
d4dbff95 4343 }
74123bd7 4344
2ff7e61e 4345 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4346
5d4f98a2 4347 if (split == 2) {
cc0c5538
CM
4348 BUG_ON(num_doubles != 0);
4349 num_doubles++;
4350 goto again;
a429e513 4351 }
44871b1b 4352
143bede5 4353 return 0;
99d8f83c
CM
4354
4355push_for_double:
4356 push_for_double_split(trans, root, path, data_size);
4357 tried_avoid_double = 1;
2ff7e61e 4358 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4359 return 0;
4360 goto again;
be0e5c09
CM
4361}
4362
ad48fd75
YZ
4363static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4364 struct btrfs_root *root,
4365 struct btrfs_path *path, int ins_len)
459931ec 4366{
2ff7e61e 4367 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4368 struct btrfs_key key;
459931ec 4369 struct extent_buffer *leaf;
ad48fd75
YZ
4370 struct btrfs_file_extent_item *fi;
4371 u64 extent_len = 0;
4372 u32 item_size;
4373 int ret;
459931ec
CM
4374
4375 leaf = path->nodes[0];
ad48fd75
YZ
4376 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4377
4378 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4379 key.type != BTRFS_EXTENT_CSUM_KEY);
4380
2ff7e61e 4381 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4382 return 0;
459931ec
CM
4383
4384 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4385 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4386 fi = btrfs_item_ptr(leaf, path->slots[0],
4387 struct btrfs_file_extent_item);
4388 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4389 }
b3b4aa74 4390 btrfs_release_path(path);
459931ec 4391
459931ec 4392 path->keep_locks = 1;
ad48fd75
YZ
4393 path->search_for_split = 1;
4394 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4395 path->search_for_split = 0;
a8df6fe6
FM
4396 if (ret > 0)
4397 ret = -EAGAIN;
ad48fd75
YZ
4398 if (ret < 0)
4399 goto err;
459931ec 4400
ad48fd75
YZ
4401 ret = -EAGAIN;
4402 leaf = path->nodes[0];
a8df6fe6
FM
4403 /* if our item isn't there, return now */
4404 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4405 goto err;
4406
109f6aef 4407 /* the leaf has changed, it now has room. return now */
2ff7e61e 4408 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4409 goto err;
4410
ad48fd75
YZ
4411 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4412 fi = btrfs_item_ptr(leaf, path->slots[0],
4413 struct btrfs_file_extent_item);
4414 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4415 goto err;
459931ec
CM
4416 }
4417
b9473439 4418 btrfs_set_path_blocking(path);
ad48fd75 4419 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4420 if (ret)
4421 goto err;
459931ec 4422
ad48fd75 4423 path->keep_locks = 0;
b9473439 4424 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4425 return 0;
4426err:
4427 path->keep_locks = 0;
4428 return ret;
4429}
4430
4961e293 4431static noinline int split_item(struct btrfs_fs_info *fs_info,
ad48fd75 4432 struct btrfs_path *path,
310712b2 4433 const struct btrfs_key *new_key,
ad48fd75
YZ
4434 unsigned long split_offset)
4435{
4436 struct extent_buffer *leaf;
4437 struct btrfs_item *item;
4438 struct btrfs_item *new_item;
4439 int slot;
4440 char *buf;
4441 u32 nritems;
4442 u32 item_size;
4443 u32 orig_offset;
4444 struct btrfs_disk_key disk_key;
4445
b9473439 4446 leaf = path->nodes[0];
2ff7e61e 4447 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4448
b4ce94de
CM
4449 btrfs_set_path_blocking(path);
4450
dd3cc16b 4451 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4452 orig_offset = btrfs_item_offset(leaf, item);
4453 item_size = btrfs_item_size(leaf, item);
4454
459931ec 4455 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4456 if (!buf)
4457 return -ENOMEM;
4458
459931ec
CM
4459 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4460 path->slots[0]), item_size);
459931ec 4461
ad48fd75 4462 slot = path->slots[0] + 1;
459931ec 4463 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4464 if (slot != nritems) {
4465 /* shift the items */
4466 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4467 btrfs_item_nr_offset(slot),
4468 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4469 }
4470
4471 btrfs_cpu_key_to_disk(&disk_key, new_key);
4472 btrfs_set_item_key(leaf, &disk_key, slot);
4473
dd3cc16b 4474 new_item = btrfs_item_nr(slot);
459931ec
CM
4475
4476 btrfs_set_item_offset(leaf, new_item, orig_offset);
4477 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4478
4479 btrfs_set_item_offset(leaf, item,
4480 orig_offset + item_size - split_offset);
4481 btrfs_set_item_size(leaf, item, split_offset);
4482
4483 btrfs_set_header_nritems(leaf, nritems + 1);
4484
4485 /* write the data for the start of the original item */
4486 write_extent_buffer(leaf, buf,
4487 btrfs_item_ptr_offset(leaf, path->slots[0]),
4488 split_offset);
4489
4490 /* write the data for the new item */
4491 write_extent_buffer(leaf, buf + split_offset,
4492 btrfs_item_ptr_offset(leaf, slot),
4493 item_size - split_offset);
4494 btrfs_mark_buffer_dirty(leaf);
4495
2ff7e61e 4496 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4497 kfree(buf);
ad48fd75
YZ
4498 return 0;
4499}
4500
4501/*
4502 * This function splits a single item into two items,
4503 * giving 'new_key' to the new item and splitting the
4504 * old one at split_offset (from the start of the item).
4505 *
4506 * The path may be released by this operation. After
4507 * the split, the path is pointing to the old item. The
4508 * new item is going to be in the same node as the old one.
4509 *
4510 * Note, the item being split must be smaller enough to live alone on
4511 * a tree block with room for one extra struct btrfs_item
4512 *
4513 * This allows us to split the item in place, keeping a lock on the
4514 * leaf the entire time.
4515 */
4516int btrfs_split_item(struct btrfs_trans_handle *trans,
4517 struct btrfs_root *root,
4518 struct btrfs_path *path,
310712b2 4519 const struct btrfs_key *new_key,
ad48fd75
YZ
4520 unsigned long split_offset)
4521{
4522 int ret;
4523 ret = setup_leaf_for_split(trans, root, path,
4524 sizeof(struct btrfs_item));
4525 if (ret)
4526 return ret;
4527
4961e293 4528 ret = split_item(root->fs_info, path, new_key, split_offset);
459931ec
CM
4529 return ret;
4530}
4531
ad48fd75
YZ
4532/*
4533 * This function duplicate a item, giving 'new_key' to the new item.
4534 * It guarantees both items live in the same tree leaf and the new item
4535 * is contiguous with the original item.
4536 *
4537 * This allows us to split file extent in place, keeping a lock on the
4538 * leaf the entire time.
4539 */
4540int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4541 struct btrfs_root *root,
4542 struct btrfs_path *path,
310712b2 4543 const struct btrfs_key *new_key)
ad48fd75
YZ
4544{
4545 struct extent_buffer *leaf;
4546 int ret;
4547 u32 item_size;
4548
4549 leaf = path->nodes[0];
4550 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4551 ret = setup_leaf_for_split(trans, root, path,
4552 item_size + sizeof(struct btrfs_item));
4553 if (ret)
4554 return ret;
4555
4556 path->slots[0]++;
afe5fea7 4557 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4558 item_size, item_size +
4559 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4560 leaf = path->nodes[0];
4561 memcpy_extent_buffer(leaf,
4562 btrfs_item_ptr_offset(leaf, path->slots[0]),
4563 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4564 item_size);
4565 return 0;
4566}
4567
d352ac68
CM
4568/*
4569 * make the item pointed to by the path smaller. new_size indicates
4570 * how small to make it, and from_end tells us if we just chop bytes
4571 * off the end of the item or if we shift the item to chop bytes off
4572 * the front.
4573 */
2ff7e61e
JM
4574void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4575 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4576{
b18c6685 4577 int slot;
5f39d397
CM
4578 struct extent_buffer *leaf;
4579 struct btrfs_item *item;
b18c6685
CM
4580 u32 nritems;
4581 unsigned int data_end;
4582 unsigned int old_data_start;
4583 unsigned int old_size;
4584 unsigned int size_diff;
4585 int i;
cfed81a0
CM
4586 struct btrfs_map_token token;
4587
4588 btrfs_init_map_token(&token);
b18c6685 4589
5f39d397 4590 leaf = path->nodes[0];
179e29e4
CM
4591 slot = path->slots[0];
4592
4593 old_size = btrfs_item_size_nr(leaf, slot);
4594 if (old_size == new_size)
143bede5 4595 return;
b18c6685 4596
5f39d397 4597 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4598 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4599
5f39d397 4600 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4601
b18c6685
CM
4602 size_diff = old_size - new_size;
4603
4604 BUG_ON(slot < 0);
4605 BUG_ON(slot >= nritems);
4606
4607 /*
4608 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4609 */
4610 /* first correct the data pointers */
4611 for (i = slot; i < nritems; i++) {
5f39d397 4612 u32 ioff;
dd3cc16b 4613 item = btrfs_item_nr(i);
db94535d 4614
cfed81a0
CM
4615 ioff = btrfs_token_item_offset(leaf, item, &token);
4616 btrfs_set_token_item_offset(leaf, item,
4617 ioff + size_diff, &token);
b18c6685 4618 }
db94535d 4619
b18c6685 4620 /* shift the data */
179e29e4 4621 if (from_end) {
3d9ec8c4
NB
4622 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4623 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4624 data_end, old_data_start + new_size - data_end);
4625 } else {
4626 struct btrfs_disk_key disk_key;
4627 u64 offset;
4628
4629 btrfs_item_key(leaf, &disk_key, slot);
4630
4631 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4632 unsigned long ptr;
4633 struct btrfs_file_extent_item *fi;
4634
4635 fi = btrfs_item_ptr(leaf, slot,
4636 struct btrfs_file_extent_item);
4637 fi = (struct btrfs_file_extent_item *)(
4638 (unsigned long)fi - size_diff);
4639
4640 if (btrfs_file_extent_type(leaf, fi) ==
4641 BTRFS_FILE_EXTENT_INLINE) {
4642 ptr = btrfs_item_ptr_offset(leaf, slot);
4643 memmove_extent_buffer(leaf, ptr,
d397712b 4644 (unsigned long)fi,
7ec20afb 4645 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4646 }
4647 }
4648
3d9ec8c4
NB
4649 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4650 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4651 data_end, old_data_start - data_end);
4652
4653 offset = btrfs_disk_key_offset(&disk_key);
4654 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4655 btrfs_set_item_key(leaf, &disk_key, slot);
4656 if (slot == 0)
0b246afa 4657 fixup_low_keys(fs_info, path, &disk_key, 1);
179e29e4 4658 }
5f39d397 4659
dd3cc16b 4660 item = btrfs_item_nr(slot);
5f39d397
CM
4661 btrfs_set_item_size(leaf, item, new_size);
4662 btrfs_mark_buffer_dirty(leaf);
b18c6685 4663
2ff7e61e 4664 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4665 btrfs_print_leaf(leaf);
b18c6685 4666 BUG();
5f39d397 4667 }
b18c6685
CM
4668}
4669
d352ac68 4670/*
8f69dbd2 4671 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4672 */
2ff7e61e 4673void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4674 u32 data_size)
6567e837 4675{
6567e837 4676 int slot;
5f39d397
CM
4677 struct extent_buffer *leaf;
4678 struct btrfs_item *item;
6567e837
CM
4679 u32 nritems;
4680 unsigned int data_end;
4681 unsigned int old_data;
4682 unsigned int old_size;
4683 int i;
cfed81a0
CM
4684 struct btrfs_map_token token;
4685
4686 btrfs_init_map_token(&token);
6567e837 4687
5f39d397 4688 leaf = path->nodes[0];
6567e837 4689
5f39d397 4690 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4691 data_end = leaf_data_end(fs_info, leaf);
6567e837 4692
2ff7e61e 4693 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
a4f78750 4694 btrfs_print_leaf(leaf);
6567e837 4695 BUG();
5f39d397 4696 }
6567e837 4697 slot = path->slots[0];
5f39d397 4698 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4699
4700 BUG_ON(slot < 0);
3326d1b0 4701 if (slot >= nritems) {
a4f78750 4702 btrfs_print_leaf(leaf);
0b246afa
JM
4703 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4704 slot, nritems);
3326d1b0
CM
4705 BUG_ON(1);
4706 }
6567e837
CM
4707
4708 /*
4709 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4710 */
4711 /* first correct the data pointers */
4712 for (i = slot; i < nritems; i++) {
5f39d397 4713 u32 ioff;
dd3cc16b 4714 item = btrfs_item_nr(i);
db94535d 4715
cfed81a0
CM
4716 ioff = btrfs_token_item_offset(leaf, item, &token);
4717 btrfs_set_token_item_offset(leaf, item,
4718 ioff - data_size, &token);
6567e837 4719 }
5f39d397 4720
6567e837 4721 /* shift the data */
3d9ec8c4
NB
4722 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4723 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4724 data_end, old_data - data_end);
5f39d397 4725
6567e837 4726 data_end = old_data;
5f39d397 4727 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4728 item = btrfs_item_nr(slot);
5f39d397
CM
4729 btrfs_set_item_size(leaf, item, old_size + data_size);
4730 btrfs_mark_buffer_dirty(leaf);
6567e837 4731
2ff7e61e 4732 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4733 btrfs_print_leaf(leaf);
6567e837 4734 BUG();
5f39d397 4735 }
6567e837
CM
4736}
4737
74123bd7 4738/*
44871b1b
CM
4739 * this is a helper for btrfs_insert_empty_items, the main goal here is
4740 * to save stack depth by doing the bulk of the work in a function
4741 * that doesn't call btrfs_search_slot
74123bd7 4742 */
afe5fea7 4743void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4744 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4745 u32 total_data, u32 total_size, int nr)
be0e5c09 4746{
0b246afa 4747 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4748 struct btrfs_item *item;
9c58309d 4749 int i;
7518a238 4750 u32 nritems;
be0e5c09 4751 unsigned int data_end;
e2fa7227 4752 struct btrfs_disk_key disk_key;
44871b1b
CM
4753 struct extent_buffer *leaf;
4754 int slot;
cfed81a0
CM
4755 struct btrfs_map_token token;
4756
24cdc847
FM
4757 if (path->slots[0] == 0) {
4758 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
0b246afa 4759 fixup_low_keys(fs_info, path, &disk_key, 1);
24cdc847
FM
4760 }
4761 btrfs_unlock_up_safe(path, 1);
4762
cfed81a0 4763 btrfs_init_map_token(&token);
e2fa7227 4764
5f39d397 4765 leaf = path->nodes[0];
44871b1b 4766 slot = path->slots[0];
74123bd7 4767
5f39d397 4768 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4769 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4770
2ff7e61e 4771 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
a4f78750 4772 btrfs_print_leaf(leaf);
0b246afa 4773 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4774 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4775 BUG();
d4dbff95 4776 }
5f39d397 4777
be0e5c09 4778 if (slot != nritems) {
5f39d397 4779 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4780
5f39d397 4781 if (old_data < data_end) {
a4f78750 4782 btrfs_print_leaf(leaf);
0b246afa 4783 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4784 slot, old_data, data_end);
5f39d397
CM
4785 BUG_ON(1);
4786 }
be0e5c09
CM
4787 /*
4788 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4789 */
4790 /* first correct the data pointers */
0783fcfc 4791 for (i = slot; i < nritems; i++) {
5f39d397 4792 u32 ioff;
db94535d 4793
62e85577 4794 item = btrfs_item_nr(i);
cfed81a0
CM
4795 ioff = btrfs_token_item_offset(leaf, item, &token);
4796 btrfs_set_token_item_offset(leaf, item,
4797 ioff - total_data, &token);
0783fcfc 4798 }
be0e5c09 4799 /* shift the items */
9c58309d 4800 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4801 btrfs_item_nr_offset(slot),
d6025579 4802 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4803
4804 /* shift the data */
3d9ec8c4
NB
4805 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4806 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4807 data_end, old_data - data_end);
be0e5c09
CM
4808 data_end = old_data;
4809 }
5f39d397 4810
62e2749e 4811 /* setup the item for the new data */
9c58309d
CM
4812 for (i = 0; i < nr; i++) {
4813 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4814 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4815 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4816 btrfs_set_token_item_offset(leaf, item,
4817 data_end - data_size[i], &token);
9c58309d 4818 data_end -= data_size[i];
cfed81a0 4819 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4820 }
44871b1b 4821
9c58309d 4822 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4823 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4824
2ff7e61e 4825 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4826 btrfs_print_leaf(leaf);
be0e5c09 4827 BUG();
5f39d397 4828 }
44871b1b
CM
4829}
4830
4831/*
4832 * Given a key and some data, insert items into the tree.
4833 * This does all the path init required, making room in the tree if needed.
4834 */
4835int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4836 struct btrfs_root *root,
4837 struct btrfs_path *path,
310712b2 4838 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4839 int nr)
4840{
44871b1b
CM
4841 int ret = 0;
4842 int slot;
4843 int i;
4844 u32 total_size = 0;
4845 u32 total_data = 0;
4846
4847 for (i = 0; i < nr; i++)
4848 total_data += data_size[i];
4849
4850 total_size = total_data + (nr * sizeof(struct btrfs_item));
4851 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4852 if (ret == 0)
4853 return -EEXIST;
4854 if (ret < 0)
143bede5 4855 return ret;
44871b1b 4856
44871b1b
CM
4857 slot = path->slots[0];
4858 BUG_ON(slot < 0);
4859
afe5fea7 4860 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4861 total_data, total_size, nr);
143bede5 4862 return 0;
62e2749e
CM
4863}
4864
4865/*
4866 * Given a key and some data, insert an item into the tree.
4867 * This does all the path init required, making room in the tree if needed.
4868 */
310712b2
OS
4869int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4870 const struct btrfs_key *cpu_key, void *data,
4871 u32 data_size)
62e2749e
CM
4872{
4873 int ret = 0;
2c90e5d6 4874 struct btrfs_path *path;
5f39d397
CM
4875 struct extent_buffer *leaf;
4876 unsigned long ptr;
62e2749e 4877
2c90e5d6 4878 path = btrfs_alloc_path();
db5b493a
TI
4879 if (!path)
4880 return -ENOMEM;
2c90e5d6 4881 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4882 if (!ret) {
5f39d397
CM
4883 leaf = path->nodes[0];
4884 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4885 write_extent_buffer(leaf, data, ptr, data_size);
4886 btrfs_mark_buffer_dirty(leaf);
62e2749e 4887 }
2c90e5d6 4888 btrfs_free_path(path);
aa5d6bed 4889 return ret;
be0e5c09
CM
4890}
4891
74123bd7 4892/*
5de08d7d 4893 * delete the pointer from a given node.
74123bd7 4894 *
d352ac68
CM
4895 * the tree should have been previously balanced so the deletion does not
4896 * empty a node.
74123bd7 4897 */
afe5fea7
TI
4898static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4899 int level, int slot)
be0e5c09 4900{
0b246afa 4901 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4902 struct extent_buffer *parent = path->nodes[level];
7518a238 4903 u32 nritems;
f3ea38da 4904 int ret;
be0e5c09 4905
5f39d397 4906 nritems = btrfs_header_nritems(parent);
d397712b 4907 if (slot != nritems - 1) {
0e411ece 4908 if (level)
0b246afa 4909 tree_mod_log_eb_move(fs_info, parent, slot,
f3ea38da 4910 slot + 1, nritems - slot - 1);
5f39d397
CM
4911 memmove_extent_buffer(parent,
4912 btrfs_node_key_ptr_offset(slot),
4913 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4914 sizeof(struct btrfs_key_ptr) *
4915 (nritems - slot - 1));
57ba86c0 4916 } else if (level) {
0b246afa 4917 ret = tree_mod_log_insert_key(fs_info, parent, slot,
c8cc6341 4918 MOD_LOG_KEY_REMOVE, GFP_NOFS);
57ba86c0 4919 BUG_ON(ret < 0);
bb803951 4920 }
f3ea38da 4921
7518a238 4922 nritems--;
5f39d397 4923 btrfs_set_header_nritems(parent, nritems);
7518a238 4924 if (nritems == 0 && parent == root->node) {
5f39d397 4925 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4926 /* just turn the root into a leaf and break */
5f39d397 4927 btrfs_set_header_level(root->node, 0);
bb803951 4928 } else if (slot == 0) {
5f39d397
CM
4929 struct btrfs_disk_key disk_key;
4930
4931 btrfs_node_key(parent, &disk_key, 0);
0b246afa 4932 fixup_low_keys(fs_info, path, &disk_key, level + 1);
be0e5c09 4933 }
d6025579 4934 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4935}
4936
323ac95b
CM
4937/*
4938 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4939 * path->nodes[1].
323ac95b
CM
4940 *
4941 * This deletes the pointer in path->nodes[1] and frees the leaf
4942 * block extent. zero is returned if it all worked out, < 0 otherwise.
4943 *
4944 * The path must have already been setup for deleting the leaf, including
4945 * all the proper balancing. path->nodes[1] must be locked.
4946 */
143bede5
JM
4947static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4948 struct btrfs_root *root,
4949 struct btrfs_path *path,
4950 struct extent_buffer *leaf)
323ac95b 4951{
5d4f98a2 4952 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4953 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4954
4d081c41
CM
4955 /*
4956 * btrfs_free_extent is expensive, we want to make sure we
4957 * aren't holding any locks when we call it
4958 */
4959 btrfs_unlock_up_safe(path, 0);
4960
f0486c68
YZ
4961 root_sub_used(root, leaf->len);
4962
3083ee2e 4963 extent_buffer_get(leaf);
5581a51a 4964 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4965 free_extent_buffer_stale(leaf);
323ac95b 4966}
74123bd7
CM
4967/*
4968 * delete the item at the leaf level in path. If that empties
4969 * the leaf, remove it from the tree
4970 */
85e21bac
CM
4971int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4972 struct btrfs_path *path, int slot, int nr)
be0e5c09 4973{
0b246afa 4974 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4975 struct extent_buffer *leaf;
4976 struct btrfs_item *item;
ce0eac2a
AM
4977 u32 last_off;
4978 u32 dsize = 0;
aa5d6bed
CM
4979 int ret = 0;
4980 int wret;
85e21bac 4981 int i;
7518a238 4982 u32 nritems;
cfed81a0
CM
4983 struct btrfs_map_token token;
4984
4985 btrfs_init_map_token(&token);
be0e5c09 4986
5f39d397 4987 leaf = path->nodes[0];
85e21bac
CM
4988 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4989
4990 for (i = 0; i < nr; i++)
4991 dsize += btrfs_item_size_nr(leaf, slot + i);
4992
5f39d397 4993 nritems = btrfs_header_nritems(leaf);
be0e5c09 4994
85e21bac 4995 if (slot + nr != nritems) {
2ff7e61e 4996 int data_end = leaf_data_end(fs_info, leaf);
5f39d397 4997
3d9ec8c4 4998 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 4999 data_end + dsize,
3d9ec8c4 5000 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 5001 last_off - data_end);
5f39d397 5002
85e21bac 5003 for (i = slot + nr; i < nritems; i++) {
5f39d397 5004 u32 ioff;
db94535d 5005
dd3cc16b 5006 item = btrfs_item_nr(i);
cfed81a0
CM
5007 ioff = btrfs_token_item_offset(leaf, item, &token);
5008 btrfs_set_token_item_offset(leaf, item,
5009 ioff + dsize, &token);
0783fcfc 5010 }
db94535d 5011
5f39d397 5012 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 5013 btrfs_item_nr_offset(slot + nr),
d6025579 5014 sizeof(struct btrfs_item) *
85e21bac 5015 (nritems - slot - nr));
be0e5c09 5016 }
85e21bac
CM
5017 btrfs_set_header_nritems(leaf, nritems - nr);
5018 nritems -= nr;
5f39d397 5019
74123bd7 5020 /* delete the leaf if we've emptied it */
7518a238 5021 if (nritems == 0) {
5f39d397
CM
5022 if (leaf == root->node) {
5023 btrfs_set_header_level(leaf, 0);
9a8dd150 5024 } else {
f0486c68 5025 btrfs_set_path_blocking(path);
7c302b49 5026 clean_tree_block(fs_info, leaf);
143bede5 5027 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5028 }
be0e5c09 5029 } else {
7518a238 5030 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5031 if (slot == 0) {
5f39d397
CM
5032 struct btrfs_disk_key disk_key;
5033
5034 btrfs_item_key(leaf, &disk_key, 0);
0b246afa 5035 fixup_low_keys(fs_info, path, &disk_key, 1);
aa5d6bed 5036 }
aa5d6bed 5037
74123bd7 5038 /* delete the leaf if it is mostly empty */
0b246afa 5039 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
5040 /* push_leaf_left fixes the path.
5041 * make sure the path still points to our leaf
5042 * for possible call to del_ptr below
5043 */
4920c9ac 5044 slot = path->slots[1];
5f39d397
CM
5045 extent_buffer_get(leaf);
5046
b9473439 5047 btrfs_set_path_blocking(path);
99d8f83c
CM
5048 wret = push_leaf_left(trans, root, path, 1, 1,
5049 1, (u32)-1);
54aa1f4d 5050 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5051 ret = wret;
5f39d397
CM
5052
5053 if (path->nodes[0] == leaf &&
5054 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5055 wret = push_leaf_right(trans, root, path, 1,
5056 1, 1, 0);
54aa1f4d 5057 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5058 ret = wret;
5059 }
5f39d397
CM
5060
5061 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5062 path->slots[1] = slot;
143bede5 5063 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5064 free_extent_buffer(leaf);
143bede5 5065 ret = 0;
5de08d7d 5066 } else {
925baedd
CM
5067 /* if we're still in the path, make sure
5068 * we're dirty. Otherwise, one of the
5069 * push_leaf functions must have already
5070 * dirtied this buffer
5071 */
5072 if (path->nodes[0] == leaf)
5073 btrfs_mark_buffer_dirty(leaf);
5f39d397 5074 free_extent_buffer(leaf);
be0e5c09 5075 }
d5719762 5076 } else {
5f39d397 5077 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5078 }
5079 }
aa5d6bed 5080 return ret;
be0e5c09
CM
5081}
5082
7bb86316 5083/*
925baedd 5084 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5085 * returns 0 if it found something or 1 if there are no lesser leaves.
5086 * returns < 0 on io errors.
d352ac68
CM
5087 *
5088 * This may release the path, and so you may lose any locks held at the
5089 * time you call it.
7bb86316 5090 */
16e7549f 5091int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5092{
925baedd
CM
5093 struct btrfs_key key;
5094 struct btrfs_disk_key found_key;
5095 int ret;
7bb86316 5096
925baedd 5097 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5098
e8b0d724 5099 if (key.offset > 0) {
925baedd 5100 key.offset--;
e8b0d724 5101 } else if (key.type > 0) {
925baedd 5102 key.type--;
e8b0d724
FDBM
5103 key.offset = (u64)-1;
5104 } else if (key.objectid > 0) {
925baedd 5105 key.objectid--;
e8b0d724
FDBM
5106 key.type = (u8)-1;
5107 key.offset = (u64)-1;
5108 } else {
925baedd 5109 return 1;
e8b0d724 5110 }
7bb86316 5111
b3b4aa74 5112 btrfs_release_path(path);
925baedd
CM
5113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5114 if (ret < 0)
5115 return ret;
5116 btrfs_item_key(path->nodes[0], &found_key, 0);
5117 ret = comp_keys(&found_key, &key);
337c6f68
FM
5118 /*
5119 * We might have had an item with the previous key in the tree right
5120 * before we released our path. And after we released our path, that
5121 * item might have been pushed to the first slot (0) of the leaf we
5122 * were holding due to a tree balance. Alternatively, an item with the
5123 * previous key can exist as the only element of a leaf (big fat item).
5124 * Therefore account for these 2 cases, so that our callers (like
5125 * btrfs_previous_item) don't miss an existing item with a key matching
5126 * the previous key we computed above.
5127 */
5128 if (ret <= 0)
925baedd
CM
5129 return 0;
5130 return 1;
7bb86316
CM
5131}
5132
3f157a2f
CM
5133/*
5134 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5135 * for nodes or leaves that are have a minimum transaction id.
5136 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5137 *
5138 * This does not cow, but it does stuff the starting key it finds back
5139 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5140 * key and get a writable path.
5141 *
5142 * This does lock as it descends, and path->keep_locks should be set
5143 * to 1 by the caller.
5144 *
5145 * This honors path->lowest_level to prevent descent past a given level
5146 * of the tree.
5147 *
d352ac68
CM
5148 * min_trans indicates the oldest transaction that you are interested
5149 * in walking through. Any nodes or leaves older than min_trans are
5150 * skipped over (without reading them).
5151 *
3f157a2f
CM
5152 * returns zero if something useful was found, < 0 on error and 1 if there
5153 * was nothing in the tree that matched the search criteria.
5154 */
5155int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5156 struct btrfs_path *path,
3f157a2f
CM
5157 u64 min_trans)
5158{
2ff7e61e 5159 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5160 struct extent_buffer *cur;
5161 struct btrfs_key found_key;
5162 int slot;
9652480b 5163 int sret;
3f157a2f
CM
5164 u32 nritems;
5165 int level;
5166 int ret = 1;
f98de9b9 5167 int keep_locks = path->keep_locks;
3f157a2f 5168
f98de9b9 5169 path->keep_locks = 1;
3f157a2f 5170again:
bd681513 5171 cur = btrfs_read_lock_root_node(root);
3f157a2f 5172 level = btrfs_header_level(cur);
e02119d5 5173 WARN_ON(path->nodes[level]);
3f157a2f 5174 path->nodes[level] = cur;
bd681513 5175 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5176
5177 if (btrfs_header_generation(cur) < min_trans) {
5178 ret = 1;
5179 goto out;
5180 }
d397712b 5181 while (1) {
3f157a2f
CM
5182 nritems = btrfs_header_nritems(cur);
5183 level = btrfs_header_level(cur);
9652480b 5184 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 5185
323ac95b
CM
5186 /* at the lowest level, we're done, setup the path and exit */
5187 if (level == path->lowest_level) {
e02119d5
CM
5188 if (slot >= nritems)
5189 goto find_next_key;
3f157a2f
CM
5190 ret = 0;
5191 path->slots[level] = slot;
5192 btrfs_item_key_to_cpu(cur, &found_key, slot);
5193 goto out;
5194 }
9652480b
Y
5195 if (sret && slot > 0)
5196 slot--;
3f157a2f 5197 /*
de78b51a
ES
5198 * check this node pointer against the min_trans parameters.
5199 * If it is too old, old, skip to the next one.
3f157a2f 5200 */
d397712b 5201 while (slot < nritems) {
3f157a2f 5202 u64 gen;
e02119d5 5203
3f157a2f
CM
5204 gen = btrfs_node_ptr_generation(cur, slot);
5205 if (gen < min_trans) {
5206 slot++;
5207 continue;
5208 }
de78b51a 5209 break;
3f157a2f 5210 }
e02119d5 5211find_next_key:
3f157a2f
CM
5212 /*
5213 * we didn't find a candidate key in this node, walk forward
5214 * and find another one
5215 */
5216 if (slot >= nritems) {
e02119d5 5217 path->slots[level] = slot;
b4ce94de 5218 btrfs_set_path_blocking(path);
e02119d5 5219 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5220 min_trans);
e02119d5 5221 if (sret == 0) {
b3b4aa74 5222 btrfs_release_path(path);
3f157a2f
CM
5223 goto again;
5224 } else {
5225 goto out;
5226 }
5227 }
5228 /* save our key for returning back */
5229 btrfs_node_key_to_cpu(cur, &found_key, slot);
5230 path->slots[level] = slot;
5231 if (level == path->lowest_level) {
5232 ret = 0;
3f157a2f
CM
5233 goto out;
5234 }
b4ce94de 5235 btrfs_set_path_blocking(path);
2ff7e61e 5236 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5237 if (IS_ERR(cur)) {
5238 ret = PTR_ERR(cur);
5239 goto out;
5240 }
3f157a2f 5241
bd681513 5242 btrfs_tree_read_lock(cur);
b4ce94de 5243
bd681513 5244 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5245 path->nodes[level - 1] = cur;
f7c79f30 5246 unlock_up(path, level, 1, 0, NULL);
bd681513 5247 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5248 }
5249out:
f98de9b9
FM
5250 path->keep_locks = keep_locks;
5251 if (ret == 0) {
5252 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5253 btrfs_set_path_blocking(path);
3f157a2f 5254 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5255 }
3f157a2f
CM
5256 return ret;
5257}
5258
2ff7e61e 5259static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a 5260 struct btrfs_path *path,
ab6a43e1 5261 int *level)
7069830a 5262{
fb770ae4
LB
5263 struct extent_buffer *eb;
5264
74dd17fb 5265 BUG_ON(*level == 0);
2ff7e61e 5266 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5267 if (IS_ERR(eb))
5268 return PTR_ERR(eb);
5269
5270 path->nodes[*level - 1] = eb;
7069830a
AB
5271 path->slots[*level - 1] = 0;
5272 (*level)--;
fb770ae4 5273 return 0;
7069830a
AB
5274}
5275
f1e30261 5276static int tree_move_next_or_upnext(struct btrfs_path *path,
7069830a
AB
5277 int *level, int root_level)
5278{
5279 int ret = 0;
5280 int nritems;
5281 nritems = btrfs_header_nritems(path->nodes[*level]);
5282
5283 path->slots[*level]++;
5284
74dd17fb 5285 while (path->slots[*level] >= nritems) {
7069830a
AB
5286 if (*level == root_level)
5287 return -1;
5288
5289 /* move upnext */
5290 path->slots[*level] = 0;
5291 free_extent_buffer(path->nodes[*level]);
5292 path->nodes[*level] = NULL;
5293 (*level)++;
5294 path->slots[*level]++;
5295
5296 nritems = btrfs_header_nritems(path->nodes[*level]);
5297 ret = 1;
5298 }
5299 return ret;
5300}
5301
5302/*
5303 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5304 * or down.
5305 */
2ff7e61e 5306static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5307 struct btrfs_path *path,
5308 int *level, int root_level,
5309 int allow_down,
5310 struct btrfs_key *key)
5311{
5312 int ret;
5313
5314 if (*level == 0 || !allow_down) {
f1e30261 5315 ret = tree_move_next_or_upnext(path, level, root_level);
7069830a 5316 } else {
ab6a43e1 5317 ret = tree_move_down(fs_info, path, level);
7069830a
AB
5318 }
5319 if (ret >= 0) {
5320 if (*level == 0)
5321 btrfs_item_key_to_cpu(path->nodes[*level], key,
5322 path->slots[*level]);
5323 else
5324 btrfs_node_key_to_cpu(path->nodes[*level], key,
5325 path->slots[*level]);
5326 }
5327 return ret;
5328}
5329
2ff7e61e 5330static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5331 struct btrfs_path *right_path,
5332 char *tmp_buf)
5333{
5334 int cmp;
5335 int len1, len2;
5336 unsigned long off1, off2;
5337
5338 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5339 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5340 if (len1 != len2)
5341 return 1;
5342
5343 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5344 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5345 right_path->slots[0]);
5346
5347 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5348
5349 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5350 if (cmp)
5351 return 1;
5352 return 0;
5353}
5354
5355#define ADVANCE 1
5356#define ADVANCE_ONLY_NEXT -1
5357
5358/*
5359 * This function compares two trees and calls the provided callback for
5360 * every changed/new/deleted item it finds.
5361 * If shared tree blocks are encountered, whole subtrees are skipped, making
5362 * the compare pretty fast on snapshotted subvolumes.
5363 *
5364 * This currently works on commit roots only. As commit roots are read only,
5365 * we don't do any locking. The commit roots are protected with transactions.
5366 * Transactions are ended and rejoined when a commit is tried in between.
5367 *
5368 * This function checks for modifications done to the trees while comparing.
5369 * If it detects a change, it aborts immediately.
5370 */
5371int btrfs_compare_trees(struct btrfs_root *left_root,
5372 struct btrfs_root *right_root,
5373 btrfs_changed_cb_t changed_cb, void *ctx)
5374{
0b246afa 5375 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5376 int ret;
5377 int cmp;
7069830a
AB
5378 struct btrfs_path *left_path = NULL;
5379 struct btrfs_path *right_path = NULL;
5380 struct btrfs_key left_key;
5381 struct btrfs_key right_key;
5382 char *tmp_buf = NULL;
5383 int left_root_level;
5384 int right_root_level;
5385 int left_level;
5386 int right_level;
5387 int left_end_reached;
5388 int right_end_reached;
5389 int advance_left;
5390 int advance_right;
5391 u64 left_blockptr;
5392 u64 right_blockptr;
6baa4293
FM
5393 u64 left_gen;
5394 u64 right_gen;
7069830a
AB
5395
5396 left_path = btrfs_alloc_path();
5397 if (!left_path) {
5398 ret = -ENOMEM;
5399 goto out;
5400 }
5401 right_path = btrfs_alloc_path();
5402 if (!right_path) {
5403 ret = -ENOMEM;
5404 goto out;
5405 }
5406
752ade68 5407 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7069830a 5408 if (!tmp_buf) {
752ade68
MH
5409 ret = -ENOMEM;
5410 goto out;
7069830a
AB
5411 }
5412
5413 left_path->search_commit_root = 1;
5414 left_path->skip_locking = 1;
5415 right_path->search_commit_root = 1;
5416 right_path->skip_locking = 1;
5417
7069830a
AB
5418 /*
5419 * Strategy: Go to the first items of both trees. Then do
5420 *
5421 * If both trees are at level 0
5422 * Compare keys of current items
5423 * If left < right treat left item as new, advance left tree
5424 * and repeat
5425 * If left > right treat right item as deleted, advance right tree
5426 * and repeat
5427 * If left == right do deep compare of items, treat as changed if
5428 * needed, advance both trees and repeat
5429 * If both trees are at the same level but not at level 0
5430 * Compare keys of current nodes/leafs
5431 * If left < right advance left tree and repeat
5432 * If left > right advance right tree and repeat
5433 * If left == right compare blockptrs of the next nodes/leafs
5434 * If they match advance both trees but stay at the same level
5435 * and repeat
5436 * If they don't match advance both trees while allowing to go
5437 * deeper and repeat
5438 * If tree levels are different
5439 * Advance the tree that needs it and repeat
5440 *
5441 * Advancing a tree means:
5442 * If we are at level 0, try to go to the next slot. If that's not
5443 * possible, go one level up and repeat. Stop when we found a level
5444 * where we could go to the next slot. We may at this point be on a
5445 * node or a leaf.
5446 *
5447 * If we are not at level 0 and not on shared tree blocks, go one
5448 * level deeper.
5449 *
5450 * If we are not at level 0 and on shared tree blocks, go one slot to
5451 * the right if possible or go up and right.
5452 */
5453
0b246afa 5454 down_read(&fs_info->commit_root_sem);
7069830a
AB
5455 left_level = btrfs_header_level(left_root->commit_root);
5456 left_root_level = left_level;
c25e0261
RK
5457 left_path->nodes[left_level] =
5458 btrfs_clone_extent_buffer(left_root->commit_root);
5459 if (!left_path->nodes[left_level]) {
5460 up_read(&fs_info->commit_root_sem);
5461 ret = -ENOMEM;
5462 goto out;
5463 }
7069830a
AB
5464 extent_buffer_get(left_path->nodes[left_level]);
5465
5466 right_level = btrfs_header_level(right_root->commit_root);
5467 right_root_level = right_level;
c25e0261
RK
5468 right_path->nodes[right_level] =
5469 btrfs_clone_extent_buffer(right_root->commit_root);
5470 if (!right_path->nodes[right_level]) {
5471 up_read(&fs_info->commit_root_sem);
5472 ret = -ENOMEM;
5473 goto out;
5474 }
7069830a 5475 extent_buffer_get(right_path->nodes[right_level]);
0b246afa 5476 up_read(&fs_info->commit_root_sem);
7069830a
AB
5477
5478 if (left_level == 0)
5479 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5480 &left_key, left_path->slots[left_level]);
5481 else
5482 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5483 &left_key, left_path->slots[left_level]);
5484 if (right_level == 0)
5485 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5486 &right_key, right_path->slots[right_level]);
5487 else
5488 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5489 &right_key, right_path->slots[right_level]);
5490
5491 left_end_reached = right_end_reached = 0;
5492 advance_left = advance_right = 0;
5493
5494 while (1) {
7069830a 5495 if (advance_left && !left_end_reached) {
2ff7e61e 5496 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5497 left_root_level,
5498 advance_left != ADVANCE_ONLY_NEXT,
5499 &left_key);
fb770ae4 5500 if (ret == -1)
7069830a 5501 left_end_reached = ADVANCE;
fb770ae4
LB
5502 else if (ret < 0)
5503 goto out;
7069830a
AB
5504 advance_left = 0;
5505 }
5506 if (advance_right && !right_end_reached) {
2ff7e61e 5507 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5508 right_root_level,
5509 advance_right != ADVANCE_ONLY_NEXT,
5510 &right_key);
fb770ae4 5511 if (ret == -1)
7069830a 5512 right_end_reached = ADVANCE;
fb770ae4
LB
5513 else if (ret < 0)
5514 goto out;
7069830a
AB
5515 advance_right = 0;
5516 }
5517
5518 if (left_end_reached && right_end_reached) {
5519 ret = 0;
5520 goto out;
5521 } else if (left_end_reached) {
5522 if (right_level == 0) {
ee8c494f 5523 ret = changed_cb(left_path, right_path,
7069830a
AB
5524 &right_key,
5525 BTRFS_COMPARE_TREE_DELETED,
5526 ctx);
5527 if (ret < 0)
5528 goto out;
5529 }
5530 advance_right = ADVANCE;
5531 continue;
5532 } else if (right_end_reached) {
5533 if (left_level == 0) {
ee8c494f 5534 ret = changed_cb(left_path, right_path,
7069830a
AB
5535 &left_key,
5536 BTRFS_COMPARE_TREE_NEW,
5537 ctx);
5538 if (ret < 0)
5539 goto out;
5540 }
5541 advance_left = ADVANCE;
5542 continue;
5543 }
5544
5545 if (left_level == 0 && right_level == 0) {
5546 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5547 if (cmp < 0) {
ee8c494f 5548 ret = changed_cb(left_path, right_path,
7069830a
AB
5549 &left_key,
5550 BTRFS_COMPARE_TREE_NEW,
5551 ctx);
5552 if (ret < 0)
5553 goto out;
5554 advance_left = ADVANCE;
5555 } else if (cmp > 0) {
ee8c494f 5556 ret = changed_cb(left_path, right_path,
7069830a
AB
5557 &right_key,
5558 BTRFS_COMPARE_TREE_DELETED,
5559 ctx);
5560 if (ret < 0)
5561 goto out;
5562 advance_right = ADVANCE;
5563 } else {
b99d9a6a 5564 enum btrfs_compare_tree_result result;
ba5e8f2e 5565
74dd17fb 5566 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5567 ret = tree_compare_item(left_path, right_path,
5568 tmp_buf);
ba5e8f2e 5569 if (ret)
b99d9a6a 5570 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5571 else
b99d9a6a 5572 result = BTRFS_COMPARE_TREE_SAME;
ee8c494f 5573 ret = changed_cb(left_path, right_path,
b99d9a6a 5574 &left_key, result, ctx);
ba5e8f2e
JB
5575 if (ret < 0)
5576 goto out;
7069830a
AB
5577 advance_left = ADVANCE;
5578 advance_right = ADVANCE;
5579 }
5580 } else if (left_level == right_level) {
5581 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5582 if (cmp < 0) {
5583 advance_left = ADVANCE;
5584 } else if (cmp > 0) {
5585 advance_right = ADVANCE;
5586 } else {
5587 left_blockptr = btrfs_node_blockptr(
5588 left_path->nodes[left_level],
5589 left_path->slots[left_level]);
5590 right_blockptr = btrfs_node_blockptr(
5591 right_path->nodes[right_level],
5592 right_path->slots[right_level]);
6baa4293
FM
5593 left_gen = btrfs_node_ptr_generation(
5594 left_path->nodes[left_level],
5595 left_path->slots[left_level]);
5596 right_gen = btrfs_node_ptr_generation(
5597 right_path->nodes[right_level],
5598 right_path->slots[right_level]);
5599 if (left_blockptr == right_blockptr &&
5600 left_gen == right_gen) {
7069830a
AB
5601 /*
5602 * As we're on a shared block, don't
5603 * allow to go deeper.
5604 */
5605 advance_left = ADVANCE_ONLY_NEXT;
5606 advance_right = ADVANCE_ONLY_NEXT;
5607 } else {
5608 advance_left = ADVANCE;
5609 advance_right = ADVANCE;
5610 }
5611 }
5612 } else if (left_level < right_level) {
5613 advance_right = ADVANCE;
5614 } else {
5615 advance_left = ADVANCE;
5616 }
5617 }
5618
5619out:
5620 btrfs_free_path(left_path);
5621 btrfs_free_path(right_path);
8f282f71 5622 kvfree(tmp_buf);
7069830a
AB
5623 return ret;
5624}
5625
3f157a2f
CM
5626/*
5627 * this is similar to btrfs_next_leaf, but does not try to preserve
5628 * and fixup the path. It looks for and returns the next key in the
de78b51a 5629 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5630 *
5631 * 0 is returned if another key is found, < 0 if there are any errors
5632 * and 1 is returned if there are no higher keys in the tree
5633 *
5634 * path->keep_locks should be set to 1 on the search made before
5635 * calling this function.
5636 */
e7a84565 5637int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5638 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5639{
e7a84565
CM
5640 int slot;
5641 struct extent_buffer *c;
5642
934d375b 5643 WARN_ON(!path->keep_locks);
d397712b 5644 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5645 if (!path->nodes[level])
5646 return 1;
5647
5648 slot = path->slots[level] + 1;
5649 c = path->nodes[level];
3f157a2f 5650next:
e7a84565 5651 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5652 int ret;
5653 int orig_lowest;
5654 struct btrfs_key cur_key;
5655 if (level + 1 >= BTRFS_MAX_LEVEL ||
5656 !path->nodes[level + 1])
e7a84565 5657 return 1;
33c66f43
YZ
5658
5659 if (path->locks[level + 1]) {
5660 level++;
5661 continue;
5662 }
5663
5664 slot = btrfs_header_nritems(c) - 1;
5665 if (level == 0)
5666 btrfs_item_key_to_cpu(c, &cur_key, slot);
5667 else
5668 btrfs_node_key_to_cpu(c, &cur_key, slot);
5669
5670 orig_lowest = path->lowest_level;
b3b4aa74 5671 btrfs_release_path(path);
33c66f43
YZ
5672 path->lowest_level = level;
5673 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5674 0, 0);
5675 path->lowest_level = orig_lowest;
5676 if (ret < 0)
5677 return ret;
5678
5679 c = path->nodes[level];
5680 slot = path->slots[level];
5681 if (ret == 0)
5682 slot++;
5683 goto next;
e7a84565 5684 }
33c66f43 5685
e7a84565
CM
5686 if (level == 0)
5687 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5688 else {
3f157a2f
CM
5689 u64 gen = btrfs_node_ptr_generation(c, slot);
5690
3f157a2f
CM
5691 if (gen < min_trans) {
5692 slot++;
5693 goto next;
5694 }
e7a84565 5695 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5696 }
e7a84565
CM
5697 return 0;
5698 }
5699 return 1;
5700}
5701
97571fd0 5702/*
925baedd 5703 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5704 * returns 0 if it found something or 1 if there are no greater leaves.
5705 * returns < 0 on io errors.
97571fd0 5706 */
234b63a0 5707int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5708{
5709 return btrfs_next_old_leaf(root, path, 0);
5710}
5711
5712int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5713 u64 time_seq)
d97e63b6
CM
5714{
5715 int slot;
8e73f275 5716 int level;
5f39d397 5717 struct extent_buffer *c;
8e73f275 5718 struct extent_buffer *next;
925baedd
CM
5719 struct btrfs_key key;
5720 u32 nritems;
5721 int ret;
8e73f275 5722 int old_spinning = path->leave_spinning;
bd681513 5723 int next_rw_lock = 0;
925baedd
CM
5724
5725 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5726 if (nritems == 0)
925baedd 5727 return 1;
925baedd 5728
8e73f275
CM
5729 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5730again:
5731 level = 1;
5732 next = NULL;
bd681513 5733 next_rw_lock = 0;
b3b4aa74 5734 btrfs_release_path(path);
8e73f275 5735
a2135011 5736 path->keep_locks = 1;
31533fb2 5737 path->leave_spinning = 1;
8e73f275 5738
3d7806ec
JS
5739 if (time_seq)
5740 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5741 else
5742 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5743 path->keep_locks = 0;
5744
5745 if (ret < 0)
5746 return ret;
5747
a2135011 5748 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5749 /*
5750 * by releasing the path above we dropped all our locks. A balance
5751 * could have added more items next to the key that used to be
5752 * at the very end of the block. So, check again here and
5753 * advance the path if there are now more items available.
5754 */
a2135011 5755 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5756 if (ret == 0)
5757 path->slots[0]++;
8e73f275 5758 ret = 0;
925baedd
CM
5759 goto done;
5760 }
0b43e04f
LB
5761 /*
5762 * So the above check misses one case:
5763 * - after releasing the path above, someone has removed the item that
5764 * used to be at the very end of the block, and balance between leafs
5765 * gets another one with bigger key.offset to replace it.
5766 *
5767 * This one should be returned as well, or we can get leaf corruption
5768 * later(esp. in __btrfs_drop_extents()).
5769 *
5770 * And a bit more explanation about this check,
5771 * with ret > 0, the key isn't found, the path points to the slot
5772 * where it should be inserted, so the path->slots[0] item must be the
5773 * bigger one.
5774 */
5775 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5776 ret = 0;
5777 goto done;
5778 }
d97e63b6 5779
d397712b 5780 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5781 if (!path->nodes[level]) {
5782 ret = 1;
5783 goto done;
5784 }
5f39d397 5785
d97e63b6
CM
5786 slot = path->slots[level] + 1;
5787 c = path->nodes[level];
5f39d397 5788 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5789 level++;
8e73f275
CM
5790 if (level == BTRFS_MAX_LEVEL) {
5791 ret = 1;
5792 goto done;
5793 }
d97e63b6
CM
5794 continue;
5795 }
5f39d397 5796
925baedd 5797 if (next) {
bd681513 5798 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5799 free_extent_buffer(next);
925baedd 5800 }
5f39d397 5801
8e73f275 5802 next = c;
bd681513 5803 next_rw_lock = path->locks[level];
d07b8528 5804 ret = read_block_for_search(root, path, &next, level,
cda79c54 5805 slot, &key);
8e73f275
CM
5806 if (ret == -EAGAIN)
5807 goto again;
5f39d397 5808
76a05b35 5809 if (ret < 0) {
b3b4aa74 5810 btrfs_release_path(path);
76a05b35
CM
5811 goto done;
5812 }
5813
5cd57b2c 5814 if (!path->skip_locking) {
bd681513 5815 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5816 if (!ret && time_seq) {
5817 /*
5818 * If we don't get the lock, we may be racing
5819 * with push_leaf_left, holding that lock while
5820 * itself waiting for the leaf we've currently
5821 * locked. To solve this situation, we give up
5822 * on our lock and cycle.
5823 */
cf538830 5824 free_extent_buffer(next);
d42244a0
JS
5825 btrfs_release_path(path);
5826 cond_resched();
5827 goto again;
5828 }
8e73f275
CM
5829 if (!ret) {
5830 btrfs_set_path_blocking(path);
bd681513 5831 btrfs_tree_read_lock(next);
31533fb2 5832 btrfs_clear_path_blocking(path, next,
bd681513 5833 BTRFS_READ_LOCK);
8e73f275 5834 }
31533fb2 5835 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5836 }
d97e63b6
CM
5837 break;
5838 }
5839 path->slots[level] = slot;
d397712b 5840 while (1) {
d97e63b6
CM
5841 level--;
5842 c = path->nodes[level];
925baedd 5843 if (path->locks[level])
bd681513 5844 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5845
5f39d397 5846 free_extent_buffer(c);
d97e63b6
CM
5847 path->nodes[level] = next;
5848 path->slots[level] = 0;
a74a4b97 5849 if (!path->skip_locking)
bd681513 5850 path->locks[level] = next_rw_lock;
d97e63b6
CM
5851 if (!level)
5852 break;
b4ce94de 5853
d07b8528 5854 ret = read_block_for_search(root, path, &next, level,
cda79c54 5855 0, &key);
8e73f275
CM
5856 if (ret == -EAGAIN)
5857 goto again;
5858
76a05b35 5859 if (ret < 0) {
b3b4aa74 5860 btrfs_release_path(path);
76a05b35
CM
5861 goto done;
5862 }
5863
5cd57b2c 5864 if (!path->skip_locking) {
bd681513 5865 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5866 if (!ret) {
5867 btrfs_set_path_blocking(path);
bd681513 5868 btrfs_tree_read_lock(next);
31533fb2 5869 btrfs_clear_path_blocking(path, next,
bd681513
CM
5870 BTRFS_READ_LOCK);
5871 }
31533fb2 5872 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5873 }
d97e63b6 5874 }
8e73f275 5875 ret = 0;
925baedd 5876done:
f7c79f30 5877 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5878 path->leave_spinning = old_spinning;
5879 if (!old_spinning)
5880 btrfs_set_path_blocking(path);
5881
5882 return ret;
d97e63b6 5883}
0b86a832 5884
3f157a2f
CM
5885/*
5886 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5887 * searching until it gets past min_objectid or finds an item of 'type'
5888 *
5889 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5890 */
0b86a832
CM
5891int btrfs_previous_item(struct btrfs_root *root,
5892 struct btrfs_path *path, u64 min_objectid,
5893 int type)
5894{
5895 struct btrfs_key found_key;
5896 struct extent_buffer *leaf;
e02119d5 5897 u32 nritems;
0b86a832
CM
5898 int ret;
5899
d397712b 5900 while (1) {
0b86a832 5901 if (path->slots[0] == 0) {
b4ce94de 5902 btrfs_set_path_blocking(path);
0b86a832
CM
5903 ret = btrfs_prev_leaf(root, path);
5904 if (ret != 0)
5905 return ret;
5906 } else {
5907 path->slots[0]--;
5908 }
5909 leaf = path->nodes[0];
e02119d5
CM
5910 nritems = btrfs_header_nritems(leaf);
5911 if (nritems == 0)
5912 return 1;
5913 if (path->slots[0] == nritems)
5914 path->slots[0]--;
5915
0b86a832 5916 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5917 if (found_key.objectid < min_objectid)
5918 break;
0a4eefbb
YZ
5919 if (found_key.type == type)
5920 return 0;
e02119d5
CM
5921 if (found_key.objectid == min_objectid &&
5922 found_key.type < type)
5923 break;
0b86a832
CM
5924 }
5925 return 1;
5926}
ade2e0b3
WS
5927
5928/*
5929 * search in extent tree to find a previous Metadata/Data extent item with
5930 * min objecitd.
5931 *
5932 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5933 */
5934int btrfs_previous_extent_item(struct btrfs_root *root,
5935 struct btrfs_path *path, u64 min_objectid)
5936{
5937 struct btrfs_key found_key;
5938 struct extent_buffer *leaf;
5939 u32 nritems;
5940 int ret;
5941
5942 while (1) {
5943 if (path->slots[0] == 0) {
5944 btrfs_set_path_blocking(path);
5945 ret = btrfs_prev_leaf(root, path);
5946 if (ret != 0)
5947 return ret;
5948 } else {
5949 path->slots[0]--;
5950 }
5951 leaf = path->nodes[0];
5952 nritems = btrfs_header_nritems(leaf);
5953 if (nritems == 0)
5954 return 1;
5955 if (path->slots[0] == nritems)
5956 path->slots[0]--;
5957
5958 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5959 if (found_key.objectid < min_objectid)
5960 break;
5961 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5962 found_key.type == BTRFS_METADATA_ITEM_KEY)
5963 return 0;
5964 if (found_key.objectid == min_objectid &&
5965 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5966 break;
5967 }
5968 return 1;
5969}