]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/ctree.c
Btrfs: push_leaf_right
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / ctree.c
CommitLineData
be0e5c09
CM
1#include <stdio.h>
2#include <stdlib.h>
3#include "kerncompat.h"
eb60ceac
CM
4#include "radix-tree.h"
5#include "ctree.h"
6#include "disk-io.h"
5de08d7d 7#include "print-tree.h"
9a8dd150 8
5c680ed6
CM
9int split_node(struct ctree_root *root, struct ctree_path *path, int level);
10int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size);
5de08d7d
CM
11int push_node_left(struct ctree_root *root, struct ctree_path *path, int level);
12int push_node_right(struct ctree_root *root,
13 struct ctree_path *path, int level);
14int del_ptr(struct ctree_root *root, struct ctree_path *path, int level);
d97e63b6 15
5de08d7d 16inline void init_path(struct ctree_path *p)
be0e5c09
CM
17{
18 memset(p, 0, sizeof(*p));
19}
20
5de08d7d 21void release_path(struct ctree_root *root, struct ctree_path *p)
eb60ceac
CM
22{
23 int i;
24 for (i = 0; i < MAX_LEVEL; i++) {
25 if (!p->nodes[i])
26 break;
27 tree_block_release(root, p->nodes[i]);
28 }
29}
30
74123bd7
CM
31/*
32 * The leaf data grows from end-to-front in the node.
33 * this returns the address of the start of the last item,
34 * which is the stop of the leaf data stack
35 */
be0e5c09
CM
36static inline unsigned int leaf_data_end(struct leaf *leaf)
37{
38 unsigned int nr = leaf->header.nritems;
39 if (nr == 0)
d97e63b6 40 return sizeof(leaf->data);
be0e5c09
CM
41 return leaf->items[nr-1].offset;
42}
43
74123bd7
CM
44/*
45 * The space between the end of the leaf items and
46 * the start of the leaf data. IOW, how much room
47 * the leaf has left for both items and data
48 */
5de08d7d 49int leaf_free_space(struct leaf *leaf)
be0e5c09
CM
50{
51 int data_end = leaf_data_end(leaf);
52 int nritems = leaf->header.nritems;
53 char *items_end = (char *)(leaf->items + nritems + 1);
54 return (char *)(leaf->data + data_end) - (char *)items_end;
55}
56
74123bd7
CM
57/*
58 * compare two keys in a memcmp fashion
59 */
be0e5c09
CM
60int comp_keys(struct key *k1, struct key *k2)
61{
62 if (k1->objectid > k2->objectid)
63 return 1;
64 if (k1->objectid < k2->objectid)
65 return -1;
66 if (k1->flags > k2->flags)
67 return 1;
68 if (k1->flags < k2->flags)
69 return -1;
70 if (k1->offset > k2->offset)
71 return 1;
72 if (k1->offset < k2->offset)
73 return -1;
74 return 0;
75}
74123bd7
CM
76
77/*
78 * search for key in the array p. items p are item_size apart
79 * and there are 'max' items in p
80 * the slot in the array is returned via slot, and it points to
81 * the place where you would insert key if it is not found in
82 * the array.
83 *
84 * slot may point to max if the key is bigger than all of the keys
85 */
be0e5c09
CM
86int generic_bin_search(char *p, int item_size, struct key *key,
87 int max, int *slot)
88{
89 int low = 0;
90 int high = max;
91 int mid;
92 int ret;
93 struct key *tmp;
94
95 while(low < high) {
96 mid = (low + high) / 2;
97 tmp = (struct key *)(p + mid * item_size);
98 ret = comp_keys(tmp, key);
99
100 if (ret < 0)
101 low = mid + 1;
102 else if (ret > 0)
103 high = mid;
104 else {
105 *slot = mid;
106 return 0;
107 }
108 }
109 *slot = low;
110 return 1;
111}
112
113int bin_search(struct node *c, struct key *key, int *slot)
114{
115 if (is_leaf(c->header.flags)) {
116 struct leaf *l = (struct leaf *)c;
117 return generic_bin_search((void *)l->items, sizeof(struct item),
118 key, c->header.nritems, slot);
119 } else {
120 return generic_bin_search((void *)c->keys, sizeof(struct key),
121 key, c->header.nritems, slot);
122 }
123 return -1;
124}
125
74123bd7
CM
126/*
127 * look for key in the tree. path is filled in with nodes along the way
128 * if key is found, we return zero and you can find the item in the leaf
129 * level of the path (level 0)
130 *
131 * If the key isn't found, the path points to the slot where it should
132 * be inserted.
133 */
5de08d7d
CM
134int search_slot(struct ctree_root *root, struct key *key,
135 struct ctree_path *p, int ins_len)
be0e5c09 136{
eb60ceac
CM
137 struct tree_buffer *b = root->node;
138 struct node *c;
be0e5c09
CM
139 int slot;
140 int ret;
141 int level;
5c680ed6 142
eb60ceac
CM
143 b->count++;
144 while (b) {
145 c = &b->node;
be0e5c09 146 level = node_level(c->header.flags);
eb60ceac 147 p->nodes[level] = b;
be0e5c09
CM
148 ret = bin_search(c, key, &slot);
149 if (!is_leaf(c->header.flags)) {
150 if (ret && slot > 0)
151 slot -= 1;
152 p->slots[level] = slot;
5de08d7d
CM
153 if (ins_len > 0 &&
154 c->header.nritems == NODEPTRS_PER_BLOCK) {
5c680ed6
CM
155 int sret = split_node(root, p, level);
156 BUG_ON(sret > 0);
157 if (sret)
158 return sret;
159 b = p->nodes[level];
160 c = &b->node;
161 slot = p->slots[level];
5de08d7d
CM
162 } else if (ins_len < 0 &&
163 c->header.nritems <= NODEPTRS_PER_BLOCK/4) {
164 u64 blocknr = b->blocknr;
165 slot = p->slots[level +1];
166 b->count++;
167 if (push_node_left(root, p, level))
168 push_node_right(root, p, level);
169 if (c->header.nritems == 0 &&
170 level < MAX_LEVEL - 1 &&
171 p->nodes[level + 1]) {
172 int tslot = p->slots[level + 1];
173
174 p->slots[level + 1] = slot;
175 del_ptr(root, p, level + 1);
176 p->slots[level + 1] = tslot;
177 tree_block_release(root, b);
178 free_extent(root, blocknr, 1);
179 } else {
180 tree_block_release(root, b);
181 }
182 b = p->nodes[level];
183 c = &b->node;
184 slot = p->slots[level];
5c680ed6 185 }
eb60ceac 186 b = read_tree_block(root, c->blockptrs[slot]);
be0e5c09
CM
187 continue;
188 } else {
5c680ed6 189 struct leaf *l = (struct leaf *)c;
be0e5c09 190 p->slots[level] = slot;
5de08d7d
CM
191 if (ins_len > 0 && leaf_free_space(l) <
192 sizeof(struct item) + ins_len) {
5c680ed6
CM
193 int sret = split_leaf(root, p, ins_len);
194 BUG_ON(sret > 0);
195 if (sret)
196 return sret;
197 }
be0e5c09
CM
198 return ret;
199 }
200 }
201 return -1;
202}
203
74123bd7
CM
204/*
205 * adjust the pointers going up the tree, starting at level
206 * making sure the right key of each node is points to 'key'.
207 * This is used after shifting pointers to the left, so it stops
208 * fixing up pointers when a given leaf/node is not in slot 0 of the
209 * higher levels
210 */
eb60ceac
CM
211static void fixup_low_keys(struct ctree_root *root,
212 struct ctree_path *path, struct key *key,
213 int level)
be0e5c09
CM
214{
215 int i;
be0e5c09 216 for (i = level; i < MAX_LEVEL; i++) {
eb60ceac 217 struct node *t;
be0e5c09 218 int tslot = path->slots[i];
eb60ceac 219 if (!path->nodes[i])
be0e5c09 220 break;
eb60ceac 221 t = &path->nodes[i]->node;
be0e5c09 222 memcpy(t->keys + tslot, key, sizeof(*key));
eb60ceac 223 write_tree_block(root, path->nodes[i]);
be0e5c09
CM
224 if (tslot != 0)
225 break;
226 }
227}
228
74123bd7
CM
229/*
230 * try to push data from one node into the next node left in the
231 * tree. The src node is found at specified level in the path.
232 * If some bytes were pushed, return 0, otherwise return 1.
233 *
234 * Lower nodes/leaves in the path are not touched, higher nodes may
235 * be modified to reflect the push.
236 *
237 * The path is altered to reflect the push.
238 */
be0e5c09
CM
239int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
240{
241 int slot;
242 struct node *left;
243 struct node *right;
244 int push_items = 0;
245 int left_nritems;
246 int right_nritems;
eb60ceac
CM
247 struct tree_buffer *t;
248 struct tree_buffer *right_buf;
be0e5c09
CM
249
250 if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
251 return 1;
252 slot = path->slots[level + 1];
253 if (slot == 0)
254 return 1;
255
eb60ceac
CM
256 t = read_tree_block(root,
257 path->nodes[level + 1]->node.blockptrs[slot - 1]);
258 left = &t->node;
259 right_buf = path->nodes[level];
260 right = &right_buf->node;
be0e5c09
CM
261 left_nritems = left->header.nritems;
262 right_nritems = right->header.nritems;
263 push_items = NODEPTRS_PER_BLOCK - (left_nritems + 1);
eb60ceac
CM
264 if (push_items <= 0) {
265 tree_block_release(root, t);
be0e5c09 266 return 1;
eb60ceac 267 }
be0e5c09
CM
268
269 if (right_nritems < push_items)
270 push_items = right_nritems;
271 memcpy(left->keys + left_nritems, right->keys,
272 push_items * sizeof(struct key));
273 memcpy(left->blockptrs + left_nritems, right->blockptrs,
274 push_items * sizeof(u64));
275 memmove(right->keys, right->keys + push_items,
276 (right_nritems - push_items) * sizeof(struct key));
277 memmove(right->blockptrs, right->blockptrs + push_items,
278 (right_nritems - push_items) * sizeof(u64));
279 right->header.nritems -= push_items;
280 left->header.nritems += push_items;
281
282 /* adjust the pointers going up the tree */
eb60ceac
CM
283 fixup_low_keys(root, path, right->keys, level + 1);
284
285 write_tree_block(root, t);
286 write_tree_block(root, right_buf);
be0e5c09
CM
287
288 /* then fixup the leaf pointer in the path */
289 if (path->slots[level] < push_items) {
290 path->slots[level] += left_nritems;
eb60ceac
CM
291 tree_block_release(root, path->nodes[level]);
292 path->nodes[level] = t;
be0e5c09
CM
293 path->slots[level + 1] -= 1;
294 } else {
295 path->slots[level] -= push_items;
eb60ceac 296 tree_block_release(root, t);
be0e5c09
CM
297 }
298 return 0;
299}
300
74123bd7
CM
301/*
302 * try to push data from one node into the next node right in the
303 * tree. The src node is found at specified level in the path.
304 * If some bytes were pushed, return 0, otherwise return 1.
305 *
306 * Lower nodes/leaves in the path are not touched, higher nodes may
307 * be modified to reflect the push.
308 *
309 * The path is altered to reflect the push.
310 */
be0e5c09
CM
311int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
312{
313 int slot;
eb60ceac
CM
314 struct tree_buffer *t;
315 struct tree_buffer *src_buffer;
be0e5c09
CM
316 struct node *dst;
317 struct node *src;
318 int push_items = 0;
319 int dst_nritems;
320 int src_nritems;
321
74123bd7 322 /* can't push from the root */
be0e5c09
CM
323 if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
324 return 1;
74123bd7
CM
325
326 /* only try to push inside the node higher up */
be0e5c09
CM
327 slot = path->slots[level + 1];
328 if (slot == NODEPTRS_PER_BLOCK - 1)
329 return 1;
330
eb60ceac 331 if (slot >= path->nodes[level + 1]->node.header.nritems -1)
be0e5c09
CM
332 return 1;
333
eb60ceac
CM
334 t = read_tree_block(root,
335 path->nodes[level + 1]->node.blockptrs[slot + 1]);
336 dst = &t->node;
337 src_buffer = path->nodes[level];
338 src = &src_buffer->node;
be0e5c09
CM
339 dst_nritems = dst->header.nritems;
340 src_nritems = src->header.nritems;
341 push_items = NODEPTRS_PER_BLOCK - (dst_nritems + 1);
eb60ceac
CM
342 if (push_items <= 0) {
343 tree_block_release(root, t);
be0e5c09 344 return 1;
eb60ceac 345 }
be0e5c09
CM
346
347 if (src_nritems < push_items)
348 push_items = src_nritems;
349 memmove(dst->keys + push_items, dst->keys,
350 dst_nritems * sizeof(struct key));
351 memcpy(dst->keys, src->keys + src_nritems - push_items,
352 push_items * sizeof(struct key));
353
354 memmove(dst->blockptrs + push_items, dst->blockptrs,
355 dst_nritems * sizeof(u64));
356 memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
357 push_items * sizeof(u64));
358
359 src->header.nritems -= push_items;
360 dst->header.nritems += push_items;
361
362 /* adjust the pointers going up the tree */
eb60ceac 363 memcpy(path->nodes[level + 1]->node.keys + path->slots[level + 1] + 1,
be0e5c09 364 dst->keys, sizeof(struct key));
eb60ceac
CM
365
366 write_tree_block(root, path->nodes[level + 1]);
367 write_tree_block(root, t);
368 write_tree_block(root, src_buffer);
369
74123bd7 370 /* then fixup the pointers in the path */
be0e5c09
CM
371 if (path->slots[level] >= src->header.nritems) {
372 path->slots[level] -= src->header.nritems;
eb60ceac
CM
373 tree_block_release(root, path->nodes[level]);
374 path->nodes[level] = t;
be0e5c09 375 path->slots[level + 1] += 1;
eb60ceac
CM
376 } else {
377 tree_block_release(root, t);
be0e5c09
CM
378 }
379 return 0;
380}
381
5de08d7d
CM
382static int insert_new_root(struct ctree_root *root,
383 struct ctree_path *path, int level)
5c680ed6
CM
384{
385 struct tree_buffer *t;
386 struct node *lower;
387 struct node *c;
388 struct key *lower_key;
389
390 BUG_ON(path->nodes[level]);
391 BUG_ON(path->nodes[level-1] != root->node);
392
393 t = alloc_free_block(root);
394 c = &t->node;
395 memset(c, 0, sizeof(c));
396 c->header.nritems = 1;
397 c->header.flags = node_level(level);
398 c->header.blocknr = t->blocknr;
399 c->header.parentid = root->node->node.header.parentid;
400 lower = &path->nodes[level-1]->node;
401 if (is_leaf(lower->header.flags))
402 lower_key = &((struct leaf *)lower)->items[0].key;
403 else
404 lower_key = lower->keys;
405 memcpy(c->keys, lower_key, sizeof(struct key));
406 c->blockptrs[0] = path->nodes[level-1]->blocknr;
407 /* the super has an extra ref to root->node */
408 tree_block_release(root, root->node);
409 root->node = t;
410 t->count++;
411 write_tree_block(root, t);
412 path->nodes[level] = t;
413 path->slots[level] = 0;
414 return 0;
415}
416
74123bd7
CM
417/*
418 * worker function to insert a single pointer in a node.
419 * the node should have enough room for the pointer already
420 * slot and level indicate where you want the key to go, and
421 * blocknr is the block the key points to.
422 */
5c680ed6 423int insert_ptr(struct ctree_root *root,
74123bd7
CM
424 struct ctree_path *path, struct key *key,
425 u64 blocknr, int slot, int level)
426{
74123bd7 427 struct node *lower;
74123bd7 428 int nritems;
5c680ed6
CM
429
430 BUG_ON(!path->nodes[level]);
74123bd7
CM
431 lower = &path->nodes[level]->node;
432 nritems = lower->header.nritems;
433 if (slot > nritems)
434 BUG();
435 if (nritems == NODEPTRS_PER_BLOCK)
436 BUG();
437 if (slot != nritems) {
438 memmove(lower->keys + slot + 1, lower->keys + slot,
439 (nritems - slot) * sizeof(struct key));
440 memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
441 (nritems - slot) * sizeof(u64));
442 }
443 memcpy(lower->keys + slot, key, sizeof(struct key));
444 lower->blockptrs[slot] = blocknr;
445 lower->header.nritems++;
446 if (lower->keys[1].objectid == 0)
447 BUG();
448 write_tree_block(root, path->nodes[level]);
449 return 0;
450}
451
5c680ed6 452int split_node(struct ctree_root *root, struct ctree_path *path, int level)
be0e5c09 453{
5c680ed6
CM
454 struct tree_buffer *t;
455 struct node *c;
456 struct tree_buffer *split_buffer;
457 struct node *split;
be0e5c09 458 int mid;
5c680ed6 459 int ret;
eb60ceac 460
5c680ed6
CM
461 ret = push_node_left(root, path, level);
462 if (!ret)
463 return 0;
464 ret = push_node_right(root, path, level);
465 if (!ret)
466 return 0;
467 t = path->nodes[level];
468 c = &t->node;
469 if (t == root->node) {
470 /* trying to split the root, lets make a new one */
471 ret = insert_new_root(root, path, level + 1);
472 if (ret)
473 return ret;
be0e5c09 474 }
5c680ed6
CM
475 split_buffer = alloc_free_block(root);
476 split = &split_buffer->node;
477 split->header.flags = c->header.flags;
478 split->header.blocknr = split_buffer->blocknr;
479 split->header.parentid = root->node->node.header.parentid;
480 mid = (c->header.nritems + 1) / 2;
481 memcpy(split->keys, c->keys + mid,
482 (c->header.nritems - mid) * sizeof(struct key));
483 memcpy(split->blockptrs, c->blockptrs + mid,
484 (c->header.nritems - mid) * sizeof(u64));
485 split->header.nritems = c->header.nritems - mid;
486 c->header.nritems = mid;
487 write_tree_block(root, t);
488 write_tree_block(root, split_buffer);
489 insert_ptr(root, path, split->keys, split_buffer->blocknr,
490 path->slots[level + 1] + 1, level + 1);
5de08d7d 491 if (path->slots[level] >= mid) {
5c680ed6
CM
492 path->slots[level] -= mid;
493 tree_block_release(root, t);
494 path->nodes[level] = split_buffer;
495 path->slots[level + 1] += 1;
496 } else {
497 tree_block_release(root, split_buffer);
be0e5c09 498 }
5c680ed6 499 return 0;
be0e5c09
CM
500}
501
74123bd7
CM
502/*
503 * how many bytes are required to store the items in a leaf. start
504 * and nr indicate which items in the leaf to check. This totals up the
505 * space used both by the item structs and the item data
506 */
be0e5c09
CM
507int leaf_space_used(struct leaf *l, int start, int nr)
508{
509 int data_len;
510 int end = start + nr - 1;
511
512 if (!nr)
513 return 0;
514 data_len = l->items[start].offset + l->items[start].size;
515 data_len = data_len - l->items[end].offset;
516 data_len += sizeof(struct item) * nr;
517 return data_len;
518}
519
00ec4c51
CM
520/*
521 * push some data in the path leaf to the right, trying to free up at
522 * least data_size bytes. returns zero if the push worked, nonzero otherwise
523 */
524int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
525 int data_size)
526{
527 struct tree_buffer *left_buf = path->nodes[0];
528 struct leaf *left = &left_buf->leaf;
529 struct leaf *right;
530 struct tree_buffer *right_buf;
531 struct tree_buffer *upper;
532 int slot;
533 int i;
534 int free_space;
535 int push_space = 0;
536 int push_items = 0;
537 struct item *item;
538
539 slot = path->slots[1];
540 if (!path->nodes[1]) {
541 return 1;
542 }
543 upper = path->nodes[1];
544 if (slot >= upper->node.header.nritems - 1) {
545 return 1;
546 }
547 right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
548 right = &right_buf->leaf;
549 free_space = leaf_free_space(right);
550 if (free_space < data_size + sizeof(struct item)) {
551 tree_block_release(root, right_buf);
552 return 1;
553 }
554 for (i = left->header.nritems - 1; i >= 0; i--) {
555 item = left->items + i;
556 if (path->slots[0] == i)
557 push_space += data_size + sizeof(*item);
558 if (item->size + sizeof(*item) + push_space > free_space)
559 break;
560 push_items++;
561 push_space += item->size + sizeof(*item);
562 }
563 if (push_items == 0) {
564 tree_block_release(root, right_buf);
565 return 1;
566 }
567 /* push left to right */
568 push_space = left->items[left->header.nritems - push_items].offset +
569 left->items[left->header.nritems - push_items].size;
570 push_space -= leaf_data_end(left);
571 /* make room in the right data area */
572 memmove(right->data + leaf_data_end(right) - push_space,
573 right->data + leaf_data_end(right),
574 LEAF_DATA_SIZE - leaf_data_end(right));
575 /* copy from the left data area */
576 memcpy(right->data + LEAF_DATA_SIZE - push_space,
577 left->data + leaf_data_end(left),
578 push_space);
579 memmove(right->items + push_items, right->items,
580 right->header.nritems * sizeof(struct item));
581 /* copy the items from left to right */
582 memcpy(right->items, left->items + left->header.nritems - push_items,
583 push_items * sizeof(struct item));
584
585 /* update the item pointers */
586 right->header.nritems += push_items;
587 push_space = LEAF_DATA_SIZE;
588 for (i = 0; i < right->header.nritems; i++) {
589 right->items[i].offset = push_space - right->items[i].size;
590 push_space = right->items[i].offset;
591 }
592 left->header.nritems -= push_items;
593
594 write_tree_block(root, left_buf);
595 write_tree_block(root, right_buf);
596 memcpy(upper->node.keys + slot + 1,
597 &right->items[0].key, sizeof(struct key));
598 write_tree_block(root, upper);
599 /* then fixup the leaf pointer in the path */
600 // FIXME use nritems in here somehow
601 if (path->slots[0] >= left->header.nritems) {
602 path->slots[0] -= left->header.nritems;
603 tree_block_release(root, path->nodes[0]);
604 path->nodes[0] = right_buf;
605 path->slots[1] += 1;
606 } else {
607 tree_block_release(root, right_buf);
608 }
609 return 0;
610}
74123bd7
CM
611/*
612 * push some data in the path leaf to the left, trying to free up at
613 * least data_size bytes. returns zero if the push worked, nonzero otherwise
614 */
be0e5c09
CM
615int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
616 int data_size)
617{
eb60ceac
CM
618 struct tree_buffer *right_buf = path->nodes[0];
619 struct leaf *right = &right_buf->leaf;
620 struct tree_buffer *t;
be0e5c09
CM
621 struct leaf *left;
622 int slot;
623 int i;
624 int free_space;
625 int push_space = 0;
626 int push_items = 0;
627 struct item *item;
628 int old_left_nritems;
629
630 slot = path->slots[1];
631 if (slot == 0) {
632 return 1;
633 }
634 if (!path->nodes[1]) {
635 return 1;
636 }
eb60ceac
CM
637 t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
638 left = &t->leaf;
be0e5c09
CM
639 free_space = leaf_free_space(left);
640 if (free_space < data_size + sizeof(struct item)) {
eb60ceac 641 tree_block_release(root, t);
be0e5c09
CM
642 return 1;
643 }
644 for (i = 0; i < right->header.nritems; i++) {
645 item = right->items + i;
646 if (path->slots[0] == i)
647 push_space += data_size + sizeof(*item);
648 if (item->size + sizeof(*item) + push_space > free_space)
649 break;
650 push_items++;
651 push_space += item->size + sizeof(*item);
652 }
653 if (push_items == 0) {
eb60ceac 654 tree_block_release(root, t);
be0e5c09
CM
655 return 1;
656 }
657 /* push data from right to left */
658 memcpy(left->items + left->header.nritems,
659 right->items, push_items * sizeof(struct item));
660 push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
661 memcpy(left->data + leaf_data_end(left) - push_space,
662 right->data + right->items[push_items - 1].offset,
663 push_space);
664 old_left_nritems = left->header.nritems;
eb60ceac
CM
665 BUG_ON(old_left_nritems < 0);
666
be0e5c09
CM
667 for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
668 left->items[i].offset -= LEAF_DATA_SIZE -
669 left->items[old_left_nritems -1].offset;
670 }
671 left->header.nritems += push_items;
672
673 /* fixup right node */
674 push_space = right->items[push_items-1].offset - leaf_data_end(right);
675 memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
676 leaf_data_end(right), push_space);
677 memmove(right->items, right->items + push_items,
678 (right->header.nritems - push_items) * sizeof(struct item));
679 right->header.nritems -= push_items;
680 push_space = LEAF_DATA_SIZE;
eb60ceac 681
be0e5c09
CM
682 for (i = 0; i < right->header.nritems; i++) {
683 right->items[i].offset = push_space - right->items[i].size;
684 push_space = right->items[i].offset;
685 }
eb60ceac
CM
686
687 write_tree_block(root, t);
688 write_tree_block(root, right_buf);
689
690 fixup_low_keys(root, path, &right->items[0].key, 1);
be0e5c09
CM
691
692 /* then fixup the leaf pointer in the path */
693 if (path->slots[0] < push_items) {
694 path->slots[0] += old_left_nritems;
eb60ceac
CM
695 tree_block_release(root, path->nodes[0]);
696 path->nodes[0] = t;
be0e5c09
CM
697 path->slots[1] -= 1;
698 } else {
eb60ceac 699 tree_block_release(root, t);
be0e5c09
CM
700 path->slots[0] -= push_items;
701 }
eb60ceac 702 BUG_ON(path->slots[0] < 0);
be0e5c09
CM
703 return 0;
704}
705
74123bd7
CM
706/*
707 * split the path's leaf in two, making sure there is at least data_size
708 * available for the resulting leaf level of the path.
709 */
be0e5c09
CM
710int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
711{
eb60ceac
CM
712 struct tree_buffer *l_buf = path->nodes[0];
713 struct leaf *l = &l_buf->leaf;
714 int nritems;
715 int mid;
716 int slot;
be0e5c09 717 struct leaf *right;
eb60ceac 718 struct tree_buffer *right_buffer;
be0e5c09
CM
719 int space_needed = data_size + sizeof(struct item);
720 int data_copy_size;
721 int rt_data_off;
722 int i;
723 int ret;
724
00ec4c51
CM
725 if (push_leaf_left(root, path, data_size) == 0 ||
726 push_leaf_right(root, path, data_size) == 0) {
eb60ceac
CM
727 l_buf = path->nodes[0];
728 l = &l_buf->leaf;
729 if (leaf_free_space(l) >= sizeof(struct item) + data_size)
730 return 0;
be0e5c09 731 }
5c680ed6
CM
732 if (!path->nodes[1]) {
733 ret = insert_new_root(root, path, 1);
734 if (ret)
735 return ret;
736 }
eb60ceac
CM
737 slot = path->slots[0];
738 nritems = l->header.nritems;
739 mid = (nritems + 1)/ 2;
740
741 right_buffer = alloc_free_block(root);
742 BUG_ON(!right_buffer);
743 BUG_ON(mid == nritems);
744 right = &right_buffer->leaf;
be0e5c09
CM
745 memset(right, 0, sizeof(*right));
746 if (mid <= slot) {
747 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
748 LEAF_DATA_SIZE)
749 BUG();
750 } else {
751 if (leaf_space_used(l, 0, mid + 1) + space_needed >
752 LEAF_DATA_SIZE)
753 BUG();
754 }
755 right->header.nritems = nritems - mid;
eb60ceac
CM
756 right->header.blocknr = right_buffer->blocknr;
757 right->header.flags = node_level(0);
cfaa7295 758 right->header.parentid = root->node->node.header.parentid;
be0e5c09
CM
759 data_copy_size = l->items[mid].offset + l->items[mid].size -
760 leaf_data_end(l);
761 memcpy(right->items, l->items + mid,
762 (nritems - mid) * sizeof(struct item));
763 memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
764 l->data + leaf_data_end(l), data_copy_size);
765 rt_data_off = LEAF_DATA_SIZE -
766 (l->items[mid].offset + l->items[mid].size);
74123bd7
CM
767
768 for (i = 0; i < right->header.nritems; i++)
be0e5c09 769 right->items[i].offset += rt_data_off;
74123bd7 770
be0e5c09
CM
771 l->header.nritems = mid;
772 ret = insert_ptr(root, path, &right->items[0].key,
5c680ed6 773 right_buffer->blocknr, path->slots[1] + 1, 1);
eb60ceac
CM
774 write_tree_block(root, right_buffer);
775 write_tree_block(root, l_buf);
776
777 BUG_ON(path->slots[0] != slot);
be0e5c09 778 if (mid <= slot) {
eb60ceac
CM
779 tree_block_release(root, path->nodes[0]);
780 path->nodes[0] = right_buffer;
be0e5c09
CM
781 path->slots[0] -= mid;
782 path->slots[1] += 1;
eb60ceac
CM
783 } else
784 tree_block_release(root, right_buffer);
785 BUG_ON(path->slots[0] < 0);
be0e5c09
CM
786 return ret;
787}
788
74123bd7
CM
789/*
790 * Given a key and some data, insert an item into the tree.
791 * This does all the path init required, making room in the tree if needed.
792 */
be0e5c09
CM
793int insert_item(struct ctree_root *root, struct key *key,
794 void *data, int data_size)
795{
796 int ret;
797 int slot;
eb60ceac 798 int slot_orig;
be0e5c09 799 struct leaf *leaf;
eb60ceac 800 struct tree_buffer *leaf_buf;
be0e5c09
CM
801 unsigned int nritems;
802 unsigned int data_end;
803 struct ctree_path path;
804
74123bd7 805 /* create a root if there isn't one */
5c680ed6 806 if (!root->node)
cfaa7295 807 BUG();
be0e5c09 808 init_path(&path);
5c680ed6 809 ret = search_slot(root, key, &path, data_size);
eb60ceac
CM
810 if (ret == 0) {
811 release_path(root, &path);
be0e5c09 812 return -EEXIST;
eb60ceac 813 }
be0e5c09 814
eb60ceac
CM
815 slot_orig = path.slots[0];
816 leaf_buf = path.nodes[0];
817 leaf = &leaf_buf->leaf;
74123bd7 818
be0e5c09
CM
819 nritems = leaf->header.nritems;
820 data_end = leaf_data_end(leaf);
eb60ceac 821
be0e5c09
CM
822 if (leaf_free_space(leaf) < sizeof(struct item) + data_size)
823 BUG();
824
825 slot = path.slots[0];
eb60ceac 826 BUG_ON(slot < 0);
be0e5c09 827 if (slot == 0)
eb60ceac 828 fixup_low_keys(root, &path, key, 1);
be0e5c09
CM
829 if (slot != nritems) {
830 int i;
831 unsigned int old_data = leaf->items[slot].offset +
832 leaf->items[slot].size;
833
834 /*
835 * item0..itemN ... dataN.offset..dataN.size .. data0.size
836 */
837 /* first correct the data pointers */
838 for (i = slot; i < nritems; i++)
839 leaf->items[i].offset -= data_size;
840
841 /* shift the items */
842 memmove(leaf->items + slot + 1, leaf->items + slot,
843 (nritems - slot) * sizeof(struct item));
844
845 /* shift the data */
846 memmove(leaf->data + data_end - data_size, leaf->data +
847 data_end, old_data - data_end);
848 data_end = old_data;
849 }
74123bd7 850 /* copy the new data in */
be0e5c09
CM
851 memcpy(&leaf->items[slot].key, key, sizeof(struct key));
852 leaf->items[slot].offset = data_end - data_size;
853 leaf->items[slot].size = data_size;
854 memcpy(leaf->data + data_end - data_size, data, data_size);
855 leaf->header.nritems += 1;
eb60ceac 856 write_tree_block(root, leaf_buf);
be0e5c09
CM
857 if (leaf_free_space(leaf) < 0)
858 BUG();
eb60ceac 859 release_path(root, &path);
be0e5c09
CM
860 return 0;
861}
862
74123bd7 863/*
5de08d7d 864 * delete the pointer from a given node.
74123bd7
CM
865 *
866 * If the delete empties a node, the node is removed from the tree,
867 * continuing all the way the root if required. The root is converted into
868 * a leaf if all the nodes are emptied.
869 */
be0e5c09
CM
870int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
871{
872 int slot;
eb60ceac 873 struct tree_buffer *t;
be0e5c09
CM
874 struct node *node;
875 int nritems;
9a8dd150 876 u64 blocknr;
be0e5c09
CM
877
878 while(1) {
eb60ceac
CM
879 t = path->nodes[level];
880 if (!t)
be0e5c09 881 break;
eb60ceac 882 node = &t->node;
be0e5c09
CM
883 slot = path->slots[level];
884 nritems = node->header.nritems;
885
886 if (slot != nritems -1) {
887 memmove(node->keys + slot, node->keys + slot + 1,
888 sizeof(struct key) * (nritems - slot - 1));
889 memmove(node->blockptrs + slot,
890 node->blockptrs + slot + 1,
891 sizeof(u64) * (nritems - slot - 1));
892 }
893 node->header.nritems--;
eb60ceac 894 write_tree_block(root, t);
9a8dd150 895 blocknr = t->blocknr;
be0e5c09 896 if (node->header.nritems != 0) {
be0e5c09 897 if (slot == 0)
eb60ceac
CM
898 fixup_low_keys(root, path, node->keys,
899 level + 1);
5de08d7d 900 break;
be0e5c09 901 }
eb60ceac
CM
902 if (t == root->node) {
903 /* just turn the root into a leaf and break */
904 root->node->node.header.flags = node_level(0);
905 write_tree_block(root, t);
be0e5c09
CM
906 break;
907 }
908 level++;
9a8dd150 909 free_extent(root, blocknr, 1);
be0e5c09
CM
910 if (!path->nodes[level])
911 BUG();
be0e5c09
CM
912 }
913 return 0;
914}
915
74123bd7
CM
916/*
917 * delete the item at the leaf level in path. If that empties
918 * the leaf, remove it from the tree
919 */
4920c9ac 920int del_item(struct ctree_root *root, struct ctree_path *path)
be0e5c09 921{
be0e5c09
CM
922 int slot;
923 struct leaf *leaf;
eb60ceac 924 struct tree_buffer *leaf_buf;
be0e5c09
CM
925 int doff;
926 int dsize;
927
eb60ceac
CM
928 leaf_buf = path->nodes[0];
929 leaf = &leaf_buf->leaf;
4920c9ac 930 slot = path->slots[0];
be0e5c09
CM
931 doff = leaf->items[slot].offset;
932 dsize = leaf->items[slot].size;
933
934 if (slot != leaf->header.nritems - 1) {
935 int i;
936 int data_end = leaf_data_end(leaf);
937 memmove(leaf->data + data_end + dsize,
938 leaf->data + data_end,
939 doff - data_end);
940 for (i = slot + 1; i < leaf->header.nritems; i++)
941 leaf->items[i].offset += dsize;
942 memmove(leaf->items + slot, leaf->items + slot + 1,
943 sizeof(struct item) *
944 (leaf->header.nritems - slot - 1));
945 }
946 leaf->header.nritems -= 1;
74123bd7 947 /* delete the leaf if we've emptied it */
be0e5c09 948 if (leaf->header.nritems == 0) {
eb60ceac
CM
949 if (leaf_buf == root->node) {
950 leaf->header.flags = node_level(0);
951 write_tree_block(root, leaf_buf);
9a8dd150 952 } else {
4920c9ac 953 del_ptr(root, path, 1);
9a8dd150
CM
954 free_extent(root, leaf_buf->blocknr, 1);
955 }
be0e5c09 956 } else {
5de08d7d 957 int used = leaf_space_used(leaf, 0, leaf->header.nritems);
be0e5c09 958 if (slot == 0)
eb60ceac
CM
959 fixup_low_keys(root, path, &leaf->items[0].key, 1);
960 write_tree_block(root, leaf_buf);
74123bd7 961 /* delete the leaf if it is mostly empty */
5de08d7d 962 if (used < LEAF_DATA_SIZE / 3) {
be0e5c09
CM
963 /* push_leaf_left fixes the path.
964 * make sure the path still points to our leaf
965 * for possible call to del_ptr below
966 */
4920c9ac 967 slot = path->slots[1];
eb60ceac 968 leaf_buf->count++;
4920c9ac 969 push_leaf_left(root, path, 1);
00ec4c51
CM
970 if (leaf->header.nritems)
971 push_leaf_right(root, path, 1);
be0e5c09 972 if (leaf->header.nritems == 0) {
5de08d7d 973 u64 blocknr = leaf_buf->blocknr;
4920c9ac
CM
974 path->slots[1] = slot;
975 del_ptr(root, path, 1);
5de08d7d
CM
976 tree_block_release(root, leaf_buf);
977 free_extent(root, blocknr, 1);
978 } else {
979 tree_block_release(root, leaf_buf);
be0e5c09
CM
980 }
981 }
982 }
983 return 0;
984}
985
d97e63b6
CM
986int next_leaf(struct ctree_root *root, struct ctree_path *path)
987{
988 int slot;
989 int level = 1;
990 u64 blocknr;
991 struct tree_buffer *c;
cfaa7295 992 struct tree_buffer *next = NULL;
d97e63b6
CM
993
994 while(level < MAX_LEVEL) {
995 if (!path->nodes[level])
996 return -1;
997 slot = path->slots[level] + 1;
998 c = path->nodes[level];
999 if (slot >= c->node.header.nritems) {
1000 level++;
1001 continue;
1002 }
1003 blocknr = c->node.blockptrs[slot];
cfaa7295
CM
1004 if (next)
1005 tree_block_release(root, next);
d97e63b6
CM
1006 next = read_tree_block(root, blocknr);
1007 break;
1008 }
1009 path->slots[level] = slot;
1010 while(1) {
1011 level--;
1012 c = path->nodes[level];
1013 tree_block_release(root, c);
1014 path->nodes[level] = next;
1015 path->slots[level] = 0;
1016 if (!level)
1017 break;
1018 next = read_tree_block(root, next->node.blockptrs[0]);
1019 }
1020 return 0;
1021}
1022
be0e5c09
CM
1023/* for testing only */
1024int next_key(int i, int max_key) {
5de08d7d 1025 return rand() % max_key;
00ec4c51 1026 //return i;
be0e5c09
CM
1027}
1028
1029int main() {
eb60ceac 1030 struct ctree_root *root;
be0e5c09 1031 struct key ins;
4920c9ac 1032 struct key last = { (u64)-1, 0, 0};
be0e5c09
CM
1033 char *buf;
1034 int i;
1035 int num;
1036 int ret;
5de08d7d
CM
1037 int run_size = 20000000;
1038 int max_key = 100000000;
be0e5c09
CM
1039 int tree_size = 0;
1040 struct ctree_path path;
cfaa7295 1041 struct ctree_super_block super;
be0e5c09 1042
eb60ceac
CM
1043 radix_tree_init();
1044
1045
cfaa7295 1046 root = open_ctree("dbfile", &super);
be0e5c09
CM
1047
1048 srand(55);
be0e5c09
CM
1049 for (i = 0; i < run_size; i++) {
1050 buf = malloc(64);
1051 num = next_key(i, max_key);
1052 // num = i;
1053 sprintf(buf, "string-%d", num);
5de08d7d 1054 if (i % 10000 == 0)
00ec4c51 1055 fprintf(stderr, "insert %d:%d\n", num, i);
be0e5c09
CM
1056 ins.objectid = num;
1057 ins.offset = 0;
1058 ins.flags = 0;
eb60ceac 1059 ret = insert_item(root, &ins, buf, strlen(buf));
be0e5c09
CM
1060 if (!ret)
1061 tree_size++;
5de08d7d 1062 free(buf);
be0e5c09 1063 }
cfaa7295 1064 write_ctree_super(root, &super);
eb60ceac 1065 close_ctree(root);
cfaa7295
CM
1066
1067 root = open_ctree("dbfile", &super);
eb60ceac 1068 printf("starting search\n");
be0e5c09
CM
1069 srand(55);
1070 for (i = 0; i < run_size; i++) {
1071 num = next_key(i, max_key);
1072 ins.objectid = num;
be0e5c09 1073 init_path(&path);
5de08d7d 1074 if (i % 10000 == 0)
00ec4c51 1075 fprintf(stderr, "search %d:%d\n", num, i);
5c680ed6 1076 ret = search_slot(root, &ins, &path, 0);
be0e5c09 1077 if (ret) {
eb60ceac 1078 print_tree(root, root->node);
be0e5c09
CM
1079 printf("unable to find %d\n", num);
1080 exit(1);
1081 }
eb60ceac
CM
1082 release_path(root, &path);
1083 }
cfaa7295 1084 write_ctree_super(root, &super);
eb60ceac 1085 close_ctree(root);
cfaa7295 1086 root = open_ctree("dbfile", &super);
eb60ceac
CM
1087 printf("node %p level %d total ptrs %d free spc %lu\n", root->node,
1088 node_level(root->node->node.header.flags),
1089 root->node->node.header.nritems,
1090 NODEPTRS_PER_BLOCK - root->node->node.header.nritems);
1091 printf("all searches good, deleting some items\n");
be0e5c09
CM
1092 i = 0;
1093 srand(55);
4920c9ac
CM
1094 for (i = 0 ; i < run_size/4; i++) {
1095 num = next_key(i, max_key);
1096 ins.objectid = num;
1097 init_path(&path);
5de08d7d
CM
1098 ret = search_slot(root, &ins, &path, -1);
1099 if (!ret) {
1100 if (i % 10000 == 0)
00ec4c51 1101 fprintf(stderr, "del %d:%d\n", num, i);
5de08d7d
CM
1102 ret = del_item(root, &path);
1103 if (ret != 0)
1104 BUG();
1105 tree_size--;
1106 }
eb60ceac 1107 release_path(root, &path);
4920c9ac 1108 }
5de08d7d
CM
1109 write_ctree_super(root, &super);
1110 close_ctree(root);
1111 root = open_ctree("dbfile", &super);
4920c9ac 1112 srand(128);
be0e5c09 1113 for (i = 0; i < run_size; i++) {
4920c9ac 1114 buf = malloc(64);
be0e5c09 1115 num = next_key(i, max_key);
4920c9ac 1116 sprintf(buf, "string-%d", num);
be0e5c09 1117 ins.objectid = num;
5de08d7d 1118 if (i % 10000 == 0)
00ec4c51 1119 fprintf(stderr, "insert %d:%d\n", num, i);
eb60ceac 1120 ret = insert_item(root, &ins, buf, strlen(buf));
4920c9ac
CM
1121 if (!ret)
1122 tree_size++;
5de08d7d 1123 free(buf);
4920c9ac 1124 }
cfaa7295 1125 write_ctree_super(root, &super);
eb60ceac 1126 close_ctree(root);
cfaa7295 1127 root = open_ctree("dbfile", &super);
eb60ceac 1128 srand(128);
9a8dd150 1129 printf("starting search2\n");
eb60ceac
CM
1130 for (i = 0; i < run_size; i++) {
1131 num = next_key(i, max_key);
1132 ins.objectid = num;
1133 init_path(&path);
5de08d7d 1134 if (i % 10000 == 0)
00ec4c51 1135 fprintf(stderr, "search %d:%d\n", num, i);
5c680ed6 1136 ret = search_slot(root, &ins, &path, 0);
eb60ceac
CM
1137 if (ret) {
1138 print_tree(root, root->node);
1139 printf("unable to find %d\n", num);
1140 exit(1);
1141 }
1142 release_path(root, &path);
1143 }
1144 printf("starting big long delete run\n");
1145 while(root->node && root->node->node.header.nritems > 0) {
4920c9ac
CM
1146 struct leaf *leaf;
1147 int slot;
1148 ins.objectid = (u64)-1;
1149 init_path(&path);
5de08d7d 1150 ret = search_slot(root, &ins, &path, -1);
4920c9ac
CM
1151 if (ret == 0)
1152 BUG();
1153
eb60ceac 1154 leaf = &path.nodes[0]->leaf;
4920c9ac
CM
1155 slot = path.slots[0];
1156 if (slot != leaf->header.nritems)
1157 BUG();
1158 while(path.slots[0] > 0) {
1159 path.slots[0] -= 1;
1160 slot = path.slots[0];
eb60ceac 1161 leaf = &path.nodes[0]->leaf;
4920c9ac
CM
1162
1163 if (comp_keys(&last, &leaf->items[slot].key) <= 0)
1164 BUG();
1165 memcpy(&last, &leaf->items[slot].key, sizeof(last));
5de08d7d
CM
1166 if (tree_size % 10000 == 0)
1167 printf("big del %d:%d\n", tree_size, i);
eb60ceac
CM
1168 ret = del_item(root, &path);
1169 if (ret != 0) {
1170 printf("del_item returned %d\n", ret);
4920c9ac 1171 BUG();
eb60ceac 1172 }
4920c9ac
CM
1173 tree_size--;
1174 }
eb60ceac 1175 release_path(root, &path);
be0e5c09 1176 }
4920c9ac 1177 printf("tree size is now %d\n", tree_size);
9a8dd150 1178 printf("map tree\n");
00ec4c51 1179 print_tree(root->extent_root, root->extent_root->node);
5de08d7d
CM
1180 write_ctree_super(root, &super);
1181 close_ctree(root);
be0e5c09
CM
1182 return 0;
1183}