]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/ctree.c
btrfs: ulist: make the finalization function public
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
8f282f71 22#include <linux/vmalloc.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
7f5c1516 25#include "transaction.h"
5f39d397 26#include "print-tree.h"
925baedd 27#include "locking.h"
9a8dd150 28
e089f05c
CM
29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
310712b2
OS
31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
5f39d397 34static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
35 struct btrfs_fs_info *fs_info,
36 struct extent_buffer *dst,
971a1f66 37 struct extent_buffer *src, int empty);
5f39d397 38static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 39 struct btrfs_fs_info *fs_info,
5f39d397
CM
40 struct extent_buffer *dst_buf,
41 struct extent_buffer *src_buf);
afe5fea7
TI
42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 int level, int slot);
5de865ee 44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
f230475e 45 struct extent_buffer *eb);
d97e63b6 46
df24a2b9 47struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 48{
e2c89907 49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
50}
51
b4ce94de
CM
52/*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57{
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
67 }
68}
69
70/*
71 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
b4ce94de 77 */
4008c04a 78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 79 struct extent_buffer *held, int held_rw)
b4ce94de
CM
80{
81 int i;
4008c04a 82
bd681513
CM
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
4008c04a 90 btrfs_set_path_blocking(p);
4008c04a
CM
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
b4ce94de 100 }
4008c04a 101
4008c04a 102 if (held)
bd681513 103 btrfs_clear_lock_blocking_rw(held, held_rw);
b4ce94de
CM
104}
105
d352ac68 106/* this also releases the path */
df24a2b9 107void btrfs_free_path(struct btrfs_path *p)
be0e5c09 108{
ff175d57
JJ
109 if (!p)
110 return;
b3b4aa74 111 btrfs_release_path(p);
df24a2b9 112 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
113}
114
d352ac68
CM
115/*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
b3b4aa74 121noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
122{
123 int i;
a2135011 124
234b63a0 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 126 p->slots[i] = 0;
eb60ceac 127 if (!p->nodes[i])
925baedd
CM
128 continue;
129 if (p->locks[i]) {
bd681513 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
131 p->locks[i] = 0;
132 }
5f39d397 133 free_extent_buffer(p->nodes[i]);
3f157a2f 134 p->nodes[i] = NULL;
eb60ceac
CM
135 }
136}
137
d352ac68
CM
138/*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
925baedd
CM
148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149{
150 struct extent_buffer *eb;
240f62c8 151
3083ee2e
JB
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
01327610 158 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
925baedd
CM
169 return eb;
170}
171
d352ac68
CM
172/* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
925baedd
CM
176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177{
178 struct extent_buffer *eb;
179
d397712b 180 while (1) {
925baedd
CM
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
240f62c8 183 if (eb == root->node)
925baedd 184 break;
925baedd
CM
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189}
190
bd681513
CM
191/* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
48a3b636 195static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
196{
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208}
209
d352ac68
CM
210/* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
0b86a832
CM
214static void add_root_to_dirty_list(struct btrfs_root *root)
215{
0b246afa
JM
216 struct btrfs_fs_info *fs_info = root->fs_info;
217
e7070be1
JB
218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
220 return;
221
0b246afa 222 spin_lock(&fs_info->trans_lock);
e7070be1
JB
223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
224 /* Want the extent tree to be the last on the list */
225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
226 list_move_tail(&root->dirty_list,
0b246afa 227 &fs_info->dirty_cowonly_roots);
e7070be1
JB
228 else
229 list_move(&root->dirty_list,
0b246afa 230 &fs_info->dirty_cowonly_roots);
0b86a832 231 }
0b246afa 232 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
233}
234
d352ac68
CM
235/*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
be20aa9d
CM
240int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244{
0b246afa 245 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 246 struct extent_buffer *cow;
be20aa9d
CM
247 int ret = 0;
248 int level;
5d4f98a2 249 struct btrfs_disk_key disk_key;
be20aa9d 250
27cdeb70 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 252 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
254 trans->transid != root->last_trans);
be20aa9d
CM
255
256 level = btrfs_header_level(buf);
5d4f98a2
YZ
257 if (level == 0)
258 btrfs_item_key(buf, &disk_key, 0);
259 else
260 btrfs_node_key(buf, &disk_key, 0);
31840ae1 261
4d75f8a9
DS
262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
263 &disk_key, level, buf->start, 0);
5d4f98a2 264 if (IS_ERR(cow))
be20aa9d
CM
265 return PTR_ERR(cow);
266
58e8012c 267 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 else
276 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 277
0b246afa 278 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 279
be20aa9d 280 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 282 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 283 else
e339a6b0 284 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 285
be20aa9d
CM
286 if (ret)
287 return ret;
288
289 btrfs_mark_buffer_dirty(cow);
290 *cow_ret = cow;
291 return 0;
292}
293
bd989ba3
JS
294enum mod_log_op {
295 MOD_LOG_KEY_REPLACE,
296 MOD_LOG_KEY_ADD,
297 MOD_LOG_KEY_REMOVE,
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_MOVE_KEYS,
301 MOD_LOG_ROOT_REPLACE,
302};
303
304struct tree_mod_move {
305 int dst_slot;
306 int nr_items;
307};
308
309struct tree_mod_root {
310 u64 logical;
311 u8 level;
312};
313
314struct tree_mod_elem {
315 struct rb_node node;
298cfd36 316 u64 logical;
097b8a7c 317 u64 seq;
bd989ba3
JS
318 enum mod_log_op op;
319
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 int slot;
322
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 u64 generation;
325
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key;
328 u64 blockptr;
329
330 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move;
332
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root;
335};
336
097b8a7c 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 338{
097b8a7c 339 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
340}
341
097b8a7c
JS
342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343{
344 read_unlock(&fs_info->tree_mod_log_lock);
345}
346
347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348{
349 write_lock(&fs_info->tree_mod_log_lock);
350}
351
352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353{
354 write_unlock(&fs_info->tree_mod_log_lock);
355}
356
fc36ed7e 357/*
fcebe456 358 * Pull a new tree mod seq number for our operation.
fc36ed7e 359 */
fcebe456 360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
361{
362 return atomic64_inc_return(&fs_info->tree_mod_seq);
363}
364
097b8a7c
JS
365/*
366 * This adds a new blocker to the tree mod log's blocker list if the @elem
367 * passed does not already have a sequence number set. So when a caller expects
368 * to record tree modifications, it should ensure to set elem->seq to zero
369 * before calling btrfs_get_tree_mod_seq.
370 * Returns a fresh, unused tree log modification sequence number, even if no new
371 * blocker was added.
372 */
373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374 struct seq_list *elem)
bd989ba3 375{
097b8a7c 376 tree_mod_log_write_lock(fs_info);
bd989ba3 377 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 378 if (!elem->seq) {
fcebe456 379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
bd989ba3 382 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
383 tree_mod_log_write_unlock(fs_info);
384
fcebe456 385 return elem->seq;
bd989ba3
JS
386}
387
388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389 struct seq_list *elem)
390{
391 struct rb_root *tm_root;
392 struct rb_node *node;
393 struct rb_node *next;
394 struct seq_list *cur_elem;
395 struct tree_mod_elem *tm;
396 u64 min_seq = (u64)-1;
397 u64 seq_putting = elem->seq;
398
399 if (!seq_putting)
400 return;
401
bd989ba3
JS
402 spin_lock(&fs_info->tree_mod_seq_lock);
403 list_del(&elem->list);
097b8a7c 404 elem->seq = 0;
bd989ba3
JS
405
406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 407 if (cur_elem->seq < min_seq) {
bd989ba3
JS
408 if (seq_putting > cur_elem->seq) {
409 /*
410 * blocker with lower sequence number exists, we
411 * cannot remove anything from the log
412 */
097b8a7c
JS
413 spin_unlock(&fs_info->tree_mod_seq_lock);
414 return;
bd989ba3
JS
415 }
416 min_seq = cur_elem->seq;
417 }
418 }
097b8a7c
JS
419 spin_unlock(&fs_info->tree_mod_seq_lock);
420
bd989ba3
JS
421 /*
422 * anything that's lower than the lowest existing (read: blocked)
423 * sequence number can be removed from the tree.
424 */
097b8a7c 425 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
426 tm_root = &fs_info->tree_mod_log;
427 for (node = rb_first(tm_root); node; node = next) {
428 next = rb_next(node);
6b4df8b6 429 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 430 if (tm->seq > min_seq)
bd989ba3
JS
431 continue;
432 rb_erase(node, tm_root);
bd989ba3
JS
433 kfree(tm);
434 }
097b8a7c 435 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
436}
437
438/*
439 * key order of the log:
298cfd36 440 * node/leaf start address -> sequence
bd989ba3 441 *
298cfd36
CR
442 * The 'start address' is the logical address of the *new* root node
443 * for root replace operations, or the logical address of the affected
444 * block for all other operations.
5de865ee
FDBM
445 *
446 * Note: must be called with write lock (tree_mod_log_write_lock).
bd989ba3
JS
447 */
448static noinline int
449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450{
451 struct rb_root *tm_root;
452 struct rb_node **new;
453 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur;
c8cc6341
JB
455
456 BUG_ON(!tm);
457
fcebe456 458 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 459
bd989ba3
JS
460 tm_root = &fs_info->tree_mod_log;
461 new = &tm_root->rb_node;
462 while (*new) {
6b4df8b6 463 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 464 parent = *new;
298cfd36 465 if (cur->logical < tm->logical)
bd989ba3 466 new = &((*new)->rb_left);
298cfd36 467 else if (cur->logical > tm->logical)
bd989ba3 468 new = &((*new)->rb_right);
097b8a7c 469 else if (cur->seq < tm->seq)
bd989ba3 470 new = &((*new)->rb_left);
097b8a7c 471 else if (cur->seq > tm->seq)
bd989ba3 472 new = &((*new)->rb_right);
5de865ee
FDBM
473 else
474 return -EEXIST;
bd989ba3
JS
475 }
476
477 rb_link_node(&tm->node, parent, new);
478 rb_insert_color(&tm->node, tm_root);
5de865ee 479 return 0;
bd989ba3
JS
480}
481
097b8a7c
JS
482/*
483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484 * returns zero with the tree_mod_log_lock acquired. The caller must hold
485 * this until all tree mod log insertions are recorded in the rb tree and then
486 * call tree_mod_log_write_unlock() to release.
487 */
e9b7fd4d
JS
488static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489 struct extent_buffer *eb) {
490 smp_mb();
491 if (list_empty(&(fs_info)->tree_mod_seq_list))
492 return 1;
097b8a7c
JS
493 if (eb && btrfs_header_level(eb) == 0)
494 return 1;
5de865ee
FDBM
495
496 tree_mod_log_write_lock(fs_info);
497 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
498 tree_mod_log_write_unlock(fs_info);
499 return 1;
500 }
501
e9b7fd4d
JS
502 return 0;
503}
504
5de865ee
FDBM
505/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
506static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
507 struct extent_buffer *eb)
508{
509 smp_mb();
510 if (list_empty(&(fs_info)->tree_mod_seq_list))
511 return 0;
512 if (eb && btrfs_header_level(eb) == 0)
513 return 0;
514
515 return 1;
516}
517
518static struct tree_mod_elem *
519alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
520 enum mod_log_op op, gfp_t flags)
bd989ba3 521{
097b8a7c 522 struct tree_mod_elem *tm;
bd989ba3 523
c8cc6341
JB
524 tm = kzalloc(sizeof(*tm), flags);
525 if (!tm)
5de865ee 526 return NULL;
bd989ba3 527
298cfd36 528 tm->logical = eb->start;
bd989ba3
JS
529 if (op != MOD_LOG_KEY_ADD) {
530 btrfs_node_key(eb, &tm->key, slot);
531 tm->blockptr = btrfs_node_blockptr(eb, slot);
532 }
533 tm->op = op;
534 tm->slot = slot;
535 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 536 RB_CLEAR_NODE(&tm->node);
bd989ba3 537
5de865ee 538 return tm;
097b8a7c
JS
539}
540
541static noinline int
c8cc6341
JB
542tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
543 struct extent_buffer *eb, int slot,
544 enum mod_log_op op, gfp_t flags)
097b8a7c 545{
5de865ee
FDBM
546 struct tree_mod_elem *tm;
547 int ret;
548
549 if (!tree_mod_need_log(fs_info, eb))
550 return 0;
551
552 tm = alloc_tree_mod_elem(eb, slot, op, flags);
553 if (!tm)
554 return -ENOMEM;
555
556 if (tree_mod_dont_log(fs_info, eb)) {
557 kfree(tm);
097b8a7c 558 return 0;
5de865ee
FDBM
559 }
560
561 ret = __tree_mod_log_insert(fs_info, tm);
562 tree_mod_log_write_unlock(fs_info);
563 if (ret)
564 kfree(tm);
097b8a7c 565
5de865ee 566 return ret;
097b8a7c
JS
567}
568
bd989ba3
JS
569static noinline int
570tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
571 struct extent_buffer *eb, int dst_slot, int src_slot,
572 int nr_items, gfp_t flags)
573{
5de865ee
FDBM
574 struct tree_mod_elem *tm = NULL;
575 struct tree_mod_elem **tm_list = NULL;
576 int ret = 0;
bd989ba3 577 int i;
5de865ee 578 int locked = 0;
bd989ba3 579
5de865ee 580 if (!tree_mod_need_log(fs_info, eb))
f395694c 581 return 0;
bd989ba3 582
31e818fe 583 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
5de865ee
FDBM
584 if (!tm_list)
585 return -ENOMEM;
586
587 tm = kzalloc(sizeof(*tm), flags);
588 if (!tm) {
589 ret = -ENOMEM;
590 goto free_tms;
591 }
592
298cfd36 593 tm->logical = eb->start;
5de865ee
FDBM
594 tm->slot = src_slot;
595 tm->move.dst_slot = dst_slot;
596 tm->move.nr_items = nr_items;
597 tm->op = MOD_LOG_MOVE_KEYS;
598
599 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
600 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
601 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
602 if (!tm_list[i]) {
603 ret = -ENOMEM;
604 goto free_tms;
605 }
606 }
607
608 if (tree_mod_dont_log(fs_info, eb))
609 goto free_tms;
610 locked = 1;
611
01763a2e
JS
612 /*
613 * When we override something during the move, we log these removals.
614 * This can only happen when we move towards the beginning of the
615 * buffer, i.e. dst_slot < src_slot.
616 */
bd989ba3 617 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
5de865ee
FDBM
618 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
619 if (ret)
620 goto free_tms;
bd989ba3
JS
621 }
622
5de865ee
FDBM
623 ret = __tree_mod_log_insert(fs_info, tm);
624 if (ret)
625 goto free_tms;
626 tree_mod_log_write_unlock(fs_info);
627 kfree(tm_list);
f395694c 628
5de865ee
FDBM
629 return 0;
630free_tms:
631 for (i = 0; i < nr_items; i++) {
632 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
633 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
634 kfree(tm_list[i]);
635 }
636 if (locked)
637 tree_mod_log_write_unlock(fs_info);
638 kfree(tm_list);
639 kfree(tm);
bd989ba3 640
5de865ee 641 return ret;
bd989ba3
JS
642}
643
5de865ee
FDBM
644static inline int
645__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
646 struct tree_mod_elem **tm_list,
647 int nritems)
097b8a7c 648{
5de865ee 649 int i, j;
097b8a7c
JS
650 int ret;
651
097b8a7c 652 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
653 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
654 if (ret) {
655 for (j = nritems - 1; j > i; j--)
656 rb_erase(&tm_list[j]->node,
657 &fs_info->tree_mod_log);
658 return ret;
659 }
097b8a7c 660 }
5de865ee
FDBM
661
662 return 0;
097b8a7c
JS
663}
664
bd989ba3
JS
665static noinline int
666tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
667 struct extent_buffer *old_root,
90f8d62e
JS
668 struct extent_buffer *new_root, gfp_t flags,
669 int log_removal)
bd989ba3 670{
5de865ee
FDBM
671 struct tree_mod_elem *tm = NULL;
672 struct tree_mod_elem **tm_list = NULL;
673 int nritems = 0;
674 int ret = 0;
675 int i;
bd989ba3 676
5de865ee 677 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
678 return 0;
679
5de865ee
FDBM
680 if (log_removal && btrfs_header_level(old_root) > 0) {
681 nritems = btrfs_header_nritems(old_root);
31e818fe 682 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
683 flags);
684 if (!tm_list) {
685 ret = -ENOMEM;
686 goto free_tms;
687 }
688 for (i = 0; i < nritems; i++) {
689 tm_list[i] = alloc_tree_mod_elem(old_root, i,
690 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
691 if (!tm_list[i]) {
692 ret = -ENOMEM;
693 goto free_tms;
694 }
695 }
696 }
d9abbf1c 697
c8cc6341 698 tm = kzalloc(sizeof(*tm), flags);
5de865ee
FDBM
699 if (!tm) {
700 ret = -ENOMEM;
701 goto free_tms;
702 }
bd989ba3 703
298cfd36 704 tm->logical = new_root->start;
bd989ba3
JS
705 tm->old_root.logical = old_root->start;
706 tm->old_root.level = btrfs_header_level(old_root);
707 tm->generation = btrfs_header_generation(old_root);
708 tm->op = MOD_LOG_ROOT_REPLACE;
709
5de865ee
FDBM
710 if (tree_mod_dont_log(fs_info, NULL))
711 goto free_tms;
712
713 if (tm_list)
714 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
715 if (!ret)
716 ret = __tree_mod_log_insert(fs_info, tm);
717
718 tree_mod_log_write_unlock(fs_info);
719 if (ret)
720 goto free_tms;
721 kfree(tm_list);
722
723 return ret;
724
725free_tms:
726 if (tm_list) {
727 for (i = 0; i < nritems; i++)
728 kfree(tm_list[i]);
729 kfree(tm_list);
730 }
731 kfree(tm);
732
733 return ret;
bd989ba3
JS
734}
735
736static struct tree_mod_elem *
737__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
738 int smallest)
739{
740 struct rb_root *tm_root;
741 struct rb_node *node;
742 struct tree_mod_elem *cur = NULL;
743 struct tree_mod_elem *found = NULL;
bd989ba3 744
097b8a7c 745 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
746 tm_root = &fs_info->tree_mod_log;
747 node = tm_root->rb_node;
748 while (node) {
6b4df8b6 749 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 750 if (cur->logical < start) {
bd989ba3 751 node = node->rb_left;
298cfd36 752 } else if (cur->logical > start) {
bd989ba3 753 node = node->rb_right;
097b8a7c 754 } else if (cur->seq < min_seq) {
bd989ba3
JS
755 node = node->rb_left;
756 } else if (!smallest) {
757 /* we want the node with the highest seq */
758 if (found)
097b8a7c 759 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
760 found = cur;
761 node = node->rb_left;
097b8a7c 762 } else if (cur->seq > min_seq) {
bd989ba3
JS
763 /* we want the node with the smallest seq */
764 if (found)
097b8a7c 765 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
766 found = cur;
767 node = node->rb_right;
768 } else {
769 found = cur;
770 break;
771 }
772 }
097b8a7c 773 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
774
775 return found;
776}
777
778/*
779 * this returns the element from the log with the smallest time sequence
780 * value that's in the log (the oldest log item). any element with a time
781 * sequence lower than min_seq will be ignored.
782 */
783static struct tree_mod_elem *
784tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
785 u64 min_seq)
786{
787 return __tree_mod_log_search(fs_info, start, min_seq, 1);
788}
789
790/*
791 * this returns the element from the log with the largest time sequence
792 * value that's in the log (the most recent log item). any element with
793 * a time sequence lower than min_seq will be ignored.
794 */
795static struct tree_mod_elem *
796tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
797{
798 return __tree_mod_log_search(fs_info, start, min_seq, 0);
799}
800
5de865ee 801static noinline int
bd989ba3
JS
802tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
803 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 804 unsigned long src_offset, int nr_items)
bd989ba3 805{
5de865ee
FDBM
806 int ret = 0;
807 struct tree_mod_elem **tm_list = NULL;
808 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 809 int i;
5de865ee 810 int locked = 0;
bd989ba3 811
5de865ee
FDBM
812 if (!tree_mod_need_log(fs_info, NULL))
813 return 0;
bd989ba3 814
c8cc6341 815 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
816 return 0;
817
31e818fe 818 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
819 GFP_NOFS);
820 if (!tm_list)
821 return -ENOMEM;
bd989ba3 822
5de865ee
FDBM
823 tm_list_add = tm_list;
824 tm_list_rem = tm_list + nr_items;
bd989ba3 825 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
826 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
827 MOD_LOG_KEY_REMOVE, GFP_NOFS);
828 if (!tm_list_rem[i]) {
829 ret = -ENOMEM;
830 goto free_tms;
831 }
832
833 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
834 MOD_LOG_KEY_ADD, GFP_NOFS);
835 if (!tm_list_add[i]) {
836 ret = -ENOMEM;
837 goto free_tms;
838 }
839 }
840
841 if (tree_mod_dont_log(fs_info, NULL))
842 goto free_tms;
843 locked = 1;
844
845 for (i = 0; i < nr_items; i++) {
846 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
847 if (ret)
848 goto free_tms;
849 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
850 if (ret)
851 goto free_tms;
bd989ba3 852 }
5de865ee
FDBM
853
854 tree_mod_log_write_unlock(fs_info);
855 kfree(tm_list);
856
857 return 0;
858
859free_tms:
860 for (i = 0; i < nr_items * 2; i++) {
861 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
862 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
863 kfree(tm_list[i]);
864 }
865 if (locked)
866 tree_mod_log_write_unlock(fs_info);
867 kfree(tm_list);
868
869 return ret;
bd989ba3
JS
870}
871
872static inline void
873tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
874 int dst_offset, int src_offset, int nr_items)
875{
876 int ret;
877 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
878 nr_items, GFP_NOFS);
879 BUG_ON(ret < 0);
880}
881
097b8a7c 882static noinline void
bd989ba3 883tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 884 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
885{
886 int ret;
887
78357766 888 ret = tree_mod_log_insert_key(fs_info, eb, slot,
c8cc6341
JB
889 MOD_LOG_KEY_REPLACE,
890 atomic ? GFP_ATOMIC : GFP_NOFS);
bd989ba3
JS
891 BUG_ON(ret < 0);
892}
893
5de865ee 894static noinline int
097b8a7c 895tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 896{
5de865ee
FDBM
897 struct tree_mod_elem **tm_list = NULL;
898 int nritems = 0;
899 int i;
900 int ret = 0;
901
902 if (btrfs_header_level(eb) == 0)
903 return 0;
904
905 if (!tree_mod_need_log(fs_info, NULL))
906 return 0;
907
908 nritems = btrfs_header_nritems(eb);
31e818fe 909 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
910 if (!tm_list)
911 return -ENOMEM;
912
913 for (i = 0; i < nritems; i++) {
914 tm_list[i] = alloc_tree_mod_elem(eb, i,
915 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
916 if (!tm_list[i]) {
917 ret = -ENOMEM;
918 goto free_tms;
919 }
920 }
921
e9b7fd4d 922 if (tree_mod_dont_log(fs_info, eb))
5de865ee
FDBM
923 goto free_tms;
924
925 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
926 tree_mod_log_write_unlock(fs_info);
927 if (ret)
928 goto free_tms;
929 kfree(tm_list);
930
931 return 0;
932
933free_tms:
934 for (i = 0; i < nritems; i++)
935 kfree(tm_list[i]);
936 kfree(tm_list);
937
938 return ret;
bd989ba3
JS
939}
940
097b8a7c 941static noinline void
bd989ba3 942tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
943 struct extent_buffer *new_root_node,
944 int log_removal)
bd989ba3
JS
945{
946 int ret;
bd989ba3 947 ret = tree_mod_log_insert_root(root->fs_info, root->node,
90f8d62e 948 new_root_node, GFP_NOFS, log_removal);
bd989ba3
JS
949 BUG_ON(ret < 0);
950}
951
5d4f98a2
YZ
952/*
953 * check if the tree block can be shared by multiple trees
954 */
955int btrfs_block_can_be_shared(struct btrfs_root *root,
956 struct extent_buffer *buf)
957{
958 /*
01327610 959 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
960 * are never shared. If a block was allocated after the last
961 * snapshot and the block was not allocated by tree relocation,
962 * we know the block is not shared.
963 */
27cdeb70 964 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
965 buf != root->node && buf != root->commit_root &&
966 (btrfs_header_generation(buf) <=
967 btrfs_root_last_snapshot(&root->root_item) ||
968 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
969 return 1;
970#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 971 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
972 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
973 return 1;
974#endif
975 return 0;
976}
977
978static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
979 struct btrfs_root *root,
980 struct extent_buffer *buf,
f0486c68
YZ
981 struct extent_buffer *cow,
982 int *last_ref)
5d4f98a2 983{
0b246afa 984 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
985 u64 refs;
986 u64 owner;
987 u64 flags;
988 u64 new_flags = 0;
989 int ret;
990
991 /*
992 * Backrefs update rules:
993 *
994 * Always use full backrefs for extent pointers in tree block
995 * allocated by tree relocation.
996 *
997 * If a shared tree block is no longer referenced by its owner
998 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
999 * use full backrefs for extent pointers in tree block.
1000 *
1001 * If a tree block is been relocating
1002 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1003 * use full backrefs for extent pointers in tree block.
1004 * The reason for this is some operations (such as drop tree)
1005 * are only allowed for blocks use full backrefs.
1006 */
1007
1008 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 1009 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
1010 btrfs_header_level(buf), 1,
1011 &refs, &flags);
be1a5564
MF
1012 if (ret)
1013 return ret;
e5df9573
MF
1014 if (refs == 0) {
1015 ret = -EROFS;
0b246afa 1016 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
1017 return ret;
1018 }
5d4f98a2
YZ
1019 } else {
1020 refs = 1;
1021 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1024 else
1025 flags = 0;
1026 }
1027
1028 owner = btrfs_header_owner(buf);
1029 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1030 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1031
1032 if (refs > 1) {
1033 if ((owner == root->root_key.objectid ||
1034 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1035 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 1036 ret = btrfs_inc_ref(trans, root, buf, 1);
79787eaa 1037 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1038
1039 if (root->root_key.objectid ==
1040 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 1041 ret = btrfs_dec_ref(trans, root, buf, 0);
79787eaa 1042 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1043 ret = btrfs_inc_ref(trans, root, cow, 1);
79787eaa 1044 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1045 }
1046 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1047 } else {
1048
1049 if (root->root_key.objectid ==
1050 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1051 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1052 else
e339a6b0 1053 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1054 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
1055 }
1056 if (new_flags != 0) {
b1c79e09
JB
1057 int level = btrfs_header_level(buf);
1058
2ff7e61e 1059 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
1060 buf->start,
1061 buf->len,
b1c79e09 1062 new_flags, level, 0);
be1a5564
MF
1063 if (ret)
1064 return ret;
5d4f98a2
YZ
1065 }
1066 } else {
1067 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1068 if (root->root_key.objectid ==
1069 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1070 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1071 else
e339a6b0 1072 ret = btrfs_inc_ref(trans, root, cow, 0);
79787eaa 1073 BUG_ON(ret); /* -ENOMEM */
e339a6b0 1074 ret = btrfs_dec_ref(trans, root, buf, 1);
79787eaa 1075 BUG_ON(ret); /* -ENOMEM */
5d4f98a2 1076 }
0b246afa 1077 clean_tree_block(trans, fs_info, buf);
f0486c68 1078 *last_ref = 1;
5d4f98a2
YZ
1079 }
1080 return 0;
1081}
1082
d352ac68 1083/*
d397712b
CM
1084 * does the dirty work in cow of a single block. The parent block (if
1085 * supplied) is updated to point to the new cow copy. The new buffer is marked
1086 * dirty and returned locked. If you modify the block it needs to be marked
1087 * dirty again.
d352ac68
CM
1088 *
1089 * search_start -- an allocation hint for the new block
1090 *
d397712b
CM
1091 * empty_size -- a hint that you plan on doing more cow. This is the size in
1092 * bytes the allocator should try to find free next to the block it returns.
1093 * This is just a hint and may be ignored by the allocator.
d352ac68 1094 */
d397712b 1095static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1096 struct btrfs_root *root,
1097 struct extent_buffer *buf,
1098 struct extent_buffer *parent, int parent_slot,
1099 struct extent_buffer **cow_ret,
9fa8cfe7 1100 u64 search_start, u64 empty_size)
02217ed2 1101{
0b246afa 1102 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 1103 struct btrfs_disk_key disk_key;
5f39d397 1104 struct extent_buffer *cow;
be1a5564 1105 int level, ret;
f0486c68 1106 int last_ref = 0;
925baedd 1107 int unlock_orig = 0;
0f5053eb 1108 u64 parent_start = 0;
7bb86316 1109
925baedd
CM
1110 if (*cow_ret == buf)
1111 unlock_orig = 1;
1112
b9447ef8 1113 btrfs_assert_tree_locked(buf);
925baedd 1114
27cdeb70 1115 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1116 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1117 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1118 trans->transid != root->last_trans);
5f39d397 1119
7bb86316 1120 level = btrfs_header_level(buf);
31840ae1 1121
5d4f98a2
YZ
1122 if (level == 0)
1123 btrfs_item_key(buf, &disk_key, 0);
1124 else
1125 btrfs_node_key(buf, &disk_key, 0);
1126
0f5053eb
GR
1127 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1128 parent_start = parent->start;
5d4f98a2 1129
4d75f8a9
DS
1130 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1131 root->root_key.objectid, &disk_key, level,
1132 search_start, empty_size);
54aa1f4d
CM
1133 if (IS_ERR(cow))
1134 return PTR_ERR(cow);
6702ed49 1135
b4ce94de
CM
1136 /* cow is set to blocking by btrfs_init_new_buffer */
1137
58e8012c 1138 copy_extent_buffer_full(cow, buf);
db94535d 1139 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1140 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1141 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1142 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1143 BTRFS_HEADER_FLAG_RELOC);
1144 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1145 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1146 else
1147 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1148
0b246afa 1149 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 1150
be1a5564 1151 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1152 if (ret) {
66642832 1153 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1154 return ret;
1155 }
1a40e23b 1156
27cdeb70 1157 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1158 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1159 if (ret) {
66642832 1160 btrfs_abort_transaction(trans, ret);
83d4cfd4 1161 return ret;
93314e3b 1162 }
83d4cfd4 1163 }
3fd0a558 1164
02217ed2 1165 if (buf == root->node) {
925baedd 1166 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1167 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1168 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1169 parent_start = buf->start;
925baedd 1170
5f39d397 1171 extent_buffer_get(cow);
90f8d62e 1172 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1173 rcu_assign_pointer(root->node, cow);
925baedd 1174
f0486c68 1175 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1176 last_ref);
5f39d397 1177 free_extent_buffer(buf);
0b86a832 1178 add_root_to_dirty_list(root);
02217ed2 1179 } else {
5d4f98a2 1180 WARN_ON(trans->transid != btrfs_header_generation(parent));
0b246afa 1181 tree_mod_log_insert_key(fs_info, parent, parent_slot,
c8cc6341 1182 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1183 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1184 cow->start);
74493f7a
CM
1185 btrfs_set_node_ptr_generation(parent, parent_slot,
1186 trans->transid);
d6025579 1187 btrfs_mark_buffer_dirty(parent);
5de865ee 1188 if (last_ref) {
0b246afa 1189 ret = tree_mod_log_free_eb(fs_info, buf);
5de865ee 1190 if (ret) {
66642832 1191 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1192 return ret;
1193 }
1194 }
f0486c68 1195 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1196 last_ref);
02217ed2 1197 }
925baedd
CM
1198 if (unlock_orig)
1199 btrfs_tree_unlock(buf);
3083ee2e 1200 free_extent_buffer_stale(buf);
ccd467d6 1201 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1202 *cow_ret = cow;
02217ed2
CM
1203 return 0;
1204}
1205
5d9e75c4
JS
1206/*
1207 * returns the logical address of the oldest predecessor of the given root.
1208 * entries older than time_seq are ignored.
1209 */
1210static struct tree_mod_elem *
1211__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
30b0463a 1212 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1213{
1214 struct tree_mod_elem *tm;
1215 struct tree_mod_elem *found = NULL;
30b0463a 1216 u64 root_logical = eb_root->start;
5d9e75c4
JS
1217 int looped = 0;
1218
1219 if (!time_seq)
35a3621b 1220 return NULL;
5d9e75c4
JS
1221
1222 /*
298cfd36
CR
1223 * the very last operation that's logged for a root is the
1224 * replacement operation (if it is replaced at all). this has
1225 * the logical address of the *new* root, making it the very
1226 * first operation that's logged for this root.
5d9e75c4
JS
1227 */
1228 while (1) {
1229 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1230 time_seq);
1231 if (!looped && !tm)
35a3621b 1232 return NULL;
5d9e75c4 1233 /*
28da9fb4
JS
1234 * if there are no tree operation for the oldest root, we simply
1235 * return it. this should only happen if that (old) root is at
1236 * level 0.
5d9e75c4 1237 */
28da9fb4
JS
1238 if (!tm)
1239 break;
5d9e75c4 1240
28da9fb4
JS
1241 /*
1242 * if there's an operation that's not a root replacement, we
1243 * found the oldest version of our root. normally, we'll find a
1244 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1245 */
5d9e75c4
JS
1246 if (tm->op != MOD_LOG_ROOT_REPLACE)
1247 break;
1248
1249 found = tm;
1250 root_logical = tm->old_root.logical;
5d9e75c4
JS
1251 looped = 1;
1252 }
1253
a95236d9
JS
1254 /* if there's no old root to return, return what we found instead */
1255 if (!found)
1256 found = tm;
1257
5d9e75c4
JS
1258 return found;
1259}
1260
1261/*
1262 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1263 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1264 * time_seq).
1265 */
1266static void
f1ca7e98
JB
1267__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1268 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1269{
1270 u32 n;
1271 struct rb_node *next;
1272 struct tree_mod_elem *tm = first_tm;
1273 unsigned long o_dst;
1274 unsigned long o_src;
1275 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1276
1277 n = btrfs_header_nritems(eb);
f1ca7e98 1278 tree_mod_log_read_lock(fs_info);
097b8a7c 1279 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1280 /*
1281 * all the operations are recorded with the operator used for
1282 * the modification. as we're going backwards, we do the
1283 * opposite of each operation here.
1284 */
1285 switch (tm->op) {
1286 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1287 BUG_ON(tm->slot < n);
1c697d4a 1288 /* Fallthrough */
95c80bb1 1289 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1290 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1291 btrfs_set_node_key(eb, &tm->key, tm->slot);
1292 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1293 btrfs_set_node_ptr_generation(eb, tm->slot,
1294 tm->generation);
4c3e6969 1295 n++;
5d9e75c4
JS
1296 break;
1297 case MOD_LOG_KEY_REPLACE:
1298 BUG_ON(tm->slot >= n);
1299 btrfs_set_node_key(eb, &tm->key, tm->slot);
1300 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301 btrfs_set_node_ptr_generation(eb, tm->slot,
1302 tm->generation);
1303 break;
1304 case MOD_LOG_KEY_ADD:
19956c7e 1305 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1306 n--;
1307 break;
1308 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1309 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1310 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1311 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1312 tm->move.nr_items * p_size);
1313 break;
1314 case MOD_LOG_ROOT_REPLACE:
1315 /*
1316 * this operation is special. for roots, this must be
1317 * handled explicitly before rewinding.
1318 * for non-roots, this operation may exist if the node
1319 * was a root: root A -> child B; then A gets empty and
1320 * B is promoted to the new root. in the mod log, we'll
1321 * have a root-replace operation for B, a tree block
1322 * that is no root. we simply ignore that operation.
1323 */
1324 break;
1325 }
1326 next = rb_next(&tm->node);
1327 if (!next)
1328 break;
6b4df8b6 1329 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1330 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1331 break;
1332 }
f1ca7e98 1333 tree_mod_log_read_unlock(fs_info);
5d9e75c4
JS
1334 btrfs_set_header_nritems(eb, n);
1335}
1336
47fb091f 1337/*
01327610 1338 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1339 * is returned. If rewind operations happen, a fresh buffer is returned. The
1340 * returned buffer is always read-locked. If the returned buffer is not the
1341 * input buffer, the lock on the input buffer is released and the input buffer
1342 * is freed (its refcount is decremented).
1343 */
5d9e75c4 1344static struct extent_buffer *
9ec72677
JB
1345tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1346 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1347{
1348 struct extent_buffer *eb_rewin;
1349 struct tree_mod_elem *tm;
1350
1351 if (!time_seq)
1352 return eb;
1353
1354 if (btrfs_header_level(eb) == 0)
1355 return eb;
1356
1357 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1358 if (!tm)
1359 return eb;
1360
9ec72677
JB
1361 btrfs_set_path_blocking(path);
1362 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1363
5d9e75c4
JS
1364 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1365 BUG_ON(tm->slot != 0);
da17066c 1366 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1367 if (!eb_rewin) {
9ec72677 1368 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1369 free_extent_buffer(eb);
1370 return NULL;
1371 }
5d9e75c4
JS
1372 btrfs_set_header_bytenr(eb_rewin, eb->start);
1373 btrfs_set_header_backref_rev(eb_rewin,
1374 btrfs_header_backref_rev(eb));
1375 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1376 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1377 } else {
1378 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1379 if (!eb_rewin) {
9ec72677 1380 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1381 free_extent_buffer(eb);
1382 return NULL;
1383 }
5d9e75c4
JS
1384 }
1385
9ec72677
JB
1386 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1387 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1388 free_extent_buffer(eb);
1389
47fb091f
JS
1390 extent_buffer_get(eb_rewin);
1391 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1392 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1393 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1394 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1395
1396 return eb_rewin;
1397}
1398
8ba97a15
JS
1399/*
1400 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1401 * value. If there are no changes, the current root->root_node is returned. If
1402 * anything changed in between, there's a fresh buffer allocated on which the
1403 * rewind operations are done. In any case, the returned buffer is read locked.
1404 * Returns NULL on error (with no locks held).
1405 */
5d9e75c4
JS
1406static inline struct extent_buffer *
1407get_old_root(struct btrfs_root *root, u64 time_seq)
1408{
0b246afa 1409 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1410 struct tree_mod_elem *tm;
30b0463a
JS
1411 struct extent_buffer *eb = NULL;
1412 struct extent_buffer *eb_root;
7bfdcf7f 1413 struct extent_buffer *old;
a95236d9 1414 struct tree_mod_root *old_root = NULL;
4325edd0 1415 u64 old_generation = 0;
a95236d9 1416 u64 logical;
5d9e75c4 1417
30b0463a 1418 eb_root = btrfs_read_lock_root_node(root);
0b246afa 1419 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
5d9e75c4 1420 if (!tm)
30b0463a 1421 return eb_root;
5d9e75c4 1422
a95236d9
JS
1423 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1424 old_root = &tm->old_root;
1425 old_generation = tm->generation;
1426 logical = old_root->logical;
1427 } else {
30b0463a 1428 logical = eb_root->start;
a95236d9 1429 }
5d9e75c4 1430
0b246afa 1431 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1432 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1433 btrfs_tree_read_unlock(eb_root);
1434 free_extent_buffer(eb_root);
2ff7e61e 1435 old = read_tree_block(fs_info, logical, 0);
64c043de
LB
1436 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1437 if (!IS_ERR(old))
1438 free_extent_buffer(old);
0b246afa
JM
1439 btrfs_warn(fs_info,
1440 "failed to read tree block %llu from get_old_root",
1441 logical);
834328a8 1442 } else {
7bfdcf7f
LB
1443 eb = btrfs_clone_extent_buffer(old);
1444 free_extent_buffer(old);
834328a8
JS
1445 }
1446 } else if (old_root) {
30b0463a
JS
1447 btrfs_tree_read_unlock(eb_root);
1448 free_extent_buffer(eb_root);
0b246afa 1449 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1450 } else {
9ec72677 1451 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1452 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1453 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1454 free_extent_buffer(eb_root);
834328a8
JS
1455 }
1456
8ba97a15
JS
1457 if (!eb)
1458 return NULL;
d6381084 1459 extent_buffer_get(eb);
8ba97a15 1460 btrfs_tree_read_lock(eb);
a95236d9 1461 if (old_root) {
5d9e75c4
JS
1462 btrfs_set_header_bytenr(eb, eb->start);
1463 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1464 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1465 btrfs_set_header_level(eb, old_root->level);
1466 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1467 }
28da9fb4 1468 if (tm)
0b246afa 1469 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1470 else
1471 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1472 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1473
1474 return eb;
1475}
1476
5b6602e7
JS
1477int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1478{
1479 struct tree_mod_elem *tm;
1480 int level;
30b0463a 1481 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1482
30b0463a 1483 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5b6602e7
JS
1484 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1485 level = tm->old_root.level;
1486 } else {
30b0463a 1487 level = btrfs_header_level(eb_root);
5b6602e7 1488 }
30b0463a 1489 free_extent_buffer(eb_root);
5b6602e7
JS
1490
1491 return level;
1492}
1493
5d4f98a2
YZ
1494static inline int should_cow_block(struct btrfs_trans_handle *trans,
1495 struct btrfs_root *root,
1496 struct extent_buffer *buf)
1497{
f5ee5c9a 1498 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1499 return 0;
fccb84c9 1500
f1ebcc74
LB
1501 /* ensure we can see the force_cow */
1502 smp_rmb();
1503
1504 /*
1505 * We do not need to cow a block if
1506 * 1) this block is not created or changed in this transaction;
1507 * 2) this block does not belong to TREE_RELOC tree;
1508 * 3) the root is not forced COW.
1509 *
1510 * What is forced COW:
01327610 1511 * when we create snapshot during committing the transaction,
f1ebcc74
LB
1512 * after we've finished coping src root, we must COW the shared
1513 * block to ensure the metadata consistency.
1514 */
5d4f98a2
YZ
1515 if (btrfs_header_generation(buf) == trans->transid &&
1516 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1517 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1518 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1519 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1520 return 0;
1521 return 1;
1522}
1523
d352ac68
CM
1524/*
1525 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1526 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1527 * once per transaction, as long as it hasn't been written yet
1528 */
d397712b 1529noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1530 struct btrfs_root *root, struct extent_buffer *buf,
1531 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1532 struct extent_buffer **cow_ret)
6702ed49 1533{
0b246afa 1534 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1535 u64 search_start;
f510cfec 1536 int ret;
dc17ff8f 1537
0b246afa 1538 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1539 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1540 trans->transid,
0b246afa 1541 fs_info->running_transaction->transid);
31b1a2bd 1542
0b246afa 1543 if (trans->transid != fs_info->generation)
31b1a2bd 1544 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1545 trans->transid, fs_info->generation);
dc17ff8f 1546
5d4f98a2 1547 if (!should_cow_block(trans, root, buf)) {
64c12921 1548 trans->dirty = true;
6702ed49
CM
1549 *cow_ret = buf;
1550 return 0;
1551 }
c487685d 1552
ee22184b 1553 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1554
1555 if (parent)
1556 btrfs_set_lock_blocking(parent);
1557 btrfs_set_lock_blocking(buf);
1558
f510cfec 1559 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1560 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1561
1562 trace_btrfs_cow_block(root, buf, *cow_ret);
1563
f510cfec 1564 return ret;
6702ed49
CM
1565}
1566
d352ac68
CM
1567/*
1568 * helper function for defrag to decide if two blocks pointed to by a
1569 * node are actually close by
1570 */
6b80053d 1571static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1572{
6b80053d 1573 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1574 return 1;
6b80053d 1575 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1576 return 1;
1577 return 0;
1578}
1579
081e9573
CM
1580/*
1581 * compare two keys in a memcmp fashion
1582 */
310712b2
OS
1583static int comp_keys(const struct btrfs_disk_key *disk,
1584 const struct btrfs_key *k2)
081e9573
CM
1585{
1586 struct btrfs_key k1;
1587
1588 btrfs_disk_key_to_cpu(&k1, disk);
1589
20736aba 1590 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1591}
1592
f3465ca4
JB
1593/*
1594 * same as comp_keys only with two btrfs_key's
1595 */
310712b2 1596int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1597{
1598 if (k1->objectid > k2->objectid)
1599 return 1;
1600 if (k1->objectid < k2->objectid)
1601 return -1;
1602 if (k1->type > k2->type)
1603 return 1;
1604 if (k1->type < k2->type)
1605 return -1;
1606 if (k1->offset > k2->offset)
1607 return 1;
1608 if (k1->offset < k2->offset)
1609 return -1;
1610 return 0;
1611}
081e9573 1612
d352ac68
CM
1613/*
1614 * this is used by the defrag code to go through all the
1615 * leaves pointed to by a node and reallocate them so that
1616 * disk order is close to key order
1617 */
6702ed49 1618int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1619 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1620 int start_slot, u64 *last_ret,
a6b6e75e 1621 struct btrfs_key *progress)
6702ed49 1622{
0b246afa 1623 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1624 struct extent_buffer *cur;
6702ed49 1625 u64 blocknr;
ca7a79ad 1626 u64 gen;
e9d0b13b
CM
1627 u64 search_start = *last_ret;
1628 u64 last_block = 0;
6702ed49
CM
1629 u64 other;
1630 u32 parent_nritems;
6702ed49
CM
1631 int end_slot;
1632 int i;
1633 int err = 0;
f2183bde 1634 int parent_level;
6b80053d
CM
1635 int uptodate;
1636 u32 blocksize;
081e9573
CM
1637 int progress_passed = 0;
1638 struct btrfs_disk_key disk_key;
6702ed49 1639
5708b959 1640 parent_level = btrfs_header_level(parent);
5708b959 1641
0b246afa
JM
1642 WARN_ON(trans->transaction != fs_info->running_transaction);
1643 WARN_ON(trans->transid != fs_info->generation);
86479a04 1644
6b80053d 1645 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1646 blocksize = fs_info->nodesize;
5dfe2be7 1647 end_slot = parent_nritems - 1;
6702ed49 1648
5dfe2be7 1649 if (parent_nritems <= 1)
6702ed49
CM
1650 return 0;
1651
b4ce94de
CM
1652 btrfs_set_lock_blocking(parent);
1653
5dfe2be7 1654 for (i = start_slot; i <= end_slot; i++) {
6702ed49 1655 int close = 1;
a6b6e75e 1656
081e9573
CM
1657 btrfs_node_key(parent, &disk_key, i);
1658 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1659 continue;
1660
1661 progress_passed = 1;
6b80053d 1662 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1663 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1664 if (last_block == 0)
1665 last_block = blocknr;
5708b959 1666
6702ed49 1667 if (i > 0) {
6b80053d
CM
1668 other = btrfs_node_blockptr(parent, i - 1);
1669 close = close_blocks(blocknr, other, blocksize);
6702ed49 1670 }
5dfe2be7 1671 if (!close && i < end_slot) {
6b80053d
CM
1672 other = btrfs_node_blockptr(parent, i + 1);
1673 close = close_blocks(blocknr, other, blocksize);
6702ed49 1674 }
e9d0b13b
CM
1675 if (close) {
1676 last_block = blocknr;
6702ed49 1677 continue;
e9d0b13b 1678 }
6702ed49 1679
0b246afa 1680 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1681 if (cur)
b9fab919 1682 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1683 else
1684 uptodate = 0;
5708b959 1685 if (!cur || !uptodate) {
6b80053d 1686 if (!cur) {
2ff7e61e 1687 cur = read_tree_block(fs_info, blocknr, gen);
64c043de
LB
1688 if (IS_ERR(cur)) {
1689 return PTR_ERR(cur);
1690 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1691 free_extent_buffer(cur);
97d9a8a4 1692 return -EIO;
416bc658 1693 }
6b80053d 1694 } else if (!uptodate) {
018642a1
TI
1695 err = btrfs_read_buffer(cur, gen);
1696 if (err) {
1697 free_extent_buffer(cur);
1698 return err;
1699 }
f2183bde 1700 }
6702ed49 1701 }
e9d0b13b 1702 if (search_start == 0)
6b80053d 1703 search_start = last_block;
e9d0b13b 1704
e7a84565 1705 btrfs_tree_lock(cur);
b4ce94de 1706 btrfs_set_lock_blocking(cur);
6b80053d 1707 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1708 &cur, search_start,
6b80053d 1709 min(16 * blocksize,
9fa8cfe7 1710 (end_slot - i) * blocksize));
252c38f0 1711 if (err) {
e7a84565 1712 btrfs_tree_unlock(cur);
6b80053d 1713 free_extent_buffer(cur);
6702ed49 1714 break;
252c38f0 1715 }
e7a84565
CM
1716 search_start = cur->start;
1717 last_block = cur->start;
f2183bde 1718 *last_ret = search_start;
e7a84565
CM
1719 btrfs_tree_unlock(cur);
1720 free_extent_buffer(cur);
6702ed49
CM
1721 }
1722 return err;
1723}
1724
74123bd7 1725/*
5f39d397
CM
1726 * search for key in the extent_buffer. The items start at offset p,
1727 * and they are item_size apart. There are 'max' items in p.
1728 *
74123bd7
CM
1729 * the slot in the array is returned via slot, and it points to
1730 * the place where you would insert key if it is not found in
1731 * the array.
1732 *
1733 * slot may point to max if the key is bigger than all of the keys
1734 */
e02119d5 1735static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1736 unsigned long p, int item_size,
1737 const struct btrfs_key *key,
e02119d5 1738 int max, int *slot)
be0e5c09
CM
1739{
1740 int low = 0;
1741 int high = max;
1742 int mid;
1743 int ret;
479965d6 1744 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1745 struct btrfs_disk_key unaligned;
1746 unsigned long offset;
5f39d397
CM
1747 char *kaddr = NULL;
1748 unsigned long map_start = 0;
1749 unsigned long map_len = 0;
479965d6 1750 int err;
be0e5c09 1751
5e24e9af
LB
1752 if (low > high) {
1753 btrfs_err(eb->fs_info,
1754 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1755 __func__, low, high, eb->start,
1756 btrfs_header_owner(eb), btrfs_header_level(eb));
1757 return -EINVAL;
1758 }
1759
d397712b 1760 while (low < high) {
be0e5c09 1761 mid = (low + high) / 2;
5f39d397
CM
1762 offset = p + mid * item_size;
1763
a6591715 1764 if (!kaddr || offset < map_start ||
5f39d397
CM
1765 (offset + sizeof(struct btrfs_disk_key)) >
1766 map_start + map_len) {
934d375b
CM
1767
1768 err = map_private_extent_buffer(eb, offset,
479965d6 1769 sizeof(struct btrfs_disk_key),
a6591715 1770 &kaddr, &map_start, &map_len);
479965d6
CM
1771
1772 if (!err) {
1773 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1774 map_start);
415b35a5 1775 } else if (err == 1) {
479965d6
CM
1776 read_extent_buffer(eb, &unaligned,
1777 offset, sizeof(unaligned));
1778 tmp = &unaligned;
415b35a5
LB
1779 } else {
1780 return err;
479965d6 1781 }
5f39d397 1782
5f39d397
CM
1783 } else {
1784 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1785 map_start);
1786 }
be0e5c09
CM
1787 ret = comp_keys(tmp, key);
1788
1789 if (ret < 0)
1790 low = mid + 1;
1791 else if (ret > 0)
1792 high = mid;
1793 else {
1794 *slot = mid;
1795 return 0;
1796 }
1797 }
1798 *slot = low;
1799 return 1;
1800}
1801
97571fd0
CM
1802/*
1803 * simple bin_search frontend that does the right thing for
1804 * leaves vs nodes
1805 */
310712b2 1806static int bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
5f39d397 1807 int level, int *slot)
be0e5c09 1808{
f775738f 1809 if (level == 0)
5f39d397
CM
1810 return generic_bin_search(eb,
1811 offsetof(struct btrfs_leaf, items),
0783fcfc 1812 sizeof(struct btrfs_item),
5f39d397 1813 key, btrfs_header_nritems(eb),
7518a238 1814 slot);
f775738f 1815 else
5f39d397
CM
1816 return generic_bin_search(eb,
1817 offsetof(struct btrfs_node, ptrs),
123abc88 1818 sizeof(struct btrfs_key_ptr),
5f39d397 1819 key, btrfs_header_nritems(eb),
7518a238 1820 slot);
be0e5c09
CM
1821}
1822
310712b2 1823int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
5d4f98a2
YZ
1824 int level, int *slot)
1825{
1826 return bin_search(eb, key, level, slot);
1827}
1828
f0486c68
YZ
1829static void root_add_used(struct btrfs_root *root, u32 size)
1830{
1831 spin_lock(&root->accounting_lock);
1832 btrfs_set_root_used(&root->root_item,
1833 btrfs_root_used(&root->root_item) + size);
1834 spin_unlock(&root->accounting_lock);
1835}
1836
1837static void root_sub_used(struct btrfs_root *root, u32 size)
1838{
1839 spin_lock(&root->accounting_lock);
1840 btrfs_set_root_used(&root->root_item,
1841 btrfs_root_used(&root->root_item) - size);
1842 spin_unlock(&root->accounting_lock);
1843}
1844
d352ac68
CM
1845/* given a node and slot number, this reads the blocks it points to. The
1846 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1847 */
2ff7e61e
JM
1848static noinline struct extent_buffer *
1849read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1850 int slot)
bb803951 1851{
ca7a79ad 1852 int level = btrfs_header_level(parent);
416bc658
JB
1853 struct extent_buffer *eb;
1854
fb770ae4
LB
1855 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1856 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1857
1858 BUG_ON(level == 0);
1859
2ff7e61e 1860 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
416bc658 1861 btrfs_node_ptr_generation(parent, slot));
fb770ae4
LB
1862 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1863 free_extent_buffer(eb);
1864 eb = ERR_PTR(-EIO);
416bc658
JB
1865 }
1866
1867 return eb;
bb803951
CM
1868}
1869
d352ac68
CM
1870/*
1871 * node level balancing, used to make sure nodes are in proper order for
1872 * item deletion. We balance from the top down, so we have to make sure
1873 * that a deletion won't leave an node completely empty later on.
1874 */
e02119d5 1875static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1876 struct btrfs_root *root,
1877 struct btrfs_path *path, int level)
bb803951 1878{
0b246afa 1879 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1880 struct extent_buffer *right = NULL;
1881 struct extent_buffer *mid;
1882 struct extent_buffer *left = NULL;
1883 struct extent_buffer *parent = NULL;
bb803951
CM
1884 int ret = 0;
1885 int wret;
1886 int pslot;
bb803951 1887 int orig_slot = path->slots[level];
79f95c82 1888 u64 orig_ptr;
bb803951
CM
1889
1890 if (level == 0)
1891 return 0;
1892
5f39d397 1893 mid = path->nodes[level];
b4ce94de 1894
bd681513
CM
1895 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1896 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1897 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1898
1d4f8a0c 1899 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1900
a05a9bb1 1901 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1902 parent = path->nodes[level + 1];
a05a9bb1
LZ
1903 pslot = path->slots[level + 1];
1904 }
bb803951 1905
40689478
CM
1906 /*
1907 * deal with the case where there is only one pointer in the root
1908 * by promoting the node below to a root
1909 */
5f39d397
CM
1910 if (!parent) {
1911 struct extent_buffer *child;
bb803951 1912
5f39d397 1913 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1914 return 0;
1915
1916 /* promote the child to a root */
2ff7e61e 1917 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1918 if (IS_ERR(child)) {
1919 ret = PTR_ERR(child);
0b246afa 1920 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1921 goto enospc;
1922 }
1923
925baedd 1924 btrfs_tree_lock(child);
b4ce94de 1925 btrfs_set_lock_blocking(child);
9fa8cfe7 1926 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1927 if (ret) {
1928 btrfs_tree_unlock(child);
1929 free_extent_buffer(child);
1930 goto enospc;
1931 }
2f375ab9 1932
90f8d62e 1933 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1934 rcu_assign_pointer(root->node, child);
925baedd 1935
0b86a832 1936 add_root_to_dirty_list(root);
925baedd 1937 btrfs_tree_unlock(child);
b4ce94de 1938
925baedd 1939 path->locks[level] = 0;
bb803951 1940 path->nodes[level] = NULL;
0b246afa 1941 clean_tree_block(trans, fs_info, mid);
925baedd 1942 btrfs_tree_unlock(mid);
bb803951 1943 /* once for the path */
5f39d397 1944 free_extent_buffer(mid);
f0486c68
YZ
1945
1946 root_sub_used(root, mid->len);
5581a51a 1947 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1948 /* once for the root ptr */
3083ee2e 1949 free_extent_buffer_stale(mid);
f0486c68 1950 return 0;
bb803951 1951 }
5f39d397 1952 if (btrfs_header_nritems(mid) >
0b246afa 1953 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1954 return 0;
1955
2ff7e61e 1956 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1957 if (IS_ERR(left))
1958 left = NULL;
1959
5f39d397 1960 if (left) {
925baedd 1961 btrfs_tree_lock(left);
b4ce94de 1962 btrfs_set_lock_blocking(left);
5f39d397 1963 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1964 parent, pslot - 1, &left);
54aa1f4d
CM
1965 if (wret) {
1966 ret = wret;
1967 goto enospc;
1968 }
2cc58cf2 1969 }
fb770ae4 1970
2ff7e61e 1971 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1972 if (IS_ERR(right))
1973 right = NULL;
1974
5f39d397 1975 if (right) {
925baedd 1976 btrfs_tree_lock(right);
b4ce94de 1977 btrfs_set_lock_blocking(right);
5f39d397 1978 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1979 parent, pslot + 1, &right);
2cc58cf2
CM
1980 if (wret) {
1981 ret = wret;
1982 goto enospc;
1983 }
1984 }
1985
1986 /* first, try to make some room in the middle buffer */
5f39d397
CM
1987 if (left) {
1988 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1989 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1990 if (wret < 0)
1991 ret = wret;
bb803951 1992 }
79f95c82
CM
1993
1994 /*
1995 * then try to empty the right most buffer into the middle
1996 */
5f39d397 1997 if (right) {
2ff7e61e 1998 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 1999 if (wret < 0 && wret != -ENOSPC)
79f95c82 2000 ret = wret;
5f39d397 2001 if (btrfs_header_nritems(right) == 0) {
0b246afa 2002 clean_tree_block(trans, fs_info, right);
925baedd 2003 btrfs_tree_unlock(right);
afe5fea7 2004 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 2005 root_sub_used(root, right->len);
5581a51a 2006 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 2007 free_extent_buffer_stale(right);
f0486c68 2008 right = NULL;
bb803951 2009 } else {
5f39d397
CM
2010 struct btrfs_disk_key right_key;
2011 btrfs_node_key(right, &right_key, 0);
0b246afa 2012 tree_mod_log_set_node_key(fs_info, parent,
32adf090 2013 pslot + 1, 0);
5f39d397
CM
2014 btrfs_set_node_key(parent, &right_key, pslot + 1);
2015 btrfs_mark_buffer_dirty(parent);
bb803951
CM
2016 }
2017 }
5f39d397 2018 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
2019 /*
2020 * we're not allowed to leave a node with one item in the
2021 * tree during a delete. A deletion from lower in the tree
2022 * could try to delete the only pointer in this node.
2023 * So, pull some keys from the left.
2024 * There has to be a left pointer at this point because
2025 * otherwise we would have pulled some pointers from the
2026 * right
2027 */
305a26af
MF
2028 if (!left) {
2029 ret = -EROFS;
0b246afa 2030 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
2031 goto enospc;
2032 }
2ff7e61e 2033 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 2034 if (wret < 0) {
79f95c82 2035 ret = wret;
54aa1f4d
CM
2036 goto enospc;
2037 }
bce4eae9 2038 if (wret == 1) {
2ff7e61e 2039 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
2040 if (wret < 0)
2041 ret = wret;
2042 }
79f95c82
CM
2043 BUG_ON(wret == 1);
2044 }
5f39d397 2045 if (btrfs_header_nritems(mid) == 0) {
0b246afa 2046 clean_tree_block(trans, fs_info, mid);
925baedd 2047 btrfs_tree_unlock(mid);
afe5fea7 2048 del_ptr(root, path, level + 1, pslot);
f0486c68 2049 root_sub_used(root, mid->len);
5581a51a 2050 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2051 free_extent_buffer_stale(mid);
f0486c68 2052 mid = NULL;
79f95c82
CM
2053 } else {
2054 /* update the parent key to reflect our changes */
5f39d397
CM
2055 struct btrfs_disk_key mid_key;
2056 btrfs_node_key(mid, &mid_key, 0);
0b246afa 2057 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
5f39d397
CM
2058 btrfs_set_node_key(parent, &mid_key, pslot);
2059 btrfs_mark_buffer_dirty(parent);
79f95c82 2060 }
bb803951 2061
79f95c82 2062 /* update the path */
5f39d397
CM
2063 if (left) {
2064 if (btrfs_header_nritems(left) > orig_slot) {
2065 extent_buffer_get(left);
925baedd 2066 /* left was locked after cow */
5f39d397 2067 path->nodes[level] = left;
bb803951
CM
2068 path->slots[level + 1] -= 1;
2069 path->slots[level] = orig_slot;
925baedd
CM
2070 if (mid) {
2071 btrfs_tree_unlock(mid);
5f39d397 2072 free_extent_buffer(mid);
925baedd 2073 }
bb803951 2074 } else {
5f39d397 2075 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2076 path->slots[level] = orig_slot;
2077 }
2078 }
79f95c82 2079 /* double check we haven't messed things up */
e20d96d6 2080 if (orig_ptr !=
5f39d397 2081 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2082 BUG();
54aa1f4d 2083enospc:
925baedd
CM
2084 if (right) {
2085 btrfs_tree_unlock(right);
5f39d397 2086 free_extent_buffer(right);
925baedd
CM
2087 }
2088 if (left) {
2089 if (path->nodes[level] != left)
2090 btrfs_tree_unlock(left);
5f39d397 2091 free_extent_buffer(left);
925baedd 2092 }
bb803951
CM
2093 return ret;
2094}
2095
d352ac68
CM
2096/* Node balancing for insertion. Here we only split or push nodes around
2097 * when they are completely full. This is also done top down, so we
2098 * have to be pessimistic.
2099 */
d397712b 2100static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2101 struct btrfs_root *root,
2102 struct btrfs_path *path, int level)
e66f709b 2103{
0b246afa 2104 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2105 struct extent_buffer *right = NULL;
2106 struct extent_buffer *mid;
2107 struct extent_buffer *left = NULL;
2108 struct extent_buffer *parent = NULL;
e66f709b
CM
2109 int ret = 0;
2110 int wret;
2111 int pslot;
2112 int orig_slot = path->slots[level];
e66f709b
CM
2113
2114 if (level == 0)
2115 return 1;
2116
5f39d397 2117 mid = path->nodes[level];
7bb86316 2118 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2119
a05a9bb1 2120 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2121 parent = path->nodes[level + 1];
a05a9bb1
LZ
2122 pslot = path->slots[level + 1];
2123 }
e66f709b 2124
5f39d397 2125 if (!parent)
e66f709b 2126 return 1;
e66f709b 2127
2ff7e61e 2128 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2129 if (IS_ERR(left))
2130 left = NULL;
e66f709b
CM
2131
2132 /* first, try to make some room in the middle buffer */
5f39d397 2133 if (left) {
e66f709b 2134 u32 left_nr;
925baedd
CM
2135
2136 btrfs_tree_lock(left);
b4ce94de
CM
2137 btrfs_set_lock_blocking(left);
2138
5f39d397 2139 left_nr = btrfs_header_nritems(left);
0b246afa 2140 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2141 wret = 1;
2142 } else {
5f39d397 2143 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2144 pslot - 1, &left);
54aa1f4d
CM
2145 if (ret)
2146 wret = 1;
2147 else {
2ff7e61e 2148 wret = push_node_left(trans, fs_info,
971a1f66 2149 left, mid, 0);
54aa1f4d 2150 }
33ade1f8 2151 }
e66f709b
CM
2152 if (wret < 0)
2153 ret = wret;
2154 if (wret == 0) {
5f39d397 2155 struct btrfs_disk_key disk_key;
e66f709b 2156 orig_slot += left_nr;
5f39d397 2157 btrfs_node_key(mid, &disk_key, 0);
0b246afa 2158 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
5f39d397
CM
2159 btrfs_set_node_key(parent, &disk_key, pslot);
2160 btrfs_mark_buffer_dirty(parent);
2161 if (btrfs_header_nritems(left) > orig_slot) {
2162 path->nodes[level] = left;
e66f709b
CM
2163 path->slots[level + 1] -= 1;
2164 path->slots[level] = orig_slot;
925baedd 2165 btrfs_tree_unlock(mid);
5f39d397 2166 free_extent_buffer(mid);
e66f709b
CM
2167 } else {
2168 orig_slot -=
5f39d397 2169 btrfs_header_nritems(left);
e66f709b 2170 path->slots[level] = orig_slot;
925baedd 2171 btrfs_tree_unlock(left);
5f39d397 2172 free_extent_buffer(left);
e66f709b 2173 }
e66f709b
CM
2174 return 0;
2175 }
925baedd 2176 btrfs_tree_unlock(left);
5f39d397 2177 free_extent_buffer(left);
e66f709b 2178 }
2ff7e61e 2179 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2180 if (IS_ERR(right))
2181 right = NULL;
e66f709b
CM
2182
2183 /*
2184 * then try to empty the right most buffer into the middle
2185 */
5f39d397 2186 if (right) {
33ade1f8 2187 u32 right_nr;
b4ce94de 2188
925baedd 2189 btrfs_tree_lock(right);
b4ce94de
CM
2190 btrfs_set_lock_blocking(right);
2191
5f39d397 2192 right_nr = btrfs_header_nritems(right);
0b246afa 2193 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2194 wret = 1;
2195 } else {
5f39d397
CM
2196 ret = btrfs_cow_block(trans, root, right,
2197 parent, pslot + 1,
9fa8cfe7 2198 &right);
54aa1f4d
CM
2199 if (ret)
2200 wret = 1;
2201 else {
2ff7e61e 2202 wret = balance_node_right(trans, fs_info,
5f39d397 2203 right, mid);
54aa1f4d 2204 }
33ade1f8 2205 }
e66f709b
CM
2206 if (wret < 0)
2207 ret = wret;
2208 if (wret == 0) {
5f39d397
CM
2209 struct btrfs_disk_key disk_key;
2210
2211 btrfs_node_key(right, &disk_key, 0);
0b246afa 2212 tree_mod_log_set_node_key(fs_info, parent,
32adf090 2213 pslot + 1, 0);
5f39d397
CM
2214 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2215 btrfs_mark_buffer_dirty(parent);
2216
2217 if (btrfs_header_nritems(mid) <= orig_slot) {
2218 path->nodes[level] = right;
e66f709b
CM
2219 path->slots[level + 1] += 1;
2220 path->slots[level] = orig_slot -
5f39d397 2221 btrfs_header_nritems(mid);
925baedd 2222 btrfs_tree_unlock(mid);
5f39d397 2223 free_extent_buffer(mid);
e66f709b 2224 } else {
925baedd 2225 btrfs_tree_unlock(right);
5f39d397 2226 free_extent_buffer(right);
e66f709b 2227 }
e66f709b
CM
2228 return 0;
2229 }
925baedd 2230 btrfs_tree_unlock(right);
5f39d397 2231 free_extent_buffer(right);
e66f709b 2232 }
e66f709b
CM
2233 return 1;
2234}
2235
3c69faec 2236/*
d352ac68
CM
2237 * readahead one full node of leaves, finding things that are close
2238 * to the block in 'slot', and triggering ra on them.
3c69faec 2239 */
2ff7e61e 2240static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2241 struct btrfs_path *path,
2242 int level, int slot, u64 objectid)
3c69faec 2243{
5f39d397 2244 struct extent_buffer *node;
01f46658 2245 struct btrfs_disk_key disk_key;
3c69faec 2246 u32 nritems;
3c69faec 2247 u64 search;
a7175319 2248 u64 target;
6b80053d 2249 u64 nread = 0;
5f39d397 2250 struct extent_buffer *eb;
6b80053d
CM
2251 u32 nr;
2252 u32 blocksize;
2253 u32 nscan = 0;
db94535d 2254
a6b6e75e 2255 if (level != 1)
6702ed49
CM
2256 return;
2257
2258 if (!path->nodes[level])
3c69faec
CM
2259 return;
2260
5f39d397 2261 node = path->nodes[level];
925baedd 2262
3c69faec 2263 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2264 blocksize = fs_info->nodesize;
2265 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2266 if (eb) {
2267 free_extent_buffer(eb);
3c69faec
CM
2268 return;
2269 }
2270
a7175319 2271 target = search;
6b80053d 2272
5f39d397 2273 nritems = btrfs_header_nritems(node);
6b80053d 2274 nr = slot;
25b8b936 2275
d397712b 2276 while (1) {
e4058b54 2277 if (path->reada == READA_BACK) {
6b80053d
CM
2278 if (nr == 0)
2279 break;
2280 nr--;
e4058b54 2281 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2282 nr++;
2283 if (nr >= nritems)
2284 break;
3c69faec 2285 }
e4058b54 2286 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2287 btrfs_node_key(node, &disk_key, nr);
2288 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2289 break;
2290 }
6b80053d 2291 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2292 if ((search <= target && target - search <= 65536) ||
2293 (search > target && search - target <= 65536)) {
2ff7e61e 2294 readahead_tree_block(fs_info, search);
6b80053d
CM
2295 nread += blocksize;
2296 }
2297 nscan++;
a7175319 2298 if ((nread > 65536 || nscan > 32))
6b80053d 2299 break;
3c69faec
CM
2300 }
2301}
925baedd 2302
2ff7e61e 2303static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2304 struct btrfs_path *path, int level)
b4ce94de
CM
2305{
2306 int slot;
2307 int nritems;
2308 struct extent_buffer *parent;
2309 struct extent_buffer *eb;
2310 u64 gen;
2311 u64 block1 = 0;
2312 u64 block2 = 0;
b4ce94de 2313
8c594ea8 2314 parent = path->nodes[level + 1];
b4ce94de 2315 if (!parent)
0b08851f 2316 return;
b4ce94de
CM
2317
2318 nritems = btrfs_header_nritems(parent);
8c594ea8 2319 slot = path->slots[level + 1];
b4ce94de
CM
2320
2321 if (slot > 0) {
2322 block1 = btrfs_node_blockptr(parent, slot - 1);
2323 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2324 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2325 /*
2326 * if we get -eagain from btrfs_buffer_uptodate, we
2327 * don't want to return eagain here. That will loop
2328 * forever
2329 */
2330 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2331 block1 = 0;
2332 free_extent_buffer(eb);
2333 }
8c594ea8 2334 if (slot + 1 < nritems) {
b4ce94de
CM
2335 block2 = btrfs_node_blockptr(parent, slot + 1);
2336 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2337 eb = find_extent_buffer(fs_info, block2);
b9fab919 2338 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2339 block2 = 0;
2340 free_extent_buffer(eb);
2341 }
8c594ea8 2342
0b08851f 2343 if (block1)
2ff7e61e 2344 readahead_tree_block(fs_info, block1);
0b08851f 2345 if (block2)
2ff7e61e 2346 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2347}
2348
2349
d352ac68 2350/*
d397712b
CM
2351 * when we walk down the tree, it is usually safe to unlock the higher layers
2352 * in the tree. The exceptions are when our path goes through slot 0, because
2353 * operations on the tree might require changing key pointers higher up in the
2354 * tree.
d352ac68 2355 *
d397712b
CM
2356 * callers might also have set path->keep_locks, which tells this code to keep
2357 * the lock if the path points to the last slot in the block. This is part of
2358 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2359 *
d397712b
CM
2360 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2361 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2362 */
e02119d5 2363static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2364 int lowest_unlock, int min_write_lock_level,
2365 int *write_lock_level)
925baedd
CM
2366{
2367 int i;
2368 int skip_level = level;
051e1b9f 2369 int no_skips = 0;
925baedd
CM
2370 struct extent_buffer *t;
2371
2372 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2373 if (!path->nodes[i])
2374 break;
2375 if (!path->locks[i])
2376 break;
051e1b9f 2377 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2378 skip_level = i + 1;
2379 continue;
2380 }
051e1b9f 2381 if (!no_skips && path->keep_locks) {
925baedd
CM
2382 u32 nritems;
2383 t = path->nodes[i];
2384 nritems = btrfs_header_nritems(t);
051e1b9f 2385 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2386 skip_level = i + 1;
2387 continue;
2388 }
2389 }
051e1b9f
CM
2390 if (skip_level < i && i >= lowest_unlock)
2391 no_skips = 1;
2392
925baedd
CM
2393 t = path->nodes[i];
2394 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2395 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2396 path->locks[i] = 0;
f7c79f30
CM
2397 if (write_lock_level &&
2398 i > min_write_lock_level &&
2399 i <= *write_lock_level) {
2400 *write_lock_level = i - 1;
2401 }
925baedd
CM
2402 }
2403 }
2404}
2405
b4ce94de
CM
2406/*
2407 * This releases any locks held in the path starting at level and
2408 * going all the way up to the root.
2409 *
2410 * btrfs_search_slot will keep the lock held on higher nodes in a few
2411 * corner cases, such as COW of the block at slot zero in the node. This
2412 * ignores those rules, and it should only be called when there are no
2413 * more updates to be done higher up in the tree.
2414 */
2415noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2416{
2417 int i;
2418
09a2a8f9 2419 if (path->keep_locks)
b4ce94de
CM
2420 return;
2421
2422 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2423 if (!path->nodes[i])
12f4dacc 2424 continue;
b4ce94de 2425 if (!path->locks[i])
12f4dacc 2426 continue;
bd681513 2427 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2428 path->locks[i] = 0;
2429 }
2430}
2431
c8c42864
CM
2432/*
2433 * helper function for btrfs_search_slot. The goal is to find a block
2434 * in cache without setting the path to blocking. If we find the block
2435 * we return zero and the path is unchanged.
2436 *
2437 * If we can't find the block, we set the path blocking and do some
2438 * reada. -EAGAIN is returned and the search must be repeated.
2439 */
2440static int
d07b8528
LB
2441read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2442 struct extent_buffer **eb_ret, int level, int slot,
2443 const struct btrfs_key *key, u64 time_seq)
c8c42864 2444{
0b246afa 2445 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2446 u64 blocknr;
2447 u64 gen;
c8c42864
CM
2448 struct extent_buffer *b = *eb_ret;
2449 struct extent_buffer *tmp;
76a05b35 2450 int ret;
c8c42864
CM
2451
2452 blocknr = btrfs_node_blockptr(b, slot);
2453 gen = btrfs_node_ptr_generation(b, slot);
c8c42864 2454
0b246afa 2455 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2456 if (tmp) {
b9fab919 2457 /* first we do an atomic uptodate check */
bdf7c00e
JB
2458 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2459 *eb_ret = tmp;
2460 return 0;
2461 }
2462
2463 /* the pages were up to date, but we failed
2464 * the generation number check. Do a full
2465 * read for the generation number that is correct.
2466 * We must do this without dropping locks so
2467 * we can trust our generation number
2468 */
2469 btrfs_set_path_blocking(p);
2470
2471 /* now we're allowed to do a blocking uptodate check */
2472 ret = btrfs_read_buffer(tmp, gen);
2473 if (!ret) {
2474 *eb_ret = tmp;
2475 return 0;
cb44921a 2476 }
bdf7c00e
JB
2477 free_extent_buffer(tmp);
2478 btrfs_release_path(p);
2479 return -EIO;
c8c42864
CM
2480 }
2481
2482 /*
2483 * reduce lock contention at high levels
2484 * of the btree by dropping locks before
76a05b35
CM
2485 * we read. Don't release the lock on the current
2486 * level because we need to walk this node to figure
2487 * out which blocks to read.
c8c42864 2488 */
8c594ea8
CM
2489 btrfs_unlock_up_safe(p, level + 1);
2490 btrfs_set_path_blocking(p);
2491
cb44921a 2492 free_extent_buffer(tmp);
e4058b54 2493 if (p->reada != READA_NONE)
2ff7e61e 2494 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2495
b3b4aa74 2496 btrfs_release_path(p);
76a05b35
CM
2497
2498 ret = -EAGAIN;
2ff7e61e 2499 tmp = read_tree_block(fs_info, blocknr, 0);
64c043de 2500 if (!IS_ERR(tmp)) {
76a05b35
CM
2501 /*
2502 * If the read above didn't mark this buffer up to date,
2503 * it will never end up being up to date. Set ret to EIO now
2504 * and give up so that our caller doesn't loop forever
2505 * on our EAGAINs.
2506 */
b9fab919 2507 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2508 ret = -EIO;
c8c42864 2509 free_extent_buffer(tmp);
c871b0f2
LB
2510 } else {
2511 ret = PTR_ERR(tmp);
76a05b35
CM
2512 }
2513 return ret;
c8c42864
CM
2514}
2515
2516/*
2517 * helper function for btrfs_search_slot. This does all of the checks
2518 * for node-level blocks and does any balancing required based on
2519 * the ins_len.
2520 *
2521 * If no extra work was required, zero is returned. If we had to
2522 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2523 * start over
2524 */
2525static int
2526setup_nodes_for_search(struct btrfs_trans_handle *trans,
2527 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2528 struct extent_buffer *b, int level, int ins_len,
2529 int *write_lock_level)
c8c42864 2530{
0b246afa 2531 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2532 int ret;
0b246afa 2533
c8c42864 2534 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2535 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2536 int sret;
2537
bd681513
CM
2538 if (*write_lock_level < level + 1) {
2539 *write_lock_level = level + 1;
2540 btrfs_release_path(p);
2541 goto again;
2542 }
2543
c8c42864 2544 btrfs_set_path_blocking(p);
2ff7e61e 2545 reada_for_balance(fs_info, p, level);
c8c42864 2546 sret = split_node(trans, root, p, level);
bd681513 2547 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2548
2549 BUG_ON(sret > 0);
2550 if (sret) {
2551 ret = sret;
2552 goto done;
2553 }
2554 b = p->nodes[level];
2555 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2556 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2557 int sret;
2558
bd681513
CM
2559 if (*write_lock_level < level + 1) {
2560 *write_lock_level = level + 1;
2561 btrfs_release_path(p);
2562 goto again;
2563 }
2564
c8c42864 2565 btrfs_set_path_blocking(p);
2ff7e61e 2566 reada_for_balance(fs_info, p, level);
c8c42864 2567 sret = balance_level(trans, root, p, level);
bd681513 2568 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2569
2570 if (sret) {
2571 ret = sret;
2572 goto done;
2573 }
2574 b = p->nodes[level];
2575 if (!b) {
b3b4aa74 2576 btrfs_release_path(p);
c8c42864
CM
2577 goto again;
2578 }
2579 BUG_ON(btrfs_header_nritems(b) == 1);
2580 }
2581 return 0;
2582
2583again:
2584 ret = -EAGAIN;
2585done:
2586 return ret;
2587}
2588
d7396f07 2589static void key_search_validate(struct extent_buffer *b,
310712b2 2590 const struct btrfs_key *key,
d7396f07
FDBM
2591 int level)
2592{
2593#ifdef CONFIG_BTRFS_ASSERT
2594 struct btrfs_disk_key disk_key;
2595
2596 btrfs_cpu_key_to_disk(&disk_key, key);
2597
2598 if (level == 0)
2599 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2600 offsetof(struct btrfs_leaf, items[0].key),
2601 sizeof(disk_key)));
2602 else
2603 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604 offsetof(struct btrfs_node, ptrs[0].key),
2605 sizeof(disk_key)));
2606#endif
2607}
2608
310712b2 2609static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2610 int level, int *prev_cmp, int *slot)
2611{
2612 if (*prev_cmp != 0) {
2613 *prev_cmp = bin_search(b, key, level, slot);
2614 return *prev_cmp;
2615 }
2616
2617 key_search_validate(b, key, level);
2618 *slot = 0;
2619
2620 return 0;
2621}
2622
381cf658 2623int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2624 u64 iobjectid, u64 ioff, u8 key_type,
2625 struct btrfs_key *found_key)
2626{
2627 int ret;
2628 struct btrfs_key key;
2629 struct extent_buffer *eb;
381cf658
DS
2630
2631 ASSERT(path);
1d4c08e0 2632 ASSERT(found_key);
e33d5c3d
KN
2633
2634 key.type = key_type;
2635 key.objectid = iobjectid;
2636 key.offset = ioff;
2637
2638 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2639 if (ret < 0)
e33d5c3d
KN
2640 return ret;
2641
2642 eb = path->nodes[0];
2643 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2644 ret = btrfs_next_leaf(fs_root, path);
2645 if (ret)
2646 return ret;
2647 eb = path->nodes[0];
2648 }
2649
2650 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2651 if (found_key->type != key.type ||
2652 found_key->objectid != key.objectid)
2653 return 1;
2654
2655 return 0;
2656}
2657
74123bd7
CM
2658/*
2659 * look for key in the tree. path is filled in with nodes along the way
2660 * if key is found, we return zero and you can find the item in the leaf
2661 * level of the path (level 0)
2662 *
2663 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2664 * be inserted, and 1 is returned. If there are other errors during the
2665 * search a negative error number is returned.
97571fd0
CM
2666 *
2667 * if ins_len > 0, nodes and leaves will be split as we walk down the
2668 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2669 * possible)
74123bd7 2670 */
310712b2
OS
2671int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2672 const struct btrfs_key *key, struct btrfs_path *p,
2673 int ins_len, int cow)
be0e5c09 2674{
0b246afa 2675 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2676 struct extent_buffer *b;
be0e5c09
CM
2677 int slot;
2678 int ret;
33c66f43 2679 int err;
be0e5c09 2680 int level;
925baedd 2681 int lowest_unlock = 1;
bd681513
CM
2682 int root_lock;
2683 /* everything at write_lock_level or lower must be write locked */
2684 int write_lock_level = 0;
9f3a7427 2685 u8 lowest_level = 0;
f7c79f30 2686 int min_write_lock_level;
d7396f07 2687 int prev_cmp;
9f3a7427 2688
6702ed49 2689 lowest_level = p->lowest_level;
323ac95b 2690 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2691 WARN_ON(p->nodes[0] != NULL);
eb653de1 2692 BUG_ON(!cow && ins_len);
25179201 2693
bd681513 2694 if (ins_len < 0) {
925baedd 2695 lowest_unlock = 2;
65b51a00 2696
bd681513
CM
2697 /* when we are removing items, we might have to go up to level
2698 * two as we update tree pointers Make sure we keep write
2699 * for those levels as well
2700 */
2701 write_lock_level = 2;
2702 } else if (ins_len > 0) {
2703 /*
2704 * for inserting items, make sure we have a write lock on
2705 * level 1 so we can update keys
2706 */
2707 write_lock_level = 1;
2708 }
2709
2710 if (!cow)
2711 write_lock_level = -1;
2712
09a2a8f9 2713 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2714 write_lock_level = BTRFS_MAX_LEVEL;
2715
f7c79f30
CM
2716 min_write_lock_level = write_lock_level;
2717
bb803951 2718again:
d7396f07 2719 prev_cmp = -1;
bd681513
CM
2720 /*
2721 * we try very hard to do read locks on the root
2722 */
2723 root_lock = BTRFS_READ_LOCK;
2724 level = 0;
5d4f98a2 2725 if (p->search_commit_root) {
bd681513
CM
2726 /*
2727 * the commit roots are read only
2728 * so we always do read locks
2729 */
3f8a18cc 2730 if (p->need_commit_sem)
0b246afa 2731 down_read(&fs_info->commit_root_sem);
5d4f98a2
YZ
2732 b = root->commit_root;
2733 extent_buffer_get(b);
bd681513 2734 level = btrfs_header_level(b);
3f8a18cc 2735 if (p->need_commit_sem)
0b246afa 2736 up_read(&fs_info->commit_root_sem);
5d4f98a2 2737 if (!p->skip_locking)
bd681513 2738 btrfs_tree_read_lock(b);
5d4f98a2 2739 } else {
bd681513 2740 if (p->skip_locking) {
5d4f98a2 2741 b = btrfs_root_node(root);
bd681513
CM
2742 level = btrfs_header_level(b);
2743 } else {
2744 /* we don't know the level of the root node
2745 * until we actually have it read locked
2746 */
2747 b = btrfs_read_lock_root_node(root);
2748 level = btrfs_header_level(b);
2749 if (level <= write_lock_level) {
2750 /* whoops, must trade for write lock */
2751 btrfs_tree_read_unlock(b);
2752 free_extent_buffer(b);
2753 b = btrfs_lock_root_node(root);
2754 root_lock = BTRFS_WRITE_LOCK;
2755
2756 /* the level might have changed, check again */
2757 level = btrfs_header_level(b);
2758 }
2759 }
5d4f98a2 2760 }
bd681513
CM
2761 p->nodes[level] = b;
2762 if (!p->skip_locking)
2763 p->locks[level] = root_lock;
925baedd 2764
eb60ceac 2765 while (b) {
5f39d397 2766 level = btrfs_header_level(b);
65b51a00
CM
2767
2768 /*
2769 * setup the path here so we can release it under lock
2770 * contention with the cow code
2771 */
02217ed2 2772 if (cow) {
c8c42864
CM
2773 /*
2774 * if we don't really need to cow this block
2775 * then we don't want to set the path blocking,
2776 * so we test it here
2777 */
64c12921
JM
2778 if (!should_cow_block(trans, root, b)) {
2779 trans->dirty = true;
65b51a00 2780 goto cow_done;
64c12921 2781 }
5d4f98a2 2782
bd681513
CM
2783 /*
2784 * must have write locks on this node and the
2785 * parent
2786 */
5124e00e
JB
2787 if (level > write_lock_level ||
2788 (level + 1 > write_lock_level &&
2789 level + 1 < BTRFS_MAX_LEVEL &&
2790 p->nodes[level + 1])) {
bd681513
CM
2791 write_lock_level = level + 1;
2792 btrfs_release_path(p);
2793 goto again;
2794 }
2795
160f4089 2796 btrfs_set_path_blocking(p);
33c66f43
YZ
2797 err = btrfs_cow_block(trans, root, b,
2798 p->nodes[level + 1],
2799 p->slots[level + 1], &b);
2800 if (err) {
33c66f43 2801 ret = err;
65b51a00 2802 goto done;
54aa1f4d 2803 }
02217ed2 2804 }
65b51a00 2805cow_done:
eb60ceac 2806 p->nodes[level] = b;
bd681513 2807 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2808
2809 /*
2810 * we have a lock on b and as long as we aren't changing
2811 * the tree, there is no way to for the items in b to change.
2812 * It is safe to drop the lock on our parent before we
2813 * go through the expensive btree search on b.
2814 *
eb653de1
FDBM
2815 * If we're inserting or deleting (ins_len != 0), then we might
2816 * be changing slot zero, which may require changing the parent.
2817 * So, we can't drop the lock until after we know which slot
2818 * we're operating on.
b4ce94de 2819 */
eb653de1
FDBM
2820 if (!ins_len && !p->keep_locks) {
2821 int u = level + 1;
2822
2823 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2824 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2825 p->locks[u] = 0;
2826 }
2827 }
b4ce94de 2828
d7396f07 2829 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2830 if (ret < 0)
2831 goto done;
b4ce94de 2832
5f39d397 2833 if (level != 0) {
33c66f43
YZ
2834 int dec = 0;
2835 if (ret && slot > 0) {
2836 dec = 1;
be0e5c09 2837 slot -= 1;
33c66f43 2838 }
be0e5c09 2839 p->slots[level] = slot;
33c66f43 2840 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2841 ins_len, &write_lock_level);
33c66f43 2842 if (err == -EAGAIN)
c8c42864 2843 goto again;
33c66f43
YZ
2844 if (err) {
2845 ret = err;
c8c42864 2846 goto done;
33c66f43 2847 }
c8c42864
CM
2848 b = p->nodes[level];
2849 slot = p->slots[level];
b4ce94de 2850
bd681513
CM
2851 /*
2852 * slot 0 is special, if we change the key
2853 * we have to update the parent pointer
2854 * which means we must have a write lock
2855 * on the parent
2856 */
eb653de1 2857 if (slot == 0 && ins_len &&
bd681513
CM
2858 write_lock_level < level + 1) {
2859 write_lock_level = level + 1;
2860 btrfs_release_path(p);
2861 goto again;
2862 }
2863
f7c79f30
CM
2864 unlock_up(p, level, lowest_unlock,
2865 min_write_lock_level, &write_lock_level);
f9efa9c7 2866
925baedd 2867 if (level == lowest_level) {
33c66f43
YZ
2868 if (dec)
2869 p->slots[level]++;
5b21f2ed 2870 goto done;
925baedd 2871 }
ca7a79ad 2872
d07b8528
LB
2873 err = read_block_for_search(root, p, &b, level,
2874 slot, key, 0);
33c66f43 2875 if (err == -EAGAIN)
c8c42864 2876 goto again;
33c66f43
YZ
2877 if (err) {
2878 ret = err;
76a05b35 2879 goto done;
33c66f43 2880 }
76a05b35 2881
b4ce94de 2882 if (!p->skip_locking) {
bd681513
CM
2883 level = btrfs_header_level(b);
2884 if (level <= write_lock_level) {
2885 err = btrfs_try_tree_write_lock(b);
2886 if (!err) {
2887 btrfs_set_path_blocking(p);
2888 btrfs_tree_lock(b);
2889 btrfs_clear_path_blocking(p, b,
2890 BTRFS_WRITE_LOCK);
2891 }
2892 p->locks[level] = BTRFS_WRITE_LOCK;
2893 } else {
f82c458a 2894 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2895 if (!err) {
2896 btrfs_set_path_blocking(p);
2897 btrfs_tree_read_lock(b);
2898 btrfs_clear_path_blocking(p, b,
2899 BTRFS_READ_LOCK);
2900 }
2901 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2902 }
bd681513 2903 p->nodes[level] = b;
b4ce94de 2904 }
be0e5c09
CM
2905 } else {
2906 p->slots[level] = slot;
87b29b20 2907 if (ins_len > 0 &&
2ff7e61e 2908 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2909 if (write_lock_level < 1) {
2910 write_lock_level = 1;
2911 btrfs_release_path(p);
2912 goto again;
2913 }
2914
b4ce94de 2915 btrfs_set_path_blocking(p);
33c66f43
YZ
2916 err = split_leaf(trans, root, key,
2917 p, ins_len, ret == 0);
bd681513 2918 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2919
33c66f43
YZ
2920 BUG_ON(err > 0);
2921 if (err) {
2922 ret = err;
65b51a00
CM
2923 goto done;
2924 }
5c680ed6 2925 }
459931ec 2926 if (!p->search_for_split)
f7c79f30
CM
2927 unlock_up(p, level, lowest_unlock,
2928 min_write_lock_level, &write_lock_level);
65b51a00 2929 goto done;
be0e5c09
CM
2930 }
2931 }
65b51a00
CM
2932 ret = 1;
2933done:
b4ce94de
CM
2934 /*
2935 * we don't really know what they plan on doing with the path
2936 * from here on, so for now just mark it as blocking
2937 */
b9473439
CM
2938 if (!p->leave_spinning)
2939 btrfs_set_path_blocking(p);
5f5bc6b1 2940 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2941 btrfs_release_path(p);
65b51a00 2942 return ret;
be0e5c09
CM
2943}
2944
5d9e75c4
JS
2945/*
2946 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2947 * current state of the tree together with the operations recorded in the tree
2948 * modification log to search for the key in a previous version of this tree, as
2949 * denoted by the time_seq parameter.
2950 *
2951 * Naturally, there is no support for insert, delete or cow operations.
2952 *
2953 * The resulting path and return value will be set up as if we called
2954 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2955 */
310712b2 2956int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2957 struct btrfs_path *p, u64 time_seq)
2958{
0b246afa 2959 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2960 struct extent_buffer *b;
2961 int slot;
2962 int ret;
2963 int err;
2964 int level;
2965 int lowest_unlock = 1;
2966 u8 lowest_level = 0;
d4b4087c 2967 int prev_cmp = -1;
5d9e75c4
JS
2968
2969 lowest_level = p->lowest_level;
2970 WARN_ON(p->nodes[0] != NULL);
2971
2972 if (p->search_commit_root) {
2973 BUG_ON(time_seq);
2974 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2975 }
2976
2977again:
5d9e75c4 2978 b = get_old_root(root, time_seq);
5d9e75c4 2979 level = btrfs_header_level(b);
5d9e75c4
JS
2980 p->locks[level] = BTRFS_READ_LOCK;
2981
2982 while (b) {
2983 level = btrfs_header_level(b);
2984 p->nodes[level] = b;
2985 btrfs_clear_path_blocking(p, NULL, 0);
2986
2987 /*
2988 * we have a lock on b and as long as we aren't changing
2989 * the tree, there is no way to for the items in b to change.
2990 * It is safe to drop the lock on our parent before we
2991 * go through the expensive btree search on b.
2992 */
2993 btrfs_unlock_up_safe(p, level + 1);
2994
d4b4087c 2995 /*
01327610 2996 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
2997 * time.
2998 */
2999 prev_cmp = -1;
d7396f07 3000 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
3001
3002 if (level != 0) {
3003 int dec = 0;
3004 if (ret && slot > 0) {
3005 dec = 1;
3006 slot -= 1;
3007 }
3008 p->slots[level] = slot;
3009 unlock_up(p, level, lowest_unlock, 0, NULL);
3010
3011 if (level == lowest_level) {
3012 if (dec)
3013 p->slots[level]++;
3014 goto done;
3015 }
3016
d07b8528 3017 err = read_block_for_search(root, p, &b, level,
5d9e75c4
JS
3018 slot, key, time_seq);
3019 if (err == -EAGAIN)
3020 goto again;
3021 if (err) {
3022 ret = err;
3023 goto done;
3024 }
3025
3026 level = btrfs_header_level(b);
f82c458a 3027 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3028 if (!err) {
3029 btrfs_set_path_blocking(p);
3030 btrfs_tree_read_lock(b);
3031 btrfs_clear_path_blocking(p, b,
3032 BTRFS_READ_LOCK);
3033 }
0b246afa 3034 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3035 if (!b) {
3036 ret = -ENOMEM;
3037 goto done;
3038 }
5d9e75c4
JS
3039 p->locks[level] = BTRFS_READ_LOCK;
3040 p->nodes[level] = b;
5d9e75c4
JS
3041 } else {
3042 p->slots[level] = slot;
3043 unlock_up(p, level, lowest_unlock, 0, NULL);
3044 goto done;
3045 }
3046 }
3047 ret = 1;
3048done:
3049 if (!p->leave_spinning)
3050 btrfs_set_path_blocking(p);
3051 if (ret < 0)
3052 btrfs_release_path(p);
3053
3054 return ret;
3055}
3056
2f38b3e1
AJ
3057/*
3058 * helper to use instead of search slot if no exact match is needed but
3059 * instead the next or previous item should be returned.
3060 * When find_higher is true, the next higher item is returned, the next lower
3061 * otherwise.
3062 * When return_any and find_higher are both true, and no higher item is found,
3063 * return the next lower instead.
3064 * When return_any is true and find_higher is false, and no lower item is found,
3065 * return the next higher instead.
3066 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3067 * < 0 on error
3068 */
3069int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3070 const struct btrfs_key *key,
3071 struct btrfs_path *p, int find_higher,
3072 int return_any)
2f38b3e1
AJ
3073{
3074 int ret;
3075 struct extent_buffer *leaf;
3076
3077again:
3078 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3079 if (ret <= 0)
3080 return ret;
3081 /*
3082 * a return value of 1 means the path is at the position where the
3083 * item should be inserted. Normally this is the next bigger item,
3084 * but in case the previous item is the last in a leaf, path points
3085 * to the first free slot in the previous leaf, i.e. at an invalid
3086 * item.
3087 */
3088 leaf = p->nodes[0];
3089
3090 if (find_higher) {
3091 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3092 ret = btrfs_next_leaf(root, p);
3093 if (ret <= 0)
3094 return ret;
3095 if (!return_any)
3096 return 1;
3097 /*
3098 * no higher item found, return the next
3099 * lower instead
3100 */
3101 return_any = 0;
3102 find_higher = 0;
3103 btrfs_release_path(p);
3104 goto again;
3105 }
3106 } else {
e6793769
AJ
3107 if (p->slots[0] == 0) {
3108 ret = btrfs_prev_leaf(root, p);
3109 if (ret < 0)
3110 return ret;
3111 if (!ret) {
23c6bf6a
FDBM
3112 leaf = p->nodes[0];
3113 if (p->slots[0] == btrfs_header_nritems(leaf))
3114 p->slots[0]--;
e6793769 3115 return 0;
2f38b3e1 3116 }
e6793769
AJ
3117 if (!return_any)
3118 return 1;
3119 /*
3120 * no lower item found, return the next
3121 * higher instead
3122 */
3123 return_any = 0;
3124 find_higher = 1;
3125 btrfs_release_path(p);
3126 goto again;
3127 } else {
2f38b3e1
AJ
3128 --p->slots[0];
3129 }
3130 }
3131 return 0;
3132}
3133
74123bd7
CM
3134/*
3135 * adjust the pointers going up the tree, starting at level
3136 * making sure the right key of each node is points to 'key'.
3137 * This is used after shifting pointers to the left, so it stops
3138 * fixing up pointers when a given leaf/node is not in slot 0 of the
3139 * higher levels
aa5d6bed 3140 *
74123bd7 3141 */
b7a0365e
DD
3142static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3143 struct btrfs_path *path,
143bede5 3144 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3145{
3146 int i;
5f39d397
CM
3147 struct extent_buffer *t;
3148
234b63a0 3149 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3150 int tslot = path->slots[i];
eb60ceac 3151 if (!path->nodes[i])
be0e5c09 3152 break;
5f39d397 3153 t = path->nodes[i];
b7a0365e 3154 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
5f39d397 3155 btrfs_set_node_key(t, key, tslot);
d6025579 3156 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3157 if (tslot != 0)
3158 break;
3159 }
3160}
3161
31840ae1
ZY
3162/*
3163 * update item key.
3164 *
3165 * This function isn't completely safe. It's the caller's responsibility
3166 * that the new key won't break the order
3167 */
b7a0365e
DD
3168void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3169 struct btrfs_path *path,
310712b2 3170 const struct btrfs_key *new_key)
31840ae1
ZY
3171{
3172 struct btrfs_disk_key disk_key;
3173 struct extent_buffer *eb;
3174 int slot;
3175
3176 eb = path->nodes[0];
3177 slot = path->slots[0];
3178 if (slot > 0) {
3179 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3180 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3181 }
3182 if (slot < btrfs_header_nritems(eb) - 1) {
3183 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3184 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3185 }
3186
3187 btrfs_cpu_key_to_disk(&disk_key, new_key);
3188 btrfs_set_item_key(eb, &disk_key, slot);
3189 btrfs_mark_buffer_dirty(eb);
3190 if (slot == 0)
b7a0365e 3191 fixup_low_keys(fs_info, path, &disk_key, 1);
31840ae1
ZY
3192}
3193
74123bd7
CM
3194/*
3195 * try to push data from one node into the next node left in the
79f95c82 3196 * tree.
aa5d6bed
CM
3197 *
3198 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3199 * error, and > 0 if there was no room in the left hand block.
74123bd7 3200 */
98ed5174 3201static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3202 struct btrfs_fs_info *fs_info,
3203 struct extent_buffer *dst,
971a1f66 3204 struct extent_buffer *src, int empty)
be0e5c09 3205{
be0e5c09 3206 int push_items = 0;
bb803951
CM
3207 int src_nritems;
3208 int dst_nritems;
aa5d6bed 3209 int ret = 0;
be0e5c09 3210
5f39d397
CM
3211 src_nritems = btrfs_header_nritems(src);
3212 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3213 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3214 WARN_ON(btrfs_header_generation(src) != trans->transid);
3215 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3216
bce4eae9 3217 if (!empty && src_nritems <= 8)
971a1f66
CM
3218 return 1;
3219
d397712b 3220 if (push_items <= 0)
be0e5c09
CM
3221 return 1;
3222
bce4eae9 3223 if (empty) {
971a1f66 3224 push_items = min(src_nritems, push_items);
bce4eae9
CM
3225 if (push_items < src_nritems) {
3226 /* leave at least 8 pointers in the node if
3227 * we aren't going to empty it
3228 */
3229 if (src_nritems - push_items < 8) {
3230 if (push_items <= 8)
3231 return 1;
3232 push_items -= 8;
3233 }
3234 }
3235 } else
3236 push_items = min(src_nritems - 8, push_items);
79f95c82 3237
0b246afa 3238 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3239 push_items);
3240 if (ret) {
66642832 3241 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3242 return ret;
3243 }
5f39d397
CM
3244 copy_extent_buffer(dst, src,
3245 btrfs_node_key_ptr_offset(dst_nritems),
3246 btrfs_node_key_ptr_offset(0),
d397712b 3247 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3248
bb803951 3249 if (push_items < src_nritems) {
57911b8b
JS
3250 /*
3251 * don't call tree_mod_log_eb_move here, key removal was already
3252 * fully logged by tree_mod_log_eb_copy above.
3253 */
5f39d397
CM
3254 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3255 btrfs_node_key_ptr_offset(push_items),
3256 (src_nritems - push_items) *
3257 sizeof(struct btrfs_key_ptr));
3258 }
3259 btrfs_set_header_nritems(src, src_nritems - push_items);
3260 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3261 btrfs_mark_buffer_dirty(src);
3262 btrfs_mark_buffer_dirty(dst);
31840ae1 3263
79f95c82
CM
3264 return ret;
3265}
3266
3267/*
3268 * try to push data from one node into the next node right in the
3269 * tree.
3270 *
3271 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3272 * error, and > 0 if there was no room in the right hand block.
3273 *
3274 * this will only push up to 1/2 the contents of the left node over
3275 */
5f39d397 3276static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3277 struct btrfs_fs_info *fs_info,
5f39d397
CM
3278 struct extent_buffer *dst,
3279 struct extent_buffer *src)
79f95c82 3280{
79f95c82
CM
3281 int push_items = 0;
3282 int max_push;
3283 int src_nritems;
3284 int dst_nritems;
3285 int ret = 0;
79f95c82 3286
7bb86316
CM
3287 WARN_ON(btrfs_header_generation(src) != trans->transid);
3288 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3289
5f39d397
CM
3290 src_nritems = btrfs_header_nritems(src);
3291 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3292 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3293 if (push_items <= 0)
79f95c82 3294 return 1;
bce4eae9 3295
d397712b 3296 if (src_nritems < 4)
bce4eae9 3297 return 1;
79f95c82
CM
3298
3299 max_push = src_nritems / 2 + 1;
3300 /* don't try to empty the node */
d397712b 3301 if (max_push >= src_nritems)
79f95c82 3302 return 1;
252c38f0 3303
79f95c82
CM
3304 if (max_push < push_items)
3305 push_items = max_push;
3306
0b246afa 3307 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3308 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3309 btrfs_node_key_ptr_offset(0),
3310 (dst_nritems) *
3311 sizeof(struct btrfs_key_ptr));
d6025579 3312
0b246afa 3313 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3314 src_nritems - push_items, push_items);
3315 if (ret) {
66642832 3316 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3317 return ret;
3318 }
5f39d397
CM
3319 copy_extent_buffer(dst, src,
3320 btrfs_node_key_ptr_offset(0),
3321 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3322 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3323
5f39d397
CM
3324 btrfs_set_header_nritems(src, src_nritems - push_items);
3325 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3326
5f39d397
CM
3327 btrfs_mark_buffer_dirty(src);
3328 btrfs_mark_buffer_dirty(dst);
31840ae1 3329
aa5d6bed 3330 return ret;
be0e5c09
CM
3331}
3332
97571fd0
CM
3333/*
3334 * helper function to insert a new root level in the tree.
3335 * A new node is allocated, and a single item is inserted to
3336 * point to the existing root
aa5d6bed
CM
3337 *
3338 * returns zero on success or < 0 on failure.
97571fd0 3339 */
d397712b 3340static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3341 struct btrfs_root *root,
fdd99c72 3342 struct btrfs_path *path, int level)
5c680ed6 3343{
0b246afa 3344 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3345 u64 lower_gen;
5f39d397
CM
3346 struct extent_buffer *lower;
3347 struct extent_buffer *c;
925baedd 3348 struct extent_buffer *old;
5f39d397 3349 struct btrfs_disk_key lower_key;
5c680ed6
CM
3350
3351 BUG_ON(path->nodes[level]);
3352 BUG_ON(path->nodes[level-1] != root->node);
3353
7bb86316
CM
3354 lower = path->nodes[level-1];
3355 if (level == 1)
3356 btrfs_item_key(lower, &lower_key, 0);
3357 else
3358 btrfs_node_key(lower, &lower_key, 0);
3359
4d75f8a9
DS
3360 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3361 &lower_key, level, root->node->start, 0);
5f39d397
CM
3362 if (IS_ERR(c))
3363 return PTR_ERR(c);
925baedd 3364
0b246afa 3365 root_add_used(root, fs_info->nodesize);
f0486c68 3366
b159fa28 3367 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
5f39d397
CM
3368 btrfs_set_header_nritems(c, 1);
3369 btrfs_set_header_level(c, level);
db94535d 3370 btrfs_set_header_bytenr(c, c->start);
5f39d397 3371 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3372 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3373 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3374
0b246afa
JM
3375 write_extent_buffer_fsid(c, fs_info->fsid);
3376 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
e17cade2 3377
5f39d397 3378 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3379 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3380 lower_gen = btrfs_header_generation(lower);
31840ae1 3381 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3382
3383 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3384
5f39d397 3385 btrfs_mark_buffer_dirty(c);
d5719762 3386
925baedd 3387 old = root->node;
fdd99c72 3388 tree_mod_log_set_root_pointer(root, c, 0);
240f62c8 3389 rcu_assign_pointer(root->node, c);
925baedd
CM
3390
3391 /* the super has an extra ref to root->node */
3392 free_extent_buffer(old);
3393
0b86a832 3394 add_root_to_dirty_list(root);
5f39d397
CM
3395 extent_buffer_get(c);
3396 path->nodes[level] = c;
95449a16 3397 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3398 path->slots[level] = 0;
3399 return 0;
3400}
3401
74123bd7
CM
3402/*
3403 * worker function to insert a single pointer in a node.
3404 * the node should have enough room for the pointer already
97571fd0 3405 *
74123bd7
CM
3406 * slot and level indicate where you want the key to go, and
3407 * blocknr is the block the key points to.
3408 */
143bede5 3409static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3410 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3411 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3412 int slot, int level)
74123bd7 3413{
5f39d397 3414 struct extent_buffer *lower;
74123bd7 3415 int nritems;
f3ea38da 3416 int ret;
5c680ed6
CM
3417
3418 BUG_ON(!path->nodes[level]);
f0486c68 3419 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3420 lower = path->nodes[level];
3421 nritems = btrfs_header_nritems(lower);
c293498b 3422 BUG_ON(slot > nritems);
0b246afa 3423 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3424 if (slot != nritems) {
c3e06965 3425 if (level)
0b246afa 3426 tree_mod_log_eb_move(fs_info, lower, slot + 1,
f3ea38da 3427 slot, nritems - slot);
5f39d397
CM
3428 memmove_extent_buffer(lower,
3429 btrfs_node_key_ptr_offset(slot + 1),
3430 btrfs_node_key_ptr_offset(slot),
d6025579 3431 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3432 }
c3e06965 3433 if (level) {
0b246afa 3434 ret = tree_mod_log_insert_key(fs_info, lower, slot,
c8cc6341 3435 MOD_LOG_KEY_ADD, GFP_NOFS);
f3ea38da
JS
3436 BUG_ON(ret < 0);
3437 }
5f39d397 3438 btrfs_set_node_key(lower, key, slot);
db94535d 3439 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3440 WARN_ON(trans->transid == 0);
3441 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3442 btrfs_set_header_nritems(lower, nritems + 1);
3443 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3444}
3445
97571fd0
CM
3446/*
3447 * split the node at the specified level in path in two.
3448 * The path is corrected to point to the appropriate node after the split
3449 *
3450 * Before splitting this tries to make some room in the node by pushing
3451 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3452 *
3453 * returns 0 on success and < 0 on failure
97571fd0 3454 */
e02119d5
CM
3455static noinline int split_node(struct btrfs_trans_handle *trans,
3456 struct btrfs_root *root,
3457 struct btrfs_path *path, int level)
be0e5c09 3458{
0b246afa 3459 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3460 struct extent_buffer *c;
3461 struct extent_buffer *split;
3462 struct btrfs_disk_key disk_key;
be0e5c09 3463 int mid;
5c680ed6 3464 int ret;
7518a238 3465 u32 c_nritems;
eb60ceac 3466
5f39d397 3467 c = path->nodes[level];
7bb86316 3468 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3469 if (c == root->node) {
d9abbf1c 3470 /*
90f8d62e
JS
3471 * trying to split the root, lets make a new one
3472 *
fdd99c72 3473 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3474 * insert_new_root, because that root buffer will be kept as a
3475 * normal node. We are going to log removal of half of the
3476 * elements below with tree_mod_log_eb_copy. We're holding a
3477 * tree lock on the buffer, which is why we cannot race with
3478 * other tree_mod_log users.
d9abbf1c 3479 */
fdd99c72 3480 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3481 if (ret)
3482 return ret;
b3612421 3483 } else {
e66f709b 3484 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3485 c = path->nodes[level];
3486 if (!ret && btrfs_header_nritems(c) <
0b246afa 3487 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3488 return 0;
54aa1f4d
CM
3489 if (ret < 0)
3490 return ret;
be0e5c09 3491 }
e66f709b 3492
5f39d397 3493 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3494 mid = (c_nritems + 1) / 2;
3495 btrfs_node_key(c, &disk_key, mid);
7bb86316 3496
4d75f8a9
DS
3497 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3498 &disk_key, level, c->start, 0);
5f39d397
CM
3499 if (IS_ERR(split))
3500 return PTR_ERR(split);
3501
0b246afa 3502 root_add_used(root, fs_info->nodesize);
f0486c68 3503
b159fa28 3504 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
5f39d397 3505 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3506 btrfs_set_header_bytenr(split, split->start);
5f39d397 3507 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3508 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397 3509 btrfs_set_header_owner(split, root->root_key.objectid);
0b246afa
JM
3510 write_extent_buffer_fsid(split, fs_info->fsid);
3511 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
54aa1f4d 3512
0b246afa 3513 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3514 if (ret) {
66642832 3515 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3516 return ret;
3517 }
5f39d397
CM
3518 copy_extent_buffer(split, c,
3519 btrfs_node_key_ptr_offset(0),
3520 btrfs_node_key_ptr_offset(mid),
3521 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3522 btrfs_set_header_nritems(split, c_nritems - mid);
3523 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3524 ret = 0;
3525
5f39d397
CM
3526 btrfs_mark_buffer_dirty(c);
3527 btrfs_mark_buffer_dirty(split);
3528
2ff7e61e 3529 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3530 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3531
5de08d7d 3532 if (path->slots[level] >= mid) {
5c680ed6 3533 path->slots[level] -= mid;
925baedd 3534 btrfs_tree_unlock(c);
5f39d397
CM
3535 free_extent_buffer(c);
3536 path->nodes[level] = split;
5c680ed6
CM
3537 path->slots[level + 1] += 1;
3538 } else {
925baedd 3539 btrfs_tree_unlock(split);
5f39d397 3540 free_extent_buffer(split);
be0e5c09 3541 }
aa5d6bed 3542 return ret;
be0e5c09
CM
3543}
3544
74123bd7
CM
3545/*
3546 * how many bytes are required to store the items in a leaf. start
3547 * and nr indicate which items in the leaf to check. This totals up the
3548 * space used both by the item structs and the item data
3549 */
5f39d397 3550static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3551{
41be1f3b
JB
3552 struct btrfs_item *start_item;
3553 struct btrfs_item *end_item;
3554 struct btrfs_map_token token;
be0e5c09 3555 int data_len;
5f39d397 3556 int nritems = btrfs_header_nritems(l);
d4dbff95 3557 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3558
3559 if (!nr)
3560 return 0;
41be1f3b 3561 btrfs_init_map_token(&token);
dd3cc16b
RK
3562 start_item = btrfs_item_nr(start);
3563 end_item = btrfs_item_nr(end);
41be1f3b
JB
3564 data_len = btrfs_token_item_offset(l, start_item, &token) +
3565 btrfs_token_item_size(l, start_item, &token);
3566 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3567 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3568 WARN_ON(data_len < 0);
be0e5c09
CM
3569 return data_len;
3570}
3571
d4dbff95
CM
3572/*
3573 * The space between the end of the leaf items and
3574 * the start of the leaf data. IOW, how much room
3575 * the leaf has left for both items and data
3576 */
2ff7e61e 3577noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3578 struct extent_buffer *leaf)
d4dbff95 3579{
5f39d397
CM
3580 int nritems = btrfs_header_nritems(leaf);
3581 int ret;
0b246afa
JM
3582
3583 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3584 if (ret < 0) {
0b246afa
JM
3585 btrfs_crit(fs_info,
3586 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3587 ret,
3588 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3589 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3590 }
3591 return ret;
d4dbff95
CM
3592}
3593
99d8f83c
CM
3594/*
3595 * min slot controls the lowest index we're willing to push to the
3596 * right. We'll push up to and including min_slot, but no lower
3597 */
44871b1b 3598static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2ff7e61e 3599 struct btrfs_fs_info *fs_info,
44871b1b
CM
3600 struct btrfs_path *path,
3601 int data_size, int empty,
3602 struct extent_buffer *right,
99d8f83c
CM
3603 int free_space, u32 left_nritems,
3604 u32 min_slot)
00ec4c51 3605{
5f39d397 3606 struct extent_buffer *left = path->nodes[0];
44871b1b 3607 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3608 struct btrfs_map_token token;
5f39d397 3609 struct btrfs_disk_key disk_key;
00ec4c51 3610 int slot;
34a38218 3611 u32 i;
00ec4c51
CM
3612 int push_space = 0;
3613 int push_items = 0;
0783fcfc 3614 struct btrfs_item *item;
34a38218 3615 u32 nr;
7518a238 3616 u32 right_nritems;
5f39d397 3617 u32 data_end;
db94535d 3618 u32 this_item_size;
00ec4c51 3619
cfed81a0
CM
3620 btrfs_init_map_token(&token);
3621
34a38218
CM
3622 if (empty)
3623 nr = 0;
3624 else
99d8f83c 3625 nr = max_t(u32, 1, min_slot);
34a38218 3626
31840ae1 3627 if (path->slots[0] >= left_nritems)
87b29b20 3628 push_space += data_size;
31840ae1 3629
44871b1b 3630 slot = path->slots[1];
34a38218
CM
3631 i = left_nritems - 1;
3632 while (i >= nr) {
dd3cc16b 3633 item = btrfs_item_nr(i);
db94535d 3634
31840ae1
ZY
3635 if (!empty && push_items > 0) {
3636 if (path->slots[0] > i)
3637 break;
3638 if (path->slots[0] == i) {
2ff7e61e 3639 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3640 if (space + push_space * 2 > free_space)
3641 break;
3642 }
3643 }
3644
00ec4c51 3645 if (path->slots[0] == i)
87b29b20 3646 push_space += data_size;
db94535d 3647
db94535d
CM
3648 this_item_size = btrfs_item_size(left, item);
3649 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3650 break;
31840ae1 3651
00ec4c51 3652 push_items++;
db94535d 3653 push_space += this_item_size + sizeof(*item);
34a38218
CM
3654 if (i == 0)
3655 break;
3656 i--;
db94535d 3657 }
5f39d397 3658
925baedd
CM
3659 if (push_items == 0)
3660 goto out_unlock;
5f39d397 3661
6c1500f2 3662 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3663
00ec4c51 3664 /* push left to right */
5f39d397 3665 right_nritems = btrfs_header_nritems(right);
34a38218 3666
5f39d397 3667 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3668 push_space -= leaf_data_end(fs_info, left);
5f39d397 3669
00ec4c51 3670 /* make room in the right data area */
2ff7e61e 3671 data_end = leaf_data_end(fs_info, right);
5f39d397
CM
3672 memmove_extent_buffer(right,
3673 btrfs_leaf_data(right) + data_end - push_space,
3674 btrfs_leaf_data(right) + data_end,
0b246afa 3675 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3676
00ec4c51 3677 /* copy from the left data area */
5f39d397 3678 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
0b246afa 3679 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2ff7e61e 3680 btrfs_leaf_data(left) + leaf_data_end(fs_info, left),
d6025579 3681 push_space);
5f39d397
CM
3682
3683 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3684 btrfs_item_nr_offset(0),
3685 right_nritems * sizeof(struct btrfs_item));
3686
00ec4c51 3687 /* copy the items from left to right */
5f39d397
CM
3688 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3689 btrfs_item_nr_offset(left_nritems - push_items),
3690 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3691
3692 /* update the item pointers */
7518a238 3693 right_nritems += push_items;
5f39d397 3694 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3695 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3696 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3697 item = btrfs_item_nr(i);
cfed81a0
CM
3698 push_space -= btrfs_token_item_size(right, item, &token);
3699 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3700 }
3701
7518a238 3702 left_nritems -= push_items;
5f39d397 3703 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3704
34a38218
CM
3705 if (left_nritems)
3706 btrfs_mark_buffer_dirty(left);
f0486c68 3707 else
0b246afa 3708 clean_tree_block(trans, fs_info, left);
f0486c68 3709
5f39d397 3710 btrfs_mark_buffer_dirty(right);
a429e513 3711
5f39d397
CM
3712 btrfs_item_key(right, &disk_key, 0);
3713 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3714 btrfs_mark_buffer_dirty(upper);
02217ed2 3715
00ec4c51 3716 /* then fixup the leaf pointer in the path */
7518a238
CM
3717 if (path->slots[0] >= left_nritems) {
3718 path->slots[0] -= left_nritems;
925baedd 3719 if (btrfs_header_nritems(path->nodes[0]) == 0)
0b246afa 3720 clean_tree_block(trans, fs_info, path->nodes[0]);
925baedd 3721 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3722 free_extent_buffer(path->nodes[0]);
3723 path->nodes[0] = right;
00ec4c51
CM
3724 path->slots[1] += 1;
3725 } else {
925baedd 3726 btrfs_tree_unlock(right);
5f39d397 3727 free_extent_buffer(right);
00ec4c51
CM
3728 }
3729 return 0;
925baedd
CM
3730
3731out_unlock:
3732 btrfs_tree_unlock(right);
3733 free_extent_buffer(right);
3734 return 1;
00ec4c51 3735}
925baedd 3736
44871b1b
CM
3737/*
3738 * push some data in the path leaf to the right, trying to free up at
3739 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3740 *
3741 * returns 1 if the push failed because the other node didn't have enough
3742 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3743 *
3744 * this will push starting from min_slot to the end of the leaf. It won't
3745 * push any slot lower than min_slot
44871b1b
CM
3746 */
3747static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3748 *root, struct btrfs_path *path,
3749 int min_data_size, int data_size,
3750 int empty, u32 min_slot)
44871b1b 3751{
2ff7e61e 3752 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3753 struct extent_buffer *left = path->nodes[0];
3754 struct extent_buffer *right;
3755 struct extent_buffer *upper;
3756 int slot;
3757 int free_space;
3758 u32 left_nritems;
3759 int ret;
3760
3761 if (!path->nodes[1])
3762 return 1;
3763
3764 slot = path->slots[1];
3765 upper = path->nodes[1];
3766 if (slot >= btrfs_header_nritems(upper) - 1)
3767 return 1;
3768
3769 btrfs_assert_tree_locked(path->nodes[1]);
3770
2ff7e61e 3771 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3772 /*
3773 * slot + 1 is not valid or we fail to read the right node,
3774 * no big deal, just return.
3775 */
3776 if (IS_ERR(right))
91ca338d
TI
3777 return 1;
3778
44871b1b
CM
3779 btrfs_tree_lock(right);
3780 btrfs_set_lock_blocking(right);
3781
2ff7e61e 3782 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3783 if (free_space < data_size)
3784 goto out_unlock;
3785
3786 /* cow and double check */
3787 ret = btrfs_cow_block(trans, root, right, upper,
3788 slot + 1, &right);
3789 if (ret)
3790 goto out_unlock;
3791
2ff7e61e 3792 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3793 if (free_space < data_size)
3794 goto out_unlock;
3795
3796 left_nritems = btrfs_header_nritems(left);
3797 if (left_nritems == 0)
3798 goto out_unlock;
3799
2ef1fed2
FDBM
3800 if (path->slots[0] == left_nritems && !empty) {
3801 /* Key greater than all keys in the leaf, right neighbor has
3802 * enough room for it and we're not emptying our leaf to delete
3803 * it, therefore use right neighbor to insert the new item and
3804 * no need to touch/dirty our left leaft. */
3805 btrfs_tree_unlock(left);
3806 free_extent_buffer(left);
3807 path->nodes[0] = right;
3808 path->slots[0] = 0;
3809 path->slots[1]++;
3810 return 0;
3811 }
3812
2ff7e61e 3813 return __push_leaf_right(trans, fs_info, path, min_data_size, empty,
99d8f83c 3814 right, free_space, left_nritems, min_slot);
44871b1b
CM
3815out_unlock:
3816 btrfs_tree_unlock(right);
3817 free_extent_buffer(right);
3818 return 1;
3819}
3820
74123bd7
CM
3821/*
3822 * push some data in the path leaf to the left, trying to free up at
3823 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3824 *
3825 * max_slot can put a limit on how far into the leaf we'll push items. The
3826 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3827 * items
74123bd7 3828 */
44871b1b 3829static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2ff7e61e 3830 struct btrfs_fs_info *fs_info,
44871b1b
CM
3831 struct btrfs_path *path, int data_size,
3832 int empty, struct extent_buffer *left,
99d8f83c
CM
3833 int free_space, u32 right_nritems,
3834 u32 max_slot)
be0e5c09 3835{
5f39d397
CM
3836 struct btrfs_disk_key disk_key;
3837 struct extent_buffer *right = path->nodes[0];
be0e5c09 3838 int i;
be0e5c09
CM
3839 int push_space = 0;
3840 int push_items = 0;
0783fcfc 3841 struct btrfs_item *item;
7518a238 3842 u32 old_left_nritems;
34a38218 3843 u32 nr;
aa5d6bed 3844 int ret = 0;
db94535d
CM
3845 u32 this_item_size;
3846 u32 old_left_item_size;
cfed81a0
CM
3847 struct btrfs_map_token token;
3848
3849 btrfs_init_map_token(&token);
be0e5c09 3850
34a38218 3851 if (empty)
99d8f83c 3852 nr = min(right_nritems, max_slot);
34a38218 3853 else
99d8f83c 3854 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3855
3856 for (i = 0; i < nr; i++) {
dd3cc16b 3857 item = btrfs_item_nr(i);
db94535d 3858
31840ae1
ZY
3859 if (!empty && push_items > 0) {
3860 if (path->slots[0] < i)
3861 break;
3862 if (path->slots[0] == i) {
2ff7e61e 3863 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3864 if (space + push_space * 2 > free_space)
3865 break;
3866 }
3867 }
3868
be0e5c09 3869 if (path->slots[0] == i)
87b29b20 3870 push_space += data_size;
db94535d
CM
3871
3872 this_item_size = btrfs_item_size(right, item);
3873 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3874 break;
db94535d 3875
be0e5c09 3876 push_items++;
db94535d
CM
3877 push_space += this_item_size + sizeof(*item);
3878 }
3879
be0e5c09 3880 if (push_items == 0) {
925baedd
CM
3881 ret = 1;
3882 goto out;
be0e5c09 3883 }
fae7f21c 3884 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3885
be0e5c09 3886 /* push data from right to left */
5f39d397
CM
3887 copy_extent_buffer(left, right,
3888 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3889 btrfs_item_nr_offset(0),
3890 push_items * sizeof(struct btrfs_item));
3891
0b246afa 3892 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3893 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3894
3895 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2ff7e61e 3896 leaf_data_end(fs_info, left) - push_space,
d6025579 3897 btrfs_leaf_data(right) +
5f39d397 3898 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3899 push_space);
5f39d397 3900 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3901 BUG_ON(old_left_nritems <= 0);
eb60ceac 3902
db94535d 3903 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3904 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3905 u32 ioff;
db94535d 3906
dd3cc16b 3907 item = btrfs_item_nr(i);
db94535d 3908
cfed81a0
CM
3909 ioff = btrfs_token_item_offset(left, item, &token);
3910 btrfs_set_token_item_offset(left, item,
0b246afa 3911 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3912 &token);
be0e5c09 3913 }
5f39d397 3914 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3915
3916 /* fixup right node */
31b1a2bd
JL
3917 if (push_items > right_nritems)
3918 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3919 right_nritems);
34a38218
CM
3920
3921 if (push_items < right_nritems) {
3922 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3923 leaf_data_end(fs_info, right);
34a38218 3924 memmove_extent_buffer(right, btrfs_leaf_data(right) +
0b246afa 3925 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
34a38218 3926 btrfs_leaf_data(right) +
2ff7e61e 3927 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3928
3929 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3930 btrfs_item_nr_offset(push_items),
3931 (btrfs_header_nritems(right) - push_items) *
3932 sizeof(struct btrfs_item));
34a38218 3933 }
eef1c494
Y
3934 right_nritems -= push_items;
3935 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3936 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3937 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3938 item = btrfs_item_nr(i);
db94535d 3939
cfed81a0
CM
3940 push_space = push_space - btrfs_token_item_size(right,
3941 item, &token);
3942 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3943 }
eb60ceac 3944
5f39d397 3945 btrfs_mark_buffer_dirty(left);
34a38218
CM
3946 if (right_nritems)
3947 btrfs_mark_buffer_dirty(right);
f0486c68 3948 else
0b246afa 3949 clean_tree_block(trans, fs_info, right);
098f59c2 3950
5f39d397 3951 btrfs_item_key(right, &disk_key, 0);
0b246afa 3952 fixup_low_keys(fs_info, path, &disk_key, 1);
be0e5c09
CM
3953
3954 /* then fixup the leaf pointer in the path */
3955 if (path->slots[0] < push_items) {
3956 path->slots[0] += old_left_nritems;
925baedd 3957 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3958 free_extent_buffer(path->nodes[0]);
3959 path->nodes[0] = left;
be0e5c09
CM
3960 path->slots[1] -= 1;
3961 } else {
925baedd 3962 btrfs_tree_unlock(left);
5f39d397 3963 free_extent_buffer(left);
be0e5c09
CM
3964 path->slots[0] -= push_items;
3965 }
eb60ceac 3966 BUG_ON(path->slots[0] < 0);
aa5d6bed 3967 return ret;
925baedd
CM
3968out:
3969 btrfs_tree_unlock(left);
3970 free_extent_buffer(left);
3971 return ret;
be0e5c09
CM
3972}
3973
44871b1b
CM
3974/*
3975 * push some data in the path leaf to the left, trying to free up at
3976 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3977 *
3978 * max_slot can put a limit on how far into the leaf we'll push items. The
3979 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3980 * items
44871b1b
CM
3981 */
3982static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3983 *root, struct btrfs_path *path, int min_data_size,
3984 int data_size, int empty, u32 max_slot)
44871b1b 3985{
2ff7e61e 3986 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3987 struct extent_buffer *right = path->nodes[0];
3988 struct extent_buffer *left;
3989 int slot;
3990 int free_space;
3991 u32 right_nritems;
3992 int ret = 0;
3993
3994 slot = path->slots[1];
3995 if (slot == 0)
3996 return 1;
3997 if (!path->nodes[1])
3998 return 1;
3999
4000 right_nritems = btrfs_header_nritems(right);
4001 if (right_nritems == 0)
4002 return 1;
4003
4004 btrfs_assert_tree_locked(path->nodes[1]);
4005
2ff7e61e 4006 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
4007 /*
4008 * slot - 1 is not valid or we fail to read the left node,
4009 * no big deal, just return.
4010 */
4011 if (IS_ERR(left))
91ca338d
TI
4012 return 1;
4013
44871b1b
CM
4014 btrfs_tree_lock(left);
4015 btrfs_set_lock_blocking(left);
4016
2ff7e61e 4017 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4018 if (free_space < data_size) {
4019 ret = 1;
4020 goto out;
4021 }
4022
4023 /* cow and double check */
4024 ret = btrfs_cow_block(trans, root, left,
4025 path->nodes[1], slot - 1, &left);
4026 if (ret) {
4027 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4028 if (ret == -ENOSPC)
4029 ret = 1;
44871b1b
CM
4030 goto out;
4031 }
4032
2ff7e61e 4033 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4034 if (free_space < data_size) {
4035 ret = 1;
4036 goto out;
4037 }
4038
2ff7e61e 4039 return __push_leaf_left(trans, fs_info, path, min_data_size,
99d8f83c
CM
4040 empty, left, free_space, right_nritems,
4041 max_slot);
44871b1b
CM
4042out:
4043 btrfs_tree_unlock(left);
4044 free_extent_buffer(left);
4045 return ret;
4046}
4047
4048/*
4049 * split the path's leaf in two, making sure there is at least data_size
4050 * available for the resulting leaf level of the path.
44871b1b 4051 */
143bede5 4052static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4053 struct btrfs_fs_info *fs_info,
143bede5
JM
4054 struct btrfs_path *path,
4055 struct extent_buffer *l,
4056 struct extent_buffer *right,
4057 int slot, int mid, int nritems)
44871b1b
CM
4058{
4059 int data_copy_size;
4060 int rt_data_off;
4061 int i;
44871b1b 4062 struct btrfs_disk_key disk_key;
cfed81a0
CM
4063 struct btrfs_map_token token;
4064
4065 btrfs_init_map_token(&token);
44871b1b
CM
4066
4067 nritems = nritems - mid;
4068 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4069 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4070
4071 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4072 btrfs_item_nr_offset(mid),
4073 nritems * sizeof(struct btrfs_item));
4074
4075 copy_extent_buffer(right, l,
0b246afa 4076 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) -
44871b1b 4077 data_copy_size, btrfs_leaf_data(l) +
2ff7e61e 4078 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4079
0b246afa 4080 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4081
4082 for (i = 0; i < nritems; i++) {
dd3cc16b 4083 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4084 u32 ioff;
4085
cfed81a0
CM
4086 ioff = btrfs_token_item_offset(right, item, &token);
4087 btrfs_set_token_item_offset(right, item,
4088 ioff + rt_data_off, &token);
44871b1b
CM
4089 }
4090
44871b1b 4091 btrfs_set_header_nritems(l, mid);
44871b1b 4092 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4093 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4094 path->slots[1] + 1, 1);
44871b1b
CM
4095
4096 btrfs_mark_buffer_dirty(right);
4097 btrfs_mark_buffer_dirty(l);
4098 BUG_ON(path->slots[0] != slot);
4099
44871b1b
CM
4100 if (mid <= slot) {
4101 btrfs_tree_unlock(path->nodes[0]);
4102 free_extent_buffer(path->nodes[0]);
4103 path->nodes[0] = right;
4104 path->slots[0] -= mid;
4105 path->slots[1] += 1;
4106 } else {
4107 btrfs_tree_unlock(right);
4108 free_extent_buffer(right);
4109 }
4110
4111 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4112}
4113
99d8f83c
CM
4114/*
4115 * double splits happen when we need to insert a big item in the middle
4116 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4117 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4118 * A B C
4119 *
4120 * We avoid this by trying to push the items on either side of our target
4121 * into the adjacent leaves. If all goes well we can avoid the double split
4122 * completely.
4123 */
4124static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4125 struct btrfs_root *root,
4126 struct btrfs_path *path,
4127 int data_size)
4128{
2ff7e61e 4129 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4130 int ret;
4131 int progress = 0;
4132 int slot;
4133 u32 nritems;
5a4267ca 4134 int space_needed = data_size;
99d8f83c
CM
4135
4136 slot = path->slots[0];
5a4267ca 4137 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4138 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4139
4140 /*
4141 * try to push all the items after our slot into the
4142 * right leaf
4143 */
5a4267ca 4144 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4145 if (ret < 0)
4146 return ret;
4147
4148 if (ret == 0)
4149 progress++;
4150
4151 nritems = btrfs_header_nritems(path->nodes[0]);
4152 /*
4153 * our goal is to get our slot at the start or end of a leaf. If
4154 * we've done so we're done
4155 */
4156 if (path->slots[0] == 0 || path->slots[0] == nritems)
4157 return 0;
4158
2ff7e61e 4159 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4160 return 0;
4161
4162 /* try to push all the items before our slot into the next leaf */
4163 slot = path->slots[0];
5a4267ca 4164 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4165 if (ret < 0)
4166 return ret;
4167
4168 if (ret == 0)
4169 progress++;
4170
4171 if (progress)
4172 return 0;
4173 return 1;
4174}
4175
74123bd7
CM
4176/*
4177 * split the path's leaf in two, making sure there is at least data_size
4178 * available for the resulting leaf level of the path.
aa5d6bed
CM
4179 *
4180 * returns 0 if all went well and < 0 on failure.
74123bd7 4181 */
e02119d5
CM
4182static noinline int split_leaf(struct btrfs_trans_handle *trans,
4183 struct btrfs_root *root,
310712b2 4184 const struct btrfs_key *ins_key,
e02119d5
CM
4185 struct btrfs_path *path, int data_size,
4186 int extend)
be0e5c09 4187{
5d4f98a2 4188 struct btrfs_disk_key disk_key;
5f39d397 4189 struct extent_buffer *l;
7518a238 4190 u32 nritems;
eb60ceac
CM
4191 int mid;
4192 int slot;
5f39d397 4193 struct extent_buffer *right;
b7a0365e 4194 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4195 int ret = 0;
aa5d6bed 4196 int wret;
5d4f98a2 4197 int split;
cc0c5538 4198 int num_doubles = 0;
99d8f83c 4199 int tried_avoid_double = 0;
aa5d6bed 4200
a5719521
YZ
4201 l = path->nodes[0];
4202 slot = path->slots[0];
4203 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4204 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4205 return -EOVERFLOW;
4206
40689478 4207 /* first try to make some room by pushing left and right */
33157e05 4208 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4209 int space_needed = data_size;
4210
4211 if (slot < btrfs_header_nritems(l))
2ff7e61e 4212 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4213
4214 wret = push_leaf_right(trans, root, path, space_needed,
4215 space_needed, 0, 0);
d397712b 4216 if (wret < 0)
eaee50e8 4217 return wret;
3685f791 4218 if (wret) {
5a4267ca
FDBM
4219 wret = push_leaf_left(trans, root, path, space_needed,
4220 space_needed, 0, (u32)-1);
3685f791
CM
4221 if (wret < 0)
4222 return wret;
4223 }
4224 l = path->nodes[0];
aa5d6bed 4225
3685f791 4226 /* did the pushes work? */
2ff7e61e 4227 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4228 return 0;
3326d1b0 4229 }
aa5d6bed 4230
5c680ed6 4231 if (!path->nodes[1]) {
fdd99c72 4232 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4233 if (ret)
4234 return ret;
4235 }
cc0c5538 4236again:
5d4f98a2 4237 split = 1;
cc0c5538 4238 l = path->nodes[0];
eb60ceac 4239 slot = path->slots[0];
5f39d397 4240 nritems = btrfs_header_nritems(l);
d397712b 4241 mid = (nritems + 1) / 2;
54aa1f4d 4242
5d4f98a2
YZ
4243 if (mid <= slot) {
4244 if (nritems == 1 ||
4245 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4246 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4247 if (slot >= nritems) {
4248 split = 0;
4249 } else {
4250 mid = slot;
4251 if (mid != nritems &&
4252 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4253 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4254 if (data_size && !tried_avoid_double)
4255 goto push_for_double;
5d4f98a2
YZ
4256 split = 2;
4257 }
4258 }
4259 }
4260 } else {
4261 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4262 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4263 if (!extend && data_size && slot == 0) {
4264 split = 0;
4265 } else if ((extend || !data_size) && slot == 0) {
4266 mid = 1;
4267 } else {
4268 mid = slot;
4269 if (mid != nritems &&
4270 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4271 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4272 if (data_size && !tried_avoid_double)
4273 goto push_for_double;
67871254 4274 split = 2;
5d4f98a2
YZ
4275 }
4276 }
4277 }
4278 }
4279
4280 if (split == 0)
4281 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4282 else
4283 btrfs_item_key(l, &disk_key, mid);
4284
4d75f8a9
DS
4285 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4286 &disk_key, 0, l->start, 0);
f0486c68 4287 if (IS_ERR(right))
5f39d397 4288 return PTR_ERR(right);
f0486c68 4289
0b246afa 4290 root_add_used(root, fs_info->nodesize);
5f39d397 4291
b159fa28 4292 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
db94535d 4293 btrfs_set_header_bytenr(right, right->start);
5f39d397 4294 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4295 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4296 btrfs_set_header_owner(right, root->root_key.objectid);
4297 btrfs_set_header_level(right, 0);
d24ee97b
DS
4298 write_extent_buffer_fsid(right, fs_info->fsid);
4299 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
44871b1b 4300
5d4f98a2
YZ
4301 if (split == 0) {
4302 if (mid <= slot) {
4303 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4304 insert_ptr(trans, fs_info, path, &disk_key,
4305 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4306 btrfs_tree_unlock(path->nodes[0]);
4307 free_extent_buffer(path->nodes[0]);
4308 path->nodes[0] = right;
4309 path->slots[0] = 0;
4310 path->slots[1] += 1;
4311 } else {
4312 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4313 insert_ptr(trans, fs_info, path, &disk_key,
4314 right->start, path->slots[1], 1);
5d4f98a2
YZ
4315 btrfs_tree_unlock(path->nodes[0]);
4316 free_extent_buffer(path->nodes[0]);
4317 path->nodes[0] = right;
4318 path->slots[0] = 0;
143bede5 4319 if (path->slots[1] == 0)
b7a0365e 4320 fixup_low_keys(fs_info, path, &disk_key, 1);
d4dbff95 4321 }
196e0249
LB
4322 /*
4323 * We create a new leaf 'right' for the required ins_len and
4324 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4325 * the content of ins_len to 'right'.
4326 */
5d4f98a2 4327 return ret;
d4dbff95 4328 }
74123bd7 4329
2ff7e61e 4330 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4331
5d4f98a2 4332 if (split == 2) {
cc0c5538
CM
4333 BUG_ON(num_doubles != 0);
4334 num_doubles++;
4335 goto again;
a429e513 4336 }
44871b1b 4337
143bede5 4338 return 0;
99d8f83c
CM
4339
4340push_for_double:
4341 push_for_double_split(trans, root, path, data_size);
4342 tried_avoid_double = 1;
2ff7e61e 4343 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4344 return 0;
4345 goto again;
be0e5c09
CM
4346}
4347
ad48fd75
YZ
4348static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4349 struct btrfs_root *root,
4350 struct btrfs_path *path, int ins_len)
459931ec 4351{
2ff7e61e 4352 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4353 struct btrfs_key key;
459931ec 4354 struct extent_buffer *leaf;
ad48fd75
YZ
4355 struct btrfs_file_extent_item *fi;
4356 u64 extent_len = 0;
4357 u32 item_size;
4358 int ret;
459931ec
CM
4359
4360 leaf = path->nodes[0];
ad48fd75
YZ
4361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4362
4363 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4364 key.type != BTRFS_EXTENT_CSUM_KEY);
4365
2ff7e61e 4366 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4367 return 0;
459931ec
CM
4368
4369 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4370 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4371 fi = btrfs_item_ptr(leaf, path->slots[0],
4372 struct btrfs_file_extent_item);
4373 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4374 }
b3b4aa74 4375 btrfs_release_path(path);
459931ec 4376
459931ec 4377 path->keep_locks = 1;
ad48fd75
YZ
4378 path->search_for_split = 1;
4379 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4380 path->search_for_split = 0;
a8df6fe6
FM
4381 if (ret > 0)
4382 ret = -EAGAIN;
ad48fd75
YZ
4383 if (ret < 0)
4384 goto err;
459931ec 4385
ad48fd75
YZ
4386 ret = -EAGAIN;
4387 leaf = path->nodes[0];
a8df6fe6
FM
4388 /* if our item isn't there, return now */
4389 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4390 goto err;
4391
109f6aef 4392 /* the leaf has changed, it now has room. return now */
2ff7e61e 4393 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4394 goto err;
4395
ad48fd75
YZ
4396 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4397 fi = btrfs_item_ptr(leaf, path->slots[0],
4398 struct btrfs_file_extent_item);
4399 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4400 goto err;
459931ec
CM
4401 }
4402
b9473439 4403 btrfs_set_path_blocking(path);
ad48fd75 4404 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4405 if (ret)
4406 goto err;
459931ec 4407
ad48fd75 4408 path->keep_locks = 0;
b9473439 4409 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4410 return 0;
4411err:
4412 path->keep_locks = 0;
4413 return ret;
4414}
4415
4416static noinline int split_item(struct btrfs_trans_handle *trans,
2ff7e61e 4417 struct btrfs_fs_info *fs_info,
ad48fd75 4418 struct btrfs_path *path,
310712b2 4419 const struct btrfs_key *new_key,
ad48fd75
YZ
4420 unsigned long split_offset)
4421{
4422 struct extent_buffer *leaf;
4423 struct btrfs_item *item;
4424 struct btrfs_item *new_item;
4425 int slot;
4426 char *buf;
4427 u32 nritems;
4428 u32 item_size;
4429 u32 orig_offset;
4430 struct btrfs_disk_key disk_key;
4431
b9473439 4432 leaf = path->nodes[0];
2ff7e61e 4433 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4434
b4ce94de
CM
4435 btrfs_set_path_blocking(path);
4436
dd3cc16b 4437 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4438 orig_offset = btrfs_item_offset(leaf, item);
4439 item_size = btrfs_item_size(leaf, item);
4440
459931ec 4441 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4442 if (!buf)
4443 return -ENOMEM;
4444
459931ec
CM
4445 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4446 path->slots[0]), item_size);
459931ec 4447
ad48fd75 4448 slot = path->slots[0] + 1;
459931ec 4449 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4450 if (slot != nritems) {
4451 /* shift the items */
4452 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4453 btrfs_item_nr_offset(slot),
4454 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4455 }
4456
4457 btrfs_cpu_key_to_disk(&disk_key, new_key);
4458 btrfs_set_item_key(leaf, &disk_key, slot);
4459
dd3cc16b 4460 new_item = btrfs_item_nr(slot);
459931ec
CM
4461
4462 btrfs_set_item_offset(leaf, new_item, orig_offset);
4463 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4464
4465 btrfs_set_item_offset(leaf, item,
4466 orig_offset + item_size - split_offset);
4467 btrfs_set_item_size(leaf, item, split_offset);
4468
4469 btrfs_set_header_nritems(leaf, nritems + 1);
4470
4471 /* write the data for the start of the original item */
4472 write_extent_buffer(leaf, buf,
4473 btrfs_item_ptr_offset(leaf, path->slots[0]),
4474 split_offset);
4475
4476 /* write the data for the new item */
4477 write_extent_buffer(leaf, buf + split_offset,
4478 btrfs_item_ptr_offset(leaf, slot),
4479 item_size - split_offset);
4480 btrfs_mark_buffer_dirty(leaf);
4481
2ff7e61e 4482 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4483 kfree(buf);
ad48fd75
YZ
4484 return 0;
4485}
4486
4487/*
4488 * This function splits a single item into two items,
4489 * giving 'new_key' to the new item and splitting the
4490 * old one at split_offset (from the start of the item).
4491 *
4492 * The path may be released by this operation. After
4493 * the split, the path is pointing to the old item. The
4494 * new item is going to be in the same node as the old one.
4495 *
4496 * Note, the item being split must be smaller enough to live alone on
4497 * a tree block with room for one extra struct btrfs_item
4498 *
4499 * This allows us to split the item in place, keeping a lock on the
4500 * leaf the entire time.
4501 */
4502int btrfs_split_item(struct btrfs_trans_handle *trans,
4503 struct btrfs_root *root,
4504 struct btrfs_path *path,
310712b2 4505 const struct btrfs_key *new_key,
ad48fd75
YZ
4506 unsigned long split_offset)
4507{
4508 int ret;
4509 ret = setup_leaf_for_split(trans, root, path,
4510 sizeof(struct btrfs_item));
4511 if (ret)
4512 return ret;
4513
2ff7e61e 4514 ret = split_item(trans, root->fs_info, path, new_key, split_offset);
459931ec
CM
4515 return ret;
4516}
4517
ad48fd75
YZ
4518/*
4519 * This function duplicate a item, giving 'new_key' to the new item.
4520 * It guarantees both items live in the same tree leaf and the new item
4521 * is contiguous with the original item.
4522 *
4523 * This allows us to split file extent in place, keeping a lock on the
4524 * leaf the entire time.
4525 */
4526int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4527 struct btrfs_root *root,
4528 struct btrfs_path *path,
310712b2 4529 const struct btrfs_key *new_key)
ad48fd75
YZ
4530{
4531 struct extent_buffer *leaf;
4532 int ret;
4533 u32 item_size;
4534
4535 leaf = path->nodes[0];
4536 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4537 ret = setup_leaf_for_split(trans, root, path,
4538 item_size + sizeof(struct btrfs_item));
4539 if (ret)
4540 return ret;
4541
4542 path->slots[0]++;
afe5fea7 4543 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4544 item_size, item_size +
4545 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4546 leaf = path->nodes[0];
4547 memcpy_extent_buffer(leaf,
4548 btrfs_item_ptr_offset(leaf, path->slots[0]),
4549 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4550 item_size);
4551 return 0;
4552}
4553
d352ac68
CM
4554/*
4555 * make the item pointed to by the path smaller. new_size indicates
4556 * how small to make it, and from_end tells us if we just chop bytes
4557 * off the end of the item or if we shift the item to chop bytes off
4558 * the front.
4559 */
2ff7e61e
JM
4560void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4561 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4562{
b18c6685 4563 int slot;
5f39d397
CM
4564 struct extent_buffer *leaf;
4565 struct btrfs_item *item;
b18c6685
CM
4566 u32 nritems;
4567 unsigned int data_end;
4568 unsigned int old_data_start;
4569 unsigned int old_size;
4570 unsigned int size_diff;
4571 int i;
cfed81a0
CM
4572 struct btrfs_map_token token;
4573
4574 btrfs_init_map_token(&token);
b18c6685 4575
5f39d397 4576 leaf = path->nodes[0];
179e29e4
CM
4577 slot = path->slots[0];
4578
4579 old_size = btrfs_item_size_nr(leaf, slot);
4580 if (old_size == new_size)
143bede5 4581 return;
b18c6685 4582
5f39d397 4583 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4584 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4585
5f39d397 4586 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4587
b18c6685
CM
4588 size_diff = old_size - new_size;
4589
4590 BUG_ON(slot < 0);
4591 BUG_ON(slot >= nritems);
4592
4593 /*
4594 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4595 */
4596 /* first correct the data pointers */
4597 for (i = slot; i < nritems; i++) {
5f39d397 4598 u32 ioff;
dd3cc16b 4599 item = btrfs_item_nr(i);
db94535d 4600
cfed81a0
CM
4601 ioff = btrfs_token_item_offset(leaf, item, &token);
4602 btrfs_set_token_item_offset(leaf, item,
4603 ioff + size_diff, &token);
b18c6685 4604 }
db94535d 4605
b18c6685 4606 /* shift the data */
179e29e4
CM
4607 if (from_end) {
4608 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4609 data_end + size_diff, btrfs_leaf_data(leaf) +
4610 data_end, old_data_start + new_size - data_end);
4611 } else {
4612 struct btrfs_disk_key disk_key;
4613 u64 offset;
4614
4615 btrfs_item_key(leaf, &disk_key, slot);
4616
4617 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4618 unsigned long ptr;
4619 struct btrfs_file_extent_item *fi;
4620
4621 fi = btrfs_item_ptr(leaf, slot,
4622 struct btrfs_file_extent_item);
4623 fi = (struct btrfs_file_extent_item *)(
4624 (unsigned long)fi - size_diff);
4625
4626 if (btrfs_file_extent_type(leaf, fi) ==
4627 BTRFS_FILE_EXTENT_INLINE) {
4628 ptr = btrfs_item_ptr_offset(leaf, slot);
4629 memmove_extent_buffer(leaf, ptr,
d397712b 4630 (unsigned long)fi,
7ec20afb 4631 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4632 }
4633 }
4634
4635 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4636 data_end + size_diff, btrfs_leaf_data(leaf) +
4637 data_end, old_data_start - data_end);
4638
4639 offset = btrfs_disk_key_offset(&disk_key);
4640 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4641 btrfs_set_item_key(leaf, &disk_key, slot);
4642 if (slot == 0)
0b246afa 4643 fixup_low_keys(fs_info, path, &disk_key, 1);
179e29e4 4644 }
5f39d397 4645
dd3cc16b 4646 item = btrfs_item_nr(slot);
5f39d397
CM
4647 btrfs_set_item_size(leaf, item, new_size);
4648 btrfs_mark_buffer_dirty(leaf);
b18c6685 4649
2ff7e61e
JM
4650 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4651 btrfs_print_leaf(fs_info, leaf);
b18c6685 4652 BUG();
5f39d397 4653 }
b18c6685
CM
4654}
4655
d352ac68 4656/*
8f69dbd2 4657 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4658 */
2ff7e61e 4659void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4660 u32 data_size)
6567e837 4661{
6567e837 4662 int slot;
5f39d397
CM
4663 struct extent_buffer *leaf;
4664 struct btrfs_item *item;
6567e837
CM
4665 u32 nritems;
4666 unsigned int data_end;
4667 unsigned int old_data;
4668 unsigned int old_size;
4669 int i;
cfed81a0
CM
4670 struct btrfs_map_token token;
4671
4672 btrfs_init_map_token(&token);
6567e837 4673
5f39d397 4674 leaf = path->nodes[0];
6567e837 4675
5f39d397 4676 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4677 data_end = leaf_data_end(fs_info, leaf);
6567e837 4678
2ff7e61e
JM
4679 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4680 btrfs_print_leaf(fs_info, leaf);
6567e837 4681 BUG();
5f39d397 4682 }
6567e837 4683 slot = path->slots[0];
5f39d397 4684 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4685
4686 BUG_ON(slot < 0);
3326d1b0 4687 if (slot >= nritems) {
2ff7e61e 4688 btrfs_print_leaf(fs_info, leaf);
0b246afa
JM
4689 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4690 slot, nritems);
3326d1b0
CM
4691 BUG_ON(1);
4692 }
6567e837
CM
4693
4694 /*
4695 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4696 */
4697 /* first correct the data pointers */
4698 for (i = slot; i < nritems; i++) {
5f39d397 4699 u32 ioff;
dd3cc16b 4700 item = btrfs_item_nr(i);
db94535d 4701
cfed81a0
CM
4702 ioff = btrfs_token_item_offset(leaf, item, &token);
4703 btrfs_set_token_item_offset(leaf, item,
4704 ioff - data_size, &token);
6567e837 4705 }
5f39d397 4706
6567e837 4707 /* shift the data */
5f39d397 4708 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4709 data_end - data_size, btrfs_leaf_data(leaf) +
4710 data_end, old_data - data_end);
5f39d397 4711
6567e837 4712 data_end = old_data;
5f39d397 4713 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4714 item = btrfs_item_nr(slot);
5f39d397
CM
4715 btrfs_set_item_size(leaf, item, old_size + data_size);
4716 btrfs_mark_buffer_dirty(leaf);
6567e837 4717
2ff7e61e
JM
4718 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4719 btrfs_print_leaf(fs_info, leaf);
6567e837 4720 BUG();
5f39d397 4721 }
6567e837
CM
4722}
4723
74123bd7 4724/*
44871b1b
CM
4725 * this is a helper for btrfs_insert_empty_items, the main goal here is
4726 * to save stack depth by doing the bulk of the work in a function
4727 * that doesn't call btrfs_search_slot
74123bd7 4728 */
afe5fea7 4729void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4730 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4731 u32 total_data, u32 total_size, int nr)
be0e5c09 4732{
0b246afa 4733 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4734 struct btrfs_item *item;
9c58309d 4735 int i;
7518a238 4736 u32 nritems;
be0e5c09 4737 unsigned int data_end;
e2fa7227 4738 struct btrfs_disk_key disk_key;
44871b1b
CM
4739 struct extent_buffer *leaf;
4740 int slot;
cfed81a0
CM
4741 struct btrfs_map_token token;
4742
24cdc847
FM
4743 if (path->slots[0] == 0) {
4744 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
0b246afa 4745 fixup_low_keys(fs_info, path, &disk_key, 1);
24cdc847
FM
4746 }
4747 btrfs_unlock_up_safe(path, 1);
4748
cfed81a0 4749 btrfs_init_map_token(&token);
e2fa7227 4750
5f39d397 4751 leaf = path->nodes[0];
44871b1b 4752 slot = path->slots[0];
74123bd7 4753
5f39d397 4754 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4755 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4756
2ff7e61e
JM
4757 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4758 btrfs_print_leaf(fs_info, leaf);
0b246afa 4759 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4760 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4761 BUG();
d4dbff95 4762 }
5f39d397 4763
be0e5c09 4764 if (slot != nritems) {
5f39d397 4765 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4766
5f39d397 4767 if (old_data < data_end) {
2ff7e61e 4768 btrfs_print_leaf(fs_info, leaf);
0b246afa 4769 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4770 slot, old_data, data_end);
5f39d397
CM
4771 BUG_ON(1);
4772 }
be0e5c09
CM
4773 /*
4774 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4775 */
4776 /* first correct the data pointers */
0783fcfc 4777 for (i = slot; i < nritems; i++) {
5f39d397 4778 u32 ioff;
db94535d 4779
62e85577 4780 item = btrfs_item_nr(i);
cfed81a0
CM
4781 ioff = btrfs_token_item_offset(leaf, item, &token);
4782 btrfs_set_token_item_offset(leaf, item,
4783 ioff - total_data, &token);
0783fcfc 4784 }
be0e5c09 4785 /* shift the items */
9c58309d 4786 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4787 btrfs_item_nr_offset(slot),
d6025579 4788 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4789
4790 /* shift the data */
5f39d397 4791 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4792 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4793 data_end, old_data - data_end);
be0e5c09
CM
4794 data_end = old_data;
4795 }
5f39d397 4796
62e2749e 4797 /* setup the item for the new data */
9c58309d
CM
4798 for (i = 0; i < nr; i++) {
4799 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4800 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4801 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4802 btrfs_set_token_item_offset(leaf, item,
4803 data_end - data_size[i], &token);
9c58309d 4804 data_end -= data_size[i];
cfed81a0 4805 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4806 }
44871b1b 4807
9c58309d 4808 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4809 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4810
2ff7e61e
JM
4811 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4812 btrfs_print_leaf(fs_info, leaf);
be0e5c09 4813 BUG();
5f39d397 4814 }
44871b1b
CM
4815}
4816
4817/*
4818 * Given a key and some data, insert items into the tree.
4819 * This does all the path init required, making room in the tree if needed.
4820 */
4821int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4822 struct btrfs_root *root,
4823 struct btrfs_path *path,
310712b2 4824 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4825 int nr)
4826{
44871b1b
CM
4827 int ret = 0;
4828 int slot;
4829 int i;
4830 u32 total_size = 0;
4831 u32 total_data = 0;
4832
4833 for (i = 0; i < nr; i++)
4834 total_data += data_size[i];
4835
4836 total_size = total_data + (nr * sizeof(struct btrfs_item));
4837 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4838 if (ret == 0)
4839 return -EEXIST;
4840 if (ret < 0)
143bede5 4841 return ret;
44871b1b 4842
44871b1b
CM
4843 slot = path->slots[0];
4844 BUG_ON(slot < 0);
4845
afe5fea7 4846 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4847 total_data, total_size, nr);
143bede5 4848 return 0;
62e2749e
CM
4849}
4850
4851/*
4852 * Given a key and some data, insert an item into the tree.
4853 * This does all the path init required, making room in the tree if needed.
4854 */
310712b2
OS
4855int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4856 const struct btrfs_key *cpu_key, void *data,
4857 u32 data_size)
62e2749e
CM
4858{
4859 int ret = 0;
2c90e5d6 4860 struct btrfs_path *path;
5f39d397
CM
4861 struct extent_buffer *leaf;
4862 unsigned long ptr;
62e2749e 4863
2c90e5d6 4864 path = btrfs_alloc_path();
db5b493a
TI
4865 if (!path)
4866 return -ENOMEM;
2c90e5d6 4867 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4868 if (!ret) {
5f39d397
CM
4869 leaf = path->nodes[0];
4870 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4871 write_extent_buffer(leaf, data, ptr, data_size);
4872 btrfs_mark_buffer_dirty(leaf);
62e2749e 4873 }
2c90e5d6 4874 btrfs_free_path(path);
aa5d6bed 4875 return ret;
be0e5c09
CM
4876}
4877
74123bd7 4878/*
5de08d7d 4879 * delete the pointer from a given node.
74123bd7 4880 *
d352ac68
CM
4881 * the tree should have been previously balanced so the deletion does not
4882 * empty a node.
74123bd7 4883 */
afe5fea7
TI
4884static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4885 int level, int slot)
be0e5c09 4886{
0b246afa 4887 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4888 struct extent_buffer *parent = path->nodes[level];
7518a238 4889 u32 nritems;
f3ea38da 4890 int ret;
be0e5c09 4891
5f39d397 4892 nritems = btrfs_header_nritems(parent);
d397712b 4893 if (slot != nritems - 1) {
0e411ece 4894 if (level)
0b246afa 4895 tree_mod_log_eb_move(fs_info, parent, slot,
f3ea38da 4896 slot + 1, nritems - slot - 1);
5f39d397
CM
4897 memmove_extent_buffer(parent,
4898 btrfs_node_key_ptr_offset(slot),
4899 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4900 sizeof(struct btrfs_key_ptr) *
4901 (nritems - slot - 1));
57ba86c0 4902 } else if (level) {
0b246afa 4903 ret = tree_mod_log_insert_key(fs_info, parent, slot,
c8cc6341 4904 MOD_LOG_KEY_REMOVE, GFP_NOFS);
57ba86c0 4905 BUG_ON(ret < 0);
bb803951 4906 }
f3ea38da 4907
7518a238 4908 nritems--;
5f39d397 4909 btrfs_set_header_nritems(parent, nritems);
7518a238 4910 if (nritems == 0 && parent == root->node) {
5f39d397 4911 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4912 /* just turn the root into a leaf and break */
5f39d397 4913 btrfs_set_header_level(root->node, 0);
bb803951 4914 } else if (slot == 0) {
5f39d397
CM
4915 struct btrfs_disk_key disk_key;
4916
4917 btrfs_node_key(parent, &disk_key, 0);
0b246afa 4918 fixup_low_keys(fs_info, path, &disk_key, level + 1);
be0e5c09 4919 }
d6025579 4920 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4921}
4922
323ac95b
CM
4923/*
4924 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4925 * path->nodes[1].
323ac95b
CM
4926 *
4927 * This deletes the pointer in path->nodes[1] and frees the leaf
4928 * block extent. zero is returned if it all worked out, < 0 otherwise.
4929 *
4930 * The path must have already been setup for deleting the leaf, including
4931 * all the proper balancing. path->nodes[1] must be locked.
4932 */
143bede5
JM
4933static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4934 struct btrfs_root *root,
4935 struct btrfs_path *path,
4936 struct extent_buffer *leaf)
323ac95b 4937{
5d4f98a2 4938 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4939 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4940
4d081c41
CM
4941 /*
4942 * btrfs_free_extent is expensive, we want to make sure we
4943 * aren't holding any locks when we call it
4944 */
4945 btrfs_unlock_up_safe(path, 0);
4946
f0486c68
YZ
4947 root_sub_used(root, leaf->len);
4948
3083ee2e 4949 extent_buffer_get(leaf);
5581a51a 4950 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4951 free_extent_buffer_stale(leaf);
323ac95b 4952}
74123bd7
CM
4953/*
4954 * delete the item at the leaf level in path. If that empties
4955 * the leaf, remove it from the tree
4956 */
85e21bac
CM
4957int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4958 struct btrfs_path *path, int slot, int nr)
be0e5c09 4959{
0b246afa 4960 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4961 struct extent_buffer *leaf;
4962 struct btrfs_item *item;
ce0eac2a
AM
4963 u32 last_off;
4964 u32 dsize = 0;
aa5d6bed
CM
4965 int ret = 0;
4966 int wret;
85e21bac 4967 int i;
7518a238 4968 u32 nritems;
cfed81a0
CM
4969 struct btrfs_map_token token;
4970
4971 btrfs_init_map_token(&token);
be0e5c09 4972
5f39d397 4973 leaf = path->nodes[0];
85e21bac
CM
4974 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4975
4976 for (i = 0; i < nr; i++)
4977 dsize += btrfs_item_size_nr(leaf, slot + i);
4978
5f39d397 4979 nritems = btrfs_header_nritems(leaf);
be0e5c09 4980
85e21bac 4981 if (slot + nr != nritems) {
2ff7e61e 4982 int data_end = leaf_data_end(fs_info, leaf);
5f39d397
CM
4983
4984 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4985 data_end + dsize,
4986 btrfs_leaf_data(leaf) + data_end,
85e21bac 4987 last_off - data_end);
5f39d397 4988
85e21bac 4989 for (i = slot + nr; i < nritems; i++) {
5f39d397 4990 u32 ioff;
db94535d 4991
dd3cc16b 4992 item = btrfs_item_nr(i);
cfed81a0
CM
4993 ioff = btrfs_token_item_offset(leaf, item, &token);
4994 btrfs_set_token_item_offset(leaf, item,
4995 ioff + dsize, &token);
0783fcfc 4996 }
db94535d 4997
5f39d397 4998 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4999 btrfs_item_nr_offset(slot + nr),
d6025579 5000 sizeof(struct btrfs_item) *
85e21bac 5001 (nritems - slot - nr));
be0e5c09 5002 }
85e21bac
CM
5003 btrfs_set_header_nritems(leaf, nritems - nr);
5004 nritems -= nr;
5f39d397 5005
74123bd7 5006 /* delete the leaf if we've emptied it */
7518a238 5007 if (nritems == 0) {
5f39d397
CM
5008 if (leaf == root->node) {
5009 btrfs_set_header_level(leaf, 0);
9a8dd150 5010 } else {
f0486c68 5011 btrfs_set_path_blocking(path);
0b246afa 5012 clean_tree_block(trans, fs_info, leaf);
143bede5 5013 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5014 }
be0e5c09 5015 } else {
7518a238 5016 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5017 if (slot == 0) {
5f39d397
CM
5018 struct btrfs_disk_key disk_key;
5019
5020 btrfs_item_key(leaf, &disk_key, 0);
0b246afa 5021 fixup_low_keys(fs_info, path, &disk_key, 1);
aa5d6bed 5022 }
aa5d6bed 5023
74123bd7 5024 /* delete the leaf if it is mostly empty */
0b246afa 5025 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
5026 /* push_leaf_left fixes the path.
5027 * make sure the path still points to our leaf
5028 * for possible call to del_ptr below
5029 */
4920c9ac 5030 slot = path->slots[1];
5f39d397
CM
5031 extent_buffer_get(leaf);
5032
b9473439 5033 btrfs_set_path_blocking(path);
99d8f83c
CM
5034 wret = push_leaf_left(trans, root, path, 1, 1,
5035 1, (u32)-1);
54aa1f4d 5036 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5037 ret = wret;
5f39d397
CM
5038
5039 if (path->nodes[0] == leaf &&
5040 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5041 wret = push_leaf_right(trans, root, path, 1,
5042 1, 1, 0);
54aa1f4d 5043 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5044 ret = wret;
5045 }
5f39d397
CM
5046
5047 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5048 path->slots[1] = slot;
143bede5 5049 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5050 free_extent_buffer(leaf);
143bede5 5051 ret = 0;
5de08d7d 5052 } else {
925baedd
CM
5053 /* if we're still in the path, make sure
5054 * we're dirty. Otherwise, one of the
5055 * push_leaf functions must have already
5056 * dirtied this buffer
5057 */
5058 if (path->nodes[0] == leaf)
5059 btrfs_mark_buffer_dirty(leaf);
5f39d397 5060 free_extent_buffer(leaf);
be0e5c09 5061 }
d5719762 5062 } else {
5f39d397 5063 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5064 }
5065 }
aa5d6bed 5066 return ret;
be0e5c09
CM
5067}
5068
7bb86316 5069/*
925baedd 5070 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5071 * returns 0 if it found something or 1 if there are no lesser leaves.
5072 * returns < 0 on io errors.
d352ac68
CM
5073 *
5074 * This may release the path, and so you may lose any locks held at the
5075 * time you call it.
7bb86316 5076 */
16e7549f 5077int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5078{
925baedd
CM
5079 struct btrfs_key key;
5080 struct btrfs_disk_key found_key;
5081 int ret;
7bb86316 5082
925baedd 5083 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5084
e8b0d724 5085 if (key.offset > 0) {
925baedd 5086 key.offset--;
e8b0d724 5087 } else if (key.type > 0) {
925baedd 5088 key.type--;
e8b0d724
FDBM
5089 key.offset = (u64)-1;
5090 } else if (key.objectid > 0) {
925baedd 5091 key.objectid--;
e8b0d724
FDBM
5092 key.type = (u8)-1;
5093 key.offset = (u64)-1;
5094 } else {
925baedd 5095 return 1;
e8b0d724 5096 }
7bb86316 5097
b3b4aa74 5098 btrfs_release_path(path);
925baedd
CM
5099 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5100 if (ret < 0)
5101 return ret;
5102 btrfs_item_key(path->nodes[0], &found_key, 0);
5103 ret = comp_keys(&found_key, &key);
337c6f68
FM
5104 /*
5105 * We might have had an item with the previous key in the tree right
5106 * before we released our path. And after we released our path, that
5107 * item might have been pushed to the first slot (0) of the leaf we
5108 * were holding due to a tree balance. Alternatively, an item with the
5109 * previous key can exist as the only element of a leaf (big fat item).
5110 * Therefore account for these 2 cases, so that our callers (like
5111 * btrfs_previous_item) don't miss an existing item with a key matching
5112 * the previous key we computed above.
5113 */
5114 if (ret <= 0)
925baedd
CM
5115 return 0;
5116 return 1;
7bb86316
CM
5117}
5118
3f157a2f
CM
5119/*
5120 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5121 * for nodes or leaves that are have a minimum transaction id.
5122 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5123 *
5124 * This does not cow, but it does stuff the starting key it finds back
5125 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5126 * key and get a writable path.
5127 *
5128 * This does lock as it descends, and path->keep_locks should be set
5129 * to 1 by the caller.
5130 *
5131 * This honors path->lowest_level to prevent descent past a given level
5132 * of the tree.
5133 *
d352ac68
CM
5134 * min_trans indicates the oldest transaction that you are interested
5135 * in walking through. Any nodes or leaves older than min_trans are
5136 * skipped over (without reading them).
5137 *
3f157a2f
CM
5138 * returns zero if something useful was found, < 0 on error and 1 if there
5139 * was nothing in the tree that matched the search criteria.
5140 */
5141int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5142 struct btrfs_path *path,
3f157a2f
CM
5143 u64 min_trans)
5144{
2ff7e61e 5145 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5146 struct extent_buffer *cur;
5147 struct btrfs_key found_key;
5148 int slot;
9652480b 5149 int sret;
3f157a2f
CM
5150 u32 nritems;
5151 int level;
5152 int ret = 1;
f98de9b9 5153 int keep_locks = path->keep_locks;
3f157a2f 5154
f98de9b9 5155 path->keep_locks = 1;
3f157a2f 5156again:
bd681513 5157 cur = btrfs_read_lock_root_node(root);
3f157a2f 5158 level = btrfs_header_level(cur);
e02119d5 5159 WARN_ON(path->nodes[level]);
3f157a2f 5160 path->nodes[level] = cur;
bd681513 5161 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5162
5163 if (btrfs_header_generation(cur) < min_trans) {
5164 ret = 1;
5165 goto out;
5166 }
d397712b 5167 while (1) {
3f157a2f
CM
5168 nritems = btrfs_header_nritems(cur);
5169 level = btrfs_header_level(cur);
9652480b 5170 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 5171
323ac95b
CM
5172 /* at the lowest level, we're done, setup the path and exit */
5173 if (level == path->lowest_level) {
e02119d5
CM
5174 if (slot >= nritems)
5175 goto find_next_key;
3f157a2f
CM
5176 ret = 0;
5177 path->slots[level] = slot;
5178 btrfs_item_key_to_cpu(cur, &found_key, slot);
5179 goto out;
5180 }
9652480b
Y
5181 if (sret && slot > 0)
5182 slot--;
3f157a2f 5183 /*
de78b51a
ES
5184 * check this node pointer against the min_trans parameters.
5185 * If it is too old, old, skip to the next one.
3f157a2f 5186 */
d397712b 5187 while (slot < nritems) {
3f157a2f 5188 u64 gen;
e02119d5 5189
3f157a2f
CM
5190 gen = btrfs_node_ptr_generation(cur, slot);
5191 if (gen < min_trans) {
5192 slot++;
5193 continue;
5194 }
de78b51a 5195 break;
3f157a2f 5196 }
e02119d5 5197find_next_key:
3f157a2f
CM
5198 /*
5199 * we didn't find a candidate key in this node, walk forward
5200 * and find another one
5201 */
5202 if (slot >= nritems) {
e02119d5 5203 path->slots[level] = slot;
b4ce94de 5204 btrfs_set_path_blocking(path);
e02119d5 5205 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5206 min_trans);
e02119d5 5207 if (sret == 0) {
b3b4aa74 5208 btrfs_release_path(path);
3f157a2f
CM
5209 goto again;
5210 } else {
5211 goto out;
5212 }
5213 }
5214 /* save our key for returning back */
5215 btrfs_node_key_to_cpu(cur, &found_key, slot);
5216 path->slots[level] = slot;
5217 if (level == path->lowest_level) {
5218 ret = 0;
3f157a2f
CM
5219 goto out;
5220 }
b4ce94de 5221 btrfs_set_path_blocking(path);
2ff7e61e 5222 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5223 if (IS_ERR(cur)) {
5224 ret = PTR_ERR(cur);
5225 goto out;
5226 }
3f157a2f 5227
bd681513 5228 btrfs_tree_read_lock(cur);
b4ce94de 5229
bd681513 5230 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5231 path->nodes[level - 1] = cur;
f7c79f30 5232 unlock_up(path, level, 1, 0, NULL);
bd681513 5233 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5234 }
5235out:
f98de9b9
FM
5236 path->keep_locks = keep_locks;
5237 if (ret == 0) {
5238 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5239 btrfs_set_path_blocking(path);
3f157a2f 5240 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5241 }
3f157a2f
CM
5242 return ret;
5243}
5244
2ff7e61e 5245static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a
AB
5246 struct btrfs_path *path,
5247 int *level, int root_level)
5248{
fb770ae4
LB
5249 struct extent_buffer *eb;
5250
74dd17fb 5251 BUG_ON(*level == 0);
2ff7e61e 5252 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5253 if (IS_ERR(eb))
5254 return PTR_ERR(eb);
5255
5256 path->nodes[*level - 1] = eb;
7069830a
AB
5257 path->slots[*level - 1] = 0;
5258 (*level)--;
fb770ae4 5259 return 0;
7069830a
AB
5260}
5261
2ff7e61e 5262static int tree_move_next_or_upnext(struct btrfs_fs_info *fs_info,
7069830a
AB
5263 struct btrfs_path *path,
5264 int *level, int root_level)
5265{
5266 int ret = 0;
5267 int nritems;
5268 nritems = btrfs_header_nritems(path->nodes[*level]);
5269
5270 path->slots[*level]++;
5271
74dd17fb 5272 while (path->slots[*level] >= nritems) {
7069830a
AB
5273 if (*level == root_level)
5274 return -1;
5275
5276 /* move upnext */
5277 path->slots[*level] = 0;
5278 free_extent_buffer(path->nodes[*level]);
5279 path->nodes[*level] = NULL;
5280 (*level)++;
5281 path->slots[*level]++;
5282
5283 nritems = btrfs_header_nritems(path->nodes[*level]);
5284 ret = 1;
5285 }
5286 return ret;
5287}
5288
5289/*
5290 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5291 * or down.
5292 */
2ff7e61e 5293static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5294 struct btrfs_path *path,
5295 int *level, int root_level,
5296 int allow_down,
5297 struct btrfs_key *key)
5298{
5299 int ret;
5300
5301 if (*level == 0 || !allow_down) {
2ff7e61e
JM
5302 ret = tree_move_next_or_upnext(fs_info, path, level,
5303 root_level);
7069830a 5304 } else {
2ff7e61e 5305 ret = tree_move_down(fs_info, path, level, root_level);
7069830a
AB
5306 }
5307 if (ret >= 0) {
5308 if (*level == 0)
5309 btrfs_item_key_to_cpu(path->nodes[*level], key,
5310 path->slots[*level]);
5311 else
5312 btrfs_node_key_to_cpu(path->nodes[*level], key,
5313 path->slots[*level]);
5314 }
5315 return ret;
5316}
5317
2ff7e61e 5318static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5319 struct btrfs_path *right_path,
5320 char *tmp_buf)
5321{
5322 int cmp;
5323 int len1, len2;
5324 unsigned long off1, off2;
5325
5326 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5327 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5328 if (len1 != len2)
5329 return 1;
5330
5331 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5332 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5333 right_path->slots[0]);
5334
5335 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5336
5337 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5338 if (cmp)
5339 return 1;
5340 return 0;
5341}
5342
5343#define ADVANCE 1
5344#define ADVANCE_ONLY_NEXT -1
5345
5346/*
5347 * This function compares two trees and calls the provided callback for
5348 * every changed/new/deleted item it finds.
5349 * If shared tree blocks are encountered, whole subtrees are skipped, making
5350 * the compare pretty fast on snapshotted subvolumes.
5351 *
5352 * This currently works on commit roots only. As commit roots are read only,
5353 * we don't do any locking. The commit roots are protected with transactions.
5354 * Transactions are ended and rejoined when a commit is tried in between.
5355 *
5356 * This function checks for modifications done to the trees while comparing.
5357 * If it detects a change, it aborts immediately.
5358 */
5359int btrfs_compare_trees(struct btrfs_root *left_root,
5360 struct btrfs_root *right_root,
5361 btrfs_changed_cb_t changed_cb, void *ctx)
5362{
0b246afa 5363 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5364 int ret;
5365 int cmp;
7069830a
AB
5366 struct btrfs_path *left_path = NULL;
5367 struct btrfs_path *right_path = NULL;
5368 struct btrfs_key left_key;
5369 struct btrfs_key right_key;
5370 char *tmp_buf = NULL;
5371 int left_root_level;
5372 int right_root_level;
5373 int left_level;
5374 int right_level;
5375 int left_end_reached;
5376 int right_end_reached;
5377 int advance_left;
5378 int advance_right;
5379 u64 left_blockptr;
5380 u64 right_blockptr;
6baa4293
FM
5381 u64 left_gen;
5382 u64 right_gen;
7069830a
AB
5383
5384 left_path = btrfs_alloc_path();
5385 if (!left_path) {
5386 ret = -ENOMEM;
5387 goto out;
5388 }
5389 right_path = btrfs_alloc_path();
5390 if (!right_path) {
5391 ret = -ENOMEM;
5392 goto out;
5393 }
5394
0b246afa 5395 tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
7069830a 5396 if (!tmp_buf) {
0b246afa 5397 tmp_buf = vmalloc(fs_info->nodesize);
8f282f71
DS
5398 if (!tmp_buf) {
5399 ret = -ENOMEM;
5400 goto out;
5401 }
7069830a
AB
5402 }
5403
5404 left_path->search_commit_root = 1;
5405 left_path->skip_locking = 1;
5406 right_path->search_commit_root = 1;
5407 right_path->skip_locking = 1;
5408
7069830a
AB
5409 /*
5410 * Strategy: Go to the first items of both trees. Then do
5411 *
5412 * If both trees are at level 0
5413 * Compare keys of current items
5414 * If left < right treat left item as new, advance left tree
5415 * and repeat
5416 * If left > right treat right item as deleted, advance right tree
5417 * and repeat
5418 * If left == right do deep compare of items, treat as changed if
5419 * needed, advance both trees and repeat
5420 * If both trees are at the same level but not at level 0
5421 * Compare keys of current nodes/leafs
5422 * If left < right advance left tree and repeat
5423 * If left > right advance right tree and repeat
5424 * If left == right compare blockptrs of the next nodes/leafs
5425 * If they match advance both trees but stay at the same level
5426 * and repeat
5427 * If they don't match advance both trees while allowing to go
5428 * deeper and repeat
5429 * If tree levels are different
5430 * Advance the tree that needs it and repeat
5431 *
5432 * Advancing a tree means:
5433 * If we are at level 0, try to go to the next slot. If that's not
5434 * possible, go one level up and repeat. Stop when we found a level
5435 * where we could go to the next slot. We may at this point be on a
5436 * node or a leaf.
5437 *
5438 * If we are not at level 0 and not on shared tree blocks, go one
5439 * level deeper.
5440 *
5441 * If we are not at level 0 and on shared tree blocks, go one slot to
5442 * the right if possible or go up and right.
5443 */
5444
0b246afa 5445 down_read(&fs_info->commit_root_sem);
7069830a
AB
5446 left_level = btrfs_header_level(left_root->commit_root);
5447 left_root_level = left_level;
5448 left_path->nodes[left_level] = left_root->commit_root;
5449 extent_buffer_get(left_path->nodes[left_level]);
5450
5451 right_level = btrfs_header_level(right_root->commit_root);
5452 right_root_level = right_level;
5453 right_path->nodes[right_level] = right_root->commit_root;
5454 extent_buffer_get(right_path->nodes[right_level]);
0b246afa 5455 up_read(&fs_info->commit_root_sem);
7069830a
AB
5456
5457 if (left_level == 0)
5458 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5459 &left_key, left_path->slots[left_level]);
5460 else
5461 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5462 &left_key, left_path->slots[left_level]);
5463 if (right_level == 0)
5464 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5465 &right_key, right_path->slots[right_level]);
5466 else
5467 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5468 &right_key, right_path->slots[right_level]);
5469
5470 left_end_reached = right_end_reached = 0;
5471 advance_left = advance_right = 0;
5472
5473 while (1) {
7069830a 5474 if (advance_left && !left_end_reached) {
2ff7e61e 5475 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5476 left_root_level,
5477 advance_left != ADVANCE_ONLY_NEXT,
5478 &left_key);
fb770ae4 5479 if (ret == -1)
7069830a 5480 left_end_reached = ADVANCE;
fb770ae4
LB
5481 else if (ret < 0)
5482 goto out;
7069830a
AB
5483 advance_left = 0;
5484 }
5485 if (advance_right && !right_end_reached) {
2ff7e61e 5486 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5487 right_root_level,
5488 advance_right != ADVANCE_ONLY_NEXT,
5489 &right_key);
fb770ae4 5490 if (ret == -1)
7069830a 5491 right_end_reached = ADVANCE;
fb770ae4
LB
5492 else if (ret < 0)
5493 goto out;
7069830a
AB
5494 advance_right = 0;
5495 }
5496
5497 if (left_end_reached && right_end_reached) {
5498 ret = 0;
5499 goto out;
5500 } else if (left_end_reached) {
5501 if (right_level == 0) {
5502 ret = changed_cb(left_root, right_root,
5503 left_path, right_path,
5504 &right_key,
5505 BTRFS_COMPARE_TREE_DELETED,
5506 ctx);
5507 if (ret < 0)
5508 goto out;
5509 }
5510 advance_right = ADVANCE;
5511 continue;
5512 } else if (right_end_reached) {
5513 if (left_level == 0) {
5514 ret = changed_cb(left_root, right_root,
5515 left_path, right_path,
5516 &left_key,
5517 BTRFS_COMPARE_TREE_NEW,
5518 ctx);
5519 if (ret < 0)
5520 goto out;
5521 }
5522 advance_left = ADVANCE;
5523 continue;
5524 }
5525
5526 if (left_level == 0 && right_level == 0) {
5527 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5528 if (cmp < 0) {
5529 ret = changed_cb(left_root, right_root,
5530 left_path, right_path,
5531 &left_key,
5532 BTRFS_COMPARE_TREE_NEW,
5533 ctx);
5534 if (ret < 0)
5535 goto out;
5536 advance_left = ADVANCE;
5537 } else if (cmp > 0) {
5538 ret = changed_cb(left_root, right_root,
5539 left_path, right_path,
5540 &right_key,
5541 BTRFS_COMPARE_TREE_DELETED,
5542 ctx);
5543 if (ret < 0)
5544 goto out;
5545 advance_right = ADVANCE;
5546 } else {
b99d9a6a 5547 enum btrfs_compare_tree_result result;
ba5e8f2e 5548
74dd17fb 5549 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5550 ret = tree_compare_item(left_path, right_path,
5551 tmp_buf);
ba5e8f2e 5552 if (ret)
b99d9a6a 5553 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5554 else
b99d9a6a 5555 result = BTRFS_COMPARE_TREE_SAME;
ba5e8f2e
JB
5556 ret = changed_cb(left_root, right_root,
5557 left_path, right_path,
b99d9a6a 5558 &left_key, result, ctx);
ba5e8f2e
JB
5559 if (ret < 0)
5560 goto out;
7069830a
AB
5561 advance_left = ADVANCE;
5562 advance_right = ADVANCE;
5563 }
5564 } else if (left_level == right_level) {
5565 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5566 if (cmp < 0) {
5567 advance_left = ADVANCE;
5568 } else if (cmp > 0) {
5569 advance_right = ADVANCE;
5570 } else {
5571 left_blockptr = btrfs_node_blockptr(
5572 left_path->nodes[left_level],
5573 left_path->slots[left_level]);
5574 right_blockptr = btrfs_node_blockptr(
5575 right_path->nodes[right_level],
5576 right_path->slots[right_level]);
6baa4293
FM
5577 left_gen = btrfs_node_ptr_generation(
5578 left_path->nodes[left_level],
5579 left_path->slots[left_level]);
5580 right_gen = btrfs_node_ptr_generation(
5581 right_path->nodes[right_level],
5582 right_path->slots[right_level]);
5583 if (left_blockptr == right_blockptr &&
5584 left_gen == right_gen) {
7069830a
AB
5585 /*
5586 * As we're on a shared block, don't
5587 * allow to go deeper.
5588 */
5589 advance_left = ADVANCE_ONLY_NEXT;
5590 advance_right = ADVANCE_ONLY_NEXT;
5591 } else {
5592 advance_left = ADVANCE;
5593 advance_right = ADVANCE;
5594 }
5595 }
5596 } else if (left_level < right_level) {
5597 advance_right = ADVANCE;
5598 } else {
5599 advance_left = ADVANCE;
5600 }
5601 }
5602
5603out:
5604 btrfs_free_path(left_path);
5605 btrfs_free_path(right_path);
8f282f71 5606 kvfree(tmp_buf);
7069830a
AB
5607 return ret;
5608}
5609
3f157a2f
CM
5610/*
5611 * this is similar to btrfs_next_leaf, but does not try to preserve
5612 * and fixup the path. It looks for and returns the next key in the
de78b51a 5613 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5614 *
5615 * 0 is returned if another key is found, < 0 if there are any errors
5616 * and 1 is returned if there are no higher keys in the tree
5617 *
5618 * path->keep_locks should be set to 1 on the search made before
5619 * calling this function.
5620 */
e7a84565 5621int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5622 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5623{
e7a84565
CM
5624 int slot;
5625 struct extent_buffer *c;
5626
934d375b 5627 WARN_ON(!path->keep_locks);
d397712b 5628 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5629 if (!path->nodes[level])
5630 return 1;
5631
5632 slot = path->slots[level] + 1;
5633 c = path->nodes[level];
3f157a2f 5634next:
e7a84565 5635 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5636 int ret;
5637 int orig_lowest;
5638 struct btrfs_key cur_key;
5639 if (level + 1 >= BTRFS_MAX_LEVEL ||
5640 !path->nodes[level + 1])
e7a84565 5641 return 1;
33c66f43
YZ
5642
5643 if (path->locks[level + 1]) {
5644 level++;
5645 continue;
5646 }
5647
5648 slot = btrfs_header_nritems(c) - 1;
5649 if (level == 0)
5650 btrfs_item_key_to_cpu(c, &cur_key, slot);
5651 else
5652 btrfs_node_key_to_cpu(c, &cur_key, slot);
5653
5654 orig_lowest = path->lowest_level;
b3b4aa74 5655 btrfs_release_path(path);
33c66f43
YZ
5656 path->lowest_level = level;
5657 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5658 0, 0);
5659 path->lowest_level = orig_lowest;
5660 if (ret < 0)
5661 return ret;
5662
5663 c = path->nodes[level];
5664 slot = path->slots[level];
5665 if (ret == 0)
5666 slot++;
5667 goto next;
e7a84565 5668 }
33c66f43 5669
e7a84565
CM
5670 if (level == 0)
5671 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5672 else {
3f157a2f
CM
5673 u64 gen = btrfs_node_ptr_generation(c, slot);
5674
3f157a2f
CM
5675 if (gen < min_trans) {
5676 slot++;
5677 goto next;
5678 }
e7a84565 5679 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5680 }
e7a84565
CM
5681 return 0;
5682 }
5683 return 1;
5684}
5685
97571fd0 5686/*
925baedd 5687 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5688 * returns 0 if it found something or 1 if there are no greater leaves.
5689 * returns < 0 on io errors.
97571fd0 5690 */
234b63a0 5691int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5692{
5693 return btrfs_next_old_leaf(root, path, 0);
5694}
5695
5696int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5697 u64 time_seq)
d97e63b6
CM
5698{
5699 int slot;
8e73f275 5700 int level;
5f39d397 5701 struct extent_buffer *c;
8e73f275 5702 struct extent_buffer *next;
925baedd
CM
5703 struct btrfs_key key;
5704 u32 nritems;
5705 int ret;
8e73f275 5706 int old_spinning = path->leave_spinning;
bd681513 5707 int next_rw_lock = 0;
925baedd
CM
5708
5709 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5710 if (nritems == 0)
925baedd 5711 return 1;
925baedd 5712
8e73f275
CM
5713 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5714again:
5715 level = 1;
5716 next = NULL;
bd681513 5717 next_rw_lock = 0;
b3b4aa74 5718 btrfs_release_path(path);
8e73f275 5719
a2135011 5720 path->keep_locks = 1;
31533fb2 5721 path->leave_spinning = 1;
8e73f275 5722
3d7806ec
JS
5723 if (time_seq)
5724 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5725 else
5726 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5727 path->keep_locks = 0;
5728
5729 if (ret < 0)
5730 return ret;
5731
a2135011 5732 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5733 /*
5734 * by releasing the path above we dropped all our locks. A balance
5735 * could have added more items next to the key that used to be
5736 * at the very end of the block. So, check again here and
5737 * advance the path if there are now more items available.
5738 */
a2135011 5739 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5740 if (ret == 0)
5741 path->slots[0]++;
8e73f275 5742 ret = 0;
925baedd
CM
5743 goto done;
5744 }
0b43e04f
LB
5745 /*
5746 * So the above check misses one case:
5747 * - after releasing the path above, someone has removed the item that
5748 * used to be at the very end of the block, and balance between leafs
5749 * gets another one with bigger key.offset to replace it.
5750 *
5751 * This one should be returned as well, or we can get leaf corruption
5752 * later(esp. in __btrfs_drop_extents()).
5753 *
5754 * And a bit more explanation about this check,
5755 * with ret > 0, the key isn't found, the path points to the slot
5756 * where it should be inserted, so the path->slots[0] item must be the
5757 * bigger one.
5758 */
5759 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5760 ret = 0;
5761 goto done;
5762 }
d97e63b6 5763
d397712b 5764 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5765 if (!path->nodes[level]) {
5766 ret = 1;
5767 goto done;
5768 }
5f39d397 5769
d97e63b6
CM
5770 slot = path->slots[level] + 1;
5771 c = path->nodes[level];
5f39d397 5772 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5773 level++;
8e73f275
CM
5774 if (level == BTRFS_MAX_LEVEL) {
5775 ret = 1;
5776 goto done;
5777 }
d97e63b6
CM
5778 continue;
5779 }
5f39d397 5780
925baedd 5781 if (next) {
bd681513 5782 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5783 free_extent_buffer(next);
925baedd 5784 }
5f39d397 5785
8e73f275 5786 next = c;
bd681513 5787 next_rw_lock = path->locks[level];
d07b8528 5788 ret = read_block_for_search(root, path, &next, level,
5d9e75c4 5789 slot, &key, 0);
8e73f275
CM
5790 if (ret == -EAGAIN)
5791 goto again;
5f39d397 5792
76a05b35 5793 if (ret < 0) {
b3b4aa74 5794 btrfs_release_path(path);
76a05b35
CM
5795 goto done;
5796 }
5797
5cd57b2c 5798 if (!path->skip_locking) {
bd681513 5799 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5800 if (!ret && time_seq) {
5801 /*
5802 * If we don't get the lock, we may be racing
5803 * with push_leaf_left, holding that lock while
5804 * itself waiting for the leaf we've currently
5805 * locked. To solve this situation, we give up
5806 * on our lock and cycle.
5807 */
cf538830 5808 free_extent_buffer(next);
d42244a0
JS
5809 btrfs_release_path(path);
5810 cond_resched();
5811 goto again;
5812 }
8e73f275
CM
5813 if (!ret) {
5814 btrfs_set_path_blocking(path);
bd681513 5815 btrfs_tree_read_lock(next);
31533fb2 5816 btrfs_clear_path_blocking(path, next,
bd681513 5817 BTRFS_READ_LOCK);
8e73f275 5818 }
31533fb2 5819 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5820 }
d97e63b6
CM
5821 break;
5822 }
5823 path->slots[level] = slot;
d397712b 5824 while (1) {
d97e63b6
CM
5825 level--;
5826 c = path->nodes[level];
925baedd 5827 if (path->locks[level])
bd681513 5828 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5829
5f39d397 5830 free_extent_buffer(c);
d97e63b6
CM
5831 path->nodes[level] = next;
5832 path->slots[level] = 0;
a74a4b97 5833 if (!path->skip_locking)
bd681513 5834 path->locks[level] = next_rw_lock;
d97e63b6
CM
5835 if (!level)
5836 break;
b4ce94de 5837
d07b8528 5838 ret = read_block_for_search(root, path, &next, level,
5d9e75c4 5839 0, &key, 0);
8e73f275
CM
5840 if (ret == -EAGAIN)
5841 goto again;
5842
76a05b35 5843 if (ret < 0) {
b3b4aa74 5844 btrfs_release_path(path);
76a05b35
CM
5845 goto done;
5846 }
5847
5cd57b2c 5848 if (!path->skip_locking) {
bd681513 5849 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5850 if (!ret) {
5851 btrfs_set_path_blocking(path);
bd681513 5852 btrfs_tree_read_lock(next);
31533fb2 5853 btrfs_clear_path_blocking(path, next,
bd681513
CM
5854 BTRFS_READ_LOCK);
5855 }
31533fb2 5856 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5857 }
d97e63b6 5858 }
8e73f275 5859 ret = 0;
925baedd 5860done:
f7c79f30 5861 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5862 path->leave_spinning = old_spinning;
5863 if (!old_spinning)
5864 btrfs_set_path_blocking(path);
5865
5866 return ret;
d97e63b6 5867}
0b86a832 5868
3f157a2f
CM
5869/*
5870 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5871 * searching until it gets past min_objectid or finds an item of 'type'
5872 *
5873 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5874 */
0b86a832
CM
5875int btrfs_previous_item(struct btrfs_root *root,
5876 struct btrfs_path *path, u64 min_objectid,
5877 int type)
5878{
5879 struct btrfs_key found_key;
5880 struct extent_buffer *leaf;
e02119d5 5881 u32 nritems;
0b86a832
CM
5882 int ret;
5883
d397712b 5884 while (1) {
0b86a832 5885 if (path->slots[0] == 0) {
b4ce94de 5886 btrfs_set_path_blocking(path);
0b86a832
CM
5887 ret = btrfs_prev_leaf(root, path);
5888 if (ret != 0)
5889 return ret;
5890 } else {
5891 path->slots[0]--;
5892 }
5893 leaf = path->nodes[0];
e02119d5
CM
5894 nritems = btrfs_header_nritems(leaf);
5895 if (nritems == 0)
5896 return 1;
5897 if (path->slots[0] == nritems)
5898 path->slots[0]--;
5899
0b86a832 5900 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5901 if (found_key.objectid < min_objectid)
5902 break;
0a4eefbb
YZ
5903 if (found_key.type == type)
5904 return 0;
e02119d5
CM
5905 if (found_key.objectid == min_objectid &&
5906 found_key.type < type)
5907 break;
0b86a832
CM
5908 }
5909 return 1;
5910}
ade2e0b3
WS
5911
5912/*
5913 * search in extent tree to find a previous Metadata/Data extent item with
5914 * min objecitd.
5915 *
5916 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5917 */
5918int btrfs_previous_extent_item(struct btrfs_root *root,
5919 struct btrfs_path *path, u64 min_objectid)
5920{
5921 struct btrfs_key found_key;
5922 struct extent_buffer *leaf;
5923 u32 nritems;
5924 int ret;
5925
5926 while (1) {
5927 if (path->slots[0] == 0) {
5928 btrfs_set_path_blocking(path);
5929 ret = btrfs_prev_leaf(root, path);
5930 if (ret != 0)
5931 return ret;
5932 } else {
5933 path->slots[0]--;
5934 }
5935 leaf = path->nodes[0];
5936 nritems = btrfs_header_nritems(leaf);
5937 if (nritems == 0)
5938 return 1;
5939 if (path->slots[0] == nritems)
5940 path->slots[0]--;
5941
5942 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5943 if (found_key.objectid < min_objectid)
5944 break;
5945 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5946 found_key.type == BTRFS_METADATA_ITEM_KEY)
5947 return 0;
5948 if (found_key.objectid == min_objectid &&
5949 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5950 break;
5951 }
5952 return 1;
5953}