]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/ctree.c
btrfs: improve error handling of btrfs_add_link
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / ctree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570 2/*
d352ac68 3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
a6b6e75e 6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
bd989ba3 8#include <linux/rbtree.h>
adf02123 9#include <linux/mm.h>
eb60ceac
CM
10#include "ctree.h"
11#include "disk-io.h"
7f5c1516 12#include "transaction.h"
5f39d397 13#include "print-tree.h"
925baedd 14#include "locking.h"
de37aa51 15#include "volumes.h"
9a8dd150 16
e089f05c
CM
17static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
18 *root, struct btrfs_path *path, int level);
310712b2
OS
19static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
20 const struct btrfs_key *ins_key, struct btrfs_path *path,
21 int data_size, int extend);
5f39d397 22static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
23 struct btrfs_fs_info *fs_info,
24 struct extent_buffer *dst,
971a1f66 25 struct extent_buffer *src, int empty);
5f39d397 26static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 27 struct btrfs_fs_info *fs_info,
5f39d397
CM
28 struct extent_buffer *dst_buf,
29 struct extent_buffer *src_buf);
afe5fea7
TI
30static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
31 int level, int slot);
d97e63b6 32
df24a2b9 33struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 34{
e2c89907 35 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
36}
37
b4ce94de
CM
38/*
39 * set all locked nodes in the path to blocking locks. This should
40 * be done before scheduling
41 */
42noinline void btrfs_set_path_blocking(struct btrfs_path *p)
43{
44 int i;
45 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
46 if (!p->nodes[i] || !p->locks[i])
47 continue;
48 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
49 if (p->locks[i] == BTRFS_READ_LOCK)
50 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
51 else if (p->locks[i] == BTRFS_WRITE_LOCK)
52 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
53 }
54}
55
d352ac68 56/* this also releases the path */
df24a2b9 57void btrfs_free_path(struct btrfs_path *p)
be0e5c09 58{
ff175d57
JJ
59 if (!p)
60 return;
b3b4aa74 61 btrfs_release_path(p);
df24a2b9 62 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
63}
64
d352ac68
CM
65/*
66 * path release drops references on the extent buffers in the path
67 * and it drops any locks held by this path
68 *
69 * It is safe to call this on paths that no locks or extent buffers held.
70 */
b3b4aa74 71noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
72{
73 int i;
a2135011 74
234b63a0 75 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 76 p->slots[i] = 0;
eb60ceac 77 if (!p->nodes[i])
925baedd
CM
78 continue;
79 if (p->locks[i]) {
bd681513 80 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
81 p->locks[i] = 0;
82 }
5f39d397 83 free_extent_buffer(p->nodes[i]);
3f157a2f 84 p->nodes[i] = NULL;
eb60ceac
CM
85 }
86}
87
d352ac68
CM
88/*
89 * safely gets a reference on the root node of a tree. A lock
90 * is not taken, so a concurrent writer may put a different node
91 * at the root of the tree. See btrfs_lock_root_node for the
92 * looping required.
93 *
94 * The extent buffer returned by this has a reference taken, so
95 * it won't disappear. It may stop being the root of the tree
96 * at any time because there are no locks held.
97 */
925baedd
CM
98struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
99{
100 struct extent_buffer *eb;
240f62c8 101
3083ee2e
JB
102 while (1) {
103 rcu_read_lock();
104 eb = rcu_dereference(root->node);
105
106 /*
107 * RCU really hurts here, we could free up the root node because
01327610 108 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
109 * the inc_not_zero dance and if it doesn't work then
110 * synchronize_rcu and try again.
111 */
112 if (atomic_inc_not_zero(&eb->refs)) {
113 rcu_read_unlock();
114 break;
115 }
116 rcu_read_unlock();
117 synchronize_rcu();
118 }
925baedd
CM
119 return eb;
120}
121
d352ac68
CM
122/* loop around taking references on and locking the root node of the
123 * tree until you end up with a lock on the root. A locked buffer
124 * is returned, with a reference held.
125 */
925baedd
CM
126struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
127{
128 struct extent_buffer *eb;
129
d397712b 130 while (1) {
925baedd
CM
131 eb = btrfs_root_node(root);
132 btrfs_tree_lock(eb);
240f62c8 133 if (eb == root->node)
925baedd 134 break;
925baedd
CM
135 btrfs_tree_unlock(eb);
136 free_extent_buffer(eb);
137 }
138 return eb;
139}
140
bd681513
CM
141/* loop around taking references on and locking the root node of the
142 * tree until you end up with a lock on the root. A locked buffer
143 * is returned, with a reference held.
144 */
84f7d8e6 145struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
146{
147 struct extent_buffer *eb;
148
149 while (1) {
150 eb = btrfs_root_node(root);
151 btrfs_tree_read_lock(eb);
152 if (eb == root->node)
153 break;
154 btrfs_tree_read_unlock(eb);
155 free_extent_buffer(eb);
156 }
157 return eb;
158}
159
d352ac68
CM
160/* cowonly root (everything not a reference counted cow subvolume), just get
161 * put onto a simple dirty list. transaction.c walks this to make sure they
162 * get properly updated on disk.
163 */
0b86a832
CM
164static void add_root_to_dirty_list(struct btrfs_root *root)
165{
0b246afa
JM
166 struct btrfs_fs_info *fs_info = root->fs_info;
167
e7070be1
JB
168 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
169 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
170 return;
171
0b246afa 172 spin_lock(&fs_info->trans_lock);
e7070be1
JB
173 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
174 /* Want the extent tree to be the last on the list */
4fd786e6 175 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
e7070be1 176 list_move_tail(&root->dirty_list,
0b246afa 177 &fs_info->dirty_cowonly_roots);
e7070be1
JB
178 else
179 list_move(&root->dirty_list,
0b246afa 180 &fs_info->dirty_cowonly_roots);
0b86a832 181 }
0b246afa 182 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
183}
184
d352ac68
CM
185/*
186 * used by snapshot creation to make a copy of a root for a tree with
187 * a given objectid. The buffer with the new root node is returned in
188 * cow_ret, and this func returns zero on success or a negative error code.
189 */
be20aa9d
CM
190int btrfs_copy_root(struct btrfs_trans_handle *trans,
191 struct btrfs_root *root,
192 struct extent_buffer *buf,
193 struct extent_buffer **cow_ret, u64 new_root_objectid)
194{
0b246afa 195 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 196 struct extent_buffer *cow;
be20aa9d
CM
197 int ret = 0;
198 int level;
5d4f98a2 199 struct btrfs_disk_key disk_key;
be20aa9d 200
27cdeb70 201 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 202 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
203 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
204 trans->transid != root->last_trans);
be20aa9d
CM
205
206 level = btrfs_header_level(buf);
5d4f98a2
YZ
207 if (level == 0)
208 btrfs_item_key(buf, &disk_key, 0);
209 else
210 btrfs_node_key(buf, &disk_key, 0);
31840ae1 211
4d75f8a9
DS
212 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
213 &disk_key, level, buf->start, 0);
5d4f98a2 214 if (IS_ERR(cow))
be20aa9d
CM
215 return PTR_ERR(cow);
216
58e8012c 217 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
218 btrfs_set_header_bytenr(cow, cow->start);
219 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
220 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
221 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
222 BTRFS_HEADER_FLAG_RELOC);
223 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
224 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
225 else
226 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 227
de37aa51 228 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
2b82032c 229
be20aa9d 230 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 231 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 232 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 233 else
e339a6b0 234 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 235
be20aa9d
CM
236 if (ret)
237 return ret;
238
239 btrfs_mark_buffer_dirty(cow);
240 *cow_ret = cow;
241 return 0;
242}
243
bd989ba3
JS
244enum mod_log_op {
245 MOD_LOG_KEY_REPLACE,
246 MOD_LOG_KEY_ADD,
247 MOD_LOG_KEY_REMOVE,
248 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
249 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
250 MOD_LOG_MOVE_KEYS,
251 MOD_LOG_ROOT_REPLACE,
252};
253
bd989ba3
JS
254struct tree_mod_root {
255 u64 logical;
256 u8 level;
257};
258
259struct tree_mod_elem {
260 struct rb_node node;
298cfd36 261 u64 logical;
097b8a7c 262 u64 seq;
bd989ba3
JS
263 enum mod_log_op op;
264
265 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
266 int slot;
267
268 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
269 u64 generation;
270
271 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
272 struct btrfs_disk_key key;
273 u64 blockptr;
274
275 /* this is used for op == MOD_LOG_MOVE_KEYS */
b6dfa35b
DS
276 struct {
277 int dst_slot;
278 int nr_items;
279 } move;
bd989ba3
JS
280
281 /* this is used for op == MOD_LOG_ROOT_REPLACE */
282 struct tree_mod_root old_root;
283};
284
fc36ed7e 285/*
fcebe456 286 * Pull a new tree mod seq number for our operation.
fc36ed7e 287 */
fcebe456 288static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
289{
290 return atomic64_inc_return(&fs_info->tree_mod_seq);
291}
292
097b8a7c
JS
293/*
294 * This adds a new blocker to the tree mod log's blocker list if the @elem
295 * passed does not already have a sequence number set. So when a caller expects
296 * to record tree modifications, it should ensure to set elem->seq to zero
297 * before calling btrfs_get_tree_mod_seq.
298 * Returns a fresh, unused tree log modification sequence number, even if no new
299 * blocker was added.
300 */
301u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
302 struct seq_list *elem)
bd989ba3 303{
b1a09f1e 304 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3 305 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 306 if (!elem->seq) {
fcebe456 307 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
308 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
309 }
bd989ba3 310 spin_unlock(&fs_info->tree_mod_seq_lock);
b1a09f1e 311 write_unlock(&fs_info->tree_mod_log_lock);
097b8a7c 312
fcebe456 313 return elem->seq;
bd989ba3
JS
314}
315
316void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
317 struct seq_list *elem)
318{
319 struct rb_root *tm_root;
320 struct rb_node *node;
321 struct rb_node *next;
322 struct seq_list *cur_elem;
323 struct tree_mod_elem *tm;
324 u64 min_seq = (u64)-1;
325 u64 seq_putting = elem->seq;
326
327 if (!seq_putting)
328 return;
329
bd989ba3
JS
330 spin_lock(&fs_info->tree_mod_seq_lock);
331 list_del(&elem->list);
097b8a7c 332 elem->seq = 0;
bd989ba3
JS
333
334 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 335 if (cur_elem->seq < min_seq) {
bd989ba3
JS
336 if (seq_putting > cur_elem->seq) {
337 /*
338 * blocker with lower sequence number exists, we
339 * cannot remove anything from the log
340 */
097b8a7c
JS
341 spin_unlock(&fs_info->tree_mod_seq_lock);
342 return;
bd989ba3
JS
343 }
344 min_seq = cur_elem->seq;
345 }
346 }
097b8a7c
JS
347 spin_unlock(&fs_info->tree_mod_seq_lock);
348
bd989ba3
JS
349 /*
350 * anything that's lower than the lowest existing (read: blocked)
351 * sequence number can be removed from the tree.
352 */
b1a09f1e 353 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
354 tm_root = &fs_info->tree_mod_log;
355 for (node = rb_first(tm_root); node; node = next) {
356 next = rb_next(node);
6b4df8b6 357 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 358 if (tm->seq > min_seq)
bd989ba3
JS
359 continue;
360 rb_erase(node, tm_root);
bd989ba3
JS
361 kfree(tm);
362 }
b1a09f1e 363 write_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
364}
365
366/*
367 * key order of the log:
298cfd36 368 * node/leaf start address -> sequence
bd989ba3 369 *
298cfd36
CR
370 * The 'start address' is the logical address of the *new* root node
371 * for root replace operations, or the logical address of the affected
372 * block for all other operations.
5de865ee 373 *
b1a09f1e 374 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
bd989ba3
JS
375 */
376static noinline int
377__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
378{
379 struct rb_root *tm_root;
380 struct rb_node **new;
381 struct rb_node *parent = NULL;
382 struct tree_mod_elem *cur;
c8cc6341 383
fcebe456 384 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 385
bd989ba3
JS
386 tm_root = &fs_info->tree_mod_log;
387 new = &tm_root->rb_node;
388 while (*new) {
6b4df8b6 389 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 390 parent = *new;
298cfd36 391 if (cur->logical < tm->logical)
bd989ba3 392 new = &((*new)->rb_left);
298cfd36 393 else if (cur->logical > tm->logical)
bd989ba3 394 new = &((*new)->rb_right);
097b8a7c 395 else if (cur->seq < tm->seq)
bd989ba3 396 new = &((*new)->rb_left);
097b8a7c 397 else if (cur->seq > tm->seq)
bd989ba3 398 new = &((*new)->rb_right);
5de865ee
FDBM
399 else
400 return -EEXIST;
bd989ba3
JS
401 }
402
403 rb_link_node(&tm->node, parent, new);
404 rb_insert_color(&tm->node, tm_root);
5de865ee 405 return 0;
bd989ba3
JS
406}
407
097b8a7c
JS
408/*
409 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
410 * returns zero with the tree_mod_log_lock acquired. The caller must hold
411 * this until all tree mod log insertions are recorded in the rb tree and then
b1a09f1e 412 * write unlock fs_info::tree_mod_log_lock.
097b8a7c 413 */
e9b7fd4d
JS
414static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
415 struct extent_buffer *eb) {
416 smp_mb();
417 if (list_empty(&(fs_info)->tree_mod_seq_list))
418 return 1;
097b8a7c
JS
419 if (eb && btrfs_header_level(eb) == 0)
420 return 1;
5de865ee 421
b1a09f1e 422 write_lock(&fs_info->tree_mod_log_lock);
5de865ee 423 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
b1a09f1e 424 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
425 return 1;
426 }
427
e9b7fd4d
JS
428 return 0;
429}
430
5de865ee
FDBM
431/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
432static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
433 struct extent_buffer *eb)
434{
435 smp_mb();
436 if (list_empty(&(fs_info)->tree_mod_seq_list))
437 return 0;
438 if (eb && btrfs_header_level(eb) == 0)
439 return 0;
440
441 return 1;
442}
443
444static struct tree_mod_elem *
445alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
446 enum mod_log_op op, gfp_t flags)
bd989ba3 447{
097b8a7c 448 struct tree_mod_elem *tm;
bd989ba3 449
c8cc6341
JB
450 tm = kzalloc(sizeof(*tm), flags);
451 if (!tm)
5de865ee 452 return NULL;
bd989ba3 453
298cfd36 454 tm->logical = eb->start;
bd989ba3
JS
455 if (op != MOD_LOG_KEY_ADD) {
456 btrfs_node_key(eb, &tm->key, slot);
457 tm->blockptr = btrfs_node_blockptr(eb, slot);
458 }
459 tm->op = op;
460 tm->slot = slot;
461 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 462 RB_CLEAR_NODE(&tm->node);
bd989ba3 463
5de865ee 464 return tm;
097b8a7c
JS
465}
466
e09c2efe
DS
467static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
468 enum mod_log_op op, gfp_t flags)
097b8a7c 469{
5de865ee
FDBM
470 struct tree_mod_elem *tm;
471 int ret;
472
e09c2efe 473 if (!tree_mod_need_log(eb->fs_info, eb))
5de865ee
FDBM
474 return 0;
475
476 tm = alloc_tree_mod_elem(eb, slot, op, flags);
477 if (!tm)
478 return -ENOMEM;
479
e09c2efe 480 if (tree_mod_dont_log(eb->fs_info, eb)) {
5de865ee 481 kfree(tm);
097b8a7c 482 return 0;
5de865ee
FDBM
483 }
484
e09c2efe 485 ret = __tree_mod_log_insert(eb->fs_info, tm);
b1a09f1e 486 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
487 if (ret)
488 kfree(tm);
097b8a7c 489
5de865ee 490 return ret;
097b8a7c
JS
491}
492
6074d45f
DS
493static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
494 int dst_slot, int src_slot, int nr_items)
bd989ba3 495{
5de865ee
FDBM
496 struct tree_mod_elem *tm = NULL;
497 struct tree_mod_elem **tm_list = NULL;
498 int ret = 0;
bd989ba3 499 int i;
5de865ee 500 int locked = 0;
bd989ba3 501
6074d45f 502 if (!tree_mod_need_log(eb->fs_info, eb))
f395694c 503 return 0;
bd989ba3 504
176ef8f5 505 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
506 if (!tm_list)
507 return -ENOMEM;
508
176ef8f5 509 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
510 if (!tm) {
511 ret = -ENOMEM;
512 goto free_tms;
513 }
514
298cfd36 515 tm->logical = eb->start;
5de865ee
FDBM
516 tm->slot = src_slot;
517 tm->move.dst_slot = dst_slot;
518 tm->move.nr_items = nr_items;
519 tm->op = MOD_LOG_MOVE_KEYS;
520
521 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
522 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 523 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
524 if (!tm_list[i]) {
525 ret = -ENOMEM;
526 goto free_tms;
527 }
528 }
529
6074d45f 530 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
531 goto free_tms;
532 locked = 1;
533
01763a2e
JS
534 /*
535 * When we override something during the move, we log these removals.
536 * This can only happen when we move towards the beginning of the
537 * buffer, i.e. dst_slot < src_slot.
538 */
bd989ba3 539 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
6074d45f 540 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
5de865ee
FDBM
541 if (ret)
542 goto free_tms;
bd989ba3
JS
543 }
544
6074d45f 545 ret = __tree_mod_log_insert(eb->fs_info, tm);
5de865ee
FDBM
546 if (ret)
547 goto free_tms;
b1a09f1e 548 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee 549 kfree(tm_list);
f395694c 550
5de865ee
FDBM
551 return 0;
552free_tms:
553 for (i = 0; i < nr_items; i++) {
554 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
6074d45f 555 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
5de865ee
FDBM
556 kfree(tm_list[i]);
557 }
558 if (locked)
b1a09f1e 559 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
560 kfree(tm_list);
561 kfree(tm);
bd989ba3 562
5de865ee 563 return ret;
bd989ba3
JS
564}
565
5de865ee
FDBM
566static inline int
567__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
568 struct tree_mod_elem **tm_list,
569 int nritems)
097b8a7c 570{
5de865ee 571 int i, j;
097b8a7c
JS
572 int ret;
573
097b8a7c 574 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
575 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
576 if (ret) {
577 for (j = nritems - 1; j > i; j--)
578 rb_erase(&tm_list[j]->node,
579 &fs_info->tree_mod_log);
580 return ret;
581 }
097b8a7c 582 }
5de865ee
FDBM
583
584 return 0;
097b8a7c
JS
585}
586
95b757c1
DS
587static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
588 struct extent_buffer *new_root, int log_removal)
bd989ba3 589{
95b757c1 590 struct btrfs_fs_info *fs_info = old_root->fs_info;
5de865ee
FDBM
591 struct tree_mod_elem *tm = NULL;
592 struct tree_mod_elem **tm_list = NULL;
593 int nritems = 0;
594 int ret = 0;
595 int i;
bd989ba3 596
5de865ee 597 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
598 return 0;
599
5de865ee
FDBM
600 if (log_removal && btrfs_header_level(old_root) > 0) {
601 nritems = btrfs_header_nritems(old_root);
31e818fe 602 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 603 GFP_NOFS);
5de865ee
FDBM
604 if (!tm_list) {
605 ret = -ENOMEM;
606 goto free_tms;
607 }
608 for (i = 0; i < nritems; i++) {
609 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 610 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
611 if (!tm_list[i]) {
612 ret = -ENOMEM;
613 goto free_tms;
614 }
615 }
616 }
d9abbf1c 617
bcc8e07f 618 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
619 if (!tm) {
620 ret = -ENOMEM;
621 goto free_tms;
622 }
bd989ba3 623
298cfd36 624 tm->logical = new_root->start;
bd989ba3
JS
625 tm->old_root.logical = old_root->start;
626 tm->old_root.level = btrfs_header_level(old_root);
627 tm->generation = btrfs_header_generation(old_root);
628 tm->op = MOD_LOG_ROOT_REPLACE;
629
5de865ee
FDBM
630 if (tree_mod_dont_log(fs_info, NULL))
631 goto free_tms;
632
633 if (tm_list)
634 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
635 if (!ret)
636 ret = __tree_mod_log_insert(fs_info, tm);
637
b1a09f1e 638 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
639 if (ret)
640 goto free_tms;
641 kfree(tm_list);
642
643 return ret;
644
645free_tms:
646 if (tm_list) {
647 for (i = 0; i < nritems; i++)
648 kfree(tm_list[i]);
649 kfree(tm_list);
650 }
651 kfree(tm);
652
653 return ret;
bd989ba3
JS
654}
655
656static struct tree_mod_elem *
657__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
658 int smallest)
659{
660 struct rb_root *tm_root;
661 struct rb_node *node;
662 struct tree_mod_elem *cur = NULL;
663 struct tree_mod_elem *found = NULL;
bd989ba3 664
b1a09f1e 665 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
666 tm_root = &fs_info->tree_mod_log;
667 node = tm_root->rb_node;
668 while (node) {
6b4df8b6 669 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 670 if (cur->logical < start) {
bd989ba3 671 node = node->rb_left;
298cfd36 672 } else if (cur->logical > start) {
bd989ba3 673 node = node->rb_right;
097b8a7c 674 } else if (cur->seq < min_seq) {
bd989ba3
JS
675 node = node->rb_left;
676 } else if (!smallest) {
677 /* we want the node with the highest seq */
678 if (found)
097b8a7c 679 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
680 found = cur;
681 node = node->rb_left;
097b8a7c 682 } else if (cur->seq > min_seq) {
bd989ba3
JS
683 /* we want the node with the smallest seq */
684 if (found)
097b8a7c 685 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
686 found = cur;
687 node = node->rb_right;
688 } else {
689 found = cur;
690 break;
691 }
692 }
b1a09f1e 693 read_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
694
695 return found;
696}
697
698/*
699 * this returns the element from the log with the smallest time sequence
700 * value that's in the log (the oldest log item). any element with a time
701 * sequence lower than min_seq will be ignored.
702 */
703static struct tree_mod_elem *
704tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
705 u64 min_seq)
706{
707 return __tree_mod_log_search(fs_info, start, min_seq, 1);
708}
709
710/*
711 * this returns the element from the log with the largest time sequence
712 * value that's in the log (the most recent log item). any element with
713 * a time sequence lower than min_seq will be ignored.
714 */
715static struct tree_mod_elem *
716tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
717{
718 return __tree_mod_log_search(fs_info, start, min_seq, 0);
719}
720
5de865ee 721static noinline int
bd989ba3
JS
722tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
723 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 724 unsigned long src_offset, int nr_items)
bd989ba3 725{
5de865ee
FDBM
726 int ret = 0;
727 struct tree_mod_elem **tm_list = NULL;
728 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 729 int i;
5de865ee 730 int locked = 0;
bd989ba3 731
5de865ee
FDBM
732 if (!tree_mod_need_log(fs_info, NULL))
733 return 0;
bd989ba3 734
c8cc6341 735 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
736 return 0;
737
31e818fe 738 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
739 GFP_NOFS);
740 if (!tm_list)
741 return -ENOMEM;
bd989ba3 742
5de865ee
FDBM
743 tm_list_add = tm_list;
744 tm_list_rem = tm_list + nr_items;
bd989ba3 745 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
746 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
747 MOD_LOG_KEY_REMOVE, GFP_NOFS);
748 if (!tm_list_rem[i]) {
749 ret = -ENOMEM;
750 goto free_tms;
751 }
752
753 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
754 MOD_LOG_KEY_ADD, GFP_NOFS);
755 if (!tm_list_add[i]) {
756 ret = -ENOMEM;
757 goto free_tms;
758 }
759 }
760
761 if (tree_mod_dont_log(fs_info, NULL))
762 goto free_tms;
763 locked = 1;
764
765 for (i = 0; i < nr_items; i++) {
766 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
767 if (ret)
768 goto free_tms;
769 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
770 if (ret)
771 goto free_tms;
bd989ba3 772 }
5de865ee 773
b1a09f1e 774 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
775 kfree(tm_list);
776
777 return 0;
778
779free_tms:
780 for (i = 0; i < nr_items * 2; i++) {
781 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
782 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
783 kfree(tm_list[i]);
784 }
785 if (locked)
b1a09f1e 786 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
787 kfree(tm_list);
788
789 return ret;
bd989ba3
JS
790}
791
db7279a2 792static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
bd989ba3 793{
5de865ee
FDBM
794 struct tree_mod_elem **tm_list = NULL;
795 int nritems = 0;
796 int i;
797 int ret = 0;
798
799 if (btrfs_header_level(eb) == 0)
800 return 0;
801
db7279a2 802 if (!tree_mod_need_log(eb->fs_info, NULL))
5de865ee
FDBM
803 return 0;
804
805 nritems = btrfs_header_nritems(eb);
31e818fe 806 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
807 if (!tm_list)
808 return -ENOMEM;
809
810 for (i = 0; i < nritems; i++) {
811 tm_list[i] = alloc_tree_mod_elem(eb, i,
812 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
813 if (!tm_list[i]) {
814 ret = -ENOMEM;
815 goto free_tms;
816 }
817 }
818
db7279a2 819 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
820 goto free_tms;
821
db7279a2 822 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
b1a09f1e 823 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
824 if (ret)
825 goto free_tms;
826 kfree(tm_list);
827
828 return 0;
829
830free_tms:
831 for (i = 0; i < nritems; i++)
832 kfree(tm_list[i]);
833 kfree(tm_list);
834
835 return ret;
bd989ba3
JS
836}
837
5d4f98a2
YZ
838/*
839 * check if the tree block can be shared by multiple trees
840 */
841int btrfs_block_can_be_shared(struct btrfs_root *root,
842 struct extent_buffer *buf)
843{
844 /*
01327610 845 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
846 * are never shared. If a block was allocated after the last
847 * snapshot and the block was not allocated by tree relocation,
848 * we know the block is not shared.
849 */
27cdeb70 850 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
851 buf != root->node && buf != root->commit_root &&
852 (btrfs_header_generation(buf) <=
853 btrfs_root_last_snapshot(&root->root_item) ||
854 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
855 return 1;
a79865c6 856
5d4f98a2
YZ
857 return 0;
858}
859
860static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
861 struct btrfs_root *root,
862 struct extent_buffer *buf,
f0486c68
YZ
863 struct extent_buffer *cow,
864 int *last_ref)
5d4f98a2 865{
0b246afa 866 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
867 u64 refs;
868 u64 owner;
869 u64 flags;
870 u64 new_flags = 0;
871 int ret;
872
873 /*
874 * Backrefs update rules:
875 *
876 * Always use full backrefs for extent pointers in tree block
877 * allocated by tree relocation.
878 *
879 * If a shared tree block is no longer referenced by its owner
880 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
881 * use full backrefs for extent pointers in tree block.
882 *
883 * If a tree block is been relocating
884 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
885 * use full backrefs for extent pointers in tree block.
886 * The reason for this is some operations (such as drop tree)
887 * are only allowed for blocks use full backrefs.
888 */
889
890 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 891 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
892 btrfs_header_level(buf), 1,
893 &refs, &flags);
be1a5564
MF
894 if (ret)
895 return ret;
e5df9573
MF
896 if (refs == 0) {
897 ret = -EROFS;
0b246afa 898 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
899 return ret;
900 }
5d4f98a2
YZ
901 } else {
902 refs = 1;
903 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
904 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
905 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
906 else
907 flags = 0;
908 }
909
910 owner = btrfs_header_owner(buf);
911 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
912 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
913
914 if (refs > 1) {
915 if ((owner == root->root_key.objectid ||
916 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
917 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 918 ret = btrfs_inc_ref(trans, root, buf, 1);
692826b2
JM
919 if (ret)
920 return ret;
5d4f98a2
YZ
921
922 if (root->root_key.objectid ==
923 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 924 ret = btrfs_dec_ref(trans, root, buf, 0);
692826b2
JM
925 if (ret)
926 return ret;
e339a6b0 927 ret = btrfs_inc_ref(trans, root, cow, 1);
692826b2
JM
928 if (ret)
929 return ret;
5d4f98a2
YZ
930 }
931 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
932 } else {
933
934 if (root->root_key.objectid ==
935 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 936 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 937 else
e339a6b0 938 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
939 if (ret)
940 return ret;
5d4f98a2
YZ
941 }
942 if (new_flags != 0) {
b1c79e09
JB
943 int level = btrfs_header_level(buf);
944
2ff7e61e 945 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
946 buf->start,
947 buf->len,
b1c79e09 948 new_flags, level, 0);
be1a5564
MF
949 if (ret)
950 return ret;
5d4f98a2
YZ
951 }
952 } else {
953 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
954 if (root->root_key.objectid ==
955 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 956 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 957 else
e339a6b0 958 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
959 if (ret)
960 return ret;
e339a6b0 961 ret = btrfs_dec_ref(trans, root, buf, 1);
692826b2
JM
962 if (ret)
963 return ret;
5d4f98a2 964 }
7c302b49 965 clean_tree_block(fs_info, buf);
f0486c68 966 *last_ref = 1;
5d4f98a2
YZ
967 }
968 return 0;
969}
970
d352ac68 971/*
d397712b
CM
972 * does the dirty work in cow of a single block. The parent block (if
973 * supplied) is updated to point to the new cow copy. The new buffer is marked
974 * dirty and returned locked. If you modify the block it needs to be marked
975 * dirty again.
d352ac68
CM
976 *
977 * search_start -- an allocation hint for the new block
978 *
d397712b
CM
979 * empty_size -- a hint that you plan on doing more cow. This is the size in
980 * bytes the allocator should try to find free next to the block it returns.
981 * This is just a hint and may be ignored by the allocator.
d352ac68 982 */
d397712b 983static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
984 struct btrfs_root *root,
985 struct extent_buffer *buf,
986 struct extent_buffer *parent, int parent_slot,
987 struct extent_buffer **cow_ret,
9fa8cfe7 988 u64 search_start, u64 empty_size)
02217ed2 989{
0b246afa 990 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 991 struct btrfs_disk_key disk_key;
5f39d397 992 struct extent_buffer *cow;
be1a5564 993 int level, ret;
f0486c68 994 int last_ref = 0;
925baedd 995 int unlock_orig = 0;
0f5053eb 996 u64 parent_start = 0;
7bb86316 997
925baedd
CM
998 if (*cow_ret == buf)
999 unlock_orig = 1;
1000
b9447ef8 1001 btrfs_assert_tree_locked(buf);
925baedd 1002
27cdeb70 1003 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1004 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1005 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1006 trans->transid != root->last_trans);
5f39d397 1007
7bb86316 1008 level = btrfs_header_level(buf);
31840ae1 1009
5d4f98a2
YZ
1010 if (level == 0)
1011 btrfs_item_key(buf, &disk_key, 0);
1012 else
1013 btrfs_node_key(buf, &disk_key, 0);
1014
0f5053eb
GR
1015 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1016 parent_start = parent->start;
5d4f98a2 1017
5ce55557
FM
1018 /*
1019 * If we are COWing a node/leaf from the extent, chunk or device trees,
1020 * make sure that we do not finish block group creation of pending block
1021 * groups. We do this to avoid a deadlock.
1022 * COWing can result in allocation of a new chunk, and flushing pending
1023 * block groups (btrfs_create_pending_block_groups()) can be triggered
1024 * when finishing allocation of a new chunk. Creation of a pending block
1025 * group modifies the extent, chunk and device trees, therefore we could
1026 * deadlock with ourselves since we are holding a lock on an extent
1027 * buffer that btrfs_create_pending_block_groups() may try to COW later.
1028 */
1029 if (root == fs_info->extent_root ||
1030 root == fs_info->chunk_root ||
1031 root == fs_info->dev_root)
1032 trans->can_flush_pending_bgs = false;
1033
4d75f8a9
DS
1034 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1035 root->root_key.objectid, &disk_key, level,
1036 search_start, empty_size);
5ce55557 1037 trans->can_flush_pending_bgs = true;
54aa1f4d
CM
1038 if (IS_ERR(cow))
1039 return PTR_ERR(cow);
6702ed49 1040
b4ce94de
CM
1041 /* cow is set to blocking by btrfs_init_new_buffer */
1042
58e8012c 1043 copy_extent_buffer_full(cow, buf);
db94535d 1044 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1045 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1046 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1047 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1048 BTRFS_HEADER_FLAG_RELOC);
1049 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1050 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1051 else
1052 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1053
de37aa51 1054 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
2b82032c 1055
be1a5564 1056 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1057 if (ret) {
66642832 1058 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1059 return ret;
1060 }
1a40e23b 1061
27cdeb70 1062 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1063 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1064 if (ret) {
66642832 1065 btrfs_abort_transaction(trans, ret);
83d4cfd4 1066 return ret;
93314e3b 1067 }
83d4cfd4 1068 }
3fd0a558 1069
02217ed2 1070 if (buf == root->node) {
925baedd 1071 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1072 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1073 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1074 parent_start = buf->start;
925baedd 1075
5f39d397 1076 extent_buffer_get(cow);
d9d19a01
DS
1077 ret = tree_mod_log_insert_root(root->node, cow, 1);
1078 BUG_ON(ret < 0);
240f62c8 1079 rcu_assign_pointer(root->node, cow);
925baedd 1080
f0486c68 1081 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1082 last_ref);
5f39d397 1083 free_extent_buffer(buf);
0b86a832 1084 add_root_to_dirty_list(root);
02217ed2 1085 } else {
5d4f98a2 1086 WARN_ON(trans->transid != btrfs_header_generation(parent));
e09c2efe 1087 tree_mod_log_insert_key(parent, parent_slot,
c8cc6341 1088 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1089 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1090 cow->start);
74493f7a
CM
1091 btrfs_set_node_ptr_generation(parent, parent_slot,
1092 trans->transid);
d6025579 1093 btrfs_mark_buffer_dirty(parent);
5de865ee 1094 if (last_ref) {
db7279a2 1095 ret = tree_mod_log_free_eb(buf);
5de865ee 1096 if (ret) {
66642832 1097 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1098 return ret;
1099 }
1100 }
f0486c68 1101 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1102 last_ref);
02217ed2 1103 }
925baedd
CM
1104 if (unlock_orig)
1105 btrfs_tree_unlock(buf);
3083ee2e 1106 free_extent_buffer_stale(buf);
ccd467d6 1107 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1108 *cow_ret = cow;
02217ed2
CM
1109 return 0;
1110}
1111
5d9e75c4
JS
1112/*
1113 * returns the logical address of the oldest predecessor of the given root.
1114 * entries older than time_seq are ignored.
1115 */
bcd24dab
DS
1116static struct tree_mod_elem *__tree_mod_log_oldest_root(
1117 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1118{
1119 struct tree_mod_elem *tm;
1120 struct tree_mod_elem *found = NULL;
30b0463a 1121 u64 root_logical = eb_root->start;
5d9e75c4
JS
1122 int looped = 0;
1123
1124 if (!time_seq)
35a3621b 1125 return NULL;
5d9e75c4
JS
1126
1127 /*
298cfd36
CR
1128 * the very last operation that's logged for a root is the
1129 * replacement operation (if it is replaced at all). this has
1130 * the logical address of the *new* root, making it the very
1131 * first operation that's logged for this root.
5d9e75c4
JS
1132 */
1133 while (1) {
bcd24dab 1134 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
5d9e75c4
JS
1135 time_seq);
1136 if (!looped && !tm)
35a3621b 1137 return NULL;
5d9e75c4 1138 /*
28da9fb4
JS
1139 * if there are no tree operation for the oldest root, we simply
1140 * return it. this should only happen if that (old) root is at
1141 * level 0.
5d9e75c4 1142 */
28da9fb4
JS
1143 if (!tm)
1144 break;
5d9e75c4 1145
28da9fb4
JS
1146 /*
1147 * if there's an operation that's not a root replacement, we
1148 * found the oldest version of our root. normally, we'll find a
1149 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1150 */
5d9e75c4
JS
1151 if (tm->op != MOD_LOG_ROOT_REPLACE)
1152 break;
1153
1154 found = tm;
1155 root_logical = tm->old_root.logical;
5d9e75c4
JS
1156 looped = 1;
1157 }
1158
a95236d9
JS
1159 /* if there's no old root to return, return what we found instead */
1160 if (!found)
1161 found = tm;
1162
5d9e75c4
JS
1163 return found;
1164}
1165
1166/*
1167 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1168 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1169 * time_seq).
1170 */
1171static void
f1ca7e98
JB
1172__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1173 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1174{
1175 u32 n;
1176 struct rb_node *next;
1177 struct tree_mod_elem *tm = first_tm;
1178 unsigned long o_dst;
1179 unsigned long o_src;
1180 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1181
1182 n = btrfs_header_nritems(eb);
b1a09f1e 1183 read_lock(&fs_info->tree_mod_log_lock);
097b8a7c 1184 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1185 /*
1186 * all the operations are recorded with the operator used for
1187 * the modification. as we're going backwards, we do the
1188 * opposite of each operation here.
1189 */
1190 switch (tm->op) {
1191 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1192 BUG_ON(tm->slot < n);
1c697d4a 1193 /* Fallthrough */
95c80bb1 1194 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1195 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1196 btrfs_set_node_key(eb, &tm->key, tm->slot);
1197 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1198 btrfs_set_node_ptr_generation(eb, tm->slot,
1199 tm->generation);
4c3e6969 1200 n++;
5d9e75c4
JS
1201 break;
1202 case MOD_LOG_KEY_REPLACE:
1203 BUG_ON(tm->slot >= n);
1204 btrfs_set_node_key(eb, &tm->key, tm->slot);
1205 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1206 btrfs_set_node_ptr_generation(eb, tm->slot,
1207 tm->generation);
1208 break;
1209 case MOD_LOG_KEY_ADD:
19956c7e 1210 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1211 n--;
1212 break;
1213 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1214 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1215 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1216 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1217 tm->move.nr_items * p_size);
1218 break;
1219 case MOD_LOG_ROOT_REPLACE:
1220 /*
1221 * this operation is special. for roots, this must be
1222 * handled explicitly before rewinding.
1223 * for non-roots, this operation may exist if the node
1224 * was a root: root A -> child B; then A gets empty and
1225 * B is promoted to the new root. in the mod log, we'll
1226 * have a root-replace operation for B, a tree block
1227 * that is no root. we simply ignore that operation.
1228 */
1229 break;
1230 }
1231 next = rb_next(&tm->node);
1232 if (!next)
1233 break;
6b4df8b6 1234 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1235 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1236 break;
1237 }
b1a09f1e 1238 read_unlock(&fs_info->tree_mod_log_lock);
5d9e75c4
JS
1239 btrfs_set_header_nritems(eb, n);
1240}
1241
47fb091f 1242/*
01327610 1243 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1244 * is returned. If rewind operations happen, a fresh buffer is returned. The
1245 * returned buffer is always read-locked. If the returned buffer is not the
1246 * input buffer, the lock on the input buffer is released and the input buffer
1247 * is freed (its refcount is decremented).
1248 */
5d9e75c4 1249static struct extent_buffer *
9ec72677
JB
1250tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1251 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1252{
1253 struct extent_buffer *eb_rewin;
1254 struct tree_mod_elem *tm;
1255
1256 if (!time_seq)
1257 return eb;
1258
1259 if (btrfs_header_level(eb) == 0)
1260 return eb;
1261
1262 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1263 if (!tm)
1264 return eb;
1265
9ec72677
JB
1266 btrfs_set_path_blocking(path);
1267 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1268
5d9e75c4
JS
1269 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1270 BUG_ON(tm->slot != 0);
da17066c 1271 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1272 if (!eb_rewin) {
9ec72677 1273 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1274 free_extent_buffer(eb);
1275 return NULL;
1276 }
5d9e75c4
JS
1277 btrfs_set_header_bytenr(eb_rewin, eb->start);
1278 btrfs_set_header_backref_rev(eb_rewin,
1279 btrfs_header_backref_rev(eb));
1280 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1281 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1282 } else {
1283 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1284 if (!eb_rewin) {
9ec72677 1285 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1286 free_extent_buffer(eb);
1287 return NULL;
1288 }
5d9e75c4
JS
1289 }
1290
9ec72677 1291 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1292 free_extent_buffer(eb);
1293
47fb091f 1294 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1295 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1296 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1297 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1298
1299 return eb_rewin;
1300}
1301
8ba97a15
JS
1302/*
1303 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1304 * value. If there are no changes, the current root->root_node is returned. If
1305 * anything changed in between, there's a fresh buffer allocated on which the
1306 * rewind operations are done. In any case, the returned buffer is read locked.
1307 * Returns NULL on error (with no locks held).
1308 */
5d9e75c4
JS
1309static inline struct extent_buffer *
1310get_old_root(struct btrfs_root *root, u64 time_seq)
1311{
0b246afa 1312 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1313 struct tree_mod_elem *tm;
30b0463a
JS
1314 struct extent_buffer *eb = NULL;
1315 struct extent_buffer *eb_root;
7bfdcf7f 1316 struct extent_buffer *old;
a95236d9 1317 struct tree_mod_root *old_root = NULL;
4325edd0 1318 u64 old_generation = 0;
a95236d9 1319 u64 logical;
581c1760 1320 int level;
5d9e75c4 1321
30b0463a 1322 eb_root = btrfs_read_lock_root_node(root);
bcd24dab 1323 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5d9e75c4 1324 if (!tm)
30b0463a 1325 return eb_root;
5d9e75c4 1326
a95236d9
JS
1327 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1328 old_root = &tm->old_root;
1329 old_generation = tm->generation;
1330 logical = old_root->logical;
581c1760 1331 level = old_root->level;
a95236d9 1332 } else {
30b0463a 1333 logical = eb_root->start;
581c1760 1334 level = btrfs_header_level(eb_root);
a95236d9 1335 }
5d9e75c4 1336
0b246afa 1337 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1338 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1339 btrfs_tree_read_unlock(eb_root);
1340 free_extent_buffer(eb_root);
581c1760 1341 old = read_tree_block(fs_info, logical, 0, level, NULL);
64c043de
LB
1342 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1343 if (!IS_ERR(old))
1344 free_extent_buffer(old);
0b246afa
JM
1345 btrfs_warn(fs_info,
1346 "failed to read tree block %llu from get_old_root",
1347 logical);
834328a8 1348 } else {
7bfdcf7f
LB
1349 eb = btrfs_clone_extent_buffer(old);
1350 free_extent_buffer(old);
834328a8
JS
1351 }
1352 } else if (old_root) {
30b0463a
JS
1353 btrfs_tree_read_unlock(eb_root);
1354 free_extent_buffer(eb_root);
0b246afa 1355 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1356 } else {
9ec72677 1357 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1358 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1359 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1360 free_extent_buffer(eb_root);
834328a8
JS
1361 }
1362
8ba97a15
JS
1363 if (!eb)
1364 return NULL;
1365 btrfs_tree_read_lock(eb);
a95236d9 1366 if (old_root) {
5d9e75c4
JS
1367 btrfs_set_header_bytenr(eb, eb->start);
1368 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1369 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1370 btrfs_set_header_level(eb, old_root->level);
1371 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1372 }
28da9fb4 1373 if (tm)
0b246afa 1374 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1375 else
1376 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1377 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1378
1379 return eb;
1380}
1381
5b6602e7
JS
1382int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1383{
1384 struct tree_mod_elem *tm;
1385 int level;
30b0463a 1386 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1387
bcd24dab 1388 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5b6602e7
JS
1389 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1390 level = tm->old_root.level;
1391 } else {
30b0463a 1392 level = btrfs_header_level(eb_root);
5b6602e7 1393 }
30b0463a 1394 free_extent_buffer(eb_root);
5b6602e7
JS
1395
1396 return level;
1397}
1398
5d4f98a2
YZ
1399static inline int should_cow_block(struct btrfs_trans_handle *trans,
1400 struct btrfs_root *root,
1401 struct extent_buffer *buf)
1402{
f5ee5c9a 1403 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1404 return 0;
fccb84c9 1405
d1980131
DS
1406 /* Ensure we can see the FORCE_COW bit */
1407 smp_mb__before_atomic();
f1ebcc74
LB
1408
1409 /*
1410 * We do not need to cow a block if
1411 * 1) this block is not created or changed in this transaction;
1412 * 2) this block does not belong to TREE_RELOC tree;
1413 * 3) the root is not forced COW.
1414 *
1415 * What is forced COW:
01327610 1416 * when we create snapshot during committing the transaction,
f1ebcc74
LB
1417 * after we've finished coping src root, we must COW the shared
1418 * block to ensure the metadata consistency.
1419 */
5d4f98a2
YZ
1420 if (btrfs_header_generation(buf) == trans->transid &&
1421 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1422 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1423 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1424 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1425 return 0;
1426 return 1;
1427}
1428
d352ac68
CM
1429/*
1430 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1431 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1432 * once per transaction, as long as it hasn't been written yet
1433 */
d397712b 1434noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1435 struct btrfs_root *root, struct extent_buffer *buf,
1436 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1437 struct extent_buffer **cow_ret)
6702ed49 1438{
0b246afa 1439 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1440 u64 search_start;
f510cfec 1441 int ret;
dc17ff8f 1442
83354f07
JB
1443 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1444 btrfs_err(fs_info,
1445 "COW'ing blocks on a fs root that's being dropped");
1446
0b246afa 1447 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1448 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1449 trans->transid,
0b246afa 1450 fs_info->running_transaction->transid);
31b1a2bd 1451
0b246afa 1452 if (trans->transid != fs_info->generation)
31b1a2bd 1453 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1454 trans->transid, fs_info->generation);
dc17ff8f 1455
5d4f98a2 1456 if (!should_cow_block(trans, root, buf)) {
64c12921 1457 trans->dirty = true;
6702ed49
CM
1458 *cow_ret = buf;
1459 return 0;
1460 }
c487685d 1461
ee22184b 1462 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1463
1464 if (parent)
1465 btrfs_set_lock_blocking(parent);
1466 btrfs_set_lock_blocking(buf);
1467
f510cfec 1468 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1469 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1470
1471 trace_btrfs_cow_block(root, buf, *cow_ret);
1472
f510cfec 1473 return ret;
6702ed49
CM
1474}
1475
d352ac68
CM
1476/*
1477 * helper function for defrag to decide if two blocks pointed to by a
1478 * node are actually close by
1479 */
6b80053d 1480static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1481{
6b80053d 1482 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1483 return 1;
6b80053d 1484 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1485 return 1;
1486 return 0;
1487}
1488
081e9573
CM
1489/*
1490 * compare two keys in a memcmp fashion
1491 */
310712b2
OS
1492static int comp_keys(const struct btrfs_disk_key *disk,
1493 const struct btrfs_key *k2)
081e9573
CM
1494{
1495 struct btrfs_key k1;
1496
1497 btrfs_disk_key_to_cpu(&k1, disk);
1498
20736aba 1499 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1500}
1501
f3465ca4
JB
1502/*
1503 * same as comp_keys only with two btrfs_key's
1504 */
310712b2 1505int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1506{
1507 if (k1->objectid > k2->objectid)
1508 return 1;
1509 if (k1->objectid < k2->objectid)
1510 return -1;
1511 if (k1->type > k2->type)
1512 return 1;
1513 if (k1->type < k2->type)
1514 return -1;
1515 if (k1->offset > k2->offset)
1516 return 1;
1517 if (k1->offset < k2->offset)
1518 return -1;
1519 return 0;
1520}
081e9573 1521
d352ac68
CM
1522/*
1523 * this is used by the defrag code to go through all the
1524 * leaves pointed to by a node and reallocate them so that
1525 * disk order is close to key order
1526 */
6702ed49 1527int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1528 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1529 int start_slot, u64 *last_ret,
a6b6e75e 1530 struct btrfs_key *progress)
6702ed49 1531{
0b246afa 1532 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1533 struct extent_buffer *cur;
6702ed49 1534 u64 blocknr;
ca7a79ad 1535 u64 gen;
e9d0b13b
CM
1536 u64 search_start = *last_ret;
1537 u64 last_block = 0;
6702ed49
CM
1538 u64 other;
1539 u32 parent_nritems;
6702ed49
CM
1540 int end_slot;
1541 int i;
1542 int err = 0;
f2183bde 1543 int parent_level;
6b80053d
CM
1544 int uptodate;
1545 u32 blocksize;
081e9573
CM
1546 int progress_passed = 0;
1547 struct btrfs_disk_key disk_key;
6702ed49 1548
5708b959 1549 parent_level = btrfs_header_level(parent);
5708b959 1550
0b246afa
JM
1551 WARN_ON(trans->transaction != fs_info->running_transaction);
1552 WARN_ON(trans->transid != fs_info->generation);
86479a04 1553
6b80053d 1554 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1555 blocksize = fs_info->nodesize;
5dfe2be7 1556 end_slot = parent_nritems - 1;
6702ed49 1557
5dfe2be7 1558 if (parent_nritems <= 1)
6702ed49
CM
1559 return 0;
1560
b4ce94de
CM
1561 btrfs_set_lock_blocking(parent);
1562
5dfe2be7 1563 for (i = start_slot; i <= end_slot; i++) {
581c1760 1564 struct btrfs_key first_key;
6702ed49 1565 int close = 1;
a6b6e75e 1566
081e9573
CM
1567 btrfs_node_key(parent, &disk_key, i);
1568 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1569 continue;
1570
1571 progress_passed = 1;
6b80053d 1572 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1573 gen = btrfs_node_ptr_generation(parent, i);
581c1760 1574 btrfs_node_key_to_cpu(parent, &first_key, i);
e9d0b13b
CM
1575 if (last_block == 0)
1576 last_block = blocknr;
5708b959 1577
6702ed49 1578 if (i > 0) {
6b80053d
CM
1579 other = btrfs_node_blockptr(parent, i - 1);
1580 close = close_blocks(blocknr, other, blocksize);
6702ed49 1581 }
5dfe2be7 1582 if (!close && i < end_slot) {
6b80053d
CM
1583 other = btrfs_node_blockptr(parent, i + 1);
1584 close = close_blocks(blocknr, other, blocksize);
6702ed49 1585 }
e9d0b13b
CM
1586 if (close) {
1587 last_block = blocknr;
6702ed49 1588 continue;
e9d0b13b 1589 }
6702ed49 1590
0b246afa 1591 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1592 if (cur)
b9fab919 1593 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1594 else
1595 uptodate = 0;
5708b959 1596 if (!cur || !uptodate) {
6b80053d 1597 if (!cur) {
581c1760
QW
1598 cur = read_tree_block(fs_info, blocknr, gen,
1599 parent_level - 1,
1600 &first_key);
64c043de
LB
1601 if (IS_ERR(cur)) {
1602 return PTR_ERR(cur);
1603 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1604 free_extent_buffer(cur);
97d9a8a4 1605 return -EIO;
416bc658 1606 }
6b80053d 1607 } else if (!uptodate) {
581c1760
QW
1608 err = btrfs_read_buffer(cur, gen,
1609 parent_level - 1,&first_key);
018642a1
TI
1610 if (err) {
1611 free_extent_buffer(cur);
1612 return err;
1613 }
f2183bde 1614 }
6702ed49 1615 }
e9d0b13b 1616 if (search_start == 0)
6b80053d 1617 search_start = last_block;
e9d0b13b 1618
e7a84565 1619 btrfs_tree_lock(cur);
b4ce94de 1620 btrfs_set_lock_blocking(cur);
6b80053d 1621 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1622 &cur, search_start,
6b80053d 1623 min(16 * blocksize,
9fa8cfe7 1624 (end_slot - i) * blocksize));
252c38f0 1625 if (err) {
e7a84565 1626 btrfs_tree_unlock(cur);
6b80053d 1627 free_extent_buffer(cur);
6702ed49 1628 break;
252c38f0 1629 }
e7a84565
CM
1630 search_start = cur->start;
1631 last_block = cur->start;
f2183bde 1632 *last_ret = search_start;
e7a84565
CM
1633 btrfs_tree_unlock(cur);
1634 free_extent_buffer(cur);
6702ed49
CM
1635 }
1636 return err;
1637}
1638
74123bd7 1639/*
5f39d397
CM
1640 * search for key in the extent_buffer. The items start at offset p,
1641 * and they are item_size apart. There are 'max' items in p.
1642 *
74123bd7
CM
1643 * the slot in the array is returned via slot, and it points to
1644 * the place where you would insert key if it is not found in
1645 * the array.
1646 *
1647 * slot may point to max if the key is bigger than all of the keys
1648 */
e02119d5 1649static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1650 unsigned long p, int item_size,
1651 const struct btrfs_key *key,
e02119d5 1652 int max, int *slot)
be0e5c09
CM
1653{
1654 int low = 0;
1655 int high = max;
1656 int mid;
1657 int ret;
479965d6 1658 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1659 struct btrfs_disk_key unaligned;
1660 unsigned long offset;
5f39d397
CM
1661 char *kaddr = NULL;
1662 unsigned long map_start = 0;
1663 unsigned long map_len = 0;
479965d6 1664 int err;
be0e5c09 1665
5e24e9af
LB
1666 if (low > high) {
1667 btrfs_err(eb->fs_info,
1668 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1669 __func__, low, high, eb->start,
1670 btrfs_header_owner(eb), btrfs_header_level(eb));
1671 return -EINVAL;
1672 }
1673
d397712b 1674 while (low < high) {
be0e5c09 1675 mid = (low + high) / 2;
5f39d397
CM
1676 offset = p + mid * item_size;
1677
a6591715 1678 if (!kaddr || offset < map_start ||
5f39d397
CM
1679 (offset + sizeof(struct btrfs_disk_key)) >
1680 map_start + map_len) {
934d375b
CM
1681
1682 err = map_private_extent_buffer(eb, offset,
479965d6 1683 sizeof(struct btrfs_disk_key),
a6591715 1684 &kaddr, &map_start, &map_len);
479965d6
CM
1685
1686 if (!err) {
1687 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1688 map_start);
415b35a5 1689 } else if (err == 1) {
479965d6
CM
1690 read_extent_buffer(eb, &unaligned,
1691 offset, sizeof(unaligned));
1692 tmp = &unaligned;
415b35a5
LB
1693 } else {
1694 return err;
479965d6 1695 }
5f39d397 1696
5f39d397
CM
1697 } else {
1698 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1699 map_start);
1700 }
be0e5c09
CM
1701 ret = comp_keys(tmp, key);
1702
1703 if (ret < 0)
1704 low = mid + 1;
1705 else if (ret > 0)
1706 high = mid;
1707 else {
1708 *slot = mid;
1709 return 0;
1710 }
1711 }
1712 *slot = low;
1713 return 1;
1714}
1715
97571fd0
CM
1716/*
1717 * simple bin_search frontend that does the right thing for
1718 * leaves vs nodes
1719 */
a74b35ec
NB
1720int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1721 int level, int *slot)
be0e5c09 1722{
f775738f 1723 if (level == 0)
5f39d397
CM
1724 return generic_bin_search(eb,
1725 offsetof(struct btrfs_leaf, items),
0783fcfc 1726 sizeof(struct btrfs_item),
5f39d397 1727 key, btrfs_header_nritems(eb),
7518a238 1728 slot);
f775738f 1729 else
5f39d397
CM
1730 return generic_bin_search(eb,
1731 offsetof(struct btrfs_node, ptrs),
123abc88 1732 sizeof(struct btrfs_key_ptr),
5f39d397 1733 key, btrfs_header_nritems(eb),
7518a238 1734 slot);
be0e5c09
CM
1735}
1736
f0486c68
YZ
1737static void root_add_used(struct btrfs_root *root, u32 size)
1738{
1739 spin_lock(&root->accounting_lock);
1740 btrfs_set_root_used(&root->root_item,
1741 btrfs_root_used(&root->root_item) + size);
1742 spin_unlock(&root->accounting_lock);
1743}
1744
1745static void root_sub_used(struct btrfs_root *root, u32 size)
1746{
1747 spin_lock(&root->accounting_lock);
1748 btrfs_set_root_used(&root->root_item,
1749 btrfs_root_used(&root->root_item) - size);
1750 spin_unlock(&root->accounting_lock);
1751}
1752
d352ac68
CM
1753/* given a node and slot number, this reads the blocks it points to. The
1754 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1755 */
2ff7e61e
JM
1756static noinline struct extent_buffer *
1757read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1758 int slot)
bb803951 1759{
ca7a79ad 1760 int level = btrfs_header_level(parent);
416bc658 1761 struct extent_buffer *eb;
581c1760 1762 struct btrfs_key first_key;
416bc658 1763
fb770ae4
LB
1764 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1765 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1766
1767 BUG_ON(level == 0);
1768
581c1760 1769 btrfs_node_key_to_cpu(parent, &first_key, slot);
2ff7e61e 1770 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
581c1760
QW
1771 btrfs_node_ptr_generation(parent, slot),
1772 level - 1, &first_key);
fb770ae4
LB
1773 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1774 free_extent_buffer(eb);
1775 eb = ERR_PTR(-EIO);
416bc658
JB
1776 }
1777
1778 return eb;
bb803951
CM
1779}
1780
d352ac68
CM
1781/*
1782 * node level balancing, used to make sure nodes are in proper order for
1783 * item deletion. We balance from the top down, so we have to make sure
1784 * that a deletion won't leave an node completely empty later on.
1785 */
e02119d5 1786static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1787 struct btrfs_root *root,
1788 struct btrfs_path *path, int level)
bb803951 1789{
0b246afa 1790 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1791 struct extent_buffer *right = NULL;
1792 struct extent_buffer *mid;
1793 struct extent_buffer *left = NULL;
1794 struct extent_buffer *parent = NULL;
bb803951
CM
1795 int ret = 0;
1796 int wret;
1797 int pslot;
bb803951 1798 int orig_slot = path->slots[level];
79f95c82 1799 u64 orig_ptr;
bb803951 1800
98e6b1eb 1801 ASSERT(level > 0);
bb803951 1802
5f39d397 1803 mid = path->nodes[level];
b4ce94de 1804
bd681513
CM
1805 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1806 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1807 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1808
1d4f8a0c 1809 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1810
a05a9bb1 1811 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1812 parent = path->nodes[level + 1];
a05a9bb1
LZ
1813 pslot = path->slots[level + 1];
1814 }
bb803951 1815
40689478
CM
1816 /*
1817 * deal with the case where there is only one pointer in the root
1818 * by promoting the node below to a root
1819 */
5f39d397
CM
1820 if (!parent) {
1821 struct extent_buffer *child;
bb803951 1822
5f39d397 1823 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1824 return 0;
1825
1826 /* promote the child to a root */
2ff7e61e 1827 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1828 if (IS_ERR(child)) {
1829 ret = PTR_ERR(child);
0b246afa 1830 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1831 goto enospc;
1832 }
1833
925baedd 1834 btrfs_tree_lock(child);
b4ce94de 1835 btrfs_set_lock_blocking(child);
9fa8cfe7 1836 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1837 if (ret) {
1838 btrfs_tree_unlock(child);
1839 free_extent_buffer(child);
1840 goto enospc;
1841 }
2f375ab9 1842
d9d19a01
DS
1843 ret = tree_mod_log_insert_root(root->node, child, 1);
1844 BUG_ON(ret < 0);
240f62c8 1845 rcu_assign_pointer(root->node, child);
925baedd 1846
0b86a832 1847 add_root_to_dirty_list(root);
925baedd 1848 btrfs_tree_unlock(child);
b4ce94de 1849
925baedd 1850 path->locks[level] = 0;
bb803951 1851 path->nodes[level] = NULL;
7c302b49 1852 clean_tree_block(fs_info, mid);
925baedd 1853 btrfs_tree_unlock(mid);
bb803951 1854 /* once for the path */
5f39d397 1855 free_extent_buffer(mid);
f0486c68
YZ
1856
1857 root_sub_used(root, mid->len);
5581a51a 1858 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1859 /* once for the root ptr */
3083ee2e 1860 free_extent_buffer_stale(mid);
f0486c68 1861 return 0;
bb803951 1862 }
5f39d397 1863 if (btrfs_header_nritems(mid) >
0b246afa 1864 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1865 return 0;
1866
2ff7e61e 1867 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1868 if (IS_ERR(left))
1869 left = NULL;
1870
5f39d397 1871 if (left) {
925baedd 1872 btrfs_tree_lock(left);
b4ce94de 1873 btrfs_set_lock_blocking(left);
5f39d397 1874 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1875 parent, pslot - 1, &left);
54aa1f4d
CM
1876 if (wret) {
1877 ret = wret;
1878 goto enospc;
1879 }
2cc58cf2 1880 }
fb770ae4 1881
2ff7e61e 1882 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1883 if (IS_ERR(right))
1884 right = NULL;
1885
5f39d397 1886 if (right) {
925baedd 1887 btrfs_tree_lock(right);
b4ce94de 1888 btrfs_set_lock_blocking(right);
5f39d397 1889 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1890 parent, pslot + 1, &right);
2cc58cf2
CM
1891 if (wret) {
1892 ret = wret;
1893 goto enospc;
1894 }
1895 }
1896
1897 /* first, try to make some room in the middle buffer */
5f39d397
CM
1898 if (left) {
1899 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1900 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1901 if (wret < 0)
1902 ret = wret;
bb803951 1903 }
79f95c82
CM
1904
1905 /*
1906 * then try to empty the right most buffer into the middle
1907 */
5f39d397 1908 if (right) {
2ff7e61e 1909 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 1910 if (wret < 0 && wret != -ENOSPC)
79f95c82 1911 ret = wret;
5f39d397 1912 if (btrfs_header_nritems(right) == 0) {
7c302b49 1913 clean_tree_block(fs_info, right);
925baedd 1914 btrfs_tree_unlock(right);
afe5fea7 1915 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 1916 root_sub_used(root, right->len);
5581a51a 1917 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1918 free_extent_buffer_stale(right);
f0486c68 1919 right = NULL;
bb803951 1920 } else {
5f39d397
CM
1921 struct btrfs_disk_key right_key;
1922 btrfs_node_key(right, &right_key, 0);
0e82bcfe
DS
1923 ret = tree_mod_log_insert_key(parent, pslot + 1,
1924 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1925 BUG_ON(ret < 0);
5f39d397
CM
1926 btrfs_set_node_key(parent, &right_key, pslot + 1);
1927 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1928 }
1929 }
5f39d397 1930 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1931 /*
1932 * we're not allowed to leave a node with one item in the
1933 * tree during a delete. A deletion from lower in the tree
1934 * could try to delete the only pointer in this node.
1935 * So, pull some keys from the left.
1936 * There has to be a left pointer at this point because
1937 * otherwise we would have pulled some pointers from the
1938 * right
1939 */
305a26af
MF
1940 if (!left) {
1941 ret = -EROFS;
0b246afa 1942 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1943 goto enospc;
1944 }
2ff7e61e 1945 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 1946 if (wret < 0) {
79f95c82 1947 ret = wret;
54aa1f4d
CM
1948 goto enospc;
1949 }
bce4eae9 1950 if (wret == 1) {
2ff7e61e 1951 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
1952 if (wret < 0)
1953 ret = wret;
1954 }
79f95c82
CM
1955 BUG_ON(wret == 1);
1956 }
5f39d397 1957 if (btrfs_header_nritems(mid) == 0) {
7c302b49 1958 clean_tree_block(fs_info, mid);
925baedd 1959 btrfs_tree_unlock(mid);
afe5fea7 1960 del_ptr(root, path, level + 1, pslot);
f0486c68 1961 root_sub_used(root, mid->len);
5581a51a 1962 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1963 free_extent_buffer_stale(mid);
f0486c68 1964 mid = NULL;
79f95c82
CM
1965 } else {
1966 /* update the parent key to reflect our changes */
5f39d397
CM
1967 struct btrfs_disk_key mid_key;
1968 btrfs_node_key(mid, &mid_key, 0);
0e82bcfe
DS
1969 ret = tree_mod_log_insert_key(parent, pslot,
1970 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1971 BUG_ON(ret < 0);
5f39d397
CM
1972 btrfs_set_node_key(parent, &mid_key, pslot);
1973 btrfs_mark_buffer_dirty(parent);
79f95c82 1974 }
bb803951 1975
79f95c82 1976 /* update the path */
5f39d397
CM
1977 if (left) {
1978 if (btrfs_header_nritems(left) > orig_slot) {
1979 extent_buffer_get(left);
925baedd 1980 /* left was locked after cow */
5f39d397 1981 path->nodes[level] = left;
bb803951
CM
1982 path->slots[level + 1] -= 1;
1983 path->slots[level] = orig_slot;
925baedd
CM
1984 if (mid) {
1985 btrfs_tree_unlock(mid);
5f39d397 1986 free_extent_buffer(mid);
925baedd 1987 }
bb803951 1988 } else {
5f39d397 1989 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
1990 path->slots[level] = orig_slot;
1991 }
1992 }
79f95c82 1993 /* double check we haven't messed things up */
e20d96d6 1994 if (orig_ptr !=
5f39d397 1995 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 1996 BUG();
54aa1f4d 1997enospc:
925baedd
CM
1998 if (right) {
1999 btrfs_tree_unlock(right);
5f39d397 2000 free_extent_buffer(right);
925baedd
CM
2001 }
2002 if (left) {
2003 if (path->nodes[level] != left)
2004 btrfs_tree_unlock(left);
5f39d397 2005 free_extent_buffer(left);
925baedd 2006 }
bb803951
CM
2007 return ret;
2008}
2009
d352ac68
CM
2010/* Node balancing for insertion. Here we only split or push nodes around
2011 * when they are completely full. This is also done top down, so we
2012 * have to be pessimistic.
2013 */
d397712b 2014static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2015 struct btrfs_root *root,
2016 struct btrfs_path *path, int level)
e66f709b 2017{
0b246afa 2018 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2019 struct extent_buffer *right = NULL;
2020 struct extent_buffer *mid;
2021 struct extent_buffer *left = NULL;
2022 struct extent_buffer *parent = NULL;
e66f709b
CM
2023 int ret = 0;
2024 int wret;
2025 int pslot;
2026 int orig_slot = path->slots[level];
e66f709b
CM
2027
2028 if (level == 0)
2029 return 1;
2030
5f39d397 2031 mid = path->nodes[level];
7bb86316 2032 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2033
a05a9bb1 2034 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2035 parent = path->nodes[level + 1];
a05a9bb1
LZ
2036 pslot = path->slots[level + 1];
2037 }
e66f709b 2038
5f39d397 2039 if (!parent)
e66f709b 2040 return 1;
e66f709b 2041
2ff7e61e 2042 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2043 if (IS_ERR(left))
2044 left = NULL;
e66f709b
CM
2045
2046 /* first, try to make some room in the middle buffer */
5f39d397 2047 if (left) {
e66f709b 2048 u32 left_nr;
925baedd
CM
2049
2050 btrfs_tree_lock(left);
b4ce94de
CM
2051 btrfs_set_lock_blocking(left);
2052
5f39d397 2053 left_nr = btrfs_header_nritems(left);
0b246afa 2054 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2055 wret = 1;
2056 } else {
5f39d397 2057 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2058 pslot - 1, &left);
54aa1f4d
CM
2059 if (ret)
2060 wret = 1;
2061 else {
2ff7e61e 2062 wret = push_node_left(trans, fs_info,
971a1f66 2063 left, mid, 0);
54aa1f4d 2064 }
33ade1f8 2065 }
e66f709b
CM
2066 if (wret < 0)
2067 ret = wret;
2068 if (wret == 0) {
5f39d397 2069 struct btrfs_disk_key disk_key;
e66f709b 2070 orig_slot += left_nr;
5f39d397 2071 btrfs_node_key(mid, &disk_key, 0);
0e82bcfe
DS
2072 ret = tree_mod_log_insert_key(parent, pslot,
2073 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2074 BUG_ON(ret < 0);
5f39d397
CM
2075 btrfs_set_node_key(parent, &disk_key, pslot);
2076 btrfs_mark_buffer_dirty(parent);
2077 if (btrfs_header_nritems(left) > orig_slot) {
2078 path->nodes[level] = left;
e66f709b
CM
2079 path->slots[level + 1] -= 1;
2080 path->slots[level] = orig_slot;
925baedd 2081 btrfs_tree_unlock(mid);
5f39d397 2082 free_extent_buffer(mid);
e66f709b
CM
2083 } else {
2084 orig_slot -=
5f39d397 2085 btrfs_header_nritems(left);
e66f709b 2086 path->slots[level] = orig_slot;
925baedd 2087 btrfs_tree_unlock(left);
5f39d397 2088 free_extent_buffer(left);
e66f709b 2089 }
e66f709b
CM
2090 return 0;
2091 }
925baedd 2092 btrfs_tree_unlock(left);
5f39d397 2093 free_extent_buffer(left);
e66f709b 2094 }
2ff7e61e 2095 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2096 if (IS_ERR(right))
2097 right = NULL;
e66f709b
CM
2098
2099 /*
2100 * then try to empty the right most buffer into the middle
2101 */
5f39d397 2102 if (right) {
33ade1f8 2103 u32 right_nr;
b4ce94de 2104
925baedd 2105 btrfs_tree_lock(right);
b4ce94de
CM
2106 btrfs_set_lock_blocking(right);
2107
5f39d397 2108 right_nr = btrfs_header_nritems(right);
0b246afa 2109 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2110 wret = 1;
2111 } else {
5f39d397
CM
2112 ret = btrfs_cow_block(trans, root, right,
2113 parent, pslot + 1,
9fa8cfe7 2114 &right);
54aa1f4d
CM
2115 if (ret)
2116 wret = 1;
2117 else {
2ff7e61e 2118 wret = balance_node_right(trans, fs_info,
5f39d397 2119 right, mid);
54aa1f4d 2120 }
33ade1f8 2121 }
e66f709b
CM
2122 if (wret < 0)
2123 ret = wret;
2124 if (wret == 0) {
5f39d397
CM
2125 struct btrfs_disk_key disk_key;
2126
2127 btrfs_node_key(right, &disk_key, 0);
0e82bcfe
DS
2128 ret = tree_mod_log_insert_key(parent, pslot + 1,
2129 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2130 BUG_ON(ret < 0);
5f39d397
CM
2131 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2132 btrfs_mark_buffer_dirty(parent);
2133
2134 if (btrfs_header_nritems(mid) <= orig_slot) {
2135 path->nodes[level] = right;
e66f709b
CM
2136 path->slots[level + 1] += 1;
2137 path->slots[level] = orig_slot -
5f39d397 2138 btrfs_header_nritems(mid);
925baedd 2139 btrfs_tree_unlock(mid);
5f39d397 2140 free_extent_buffer(mid);
e66f709b 2141 } else {
925baedd 2142 btrfs_tree_unlock(right);
5f39d397 2143 free_extent_buffer(right);
e66f709b 2144 }
e66f709b
CM
2145 return 0;
2146 }
925baedd 2147 btrfs_tree_unlock(right);
5f39d397 2148 free_extent_buffer(right);
e66f709b 2149 }
e66f709b
CM
2150 return 1;
2151}
2152
3c69faec 2153/*
d352ac68
CM
2154 * readahead one full node of leaves, finding things that are close
2155 * to the block in 'slot', and triggering ra on them.
3c69faec 2156 */
2ff7e61e 2157static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2158 struct btrfs_path *path,
2159 int level, int slot, u64 objectid)
3c69faec 2160{
5f39d397 2161 struct extent_buffer *node;
01f46658 2162 struct btrfs_disk_key disk_key;
3c69faec 2163 u32 nritems;
3c69faec 2164 u64 search;
a7175319 2165 u64 target;
6b80053d 2166 u64 nread = 0;
5f39d397 2167 struct extent_buffer *eb;
6b80053d
CM
2168 u32 nr;
2169 u32 blocksize;
2170 u32 nscan = 0;
db94535d 2171
a6b6e75e 2172 if (level != 1)
6702ed49
CM
2173 return;
2174
2175 if (!path->nodes[level])
3c69faec
CM
2176 return;
2177
5f39d397 2178 node = path->nodes[level];
925baedd 2179
3c69faec 2180 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2181 blocksize = fs_info->nodesize;
2182 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2183 if (eb) {
2184 free_extent_buffer(eb);
3c69faec
CM
2185 return;
2186 }
2187
a7175319 2188 target = search;
6b80053d 2189
5f39d397 2190 nritems = btrfs_header_nritems(node);
6b80053d 2191 nr = slot;
25b8b936 2192
d397712b 2193 while (1) {
e4058b54 2194 if (path->reada == READA_BACK) {
6b80053d
CM
2195 if (nr == 0)
2196 break;
2197 nr--;
e4058b54 2198 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2199 nr++;
2200 if (nr >= nritems)
2201 break;
3c69faec 2202 }
e4058b54 2203 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2204 btrfs_node_key(node, &disk_key, nr);
2205 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2206 break;
2207 }
6b80053d 2208 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2209 if ((search <= target && target - search <= 65536) ||
2210 (search > target && search - target <= 65536)) {
2ff7e61e 2211 readahead_tree_block(fs_info, search);
6b80053d
CM
2212 nread += blocksize;
2213 }
2214 nscan++;
a7175319 2215 if ((nread > 65536 || nscan > 32))
6b80053d 2216 break;
3c69faec
CM
2217 }
2218}
925baedd 2219
2ff7e61e 2220static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2221 struct btrfs_path *path, int level)
b4ce94de
CM
2222{
2223 int slot;
2224 int nritems;
2225 struct extent_buffer *parent;
2226 struct extent_buffer *eb;
2227 u64 gen;
2228 u64 block1 = 0;
2229 u64 block2 = 0;
b4ce94de 2230
8c594ea8 2231 parent = path->nodes[level + 1];
b4ce94de 2232 if (!parent)
0b08851f 2233 return;
b4ce94de
CM
2234
2235 nritems = btrfs_header_nritems(parent);
8c594ea8 2236 slot = path->slots[level + 1];
b4ce94de
CM
2237
2238 if (slot > 0) {
2239 block1 = btrfs_node_blockptr(parent, slot - 1);
2240 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2241 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2242 /*
2243 * if we get -eagain from btrfs_buffer_uptodate, we
2244 * don't want to return eagain here. That will loop
2245 * forever
2246 */
2247 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2248 block1 = 0;
2249 free_extent_buffer(eb);
2250 }
8c594ea8 2251 if (slot + 1 < nritems) {
b4ce94de
CM
2252 block2 = btrfs_node_blockptr(parent, slot + 1);
2253 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2254 eb = find_extent_buffer(fs_info, block2);
b9fab919 2255 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2256 block2 = 0;
2257 free_extent_buffer(eb);
2258 }
8c594ea8 2259
0b08851f 2260 if (block1)
2ff7e61e 2261 readahead_tree_block(fs_info, block1);
0b08851f 2262 if (block2)
2ff7e61e 2263 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2264}
2265
2266
d352ac68 2267/*
d397712b
CM
2268 * when we walk down the tree, it is usually safe to unlock the higher layers
2269 * in the tree. The exceptions are when our path goes through slot 0, because
2270 * operations on the tree might require changing key pointers higher up in the
2271 * tree.
d352ac68 2272 *
d397712b
CM
2273 * callers might also have set path->keep_locks, which tells this code to keep
2274 * the lock if the path points to the last slot in the block. This is part of
2275 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2276 *
d397712b
CM
2277 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2278 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2279 */
e02119d5 2280static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2281 int lowest_unlock, int min_write_lock_level,
2282 int *write_lock_level)
925baedd
CM
2283{
2284 int i;
2285 int skip_level = level;
051e1b9f 2286 int no_skips = 0;
925baedd
CM
2287 struct extent_buffer *t;
2288
2289 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2290 if (!path->nodes[i])
2291 break;
2292 if (!path->locks[i])
2293 break;
051e1b9f 2294 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2295 skip_level = i + 1;
2296 continue;
2297 }
051e1b9f 2298 if (!no_skips && path->keep_locks) {
925baedd
CM
2299 u32 nritems;
2300 t = path->nodes[i];
2301 nritems = btrfs_header_nritems(t);
051e1b9f 2302 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2303 skip_level = i + 1;
2304 continue;
2305 }
2306 }
051e1b9f
CM
2307 if (skip_level < i && i >= lowest_unlock)
2308 no_skips = 1;
2309
925baedd 2310 t = path->nodes[i];
d80bb3f9 2311 if (i >= lowest_unlock && i > skip_level) {
bd681513 2312 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2313 path->locks[i] = 0;
f7c79f30
CM
2314 if (write_lock_level &&
2315 i > min_write_lock_level &&
2316 i <= *write_lock_level) {
2317 *write_lock_level = i - 1;
2318 }
925baedd
CM
2319 }
2320 }
2321}
2322
b4ce94de
CM
2323/*
2324 * This releases any locks held in the path starting at level and
2325 * going all the way up to the root.
2326 *
2327 * btrfs_search_slot will keep the lock held on higher nodes in a few
2328 * corner cases, such as COW of the block at slot zero in the node. This
2329 * ignores those rules, and it should only be called when there are no
2330 * more updates to be done higher up in the tree.
2331 */
2332noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2333{
2334 int i;
2335
09a2a8f9 2336 if (path->keep_locks)
b4ce94de
CM
2337 return;
2338
2339 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2340 if (!path->nodes[i])
12f4dacc 2341 continue;
b4ce94de 2342 if (!path->locks[i])
12f4dacc 2343 continue;
bd681513 2344 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2345 path->locks[i] = 0;
2346 }
2347}
2348
c8c42864
CM
2349/*
2350 * helper function for btrfs_search_slot. The goal is to find a block
2351 * in cache without setting the path to blocking. If we find the block
2352 * we return zero and the path is unchanged.
2353 *
2354 * If we can't find the block, we set the path blocking and do some
2355 * reada. -EAGAIN is returned and the search must be repeated.
2356 */
2357static int
d07b8528
LB
2358read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2359 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2360 const struct btrfs_key *key)
c8c42864 2361{
0b246afa 2362 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2363 u64 blocknr;
2364 u64 gen;
c8c42864
CM
2365 struct extent_buffer *b = *eb_ret;
2366 struct extent_buffer *tmp;
581c1760 2367 struct btrfs_key first_key;
76a05b35 2368 int ret;
581c1760 2369 int parent_level;
c8c42864
CM
2370
2371 blocknr = btrfs_node_blockptr(b, slot);
2372 gen = btrfs_node_ptr_generation(b, slot);
581c1760
QW
2373 parent_level = btrfs_header_level(b);
2374 btrfs_node_key_to_cpu(b, &first_key, slot);
c8c42864 2375
0b246afa 2376 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2377 if (tmp) {
b9fab919 2378 /* first we do an atomic uptodate check */
bdf7c00e
JB
2379 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2380 *eb_ret = tmp;
2381 return 0;
2382 }
2383
2384 /* the pages were up to date, but we failed
2385 * the generation number check. Do a full
2386 * read for the generation number that is correct.
2387 * We must do this without dropping locks so
2388 * we can trust our generation number
2389 */
2390 btrfs_set_path_blocking(p);
2391
2392 /* now we're allowed to do a blocking uptodate check */
581c1760 2393 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
bdf7c00e
JB
2394 if (!ret) {
2395 *eb_ret = tmp;
2396 return 0;
cb44921a 2397 }
bdf7c00e
JB
2398 free_extent_buffer(tmp);
2399 btrfs_release_path(p);
2400 return -EIO;
c8c42864
CM
2401 }
2402
2403 /*
2404 * reduce lock contention at high levels
2405 * of the btree by dropping locks before
76a05b35
CM
2406 * we read. Don't release the lock on the current
2407 * level because we need to walk this node to figure
2408 * out which blocks to read.
c8c42864 2409 */
8c594ea8
CM
2410 btrfs_unlock_up_safe(p, level + 1);
2411 btrfs_set_path_blocking(p);
2412
e4058b54 2413 if (p->reada != READA_NONE)
2ff7e61e 2414 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2415
76a05b35 2416 ret = -EAGAIN;
02a3307a 2417 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
581c1760 2418 &first_key);
64c043de 2419 if (!IS_ERR(tmp)) {
76a05b35
CM
2420 /*
2421 * If the read above didn't mark this buffer up to date,
2422 * it will never end up being up to date. Set ret to EIO now
2423 * and give up so that our caller doesn't loop forever
2424 * on our EAGAINs.
2425 */
e6a1d6fd 2426 if (!extent_buffer_uptodate(tmp))
76a05b35 2427 ret = -EIO;
c8c42864 2428 free_extent_buffer(tmp);
c871b0f2
LB
2429 } else {
2430 ret = PTR_ERR(tmp);
76a05b35 2431 }
02a3307a
LB
2432
2433 btrfs_release_path(p);
76a05b35 2434 return ret;
c8c42864
CM
2435}
2436
2437/*
2438 * helper function for btrfs_search_slot. This does all of the checks
2439 * for node-level blocks and does any balancing required based on
2440 * the ins_len.
2441 *
2442 * If no extra work was required, zero is returned. If we had to
2443 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2444 * start over
2445 */
2446static int
2447setup_nodes_for_search(struct btrfs_trans_handle *trans,
2448 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2449 struct extent_buffer *b, int level, int ins_len,
2450 int *write_lock_level)
c8c42864 2451{
0b246afa 2452 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2453 int ret;
0b246afa 2454
c8c42864 2455 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2456 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2457 int sret;
2458
bd681513
CM
2459 if (*write_lock_level < level + 1) {
2460 *write_lock_level = level + 1;
2461 btrfs_release_path(p);
2462 goto again;
2463 }
2464
c8c42864 2465 btrfs_set_path_blocking(p);
2ff7e61e 2466 reada_for_balance(fs_info, p, level);
c8c42864 2467 sret = split_node(trans, root, p, level);
c8c42864
CM
2468
2469 BUG_ON(sret > 0);
2470 if (sret) {
2471 ret = sret;
2472 goto done;
2473 }
2474 b = p->nodes[level];
2475 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2476 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2477 int sret;
2478
bd681513
CM
2479 if (*write_lock_level < level + 1) {
2480 *write_lock_level = level + 1;
2481 btrfs_release_path(p);
2482 goto again;
2483 }
2484
c8c42864 2485 btrfs_set_path_blocking(p);
2ff7e61e 2486 reada_for_balance(fs_info, p, level);
c8c42864 2487 sret = balance_level(trans, root, p, level);
c8c42864
CM
2488
2489 if (sret) {
2490 ret = sret;
2491 goto done;
2492 }
2493 b = p->nodes[level];
2494 if (!b) {
b3b4aa74 2495 btrfs_release_path(p);
c8c42864
CM
2496 goto again;
2497 }
2498 BUG_ON(btrfs_header_nritems(b) == 1);
2499 }
2500 return 0;
2501
2502again:
2503 ret = -EAGAIN;
2504done:
2505 return ret;
2506}
2507
d7396f07 2508static void key_search_validate(struct extent_buffer *b,
310712b2 2509 const struct btrfs_key *key,
d7396f07
FDBM
2510 int level)
2511{
2512#ifdef CONFIG_BTRFS_ASSERT
2513 struct btrfs_disk_key disk_key;
2514
2515 btrfs_cpu_key_to_disk(&disk_key, key);
2516
2517 if (level == 0)
2518 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2519 offsetof(struct btrfs_leaf, items[0].key),
2520 sizeof(disk_key)));
2521 else
2522 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2523 offsetof(struct btrfs_node, ptrs[0].key),
2524 sizeof(disk_key)));
2525#endif
2526}
2527
310712b2 2528static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2529 int level, int *prev_cmp, int *slot)
2530{
2531 if (*prev_cmp != 0) {
a74b35ec 2532 *prev_cmp = btrfs_bin_search(b, key, level, slot);
d7396f07
FDBM
2533 return *prev_cmp;
2534 }
2535
2536 key_search_validate(b, key, level);
2537 *slot = 0;
2538
2539 return 0;
2540}
2541
381cf658 2542int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2543 u64 iobjectid, u64 ioff, u8 key_type,
2544 struct btrfs_key *found_key)
2545{
2546 int ret;
2547 struct btrfs_key key;
2548 struct extent_buffer *eb;
381cf658
DS
2549
2550 ASSERT(path);
1d4c08e0 2551 ASSERT(found_key);
e33d5c3d
KN
2552
2553 key.type = key_type;
2554 key.objectid = iobjectid;
2555 key.offset = ioff;
2556
2557 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2558 if (ret < 0)
e33d5c3d
KN
2559 return ret;
2560
2561 eb = path->nodes[0];
2562 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2563 ret = btrfs_next_leaf(fs_root, path);
2564 if (ret)
2565 return ret;
2566 eb = path->nodes[0];
2567 }
2568
2569 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2570 if (found_key->type != key.type ||
2571 found_key->objectid != key.objectid)
2572 return 1;
2573
2574 return 0;
2575}
2576
1fc28d8e
LB
2577static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2578 struct btrfs_path *p,
2579 int write_lock_level)
2580{
2581 struct btrfs_fs_info *fs_info = root->fs_info;
2582 struct extent_buffer *b;
2583 int root_lock;
2584 int level = 0;
2585
2586 /* We try very hard to do read locks on the root */
2587 root_lock = BTRFS_READ_LOCK;
2588
2589 if (p->search_commit_root) {
be6821f8
FM
2590 /*
2591 * The commit roots are read only so we always do read locks,
2592 * and we always must hold the commit_root_sem when doing
2593 * searches on them, the only exception is send where we don't
2594 * want to block transaction commits for a long time, so
2595 * we need to clone the commit root in order to avoid races
2596 * with transaction commits that create a snapshot of one of
2597 * the roots used by a send operation.
2598 */
2599 if (p->need_commit_sem) {
1fc28d8e 2600 down_read(&fs_info->commit_root_sem);
be6821f8 2601 b = btrfs_clone_extent_buffer(root->commit_root);
1fc28d8e 2602 up_read(&fs_info->commit_root_sem);
be6821f8
FM
2603 if (!b)
2604 return ERR_PTR(-ENOMEM);
2605
2606 } else {
2607 b = root->commit_root;
2608 extent_buffer_get(b);
2609 }
2610 level = btrfs_header_level(b);
f9ddfd05
LB
2611 /*
2612 * Ensure that all callers have set skip_locking when
2613 * p->search_commit_root = 1.
2614 */
2615 ASSERT(p->skip_locking == 1);
1fc28d8e
LB
2616
2617 goto out;
2618 }
2619
2620 if (p->skip_locking) {
2621 b = btrfs_root_node(root);
2622 level = btrfs_header_level(b);
2623 goto out;
2624 }
2625
2626 /*
662c653b
LB
2627 * If the level is set to maximum, we can skip trying to get the read
2628 * lock.
1fc28d8e 2629 */
662c653b
LB
2630 if (write_lock_level < BTRFS_MAX_LEVEL) {
2631 /*
2632 * We don't know the level of the root node until we actually
2633 * have it read locked
2634 */
2635 b = btrfs_read_lock_root_node(root);
2636 level = btrfs_header_level(b);
2637 if (level > write_lock_level)
2638 goto out;
2639
2640 /* Whoops, must trade for write lock */
2641 btrfs_tree_read_unlock(b);
2642 free_extent_buffer(b);
2643 }
1fc28d8e 2644
1fc28d8e
LB
2645 b = btrfs_lock_root_node(root);
2646 root_lock = BTRFS_WRITE_LOCK;
2647
2648 /* The level might have changed, check again */
2649 level = btrfs_header_level(b);
2650
2651out:
2652 p->nodes[level] = b;
2653 if (!p->skip_locking)
2654 p->locks[level] = root_lock;
2655 /*
2656 * Callers are responsible for dropping b's references.
2657 */
2658 return b;
2659}
2660
2661
74123bd7 2662/*
4271ecea
NB
2663 * btrfs_search_slot - look for a key in a tree and perform necessary
2664 * modifications to preserve tree invariants.
74123bd7 2665 *
4271ecea
NB
2666 * @trans: Handle of transaction, used when modifying the tree
2667 * @p: Holds all btree nodes along the search path
2668 * @root: The root node of the tree
2669 * @key: The key we are looking for
2670 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2671 * deletions it's -1. 0 for plain searches
2672 * @cow: boolean should CoW operations be performed. Must always be 1
2673 * when modifying the tree.
97571fd0 2674 *
4271ecea
NB
2675 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2676 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2677 *
2678 * If @key is found, 0 is returned and you can find the item in the leaf level
2679 * of the path (level 0)
2680 *
2681 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2682 * points to the slot where it should be inserted
2683 *
2684 * If an error is encountered while searching the tree a negative error number
2685 * is returned
74123bd7 2686 */
310712b2
OS
2687int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2688 const struct btrfs_key *key, struct btrfs_path *p,
2689 int ins_len, int cow)
be0e5c09 2690{
0b246afa 2691 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2692 struct extent_buffer *b;
be0e5c09
CM
2693 int slot;
2694 int ret;
33c66f43 2695 int err;
be0e5c09 2696 int level;
925baedd 2697 int lowest_unlock = 1;
bd681513
CM
2698 /* everything at write_lock_level or lower must be write locked */
2699 int write_lock_level = 0;
9f3a7427 2700 u8 lowest_level = 0;
f7c79f30 2701 int min_write_lock_level;
d7396f07 2702 int prev_cmp;
9f3a7427 2703
6702ed49 2704 lowest_level = p->lowest_level;
323ac95b 2705 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2706 WARN_ON(p->nodes[0] != NULL);
eb653de1 2707 BUG_ON(!cow && ins_len);
25179201 2708
bd681513 2709 if (ins_len < 0) {
925baedd 2710 lowest_unlock = 2;
65b51a00 2711
bd681513
CM
2712 /* when we are removing items, we might have to go up to level
2713 * two as we update tree pointers Make sure we keep write
2714 * for those levels as well
2715 */
2716 write_lock_level = 2;
2717 } else if (ins_len > 0) {
2718 /*
2719 * for inserting items, make sure we have a write lock on
2720 * level 1 so we can update keys
2721 */
2722 write_lock_level = 1;
2723 }
2724
2725 if (!cow)
2726 write_lock_level = -1;
2727
09a2a8f9 2728 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2729 write_lock_level = BTRFS_MAX_LEVEL;
2730
f7c79f30
CM
2731 min_write_lock_level = write_lock_level;
2732
bb803951 2733again:
d7396f07 2734 prev_cmp = -1;
1fc28d8e 2735 b = btrfs_search_slot_get_root(root, p, write_lock_level);
be6821f8
FM
2736 if (IS_ERR(b)) {
2737 ret = PTR_ERR(b);
2738 goto done;
2739 }
925baedd 2740
eb60ceac 2741 while (b) {
5f39d397 2742 level = btrfs_header_level(b);
65b51a00
CM
2743
2744 /*
2745 * setup the path here so we can release it under lock
2746 * contention with the cow code
2747 */
02217ed2 2748 if (cow) {
9ea2c7c9
NB
2749 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2750
c8c42864
CM
2751 /*
2752 * if we don't really need to cow this block
2753 * then we don't want to set the path blocking,
2754 * so we test it here
2755 */
64c12921
JM
2756 if (!should_cow_block(trans, root, b)) {
2757 trans->dirty = true;
65b51a00 2758 goto cow_done;
64c12921 2759 }
5d4f98a2 2760
bd681513
CM
2761 /*
2762 * must have write locks on this node and the
2763 * parent
2764 */
5124e00e
JB
2765 if (level > write_lock_level ||
2766 (level + 1 > write_lock_level &&
2767 level + 1 < BTRFS_MAX_LEVEL &&
2768 p->nodes[level + 1])) {
bd681513
CM
2769 write_lock_level = level + 1;
2770 btrfs_release_path(p);
2771 goto again;
2772 }
2773
160f4089 2774 btrfs_set_path_blocking(p);
9ea2c7c9
NB
2775 if (last_level)
2776 err = btrfs_cow_block(trans, root, b, NULL, 0,
2777 &b);
2778 else
2779 err = btrfs_cow_block(trans, root, b,
2780 p->nodes[level + 1],
2781 p->slots[level + 1], &b);
33c66f43 2782 if (err) {
33c66f43 2783 ret = err;
65b51a00 2784 goto done;
54aa1f4d 2785 }
02217ed2 2786 }
65b51a00 2787cow_done:
eb60ceac 2788 p->nodes[level] = b;
52398340
LB
2789 /*
2790 * Leave path with blocking locks to avoid massive
2791 * lock context switch, this is made on purpose.
2792 */
b4ce94de
CM
2793
2794 /*
2795 * we have a lock on b and as long as we aren't changing
2796 * the tree, there is no way to for the items in b to change.
2797 * It is safe to drop the lock on our parent before we
2798 * go through the expensive btree search on b.
2799 *
eb653de1
FDBM
2800 * If we're inserting or deleting (ins_len != 0), then we might
2801 * be changing slot zero, which may require changing the parent.
2802 * So, we can't drop the lock until after we know which slot
2803 * we're operating on.
b4ce94de 2804 */
eb653de1
FDBM
2805 if (!ins_len && !p->keep_locks) {
2806 int u = level + 1;
2807
2808 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2809 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2810 p->locks[u] = 0;
2811 }
2812 }
b4ce94de 2813
d7396f07 2814 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2815 if (ret < 0)
2816 goto done;
b4ce94de 2817
5f39d397 2818 if (level != 0) {
33c66f43
YZ
2819 int dec = 0;
2820 if (ret && slot > 0) {
2821 dec = 1;
be0e5c09 2822 slot -= 1;
33c66f43 2823 }
be0e5c09 2824 p->slots[level] = slot;
33c66f43 2825 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2826 ins_len, &write_lock_level);
33c66f43 2827 if (err == -EAGAIN)
c8c42864 2828 goto again;
33c66f43
YZ
2829 if (err) {
2830 ret = err;
c8c42864 2831 goto done;
33c66f43 2832 }
c8c42864
CM
2833 b = p->nodes[level];
2834 slot = p->slots[level];
b4ce94de 2835
bd681513
CM
2836 /*
2837 * slot 0 is special, if we change the key
2838 * we have to update the parent pointer
2839 * which means we must have a write lock
2840 * on the parent
2841 */
eb653de1 2842 if (slot == 0 && ins_len &&
bd681513
CM
2843 write_lock_level < level + 1) {
2844 write_lock_level = level + 1;
2845 btrfs_release_path(p);
2846 goto again;
2847 }
2848
f7c79f30
CM
2849 unlock_up(p, level, lowest_unlock,
2850 min_write_lock_level, &write_lock_level);
f9efa9c7 2851
925baedd 2852 if (level == lowest_level) {
33c66f43
YZ
2853 if (dec)
2854 p->slots[level]++;
5b21f2ed 2855 goto done;
925baedd 2856 }
ca7a79ad 2857
d07b8528 2858 err = read_block_for_search(root, p, &b, level,
cda79c54 2859 slot, key);
33c66f43 2860 if (err == -EAGAIN)
c8c42864 2861 goto again;
33c66f43
YZ
2862 if (err) {
2863 ret = err;
76a05b35 2864 goto done;
33c66f43 2865 }
76a05b35 2866
b4ce94de 2867 if (!p->skip_locking) {
bd681513
CM
2868 level = btrfs_header_level(b);
2869 if (level <= write_lock_level) {
2870 err = btrfs_try_tree_write_lock(b);
2871 if (!err) {
2872 btrfs_set_path_blocking(p);
2873 btrfs_tree_lock(b);
bd681513
CM
2874 }
2875 p->locks[level] = BTRFS_WRITE_LOCK;
2876 } else {
f82c458a 2877 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2878 if (!err) {
2879 btrfs_set_path_blocking(p);
2880 btrfs_tree_read_lock(b);
bd681513
CM
2881 }
2882 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2883 }
bd681513 2884 p->nodes[level] = b;
b4ce94de 2885 }
be0e5c09
CM
2886 } else {
2887 p->slots[level] = slot;
87b29b20 2888 if (ins_len > 0 &&
2ff7e61e 2889 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2890 if (write_lock_level < 1) {
2891 write_lock_level = 1;
2892 btrfs_release_path(p);
2893 goto again;
2894 }
2895
b4ce94de 2896 btrfs_set_path_blocking(p);
33c66f43
YZ
2897 err = split_leaf(trans, root, key,
2898 p, ins_len, ret == 0);
b4ce94de 2899
33c66f43
YZ
2900 BUG_ON(err > 0);
2901 if (err) {
2902 ret = err;
65b51a00
CM
2903 goto done;
2904 }
5c680ed6 2905 }
459931ec 2906 if (!p->search_for_split)
f7c79f30 2907 unlock_up(p, level, lowest_unlock,
4b6f8e96 2908 min_write_lock_level, NULL);
65b51a00 2909 goto done;
be0e5c09
CM
2910 }
2911 }
65b51a00
CM
2912 ret = 1;
2913done:
b4ce94de
CM
2914 /*
2915 * we don't really know what they plan on doing with the path
2916 * from here on, so for now just mark it as blocking
2917 */
b9473439
CM
2918 if (!p->leave_spinning)
2919 btrfs_set_path_blocking(p);
5f5bc6b1 2920 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2921 btrfs_release_path(p);
65b51a00 2922 return ret;
be0e5c09
CM
2923}
2924
5d9e75c4
JS
2925/*
2926 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2927 * current state of the tree together with the operations recorded in the tree
2928 * modification log to search for the key in a previous version of this tree, as
2929 * denoted by the time_seq parameter.
2930 *
2931 * Naturally, there is no support for insert, delete or cow operations.
2932 *
2933 * The resulting path and return value will be set up as if we called
2934 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2935 */
310712b2 2936int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2937 struct btrfs_path *p, u64 time_seq)
2938{
0b246afa 2939 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2940 struct extent_buffer *b;
2941 int slot;
2942 int ret;
2943 int err;
2944 int level;
2945 int lowest_unlock = 1;
2946 u8 lowest_level = 0;
d4b4087c 2947 int prev_cmp = -1;
5d9e75c4
JS
2948
2949 lowest_level = p->lowest_level;
2950 WARN_ON(p->nodes[0] != NULL);
2951
2952 if (p->search_commit_root) {
2953 BUG_ON(time_seq);
2954 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2955 }
2956
2957again:
5d9e75c4 2958 b = get_old_root(root, time_seq);
315bed43
NB
2959 if (!b) {
2960 ret = -EIO;
2961 goto done;
2962 }
5d9e75c4 2963 level = btrfs_header_level(b);
5d9e75c4
JS
2964 p->locks[level] = BTRFS_READ_LOCK;
2965
2966 while (b) {
2967 level = btrfs_header_level(b);
2968 p->nodes[level] = b;
5d9e75c4
JS
2969
2970 /*
2971 * we have a lock on b and as long as we aren't changing
2972 * the tree, there is no way to for the items in b to change.
2973 * It is safe to drop the lock on our parent before we
2974 * go through the expensive btree search on b.
2975 */
2976 btrfs_unlock_up_safe(p, level + 1);
2977
d4b4087c 2978 /*
01327610 2979 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
2980 * time.
2981 */
2982 prev_cmp = -1;
d7396f07 2983 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
2984
2985 if (level != 0) {
2986 int dec = 0;
2987 if (ret && slot > 0) {
2988 dec = 1;
2989 slot -= 1;
2990 }
2991 p->slots[level] = slot;
2992 unlock_up(p, level, lowest_unlock, 0, NULL);
2993
2994 if (level == lowest_level) {
2995 if (dec)
2996 p->slots[level]++;
2997 goto done;
2998 }
2999
d07b8528 3000 err = read_block_for_search(root, p, &b, level,
cda79c54 3001 slot, key);
5d9e75c4
JS
3002 if (err == -EAGAIN)
3003 goto again;
3004 if (err) {
3005 ret = err;
3006 goto done;
3007 }
3008
3009 level = btrfs_header_level(b);
f82c458a 3010 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3011 if (!err) {
3012 btrfs_set_path_blocking(p);
3013 btrfs_tree_read_lock(b);
5d9e75c4 3014 }
0b246afa 3015 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3016 if (!b) {
3017 ret = -ENOMEM;
3018 goto done;
3019 }
5d9e75c4
JS
3020 p->locks[level] = BTRFS_READ_LOCK;
3021 p->nodes[level] = b;
5d9e75c4
JS
3022 } else {
3023 p->slots[level] = slot;
3024 unlock_up(p, level, lowest_unlock, 0, NULL);
3025 goto done;
3026 }
3027 }
3028 ret = 1;
3029done:
3030 if (!p->leave_spinning)
3031 btrfs_set_path_blocking(p);
3032 if (ret < 0)
3033 btrfs_release_path(p);
3034
3035 return ret;
3036}
3037
2f38b3e1
AJ
3038/*
3039 * helper to use instead of search slot if no exact match is needed but
3040 * instead the next or previous item should be returned.
3041 * When find_higher is true, the next higher item is returned, the next lower
3042 * otherwise.
3043 * When return_any and find_higher are both true, and no higher item is found,
3044 * return the next lower instead.
3045 * When return_any is true and find_higher is false, and no lower item is found,
3046 * return the next higher instead.
3047 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3048 * < 0 on error
3049 */
3050int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3051 const struct btrfs_key *key,
3052 struct btrfs_path *p, int find_higher,
3053 int return_any)
2f38b3e1
AJ
3054{
3055 int ret;
3056 struct extent_buffer *leaf;
3057
3058again:
3059 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3060 if (ret <= 0)
3061 return ret;
3062 /*
3063 * a return value of 1 means the path is at the position where the
3064 * item should be inserted. Normally this is the next bigger item,
3065 * but in case the previous item is the last in a leaf, path points
3066 * to the first free slot in the previous leaf, i.e. at an invalid
3067 * item.
3068 */
3069 leaf = p->nodes[0];
3070
3071 if (find_higher) {
3072 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3073 ret = btrfs_next_leaf(root, p);
3074 if (ret <= 0)
3075 return ret;
3076 if (!return_any)
3077 return 1;
3078 /*
3079 * no higher item found, return the next
3080 * lower instead
3081 */
3082 return_any = 0;
3083 find_higher = 0;
3084 btrfs_release_path(p);
3085 goto again;
3086 }
3087 } else {
e6793769
AJ
3088 if (p->slots[0] == 0) {
3089 ret = btrfs_prev_leaf(root, p);
3090 if (ret < 0)
3091 return ret;
3092 if (!ret) {
23c6bf6a
FDBM
3093 leaf = p->nodes[0];
3094 if (p->slots[0] == btrfs_header_nritems(leaf))
3095 p->slots[0]--;
e6793769 3096 return 0;
2f38b3e1 3097 }
e6793769
AJ
3098 if (!return_any)
3099 return 1;
3100 /*
3101 * no lower item found, return the next
3102 * higher instead
3103 */
3104 return_any = 0;
3105 find_higher = 1;
3106 btrfs_release_path(p);
3107 goto again;
3108 } else {
2f38b3e1
AJ
3109 --p->slots[0];
3110 }
3111 }
3112 return 0;
3113}
3114
74123bd7
CM
3115/*
3116 * adjust the pointers going up the tree, starting at level
3117 * making sure the right key of each node is points to 'key'.
3118 * This is used after shifting pointers to the left, so it stops
3119 * fixing up pointers when a given leaf/node is not in slot 0 of the
3120 * higher levels
aa5d6bed 3121 *
74123bd7 3122 */
b167fa91 3123static void fixup_low_keys(struct btrfs_path *path,
143bede5 3124 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3125{
3126 int i;
5f39d397 3127 struct extent_buffer *t;
0e82bcfe 3128 int ret;
5f39d397 3129
234b63a0 3130 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3131 int tslot = path->slots[i];
0e82bcfe 3132
eb60ceac 3133 if (!path->nodes[i])
be0e5c09 3134 break;
5f39d397 3135 t = path->nodes[i];
0e82bcfe
DS
3136 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3137 GFP_ATOMIC);
3138 BUG_ON(ret < 0);
5f39d397 3139 btrfs_set_node_key(t, key, tslot);
d6025579 3140 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3141 if (tslot != 0)
3142 break;
3143 }
3144}
3145
31840ae1
ZY
3146/*
3147 * update item key.
3148 *
3149 * This function isn't completely safe. It's the caller's responsibility
3150 * that the new key won't break the order
3151 */
b7a0365e
DD
3152void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3153 struct btrfs_path *path,
310712b2 3154 const struct btrfs_key *new_key)
31840ae1
ZY
3155{
3156 struct btrfs_disk_key disk_key;
3157 struct extent_buffer *eb;
3158 int slot;
3159
3160 eb = path->nodes[0];
3161 slot = path->slots[0];
3162 if (slot > 0) {
3163 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3164 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3165 }
3166 if (slot < btrfs_header_nritems(eb) - 1) {
3167 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3168 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3169 }
3170
3171 btrfs_cpu_key_to_disk(&disk_key, new_key);
3172 btrfs_set_item_key(eb, &disk_key, slot);
3173 btrfs_mark_buffer_dirty(eb);
3174 if (slot == 0)
b167fa91 3175 fixup_low_keys(path, &disk_key, 1);
31840ae1
ZY
3176}
3177
74123bd7
CM
3178/*
3179 * try to push data from one node into the next node left in the
79f95c82 3180 * tree.
aa5d6bed
CM
3181 *
3182 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3183 * error, and > 0 if there was no room in the left hand block.
74123bd7 3184 */
98ed5174 3185static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3186 struct btrfs_fs_info *fs_info,
3187 struct extent_buffer *dst,
971a1f66 3188 struct extent_buffer *src, int empty)
be0e5c09 3189{
be0e5c09 3190 int push_items = 0;
bb803951
CM
3191 int src_nritems;
3192 int dst_nritems;
aa5d6bed 3193 int ret = 0;
be0e5c09 3194
5f39d397
CM
3195 src_nritems = btrfs_header_nritems(src);
3196 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3197 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3198 WARN_ON(btrfs_header_generation(src) != trans->transid);
3199 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3200
bce4eae9 3201 if (!empty && src_nritems <= 8)
971a1f66
CM
3202 return 1;
3203
d397712b 3204 if (push_items <= 0)
be0e5c09
CM
3205 return 1;
3206
bce4eae9 3207 if (empty) {
971a1f66 3208 push_items = min(src_nritems, push_items);
bce4eae9
CM
3209 if (push_items < src_nritems) {
3210 /* leave at least 8 pointers in the node if
3211 * we aren't going to empty it
3212 */
3213 if (src_nritems - push_items < 8) {
3214 if (push_items <= 8)
3215 return 1;
3216 push_items -= 8;
3217 }
3218 }
3219 } else
3220 push_items = min(src_nritems - 8, push_items);
79f95c82 3221
0b246afa 3222 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3223 push_items);
3224 if (ret) {
66642832 3225 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3226 return ret;
3227 }
5f39d397
CM
3228 copy_extent_buffer(dst, src,
3229 btrfs_node_key_ptr_offset(dst_nritems),
3230 btrfs_node_key_ptr_offset(0),
d397712b 3231 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3232
bb803951 3233 if (push_items < src_nritems) {
57911b8b 3234 /*
bf1d3425
DS
3235 * Don't call tree_mod_log_insert_move here, key removal was
3236 * already fully logged by tree_mod_log_eb_copy above.
57911b8b 3237 */
5f39d397
CM
3238 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3239 btrfs_node_key_ptr_offset(push_items),
3240 (src_nritems - push_items) *
3241 sizeof(struct btrfs_key_ptr));
3242 }
3243 btrfs_set_header_nritems(src, src_nritems - push_items);
3244 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3245 btrfs_mark_buffer_dirty(src);
3246 btrfs_mark_buffer_dirty(dst);
31840ae1 3247
79f95c82
CM
3248 return ret;
3249}
3250
3251/*
3252 * try to push data from one node into the next node right in the
3253 * tree.
3254 *
3255 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3256 * error, and > 0 if there was no room in the right hand block.
3257 *
3258 * this will only push up to 1/2 the contents of the left node over
3259 */
5f39d397 3260static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3261 struct btrfs_fs_info *fs_info,
5f39d397
CM
3262 struct extent_buffer *dst,
3263 struct extent_buffer *src)
79f95c82 3264{
79f95c82
CM
3265 int push_items = 0;
3266 int max_push;
3267 int src_nritems;
3268 int dst_nritems;
3269 int ret = 0;
79f95c82 3270
7bb86316
CM
3271 WARN_ON(btrfs_header_generation(src) != trans->transid);
3272 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3273
5f39d397
CM
3274 src_nritems = btrfs_header_nritems(src);
3275 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3276 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3277 if (push_items <= 0)
79f95c82 3278 return 1;
bce4eae9 3279
d397712b 3280 if (src_nritems < 4)
bce4eae9 3281 return 1;
79f95c82
CM
3282
3283 max_push = src_nritems / 2 + 1;
3284 /* don't try to empty the node */
d397712b 3285 if (max_push >= src_nritems)
79f95c82 3286 return 1;
252c38f0 3287
79f95c82
CM
3288 if (max_push < push_items)
3289 push_items = max_push;
3290
bf1d3425
DS
3291 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3292 BUG_ON(ret < 0);
5f39d397
CM
3293 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3294 btrfs_node_key_ptr_offset(0),
3295 (dst_nritems) *
3296 sizeof(struct btrfs_key_ptr));
d6025579 3297
0b246afa 3298 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3299 src_nritems - push_items, push_items);
3300 if (ret) {
66642832 3301 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3302 return ret;
3303 }
5f39d397
CM
3304 copy_extent_buffer(dst, src,
3305 btrfs_node_key_ptr_offset(0),
3306 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3307 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3308
5f39d397
CM
3309 btrfs_set_header_nritems(src, src_nritems - push_items);
3310 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3311
5f39d397
CM
3312 btrfs_mark_buffer_dirty(src);
3313 btrfs_mark_buffer_dirty(dst);
31840ae1 3314
aa5d6bed 3315 return ret;
be0e5c09
CM
3316}
3317
97571fd0
CM
3318/*
3319 * helper function to insert a new root level in the tree.
3320 * A new node is allocated, and a single item is inserted to
3321 * point to the existing root
aa5d6bed
CM
3322 *
3323 * returns zero on success or < 0 on failure.
97571fd0 3324 */
d397712b 3325static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3326 struct btrfs_root *root,
fdd99c72 3327 struct btrfs_path *path, int level)
5c680ed6 3328{
0b246afa 3329 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3330 u64 lower_gen;
5f39d397
CM
3331 struct extent_buffer *lower;
3332 struct extent_buffer *c;
925baedd 3333 struct extent_buffer *old;
5f39d397 3334 struct btrfs_disk_key lower_key;
d9d19a01 3335 int ret;
5c680ed6
CM
3336
3337 BUG_ON(path->nodes[level]);
3338 BUG_ON(path->nodes[level-1] != root->node);
3339
7bb86316
CM
3340 lower = path->nodes[level-1];
3341 if (level == 1)
3342 btrfs_item_key(lower, &lower_key, 0);
3343 else
3344 btrfs_node_key(lower, &lower_key, 0);
3345
4d75f8a9
DS
3346 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3347 &lower_key, level, root->node->start, 0);
5f39d397
CM
3348 if (IS_ERR(c))
3349 return PTR_ERR(c);
925baedd 3350
0b246afa 3351 root_add_used(root, fs_info->nodesize);
f0486c68 3352
5f39d397 3353 btrfs_set_header_nritems(c, 1);
5f39d397 3354 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3355 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3356 lower_gen = btrfs_header_generation(lower);
31840ae1 3357 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3358
3359 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3360
5f39d397 3361 btrfs_mark_buffer_dirty(c);
d5719762 3362
925baedd 3363 old = root->node;
d9d19a01
DS
3364 ret = tree_mod_log_insert_root(root->node, c, 0);
3365 BUG_ON(ret < 0);
240f62c8 3366 rcu_assign_pointer(root->node, c);
925baedd
CM
3367
3368 /* the super has an extra ref to root->node */
3369 free_extent_buffer(old);
3370
0b86a832 3371 add_root_to_dirty_list(root);
5f39d397
CM
3372 extent_buffer_get(c);
3373 path->nodes[level] = c;
95449a16 3374 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3375 path->slots[level] = 0;
3376 return 0;
3377}
3378
74123bd7
CM
3379/*
3380 * worker function to insert a single pointer in a node.
3381 * the node should have enough room for the pointer already
97571fd0 3382 *
74123bd7
CM
3383 * slot and level indicate where you want the key to go, and
3384 * blocknr is the block the key points to.
3385 */
143bede5 3386static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3387 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3388 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3389 int slot, int level)
74123bd7 3390{
5f39d397 3391 struct extent_buffer *lower;
74123bd7 3392 int nritems;
f3ea38da 3393 int ret;
5c680ed6
CM
3394
3395 BUG_ON(!path->nodes[level]);
f0486c68 3396 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3397 lower = path->nodes[level];
3398 nritems = btrfs_header_nritems(lower);
c293498b 3399 BUG_ON(slot > nritems);
0b246afa 3400 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3401 if (slot != nritems) {
bf1d3425
DS
3402 if (level) {
3403 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
a446a979 3404 nritems - slot);
bf1d3425
DS
3405 BUG_ON(ret < 0);
3406 }
5f39d397
CM
3407 memmove_extent_buffer(lower,
3408 btrfs_node_key_ptr_offset(slot + 1),
3409 btrfs_node_key_ptr_offset(slot),
d6025579 3410 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3411 }
c3e06965 3412 if (level) {
e09c2efe
DS
3413 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3414 GFP_NOFS);
f3ea38da
JS
3415 BUG_ON(ret < 0);
3416 }
5f39d397 3417 btrfs_set_node_key(lower, key, slot);
db94535d 3418 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3419 WARN_ON(trans->transid == 0);
3420 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3421 btrfs_set_header_nritems(lower, nritems + 1);
3422 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3423}
3424
97571fd0
CM
3425/*
3426 * split the node at the specified level in path in two.
3427 * The path is corrected to point to the appropriate node after the split
3428 *
3429 * Before splitting this tries to make some room in the node by pushing
3430 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3431 *
3432 * returns 0 on success and < 0 on failure
97571fd0 3433 */
e02119d5
CM
3434static noinline int split_node(struct btrfs_trans_handle *trans,
3435 struct btrfs_root *root,
3436 struct btrfs_path *path, int level)
be0e5c09 3437{
0b246afa 3438 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3439 struct extent_buffer *c;
3440 struct extent_buffer *split;
3441 struct btrfs_disk_key disk_key;
be0e5c09 3442 int mid;
5c680ed6 3443 int ret;
7518a238 3444 u32 c_nritems;
eb60ceac 3445
5f39d397 3446 c = path->nodes[level];
7bb86316 3447 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3448 if (c == root->node) {
d9abbf1c 3449 /*
90f8d62e
JS
3450 * trying to split the root, lets make a new one
3451 *
fdd99c72 3452 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3453 * insert_new_root, because that root buffer will be kept as a
3454 * normal node. We are going to log removal of half of the
3455 * elements below with tree_mod_log_eb_copy. We're holding a
3456 * tree lock on the buffer, which is why we cannot race with
3457 * other tree_mod_log users.
d9abbf1c 3458 */
fdd99c72 3459 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3460 if (ret)
3461 return ret;
b3612421 3462 } else {
e66f709b 3463 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3464 c = path->nodes[level];
3465 if (!ret && btrfs_header_nritems(c) <
0b246afa 3466 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3467 return 0;
54aa1f4d
CM
3468 if (ret < 0)
3469 return ret;
be0e5c09 3470 }
e66f709b 3471
5f39d397 3472 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3473 mid = (c_nritems + 1) / 2;
3474 btrfs_node_key(c, &disk_key, mid);
7bb86316 3475
4d75f8a9
DS
3476 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3477 &disk_key, level, c->start, 0);
5f39d397
CM
3478 if (IS_ERR(split))
3479 return PTR_ERR(split);
3480
0b246afa 3481 root_add_used(root, fs_info->nodesize);
bc877d28 3482 ASSERT(btrfs_header_level(c) == level);
54aa1f4d 3483
0b246afa 3484 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3485 if (ret) {
66642832 3486 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3487 return ret;
3488 }
5f39d397
CM
3489 copy_extent_buffer(split, c,
3490 btrfs_node_key_ptr_offset(0),
3491 btrfs_node_key_ptr_offset(mid),
3492 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3493 btrfs_set_header_nritems(split, c_nritems - mid);
3494 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3495 ret = 0;
3496
5f39d397
CM
3497 btrfs_mark_buffer_dirty(c);
3498 btrfs_mark_buffer_dirty(split);
3499
2ff7e61e 3500 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3501 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3502
5de08d7d 3503 if (path->slots[level] >= mid) {
5c680ed6 3504 path->slots[level] -= mid;
925baedd 3505 btrfs_tree_unlock(c);
5f39d397
CM
3506 free_extent_buffer(c);
3507 path->nodes[level] = split;
5c680ed6
CM
3508 path->slots[level + 1] += 1;
3509 } else {
925baedd 3510 btrfs_tree_unlock(split);
5f39d397 3511 free_extent_buffer(split);
be0e5c09 3512 }
aa5d6bed 3513 return ret;
be0e5c09
CM
3514}
3515
74123bd7
CM
3516/*
3517 * how many bytes are required to store the items in a leaf. start
3518 * and nr indicate which items in the leaf to check. This totals up the
3519 * space used both by the item structs and the item data
3520 */
5f39d397 3521static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3522{
41be1f3b
JB
3523 struct btrfs_item *start_item;
3524 struct btrfs_item *end_item;
3525 struct btrfs_map_token token;
be0e5c09 3526 int data_len;
5f39d397 3527 int nritems = btrfs_header_nritems(l);
d4dbff95 3528 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3529
3530 if (!nr)
3531 return 0;
41be1f3b 3532 btrfs_init_map_token(&token);
dd3cc16b
RK
3533 start_item = btrfs_item_nr(start);
3534 end_item = btrfs_item_nr(end);
41be1f3b
JB
3535 data_len = btrfs_token_item_offset(l, start_item, &token) +
3536 btrfs_token_item_size(l, start_item, &token);
3537 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3538 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3539 WARN_ON(data_len < 0);
be0e5c09
CM
3540 return data_len;
3541}
3542
d4dbff95
CM
3543/*
3544 * The space between the end of the leaf items and
3545 * the start of the leaf data. IOW, how much room
3546 * the leaf has left for both items and data
3547 */
2ff7e61e 3548noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3549 struct extent_buffer *leaf)
d4dbff95 3550{
5f39d397
CM
3551 int nritems = btrfs_header_nritems(leaf);
3552 int ret;
0b246afa
JM
3553
3554 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3555 if (ret < 0) {
0b246afa
JM
3556 btrfs_crit(fs_info,
3557 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3558 ret,
3559 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3560 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3561 }
3562 return ret;
d4dbff95
CM
3563}
3564
99d8f83c
CM
3565/*
3566 * min slot controls the lowest index we're willing to push to the
3567 * right. We'll push up to and including min_slot, but no lower
3568 */
1e47eef2 3569static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
44871b1b
CM
3570 struct btrfs_path *path,
3571 int data_size, int empty,
3572 struct extent_buffer *right,
99d8f83c
CM
3573 int free_space, u32 left_nritems,
3574 u32 min_slot)
00ec4c51 3575{
5f39d397 3576 struct extent_buffer *left = path->nodes[0];
44871b1b 3577 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3578 struct btrfs_map_token token;
5f39d397 3579 struct btrfs_disk_key disk_key;
00ec4c51 3580 int slot;
34a38218 3581 u32 i;
00ec4c51
CM
3582 int push_space = 0;
3583 int push_items = 0;
0783fcfc 3584 struct btrfs_item *item;
34a38218 3585 u32 nr;
7518a238 3586 u32 right_nritems;
5f39d397 3587 u32 data_end;
db94535d 3588 u32 this_item_size;
00ec4c51 3589
cfed81a0
CM
3590 btrfs_init_map_token(&token);
3591
34a38218
CM
3592 if (empty)
3593 nr = 0;
3594 else
99d8f83c 3595 nr = max_t(u32, 1, min_slot);
34a38218 3596
31840ae1 3597 if (path->slots[0] >= left_nritems)
87b29b20 3598 push_space += data_size;
31840ae1 3599
44871b1b 3600 slot = path->slots[1];
34a38218
CM
3601 i = left_nritems - 1;
3602 while (i >= nr) {
dd3cc16b 3603 item = btrfs_item_nr(i);
db94535d 3604
31840ae1
ZY
3605 if (!empty && push_items > 0) {
3606 if (path->slots[0] > i)
3607 break;
3608 if (path->slots[0] == i) {
2ff7e61e 3609 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3610 if (space + push_space * 2 > free_space)
3611 break;
3612 }
3613 }
3614
00ec4c51 3615 if (path->slots[0] == i)
87b29b20 3616 push_space += data_size;
db94535d 3617
db94535d
CM
3618 this_item_size = btrfs_item_size(left, item);
3619 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3620 break;
31840ae1 3621
00ec4c51 3622 push_items++;
db94535d 3623 push_space += this_item_size + sizeof(*item);
34a38218
CM
3624 if (i == 0)
3625 break;
3626 i--;
db94535d 3627 }
5f39d397 3628
925baedd
CM
3629 if (push_items == 0)
3630 goto out_unlock;
5f39d397 3631
6c1500f2 3632 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3633
00ec4c51 3634 /* push left to right */
5f39d397 3635 right_nritems = btrfs_header_nritems(right);
34a38218 3636
5f39d397 3637 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3638 push_space -= leaf_data_end(fs_info, left);
5f39d397 3639
00ec4c51 3640 /* make room in the right data area */
2ff7e61e 3641 data_end = leaf_data_end(fs_info, right);
5f39d397 3642 memmove_extent_buffer(right,
3d9ec8c4
NB
3643 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3644 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3645 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3646
00ec4c51 3647 /* copy from the left data area */
3d9ec8c4 3648 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3649 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3650 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
d6025579 3651 push_space);
5f39d397
CM
3652
3653 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3654 btrfs_item_nr_offset(0),
3655 right_nritems * sizeof(struct btrfs_item));
3656
00ec4c51 3657 /* copy the items from left to right */
5f39d397
CM
3658 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3659 btrfs_item_nr_offset(left_nritems - push_items),
3660 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3661
3662 /* update the item pointers */
7518a238 3663 right_nritems += push_items;
5f39d397 3664 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3665 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3666 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3667 item = btrfs_item_nr(i);
cfed81a0
CM
3668 push_space -= btrfs_token_item_size(right, item, &token);
3669 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3670 }
3671
7518a238 3672 left_nritems -= push_items;
5f39d397 3673 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3674
34a38218
CM
3675 if (left_nritems)
3676 btrfs_mark_buffer_dirty(left);
f0486c68 3677 else
7c302b49 3678 clean_tree_block(fs_info, left);
f0486c68 3679
5f39d397 3680 btrfs_mark_buffer_dirty(right);
a429e513 3681
5f39d397
CM
3682 btrfs_item_key(right, &disk_key, 0);
3683 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3684 btrfs_mark_buffer_dirty(upper);
02217ed2 3685
00ec4c51 3686 /* then fixup the leaf pointer in the path */
7518a238
CM
3687 if (path->slots[0] >= left_nritems) {
3688 path->slots[0] -= left_nritems;
925baedd 3689 if (btrfs_header_nritems(path->nodes[0]) == 0)
7c302b49 3690 clean_tree_block(fs_info, path->nodes[0]);
925baedd 3691 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3692 free_extent_buffer(path->nodes[0]);
3693 path->nodes[0] = right;
00ec4c51
CM
3694 path->slots[1] += 1;
3695 } else {
925baedd 3696 btrfs_tree_unlock(right);
5f39d397 3697 free_extent_buffer(right);
00ec4c51
CM
3698 }
3699 return 0;
925baedd
CM
3700
3701out_unlock:
3702 btrfs_tree_unlock(right);
3703 free_extent_buffer(right);
3704 return 1;
00ec4c51 3705}
925baedd 3706
44871b1b
CM
3707/*
3708 * push some data in the path leaf to the right, trying to free up at
3709 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3710 *
3711 * returns 1 if the push failed because the other node didn't have enough
3712 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3713 *
3714 * this will push starting from min_slot to the end of the leaf. It won't
3715 * push any slot lower than min_slot
44871b1b
CM
3716 */
3717static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3718 *root, struct btrfs_path *path,
3719 int min_data_size, int data_size,
3720 int empty, u32 min_slot)
44871b1b 3721{
2ff7e61e 3722 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3723 struct extent_buffer *left = path->nodes[0];
3724 struct extent_buffer *right;
3725 struct extent_buffer *upper;
3726 int slot;
3727 int free_space;
3728 u32 left_nritems;
3729 int ret;
3730
3731 if (!path->nodes[1])
3732 return 1;
3733
3734 slot = path->slots[1];
3735 upper = path->nodes[1];
3736 if (slot >= btrfs_header_nritems(upper) - 1)
3737 return 1;
3738
3739 btrfs_assert_tree_locked(path->nodes[1]);
3740
2ff7e61e 3741 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3742 /*
3743 * slot + 1 is not valid or we fail to read the right node,
3744 * no big deal, just return.
3745 */
3746 if (IS_ERR(right))
91ca338d
TI
3747 return 1;
3748
44871b1b
CM
3749 btrfs_tree_lock(right);
3750 btrfs_set_lock_blocking(right);
3751
2ff7e61e 3752 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3753 if (free_space < data_size)
3754 goto out_unlock;
3755
3756 /* cow and double check */
3757 ret = btrfs_cow_block(trans, root, right, upper,
3758 slot + 1, &right);
3759 if (ret)
3760 goto out_unlock;
3761
2ff7e61e 3762 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3763 if (free_space < data_size)
3764 goto out_unlock;
3765
3766 left_nritems = btrfs_header_nritems(left);
3767 if (left_nritems == 0)
3768 goto out_unlock;
3769
2ef1fed2
FDBM
3770 if (path->slots[0] == left_nritems && !empty) {
3771 /* Key greater than all keys in the leaf, right neighbor has
3772 * enough room for it and we're not emptying our leaf to delete
3773 * it, therefore use right neighbor to insert the new item and
3774 * no need to touch/dirty our left leaft. */
3775 btrfs_tree_unlock(left);
3776 free_extent_buffer(left);
3777 path->nodes[0] = right;
3778 path->slots[0] = 0;
3779 path->slots[1]++;
3780 return 0;
3781 }
3782
1e47eef2 3783 return __push_leaf_right(fs_info, path, min_data_size, empty,
99d8f83c 3784 right, free_space, left_nritems, min_slot);
44871b1b
CM
3785out_unlock:
3786 btrfs_tree_unlock(right);
3787 free_extent_buffer(right);
3788 return 1;
3789}
3790
74123bd7
CM
3791/*
3792 * push some data in the path leaf to the left, trying to free up at
3793 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3794 *
3795 * max_slot can put a limit on how far into the leaf we'll push items. The
3796 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3797 * items
74123bd7 3798 */
66cb7ddb 3799static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
44871b1b
CM
3800 struct btrfs_path *path, int data_size,
3801 int empty, struct extent_buffer *left,
99d8f83c
CM
3802 int free_space, u32 right_nritems,
3803 u32 max_slot)
be0e5c09 3804{
5f39d397
CM
3805 struct btrfs_disk_key disk_key;
3806 struct extent_buffer *right = path->nodes[0];
be0e5c09 3807 int i;
be0e5c09
CM
3808 int push_space = 0;
3809 int push_items = 0;
0783fcfc 3810 struct btrfs_item *item;
7518a238 3811 u32 old_left_nritems;
34a38218 3812 u32 nr;
aa5d6bed 3813 int ret = 0;
db94535d
CM
3814 u32 this_item_size;
3815 u32 old_left_item_size;
cfed81a0
CM
3816 struct btrfs_map_token token;
3817
3818 btrfs_init_map_token(&token);
be0e5c09 3819
34a38218 3820 if (empty)
99d8f83c 3821 nr = min(right_nritems, max_slot);
34a38218 3822 else
99d8f83c 3823 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3824
3825 for (i = 0; i < nr; i++) {
dd3cc16b 3826 item = btrfs_item_nr(i);
db94535d 3827
31840ae1
ZY
3828 if (!empty && push_items > 0) {
3829 if (path->slots[0] < i)
3830 break;
3831 if (path->slots[0] == i) {
2ff7e61e 3832 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3833 if (space + push_space * 2 > free_space)
3834 break;
3835 }
3836 }
3837
be0e5c09 3838 if (path->slots[0] == i)
87b29b20 3839 push_space += data_size;
db94535d
CM
3840
3841 this_item_size = btrfs_item_size(right, item);
3842 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3843 break;
db94535d 3844
be0e5c09 3845 push_items++;
db94535d
CM
3846 push_space += this_item_size + sizeof(*item);
3847 }
3848
be0e5c09 3849 if (push_items == 0) {
925baedd
CM
3850 ret = 1;
3851 goto out;
be0e5c09 3852 }
fae7f21c 3853 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3854
be0e5c09 3855 /* push data from right to left */
5f39d397
CM
3856 copy_extent_buffer(left, right,
3857 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3858 btrfs_item_nr_offset(0),
3859 push_items * sizeof(struct btrfs_item));
3860
0b246afa 3861 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3862 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3863
3d9ec8c4 3864 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3865 leaf_data_end(fs_info, left) - push_space,
3d9ec8c4 3866 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3867 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3868 push_space);
5f39d397 3869 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3870 BUG_ON(old_left_nritems <= 0);
eb60ceac 3871
db94535d 3872 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3873 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3874 u32 ioff;
db94535d 3875
dd3cc16b 3876 item = btrfs_item_nr(i);
db94535d 3877
cfed81a0
CM
3878 ioff = btrfs_token_item_offset(left, item, &token);
3879 btrfs_set_token_item_offset(left, item,
0b246afa 3880 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3881 &token);
be0e5c09 3882 }
5f39d397 3883 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3884
3885 /* fixup right node */
31b1a2bd
JL
3886 if (push_items > right_nritems)
3887 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3888 right_nritems);
34a38218
CM
3889
3890 if (push_items < right_nritems) {
3891 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3892 leaf_data_end(fs_info, right);
3d9ec8c4 3893 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3894 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3895 BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3896 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3897
3898 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3899 btrfs_item_nr_offset(push_items),
3900 (btrfs_header_nritems(right) - push_items) *
3901 sizeof(struct btrfs_item));
34a38218 3902 }
eef1c494
Y
3903 right_nritems -= push_items;
3904 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3905 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3906 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3907 item = btrfs_item_nr(i);
db94535d 3908
cfed81a0
CM
3909 push_space = push_space - btrfs_token_item_size(right,
3910 item, &token);
3911 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3912 }
eb60ceac 3913
5f39d397 3914 btrfs_mark_buffer_dirty(left);
34a38218
CM
3915 if (right_nritems)
3916 btrfs_mark_buffer_dirty(right);
f0486c68 3917 else
7c302b49 3918 clean_tree_block(fs_info, right);
098f59c2 3919
5f39d397 3920 btrfs_item_key(right, &disk_key, 0);
b167fa91 3921 fixup_low_keys(path, &disk_key, 1);
be0e5c09
CM
3922
3923 /* then fixup the leaf pointer in the path */
3924 if (path->slots[0] < push_items) {
3925 path->slots[0] += old_left_nritems;
925baedd 3926 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3927 free_extent_buffer(path->nodes[0]);
3928 path->nodes[0] = left;
be0e5c09
CM
3929 path->slots[1] -= 1;
3930 } else {
925baedd 3931 btrfs_tree_unlock(left);
5f39d397 3932 free_extent_buffer(left);
be0e5c09
CM
3933 path->slots[0] -= push_items;
3934 }
eb60ceac 3935 BUG_ON(path->slots[0] < 0);
aa5d6bed 3936 return ret;
925baedd
CM
3937out:
3938 btrfs_tree_unlock(left);
3939 free_extent_buffer(left);
3940 return ret;
be0e5c09
CM
3941}
3942
44871b1b
CM
3943/*
3944 * push some data in the path leaf to the left, trying to free up at
3945 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3946 *
3947 * max_slot can put a limit on how far into the leaf we'll push items. The
3948 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3949 * items
44871b1b
CM
3950 */
3951static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3952 *root, struct btrfs_path *path, int min_data_size,
3953 int data_size, int empty, u32 max_slot)
44871b1b 3954{
2ff7e61e 3955 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3956 struct extent_buffer *right = path->nodes[0];
3957 struct extent_buffer *left;
3958 int slot;
3959 int free_space;
3960 u32 right_nritems;
3961 int ret = 0;
3962
3963 slot = path->slots[1];
3964 if (slot == 0)
3965 return 1;
3966 if (!path->nodes[1])
3967 return 1;
3968
3969 right_nritems = btrfs_header_nritems(right);
3970 if (right_nritems == 0)
3971 return 1;
3972
3973 btrfs_assert_tree_locked(path->nodes[1]);
3974
2ff7e61e 3975 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
3976 /*
3977 * slot - 1 is not valid or we fail to read the left node,
3978 * no big deal, just return.
3979 */
3980 if (IS_ERR(left))
91ca338d
TI
3981 return 1;
3982
44871b1b
CM
3983 btrfs_tree_lock(left);
3984 btrfs_set_lock_blocking(left);
3985
2ff7e61e 3986 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
3987 if (free_space < data_size) {
3988 ret = 1;
3989 goto out;
3990 }
3991
3992 /* cow and double check */
3993 ret = btrfs_cow_block(trans, root, left,
3994 path->nodes[1], slot - 1, &left);
3995 if (ret) {
3996 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
3997 if (ret == -ENOSPC)
3998 ret = 1;
44871b1b
CM
3999 goto out;
4000 }
4001
2ff7e61e 4002 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4003 if (free_space < data_size) {
4004 ret = 1;
4005 goto out;
4006 }
4007
66cb7ddb 4008 return __push_leaf_left(fs_info, path, min_data_size,
99d8f83c
CM
4009 empty, left, free_space, right_nritems,
4010 max_slot);
44871b1b
CM
4011out:
4012 btrfs_tree_unlock(left);
4013 free_extent_buffer(left);
4014 return ret;
4015}
4016
4017/*
4018 * split the path's leaf in two, making sure there is at least data_size
4019 * available for the resulting leaf level of the path.
44871b1b 4020 */
143bede5 4021static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4022 struct btrfs_fs_info *fs_info,
143bede5
JM
4023 struct btrfs_path *path,
4024 struct extent_buffer *l,
4025 struct extent_buffer *right,
4026 int slot, int mid, int nritems)
44871b1b
CM
4027{
4028 int data_copy_size;
4029 int rt_data_off;
4030 int i;
44871b1b 4031 struct btrfs_disk_key disk_key;
cfed81a0
CM
4032 struct btrfs_map_token token;
4033
4034 btrfs_init_map_token(&token);
44871b1b
CM
4035
4036 nritems = nritems - mid;
4037 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4038 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4039
4040 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4041 btrfs_item_nr_offset(mid),
4042 nritems * sizeof(struct btrfs_item));
4043
4044 copy_extent_buffer(right, l,
3d9ec8c4
NB
4045 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4046 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 4047 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4048
0b246afa 4049 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4050
4051 for (i = 0; i < nritems; i++) {
dd3cc16b 4052 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4053 u32 ioff;
4054
cfed81a0
CM
4055 ioff = btrfs_token_item_offset(right, item, &token);
4056 btrfs_set_token_item_offset(right, item,
4057 ioff + rt_data_off, &token);
44871b1b
CM
4058 }
4059
44871b1b 4060 btrfs_set_header_nritems(l, mid);
44871b1b 4061 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4062 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4063 path->slots[1] + 1, 1);
44871b1b
CM
4064
4065 btrfs_mark_buffer_dirty(right);
4066 btrfs_mark_buffer_dirty(l);
4067 BUG_ON(path->slots[0] != slot);
4068
44871b1b
CM
4069 if (mid <= slot) {
4070 btrfs_tree_unlock(path->nodes[0]);
4071 free_extent_buffer(path->nodes[0]);
4072 path->nodes[0] = right;
4073 path->slots[0] -= mid;
4074 path->slots[1] += 1;
4075 } else {
4076 btrfs_tree_unlock(right);
4077 free_extent_buffer(right);
4078 }
4079
4080 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4081}
4082
99d8f83c
CM
4083/*
4084 * double splits happen when we need to insert a big item in the middle
4085 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4086 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4087 * A B C
4088 *
4089 * We avoid this by trying to push the items on either side of our target
4090 * into the adjacent leaves. If all goes well we can avoid the double split
4091 * completely.
4092 */
4093static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4094 struct btrfs_root *root,
4095 struct btrfs_path *path,
4096 int data_size)
4097{
2ff7e61e 4098 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4099 int ret;
4100 int progress = 0;
4101 int slot;
4102 u32 nritems;
5a4267ca 4103 int space_needed = data_size;
99d8f83c
CM
4104
4105 slot = path->slots[0];
5a4267ca 4106 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4107 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4108
4109 /*
4110 * try to push all the items after our slot into the
4111 * right leaf
4112 */
5a4267ca 4113 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4114 if (ret < 0)
4115 return ret;
4116
4117 if (ret == 0)
4118 progress++;
4119
4120 nritems = btrfs_header_nritems(path->nodes[0]);
4121 /*
4122 * our goal is to get our slot at the start or end of a leaf. If
4123 * we've done so we're done
4124 */
4125 if (path->slots[0] == 0 || path->slots[0] == nritems)
4126 return 0;
4127
2ff7e61e 4128 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4129 return 0;
4130
4131 /* try to push all the items before our slot into the next leaf */
4132 slot = path->slots[0];
263d3995
FM
4133 space_needed = data_size;
4134 if (slot > 0)
4135 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
5a4267ca 4136 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4137 if (ret < 0)
4138 return ret;
4139
4140 if (ret == 0)
4141 progress++;
4142
4143 if (progress)
4144 return 0;
4145 return 1;
4146}
4147
74123bd7
CM
4148/*
4149 * split the path's leaf in two, making sure there is at least data_size
4150 * available for the resulting leaf level of the path.
aa5d6bed
CM
4151 *
4152 * returns 0 if all went well and < 0 on failure.
74123bd7 4153 */
e02119d5
CM
4154static noinline int split_leaf(struct btrfs_trans_handle *trans,
4155 struct btrfs_root *root,
310712b2 4156 const struct btrfs_key *ins_key,
e02119d5
CM
4157 struct btrfs_path *path, int data_size,
4158 int extend)
be0e5c09 4159{
5d4f98a2 4160 struct btrfs_disk_key disk_key;
5f39d397 4161 struct extent_buffer *l;
7518a238 4162 u32 nritems;
eb60ceac
CM
4163 int mid;
4164 int slot;
5f39d397 4165 struct extent_buffer *right;
b7a0365e 4166 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4167 int ret = 0;
aa5d6bed 4168 int wret;
5d4f98a2 4169 int split;
cc0c5538 4170 int num_doubles = 0;
99d8f83c 4171 int tried_avoid_double = 0;
aa5d6bed 4172
a5719521
YZ
4173 l = path->nodes[0];
4174 slot = path->slots[0];
4175 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4176 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4177 return -EOVERFLOW;
4178
40689478 4179 /* first try to make some room by pushing left and right */
33157e05 4180 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4181 int space_needed = data_size;
4182
4183 if (slot < btrfs_header_nritems(l))
2ff7e61e 4184 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4185
4186 wret = push_leaf_right(trans, root, path, space_needed,
4187 space_needed, 0, 0);
d397712b 4188 if (wret < 0)
eaee50e8 4189 return wret;
3685f791 4190 if (wret) {
263d3995
FM
4191 space_needed = data_size;
4192 if (slot > 0)
4193 space_needed -= btrfs_leaf_free_space(fs_info,
4194 l);
5a4267ca
FDBM
4195 wret = push_leaf_left(trans, root, path, space_needed,
4196 space_needed, 0, (u32)-1);
3685f791
CM
4197 if (wret < 0)
4198 return wret;
4199 }
4200 l = path->nodes[0];
aa5d6bed 4201
3685f791 4202 /* did the pushes work? */
2ff7e61e 4203 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4204 return 0;
3326d1b0 4205 }
aa5d6bed 4206
5c680ed6 4207 if (!path->nodes[1]) {
fdd99c72 4208 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4209 if (ret)
4210 return ret;
4211 }
cc0c5538 4212again:
5d4f98a2 4213 split = 1;
cc0c5538 4214 l = path->nodes[0];
eb60ceac 4215 slot = path->slots[0];
5f39d397 4216 nritems = btrfs_header_nritems(l);
d397712b 4217 mid = (nritems + 1) / 2;
54aa1f4d 4218
5d4f98a2
YZ
4219 if (mid <= slot) {
4220 if (nritems == 1 ||
4221 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4222 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4223 if (slot >= nritems) {
4224 split = 0;
4225 } else {
4226 mid = slot;
4227 if (mid != nritems &&
4228 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4229 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4230 if (data_size && !tried_avoid_double)
4231 goto push_for_double;
5d4f98a2
YZ
4232 split = 2;
4233 }
4234 }
4235 }
4236 } else {
4237 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4238 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4239 if (!extend && data_size && slot == 0) {
4240 split = 0;
4241 } else if ((extend || !data_size) && slot == 0) {
4242 mid = 1;
4243 } else {
4244 mid = slot;
4245 if (mid != nritems &&
4246 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4247 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4248 if (data_size && !tried_avoid_double)
4249 goto push_for_double;
67871254 4250 split = 2;
5d4f98a2
YZ
4251 }
4252 }
4253 }
4254 }
4255
4256 if (split == 0)
4257 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4258 else
4259 btrfs_item_key(l, &disk_key, mid);
4260
4d75f8a9
DS
4261 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4262 &disk_key, 0, l->start, 0);
f0486c68 4263 if (IS_ERR(right))
5f39d397 4264 return PTR_ERR(right);
f0486c68 4265
0b246afa 4266 root_add_used(root, fs_info->nodesize);
5f39d397 4267
5d4f98a2
YZ
4268 if (split == 0) {
4269 if (mid <= slot) {
4270 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4271 insert_ptr(trans, fs_info, path, &disk_key,
4272 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4273 btrfs_tree_unlock(path->nodes[0]);
4274 free_extent_buffer(path->nodes[0]);
4275 path->nodes[0] = right;
4276 path->slots[0] = 0;
4277 path->slots[1] += 1;
4278 } else {
4279 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4280 insert_ptr(trans, fs_info, path, &disk_key,
4281 right->start, path->slots[1], 1);
5d4f98a2
YZ
4282 btrfs_tree_unlock(path->nodes[0]);
4283 free_extent_buffer(path->nodes[0]);
4284 path->nodes[0] = right;
4285 path->slots[0] = 0;
143bede5 4286 if (path->slots[1] == 0)
b167fa91 4287 fixup_low_keys(path, &disk_key, 1);
d4dbff95 4288 }
196e0249
LB
4289 /*
4290 * We create a new leaf 'right' for the required ins_len and
4291 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4292 * the content of ins_len to 'right'.
4293 */
5d4f98a2 4294 return ret;
d4dbff95 4295 }
74123bd7 4296
2ff7e61e 4297 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4298
5d4f98a2 4299 if (split == 2) {
cc0c5538
CM
4300 BUG_ON(num_doubles != 0);
4301 num_doubles++;
4302 goto again;
a429e513 4303 }
44871b1b 4304
143bede5 4305 return 0;
99d8f83c
CM
4306
4307push_for_double:
4308 push_for_double_split(trans, root, path, data_size);
4309 tried_avoid_double = 1;
2ff7e61e 4310 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4311 return 0;
4312 goto again;
be0e5c09
CM
4313}
4314
ad48fd75
YZ
4315static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4316 struct btrfs_root *root,
4317 struct btrfs_path *path, int ins_len)
459931ec 4318{
2ff7e61e 4319 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4320 struct btrfs_key key;
459931ec 4321 struct extent_buffer *leaf;
ad48fd75
YZ
4322 struct btrfs_file_extent_item *fi;
4323 u64 extent_len = 0;
4324 u32 item_size;
4325 int ret;
459931ec
CM
4326
4327 leaf = path->nodes[0];
ad48fd75
YZ
4328 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4329
4330 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4331 key.type != BTRFS_EXTENT_CSUM_KEY);
4332
2ff7e61e 4333 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4334 return 0;
459931ec
CM
4335
4336 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4337 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4338 fi = btrfs_item_ptr(leaf, path->slots[0],
4339 struct btrfs_file_extent_item);
4340 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4341 }
b3b4aa74 4342 btrfs_release_path(path);
459931ec 4343
459931ec 4344 path->keep_locks = 1;
ad48fd75
YZ
4345 path->search_for_split = 1;
4346 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4347 path->search_for_split = 0;
a8df6fe6
FM
4348 if (ret > 0)
4349 ret = -EAGAIN;
ad48fd75
YZ
4350 if (ret < 0)
4351 goto err;
459931ec 4352
ad48fd75
YZ
4353 ret = -EAGAIN;
4354 leaf = path->nodes[0];
a8df6fe6
FM
4355 /* if our item isn't there, return now */
4356 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4357 goto err;
4358
109f6aef 4359 /* the leaf has changed, it now has room. return now */
2ff7e61e 4360 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4361 goto err;
4362
ad48fd75
YZ
4363 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4364 fi = btrfs_item_ptr(leaf, path->slots[0],
4365 struct btrfs_file_extent_item);
4366 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4367 goto err;
459931ec
CM
4368 }
4369
b9473439 4370 btrfs_set_path_blocking(path);
ad48fd75 4371 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4372 if (ret)
4373 goto err;
459931ec 4374
ad48fd75 4375 path->keep_locks = 0;
b9473439 4376 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4377 return 0;
4378err:
4379 path->keep_locks = 0;
4380 return ret;
4381}
4382
4961e293 4383static noinline int split_item(struct btrfs_fs_info *fs_info,
ad48fd75 4384 struct btrfs_path *path,
310712b2 4385 const struct btrfs_key *new_key,
ad48fd75
YZ
4386 unsigned long split_offset)
4387{
4388 struct extent_buffer *leaf;
4389 struct btrfs_item *item;
4390 struct btrfs_item *new_item;
4391 int slot;
4392 char *buf;
4393 u32 nritems;
4394 u32 item_size;
4395 u32 orig_offset;
4396 struct btrfs_disk_key disk_key;
4397
b9473439 4398 leaf = path->nodes[0];
2ff7e61e 4399 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4400
b4ce94de
CM
4401 btrfs_set_path_blocking(path);
4402
dd3cc16b 4403 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4404 orig_offset = btrfs_item_offset(leaf, item);
4405 item_size = btrfs_item_size(leaf, item);
4406
459931ec 4407 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4408 if (!buf)
4409 return -ENOMEM;
4410
459931ec
CM
4411 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4412 path->slots[0]), item_size);
459931ec 4413
ad48fd75 4414 slot = path->slots[0] + 1;
459931ec 4415 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4416 if (slot != nritems) {
4417 /* shift the items */
4418 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4419 btrfs_item_nr_offset(slot),
4420 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4421 }
4422
4423 btrfs_cpu_key_to_disk(&disk_key, new_key);
4424 btrfs_set_item_key(leaf, &disk_key, slot);
4425
dd3cc16b 4426 new_item = btrfs_item_nr(slot);
459931ec
CM
4427
4428 btrfs_set_item_offset(leaf, new_item, orig_offset);
4429 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4430
4431 btrfs_set_item_offset(leaf, item,
4432 orig_offset + item_size - split_offset);
4433 btrfs_set_item_size(leaf, item, split_offset);
4434
4435 btrfs_set_header_nritems(leaf, nritems + 1);
4436
4437 /* write the data for the start of the original item */
4438 write_extent_buffer(leaf, buf,
4439 btrfs_item_ptr_offset(leaf, path->slots[0]),
4440 split_offset);
4441
4442 /* write the data for the new item */
4443 write_extent_buffer(leaf, buf + split_offset,
4444 btrfs_item_ptr_offset(leaf, slot),
4445 item_size - split_offset);
4446 btrfs_mark_buffer_dirty(leaf);
4447
2ff7e61e 4448 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4449 kfree(buf);
ad48fd75
YZ
4450 return 0;
4451}
4452
4453/*
4454 * This function splits a single item into two items,
4455 * giving 'new_key' to the new item and splitting the
4456 * old one at split_offset (from the start of the item).
4457 *
4458 * The path may be released by this operation. After
4459 * the split, the path is pointing to the old item. The
4460 * new item is going to be in the same node as the old one.
4461 *
4462 * Note, the item being split must be smaller enough to live alone on
4463 * a tree block with room for one extra struct btrfs_item
4464 *
4465 * This allows us to split the item in place, keeping a lock on the
4466 * leaf the entire time.
4467 */
4468int btrfs_split_item(struct btrfs_trans_handle *trans,
4469 struct btrfs_root *root,
4470 struct btrfs_path *path,
310712b2 4471 const struct btrfs_key *new_key,
ad48fd75
YZ
4472 unsigned long split_offset)
4473{
4474 int ret;
4475 ret = setup_leaf_for_split(trans, root, path,
4476 sizeof(struct btrfs_item));
4477 if (ret)
4478 return ret;
4479
4961e293 4480 ret = split_item(root->fs_info, path, new_key, split_offset);
459931ec
CM
4481 return ret;
4482}
4483
ad48fd75
YZ
4484/*
4485 * This function duplicate a item, giving 'new_key' to the new item.
4486 * It guarantees both items live in the same tree leaf and the new item
4487 * is contiguous with the original item.
4488 *
4489 * This allows us to split file extent in place, keeping a lock on the
4490 * leaf the entire time.
4491 */
4492int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4493 struct btrfs_root *root,
4494 struct btrfs_path *path,
310712b2 4495 const struct btrfs_key *new_key)
ad48fd75
YZ
4496{
4497 struct extent_buffer *leaf;
4498 int ret;
4499 u32 item_size;
4500
4501 leaf = path->nodes[0];
4502 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4503 ret = setup_leaf_for_split(trans, root, path,
4504 item_size + sizeof(struct btrfs_item));
4505 if (ret)
4506 return ret;
4507
4508 path->slots[0]++;
afe5fea7 4509 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4510 item_size, item_size +
4511 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4512 leaf = path->nodes[0];
4513 memcpy_extent_buffer(leaf,
4514 btrfs_item_ptr_offset(leaf, path->slots[0]),
4515 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4516 item_size);
4517 return 0;
4518}
4519
d352ac68
CM
4520/*
4521 * make the item pointed to by the path smaller. new_size indicates
4522 * how small to make it, and from_end tells us if we just chop bytes
4523 * off the end of the item or if we shift the item to chop bytes off
4524 * the front.
4525 */
2ff7e61e
JM
4526void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4527 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4528{
b18c6685 4529 int slot;
5f39d397
CM
4530 struct extent_buffer *leaf;
4531 struct btrfs_item *item;
b18c6685
CM
4532 u32 nritems;
4533 unsigned int data_end;
4534 unsigned int old_data_start;
4535 unsigned int old_size;
4536 unsigned int size_diff;
4537 int i;
cfed81a0
CM
4538 struct btrfs_map_token token;
4539
4540 btrfs_init_map_token(&token);
b18c6685 4541
5f39d397 4542 leaf = path->nodes[0];
179e29e4
CM
4543 slot = path->slots[0];
4544
4545 old_size = btrfs_item_size_nr(leaf, slot);
4546 if (old_size == new_size)
143bede5 4547 return;
b18c6685 4548
5f39d397 4549 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4550 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4551
5f39d397 4552 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4553
b18c6685
CM
4554 size_diff = old_size - new_size;
4555
4556 BUG_ON(slot < 0);
4557 BUG_ON(slot >= nritems);
4558
4559 /*
4560 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4561 */
4562 /* first correct the data pointers */
4563 for (i = slot; i < nritems; i++) {
5f39d397 4564 u32 ioff;
dd3cc16b 4565 item = btrfs_item_nr(i);
db94535d 4566
cfed81a0
CM
4567 ioff = btrfs_token_item_offset(leaf, item, &token);
4568 btrfs_set_token_item_offset(leaf, item,
4569 ioff + size_diff, &token);
b18c6685 4570 }
db94535d 4571
b18c6685 4572 /* shift the data */
179e29e4 4573 if (from_end) {
3d9ec8c4
NB
4574 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4575 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4576 data_end, old_data_start + new_size - data_end);
4577 } else {
4578 struct btrfs_disk_key disk_key;
4579 u64 offset;
4580
4581 btrfs_item_key(leaf, &disk_key, slot);
4582
4583 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4584 unsigned long ptr;
4585 struct btrfs_file_extent_item *fi;
4586
4587 fi = btrfs_item_ptr(leaf, slot,
4588 struct btrfs_file_extent_item);
4589 fi = (struct btrfs_file_extent_item *)(
4590 (unsigned long)fi - size_diff);
4591
4592 if (btrfs_file_extent_type(leaf, fi) ==
4593 BTRFS_FILE_EXTENT_INLINE) {
4594 ptr = btrfs_item_ptr_offset(leaf, slot);
4595 memmove_extent_buffer(leaf, ptr,
d397712b 4596 (unsigned long)fi,
7ec20afb 4597 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4598 }
4599 }
4600
3d9ec8c4
NB
4601 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4602 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4603 data_end, old_data_start - data_end);
4604
4605 offset = btrfs_disk_key_offset(&disk_key);
4606 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4607 btrfs_set_item_key(leaf, &disk_key, slot);
4608 if (slot == 0)
b167fa91 4609 fixup_low_keys(path, &disk_key, 1);
179e29e4 4610 }
5f39d397 4611
dd3cc16b 4612 item = btrfs_item_nr(slot);
5f39d397
CM
4613 btrfs_set_item_size(leaf, item, new_size);
4614 btrfs_mark_buffer_dirty(leaf);
b18c6685 4615
2ff7e61e 4616 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4617 btrfs_print_leaf(leaf);
b18c6685 4618 BUG();
5f39d397 4619 }
b18c6685
CM
4620}
4621
d352ac68 4622/*
8f69dbd2 4623 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4624 */
2ff7e61e 4625void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4626 u32 data_size)
6567e837 4627{
6567e837 4628 int slot;
5f39d397
CM
4629 struct extent_buffer *leaf;
4630 struct btrfs_item *item;
6567e837
CM
4631 u32 nritems;
4632 unsigned int data_end;
4633 unsigned int old_data;
4634 unsigned int old_size;
4635 int i;
cfed81a0
CM
4636 struct btrfs_map_token token;
4637
4638 btrfs_init_map_token(&token);
6567e837 4639
5f39d397 4640 leaf = path->nodes[0];
6567e837 4641
5f39d397 4642 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4643 data_end = leaf_data_end(fs_info, leaf);
6567e837 4644
2ff7e61e 4645 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
a4f78750 4646 btrfs_print_leaf(leaf);
6567e837 4647 BUG();
5f39d397 4648 }
6567e837 4649 slot = path->slots[0];
5f39d397 4650 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4651
4652 BUG_ON(slot < 0);
3326d1b0 4653 if (slot >= nritems) {
a4f78750 4654 btrfs_print_leaf(leaf);
0b246afa
JM
4655 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4656 slot, nritems);
3326d1b0
CM
4657 BUG_ON(1);
4658 }
6567e837
CM
4659
4660 /*
4661 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4662 */
4663 /* first correct the data pointers */
4664 for (i = slot; i < nritems; i++) {
5f39d397 4665 u32 ioff;
dd3cc16b 4666 item = btrfs_item_nr(i);
db94535d 4667
cfed81a0
CM
4668 ioff = btrfs_token_item_offset(leaf, item, &token);
4669 btrfs_set_token_item_offset(leaf, item,
4670 ioff - data_size, &token);
6567e837 4671 }
5f39d397 4672
6567e837 4673 /* shift the data */
3d9ec8c4
NB
4674 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4675 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4676 data_end, old_data - data_end);
5f39d397 4677
6567e837 4678 data_end = old_data;
5f39d397 4679 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4680 item = btrfs_item_nr(slot);
5f39d397
CM
4681 btrfs_set_item_size(leaf, item, old_size + data_size);
4682 btrfs_mark_buffer_dirty(leaf);
6567e837 4683
2ff7e61e 4684 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4685 btrfs_print_leaf(leaf);
6567e837 4686 BUG();
5f39d397 4687 }
6567e837
CM
4688}
4689
74123bd7 4690/*
44871b1b
CM
4691 * this is a helper for btrfs_insert_empty_items, the main goal here is
4692 * to save stack depth by doing the bulk of the work in a function
4693 * that doesn't call btrfs_search_slot
74123bd7 4694 */
afe5fea7 4695void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4696 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4697 u32 total_data, u32 total_size, int nr)
be0e5c09 4698{
0b246afa 4699 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4700 struct btrfs_item *item;
9c58309d 4701 int i;
7518a238 4702 u32 nritems;
be0e5c09 4703 unsigned int data_end;
e2fa7227 4704 struct btrfs_disk_key disk_key;
44871b1b
CM
4705 struct extent_buffer *leaf;
4706 int slot;
cfed81a0
CM
4707 struct btrfs_map_token token;
4708
24cdc847
FM
4709 if (path->slots[0] == 0) {
4710 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
b167fa91 4711 fixup_low_keys(path, &disk_key, 1);
24cdc847
FM
4712 }
4713 btrfs_unlock_up_safe(path, 1);
4714
cfed81a0 4715 btrfs_init_map_token(&token);
e2fa7227 4716
5f39d397 4717 leaf = path->nodes[0];
44871b1b 4718 slot = path->slots[0];
74123bd7 4719
5f39d397 4720 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4721 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4722
2ff7e61e 4723 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
a4f78750 4724 btrfs_print_leaf(leaf);
0b246afa 4725 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4726 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4727 BUG();
d4dbff95 4728 }
5f39d397 4729
be0e5c09 4730 if (slot != nritems) {
5f39d397 4731 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4732
5f39d397 4733 if (old_data < data_end) {
a4f78750 4734 btrfs_print_leaf(leaf);
0b246afa 4735 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4736 slot, old_data, data_end);
5f39d397
CM
4737 BUG_ON(1);
4738 }
be0e5c09
CM
4739 /*
4740 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4741 */
4742 /* first correct the data pointers */
0783fcfc 4743 for (i = slot; i < nritems; i++) {
5f39d397 4744 u32 ioff;
db94535d 4745
62e85577 4746 item = btrfs_item_nr(i);
cfed81a0
CM
4747 ioff = btrfs_token_item_offset(leaf, item, &token);
4748 btrfs_set_token_item_offset(leaf, item,
4749 ioff - total_data, &token);
0783fcfc 4750 }
be0e5c09 4751 /* shift the items */
9c58309d 4752 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4753 btrfs_item_nr_offset(slot),
d6025579 4754 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4755
4756 /* shift the data */
3d9ec8c4
NB
4757 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4758 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4759 data_end, old_data - data_end);
be0e5c09
CM
4760 data_end = old_data;
4761 }
5f39d397 4762
62e2749e 4763 /* setup the item for the new data */
9c58309d
CM
4764 for (i = 0; i < nr; i++) {
4765 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4766 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4767 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4768 btrfs_set_token_item_offset(leaf, item,
4769 data_end - data_size[i], &token);
9c58309d 4770 data_end -= data_size[i];
cfed81a0 4771 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4772 }
44871b1b 4773
9c58309d 4774 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4775 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4776
2ff7e61e 4777 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4778 btrfs_print_leaf(leaf);
be0e5c09 4779 BUG();
5f39d397 4780 }
44871b1b
CM
4781}
4782
4783/*
4784 * Given a key and some data, insert items into the tree.
4785 * This does all the path init required, making room in the tree if needed.
4786 */
4787int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4788 struct btrfs_root *root,
4789 struct btrfs_path *path,
310712b2 4790 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4791 int nr)
4792{
44871b1b
CM
4793 int ret = 0;
4794 int slot;
4795 int i;
4796 u32 total_size = 0;
4797 u32 total_data = 0;
4798
4799 for (i = 0; i < nr; i++)
4800 total_data += data_size[i];
4801
4802 total_size = total_data + (nr * sizeof(struct btrfs_item));
4803 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4804 if (ret == 0)
4805 return -EEXIST;
4806 if (ret < 0)
143bede5 4807 return ret;
44871b1b 4808
44871b1b
CM
4809 slot = path->slots[0];
4810 BUG_ON(slot < 0);
4811
afe5fea7 4812 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4813 total_data, total_size, nr);
143bede5 4814 return 0;
62e2749e
CM
4815}
4816
4817/*
4818 * Given a key and some data, insert an item into the tree.
4819 * This does all the path init required, making room in the tree if needed.
4820 */
310712b2
OS
4821int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4822 const struct btrfs_key *cpu_key, void *data,
4823 u32 data_size)
62e2749e
CM
4824{
4825 int ret = 0;
2c90e5d6 4826 struct btrfs_path *path;
5f39d397
CM
4827 struct extent_buffer *leaf;
4828 unsigned long ptr;
62e2749e 4829
2c90e5d6 4830 path = btrfs_alloc_path();
db5b493a
TI
4831 if (!path)
4832 return -ENOMEM;
2c90e5d6 4833 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4834 if (!ret) {
5f39d397
CM
4835 leaf = path->nodes[0];
4836 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4837 write_extent_buffer(leaf, data, ptr, data_size);
4838 btrfs_mark_buffer_dirty(leaf);
62e2749e 4839 }
2c90e5d6 4840 btrfs_free_path(path);
aa5d6bed 4841 return ret;
be0e5c09
CM
4842}
4843
74123bd7 4844/*
5de08d7d 4845 * delete the pointer from a given node.
74123bd7 4846 *
d352ac68
CM
4847 * the tree should have been previously balanced so the deletion does not
4848 * empty a node.
74123bd7 4849 */
afe5fea7
TI
4850static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4851 int level, int slot)
be0e5c09 4852{
5f39d397 4853 struct extent_buffer *parent = path->nodes[level];
7518a238 4854 u32 nritems;
f3ea38da 4855 int ret;
be0e5c09 4856
5f39d397 4857 nritems = btrfs_header_nritems(parent);
d397712b 4858 if (slot != nritems - 1) {
bf1d3425
DS
4859 if (level) {
4860 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
a446a979 4861 nritems - slot - 1);
bf1d3425
DS
4862 BUG_ON(ret < 0);
4863 }
5f39d397
CM
4864 memmove_extent_buffer(parent,
4865 btrfs_node_key_ptr_offset(slot),
4866 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4867 sizeof(struct btrfs_key_ptr) *
4868 (nritems - slot - 1));
57ba86c0 4869 } else if (level) {
e09c2efe
DS
4870 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4871 GFP_NOFS);
57ba86c0 4872 BUG_ON(ret < 0);
bb803951 4873 }
f3ea38da 4874
7518a238 4875 nritems--;
5f39d397 4876 btrfs_set_header_nritems(parent, nritems);
7518a238 4877 if (nritems == 0 && parent == root->node) {
5f39d397 4878 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4879 /* just turn the root into a leaf and break */
5f39d397 4880 btrfs_set_header_level(root->node, 0);
bb803951 4881 } else if (slot == 0) {
5f39d397
CM
4882 struct btrfs_disk_key disk_key;
4883
4884 btrfs_node_key(parent, &disk_key, 0);
b167fa91 4885 fixup_low_keys(path, &disk_key, level + 1);
be0e5c09 4886 }
d6025579 4887 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4888}
4889
323ac95b
CM
4890/*
4891 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4892 * path->nodes[1].
323ac95b
CM
4893 *
4894 * This deletes the pointer in path->nodes[1] and frees the leaf
4895 * block extent. zero is returned if it all worked out, < 0 otherwise.
4896 *
4897 * The path must have already been setup for deleting the leaf, including
4898 * all the proper balancing. path->nodes[1] must be locked.
4899 */
143bede5
JM
4900static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4901 struct btrfs_root *root,
4902 struct btrfs_path *path,
4903 struct extent_buffer *leaf)
323ac95b 4904{
5d4f98a2 4905 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4906 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4907
4d081c41
CM
4908 /*
4909 * btrfs_free_extent is expensive, we want to make sure we
4910 * aren't holding any locks when we call it
4911 */
4912 btrfs_unlock_up_safe(path, 0);
4913
f0486c68
YZ
4914 root_sub_used(root, leaf->len);
4915
3083ee2e 4916 extent_buffer_get(leaf);
5581a51a 4917 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4918 free_extent_buffer_stale(leaf);
323ac95b 4919}
74123bd7
CM
4920/*
4921 * delete the item at the leaf level in path. If that empties
4922 * the leaf, remove it from the tree
4923 */
85e21bac
CM
4924int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4925 struct btrfs_path *path, int slot, int nr)
be0e5c09 4926{
0b246afa 4927 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4928 struct extent_buffer *leaf;
4929 struct btrfs_item *item;
ce0eac2a
AM
4930 u32 last_off;
4931 u32 dsize = 0;
aa5d6bed
CM
4932 int ret = 0;
4933 int wret;
85e21bac 4934 int i;
7518a238 4935 u32 nritems;
cfed81a0
CM
4936 struct btrfs_map_token token;
4937
4938 btrfs_init_map_token(&token);
be0e5c09 4939
5f39d397 4940 leaf = path->nodes[0];
85e21bac
CM
4941 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4942
4943 for (i = 0; i < nr; i++)
4944 dsize += btrfs_item_size_nr(leaf, slot + i);
4945
5f39d397 4946 nritems = btrfs_header_nritems(leaf);
be0e5c09 4947
85e21bac 4948 if (slot + nr != nritems) {
2ff7e61e 4949 int data_end = leaf_data_end(fs_info, leaf);
5f39d397 4950
3d9ec8c4 4951 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 4952 data_end + dsize,
3d9ec8c4 4953 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 4954 last_off - data_end);
5f39d397 4955
85e21bac 4956 for (i = slot + nr; i < nritems; i++) {
5f39d397 4957 u32 ioff;
db94535d 4958
dd3cc16b 4959 item = btrfs_item_nr(i);
cfed81a0
CM
4960 ioff = btrfs_token_item_offset(leaf, item, &token);
4961 btrfs_set_token_item_offset(leaf, item,
4962 ioff + dsize, &token);
0783fcfc 4963 }
db94535d 4964
5f39d397 4965 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4966 btrfs_item_nr_offset(slot + nr),
d6025579 4967 sizeof(struct btrfs_item) *
85e21bac 4968 (nritems - slot - nr));
be0e5c09 4969 }
85e21bac
CM
4970 btrfs_set_header_nritems(leaf, nritems - nr);
4971 nritems -= nr;
5f39d397 4972
74123bd7 4973 /* delete the leaf if we've emptied it */
7518a238 4974 if (nritems == 0) {
5f39d397
CM
4975 if (leaf == root->node) {
4976 btrfs_set_header_level(leaf, 0);
9a8dd150 4977 } else {
f0486c68 4978 btrfs_set_path_blocking(path);
7c302b49 4979 clean_tree_block(fs_info, leaf);
143bede5 4980 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4981 }
be0e5c09 4982 } else {
7518a238 4983 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4984 if (slot == 0) {
5f39d397
CM
4985 struct btrfs_disk_key disk_key;
4986
4987 btrfs_item_key(leaf, &disk_key, 0);
b167fa91 4988 fixup_low_keys(path, &disk_key, 1);
aa5d6bed 4989 }
aa5d6bed 4990
74123bd7 4991 /* delete the leaf if it is mostly empty */
0b246afa 4992 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
4993 /* push_leaf_left fixes the path.
4994 * make sure the path still points to our leaf
4995 * for possible call to del_ptr below
4996 */
4920c9ac 4997 slot = path->slots[1];
5f39d397
CM
4998 extent_buffer_get(leaf);
4999
b9473439 5000 btrfs_set_path_blocking(path);
99d8f83c
CM
5001 wret = push_leaf_left(trans, root, path, 1, 1,
5002 1, (u32)-1);
54aa1f4d 5003 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5004 ret = wret;
5f39d397
CM
5005
5006 if (path->nodes[0] == leaf &&
5007 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5008 wret = push_leaf_right(trans, root, path, 1,
5009 1, 1, 0);
54aa1f4d 5010 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5011 ret = wret;
5012 }
5f39d397
CM
5013
5014 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5015 path->slots[1] = slot;
143bede5 5016 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5017 free_extent_buffer(leaf);
143bede5 5018 ret = 0;
5de08d7d 5019 } else {
925baedd
CM
5020 /* if we're still in the path, make sure
5021 * we're dirty. Otherwise, one of the
5022 * push_leaf functions must have already
5023 * dirtied this buffer
5024 */
5025 if (path->nodes[0] == leaf)
5026 btrfs_mark_buffer_dirty(leaf);
5f39d397 5027 free_extent_buffer(leaf);
be0e5c09 5028 }
d5719762 5029 } else {
5f39d397 5030 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5031 }
5032 }
aa5d6bed 5033 return ret;
be0e5c09
CM
5034}
5035
7bb86316 5036/*
925baedd 5037 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5038 * returns 0 if it found something or 1 if there are no lesser leaves.
5039 * returns < 0 on io errors.
d352ac68
CM
5040 *
5041 * This may release the path, and so you may lose any locks held at the
5042 * time you call it.
7bb86316 5043 */
16e7549f 5044int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5045{
925baedd
CM
5046 struct btrfs_key key;
5047 struct btrfs_disk_key found_key;
5048 int ret;
7bb86316 5049
925baedd 5050 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5051
e8b0d724 5052 if (key.offset > 0) {
925baedd 5053 key.offset--;
e8b0d724 5054 } else if (key.type > 0) {
925baedd 5055 key.type--;
e8b0d724
FDBM
5056 key.offset = (u64)-1;
5057 } else if (key.objectid > 0) {
925baedd 5058 key.objectid--;
e8b0d724
FDBM
5059 key.type = (u8)-1;
5060 key.offset = (u64)-1;
5061 } else {
925baedd 5062 return 1;
e8b0d724 5063 }
7bb86316 5064
b3b4aa74 5065 btrfs_release_path(path);
925baedd
CM
5066 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5067 if (ret < 0)
5068 return ret;
5069 btrfs_item_key(path->nodes[0], &found_key, 0);
5070 ret = comp_keys(&found_key, &key);
337c6f68
FM
5071 /*
5072 * We might have had an item with the previous key in the tree right
5073 * before we released our path. And after we released our path, that
5074 * item might have been pushed to the first slot (0) of the leaf we
5075 * were holding due to a tree balance. Alternatively, an item with the
5076 * previous key can exist as the only element of a leaf (big fat item).
5077 * Therefore account for these 2 cases, so that our callers (like
5078 * btrfs_previous_item) don't miss an existing item with a key matching
5079 * the previous key we computed above.
5080 */
5081 if (ret <= 0)
925baedd
CM
5082 return 0;
5083 return 1;
7bb86316
CM
5084}
5085
3f157a2f
CM
5086/*
5087 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5088 * for nodes or leaves that are have a minimum transaction id.
5089 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5090 *
5091 * This does not cow, but it does stuff the starting key it finds back
5092 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5093 * key and get a writable path.
5094 *
3f157a2f
CM
5095 * This honors path->lowest_level to prevent descent past a given level
5096 * of the tree.
5097 *
d352ac68
CM
5098 * min_trans indicates the oldest transaction that you are interested
5099 * in walking through. Any nodes or leaves older than min_trans are
5100 * skipped over (without reading them).
5101 *
3f157a2f
CM
5102 * returns zero if something useful was found, < 0 on error and 1 if there
5103 * was nothing in the tree that matched the search criteria.
5104 */
5105int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5106 struct btrfs_path *path,
3f157a2f
CM
5107 u64 min_trans)
5108{
2ff7e61e 5109 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5110 struct extent_buffer *cur;
5111 struct btrfs_key found_key;
5112 int slot;
9652480b 5113 int sret;
3f157a2f
CM
5114 u32 nritems;
5115 int level;
5116 int ret = 1;
f98de9b9 5117 int keep_locks = path->keep_locks;
3f157a2f 5118
f98de9b9 5119 path->keep_locks = 1;
3f157a2f 5120again:
bd681513 5121 cur = btrfs_read_lock_root_node(root);
3f157a2f 5122 level = btrfs_header_level(cur);
e02119d5 5123 WARN_ON(path->nodes[level]);
3f157a2f 5124 path->nodes[level] = cur;
bd681513 5125 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5126
5127 if (btrfs_header_generation(cur) < min_trans) {
5128 ret = 1;
5129 goto out;
5130 }
d397712b 5131 while (1) {
3f157a2f
CM
5132 nritems = btrfs_header_nritems(cur);
5133 level = btrfs_header_level(cur);
a74b35ec 5134 sret = btrfs_bin_search(cur, min_key, level, &slot);
3f157a2f 5135
323ac95b
CM
5136 /* at the lowest level, we're done, setup the path and exit */
5137 if (level == path->lowest_level) {
e02119d5
CM
5138 if (slot >= nritems)
5139 goto find_next_key;
3f157a2f
CM
5140 ret = 0;
5141 path->slots[level] = slot;
5142 btrfs_item_key_to_cpu(cur, &found_key, slot);
5143 goto out;
5144 }
9652480b
Y
5145 if (sret && slot > 0)
5146 slot--;
3f157a2f 5147 /*
de78b51a
ES
5148 * check this node pointer against the min_trans parameters.
5149 * If it is too old, old, skip to the next one.
3f157a2f 5150 */
d397712b 5151 while (slot < nritems) {
3f157a2f 5152 u64 gen;
e02119d5 5153
3f157a2f
CM
5154 gen = btrfs_node_ptr_generation(cur, slot);
5155 if (gen < min_trans) {
5156 slot++;
5157 continue;
5158 }
de78b51a 5159 break;
3f157a2f 5160 }
e02119d5 5161find_next_key:
3f157a2f
CM
5162 /*
5163 * we didn't find a candidate key in this node, walk forward
5164 * and find another one
5165 */
5166 if (slot >= nritems) {
e02119d5 5167 path->slots[level] = slot;
b4ce94de 5168 btrfs_set_path_blocking(path);
e02119d5 5169 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5170 min_trans);
e02119d5 5171 if (sret == 0) {
b3b4aa74 5172 btrfs_release_path(path);
3f157a2f
CM
5173 goto again;
5174 } else {
5175 goto out;
5176 }
5177 }
5178 /* save our key for returning back */
5179 btrfs_node_key_to_cpu(cur, &found_key, slot);
5180 path->slots[level] = slot;
5181 if (level == path->lowest_level) {
5182 ret = 0;
3f157a2f
CM
5183 goto out;
5184 }
b4ce94de 5185 btrfs_set_path_blocking(path);
2ff7e61e 5186 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5187 if (IS_ERR(cur)) {
5188 ret = PTR_ERR(cur);
5189 goto out;
5190 }
3f157a2f 5191
bd681513 5192 btrfs_tree_read_lock(cur);
b4ce94de 5193
bd681513 5194 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5195 path->nodes[level - 1] = cur;
f7c79f30 5196 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
5197 }
5198out:
f98de9b9
FM
5199 path->keep_locks = keep_locks;
5200 if (ret == 0) {
5201 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5202 btrfs_set_path_blocking(path);
3f157a2f 5203 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5204 }
3f157a2f
CM
5205 return ret;
5206}
5207
2ff7e61e 5208static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a 5209 struct btrfs_path *path,
ab6a43e1 5210 int *level)
7069830a 5211{
fb770ae4
LB
5212 struct extent_buffer *eb;
5213
74dd17fb 5214 BUG_ON(*level == 0);
2ff7e61e 5215 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5216 if (IS_ERR(eb))
5217 return PTR_ERR(eb);
5218
5219 path->nodes[*level - 1] = eb;
7069830a
AB
5220 path->slots[*level - 1] = 0;
5221 (*level)--;
fb770ae4 5222 return 0;
7069830a
AB
5223}
5224
f1e30261 5225static int tree_move_next_or_upnext(struct btrfs_path *path,
7069830a
AB
5226 int *level, int root_level)
5227{
5228 int ret = 0;
5229 int nritems;
5230 nritems = btrfs_header_nritems(path->nodes[*level]);
5231
5232 path->slots[*level]++;
5233
74dd17fb 5234 while (path->slots[*level] >= nritems) {
7069830a
AB
5235 if (*level == root_level)
5236 return -1;
5237
5238 /* move upnext */
5239 path->slots[*level] = 0;
5240 free_extent_buffer(path->nodes[*level]);
5241 path->nodes[*level] = NULL;
5242 (*level)++;
5243 path->slots[*level]++;
5244
5245 nritems = btrfs_header_nritems(path->nodes[*level]);
5246 ret = 1;
5247 }
5248 return ret;
5249}
5250
5251/*
5252 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5253 * or down.
5254 */
2ff7e61e 5255static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5256 struct btrfs_path *path,
5257 int *level, int root_level,
5258 int allow_down,
5259 struct btrfs_key *key)
5260{
5261 int ret;
5262
5263 if (*level == 0 || !allow_down) {
f1e30261 5264 ret = tree_move_next_or_upnext(path, level, root_level);
7069830a 5265 } else {
ab6a43e1 5266 ret = tree_move_down(fs_info, path, level);
7069830a
AB
5267 }
5268 if (ret >= 0) {
5269 if (*level == 0)
5270 btrfs_item_key_to_cpu(path->nodes[*level], key,
5271 path->slots[*level]);
5272 else
5273 btrfs_node_key_to_cpu(path->nodes[*level], key,
5274 path->slots[*level]);
5275 }
5276 return ret;
5277}
5278
2ff7e61e 5279static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5280 struct btrfs_path *right_path,
5281 char *tmp_buf)
5282{
5283 int cmp;
5284 int len1, len2;
5285 unsigned long off1, off2;
5286
5287 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5288 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5289 if (len1 != len2)
5290 return 1;
5291
5292 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5293 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5294 right_path->slots[0]);
5295
5296 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5297
5298 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5299 if (cmp)
5300 return 1;
5301 return 0;
5302}
5303
5304#define ADVANCE 1
5305#define ADVANCE_ONLY_NEXT -1
5306
5307/*
5308 * This function compares two trees and calls the provided callback for
5309 * every changed/new/deleted item it finds.
5310 * If shared tree blocks are encountered, whole subtrees are skipped, making
5311 * the compare pretty fast on snapshotted subvolumes.
5312 *
5313 * This currently works on commit roots only. As commit roots are read only,
5314 * we don't do any locking. The commit roots are protected with transactions.
5315 * Transactions are ended and rejoined when a commit is tried in between.
5316 *
5317 * This function checks for modifications done to the trees while comparing.
5318 * If it detects a change, it aborts immediately.
5319 */
5320int btrfs_compare_trees(struct btrfs_root *left_root,
5321 struct btrfs_root *right_root,
5322 btrfs_changed_cb_t changed_cb, void *ctx)
5323{
0b246afa 5324 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5325 int ret;
5326 int cmp;
7069830a
AB
5327 struct btrfs_path *left_path = NULL;
5328 struct btrfs_path *right_path = NULL;
5329 struct btrfs_key left_key;
5330 struct btrfs_key right_key;
5331 char *tmp_buf = NULL;
5332 int left_root_level;
5333 int right_root_level;
5334 int left_level;
5335 int right_level;
5336 int left_end_reached;
5337 int right_end_reached;
5338 int advance_left;
5339 int advance_right;
5340 u64 left_blockptr;
5341 u64 right_blockptr;
6baa4293
FM
5342 u64 left_gen;
5343 u64 right_gen;
7069830a
AB
5344
5345 left_path = btrfs_alloc_path();
5346 if (!left_path) {
5347 ret = -ENOMEM;
5348 goto out;
5349 }
5350 right_path = btrfs_alloc_path();
5351 if (!right_path) {
5352 ret = -ENOMEM;
5353 goto out;
5354 }
5355
752ade68 5356 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7069830a 5357 if (!tmp_buf) {
752ade68
MH
5358 ret = -ENOMEM;
5359 goto out;
7069830a
AB
5360 }
5361
5362 left_path->search_commit_root = 1;
5363 left_path->skip_locking = 1;
5364 right_path->search_commit_root = 1;
5365 right_path->skip_locking = 1;
5366
7069830a
AB
5367 /*
5368 * Strategy: Go to the first items of both trees. Then do
5369 *
5370 * If both trees are at level 0
5371 * Compare keys of current items
5372 * If left < right treat left item as new, advance left tree
5373 * and repeat
5374 * If left > right treat right item as deleted, advance right tree
5375 * and repeat
5376 * If left == right do deep compare of items, treat as changed if
5377 * needed, advance both trees and repeat
5378 * If both trees are at the same level but not at level 0
5379 * Compare keys of current nodes/leafs
5380 * If left < right advance left tree and repeat
5381 * If left > right advance right tree and repeat
5382 * If left == right compare blockptrs of the next nodes/leafs
5383 * If they match advance both trees but stay at the same level
5384 * and repeat
5385 * If they don't match advance both trees while allowing to go
5386 * deeper and repeat
5387 * If tree levels are different
5388 * Advance the tree that needs it and repeat
5389 *
5390 * Advancing a tree means:
5391 * If we are at level 0, try to go to the next slot. If that's not
5392 * possible, go one level up and repeat. Stop when we found a level
5393 * where we could go to the next slot. We may at this point be on a
5394 * node or a leaf.
5395 *
5396 * If we are not at level 0 and not on shared tree blocks, go one
5397 * level deeper.
5398 *
5399 * If we are not at level 0 and on shared tree blocks, go one slot to
5400 * the right if possible or go up and right.
5401 */
5402
0b246afa 5403 down_read(&fs_info->commit_root_sem);
7069830a
AB
5404 left_level = btrfs_header_level(left_root->commit_root);
5405 left_root_level = left_level;
6f2f0b39
RK
5406 left_path->nodes[left_level] =
5407 btrfs_clone_extent_buffer(left_root->commit_root);
5408 if (!left_path->nodes[left_level]) {
5409 up_read(&fs_info->commit_root_sem);
5410 ret = -ENOMEM;
5411 goto out;
5412 }
7069830a
AB
5413
5414 right_level = btrfs_header_level(right_root->commit_root);
5415 right_root_level = right_level;
6f2f0b39
RK
5416 right_path->nodes[right_level] =
5417 btrfs_clone_extent_buffer(right_root->commit_root);
5418 if (!right_path->nodes[right_level]) {
5419 up_read(&fs_info->commit_root_sem);
5420 ret = -ENOMEM;
5421 goto out;
5422 }
0b246afa 5423 up_read(&fs_info->commit_root_sem);
7069830a
AB
5424
5425 if (left_level == 0)
5426 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5427 &left_key, left_path->slots[left_level]);
5428 else
5429 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5430 &left_key, left_path->slots[left_level]);
5431 if (right_level == 0)
5432 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5433 &right_key, right_path->slots[right_level]);
5434 else
5435 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5436 &right_key, right_path->slots[right_level]);
5437
5438 left_end_reached = right_end_reached = 0;
5439 advance_left = advance_right = 0;
5440
5441 while (1) {
7069830a 5442 if (advance_left && !left_end_reached) {
2ff7e61e 5443 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5444 left_root_level,
5445 advance_left != ADVANCE_ONLY_NEXT,
5446 &left_key);
fb770ae4 5447 if (ret == -1)
7069830a 5448 left_end_reached = ADVANCE;
fb770ae4
LB
5449 else if (ret < 0)
5450 goto out;
7069830a
AB
5451 advance_left = 0;
5452 }
5453 if (advance_right && !right_end_reached) {
2ff7e61e 5454 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5455 right_root_level,
5456 advance_right != ADVANCE_ONLY_NEXT,
5457 &right_key);
fb770ae4 5458 if (ret == -1)
7069830a 5459 right_end_reached = ADVANCE;
fb770ae4
LB
5460 else if (ret < 0)
5461 goto out;
7069830a
AB
5462 advance_right = 0;
5463 }
5464
5465 if (left_end_reached && right_end_reached) {
5466 ret = 0;
5467 goto out;
5468 } else if (left_end_reached) {
5469 if (right_level == 0) {
ee8c494f 5470 ret = changed_cb(left_path, right_path,
7069830a
AB
5471 &right_key,
5472 BTRFS_COMPARE_TREE_DELETED,
5473 ctx);
5474 if (ret < 0)
5475 goto out;
5476 }
5477 advance_right = ADVANCE;
5478 continue;
5479 } else if (right_end_reached) {
5480 if (left_level == 0) {
ee8c494f 5481 ret = changed_cb(left_path, right_path,
7069830a
AB
5482 &left_key,
5483 BTRFS_COMPARE_TREE_NEW,
5484 ctx);
5485 if (ret < 0)
5486 goto out;
5487 }
5488 advance_left = ADVANCE;
5489 continue;
5490 }
5491
5492 if (left_level == 0 && right_level == 0) {
5493 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5494 if (cmp < 0) {
ee8c494f 5495 ret = changed_cb(left_path, right_path,
7069830a
AB
5496 &left_key,
5497 BTRFS_COMPARE_TREE_NEW,
5498 ctx);
5499 if (ret < 0)
5500 goto out;
5501 advance_left = ADVANCE;
5502 } else if (cmp > 0) {
ee8c494f 5503 ret = changed_cb(left_path, right_path,
7069830a
AB
5504 &right_key,
5505 BTRFS_COMPARE_TREE_DELETED,
5506 ctx);
5507 if (ret < 0)
5508 goto out;
5509 advance_right = ADVANCE;
5510 } else {
b99d9a6a 5511 enum btrfs_compare_tree_result result;
ba5e8f2e 5512
74dd17fb 5513 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5514 ret = tree_compare_item(left_path, right_path,
5515 tmp_buf);
ba5e8f2e 5516 if (ret)
b99d9a6a 5517 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5518 else
b99d9a6a 5519 result = BTRFS_COMPARE_TREE_SAME;
ee8c494f 5520 ret = changed_cb(left_path, right_path,
b99d9a6a 5521 &left_key, result, ctx);
ba5e8f2e
JB
5522 if (ret < 0)
5523 goto out;
7069830a
AB
5524 advance_left = ADVANCE;
5525 advance_right = ADVANCE;
5526 }
5527 } else if (left_level == right_level) {
5528 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5529 if (cmp < 0) {
5530 advance_left = ADVANCE;
5531 } else if (cmp > 0) {
5532 advance_right = ADVANCE;
5533 } else {
5534 left_blockptr = btrfs_node_blockptr(
5535 left_path->nodes[left_level],
5536 left_path->slots[left_level]);
5537 right_blockptr = btrfs_node_blockptr(
5538 right_path->nodes[right_level],
5539 right_path->slots[right_level]);
6baa4293
FM
5540 left_gen = btrfs_node_ptr_generation(
5541 left_path->nodes[left_level],
5542 left_path->slots[left_level]);
5543 right_gen = btrfs_node_ptr_generation(
5544 right_path->nodes[right_level],
5545 right_path->slots[right_level]);
5546 if (left_blockptr == right_blockptr &&
5547 left_gen == right_gen) {
7069830a
AB
5548 /*
5549 * As we're on a shared block, don't
5550 * allow to go deeper.
5551 */
5552 advance_left = ADVANCE_ONLY_NEXT;
5553 advance_right = ADVANCE_ONLY_NEXT;
5554 } else {
5555 advance_left = ADVANCE;
5556 advance_right = ADVANCE;
5557 }
5558 }
5559 } else if (left_level < right_level) {
5560 advance_right = ADVANCE;
5561 } else {
5562 advance_left = ADVANCE;
5563 }
5564 }
5565
5566out:
5567 btrfs_free_path(left_path);
5568 btrfs_free_path(right_path);
8f282f71 5569 kvfree(tmp_buf);
7069830a
AB
5570 return ret;
5571}
5572
3f157a2f
CM
5573/*
5574 * this is similar to btrfs_next_leaf, but does not try to preserve
5575 * and fixup the path. It looks for and returns the next key in the
de78b51a 5576 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5577 *
5578 * 0 is returned if another key is found, < 0 if there are any errors
5579 * and 1 is returned if there are no higher keys in the tree
5580 *
5581 * path->keep_locks should be set to 1 on the search made before
5582 * calling this function.
5583 */
e7a84565 5584int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5585 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5586{
e7a84565
CM
5587 int slot;
5588 struct extent_buffer *c;
5589
934d375b 5590 WARN_ON(!path->keep_locks);
d397712b 5591 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5592 if (!path->nodes[level])
5593 return 1;
5594
5595 slot = path->slots[level] + 1;
5596 c = path->nodes[level];
3f157a2f 5597next:
e7a84565 5598 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5599 int ret;
5600 int orig_lowest;
5601 struct btrfs_key cur_key;
5602 if (level + 1 >= BTRFS_MAX_LEVEL ||
5603 !path->nodes[level + 1])
e7a84565 5604 return 1;
33c66f43
YZ
5605
5606 if (path->locks[level + 1]) {
5607 level++;
5608 continue;
5609 }
5610
5611 slot = btrfs_header_nritems(c) - 1;
5612 if (level == 0)
5613 btrfs_item_key_to_cpu(c, &cur_key, slot);
5614 else
5615 btrfs_node_key_to_cpu(c, &cur_key, slot);
5616
5617 orig_lowest = path->lowest_level;
b3b4aa74 5618 btrfs_release_path(path);
33c66f43
YZ
5619 path->lowest_level = level;
5620 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5621 0, 0);
5622 path->lowest_level = orig_lowest;
5623 if (ret < 0)
5624 return ret;
5625
5626 c = path->nodes[level];
5627 slot = path->slots[level];
5628 if (ret == 0)
5629 slot++;
5630 goto next;
e7a84565 5631 }
33c66f43 5632
e7a84565
CM
5633 if (level == 0)
5634 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5635 else {
3f157a2f
CM
5636 u64 gen = btrfs_node_ptr_generation(c, slot);
5637
3f157a2f
CM
5638 if (gen < min_trans) {
5639 slot++;
5640 goto next;
5641 }
e7a84565 5642 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5643 }
e7a84565
CM
5644 return 0;
5645 }
5646 return 1;
5647}
5648
97571fd0 5649/*
925baedd 5650 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5651 * returns 0 if it found something or 1 if there are no greater leaves.
5652 * returns < 0 on io errors.
97571fd0 5653 */
234b63a0 5654int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5655{
5656 return btrfs_next_old_leaf(root, path, 0);
5657}
5658
5659int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5660 u64 time_seq)
d97e63b6
CM
5661{
5662 int slot;
8e73f275 5663 int level;
5f39d397 5664 struct extent_buffer *c;
8e73f275 5665 struct extent_buffer *next;
925baedd
CM
5666 struct btrfs_key key;
5667 u32 nritems;
5668 int ret;
8e73f275 5669 int old_spinning = path->leave_spinning;
bd681513 5670 int next_rw_lock = 0;
925baedd
CM
5671
5672 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5673 if (nritems == 0)
925baedd 5674 return 1;
925baedd 5675
8e73f275
CM
5676 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5677again:
5678 level = 1;
5679 next = NULL;
bd681513 5680 next_rw_lock = 0;
b3b4aa74 5681 btrfs_release_path(path);
8e73f275 5682
a2135011 5683 path->keep_locks = 1;
31533fb2 5684 path->leave_spinning = 1;
8e73f275 5685
3d7806ec
JS
5686 if (time_seq)
5687 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5688 else
5689 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5690 path->keep_locks = 0;
5691
5692 if (ret < 0)
5693 return ret;
5694
a2135011 5695 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5696 /*
5697 * by releasing the path above we dropped all our locks. A balance
5698 * could have added more items next to the key that used to be
5699 * at the very end of the block. So, check again here and
5700 * advance the path if there are now more items available.
5701 */
a2135011 5702 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5703 if (ret == 0)
5704 path->slots[0]++;
8e73f275 5705 ret = 0;
925baedd
CM
5706 goto done;
5707 }
0b43e04f
LB
5708 /*
5709 * So the above check misses one case:
5710 * - after releasing the path above, someone has removed the item that
5711 * used to be at the very end of the block, and balance between leafs
5712 * gets another one with bigger key.offset to replace it.
5713 *
5714 * This one should be returned as well, or we can get leaf corruption
5715 * later(esp. in __btrfs_drop_extents()).
5716 *
5717 * And a bit more explanation about this check,
5718 * with ret > 0, the key isn't found, the path points to the slot
5719 * where it should be inserted, so the path->slots[0] item must be the
5720 * bigger one.
5721 */
5722 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5723 ret = 0;
5724 goto done;
5725 }
d97e63b6 5726
d397712b 5727 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5728 if (!path->nodes[level]) {
5729 ret = 1;
5730 goto done;
5731 }
5f39d397 5732
d97e63b6
CM
5733 slot = path->slots[level] + 1;
5734 c = path->nodes[level];
5f39d397 5735 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5736 level++;
8e73f275
CM
5737 if (level == BTRFS_MAX_LEVEL) {
5738 ret = 1;
5739 goto done;
5740 }
d97e63b6
CM
5741 continue;
5742 }
5f39d397 5743
925baedd 5744 if (next) {
bd681513 5745 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5746 free_extent_buffer(next);
925baedd 5747 }
5f39d397 5748
8e73f275 5749 next = c;
bd681513 5750 next_rw_lock = path->locks[level];
d07b8528 5751 ret = read_block_for_search(root, path, &next, level,
cda79c54 5752 slot, &key);
8e73f275
CM
5753 if (ret == -EAGAIN)
5754 goto again;
5f39d397 5755
76a05b35 5756 if (ret < 0) {
b3b4aa74 5757 btrfs_release_path(path);
76a05b35
CM
5758 goto done;
5759 }
5760
5cd57b2c 5761 if (!path->skip_locking) {
bd681513 5762 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5763 if (!ret && time_seq) {
5764 /*
5765 * If we don't get the lock, we may be racing
5766 * with push_leaf_left, holding that lock while
5767 * itself waiting for the leaf we've currently
5768 * locked. To solve this situation, we give up
5769 * on our lock and cycle.
5770 */
cf538830 5771 free_extent_buffer(next);
d42244a0
JS
5772 btrfs_release_path(path);
5773 cond_resched();
5774 goto again;
5775 }
8e73f275
CM
5776 if (!ret) {
5777 btrfs_set_path_blocking(path);
bd681513 5778 btrfs_tree_read_lock(next);
8e73f275 5779 }
31533fb2 5780 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5781 }
d97e63b6
CM
5782 break;
5783 }
5784 path->slots[level] = slot;
d397712b 5785 while (1) {
d97e63b6
CM
5786 level--;
5787 c = path->nodes[level];
925baedd 5788 if (path->locks[level])
bd681513 5789 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5790
5f39d397 5791 free_extent_buffer(c);
d97e63b6
CM
5792 path->nodes[level] = next;
5793 path->slots[level] = 0;
a74a4b97 5794 if (!path->skip_locking)
bd681513 5795 path->locks[level] = next_rw_lock;
d97e63b6
CM
5796 if (!level)
5797 break;
b4ce94de 5798
d07b8528 5799 ret = read_block_for_search(root, path, &next, level,
cda79c54 5800 0, &key);
8e73f275
CM
5801 if (ret == -EAGAIN)
5802 goto again;
5803
76a05b35 5804 if (ret < 0) {
b3b4aa74 5805 btrfs_release_path(path);
76a05b35
CM
5806 goto done;
5807 }
5808
5cd57b2c 5809 if (!path->skip_locking) {
bd681513 5810 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5811 if (!ret) {
5812 btrfs_set_path_blocking(path);
bd681513 5813 btrfs_tree_read_lock(next);
bd681513 5814 }
31533fb2 5815 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5816 }
d97e63b6 5817 }
8e73f275 5818 ret = 0;
925baedd 5819done:
f7c79f30 5820 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5821 path->leave_spinning = old_spinning;
5822 if (!old_spinning)
5823 btrfs_set_path_blocking(path);
5824
5825 return ret;
d97e63b6 5826}
0b86a832 5827
3f157a2f
CM
5828/*
5829 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5830 * searching until it gets past min_objectid or finds an item of 'type'
5831 *
5832 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5833 */
0b86a832
CM
5834int btrfs_previous_item(struct btrfs_root *root,
5835 struct btrfs_path *path, u64 min_objectid,
5836 int type)
5837{
5838 struct btrfs_key found_key;
5839 struct extent_buffer *leaf;
e02119d5 5840 u32 nritems;
0b86a832
CM
5841 int ret;
5842
d397712b 5843 while (1) {
0b86a832 5844 if (path->slots[0] == 0) {
b4ce94de 5845 btrfs_set_path_blocking(path);
0b86a832
CM
5846 ret = btrfs_prev_leaf(root, path);
5847 if (ret != 0)
5848 return ret;
5849 } else {
5850 path->slots[0]--;
5851 }
5852 leaf = path->nodes[0];
e02119d5
CM
5853 nritems = btrfs_header_nritems(leaf);
5854 if (nritems == 0)
5855 return 1;
5856 if (path->slots[0] == nritems)
5857 path->slots[0]--;
5858
0b86a832 5859 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5860 if (found_key.objectid < min_objectid)
5861 break;
0a4eefbb
YZ
5862 if (found_key.type == type)
5863 return 0;
e02119d5
CM
5864 if (found_key.objectid == min_objectid &&
5865 found_key.type < type)
5866 break;
0b86a832
CM
5867 }
5868 return 1;
5869}
ade2e0b3
WS
5870
5871/*
5872 * search in extent tree to find a previous Metadata/Data extent item with
5873 * min objecitd.
5874 *
5875 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5876 */
5877int btrfs_previous_extent_item(struct btrfs_root *root,
5878 struct btrfs_path *path, u64 min_objectid)
5879{
5880 struct btrfs_key found_key;
5881 struct extent_buffer *leaf;
5882 u32 nritems;
5883 int ret;
5884
5885 while (1) {
5886 if (path->slots[0] == 0) {
5887 btrfs_set_path_blocking(path);
5888 ret = btrfs_prev_leaf(root, path);
5889 if (ret != 0)
5890 return ret;
5891 } else {
5892 path->slots[0]--;
5893 }
5894 leaf = path->nodes[0];
5895 nritems = btrfs_header_nritems(leaf);
5896 if (nritems == 0)
5897 return 1;
5898 if (path->slots[0] == nritems)
5899 path->slots[0]--;
5900
5901 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5902 if (found_key.objectid < min_objectid)
5903 break;
5904 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5905 found_key.type == BTRFS_METADATA_ITEM_KEY)
5906 return 0;
5907 if (found_key.objectid == min_objectid &&
5908 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5909 break;
5910 }
5911 return 1;
5912}