]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/ctree.c
Btrfs: move get root out of btrfs_search_slot to a helper
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / ctree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570 2/*
d352ac68 3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
a6b6e75e 6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
bd989ba3 8#include <linux/rbtree.h>
adf02123 9#include <linux/mm.h>
eb60ceac
CM
10#include "ctree.h"
11#include "disk-io.h"
7f5c1516 12#include "transaction.h"
5f39d397 13#include "print-tree.h"
925baedd 14#include "locking.h"
9a8dd150 15
e089f05c
CM
16static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
17 *root, struct btrfs_path *path, int level);
310712b2
OS
18static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
19 const struct btrfs_key *ins_key, struct btrfs_path *path,
20 int data_size, int extend);
5f39d397 21static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
22 struct btrfs_fs_info *fs_info,
23 struct extent_buffer *dst,
971a1f66 24 struct extent_buffer *src, int empty);
5f39d397 25static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 26 struct btrfs_fs_info *fs_info,
5f39d397
CM
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
afe5fea7
TI
29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 int level, int slot);
d97e63b6 31
df24a2b9 32struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 33{
e2c89907 34 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
35}
36
b4ce94de
CM
37/*
38 * set all locked nodes in the path to blocking locks. This should
39 * be done before scheduling
40 */
41noinline void btrfs_set_path_blocking(struct btrfs_path *p)
42{
43 int i;
44 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
45 if (!p->nodes[i] || !p->locks[i])
46 continue;
47 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
48 if (p->locks[i] == BTRFS_READ_LOCK)
49 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
50 else if (p->locks[i] == BTRFS_WRITE_LOCK)
51 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
52 }
53}
54
55/*
56 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
57 *
58 * held is used to keep lockdep happy, when lockdep is enabled
59 * we set held to a blocking lock before we go around and
60 * retake all the spinlocks in the path. You can safely use NULL
61 * for held
b4ce94de 62 */
4008c04a 63noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 64 struct extent_buffer *held, int held_rw)
b4ce94de
CM
65{
66 int i;
4008c04a 67
bd681513
CM
68 if (held) {
69 btrfs_set_lock_blocking_rw(held, held_rw);
70 if (held_rw == BTRFS_WRITE_LOCK)
71 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
72 else if (held_rw == BTRFS_READ_LOCK)
73 held_rw = BTRFS_READ_LOCK_BLOCKING;
74 }
4008c04a 75 btrfs_set_path_blocking(p);
4008c04a
CM
76
77 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
78 if (p->nodes[i] && p->locks[i]) {
79 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
80 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
81 p->locks[i] = BTRFS_WRITE_LOCK;
82 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
83 p->locks[i] = BTRFS_READ_LOCK;
84 }
b4ce94de 85 }
4008c04a 86
4008c04a 87 if (held)
bd681513 88 btrfs_clear_lock_blocking_rw(held, held_rw);
b4ce94de
CM
89}
90
d352ac68 91/* this also releases the path */
df24a2b9 92void btrfs_free_path(struct btrfs_path *p)
be0e5c09 93{
ff175d57
JJ
94 if (!p)
95 return;
b3b4aa74 96 btrfs_release_path(p);
df24a2b9 97 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
98}
99
d352ac68
CM
100/*
101 * path release drops references on the extent buffers in the path
102 * and it drops any locks held by this path
103 *
104 * It is safe to call this on paths that no locks or extent buffers held.
105 */
b3b4aa74 106noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
107{
108 int i;
a2135011 109
234b63a0 110 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 111 p->slots[i] = 0;
eb60ceac 112 if (!p->nodes[i])
925baedd
CM
113 continue;
114 if (p->locks[i]) {
bd681513 115 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
116 p->locks[i] = 0;
117 }
5f39d397 118 free_extent_buffer(p->nodes[i]);
3f157a2f 119 p->nodes[i] = NULL;
eb60ceac
CM
120 }
121}
122
d352ac68
CM
123/*
124 * safely gets a reference on the root node of a tree. A lock
125 * is not taken, so a concurrent writer may put a different node
126 * at the root of the tree. See btrfs_lock_root_node for the
127 * looping required.
128 *
129 * The extent buffer returned by this has a reference taken, so
130 * it won't disappear. It may stop being the root of the tree
131 * at any time because there are no locks held.
132 */
925baedd
CM
133struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
134{
135 struct extent_buffer *eb;
240f62c8 136
3083ee2e
JB
137 while (1) {
138 rcu_read_lock();
139 eb = rcu_dereference(root->node);
140
141 /*
142 * RCU really hurts here, we could free up the root node because
01327610 143 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
144 * the inc_not_zero dance and if it doesn't work then
145 * synchronize_rcu and try again.
146 */
147 if (atomic_inc_not_zero(&eb->refs)) {
148 rcu_read_unlock();
149 break;
150 }
151 rcu_read_unlock();
152 synchronize_rcu();
153 }
925baedd
CM
154 return eb;
155}
156
d352ac68
CM
157/* loop around taking references on and locking the root node of the
158 * tree until you end up with a lock on the root. A locked buffer
159 * is returned, with a reference held.
160 */
925baedd
CM
161struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
162{
163 struct extent_buffer *eb;
164
d397712b 165 while (1) {
925baedd
CM
166 eb = btrfs_root_node(root);
167 btrfs_tree_lock(eb);
240f62c8 168 if (eb == root->node)
925baedd 169 break;
925baedd
CM
170 btrfs_tree_unlock(eb);
171 free_extent_buffer(eb);
172 }
173 return eb;
174}
175
bd681513
CM
176/* loop around taking references on and locking the root node of the
177 * tree until you end up with a lock on the root. A locked buffer
178 * is returned, with a reference held.
179 */
84f7d8e6 180struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
181{
182 struct extent_buffer *eb;
183
184 while (1) {
185 eb = btrfs_root_node(root);
186 btrfs_tree_read_lock(eb);
187 if (eb == root->node)
188 break;
189 btrfs_tree_read_unlock(eb);
190 free_extent_buffer(eb);
191 }
192 return eb;
193}
194
d352ac68
CM
195/* cowonly root (everything not a reference counted cow subvolume), just get
196 * put onto a simple dirty list. transaction.c walks this to make sure they
197 * get properly updated on disk.
198 */
0b86a832
CM
199static void add_root_to_dirty_list(struct btrfs_root *root)
200{
0b246afa
JM
201 struct btrfs_fs_info *fs_info = root->fs_info;
202
e7070be1
JB
203 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
204 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
205 return;
206
0b246afa 207 spin_lock(&fs_info->trans_lock);
e7070be1
JB
208 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
209 /* Want the extent tree to be the last on the list */
210 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
211 list_move_tail(&root->dirty_list,
0b246afa 212 &fs_info->dirty_cowonly_roots);
e7070be1
JB
213 else
214 list_move(&root->dirty_list,
0b246afa 215 &fs_info->dirty_cowonly_roots);
0b86a832 216 }
0b246afa 217 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
218}
219
d352ac68
CM
220/*
221 * used by snapshot creation to make a copy of a root for a tree with
222 * a given objectid. The buffer with the new root node is returned in
223 * cow_ret, and this func returns zero on success or a negative error code.
224 */
be20aa9d
CM
225int btrfs_copy_root(struct btrfs_trans_handle *trans,
226 struct btrfs_root *root,
227 struct extent_buffer *buf,
228 struct extent_buffer **cow_ret, u64 new_root_objectid)
229{
0b246afa 230 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 231 struct extent_buffer *cow;
be20aa9d
CM
232 int ret = 0;
233 int level;
5d4f98a2 234 struct btrfs_disk_key disk_key;
be20aa9d 235
27cdeb70 236 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 237 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
238 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
239 trans->transid != root->last_trans);
be20aa9d
CM
240
241 level = btrfs_header_level(buf);
5d4f98a2
YZ
242 if (level == 0)
243 btrfs_item_key(buf, &disk_key, 0);
244 else
245 btrfs_node_key(buf, &disk_key, 0);
31840ae1 246
4d75f8a9
DS
247 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
248 &disk_key, level, buf->start, 0);
5d4f98a2 249 if (IS_ERR(cow))
be20aa9d
CM
250 return PTR_ERR(cow);
251
58e8012c 252 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
253 btrfs_set_header_bytenr(cow, cow->start);
254 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
255 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
256 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
257 BTRFS_HEADER_FLAG_RELOC);
258 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
259 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
260 else
261 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 262
0b246afa 263 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 264
be20aa9d 265 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 266 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 267 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 268 else
e339a6b0 269 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 270
be20aa9d
CM
271 if (ret)
272 return ret;
273
274 btrfs_mark_buffer_dirty(cow);
275 *cow_ret = cow;
276 return 0;
277}
278
bd989ba3
JS
279enum mod_log_op {
280 MOD_LOG_KEY_REPLACE,
281 MOD_LOG_KEY_ADD,
282 MOD_LOG_KEY_REMOVE,
283 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
284 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
285 MOD_LOG_MOVE_KEYS,
286 MOD_LOG_ROOT_REPLACE,
287};
288
bd989ba3
JS
289struct tree_mod_root {
290 u64 logical;
291 u8 level;
292};
293
294struct tree_mod_elem {
295 struct rb_node node;
298cfd36 296 u64 logical;
097b8a7c 297 u64 seq;
bd989ba3
JS
298 enum mod_log_op op;
299
300 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
301 int slot;
302
303 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
304 u64 generation;
305
306 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
307 struct btrfs_disk_key key;
308 u64 blockptr;
309
310 /* this is used for op == MOD_LOG_MOVE_KEYS */
b6dfa35b
DS
311 struct {
312 int dst_slot;
313 int nr_items;
314 } move;
bd989ba3
JS
315
316 /* this is used for op == MOD_LOG_ROOT_REPLACE */
317 struct tree_mod_root old_root;
318};
319
fc36ed7e 320/*
fcebe456 321 * Pull a new tree mod seq number for our operation.
fc36ed7e 322 */
fcebe456 323static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
324{
325 return atomic64_inc_return(&fs_info->tree_mod_seq);
326}
327
097b8a7c
JS
328/*
329 * This adds a new blocker to the tree mod log's blocker list if the @elem
330 * passed does not already have a sequence number set. So when a caller expects
331 * to record tree modifications, it should ensure to set elem->seq to zero
332 * before calling btrfs_get_tree_mod_seq.
333 * Returns a fresh, unused tree log modification sequence number, even if no new
334 * blocker was added.
335 */
336u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
337 struct seq_list *elem)
bd989ba3 338{
b1a09f1e 339 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3 340 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 341 if (!elem->seq) {
fcebe456 342 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
343 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
344 }
bd989ba3 345 spin_unlock(&fs_info->tree_mod_seq_lock);
b1a09f1e 346 write_unlock(&fs_info->tree_mod_log_lock);
097b8a7c 347
fcebe456 348 return elem->seq;
bd989ba3
JS
349}
350
351void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 struct seq_list *elem)
353{
354 struct rb_root *tm_root;
355 struct rb_node *node;
356 struct rb_node *next;
357 struct seq_list *cur_elem;
358 struct tree_mod_elem *tm;
359 u64 min_seq = (u64)-1;
360 u64 seq_putting = elem->seq;
361
362 if (!seq_putting)
363 return;
364
bd989ba3
JS
365 spin_lock(&fs_info->tree_mod_seq_lock);
366 list_del(&elem->list);
097b8a7c 367 elem->seq = 0;
bd989ba3
JS
368
369 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 370 if (cur_elem->seq < min_seq) {
bd989ba3
JS
371 if (seq_putting > cur_elem->seq) {
372 /*
373 * blocker with lower sequence number exists, we
374 * cannot remove anything from the log
375 */
097b8a7c
JS
376 spin_unlock(&fs_info->tree_mod_seq_lock);
377 return;
bd989ba3
JS
378 }
379 min_seq = cur_elem->seq;
380 }
381 }
097b8a7c
JS
382 spin_unlock(&fs_info->tree_mod_seq_lock);
383
bd989ba3
JS
384 /*
385 * anything that's lower than the lowest existing (read: blocked)
386 * sequence number can be removed from the tree.
387 */
b1a09f1e 388 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
389 tm_root = &fs_info->tree_mod_log;
390 for (node = rb_first(tm_root); node; node = next) {
391 next = rb_next(node);
6b4df8b6 392 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 393 if (tm->seq > min_seq)
bd989ba3
JS
394 continue;
395 rb_erase(node, tm_root);
bd989ba3
JS
396 kfree(tm);
397 }
b1a09f1e 398 write_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
399}
400
401/*
402 * key order of the log:
298cfd36 403 * node/leaf start address -> sequence
bd989ba3 404 *
298cfd36
CR
405 * The 'start address' is the logical address of the *new* root node
406 * for root replace operations, or the logical address of the affected
407 * block for all other operations.
5de865ee 408 *
b1a09f1e 409 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
bd989ba3
JS
410 */
411static noinline int
412__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
413{
414 struct rb_root *tm_root;
415 struct rb_node **new;
416 struct rb_node *parent = NULL;
417 struct tree_mod_elem *cur;
c8cc6341 418
fcebe456 419 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 420
bd989ba3
JS
421 tm_root = &fs_info->tree_mod_log;
422 new = &tm_root->rb_node;
423 while (*new) {
6b4df8b6 424 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 425 parent = *new;
298cfd36 426 if (cur->logical < tm->logical)
bd989ba3 427 new = &((*new)->rb_left);
298cfd36 428 else if (cur->logical > tm->logical)
bd989ba3 429 new = &((*new)->rb_right);
097b8a7c 430 else if (cur->seq < tm->seq)
bd989ba3 431 new = &((*new)->rb_left);
097b8a7c 432 else if (cur->seq > tm->seq)
bd989ba3 433 new = &((*new)->rb_right);
5de865ee
FDBM
434 else
435 return -EEXIST;
bd989ba3
JS
436 }
437
438 rb_link_node(&tm->node, parent, new);
439 rb_insert_color(&tm->node, tm_root);
5de865ee 440 return 0;
bd989ba3
JS
441}
442
097b8a7c
JS
443/*
444 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
445 * returns zero with the tree_mod_log_lock acquired. The caller must hold
446 * this until all tree mod log insertions are recorded in the rb tree and then
b1a09f1e 447 * write unlock fs_info::tree_mod_log_lock.
097b8a7c 448 */
e9b7fd4d
JS
449static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
450 struct extent_buffer *eb) {
451 smp_mb();
452 if (list_empty(&(fs_info)->tree_mod_seq_list))
453 return 1;
097b8a7c
JS
454 if (eb && btrfs_header_level(eb) == 0)
455 return 1;
5de865ee 456
b1a09f1e 457 write_lock(&fs_info->tree_mod_log_lock);
5de865ee 458 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
b1a09f1e 459 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
460 return 1;
461 }
462
e9b7fd4d
JS
463 return 0;
464}
465
5de865ee
FDBM
466/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
467static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
468 struct extent_buffer *eb)
469{
470 smp_mb();
471 if (list_empty(&(fs_info)->tree_mod_seq_list))
472 return 0;
473 if (eb && btrfs_header_level(eb) == 0)
474 return 0;
475
476 return 1;
477}
478
479static struct tree_mod_elem *
480alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
481 enum mod_log_op op, gfp_t flags)
bd989ba3 482{
097b8a7c 483 struct tree_mod_elem *tm;
bd989ba3 484
c8cc6341
JB
485 tm = kzalloc(sizeof(*tm), flags);
486 if (!tm)
5de865ee 487 return NULL;
bd989ba3 488
298cfd36 489 tm->logical = eb->start;
bd989ba3
JS
490 if (op != MOD_LOG_KEY_ADD) {
491 btrfs_node_key(eb, &tm->key, slot);
492 tm->blockptr = btrfs_node_blockptr(eb, slot);
493 }
494 tm->op = op;
495 tm->slot = slot;
496 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 497 RB_CLEAR_NODE(&tm->node);
bd989ba3 498
5de865ee 499 return tm;
097b8a7c
JS
500}
501
e09c2efe
DS
502static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
503 enum mod_log_op op, gfp_t flags)
097b8a7c 504{
5de865ee
FDBM
505 struct tree_mod_elem *tm;
506 int ret;
507
e09c2efe 508 if (!tree_mod_need_log(eb->fs_info, eb))
5de865ee
FDBM
509 return 0;
510
511 tm = alloc_tree_mod_elem(eb, slot, op, flags);
512 if (!tm)
513 return -ENOMEM;
514
e09c2efe 515 if (tree_mod_dont_log(eb->fs_info, eb)) {
5de865ee 516 kfree(tm);
097b8a7c 517 return 0;
5de865ee
FDBM
518 }
519
e09c2efe 520 ret = __tree_mod_log_insert(eb->fs_info, tm);
b1a09f1e 521 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
522 if (ret)
523 kfree(tm);
097b8a7c 524
5de865ee 525 return ret;
097b8a7c
JS
526}
527
6074d45f
DS
528static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
529 int dst_slot, int src_slot, int nr_items)
bd989ba3 530{
5de865ee
FDBM
531 struct tree_mod_elem *tm = NULL;
532 struct tree_mod_elem **tm_list = NULL;
533 int ret = 0;
bd989ba3 534 int i;
5de865ee 535 int locked = 0;
bd989ba3 536
6074d45f 537 if (!tree_mod_need_log(eb->fs_info, eb))
f395694c 538 return 0;
bd989ba3 539
176ef8f5 540 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
541 if (!tm_list)
542 return -ENOMEM;
543
176ef8f5 544 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
545 if (!tm) {
546 ret = -ENOMEM;
547 goto free_tms;
548 }
549
298cfd36 550 tm->logical = eb->start;
5de865ee
FDBM
551 tm->slot = src_slot;
552 tm->move.dst_slot = dst_slot;
553 tm->move.nr_items = nr_items;
554 tm->op = MOD_LOG_MOVE_KEYS;
555
556 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
557 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 558 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
559 if (!tm_list[i]) {
560 ret = -ENOMEM;
561 goto free_tms;
562 }
563 }
564
6074d45f 565 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
566 goto free_tms;
567 locked = 1;
568
01763a2e
JS
569 /*
570 * When we override something during the move, we log these removals.
571 * This can only happen when we move towards the beginning of the
572 * buffer, i.e. dst_slot < src_slot.
573 */
bd989ba3 574 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
6074d45f 575 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
5de865ee
FDBM
576 if (ret)
577 goto free_tms;
bd989ba3
JS
578 }
579
6074d45f 580 ret = __tree_mod_log_insert(eb->fs_info, tm);
5de865ee
FDBM
581 if (ret)
582 goto free_tms;
b1a09f1e 583 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee 584 kfree(tm_list);
f395694c 585
5de865ee
FDBM
586 return 0;
587free_tms:
588 for (i = 0; i < nr_items; i++) {
589 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
6074d45f 590 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
5de865ee
FDBM
591 kfree(tm_list[i]);
592 }
593 if (locked)
b1a09f1e 594 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
595 kfree(tm_list);
596 kfree(tm);
bd989ba3 597
5de865ee 598 return ret;
bd989ba3
JS
599}
600
5de865ee
FDBM
601static inline int
602__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
603 struct tree_mod_elem **tm_list,
604 int nritems)
097b8a7c 605{
5de865ee 606 int i, j;
097b8a7c
JS
607 int ret;
608
097b8a7c 609 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
610 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
611 if (ret) {
612 for (j = nritems - 1; j > i; j--)
613 rb_erase(&tm_list[j]->node,
614 &fs_info->tree_mod_log);
615 return ret;
616 }
097b8a7c 617 }
5de865ee
FDBM
618
619 return 0;
097b8a7c
JS
620}
621
95b757c1
DS
622static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
623 struct extent_buffer *new_root, int log_removal)
bd989ba3 624{
95b757c1 625 struct btrfs_fs_info *fs_info = old_root->fs_info;
5de865ee
FDBM
626 struct tree_mod_elem *tm = NULL;
627 struct tree_mod_elem **tm_list = NULL;
628 int nritems = 0;
629 int ret = 0;
630 int i;
bd989ba3 631
5de865ee 632 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
633 return 0;
634
5de865ee
FDBM
635 if (log_removal && btrfs_header_level(old_root) > 0) {
636 nritems = btrfs_header_nritems(old_root);
31e818fe 637 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 638 GFP_NOFS);
5de865ee
FDBM
639 if (!tm_list) {
640 ret = -ENOMEM;
641 goto free_tms;
642 }
643 for (i = 0; i < nritems; i++) {
644 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 645 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
646 if (!tm_list[i]) {
647 ret = -ENOMEM;
648 goto free_tms;
649 }
650 }
651 }
d9abbf1c 652
bcc8e07f 653 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
654 if (!tm) {
655 ret = -ENOMEM;
656 goto free_tms;
657 }
bd989ba3 658
298cfd36 659 tm->logical = new_root->start;
bd989ba3
JS
660 tm->old_root.logical = old_root->start;
661 tm->old_root.level = btrfs_header_level(old_root);
662 tm->generation = btrfs_header_generation(old_root);
663 tm->op = MOD_LOG_ROOT_REPLACE;
664
5de865ee
FDBM
665 if (tree_mod_dont_log(fs_info, NULL))
666 goto free_tms;
667
668 if (tm_list)
669 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
670 if (!ret)
671 ret = __tree_mod_log_insert(fs_info, tm);
672
b1a09f1e 673 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
674 if (ret)
675 goto free_tms;
676 kfree(tm_list);
677
678 return ret;
679
680free_tms:
681 if (tm_list) {
682 for (i = 0; i < nritems; i++)
683 kfree(tm_list[i]);
684 kfree(tm_list);
685 }
686 kfree(tm);
687
688 return ret;
bd989ba3
JS
689}
690
691static struct tree_mod_elem *
692__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
693 int smallest)
694{
695 struct rb_root *tm_root;
696 struct rb_node *node;
697 struct tree_mod_elem *cur = NULL;
698 struct tree_mod_elem *found = NULL;
bd989ba3 699
b1a09f1e 700 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
701 tm_root = &fs_info->tree_mod_log;
702 node = tm_root->rb_node;
703 while (node) {
6b4df8b6 704 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 705 if (cur->logical < start) {
bd989ba3 706 node = node->rb_left;
298cfd36 707 } else if (cur->logical > start) {
bd989ba3 708 node = node->rb_right;
097b8a7c 709 } else if (cur->seq < min_seq) {
bd989ba3
JS
710 node = node->rb_left;
711 } else if (!smallest) {
712 /* we want the node with the highest seq */
713 if (found)
097b8a7c 714 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
715 found = cur;
716 node = node->rb_left;
097b8a7c 717 } else if (cur->seq > min_seq) {
bd989ba3
JS
718 /* we want the node with the smallest seq */
719 if (found)
097b8a7c 720 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
721 found = cur;
722 node = node->rb_right;
723 } else {
724 found = cur;
725 break;
726 }
727 }
b1a09f1e 728 read_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
729
730 return found;
731}
732
733/*
734 * this returns the element from the log with the smallest time sequence
735 * value that's in the log (the oldest log item). any element with a time
736 * sequence lower than min_seq will be ignored.
737 */
738static struct tree_mod_elem *
739tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
740 u64 min_seq)
741{
742 return __tree_mod_log_search(fs_info, start, min_seq, 1);
743}
744
745/*
746 * this returns the element from the log with the largest time sequence
747 * value that's in the log (the most recent log item). any element with
748 * a time sequence lower than min_seq will be ignored.
749 */
750static struct tree_mod_elem *
751tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
752{
753 return __tree_mod_log_search(fs_info, start, min_seq, 0);
754}
755
5de865ee 756static noinline int
bd989ba3
JS
757tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
758 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 759 unsigned long src_offset, int nr_items)
bd989ba3 760{
5de865ee
FDBM
761 int ret = 0;
762 struct tree_mod_elem **tm_list = NULL;
763 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 764 int i;
5de865ee 765 int locked = 0;
bd989ba3 766
5de865ee
FDBM
767 if (!tree_mod_need_log(fs_info, NULL))
768 return 0;
bd989ba3 769
c8cc6341 770 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
771 return 0;
772
31e818fe 773 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
774 GFP_NOFS);
775 if (!tm_list)
776 return -ENOMEM;
bd989ba3 777
5de865ee
FDBM
778 tm_list_add = tm_list;
779 tm_list_rem = tm_list + nr_items;
bd989ba3 780 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
781 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
782 MOD_LOG_KEY_REMOVE, GFP_NOFS);
783 if (!tm_list_rem[i]) {
784 ret = -ENOMEM;
785 goto free_tms;
786 }
787
788 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
789 MOD_LOG_KEY_ADD, GFP_NOFS);
790 if (!tm_list_add[i]) {
791 ret = -ENOMEM;
792 goto free_tms;
793 }
794 }
795
796 if (tree_mod_dont_log(fs_info, NULL))
797 goto free_tms;
798 locked = 1;
799
800 for (i = 0; i < nr_items; i++) {
801 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
802 if (ret)
803 goto free_tms;
804 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
805 if (ret)
806 goto free_tms;
bd989ba3 807 }
5de865ee 808
b1a09f1e 809 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
810 kfree(tm_list);
811
812 return 0;
813
814free_tms:
815 for (i = 0; i < nr_items * 2; i++) {
816 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
817 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
818 kfree(tm_list[i]);
819 }
820 if (locked)
b1a09f1e 821 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
822 kfree(tm_list);
823
824 return ret;
bd989ba3
JS
825}
826
db7279a2 827static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
bd989ba3 828{
5de865ee
FDBM
829 struct tree_mod_elem **tm_list = NULL;
830 int nritems = 0;
831 int i;
832 int ret = 0;
833
834 if (btrfs_header_level(eb) == 0)
835 return 0;
836
db7279a2 837 if (!tree_mod_need_log(eb->fs_info, NULL))
5de865ee
FDBM
838 return 0;
839
840 nritems = btrfs_header_nritems(eb);
31e818fe 841 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
842 if (!tm_list)
843 return -ENOMEM;
844
845 for (i = 0; i < nritems; i++) {
846 tm_list[i] = alloc_tree_mod_elem(eb, i,
847 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
848 if (!tm_list[i]) {
849 ret = -ENOMEM;
850 goto free_tms;
851 }
852 }
853
db7279a2 854 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
855 goto free_tms;
856
db7279a2 857 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
b1a09f1e 858 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
859 if (ret)
860 goto free_tms;
861 kfree(tm_list);
862
863 return 0;
864
865free_tms:
866 for (i = 0; i < nritems; i++)
867 kfree(tm_list[i]);
868 kfree(tm_list);
869
870 return ret;
bd989ba3
JS
871}
872
5d4f98a2
YZ
873/*
874 * check if the tree block can be shared by multiple trees
875 */
876int btrfs_block_can_be_shared(struct btrfs_root *root,
877 struct extent_buffer *buf)
878{
879 /*
01327610 880 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
881 * are never shared. If a block was allocated after the last
882 * snapshot and the block was not allocated by tree relocation,
883 * we know the block is not shared.
884 */
27cdeb70 885 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
886 buf != root->node && buf != root->commit_root &&
887 (btrfs_header_generation(buf) <=
888 btrfs_root_last_snapshot(&root->root_item) ||
889 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
890 return 1;
891#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 892 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
893 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
894 return 1;
895#endif
896 return 0;
897}
898
899static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
900 struct btrfs_root *root,
901 struct extent_buffer *buf,
f0486c68
YZ
902 struct extent_buffer *cow,
903 int *last_ref)
5d4f98a2 904{
0b246afa 905 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
906 u64 refs;
907 u64 owner;
908 u64 flags;
909 u64 new_flags = 0;
910 int ret;
911
912 /*
913 * Backrefs update rules:
914 *
915 * Always use full backrefs for extent pointers in tree block
916 * allocated by tree relocation.
917 *
918 * If a shared tree block is no longer referenced by its owner
919 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
920 * use full backrefs for extent pointers in tree block.
921 *
922 * If a tree block is been relocating
923 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
924 * use full backrefs for extent pointers in tree block.
925 * The reason for this is some operations (such as drop tree)
926 * are only allowed for blocks use full backrefs.
927 */
928
929 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 930 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
931 btrfs_header_level(buf), 1,
932 &refs, &flags);
be1a5564
MF
933 if (ret)
934 return ret;
e5df9573
MF
935 if (refs == 0) {
936 ret = -EROFS;
0b246afa 937 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
938 return ret;
939 }
5d4f98a2
YZ
940 } else {
941 refs = 1;
942 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
943 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
944 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
945 else
946 flags = 0;
947 }
948
949 owner = btrfs_header_owner(buf);
950 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
951 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
952
953 if (refs > 1) {
954 if ((owner == root->root_key.objectid ||
955 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
956 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 957 ret = btrfs_inc_ref(trans, root, buf, 1);
692826b2
JM
958 if (ret)
959 return ret;
5d4f98a2
YZ
960
961 if (root->root_key.objectid ==
962 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 963 ret = btrfs_dec_ref(trans, root, buf, 0);
692826b2
JM
964 if (ret)
965 return ret;
e339a6b0 966 ret = btrfs_inc_ref(trans, root, cow, 1);
692826b2
JM
967 if (ret)
968 return ret;
5d4f98a2
YZ
969 }
970 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
971 } else {
972
973 if (root->root_key.objectid ==
974 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 975 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 976 else
e339a6b0 977 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
978 if (ret)
979 return ret;
5d4f98a2
YZ
980 }
981 if (new_flags != 0) {
b1c79e09
JB
982 int level = btrfs_header_level(buf);
983
2ff7e61e 984 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
985 buf->start,
986 buf->len,
b1c79e09 987 new_flags, level, 0);
be1a5564
MF
988 if (ret)
989 return ret;
5d4f98a2
YZ
990 }
991 } else {
992 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
993 if (root->root_key.objectid ==
994 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 995 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 996 else
e339a6b0 997 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
998 if (ret)
999 return ret;
e339a6b0 1000 ret = btrfs_dec_ref(trans, root, buf, 1);
692826b2
JM
1001 if (ret)
1002 return ret;
5d4f98a2 1003 }
7c302b49 1004 clean_tree_block(fs_info, buf);
f0486c68 1005 *last_ref = 1;
5d4f98a2
YZ
1006 }
1007 return 0;
1008}
1009
d352ac68 1010/*
d397712b
CM
1011 * does the dirty work in cow of a single block. The parent block (if
1012 * supplied) is updated to point to the new cow copy. The new buffer is marked
1013 * dirty and returned locked. If you modify the block it needs to be marked
1014 * dirty again.
d352ac68
CM
1015 *
1016 * search_start -- an allocation hint for the new block
1017 *
d397712b
CM
1018 * empty_size -- a hint that you plan on doing more cow. This is the size in
1019 * bytes the allocator should try to find free next to the block it returns.
1020 * This is just a hint and may be ignored by the allocator.
d352ac68 1021 */
d397712b 1022static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1023 struct btrfs_root *root,
1024 struct extent_buffer *buf,
1025 struct extent_buffer *parent, int parent_slot,
1026 struct extent_buffer **cow_ret,
9fa8cfe7 1027 u64 search_start, u64 empty_size)
02217ed2 1028{
0b246afa 1029 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 1030 struct btrfs_disk_key disk_key;
5f39d397 1031 struct extent_buffer *cow;
be1a5564 1032 int level, ret;
f0486c68 1033 int last_ref = 0;
925baedd 1034 int unlock_orig = 0;
0f5053eb 1035 u64 parent_start = 0;
7bb86316 1036
925baedd
CM
1037 if (*cow_ret == buf)
1038 unlock_orig = 1;
1039
b9447ef8 1040 btrfs_assert_tree_locked(buf);
925baedd 1041
27cdeb70 1042 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1043 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1044 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1045 trans->transid != root->last_trans);
5f39d397 1046
7bb86316 1047 level = btrfs_header_level(buf);
31840ae1 1048
5d4f98a2
YZ
1049 if (level == 0)
1050 btrfs_item_key(buf, &disk_key, 0);
1051 else
1052 btrfs_node_key(buf, &disk_key, 0);
1053
0f5053eb
GR
1054 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1055 parent_start = parent->start;
5d4f98a2 1056
4d75f8a9
DS
1057 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1058 root->root_key.objectid, &disk_key, level,
1059 search_start, empty_size);
54aa1f4d
CM
1060 if (IS_ERR(cow))
1061 return PTR_ERR(cow);
6702ed49 1062
b4ce94de
CM
1063 /* cow is set to blocking by btrfs_init_new_buffer */
1064
58e8012c 1065 copy_extent_buffer_full(cow, buf);
db94535d 1066 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1067 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1068 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1069 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1070 BTRFS_HEADER_FLAG_RELOC);
1071 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1072 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1073 else
1074 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1075
0b246afa 1076 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 1077
be1a5564 1078 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1079 if (ret) {
66642832 1080 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1081 return ret;
1082 }
1a40e23b 1083
27cdeb70 1084 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1085 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1086 if (ret) {
66642832 1087 btrfs_abort_transaction(trans, ret);
83d4cfd4 1088 return ret;
93314e3b 1089 }
83d4cfd4 1090 }
3fd0a558 1091
02217ed2 1092 if (buf == root->node) {
925baedd 1093 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1094 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1095 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1096 parent_start = buf->start;
925baedd 1097
5f39d397 1098 extent_buffer_get(cow);
d9d19a01
DS
1099 ret = tree_mod_log_insert_root(root->node, cow, 1);
1100 BUG_ON(ret < 0);
240f62c8 1101 rcu_assign_pointer(root->node, cow);
925baedd 1102
f0486c68 1103 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1104 last_ref);
5f39d397 1105 free_extent_buffer(buf);
0b86a832 1106 add_root_to_dirty_list(root);
02217ed2 1107 } else {
5d4f98a2 1108 WARN_ON(trans->transid != btrfs_header_generation(parent));
e09c2efe 1109 tree_mod_log_insert_key(parent, parent_slot,
c8cc6341 1110 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1111 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1112 cow->start);
74493f7a
CM
1113 btrfs_set_node_ptr_generation(parent, parent_slot,
1114 trans->transid);
d6025579 1115 btrfs_mark_buffer_dirty(parent);
5de865ee 1116 if (last_ref) {
db7279a2 1117 ret = tree_mod_log_free_eb(buf);
5de865ee 1118 if (ret) {
66642832 1119 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1120 return ret;
1121 }
1122 }
f0486c68 1123 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1124 last_ref);
02217ed2 1125 }
925baedd
CM
1126 if (unlock_orig)
1127 btrfs_tree_unlock(buf);
3083ee2e 1128 free_extent_buffer_stale(buf);
ccd467d6 1129 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1130 *cow_ret = cow;
02217ed2
CM
1131 return 0;
1132}
1133
5d9e75c4
JS
1134/*
1135 * returns the logical address of the oldest predecessor of the given root.
1136 * entries older than time_seq are ignored.
1137 */
bcd24dab
DS
1138static struct tree_mod_elem *__tree_mod_log_oldest_root(
1139 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1140{
1141 struct tree_mod_elem *tm;
1142 struct tree_mod_elem *found = NULL;
30b0463a 1143 u64 root_logical = eb_root->start;
5d9e75c4
JS
1144 int looped = 0;
1145
1146 if (!time_seq)
35a3621b 1147 return NULL;
5d9e75c4
JS
1148
1149 /*
298cfd36
CR
1150 * the very last operation that's logged for a root is the
1151 * replacement operation (if it is replaced at all). this has
1152 * the logical address of the *new* root, making it the very
1153 * first operation that's logged for this root.
5d9e75c4
JS
1154 */
1155 while (1) {
bcd24dab 1156 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
5d9e75c4
JS
1157 time_seq);
1158 if (!looped && !tm)
35a3621b 1159 return NULL;
5d9e75c4 1160 /*
28da9fb4
JS
1161 * if there are no tree operation for the oldest root, we simply
1162 * return it. this should only happen if that (old) root is at
1163 * level 0.
5d9e75c4 1164 */
28da9fb4
JS
1165 if (!tm)
1166 break;
5d9e75c4 1167
28da9fb4
JS
1168 /*
1169 * if there's an operation that's not a root replacement, we
1170 * found the oldest version of our root. normally, we'll find a
1171 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1172 */
5d9e75c4
JS
1173 if (tm->op != MOD_LOG_ROOT_REPLACE)
1174 break;
1175
1176 found = tm;
1177 root_logical = tm->old_root.logical;
5d9e75c4
JS
1178 looped = 1;
1179 }
1180
a95236d9
JS
1181 /* if there's no old root to return, return what we found instead */
1182 if (!found)
1183 found = tm;
1184
5d9e75c4
JS
1185 return found;
1186}
1187
1188/*
1189 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1190 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1191 * time_seq).
1192 */
1193static void
f1ca7e98
JB
1194__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1195 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1196{
1197 u32 n;
1198 struct rb_node *next;
1199 struct tree_mod_elem *tm = first_tm;
1200 unsigned long o_dst;
1201 unsigned long o_src;
1202 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1203
1204 n = btrfs_header_nritems(eb);
b1a09f1e 1205 read_lock(&fs_info->tree_mod_log_lock);
097b8a7c 1206 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1207 /*
1208 * all the operations are recorded with the operator used for
1209 * the modification. as we're going backwards, we do the
1210 * opposite of each operation here.
1211 */
1212 switch (tm->op) {
1213 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1214 BUG_ON(tm->slot < n);
1c697d4a 1215 /* Fallthrough */
95c80bb1 1216 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1217 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1218 btrfs_set_node_key(eb, &tm->key, tm->slot);
1219 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1220 btrfs_set_node_ptr_generation(eb, tm->slot,
1221 tm->generation);
4c3e6969 1222 n++;
5d9e75c4
JS
1223 break;
1224 case MOD_LOG_KEY_REPLACE:
1225 BUG_ON(tm->slot >= n);
1226 btrfs_set_node_key(eb, &tm->key, tm->slot);
1227 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228 btrfs_set_node_ptr_generation(eb, tm->slot,
1229 tm->generation);
1230 break;
1231 case MOD_LOG_KEY_ADD:
19956c7e 1232 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1233 n--;
1234 break;
1235 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1236 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1237 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1238 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1239 tm->move.nr_items * p_size);
1240 break;
1241 case MOD_LOG_ROOT_REPLACE:
1242 /*
1243 * this operation is special. for roots, this must be
1244 * handled explicitly before rewinding.
1245 * for non-roots, this operation may exist if the node
1246 * was a root: root A -> child B; then A gets empty and
1247 * B is promoted to the new root. in the mod log, we'll
1248 * have a root-replace operation for B, a tree block
1249 * that is no root. we simply ignore that operation.
1250 */
1251 break;
1252 }
1253 next = rb_next(&tm->node);
1254 if (!next)
1255 break;
6b4df8b6 1256 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1257 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1258 break;
1259 }
b1a09f1e 1260 read_unlock(&fs_info->tree_mod_log_lock);
5d9e75c4
JS
1261 btrfs_set_header_nritems(eb, n);
1262}
1263
47fb091f 1264/*
01327610 1265 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1266 * is returned. If rewind operations happen, a fresh buffer is returned. The
1267 * returned buffer is always read-locked. If the returned buffer is not the
1268 * input buffer, the lock on the input buffer is released and the input buffer
1269 * is freed (its refcount is decremented).
1270 */
5d9e75c4 1271static struct extent_buffer *
9ec72677
JB
1272tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1273 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1274{
1275 struct extent_buffer *eb_rewin;
1276 struct tree_mod_elem *tm;
1277
1278 if (!time_seq)
1279 return eb;
1280
1281 if (btrfs_header_level(eb) == 0)
1282 return eb;
1283
1284 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1285 if (!tm)
1286 return eb;
1287
9ec72677
JB
1288 btrfs_set_path_blocking(path);
1289 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1290
5d9e75c4
JS
1291 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1292 BUG_ON(tm->slot != 0);
da17066c 1293 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1294 if (!eb_rewin) {
9ec72677 1295 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1296 free_extent_buffer(eb);
1297 return NULL;
1298 }
5d9e75c4
JS
1299 btrfs_set_header_bytenr(eb_rewin, eb->start);
1300 btrfs_set_header_backref_rev(eb_rewin,
1301 btrfs_header_backref_rev(eb));
1302 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1303 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1304 } else {
1305 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1306 if (!eb_rewin) {
9ec72677 1307 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1308 free_extent_buffer(eb);
1309 return NULL;
1310 }
5d9e75c4
JS
1311 }
1312
9ec72677
JB
1313 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1314 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1315 free_extent_buffer(eb);
1316
47fb091f
JS
1317 extent_buffer_get(eb_rewin);
1318 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1319 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1320 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1321 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1322
1323 return eb_rewin;
1324}
1325
8ba97a15
JS
1326/*
1327 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1328 * value. If there are no changes, the current root->root_node is returned. If
1329 * anything changed in between, there's a fresh buffer allocated on which the
1330 * rewind operations are done. In any case, the returned buffer is read locked.
1331 * Returns NULL on error (with no locks held).
1332 */
5d9e75c4
JS
1333static inline struct extent_buffer *
1334get_old_root(struct btrfs_root *root, u64 time_seq)
1335{
0b246afa 1336 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1337 struct tree_mod_elem *tm;
30b0463a
JS
1338 struct extent_buffer *eb = NULL;
1339 struct extent_buffer *eb_root;
7bfdcf7f 1340 struct extent_buffer *old;
a95236d9 1341 struct tree_mod_root *old_root = NULL;
4325edd0 1342 u64 old_generation = 0;
a95236d9 1343 u64 logical;
581c1760 1344 int level;
5d9e75c4 1345
30b0463a 1346 eb_root = btrfs_read_lock_root_node(root);
bcd24dab 1347 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5d9e75c4 1348 if (!tm)
30b0463a 1349 return eb_root;
5d9e75c4 1350
a95236d9
JS
1351 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1352 old_root = &tm->old_root;
1353 old_generation = tm->generation;
1354 logical = old_root->logical;
581c1760 1355 level = old_root->level;
a95236d9 1356 } else {
30b0463a 1357 logical = eb_root->start;
581c1760 1358 level = btrfs_header_level(eb_root);
a95236d9 1359 }
5d9e75c4 1360
0b246afa 1361 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1362 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1363 btrfs_tree_read_unlock(eb_root);
1364 free_extent_buffer(eb_root);
581c1760 1365 old = read_tree_block(fs_info, logical, 0, level, NULL);
64c043de
LB
1366 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1367 if (!IS_ERR(old))
1368 free_extent_buffer(old);
0b246afa
JM
1369 btrfs_warn(fs_info,
1370 "failed to read tree block %llu from get_old_root",
1371 logical);
834328a8 1372 } else {
7bfdcf7f
LB
1373 eb = btrfs_clone_extent_buffer(old);
1374 free_extent_buffer(old);
834328a8
JS
1375 }
1376 } else if (old_root) {
30b0463a
JS
1377 btrfs_tree_read_unlock(eb_root);
1378 free_extent_buffer(eb_root);
0b246afa 1379 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1380 } else {
9ec72677 1381 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1382 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1383 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1384 free_extent_buffer(eb_root);
834328a8
JS
1385 }
1386
8ba97a15
JS
1387 if (!eb)
1388 return NULL;
d6381084 1389 extent_buffer_get(eb);
8ba97a15 1390 btrfs_tree_read_lock(eb);
a95236d9 1391 if (old_root) {
5d9e75c4
JS
1392 btrfs_set_header_bytenr(eb, eb->start);
1393 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1394 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1395 btrfs_set_header_level(eb, old_root->level);
1396 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1397 }
28da9fb4 1398 if (tm)
0b246afa 1399 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1400 else
1401 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1402 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1403
1404 return eb;
1405}
1406
5b6602e7
JS
1407int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1408{
1409 struct tree_mod_elem *tm;
1410 int level;
30b0463a 1411 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1412
bcd24dab 1413 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5b6602e7
JS
1414 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1415 level = tm->old_root.level;
1416 } else {
30b0463a 1417 level = btrfs_header_level(eb_root);
5b6602e7 1418 }
30b0463a 1419 free_extent_buffer(eb_root);
5b6602e7
JS
1420
1421 return level;
1422}
1423
5d4f98a2
YZ
1424static inline int should_cow_block(struct btrfs_trans_handle *trans,
1425 struct btrfs_root *root,
1426 struct extent_buffer *buf)
1427{
f5ee5c9a 1428 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1429 return 0;
fccb84c9 1430
d1980131
DS
1431 /* Ensure we can see the FORCE_COW bit */
1432 smp_mb__before_atomic();
f1ebcc74
LB
1433
1434 /*
1435 * We do not need to cow a block if
1436 * 1) this block is not created or changed in this transaction;
1437 * 2) this block does not belong to TREE_RELOC tree;
1438 * 3) the root is not forced COW.
1439 *
1440 * What is forced COW:
01327610 1441 * when we create snapshot during committing the transaction,
f1ebcc74
LB
1442 * after we've finished coping src root, we must COW the shared
1443 * block to ensure the metadata consistency.
1444 */
5d4f98a2
YZ
1445 if (btrfs_header_generation(buf) == trans->transid &&
1446 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1447 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1448 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1449 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1450 return 0;
1451 return 1;
1452}
1453
d352ac68
CM
1454/*
1455 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1456 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1457 * once per transaction, as long as it hasn't been written yet
1458 */
d397712b 1459noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1460 struct btrfs_root *root, struct extent_buffer *buf,
1461 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1462 struct extent_buffer **cow_ret)
6702ed49 1463{
0b246afa 1464 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1465 u64 search_start;
f510cfec 1466 int ret;
dc17ff8f 1467
0b246afa 1468 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1469 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1470 trans->transid,
0b246afa 1471 fs_info->running_transaction->transid);
31b1a2bd 1472
0b246afa 1473 if (trans->transid != fs_info->generation)
31b1a2bd 1474 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1475 trans->transid, fs_info->generation);
dc17ff8f 1476
5d4f98a2 1477 if (!should_cow_block(trans, root, buf)) {
64c12921 1478 trans->dirty = true;
6702ed49
CM
1479 *cow_ret = buf;
1480 return 0;
1481 }
c487685d 1482
ee22184b 1483 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1484
1485 if (parent)
1486 btrfs_set_lock_blocking(parent);
1487 btrfs_set_lock_blocking(buf);
1488
f510cfec 1489 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1490 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1491
1492 trace_btrfs_cow_block(root, buf, *cow_ret);
1493
f510cfec 1494 return ret;
6702ed49
CM
1495}
1496
d352ac68
CM
1497/*
1498 * helper function for defrag to decide if two blocks pointed to by a
1499 * node are actually close by
1500 */
6b80053d 1501static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1502{
6b80053d 1503 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1504 return 1;
6b80053d 1505 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1506 return 1;
1507 return 0;
1508}
1509
081e9573
CM
1510/*
1511 * compare two keys in a memcmp fashion
1512 */
310712b2
OS
1513static int comp_keys(const struct btrfs_disk_key *disk,
1514 const struct btrfs_key *k2)
081e9573
CM
1515{
1516 struct btrfs_key k1;
1517
1518 btrfs_disk_key_to_cpu(&k1, disk);
1519
20736aba 1520 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1521}
1522
f3465ca4
JB
1523/*
1524 * same as comp_keys only with two btrfs_key's
1525 */
310712b2 1526int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1527{
1528 if (k1->objectid > k2->objectid)
1529 return 1;
1530 if (k1->objectid < k2->objectid)
1531 return -1;
1532 if (k1->type > k2->type)
1533 return 1;
1534 if (k1->type < k2->type)
1535 return -1;
1536 if (k1->offset > k2->offset)
1537 return 1;
1538 if (k1->offset < k2->offset)
1539 return -1;
1540 return 0;
1541}
081e9573 1542
d352ac68
CM
1543/*
1544 * this is used by the defrag code to go through all the
1545 * leaves pointed to by a node and reallocate them so that
1546 * disk order is close to key order
1547 */
6702ed49 1548int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1549 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1550 int start_slot, u64 *last_ret,
a6b6e75e 1551 struct btrfs_key *progress)
6702ed49 1552{
0b246afa 1553 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1554 struct extent_buffer *cur;
6702ed49 1555 u64 blocknr;
ca7a79ad 1556 u64 gen;
e9d0b13b
CM
1557 u64 search_start = *last_ret;
1558 u64 last_block = 0;
6702ed49
CM
1559 u64 other;
1560 u32 parent_nritems;
6702ed49
CM
1561 int end_slot;
1562 int i;
1563 int err = 0;
f2183bde 1564 int parent_level;
6b80053d
CM
1565 int uptodate;
1566 u32 blocksize;
081e9573
CM
1567 int progress_passed = 0;
1568 struct btrfs_disk_key disk_key;
6702ed49 1569
5708b959 1570 parent_level = btrfs_header_level(parent);
5708b959 1571
0b246afa
JM
1572 WARN_ON(trans->transaction != fs_info->running_transaction);
1573 WARN_ON(trans->transid != fs_info->generation);
86479a04 1574
6b80053d 1575 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1576 blocksize = fs_info->nodesize;
5dfe2be7 1577 end_slot = parent_nritems - 1;
6702ed49 1578
5dfe2be7 1579 if (parent_nritems <= 1)
6702ed49
CM
1580 return 0;
1581
b4ce94de
CM
1582 btrfs_set_lock_blocking(parent);
1583
5dfe2be7 1584 for (i = start_slot; i <= end_slot; i++) {
581c1760 1585 struct btrfs_key first_key;
6702ed49 1586 int close = 1;
a6b6e75e 1587
081e9573
CM
1588 btrfs_node_key(parent, &disk_key, i);
1589 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1590 continue;
1591
1592 progress_passed = 1;
6b80053d 1593 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1594 gen = btrfs_node_ptr_generation(parent, i);
581c1760 1595 btrfs_node_key_to_cpu(parent, &first_key, i);
e9d0b13b
CM
1596 if (last_block == 0)
1597 last_block = blocknr;
5708b959 1598
6702ed49 1599 if (i > 0) {
6b80053d
CM
1600 other = btrfs_node_blockptr(parent, i - 1);
1601 close = close_blocks(blocknr, other, blocksize);
6702ed49 1602 }
5dfe2be7 1603 if (!close && i < end_slot) {
6b80053d
CM
1604 other = btrfs_node_blockptr(parent, i + 1);
1605 close = close_blocks(blocknr, other, blocksize);
6702ed49 1606 }
e9d0b13b
CM
1607 if (close) {
1608 last_block = blocknr;
6702ed49 1609 continue;
e9d0b13b 1610 }
6702ed49 1611
0b246afa 1612 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1613 if (cur)
b9fab919 1614 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1615 else
1616 uptodate = 0;
5708b959 1617 if (!cur || !uptodate) {
6b80053d 1618 if (!cur) {
581c1760
QW
1619 cur = read_tree_block(fs_info, blocknr, gen,
1620 parent_level - 1,
1621 &first_key);
64c043de
LB
1622 if (IS_ERR(cur)) {
1623 return PTR_ERR(cur);
1624 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1625 free_extent_buffer(cur);
97d9a8a4 1626 return -EIO;
416bc658 1627 }
6b80053d 1628 } else if (!uptodate) {
581c1760
QW
1629 err = btrfs_read_buffer(cur, gen,
1630 parent_level - 1,&first_key);
018642a1
TI
1631 if (err) {
1632 free_extent_buffer(cur);
1633 return err;
1634 }
f2183bde 1635 }
6702ed49 1636 }
e9d0b13b 1637 if (search_start == 0)
6b80053d 1638 search_start = last_block;
e9d0b13b 1639
e7a84565 1640 btrfs_tree_lock(cur);
b4ce94de 1641 btrfs_set_lock_blocking(cur);
6b80053d 1642 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1643 &cur, search_start,
6b80053d 1644 min(16 * blocksize,
9fa8cfe7 1645 (end_slot - i) * blocksize));
252c38f0 1646 if (err) {
e7a84565 1647 btrfs_tree_unlock(cur);
6b80053d 1648 free_extent_buffer(cur);
6702ed49 1649 break;
252c38f0 1650 }
e7a84565
CM
1651 search_start = cur->start;
1652 last_block = cur->start;
f2183bde 1653 *last_ret = search_start;
e7a84565
CM
1654 btrfs_tree_unlock(cur);
1655 free_extent_buffer(cur);
6702ed49
CM
1656 }
1657 return err;
1658}
1659
74123bd7 1660/*
5f39d397
CM
1661 * search for key in the extent_buffer. The items start at offset p,
1662 * and they are item_size apart. There are 'max' items in p.
1663 *
74123bd7
CM
1664 * the slot in the array is returned via slot, and it points to
1665 * the place where you would insert key if it is not found in
1666 * the array.
1667 *
1668 * slot may point to max if the key is bigger than all of the keys
1669 */
e02119d5 1670static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1671 unsigned long p, int item_size,
1672 const struct btrfs_key *key,
e02119d5 1673 int max, int *slot)
be0e5c09
CM
1674{
1675 int low = 0;
1676 int high = max;
1677 int mid;
1678 int ret;
479965d6 1679 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1680 struct btrfs_disk_key unaligned;
1681 unsigned long offset;
5f39d397
CM
1682 char *kaddr = NULL;
1683 unsigned long map_start = 0;
1684 unsigned long map_len = 0;
479965d6 1685 int err;
be0e5c09 1686
5e24e9af
LB
1687 if (low > high) {
1688 btrfs_err(eb->fs_info,
1689 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1690 __func__, low, high, eb->start,
1691 btrfs_header_owner(eb), btrfs_header_level(eb));
1692 return -EINVAL;
1693 }
1694
d397712b 1695 while (low < high) {
be0e5c09 1696 mid = (low + high) / 2;
5f39d397
CM
1697 offset = p + mid * item_size;
1698
a6591715 1699 if (!kaddr || offset < map_start ||
5f39d397
CM
1700 (offset + sizeof(struct btrfs_disk_key)) >
1701 map_start + map_len) {
934d375b
CM
1702
1703 err = map_private_extent_buffer(eb, offset,
479965d6 1704 sizeof(struct btrfs_disk_key),
a6591715 1705 &kaddr, &map_start, &map_len);
479965d6
CM
1706
1707 if (!err) {
1708 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1709 map_start);
415b35a5 1710 } else if (err == 1) {
479965d6
CM
1711 read_extent_buffer(eb, &unaligned,
1712 offset, sizeof(unaligned));
1713 tmp = &unaligned;
415b35a5
LB
1714 } else {
1715 return err;
479965d6 1716 }
5f39d397 1717
5f39d397
CM
1718 } else {
1719 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1720 map_start);
1721 }
be0e5c09
CM
1722 ret = comp_keys(tmp, key);
1723
1724 if (ret < 0)
1725 low = mid + 1;
1726 else if (ret > 0)
1727 high = mid;
1728 else {
1729 *slot = mid;
1730 return 0;
1731 }
1732 }
1733 *slot = low;
1734 return 1;
1735}
1736
97571fd0
CM
1737/*
1738 * simple bin_search frontend that does the right thing for
1739 * leaves vs nodes
1740 */
a74b35ec
NB
1741int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1742 int level, int *slot)
be0e5c09 1743{
f775738f 1744 if (level == 0)
5f39d397
CM
1745 return generic_bin_search(eb,
1746 offsetof(struct btrfs_leaf, items),
0783fcfc 1747 sizeof(struct btrfs_item),
5f39d397 1748 key, btrfs_header_nritems(eb),
7518a238 1749 slot);
f775738f 1750 else
5f39d397
CM
1751 return generic_bin_search(eb,
1752 offsetof(struct btrfs_node, ptrs),
123abc88 1753 sizeof(struct btrfs_key_ptr),
5f39d397 1754 key, btrfs_header_nritems(eb),
7518a238 1755 slot);
be0e5c09
CM
1756}
1757
f0486c68
YZ
1758static void root_add_used(struct btrfs_root *root, u32 size)
1759{
1760 spin_lock(&root->accounting_lock);
1761 btrfs_set_root_used(&root->root_item,
1762 btrfs_root_used(&root->root_item) + size);
1763 spin_unlock(&root->accounting_lock);
1764}
1765
1766static void root_sub_used(struct btrfs_root *root, u32 size)
1767{
1768 spin_lock(&root->accounting_lock);
1769 btrfs_set_root_used(&root->root_item,
1770 btrfs_root_used(&root->root_item) - size);
1771 spin_unlock(&root->accounting_lock);
1772}
1773
d352ac68
CM
1774/* given a node and slot number, this reads the blocks it points to. The
1775 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1776 */
2ff7e61e
JM
1777static noinline struct extent_buffer *
1778read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1779 int slot)
bb803951 1780{
ca7a79ad 1781 int level = btrfs_header_level(parent);
416bc658 1782 struct extent_buffer *eb;
581c1760 1783 struct btrfs_key first_key;
416bc658 1784
fb770ae4
LB
1785 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1786 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1787
1788 BUG_ON(level == 0);
1789
581c1760 1790 btrfs_node_key_to_cpu(parent, &first_key, slot);
2ff7e61e 1791 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
581c1760
QW
1792 btrfs_node_ptr_generation(parent, slot),
1793 level - 1, &first_key);
fb770ae4
LB
1794 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1795 free_extent_buffer(eb);
1796 eb = ERR_PTR(-EIO);
416bc658
JB
1797 }
1798
1799 return eb;
bb803951
CM
1800}
1801
d352ac68
CM
1802/*
1803 * node level balancing, used to make sure nodes are in proper order for
1804 * item deletion. We balance from the top down, so we have to make sure
1805 * that a deletion won't leave an node completely empty later on.
1806 */
e02119d5 1807static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1808 struct btrfs_root *root,
1809 struct btrfs_path *path, int level)
bb803951 1810{
0b246afa 1811 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1812 struct extent_buffer *right = NULL;
1813 struct extent_buffer *mid;
1814 struct extent_buffer *left = NULL;
1815 struct extent_buffer *parent = NULL;
bb803951
CM
1816 int ret = 0;
1817 int wret;
1818 int pslot;
bb803951 1819 int orig_slot = path->slots[level];
79f95c82 1820 u64 orig_ptr;
bb803951
CM
1821
1822 if (level == 0)
1823 return 0;
1824
5f39d397 1825 mid = path->nodes[level];
b4ce94de 1826
bd681513
CM
1827 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1828 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1829 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1830
1d4f8a0c 1831 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1832
a05a9bb1 1833 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1834 parent = path->nodes[level + 1];
a05a9bb1
LZ
1835 pslot = path->slots[level + 1];
1836 }
bb803951 1837
40689478
CM
1838 /*
1839 * deal with the case where there is only one pointer in the root
1840 * by promoting the node below to a root
1841 */
5f39d397
CM
1842 if (!parent) {
1843 struct extent_buffer *child;
bb803951 1844
5f39d397 1845 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1846 return 0;
1847
1848 /* promote the child to a root */
2ff7e61e 1849 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1850 if (IS_ERR(child)) {
1851 ret = PTR_ERR(child);
0b246afa 1852 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1853 goto enospc;
1854 }
1855
925baedd 1856 btrfs_tree_lock(child);
b4ce94de 1857 btrfs_set_lock_blocking(child);
9fa8cfe7 1858 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1859 if (ret) {
1860 btrfs_tree_unlock(child);
1861 free_extent_buffer(child);
1862 goto enospc;
1863 }
2f375ab9 1864
d9d19a01
DS
1865 ret = tree_mod_log_insert_root(root->node, child, 1);
1866 BUG_ON(ret < 0);
240f62c8 1867 rcu_assign_pointer(root->node, child);
925baedd 1868
0b86a832 1869 add_root_to_dirty_list(root);
925baedd 1870 btrfs_tree_unlock(child);
b4ce94de 1871
925baedd 1872 path->locks[level] = 0;
bb803951 1873 path->nodes[level] = NULL;
7c302b49 1874 clean_tree_block(fs_info, mid);
925baedd 1875 btrfs_tree_unlock(mid);
bb803951 1876 /* once for the path */
5f39d397 1877 free_extent_buffer(mid);
f0486c68
YZ
1878
1879 root_sub_used(root, mid->len);
5581a51a 1880 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1881 /* once for the root ptr */
3083ee2e 1882 free_extent_buffer_stale(mid);
f0486c68 1883 return 0;
bb803951 1884 }
5f39d397 1885 if (btrfs_header_nritems(mid) >
0b246afa 1886 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1887 return 0;
1888
2ff7e61e 1889 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1890 if (IS_ERR(left))
1891 left = NULL;
1892
5f39d397 1893 if (left) {
925baedd 1894 btrfs_tree_lock(left);
b4ce94de 1895 btrfs_set_lock_blocking(left);
5f39d397 1896 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1897 parent, pslot - 1, &left);
54aa1f4d
CM
1898 if (wret) {
1899 ret = wret;
1900 goto enospc;
1901 }
2cc58cf2 1902 }
fb770ae4 1903
2ff7e61e 1904 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1905 if (IS_ERR(right))
1906 right = NULL;
1907
5f39d397 1908 if (right) {
925baedd 1909 btrfs_tree_lock(right);
b4ce94de 1910 btrfs_set_lock_blocking(right);
5f39d397 1911 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1912 parent, pslot + 1, &right);
2cc58cf2
CM
1913 if (wret) {
1914 ret = wret;
1915 goto enospc;
1916 }
1917 }
1918
1919 /* first, try to make some room in the middle buffer */
5f39d397
CM
1920 if (left) {
1921 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1922 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1923 if (wret < 0)
1924 ret = wret;
bb803951 1925 }
79f95c82
CM
1926
1927 /*
1928 * then try to empty the right most buffer into the middle
1929 */
5f39d397 1930 if (right) {
2ff7e61e 1931 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 1932 if (wret < 0 && wret != -ENOSPC)
79f95c82 1933 ret = wret;
5f39d397 1934 if (btrfs_header_nritems(right) == 0) {
7c302b49 1935 clean_tree_block(fs_info, right);
925baedd 1936 btrfs_tree_unlock(right);
afe5fea7 1937 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 1938 root_sub_used(root, right->len);
5581a51a 1939 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1940 free_extent_buffer_stale(right);
f0486c68 1941 right = NULL;
bb803951 1942 } else {
5f39d397
CM
1943 struct btrfs_disk_key right_key;
1944 btrfs_node_key(right, &right_key, 0);
0e82bcfe
DS
1945 ret = tree_mod_log_insert_key(parent, pslot + 1,
1946 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1947 BUG_ON(ret < 0);
5f39d397
CM
1948 btrfs_set_node_key(parent, &right_key, pslot + 1);
1949 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1950 }
1951 }
5f39d397 1952 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1953 /*
1954 * we're not allowed to leave a node with one item in the
1955 * tree during a delete. A deletion from lower in the tree
1956 * could try to delete the only pointer in this node.
1957 * So, pull some keys from the left.
1958 * There has to be a left pointer at this point because
1959 * otherwise we would have pulled some pointers from the
1960 * right
1961 */
305a26af
MF
1962 if (!left) {
1963 ret = -EROFS;
0b246afa 1964 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1965 goto enospc;
1966 }
2ff7e61e 1967 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 1968 if (wret < 0) {
79f95c82 1969 ret = wret;
54aa1f4d
CM
1970 goto enospc;
1971 }
bce4eae9 1972 if (wret == 1) {
2ff7e61e 1973 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
1974 if (wret < 0)
1975 ret = wret;
1976 }
79f95c82
CM
1977 BUG_ON(wret == 1);
1978 }
5f39d397 1979 if (btrfs_header_nritems(mid) == 0) {
7c302b49 1980 clean_tree_block(fs_info, mid);
925baedd 1981 btrfs_tree_unlock(mid);
afe5fea7 1982 del_ptr(root, path, level + 1, pslot);
f0486c68 1983 root_sub_used(root, mid->len);
5581a51a 1984 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1985 free_extent_buffer_stale(mid);
f0486c68 1986 mid = NULL;
79f95c82
CM
1987 } else {
1988 /* update the parent key to reflect our changes */
5f39d397
CM
1989 struct btrfs_disk_key mid_key;
1990 btrfs_node_key(mid, &mid_key, 0);
0e82bcfe
DS
1991 ret = tree_mod_log_insert_key(parent, pslot,
1992 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1993 BUG_ON(ret < 0);
5f39d397
CM
1994 btrfs_set_node_key(parent, &mid_key, pslot);
1995 btrfs_mark_buffer_dirty(parent);
79f95c82 1996 }
bb803951 1997
79f95c82 1998 /* update the path */
5f39d397
CM
1999 if (left) {
2000 if (btrfs_header_nritems(left) > orig_slot) {
2001 extent_buffer_get(left);
925baedd 2002 /* left was locked after cow */
5f39d397 2003 path->nodes[level] = left;
bb803951
CM
2004 path->slots[level + 1] -= 1;
2005 path->slots[level] = orig_slot;
925baedd
CM
2006 if (mid) {
2007 btrfs_tree_unlock(mid);
5f39d397 2008 free_extent_buffer(mid);
925baedd 2009 }
bb803951 2010 } else {
5f39d397 2011 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2012 path->slots[level] = orig_slot;
2013 }
2014 }
79f95c82 2015 /* double check we haven't messed things up */
e20d96d6 2016 if (orig_ptr !=
5f39d397 2017 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2018 BUG();
54aa1f4d 2019enospc:
925baedd
CM
2020 if (right) {
2021 btrfs_tree_unlock(right);
5f39d397 2022 free_extent_buffer(right);
925baedd
CM
2023 }
2024 if (left) {
2025 if (path->nodes[level] != left)
2026 btrfs_tree_unlock(left);
5f39d397 2027 free_extent_buffer(left);
925baedd 2028 }
bb803951
CM
2029 return ret;
2030}
2031
d352ac68
CM
2032/* Node balancing for insertion. Here we only split or push nodes around
2033 * when they are completely full. This is also done top down, so we
2034 * have to be pessimistic.
2035 */
d397712b 2036static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2037 struct btrfs_root *root,
2038 struct btrfs_path *path, int level)
e66f709b 2039{
0b246afa 2040 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2041 struct extent_buffer *right = NULL;
2042 struct extent_buffer *mid;
2043 struct extent_buffer *left = NULL;
2044 struct extent_buffer *parent = NULL;
e66f709b
CM
2045 int ret = 0;
2046 int wret;
2047 int pslot;
2048 int orig_slot = path->slots[level];
e66f709b
CM
2049
2050 if (level == 0)
2051 return 1;
2052
5f39d397 2053 mid = path->nodes[level];
7bb86316 2054 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2055
a05a9bb1 2056 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2057 parent = path->nodes[level + 1];
a05a9bb1
LZ
2058 pslot = path->slots[level + 1];
2059 }
e66f709b 2060
5f39d397 2061 if (!parent)
e66f709b 2062 return 1;
e66f709b 2063
2ff7e61e 2064 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2065 if (IS_ERR(left))
2066 left = NULL;
e66f709b
CM
2067
2068 /* first, try to make some room in the middle buffer */
5f39d397 2069 if (left) {
e66f709b 2070 u32 left_nr;
925baedd
CM
2071
2072 btrfs_tree_lock(left);
b4ce94de
CM
2073 btrfs_set_lock_blocking(left);
2074
5f39d397 2075 left_nr = btrfs_header_nritems(left);
0b246afa 2076 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2077 wret = 1;
2078 } else {
5f39d397 2079 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2080 pslot - 1, &left);
54aa1f4d
CM
2081 if (ret)
2082 wret = 1;
2083 else {
2ff7e61e 2084 wret = push_node_left(trans, fs_info,
971a1f66 2085 left, mid, 0);
54aa1f4d 2086 }
33ade1f8 2087 }
e66f709b
CM
2088 if (wret < 0)
2089 ret = wret;
2090 if (wret == 0) {
5f39d397 2091 struct btrfs_disk_key disk_key;
e66f709b 2092 orig_slot += left_nr;
5f39d397 2093 btrfs_node_key(mid, &disk_key, 0);
0e82bcfe
DS
2094 ret = tree_mod_log_insert_key(parent, pslot,
2095 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2096 BUG_ON(ret < 0);
5f39d397
CM
2097 btrfs_set_node_key(parent, &disk_key, pslot);
2098 btrfs_mark_buffer_dirty(parent);
2099 if (btrfs_header_nritems(left) > orig_slot) {
2100 path->nodes[level] = left;
e66f709b
CM
2101 path->slots[level + 1] -= 1;
2102 path->slots[level] = orig_slot;
925baedd 2103 btrfs_tree_unlock(mid);
5f39d397 2104 free_extent_buffer(mid);
e66f709b
CM
2105 } else {
2106 orig_slot -=
5f39d397 2107 btrfs_header_nritems(left);
e66f709b 2108 path->slots[level] = orig_slot;
925baedd 2109 btrfs_tree_unlock(left);
5f39d397 2110 free_extent_buffer(left);
e66f709b 2111 }
e66f709b
CM
2112 return 0;
2113 }
925baedd 2114 btrfs_tree_unlock(left);
5f39d397 2115 free_extent_buffer(left);
e66f709b 2116 }
2ff7e61e 2117 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2118 if (IS_ERR(right))
2119 right = NULL;
e66f709b
CM
2120
2121 /*
2122 * then try to empty the right most buffer into the middle
2123 */
5f39d397 2124 if (right) {
33ade1f8 2125 u32 right_nr;
b4ce94de 2126
925baedd 2127 btrfs_tree_lock(right);
b4ce94de
CM
2128 btrfs_set_lock_blocking(right);
2129
5f39d397 2130 right_nr = btrfs_header_nritems(right);
0b246afa 2131 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2132 wret = 1;
2133 } else {
5f39d397
CM
2134 ret = btrfs_cow_block(trans, root, right,
2135 parent, pslot + 1,
9fa8cfe7 2136 &right);
54aa1f4d
CM
2137 if (ret)
2138 wret = 1;
2139 else {
2ff7e61e 2140 wret = balance_node_right(trans, fs_info,
5f39d397 2141 right, mid);
54aa1f4d 2142 }
33ade1f8 2143 }
e66f709b
CM
2144 if (wret < 0)
2145 ret = wret;
2146 if (wret == 0) {
5f39d397
CM
2147 struct btrfs_disk_key disk_key;
2148
2149 btrfs_node_key(right, &disk_key, 0);
0e82bcfe
DS
2150 ret = tree_mod_log_insert_key(parent, pslot + 1,
2151 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2152 BUG_ON(ret < 0);
5f39d397
CM
2153 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2154 btrfs_mark_buffer_dirty(parent);
2155
2156 if (btrfs_header_nritems(mid) <= orig_slot) {
2157 path->nodes[level] = right;
e66f709b
CM
2158 path->slots[level + 1] += 1;
2159 path->slots[level] = orig_slot -
5f39d397 2160 btrfs_header_nritems(mid);
925baedd 2161 btrfs_tree_unlock(mid);
5f39d397 2162 free_extent_buffer(mid);
e66f709b 2163 } else {
925baedd 2164 btrfs_tree_unlock(right);
5f39d397 2165 free_extent_buffer(right);
e66f709b 2166 }
e66f709b
CM
2167 return 0;
2168 }
925baedd 2169 btrfs_tree_unlock(right);
5f39d397 2170 free_extent_buffer(right);
e66f709b 2171 }
e66f709b
CM
2172 return 1;
2173}
2174
3c69faec 2175/*
d352ac68
CM
2176 * readahead one full node of leaves, finding things that are close
2177 * to the block in 'slot', and triggering ra on them.
3c69faec 2178 */
2ff7e61e 2179static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2180 struct btrfs_path *path,
2181 int level, int slot, u64 objectid)
3c69faec 2182{
5f39d397 2183 struct extent_buffer *node;
01f46658 2184 struct btrfs_disk_key disk_key;
3c69faec 2185 u32 nritems;
3c69faec 2186 u64 search;
a7175319 2187 u64 target;
6b80053d 2188 u64 nread = 0;
5f39d397 2189 struct extent_buffer *eb;
6b80053d
CM
2190 u32 nr;
2191 u32 blocksize;
2192 u32 nscan = 0;
db94535d 2193
a6b6e75e 2194 if (level != 1)
6702ed49
CM
2195 return;
2196
2197 if (!path->nodes[level])
3c69faec
CM
2198 return;
2199
5f39d397 2200 node = path->nodes[level];
925baedd 2201
3c69faec 2202 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2203 blocksize = fs_info->nodesize;
2204 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2205 if (eb) {
2206 free_extent_buffer(eb);
3c69faec
CM
2207 return;
2208 }
2209
a7175319 2210 target = search;
6b80053d 2211
5f39d397 2212 nritems = btrfs_header_nritems(node);
6b80053d 2213 nr = slot;
25b8b936 2214
d397712b 2215 while (1) {
e4058b54 2216 if (path->reada == READA_BACK) {
6b80053d
CM
2217 if (nr == 0)
2218 break;
2219 nr--;
e4058b54 2220 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2221 nr++;
2222 if (nr >= nritems)
2223 break;
3c69faec 2224 }
e4058b54 2225 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2226 btrfs_node_key(node, &disk_key, nr);
2227 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2228 break;
2229 }
6b80053d 2230 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2231 if ((search <= target && target - search <= 65536) ||
2232 (search > target && search - target <= 65536)) {
2ff7e61e 2233 readahead_tree_block(fs_info, search);
6b80053d
CM
2234 nread += blocksize;
2235 }
2236 nscan++;
a7175319 2237 if ((nread > 65536 || nscan > 32))
6b80053d 2238 break;
3c69faec
CM
2239 }
2240}
925baedd 2241
2ff7e61e 2242static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2243 struct btrfs_path *path, int level)
b4ce94de
CM
2244{
2245 int slot;
2246 int nritems;
2247 struct extent_buffer *parent;
2248 struct extent_buffer *eb;
2249 u64 gen;
2250 u64 block1 = 0;
2251 u64 block2 = 0;
b4ce94de 2252
8c594ea8 2253 parent = path->nodes[level + 1];
b4ce94de 2254 if (!parent)
0b08851f 2255 return;
b4ce94de
CM
2256
2257 nritems = btrfs_header_nritems(parent);
8c594ea8 2258 slot = path->slots[level + 1];
b4ce94de
CM
2259
2260 if (slot > 0) {
2261 block1 = btrfs_node_blockptr(parent, slot - 1);
2262 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2263 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2264 /*
2265 * if we get -eagain from btrfs_buffer_uptodate, we
2266 * don't want to return eagain here. That will loop
2267 * forever
2268 */
2269 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2270 block1 = 0;
2271 free_extent_buffer(eb);
2272 }
8c594ea8 2273 if (slot + 1 < nritems) {
b4ce94de
CM
2274 block2 = btrfs_node_blockptr(parent, slot + 1);
2275 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2276 eb = find_extent_buffer(fs_info, block2);
b9fab919 2277 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2278 block2 = 0;
2279 free_extent_buffer(eb);
2280 }
8c594ea8 2281
0b08851f 2282 if (block1)
2ff7e61e 2283 readahead_tree_block(fs_info, block1);
0b08851f 2284 if (block2)
2ff7e61e 2285 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2286}
2287
2288
d352ac68 2289/*
d397712b
CM
2290 * when we walk down the tree, it is usually safe to unlock the higher layers
2291 * in the tree. The exceptions are when our path goes through slot 0, because
2292 * operations on the tree might require changing key pointers higher up in the
2293 * tree.
d352ac68 2294 *
d397712b
CM
2295 * callers might also have set path->keep_locks, which tells this code to keep
2296 * the lock if the path points to the last slot in the block. This is part of
2297 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2298 *
d397712b
CM
2299 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2300 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2301 */
e02119d5 2302static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2303 int lowest_unlock, int min_write_lock_level,
2304 int *write_lock_level)
925baedd
CM
2305{
2306 int i;
2307 int skip_level = level;
051e1b9f 2308 int no_skips = 0;
925baedd
CM
2309 struct extent_buffer *t;
2310
2311 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2312 if (!path->nodes[i])
2313 break;
2314 if (!path->locks[i])
2315 break;
051e1b9f 2316 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2317 skip_level = i + 1;
2318 continue;
2319 }
051e1b9f 2320 if (!no_skips && path->keep_locks) {
925baedd
CM
2321 u32 nritems;
2322 t = path->nodes[i];
2323 nritems = btrfs_header_nritems(t);
051e1b9f 2324 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2325 skip_level = i + 1;
2326 continue;
2327 }
2328 }
051e1b9f
CM
2329 if (skip_level < i && i >= lowest_unlock)
2330 no_skips = 1;
2331
925baedd
CM
2332 t = path->nodes[i];
2333 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2334 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2335 path->locks[i] = 0;
f7c79f30
CM
2336 if (write_lock_level &&
2337 i > min_write_lock_level &&
2338 i <= *write_lock_level) {
2339 *write_lock_level = i - 1;
2340 }
925baedd
CM
2341 }
2342 }
2343}
2344
b4ce94de
CM
2345/*
2346 * This releases any locks held in the path starting at level and
2347 * going all the way up to the root.
2348 *
2349 * btrfs_search_slot will keep the lock held on higher nodes in a few
2350 * corner cases, such as COW of the block at slot zero in the node. This
2351 * ignores those rules, and it should only be called when there are no
2352 * more updates to be done higher up in the tree.
2353 */
2354noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2355{
2356 int i;
2357
09a2a8f9 2358 if (path->keep_locks)
b4ce94de
CM
2359 return;
2360
2361 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2362 if (!path->nodes[i])
12f4dacc 2363 continue;
b4ce94de 2364 if (!path->locks[i])
12f4dacc 2365 continue;
bd681513 2366 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2367 path->locks[i] = 0;
2368 }
2369}
2370
c8c42864
CM
2371/*
2372 * helper function for btrfs_search_slot. The goal is to find a block
2373 * in cache without setting the path to blocking. If we find the block
2374 * we return zero and the path is unchanged.
2375 *
2376 * If we can't find the block, we set the path blocking and do some
2377 * reada. -EAGAIN is returned and the search must be repeated.
2378 */
2379static int
d07b8528
LB
2380read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2381 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2382 const struct btrfs_key *key)
c8c42864 2383{
0b246afa 2384 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2385 u64 blocknr;
2386 u64 gen;
c8c42864
CM
2387 struct extent_buffer *b = *eb_ret;
2388 struct extent_buffer *tmp;
581c1760 2389 struct btrfs_key first_key;
76a05b35 2390 int ret;
581c1760 2391 int parent_level;
c8c42864
CM
2392
2393 blocknr = btrfs_node_blockptr(b, slot);
2394 gen = btrfs_node_ptr_generation(b, slot);
581c1760
QW
2395 parent_level = btrfs_header_level(b);
2396 btrfs_node_key_to_cpu(b, &first_key, slot);
c8c42864 2397
0b246afa 2398 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2399 if (tmp) {
b9fab919 2400 /* first we do an atomic uptodate check */
bdf7c00e
JB
2401 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2402 *eb_ret = tmp;
2403 return 0;
2404 }
2405
2406 /* the pages were up to date, but we failed
2407 * the generation number check. Do a full
2408 * read for the generation number that is correct.
2409 * We must do this without dropping locks so
2410 * we can trust our generation number
2411 */
2412 btrfs_set_path_blocking(p);
2413
2414 /* now we're allowed to do a blocking uptodate check */
581c1760 2415 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
bdf7c00e
JB
2416 if (!ret) {
2417 *eb_ret = tmp;
2418 return 0;
cb44921a 2419 }
bdf7c00e
JB
2420 free_extent_buffer(tmp);
2421 btrfs_release_path(p);
2422 return -EIO;
c8c42864
CM
2423 }
2424
2425 /*
2426 * reduce lock contention at high levels
2427 * of the btree by dropping locks before
76a05b35
CM
2428 * we read. Don't release the lock on the current
2429 * level because we need to walk this node to figure
2430 * out which blocks to read.
c8c42864 2431 */
8c594ea8
CM
2432 btrfs_unlock_up_safe(p, level + 1);
2433 btrfs_set_path_blocking(p);
2434
e4058b54 2435 if (p->reada != READA_NONE)
2ff7e61e 2436 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2437
76a05b35 2438 ret = -EAGAIN;
02a3307a 2439 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
581c1760 2440 &first_key);
64c043de 2441 if (!IS_ERR(tmp)) {
76a05b35
CM
2442 /*
2443 * If the read above didn't mark this buffer up to date,
2444 * it will never end up being up to date. Set ret to EIO now
2445 * and give up so that our caller doesn't loop forever
2446 * on our EAGAINs.
2447 */
e6a1d6fd 2448 if (!extent_buffer_uptodate(tmp))
76a05b35 2449 ret = -EIO;
c8c42864 2450 free_extent_buffer(tmp);
c871b0f2
LB
2451 } else {
2452 ret = PTR_ERR(tmp);
76a05b35 2453 }
02a3307a
LB
2454
2455 btrfs_release_path(p);
76a05b35 2456 return ret;
c8c42864
CM
2457}
2458
2459/*
2460 * helper function for btrfs_search_slot. This does all of the checks
2461 * for node-level blocks and does any balancing required based on
2462 * the ins_len.
2463 *
2464 * If no extra work was required, zero is returned. If we had to
2465 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2466 * start over
2467 */
2468static int
2469setup_nodes_for_search(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2471 struct extent_buffer *b, int level, int ins_len,
2472 int *write_lock_level)
c8c42864 2473{
0b246afa 2474 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2475 int ret;
0b246afa 2476
c8c42864 2477 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2478 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2479 int sret;
2480
bd681513
CM
2481 if (*write_lock_level < level + 1) {
2482 *write_lock_level = level + 1;
2483 btrfs_release_path(p);
2484 goto again;
2485 }
2486
c8c42864 2487 btrfs_set_path_blocking(p);
2ff7e61e 2488 reada_for_balance(fs_info, p, level);
c8c42864 2489 sret = split_node(trans, root, p, level);
bd681513 2490 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2491
2492 BUG_ON(sret > 0);
2493 if (sret) {
2494 ret = sret;
2495 goto done;
2496 }
2497 b = p->nodes[level];
2498 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2499 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2500 int sret;
2501
bd681513
CM
2502 if (*write_lock_level < level + 1) {
2503 *write_lock_level = level + 1;
2504 btrfs_release_path(p);
2505 goto again;
2506 }
2507
c8c42864 2508 btrfs_set_path_blocking(p);
2ff7e61e 2509 reada_for_balance(fs_info, p, level);
c8c42864 2510 sret = balance_level(trans, root, p, level);
bd681513 2511 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2512
2513 if (sret) {
2514 ret = sret;
2515 goto done;
2516 }
2517 b = p->nodes[level];
2518 if (!b) {
b3b4aa74 2519 btrfs_release_path(p);
c8c42864
CM
2520 goto again;
2521 }
2522 BUG_ON(btrfs_header_nritems(b) == 1);
2523 }
2524 return 0;
2525
2526again:
2527 ret = -EAGAIN;
2528done:
2529 return ret;
2530}
2531
d7396f07 2532static void key_search_validate(struct extent_buffer *b,
310712b2 2533 const struct btrfs_key *key,
d7396f07
FDBM
2534 int level)
2535{
2536#ifdef CONFIG_BTRFS_ASSERT
2537 struct btrfs_disk_key disk_key;
2538
2539 btrfs_cpu_key_to_disk(&disk_key, key);
2540
2541 if (level == 0)
2542 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2543 offsetof(struct btrfs_leaf, items[0].key),
2544 sizeof(disk_key)));
2545 else
2546 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2547 offsetof(struct btrfs_node, ptrs[0].key),
2548 sizeof(disk_key)));
2549#endif
2550}
2551
310712b2 2552static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2553 int level, int *prev_cmp, int *slot)
2554{
2555 if (*prev_cmp != 0) {
a74b35ec 2556 *prev_cmp = btrfs_bin_search(b, key, level, slot);
d7396f07
FDBM
2557 return *prev_cmp;
2558 }
2559
2560 key_search_validate(b, key, level);
2561 *slot = 0;
2562
2563 return 0;
2564}
2565
381cf658 2566int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2567 u64 iobjectid, u64 ioff, u8 key_type,
2568 struct btrfs_key *found_key)
2569{
2570 int ret;
2571 struct btrfs_key key;
2572 struct extent_buffer *eb;
381cf658
DS
2573
2574 ASSERT(path);
1d4c08e0 2575 ASSERT(found_key);
e33d5c3d
KN
2576
2577 key.type = key_type;
2578 key.objectid = iobjectid;
2579 key.offset = ioff;
2580
2581 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2582 if (ret < 0)
e33d5c3d
KN
2583 return ret;
2584
2585 eb = path->nodes[0];
2586 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2587 ret = btrfs_next_leaf(fs_root, path);
2588 if (ret)
2589 return ret;
2590 eb = path->nodes[0];
2591 }
2592
2593 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2594 if (found_key->type != key.type ||
2595 found_key->objectid != key.objectid)
2596 return 1;
2597
2598 return 0;
2599}
2600
1fc28d8e
LB
2601static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2602 struct btrfs_path *p,
2603 int write_lock_level)
2604{
2605 struct btrfs_fs_info *fs_info = root->fs_info;
2606 struct extent_buffer *b;
2607 int root_lock;
2608 int level = 0;
2609
2610 /* We try very hard to do read locks on the root */
2611 root_lock = BTRFS_READ_LOCK;
2612
2613 if (p->search_commit_root) {
2614 /* The commit roots are read only so we always do read locks */
2615 if (p->need_commit_sem)
2616 down_read(&fs_info->commit_root_sem);
2617 b = root->commit_root;
2618 extent_buffer_get(b);
2619 level = btrfs_header_level(b);
2620 if (p->need_commit_sem)
2621 up_read(&fs_info->commit_root_sem);
2622 if (!p->skip_locking)
2623 btrfs_tree_read_lock(b);
2624
2625 goto out;
2626 }
2627
2628 if (p->skip_locking) {
2629 b = btrfs_root_node(root);
2630 level = btrfs_header_level(b);
2631 goto out;
2632 }
2633
2634 /*
2635 * We don't know the level of the root node until we actually have it
2636 * read locked
2637 */
2638 b = btrfs_read_lock_root_node(root);
2639 level = btrfs_header_level(b);
2640 if (level > write_lock_level)
2641 goto out;
2642
2643 /*
2644 * whoops, must trade for write lock
2645 */
2646 btrfs_tree_read_unlock(b);
2647 free_extent_buffer(b);
2648 b = btrfs_lock_root_node(root);
2649 root_lock = BTRFS_WRITE_LOCK;
2650
2651 /* The level might have changed, check again */
2652 level = btrfs_header_level(b);
2653
2654out:
2655 p->nodes[level] = b;
2656 if (!p->skip_locking)
2657 p->locks[level] = root_lock;
2658 /*
2659 * Callers are responsible for dropping b's references.
2660 */
2661 return b;
2662}
2663
2664
74123bd7 2665/*
4271ecea
NB
2666 * btrfs_search_slot - look for a key in a tree and perform necessary
2667 * modifications to preserve tree invariants.
74123bd7 2668 *
4271ecea
NB
2669 * @trans: Handle of transaction, used when modifying the tree
2670 * @p: Holds all btree nodes along the search path
2671 * @root: The root node of the tree
2672 * @key: The key we are looking for
2673 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2674 * deletions it's -1. 0 for plain searches
2675 * @cow: boolean should CoW operations be performed. Must always be 1
2676 * when modifying the tree.
97571fd0 2677 *
4271ecea
NB
2678 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2679 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2680 *
2681 * If @key is found, 0 is returned and you can find the item in the leaf level
2682 * of the path (level 0)
2683 *
2684 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2685 * points to the slot where it should be inserted
2686 *
2687 * If an error is encountered while searching the tree a negative error number
2688 * is returned
74123bd7 2689 */
310712b2
OS
2690int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2691 const struct btrfs_key *key, struct btrfs_path *p,
2692 int ins_len, int cow)
be0e5c09 2693{
0b246afa 2694 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2695 struct extent_buffer *b;
be0e5c09
CM
2696 int slot;
2697 int ret;
33c66f43 2698 int err;
be0e5c09 2699 int level;
925baedd 2700 int lowest_unlock = 1;
bd681513
CM
2701 /* everything at write_lock_level or lower must be write locked */
2702 int write_lock_level = 0;
9f3a7427 2703 u8 lowest_level = 0;
f7c79f30 2704 int min_write_lock_level;
d7396f07 2705 int prev_cmp;
9f3a7427 2706
6702ed49 2707 lowest_level = p->lowest_level;
323ac95b 2708 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2709 WARN_ON(p->nodes[0] != NULL);
eb653de1 2710 BUG_ON(!cow && ins_len);
25179201 2711
bd681513 2712 if (ins_len < 0) {
925baedd 2713 lowest_unlock = 2;
65b51a00 2714
bd681513
CM
2715 /* when we are removing items, we might have to go up to level
2716 * two as we update tree pointers Make sure we keep write
2717 * for those levels as well
2718 */
2719 write_lock_level = 2;
2720 } else if (ins_len > 0) {
2721 /*
2722 * for inserting items, make sure we have a write lock on
2723 * level 1 so we can update keys
2724 */
2725 write_lock_level = 1;
2726 }
2727
2728 if (!cow)
2729 write_lock_level = -1;
2730
09a2a8f9 2731 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2732 write_lock_level = BTRFS_MAX_LEVEL;
2733
f7c79f30
CM
2734 min_write_lock_level = write_lock_level;
2735
bb803951 2736again:
d7396f07 2737 prev_cmp = -1;
1fc28d8e 2738 b = btrfs_search_slot_get_root(root, p, write_lock_level);
925baedd 2739
eb60ceac 2740 while (b) {
5f39d397 2741 level = btrfs_header_level(b);
65b51a00
CM
2742
2743 /*
2744 * setup the path here so we can release it under lock
2745 * contention with the cow code
2746 */
02217ed2 2747 if (cow) {
9ea2c7c9
NB
2748 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2749
c8c42864
CM
2750 /*
2751 * if we don't really need to cow this block
2752 * then we don't want to set the path blocking,
2753 * so we test it here
2754 */
64c12921
JM
2755 if (!should_cow_block(trans, root, b)) {
2756 trans->dirty = true;
65b51a00 2757 goto cow_done;
64c12921 2758 }
5d4f98a2 2759
bd681513
CM
2760 /*
2761 * must have write locks on this node and the
2762 * parent
2763 */
5124e00e
JB
2764 if (level > write_lock_level ||
2765 (level + 1 > write_lock_level &&
2766 level + 1 < BTRFS_MAX_LEVEL &&
2767 p->nodes[level + 1])) {
bd681513
CM
2768 write_lock_level = level + 1;
2769 btrfs_release_path(p);
2770 goto again;
2771 }
2772
160f4089 2773 btrfs_set_path_blocking(p);
9ea2c7c9
NB
2774 if (last_level)
2775 err = btrfs_cow_block(trans, root, b, NULL, 0,
2776 &b);
2777 else
2778 err = btrfs_cow_block(trans, root, b,
2779 p->nodes[level + 1],
2780 p->slots[level + 1], &b);
33c66f43 2781 if (err) {
33c66f43 2782 ret = err;
65b51a00 2783 goto done;
54aa1f4d 2784 }
02217ed2 2785 }
65b51a00 2786cow_done:
eb60ceac 2787 p->nodes[level] = b;
bd681513 2788 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2789
2790 /*
2791 * we have a lock on b and as long as we aren't changing
2792 * the tree, there is no way to for the items in b to change.
2793 * It is safe to drop the lock on our parent before we
2794 * go through the expensive btree search on b.
2795 *
eb653de1
FDBM
2796 * If we're inserting or deleting (ins_len != 0), then we might
2797 * be changing slot zero, which may require changing the parent.
2798 * So, we can't drop the lock until after we know which slot
2799 * we're operating on.
b4ce94de 2800 */
eb653de1
FDBM
2801 if (!ins_len && !p->keep_locks) {
2802 int u = level + 1;
2803
2804 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2805 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2806 p->locks[u] = 0;
2807 }
2808 }
b4ce94de 2809
d7396f07 2810 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2811 if (ret < 0)
2812 goto done;
b4ce94de 2813
5f39d397 2814 if (level != 0) {
33c66f43
YZ
2815 int dec = 0;
2816 if (ret && slot > 0) {
2817 dec = 1;
be0e5c09 2818 slot -= 1;
33c66f43 2819 }
be0e5c09 2820 p->slots[level] = slot;
33c66f43 2821 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2822 ins_len, &write_lock_level);
33c66f43 2823 if (err == -EAGAIN)
c8c42864 2824 goto again;
33c66f43
YZ
2825 if (err) {
2826 ret = err;
c8c42864 2827 goto done;
33c66f43 2828 }
c8c42864
CM
2829 b = p->nodes[level];
2830 slot = p->slots[level];
b4ce94de 2831
bd681513
CM
2832 /*
2833 * slot 0 is special, if we change the key
2834 * we have to update the parent pointer
2835 * which means we must have a write lock
2836 * on the parent
2837 */
eb653de1 2838 if (slot == 0 && ins_len &&
bd681513
CM
2839 write_lock_level < level + 1) {
2840 write_lock_level = level + 1;
2841 btrfs_release_path(p);
2842 goto again;
2843 }
2844
f7c79f30
CM
2845 unlock_up(p, level, lowest_unlock,
2846 min_write_lock_level, &write_lock_level);
f9efa9c7 2847
925baedd 2848 if (level == lowest_level) {
33c66f43
YZ
2849 if (dec)
2850 p->slots[level]++;
5b21f2ed 2851 goto done;
925baedd 2852 }
ca7a79ad 2853
d07b8528 2854 err = read_block_for_search(root, p, &b, level,
cda79c54 2855 slot, key);
33c66f43 2856 if (err == -EAGAIN)
c8c42864 2857 goto again;
33c66f43
YZ
2858 if (err) {
2859 ret = err;
76a05b35 2860 goto done;
33c66f43 2861 }
76a05b35 2862
b4ce94de 2863 if (!p->skip_locking) {
bd681513
CM
2864 level = btrfs_header_level(b);
2865 if (level <= write_lock_level) {
2866 err = btrfs_try_tree_write_lock(b);
2867 if (!err) {
2868 btrfs_set_path_blocking(p);
2869 btrfs_tree_lock(b);
2870 btrfs_clear_path_blocking(p, b,
2871 BTRFS_WRITE_LOCK);
2872 }
2873 p->locks[level] = BTRFS_WRITE_LOCK;
2874 } else {
f82c458a 2875 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2876 if (!err) {
2877 btrfs_set_path_blocking(p);
2878 btrfs_tree_read_lock(b);
2879 btrfs_clear_path_blocking(p, b,
2880 BTRFS_READ_LOCK);
2881 }
2882 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2883 }
bd681513 2884 p->nodes[level] = b;
b4ce94de 2885 }
be0e5c09
CM
2886 } else {
2887 p->slots[level] = slot;
87b29b20 2888 if (ins_len > 0 &&
2ff7e61e 2889 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2890 if (write_lock_level < 1) {
2891 write_lock_level = 1;
2892 btrfs_release_path(p);
2893 goto again;
2894 }
2895
b4ce94de 2896 btrfs_set_path_blocking(p);
33c66f43
YZ
2897 err = split_leaf(trans, root, key,
2898 p, ins_len, ret == 0);
bd681513 2899 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2900
33c66f43
YZ
2901 BUG_ON(err > 0);
2902 if (err) {
2903 ret = err;
65b51a00
CM
2904 goto done;
2905 }
5c680ed6 2906 }
459931ec 2907 if (!p->search_for_split)
f7c79f30
CM
2908 unlock_up(p, level, lowest_unlock,
2909 min_write_lock_level, &write_lock_level);
65b51a00 2910 goto done;
be0e5c09
CM
2911 }
2912 }
65b51a00
CM
2913 ret = 1;
2914done:
b4ce94de
CM
2915 /*
2916 * we don't really know what they plan on doing with the path
2917 * from here on, so for now just mark it as blocking
2918 */
b9473439
CM
2919 if (!p->leave_spinning)
2920 btrfs_set_path_blocking(p);
5f5bc6b1 2921 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2922 btrfs_release_path(p);
65b51a00 2923 return ret;
be0e5c09
CM
2924}
2925
5d9e75c4
JS
2926/*
2927 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2928 * current state of the tree together with the operations recorded in the tree
2929 * modification log to search for the key in a previous version of this tree, as
2930 * denoted by the time_seq parameter.
2931 *
2932 * Naturally, there is no support for insert, delete or cow operations.
2933 *
2934 * The resulting path and return value will be set up as if we called
2935 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2936 */
310712b2 2937int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2938 struct btrfs_path *p, u64 time_seq)
2939{
0b246afa 2940 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2941 struct extent_buffer *b;
2942 int slot;
2943 int ret;
2944 int err;
2945 int level;
2946 int lowest_unlock = 1;
2947 u8 lowest_level = 0;
d4b4087c 2948 int prev_cmp = -1;
5d9e75c4
JS
2949
2950 lowest_level = p->lowest_level;
2951 WARN_ON(p->nodes[0] != NULL);
2952
2953 if (p->search_commit_root) {
2954 BUG_ON(time_seq);
2955 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2956 }
2957
2958again:
5d9e75c4 2959 b = get_old_root(root, time_seq);
5d9e75c4 2960 level = btrfs_header_level(b);
5d9e75c4
JS
2961 p->locks[level] = BTRFS_READ_LOCK;
2962
2963 while (b) {
2964 level = btrfs_header_level(b);
2965 p->nodes[level] = b;
2966 btrfs_clear_path_blocking(p, NULL, 0);
2967
2968 /*
2969 * we have a lock on b and as long as we aren't changing
2970 * the tree, there is no way to for the items in b to change.
2971 * It is safe to drop the lock on our parent before we
2972 * go through the expensive btree search on b.
2973 */
2974 btrfs_unlock_up_safe(p, level + 1);
2975
d4b4087c 2976 /*
01327610 2977 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
2978 * time.
2979 */
2980 prev_cmp = -1;
d7396f07 2981 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
2982
2983 if (level != 0) {
2984 int dec = 0;
2985 if (ret && slot > 0) {
2986 dec = 1;
2987 slot -= 1;
2988 }
2989 p->slots[level] = slot;
2990 unlock_up(p, level, lowest_unlock, 0, NULL);
2991
2992 if (level == lowest_level) {
2993 if (dec)
2994 p->slots[level]++;
2995 goto done;
2996 }
2997
d07b8528 2998 err = read_block_for_search(root, p, &b, level,
cda79c54 2999 slot, key);
5d9e75c4
JS
3000 if (err == -EAGAIN)
3001 goto again;
3002 if (err) {
3003 ret = err;
3004 goto done;
3005 }
3006
3007 level = btrfs_header_level(b);
f82c458a 3008 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3009 if (!err) {
3010 btrfs_set_path_blocking(p);
3011 btrfs_tree_read_lock(b);
3012 btrfs_clear_path_blocking(p, b,
3013 BTRFS_READ_LOCK);
3014 }
0b246afa 3015 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3016 if (!b) {
3017 ret = -ENOMEM;
3018 goto done;
3019 }
5d9e75c4
JS
3020 p->locks[level] = BTRFS_READ_LOCK;
3021 p->nodes[level] = b;
5d9e75c4
JS
3022 } else {
3023 p->slots[level] = slot;
3024 unlock_up(p, level, lowest_unlock, 0, NULL);
3025 goto done;
3026 }
3027 }
3028 ret = 1;
3029done:
3030 if (!p->leave_spinning)
3031 btrfs_set_path_blocking(p);
3032 if (ret < 0)
3033 btrfs_release_path(p);
3034
3035 return ret;
3036}
3037
2f38b3e1
AJ
3038/*
3039 * helper to use instead of search slot if no exact match is needed but
3040 * instead the next or previous item should be returned.
3041 * When find_higher is true, the next higher item is returned, the next lower
3042 * otherwise.
3043 * When return_any and find_higher are both true, and no higher item is found,
3044 * return the next lower instead.
3045 * When return_any is true and find_higher is false, and no lower item is found,
3046 * return the next higher instead.
3047 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3048 * < 0 on error
3049 */
3050int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3051 const struct btrfs_key *key,
3052 struct btrfs_path *p, int find_higher,
3053 int return_any)
2f38b3e1
AJ
3054{
3055 int ret;
3056 struct extent_buffer *leaf;
3057
3058again:
3059 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3060 if (ret <= 0)
3061 return ret;
3062 /*
3063 * a return value of 1 means the path is at the position where the
3064 * item should be inserted. Normally this is the next bigger item,
3065 * but in case the previous item is the last in a leaf, path points
3066 * to the first free slot in the previous leaf, i.e. at an invalid
3067 * item.
3068 */
3069 leaf = p->nodes[0];
3070
3071 if (find_higher) {
3072 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3073 ret = btrfs_next_leaf(root, p);
3074 if (ret <= 0)
3075 return ret;
3076 if (!return_any)
3077 return 1;
3078 /*
3079 * no higher item found, return the next
3080 * lower instead
3081 */
3082 return_any = 0;
3083 find_higher = 0;
3084 btrfs_release_path(p);
3085 goto again;
3086 }
3087 } else {
e6793769
AJ
3088 if (p->slots[0] == 0) {
3089 ret = btrfs_prev_leaf(root, p);
3090 if (ret < 0)
3091 return ret;
3092 if (!ret) {
23c6bf6a
FDBM
3093 leaf = p->nodes[0];
3094 if (p->slots[0] == btrfs_header_nritems(leaf))
3095 p->slots[0]--;
e6793769 3096 return 0;
2f38b3e1 3097 }
e6793769
AJ
3098 if (!return_any)
3099 return 1;
3100 /*
3101 * no lower item found, return the next
3102 * higher instead
3103 */
3104 return_any = 0;
3105 find_higher = 1;
3106 btrfs_release_path(p);
3107 goto again;
3108 } else {
2f38b3e1
AJ
3109 --p->slots[0];
3110 }
3111 }
3112 return 0;
3113}
3114
74123bd7
CM
3115/*
3116 * adjust the pointers going up the tree, starting at level
3117 * making sure the right key of each node is points to 'key'.
3118 * This is used after shifting pointers to the left, so it stops
3119 * fixing up pointers when a given leaf/node is not in slot 0 of the
3120 * higher levels
aa5d6bed 3121 *
74123bd7 3122 */
b7a0365e
DD
3123static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3124 struct btrfs_path *path,
143bede5 3125 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3126{
3127 int i;
5f39d397 3128 struct extent_buffer *t;
0e82bcfe 3129 int ret;
5f39d397 3130
234b63a0 3131 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3132 int tslot = path->slots[i];
0e82bcfe 3133
eb60ceac 3134 if (!path->nodes[i])
be0e5c09 3135 break;
5f39d397 3136 t = path->nodes[i];
0e82bcfe
DS
3137 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3138 GFP_ATOMIC);
3139 BUG_ON(ret < 0);
5f39d397 3140 btrfs_set_node_key(t, key, tslot);
d6025579 3141 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3142 if (tslot != 0)
3143 break;
3144 }
3145}
3146
31840ae1
ZY
3147/*
3148 * update item key.
3149 *
3150 * This function isn't completely safe. It's the caller's responsibility
3151 * that the new key won't break the order
3152 */
b7a0365e
DD
3153void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3154 struct btrfs_path *path,
310712b2 3155 const struct btrfs_key *new_key)
31840ae1
ZY
3156{
3157 struct btrfs_disk_key disk_key;
3158 struct extent_buffer *eb;
3159 int slot;
3160
3161 eb = path->nodes[0];
3162 slot = path->slots[0];
3163 if (slot > 0) {
3164 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3165 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3166 }
3167 if (slot < btrfs_header_nritems(eb) - 1) {
3168 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3169 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3170 }
3171
3172 btrfs_cpu_key_to_disk(&disk_key, new_key);
3173 btrfs_set_item_key(eb, &disk_key, slot);
3174 btrfs_mark_buffer_dirty(eb);
3175 if (slot == 0)
b7a0365e 3176 fixup_low_keys(fs_info, path, &disk_key, 1);
31840ae1
ZY
3177}
3178
74123bd7
CM
3179/*
3180 * try to push data from one node into the next node left in the
79f95c82 3181 * tree.
aa5d6bed
CM
3182 *
3183 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3184 * error, and > 0 if there was no room in the left hand block.
74123bd7 3185 */
98ed5174 3186static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3187 struct btrfs_fs_info *fs_info,
3188 struct extent_buffer *dst,
971a1f66 3189 struct extent_buffer *src, int empty)
be0e5c09 3190{
be0e5c09 3191 int push_items = 0;
bb803951
CM
3192 int src_nritems;
3193 int dst_nritems;
aa5d6bed 3194 int ret = 0;
be0e5c09 3195
5f39d397
CM
3196 src_nritems = btrfs_header_nritems(src);
3197 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3198 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3199 WARN_ON(btrfs_header_generation(src) != trans->transid);
3200 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3201
bce4eae9 3202 if (!empty && src_nritems <= 8)
971a1f66
CM
3203 return 1;
3204
d397712b 3205 if (push_items <= 0)
be0e5c09
CM
3206 return 1;
3207
bce4eae9 3208 if (empty) {
971a1f66 3209 push_items = min(src_nritems, push_items);
bce4eae9
CM
3210 if (push_items < src_nritems) {
3211 /* leave at least 8 pointers in the node if
3212 * we aren't going to empty it
3213 */
3214 if (src_nritems - push_items < 8) {
3215 if (push_items <= 8)
3216 return 1;
3217 push_items -= 8;
3218 }
3219 }
3220 } else
3221 push_items = min(src_nritems - 8, push_items);
79f95c82 3222
0b246afa 3223 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3224 push_items);
3225 if (ret) {
66642832 3226 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3227 return ret;
3228 }
5f39d397
CM
3229 copy_extent_buffer(dst, src,
3230 btrfs_node_key_ptr_offset(dst_nritems),
3231 btrfs_node_key_ptr_offset(0),
d397712b 3232 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3233
bb803951 3234 if (push_items < src_nritems) {
57911b8b 3235 /*
bf1d3425
DS
3236 * Don't call tree_mod_log_insert_move here, key removal was
3237 * already fully logged by tree_mod_log_eb_copy above.
57911b8b 3238 */
5f39d397
CM
3239 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3240 btrfs_node_key_ptr_offset(push_items),
3241 (src_nritems - push_items) *
3242 sizeof(struct btrfs_key_ptr));
3243 }
3244 btrfs_set_header_nritems(src, src_nritems - push_items);
3245 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3246 btrfs_mark_buffer_dirty(src);
3247 btrfs_mark_buffer_dirty(dst);
31840ae1 3248
79f95c82
CM
3249 return ret;
3250}
3251
3252/*
3253 * try to push data from one node into the next node right in the
3254 * tree.
3255 *
3256 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3257 * error, and > 0 if there was no room in the right hand block.
3258 *
3259 * this will only push up to 1/2 the contents of the left node over
3260 */
5f39d397 3261static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3262 struct btrfs_fs_info *fs_info,
5f39d397
CM
3263 struct extent_buffer *dst,
3264 struct extent_buffer *src)
79f95c82 3265{
79f95c82
CM
3266 int push_items = 0;
3267 int max_push;
3268 int src_nritems;
3269 int dst_nritems;
3270 int ret = 0;
79f95c82 3271
7bb86316
CM
3272 WARN_ON(btrfs_header_generation(src) != trans->transid);
3273 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3274
5f39d397
CM
3275 src_nritems = btrfs_header_nritems(src);
3276 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3277 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3278 if (push_items <= 0)
79f95c82 3279 return 1;
bce4eae9 3280
d397712b 3281 if (src_nritems < 4)
bce4eae9 3282 return 1;
79f95c82
CM
3283
3284 max_push = src_nritems / 2 + 1;
3285 /* don't try to empty the node */
d397712b 3286 if (max_push >= src_nritems)
79f95c82 3287 return 1;
252c38f0 3288
79f95c82
CM
3289 if (max_push < push_items)
3290 push_items = max_push;
3291
bf1d3425
DS
3292 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3293 BUG_ON(ret < 0);
5f39d397
CM
3294 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3295 btrfs_node_key_ptr_offset(0),
3296 (dst_nritems) *
3297 sizeof(struct btrfs_key_ptr));
d6025579 3298
0b246afa 3299 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3300 src_nritems - push_items, push_items);
3301 if (ret) {
66642832 3302 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3303 return ret;
3304 }
5f39d397
CM
3305 copy_extent_buffer(dst, src,
3306 btrfs_node_key_ptr_offset(0),
3307 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3308 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3309
5f39d397
CM
3310 btrfs_set_header_nritems(src, src_nritems - push_items);
3311 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3312
5f39d397
CM
3313 btrfs_mark_buffer_dirty(src);
3314 btrfs_mark_buffer_dirty(dst);
31840ae1 3315
aa5d6bed 3316 return ret;
be0e5c09
CM
3317}
3318
97571fd0
CM
3319/*
3320 * helper function to insert a new root level in the tree.
3321 * A new node is allocated, and a single item is inserted to
3322 * point to the existing root
aa5d6bed
CM
3323 *
3324 * returns zero on success or < 0 on failure.
97571fd0 3325 */
d397712b 3326static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3327 struct btrfs_root *root,
fdd99c72 3328 struct btrfs_path *path, int level)
5c680ed6 3329{
0b246afa 3330 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3331 u64 lower_gen;
5f39d397
CM
3332 struct extent_buffer *lower;
3333 struct extent_buffer *c;
925baedd 3334 struct extent_buffer *old;
5f39d397 3335 struct btrfs_disk_key lower_key;
d9d19a01 3336 int ret;
5c680ed6
CM
3337
3338 BUG_ON(path->nodes[level]);
3339 BUG_ON(path->nodes[level-1] != root->node);
3340
7bb86316
CM
3341 lower = path->nodes[level-1];
3342 if (level == 1)
3343 btrfs_item_key(lower, &lower_key, 0);
3344 else
3345 btrfs_node_key(lower, &lower_key, 0);
3346
4d75f8a9
DS
3347 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3348 &lower_key, level, root->node->start, 0);
5f39d397
CM
3349 if (IS_ERR(c))
3350 return PTR_ERR(c);
925baedd 3351
0b246afa 3352 root_add_used(root, fs_info->nodesize);
f0486c68 3353
b159fa28 3354 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
5f39d397
CM
3355 btrfs_set_header_nritems(c, 1);
3356 btrfs_set_header_level(c, level);
db94535d 3357 btrfs_set_header_bytenr(c, c->start);
5f39d397 3358 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3359 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3360 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3361
0b246afa
JM
3362 write_extent_buffer_fsid(c, fs_info->fsid);
3363 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
e17cade2 3364
5f39d397 3365 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3366 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3367 lower_gen = btrfs_header_generation(lower);
31840ae1 3368 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3369
3370 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3371
5f39d397 3372 btrfs_mark_buffer_dirty(c);
d5719762 3373
925baedd 3374 old = root->node;
d9d19a01
DS
3375 ret = tree_mod_log_insert_root(root->node, c, 0);
3376 BUG_ON(ret < 0);
240f62c8 3377 rcu_assign_pointer(root->node, c);
925baedd
CM
3378
3379 /* the super has an extra ref to root->node */
3380 free_extent_buffer(old);
3381
0b86a832 3382 add_root_to_dirty_list(root);
5f39d397
CM
3383 extent_buffer_get(c);
3384 path->nodes[level] = c;
95449a16 3385 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3386 path->slots[level] = 0;
3387 return 0;
3388}
3389
74123bd7
CM
3390/*
3391 * worker function to insert a single pointer in a node.
3392 * the node should have enough room for the pointer already
97571fd0 3393 *
74123bd7
CM
3394 * slot and level indicate where you want the key to go, and
3395 * blocknr is the block the key points to.
3396 */
143bede5 3397static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3398 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3399 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3400 int slot, int level)
74123bd7 3401{
5f39d397 3402 struct extent_buffer *lower;
74123bd7 3403 int nritems;
f3ea38da 3404 int ret;
5c680ed6
CM
3405
3406 BUG_ON(!path->nodes[level]);
f0486c68 3407 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3408 lower = path->nodes[level];
3409 nritems = btrfs_header_nritems(lower);
c293498b 3410 BUG_ON(slot > nritems);
0b246afa 3411 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3412 if (slot != nritems) {
bf1d3425
DS
3413 if (level) {
3414 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
a446a979 3415 nritems - slot);
bf1d3425
DS
3416 BUG_ON(ret < 0);
3417 }
5f39d397
CM
3418 memmove_extent_buffer(lower,
3419 btrfs_node_key_ptr_offset(slot + 1),
3420 btrfs_node_key_ptr_offset(slot),
d6025579 3421 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3422 }
c3e06965 3423 if (level) {
e09c2efe
DS
3424 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3425 GFP_NOFS);
f3ea38da
JS
3426 BUG_ON(ret < 0);
3427 }
5f39d397 3428 btrfs_set_node_key(lower, key, slot);
db94535d 3429 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3430 WARN_ON(trans->transid == 0);
3431 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3432 btrfs_set_header_nritems(lower, nritems + 1);
3433 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3434}
3435
97571fd0
CM
3436/*
3437 * split the node at the specified level in path in two.
3438 * The path is corrected to point to the appropriate node after the split
3439 *
3440 * Before splitting this tries to make some room in the node by pushing
3441 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3442 *
3443 * returns 0 on success and < 0 on failure
97571fd0 3444 */
e02119d5
CM
3445static noinline int split_node(struct btrfs_trans_handle *trans,
3446 struct btrfs_root *root,
3447 struct btrfs_path *path, int level)
be0e5c09 3448{
0b246afa 3449 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3450 struct extent_buffer *c;
3451 struct extent_buffer *split;
3452 struct btrfs_disk_key disk_key;
be0e5c09 3453 int mid;
5c680ed6 3454 int ret;
7518a238 3455 u32 c_nritems;
eb60ceac 3456
5f39d397 3457 c = path->nodes[level];
7bb86316 3458 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3459 if (c == root->node) {
d9abbf1c 3460 /*
90f8d62e
JS
3461 * trying to split the root, lets make a new one
3462 *
fdd99c72 3463 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3464 * insert_new_root, because that root buffer will be kept as a
3465 * normal node. We are going to log removal of half of the
3466 * elements below with tree_mod_log_eb_copy. We're holding a
3467 * tree lock on the buffer, which is why we cannot race with
3468 * other tree_mod_log users.
d9abbf1c 3469 */
fdd99c72 3470 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3471 if (ret)
3472 return ret;
b3612421 3473 } else {
e66f709b 3474 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3475 c = path->nodes[level];
3476 if (!ret && btrfs_header_nritems(c) <
0b246afa 3477 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3478 return 0;
54aa1f4d
CM
3479 if (ret < 0)
3480 return ret;
be0e5c09 3481 }
e66f709b 3482
5f39d397 3483 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3484 mid = (c_nritems + 1) / 2;
3485 btrfs_node_key(c, &disk_key, mid);
7bb86316 3486
4d75f8a9
DS
3487 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3488 &disk_key, level, c->start, 0);
5f39d397
CM
3489 if (IS_ERR(split))
3490 return PTR_ERR(split);
3491
0b246afa 3492 root_add_used(root, fs_info->nodesize);
f0486c68 3493
b159fa28 3494 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
5f39d397 3495 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3496 btrfs_set_header_bytenr(split, split->start);
5f39d397 3497 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3498 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397 3499 btrfs_set_header_owner(split, root->root_key.objectid);
0b246afa
JM
3500 write_extent_buffer_fsid(split, fs_info->fsid);
3501 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
54aa1f4d 3502
0b246afa 3503 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3504 if (ret) {
66642832 3505 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3506 return ret;
3507 }
5f39d397
CM
3508 copy_extent_buffer(split, c,
3509 btrfs_node_key_ptr_offset(0),
3510 btrfs_node_key_ptr_offset(mid),
3511 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3512 btrfs_set_header_nritems(split, c_nritems - mid);
3513 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3514 ret = 0;
3515
5f39d397
CM
3516 btrfs_mark_buffer_dirty(c);
3517 btrfs_mark_buffer_dirty(split);
3518
2ff7e61e 3519 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3520 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3521
5de08d7d 3522 if (path->slots[level] >= mid) {
5c680ed6 3523 path->slots[level] -= mid;
925baedd 3524 btrfs_tree_unlock(c);
5f39d397
CM
3525 free_extent_buffer(c);
3526 path->nodes[level] = split;
5c680ed6
CM
3527 path->slots[level + 1] += 1;
3528 } else {
925baedd 3529 btrfs_tree_unlock(split);
5f39d397 3530 free_extent_buffer(split);
be0e5c09 3531 }
aa5d6bed 3532 return ret;
be0e5c09
CM
3533}
3534
74123bd7
CM
3535/*
3536 * how many bytes are required to store the items in a leaf. start
3537 * and nr indicate which items in the leaf to check. This totals up the
3538 * space used both by the item structs and the item data
3539 */
5f39d397 3540static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3541{
41be1f3b
JB
3542 struct btrfs_item *start_item;
3543 struct btrfs_item *end_item;
3544 struct btrfs_map_token token;
be0e5c09 3545 int data_len;
5f39d397 3546 int nritems = btrfs_header_nritems(l);
d4dbff95 3547 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3548
3549 if (!nr)
3550 return 0;
41be1f3b 3551 btrfs_init_map_token(&token);
dd3cc16b
RK
3552 start_item = btrfs_item_nr(start);
3553 end_item = btrfs_item_nr(end);
41be1f3b
JB
3554 data_len = btrfs_token_item_offset(l, start_item, &token) +
3555 btrfs_token_item_size(l, start_item, &token);
3556 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3557 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3558 WARN_ON(data_len < 0);
be0e5c09
CM
3559 return data_len;
3560}
3561
d4dbff95
CM
3562/*
3563 * The space between the end of the leaf items and
3564 * the start of the leaf data. IOW, how much room
3565 * the leaf has left for both items and data
3566 */
2ff7e61e 3567noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3568 struct extent_buffer *leaf)
d4dbff95 3569{
5f39d397
CM
3570 int nritems = btrfs_header_nritems(leaf);
3571 int ret;
0b246afa
JM
3572
3573 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3574 if (ret < 0) {
0b246afa
JM
3575 btrfs_crit(fs_info,
3576 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3577 ret,
3578 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3579 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3580 }
3581 return ret;
d4dbff95
CM
3582}
3583
99d8f83c
CM
3584/*
3585 * min slot controls the lowest index we're willing to push to the
3586 * right. We'll push up to and including min_slot, but no lower
3587 */
1e47eef2 3588static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
44871b1b
CM
3589 struct btrfs_path *path,
3590 int data_size, int empty,
3591 struct extent_buffer *right,
99d8f83c
CM
3592 int free_space, u32 left_nritems,
3593 u32 min_slot)
00ec4c51 3594{
5f39d397 3595 struct extent_buffer *left = path->nodes[0];
44871b1b 3596 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3597 struct btrfs_map_token token;
5f39d397 3598 struct btrfs_disk_key disk_key;
00ec4c51 3599 int slot;
34a38218 3600 u32 i;
00ec4c51
CM
3601 int push_space = 0;
3602 int push_items = 0;
0783fcfc 3603 struct btrfs_item *item;
34a38218 3604 u32 nr;
7518a238 3605 u32 right_nritems;
5f39d397 3606 u32 data_end;
db94535d 3607 u32 this_item_size;
00ec4c51 3608
cfed81a0
CM
3609 btrfs_init_map_token(&token);
3610
34a38218
CM
3611 if (empty)
3612 nr = 0;
3613 else
99d8f83c 3614 nr = max_t(u32, 1, min_slot);
34a38218 3615
31840ae1 3616 if (path->slots[0] >= left_nritems)
87b29b20 3617 push_space += data_size;
31840ae1 3618
44871b1b 3619 slot = path->slots[1];
34a38218
CM
3620 i = left_nritems - 1;
3621 while (i >= nr) {
dd3cc16b 3622 item = btrfs_item_nr(i);
db94535d 3623
31840ae1
ZY
3624 if (!empty && push_items > 0) {
3625 if (path->slots[0] > i)
3626 break;
3627 if (path->slots[0] == i) {
2ff7e61e 3628 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3629 if (space + push_space * 2 > free_space)
3630 break;
3631 }
3632 }
3633
00ec4c51 3634 if (path->slots[0] == i)
87b29b20 3635 push_space += data_size;
db94535d 3636
db94535d
CM
3637 this_item_size = btrfs_item_size(left, item);
3638 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3639 break;
31840ae1 3640
00ec4c51 3641 push_items++;
db94535d 3642 push_space += this_item_size + sizeof(*item);
34a38218
CM
3643 if (i == 0)
3644 break;
3645 i--;
db94535d 3646 }
5f39d397 3647
925baedd
CM
3648 if (push_items == 0)
3649 goto out_unlock;
5f39d397 3650
6c1500f2 3651 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3652
00ec4c51 3653 /* push left to right */
5f39d397 3654 right_nritems = btrfs_header_nritems(right);
34a38218 3655
5f39d397 3656 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3657 push_space -= leaf_data_end(fs_info, left);
5f39d397 3658
00ec4c51 3659 /* make room in the right data area */
2ff7e61e 3660 data_end = leaf_data_end(fs_info, right);
5f39d397 3661 memmove_extent_buffer(right,
3d9ec8c4
NB
3662 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3663 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3664 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3665
00ec4c51 3666 /* copy from the left data area */
3d9ec8c4 3667 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3668 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3669 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
d6025579 3670 push_space);
5f39d397
CM
3671
3672 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3673 btrfs_item_nr_offset(0),
3674 right_nritems * sizeof(struct btrfs_item));
3675
00ec4c51 3676 /* copy the items from left to right */
5f39d397
CM
3677 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3678 btrfs_item_nr_offset(left_nritems - push_items),
3679 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3680
3681 /* update the item pointers */
7518a238 3682 right_nritems += push_items;
5f39d397 3683 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3684 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3685 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3686 item = btrfs_item_nr(i);
cfed81a0
CM
3687 push_space -= btrfs_token_item_size(right, item, &token);
3688 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3689 }
3690
7518a238 3691 left_nritems -= push_items;
5f39d397 3692 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3693
34a38218
CM
3694 if (left_nritems)
3695 btrfs_mark_buffer_dirty(left);
f0486c68 3696 else
7c302b49 3697 clean_tree_block(fs_info, left);
f0486c68 3698
5f39d397 3699 btrfs_mark_buffer_dirty(right);
a429e513 3700
5f39d397
CM
3701 btrfs_item_key(right, &disk_key, 0);
3702 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3703 btrfs_mark_buffer_dirty(upper);
02217ed2 3704
00ec4c51 3705 /* then fixup the leaf pointer in the path */
7518a238
CM
3706 if (path->slots[0] >= left_nritems) {
3707 path->slots[0] -= left_nritems;
925baedd 3708 if (btrfs_header_nritems(path->nodes[0]) == 0)
7c302b49 3709 clean_tree_block(fs_info, path->nodes[0]);
925baedd 3710 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3711 free_extent_buffer(path->nodes[0]);
3712 path->nodes[0] = right;
00ec4c51
CM
3713 path->slots[1] += 1;
3714 } else {
925baedd 3715 btrfs_tree_unlock(right);
5f39d397 3716 free_extent_buffer(right);
00ec4c51
CM
3717 }
3718 return 0;
925baedd
CM
3719
3720out_unlock:
3721 btrfs_tree_unlock(right);
3722 free_extent_buffer(right);
3723 return 1;
00ec4c51 3724}
925baedd 3725
44871b1b
CM
3726/*
3727 * push some data in the path leaf to the right, trying to free up at
3728 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3729 *
3730 * returns 1 if the push failed because the other node didn't have enough
3731 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3732 *
3733 * this will push starting from min_slot to the end of the leaf. It won't
3734 * push any slot lower than min_slot
44871b1b
CM
3735 */
3736static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3737 *root, struct btrfs_path *path,
3738 int min_data_size, int data_size,
3739 int empty, u32 min_slot)
44871b1b 3740{
2ff7e61e 3741 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3742 struct extent_buffer *left = path->nodes[0];
3743 struct extent_buffer *right;
3744 struct extent_buffer *upper;
3745 int slot;
3746 int free_space;
3747 u32 left_nritems;
3748 int ret;
3749
3750 if (!path->nodes[1])
3751 return 1;
3752
3753 slot = path->slots[1];
3754 upper = path->nodes[1];
3755 if (slot >= btrfs_header_nritems(upper) - 1)
3756 return 1;
3757
3758 btrfs_assert_tree_locked(path->nodes[1]);
3759
2ff7e61e 3760 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3761 /*
3762 * slot + 1 is not valid or we fail to read the right node,
3763 * no big deal, just return.
3764 */
3765 if (IS_ERR(right))
91ca338d
TI
3766 return 1;
3767
44871b1b
CM
3768 btrfs_tree_lock(right);
3769 btrfs_set_lock_blocking(right);
3770
2ff7e61e 3771 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3772 if (free_space < data_size)
3773 goto out_unlock;
3774
3775 /* cow and double check */
3776 ret = btrfs_cow_block(trans, root, right, upper,
3777 slot + 1, &right);
3778 if (ret)
3779 goto out_unlock;
3780
2ff7e61e 3781 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3782 if (free_space < data_size)
3783 goto out_unlock;
3784
3785 left_nritems = btrfs_header_nritems(left);
3786 if (left_nritems == 0)
3787 goto out_unlock;
3788
2ef1fed2
FDBM
3789 if (path->slots[0] == left_nritems && !empty) {
3790 /* Key greater than all keys in the leaf, right neighbor has
3791 * enough room for it and we're not emptying our leaf to delete
3792 * it, therefore use right neighbor to insert the new item and
3793 * no need to touch/dirty our left leaft. */
3794 btrfs_tree_unlock(left);
3795 free_extent_buffer(left);
3796 path->nodes[0] = right;
3797 path->slots[0] = 0;
3798 path->slots[1]++;
3799 return 0;
3800 }
3801
1e47eef2 3802 return __push_leaf_right(fs_info, path, min_data_size, empty,
99d8f83c 3803 right, free_space, left_nritems, min_slot);
44871b1b
CM
3804out_unlock:
3805 btrfs_tree_unlock(right);
3806 free_extent_buffer(right);
3807 return 1;
3808}
3809
74123bd7
CM
3810/*
3811 * push some data in the path leaf to the left, trying to free up at
3812 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3813 *
3814 * max_slot can put a limit on how far into the leaf we'll push items. The
3815 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3816 * items
74123bd7 3817 */
66cb7ddb 3818static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
44871b1b
CM
3819 struct btrfs_path *path, int data_size,
3820 int empty, struct extent_buffer *left,
99d8f83c
CM
3821 int free_space, u32 right_nritems,
3822 u32 max_slot)
be0e5c09 3823{
5f39d397
CM
3824 struct btrfs_disk_key disk_key;
3825 struct extent_buffer *right = path->nodes[0];
be0e5c09 3826 int i;
be0e5c09
CM
3827 int push_space = 0;
3828 int push_items = 0;
0783fcfc 3829 struct btrfs_item *item;
7518a238 3830 u32 old_left_nritems;
34a38218 3831 u32 nr;
aa5d6bed 3832 int ret = 0;
db94535d
CM
3833 u32 this_item_size;
3834 u32 old_left_item_size;
cfed81a0
CM
3835 struct btrfs_map_token token;
3836
3837 btrfs_init_map_token(&token);
be0e5c09 3838
34a38218 3839 if (empty)
99d8f83c 3840 nr = min(right_nritems, max_slot);
34a38218 3841 else
99d8f83c 3842 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3843
3844 for (i = 0; i < nr; i++) {
dd3cc16b 3845 item = btrfs_item_nr(i);
db94535d 3846
31840ae1
ZY
3847 if (!empty && push_items > 0) {
3848 if (path->slots[0] < i)
3849 break;
3850 if (path->slots[0] == i) {
2ff7e61e 3851 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3852 if (space + push_space * 2 > free_space)
3853 break;
3854 }
3855 }
3856
be0e5c09 3857 if (path->slots[0] == i)
87b29b20 3858 push_space += data_size;
db94535d
CM
3859
3860 this_item_size = btrfs_item_size(right, item);
3861 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3862 break;
db94535d 3863
be0e5c09 3864 push_items++;
db94535d
CM
3865 push_space += this_item_size + sizeof(*item);
3866 }
3867
be0e5c09 3868 if (push_items == 0) {
925baedd
CM
3869 ret = 1;
3870 goto out;
be0e5c09 3871 }
fae7f21c 3872 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3873
be0e5c09 3874 /* push data from right to left */
5f39d397
CM
3875 copy_extent_buffer(left, right,
3876 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3877 btrfs_item_nr_offset(0),
3878 push_items * sizeof(struct btrfs_item));
3879
0b246afa 3880 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3881 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3882
3d9ec8c4 3883 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3884 leaf_data_end(fs_info, left) - push_space,
3d9ec8c4 3885 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3886 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3887 push_space);
5f39d397 3888 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3889 BUG_ON(old_left_nritems <= 0);
eb60ceac 3890
db94535d 3891 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3892 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3893 u32 ioff;
db94535d 3894
dd3cc16b 3895 item = btrfs_item_nr(i);
db94535d 3896
cfed81a0
CM
3897 ioff = btrfs_token_item_offset(left, item, &token);
3898 btrfs_set_token_item_offset(left, item,
0b246afa 3899 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3900 &token);
be0e5c09 3901 }
5f39d397 3902 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3903
3904 /* fixup right node */
31b1a2bd
JL
3905 if (push_items > right_nritems)
3906 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3907 right_nritems);
34a38218
CM
3908
3909 if (push_items < right_nritems) {
3910 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3911 leaf_data_end(fs_info, right);
3d9ec8c4 3912 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3913 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3914 BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3915 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3916
3917 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3918 btrfs_item_nr_offset(push_items),
3919 (btrfs_header_nritems(right) - push_items) *
3920 sizeof(struct btrfs_item));
34a38218 3921 }
eef1c494
Y
3922 right_nritems -= push_items;
3923 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3924 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3925 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3926 item = btrfs_item_nr(i);
db94535d 3927
cfed81a0
CM
3928 push_space = push_space - btrfs_token_item_size(right,
3929 item, &token);
3930 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3931 }
eb60ceac 3932
5f39d397 3933 btrfs_mark_buffer_dirty(left);
34a38218
CM
3934 if (right_nritems)
3935 btrfs_mark_buffer_dirty(right);
f0486c68 3936 else
7c302b49 3937 clean_tree_block(fs_info, right);
098f59c2 3938
5f39d397 3939 btrfs_item_key(right, &disk_key, 0);
0b246afa 3940 fixup_low_keys(fs_info, path, &disk_key, 1);
be0e5c09
CM
3941
3942 /* then fixup the leaf pointer in the path */
3943 if (path->slots[0] < push_items) {
3944 path->slots[0] += old_left_nritems;
925baedd 3945 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3946 free_extent_buffer(path->nodes[0]);
3947 path->nodes[0] = left;
be0e5c09
CM
3948 path->slots[1] -= 1;
3949 } else {
925baedd 3950 btrfs_tree_unlock(left);
5f39d397 3951 free_extent_buffer(left);
be0e5c09
CM
3952 path->slots[0] -= push_items;
3953 }
eb60ceac 3954 BUG_ON(path->slots[0] < 0);
aa5d6bed 3955 return ret;
925baedd
CM
3956out:
3957 btrfs_tree_unlock(left);
3958 free_extent_buffer(left);
3959 return ret;
be0e5c09
CM
3960}
3961
44871b1b
CM
3962/*
3963 * push some data in the path leaf to the left, trying to free up at
3964 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3965 *
3966 * max_slot can put a limit on how far into the leaf we'll push items. The
3967 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3968 * items
44871b1b
CM
3969 */
3970static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3971 *root, struct btrfs_path *path, int min_data_size,
3972 int data_size, int empty, u32 max_slot)
44871b1b 3973{
2ff7e61e 3974 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3975 struct extent_buffer *right = path->nodes[0];
3976 struct extent_buffer *left;
3977 int slot;
3978 int free_space;
3979 u32 right_nritems;
3980 int ret = 0;
3981
3982 slot = path->slots[1];
3983 if (slot == 0)
3984 return 1;
3985 if (!path->nodes[1])
3986 return 1;
3987
3988 right_nritems = btrfs_header_nritems(right);
3989 if (right_nritems == 0)
3990 return 1;
3991
3992 btrfs_assert_tree_locked(path->nodes[1]);
3993
2ff7e61e 3994 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
3995 /*
3996 * slot - 1 is not valid or we fail to read the left node,
3997 * no big deal, just return.
3998 */
3999 if (IS_ERR(left))
91ca338d
TI
4000 return 1;
4001
44871b1b
CM
4002 btrfs_tree_lock(left);
4003 btrfs_set_lock_blocking(left);
4004
2ff7e61e 4005 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4006 if (free_space < data_size) {
4007 ret = 1;
4008 goto out;
4009 }
4010
4011 /* cow and double check */
4012 ret = btrfs_cow_block(trans, root, left,
4013 path->nodes[1], slot - 1, &left);
4014 if (ret) {
4015 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4016 if (ret == -ENOSPC)
4017 ret = 1;
44871b1b
CM
4018 goto out;
4019 }
4020
2ff7e61e 4021 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4022 if (free_space < data_size) {
4023 ret = 1;
4024 goto out;
4025 }
4026
66cb7ddb 4027 return __push_leaf_left(fs_info, path, min_data_size,
99d8f83c
CM
4028 empty, left, free_space, right_nritems,
4029 max_slot);
44871b1b
CM
4030out:
4031 btrfs_tree_unlock(left);
4032 free_extent_buffer(left);
4033 return ret;
4034}
4035
4036/*
4037 * split the path's leaf in two, making sure there is at least data_size
4038 * available for the resulting leaf level of the path.
44871b1b 4039 */
143bede5 4040static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4041 struct btrfs_fs_info *fs_info,
143bede5
JM
4042 struct btrfs_path *path,
4043 struct extent_buffer *l,
4044 struct extent_buffer *right,
4045 int slot, int mid, int nritems)
44871b1b
CM
4046{
4047 int data_copy_size;
4048 int rt_data_off;
4049 int i;
44871b1b 4050 struct btrfs_disk_key disk_key;
cfed81a0
CM
4051 struct btrfs_map_token token;
4052
4053 btrfs_init_map_token(&token);
44871b1b
CM
4054
4055 nritems = nritems - mid;
4056 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4057 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4058
4059 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4060 btrfs_item_nr_offset(mid),
4061 nritems * sizeof(struct btrfs_item));
4062
4063 copy_extent_buffer(right, l,
3d9ec8c4
NB
4064 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4065 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 4066 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4067
0b246afa 4068 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4069
4070 for (i = 0; i < nritems; i++) {
dd3cc16b 4071 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4072 u32 ioff;
4073
cfed81a0
CM
4074 ioff = btrfs_token_item_offset(right, item, &token);
4075 btrfs_set_token_item_offset(right, item,
4076 ioff + rt_data_off, &token);
44871b1b
CM
4077 }
4078
44871b1b 4079 btrfs_set_header_nritems(l, mid);
44871b1b 4080 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4081 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4082 path->slots[1] + 1, 1);
44871b1b
CM
4083
4084 btrfs_mark_buffer_dirty(right);
4085 btrfs_mark_buffer_dirty(l);
4086 BUG_ON(path->slots[0] != slot);
4087
44871b1b
CM
4088 if (mid <= slot) {
4089 btrfs_tree_unlock(path->nodes[0]);
4090 free_extent_buffer(path->nodes[0]);
4091 path->nodes[0] = right;
4092 path->slots[0] -= mid;
4093 path->slots[1] += 1;
4094 } else {
4095 btrfs_tree_unlock(right);
4096 free_extent_buffer(right);
4097 }
4098
4099 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4100}
4101
99d8f83c
CM
4102/*
4103 * double splits happen when we need to insert a big item in the middle
4104 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4105 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4106 * A B C
4107 *
4108 * We avoid this by trying to push the items on either side of our target
4109 * into the adjacent leaves. If all goes well we can avoid the double split
4110 * completely.
4111 */
4112static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4113 struct btrfs_root *root,
4114 struct btrfs_path *path,
4115 int data_size)
4116{
2ff7e61e 4117 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4118 int ret;
4119 int progress = 0;
4120 int slot;
4121 u32 nritems;
5a4267ca 4122 int space_needed = data_size;
99d8f83c
CM
4123
4124 slot = path->slots[0];
5a4267ca 4125 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4126 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4127
4128 /*
4129 * try to push all the items after our slot into the
4130 * right leaf
4131 */
5a4267ca 4132 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4133 if (ret < 0)
4134 return ret;
4135
4136 if (ret == 0)
4137 progress++;
4138
4139 nritems = btrfs_header_nritems(path->nodes[0]);
4140 /*
4141 * our goal is to get our slot at the start or end of a leaf. If
4142 * we've done so we're done
4143 */
4144 if (path->slots[0] == 0 || path->slots[0] == nritems)
4145 return 0;
4146
2ff7e61e 4147 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4148 return 0;
4149
4150 /* try to push all the items before our slot into the next leaf */
4151 slot = path->slots[0];
263d3995
FM
4152 space_needed = data_size;
4153 if (slot > 0)
4154 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
5a4267ca 4155 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4156 if (ret < 0)
4157 return ret;
4158
4159 if (ret == 0)
4160 progress++;
4161
4162 if (progress)
4163 return 0;
4164 return 1;
4165}
4166
74123bd7
CM
4167/*
4168 * split the path's leaf in two, making sure there is at least data_size
4169 * available for the resulting leaf level of the path.
aa5d6bed
CM
4170 *
4171 * returns 0 if all went well and < 0 on failure.
74123bd7 4172 */
e02119d5
CM
4173static noinline int split_leaf(struct btrfs_trans_handle *trans,
4174 struct btrfs_root *root,
310712b2 4175 const struct btrfs_key *ins_key,
e02119d5
CM
4176 struct btrfs_path *path, int data_size,
4177 int extend)
be0e5c09 4178{
5d4f98a2 4179 struct btrfs_disk_key disk_key;
5f39d397 4180 struct extent_buffer *l;
7518a238 4181 u32 nritems;
eb60ceac
CM
4182 int mid;
4183 int slot;
5f39d397 4184 struct extent_buffer *right;
b7a0365e 4185 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4186 int ret = 0;
aa5d6bed 4187 int wret;
5d4f98a2 4188 int split;
cc0c5538 4189 int num_doubles = 0;
99d8f83c 4190 int tried_avoid_double = 0;
aa5d6bed 4191
a5719521
YZ
4192 l = path->nodes[0];
4193 slot = path->slots[0];
4194 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4195 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4196 return -EOVERFLOW;
4197
40689478 4198 /* first try to make some room by pushing left and right */
33157e05 4199 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4200 int space_needed = data_size;
4201
4202 if (slot < btrfs_header_nritems(l))
2ff7e61e 4203 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4204
4205 wret = push_leaf_right(trans, root, path, space_needed,
4206 space_needed, 0, 0);
d397712b 4207 if (wret < 0)
eaee50e8 4208 return wret;
3685f791 4209 if (wret) {
263d3995
FM
4210 space_needed = data_size;
4211 if (slot > 0)
4212 space_needed -= btrfs_leaf_free_space(fs_info,
4213 l);
5a4267ca
FDBM
4214 wret = push_leaf_left(trans, root, path, space_needed,
4215 space_needed, 0, (u32)-1);
3685f791
CM
4216 if (wret < 0)
4217 return wret;
4218 }
4219 l = path->nodes[0];
aa5d6bed 4220
3685f791 4221 /* did the pushes work? */
2ff7e61e 4222 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4223 return 0;
3326d1b0 4224 }
aa5d6bed 4225
5c680ed6 4226 if (!path->nodes[1]) {
fdd99c72 4227 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4228 if (ret)
4229 return ret;
4230 }
cc0c5538 4231again:
5d4f98a2 4232 split = 1;
cc0c5538 4233 l = path->nodes[0];
eb60ceac 4234 slot = path->slots[0];
5f39d397 4235 nritems = btrfs_header_nritems(l);
d397712b 4236 mid = (nritems + 1) / 2;
54aa1f4d 4237
5d4f98a2
YZ
4238 if (mid <= slot) {
4239 if (nritems == 1 ||
4240 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4241 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4242 if (slot >= nritems) {
4243 split = 0;
4244 } else {
4245 mid = slot;
4246 if (mid != nritems &&
4247 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4248 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4249 if (data_size && !tried_avoid_double)
4250 goto push_for_double;
5d4f98a2
YZ
4251 split = 2;
4252 }
4253 }
4254 }
4255 } else {
4256 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4257 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4258 if (!extend && data_size && slot == 0) {
4259 split = 0;
4260 } else if ((extend || !data_size) && slot == 0) {
4261 mid = 1;
4262 } else {
4263 mid = slot;
4264 if (mid != nritems &&
4265 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4266 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4267 if (data_size && !tried_avoid_double)
4268 goto push_for_double;
67871254 4269 split = 2;
5d4f98a2
YZ
4270 }
4271 }
4272 }
4273 }
4274
4275 if (split == 0)
4276 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4277 else
4278 btrfs_item_key(l, &disk_key, mid);
4279
4d75f8a9
DS
4280 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4281 &disk_key, 0, l->start, 0);
f0486c68 4282 if (IS_ERR(right))
5f39d397 4283 return PTR_ERR(right);
f0486c68 4284
0b246afa 4285 root_add_used(root, fs_info->nodesize);
5f39d397 4286
b159fa28 4287 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
db94535d 4288 btrfs_set_header_bytenr(right, right->start);
5f39d397 4289 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4290 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4291 btrfs_set_header_owner(right, root->root_key.objectid);
4292 btrfs_set_header_level(right, 0);
d24ee97b
DS
4293 write_extent_buffer_fsid(right, fs_info->fsid);
4294 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
44871b1b 4295
5d4f98a2
YZ
4296 if (split == 0) {
4297 if (mid <= slot) {
4298 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4299 insert_ptr(trans, fs_info, path, &disk_key,
4300 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4301 btrfs_tree_unlock(path->nodes[0]);
4302 free_extent_buffer(path->nodes[0]);
4303 path->nodes[0] = right;
4304 path->slots[0] = 0;
4305 path->slots[1] += 1;
4306 } else {
4307 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4308 insert_ptr(trans, fs_info, path, &disk_key,
4309 right->start, path->slots[1], 1);
5d4f98a2
YZ
4310 btrfs_tree_unlock(path->nodes[0]);
4311 free_extent_buffer(path->nodes[0]);
4312 path->nodes[0] = right;
4313 path->slots[0] = 0;
143bede5 4314 if (path->slots[1] == 0)
b7a0365e 4315 fixup_low_keys(fs_info, path, &disk_key, 1);
d4dbff95 4316 }
196e0249
LB
4317 /*
4318 * We create a new leaf 'right' for the required ins_len and
4319 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4320 * the content of ins_len to 'right'.
4321 */
5d4f98a2 4322 return ret;
d4dbff95 4323 }
74123bd7 4324
2ff7e61e 4325 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4326
5d4f98a2 4327 if (split == 2) {
cc0c5538
CM
4328 BUG_ON(num_doubles != 0);
4329 num_doubles++;
4330 goto again;
a429e513 4331 }
44871b1b 4332
143bede5 4333 return 0;
99d8f83c
CM
4334
4335push_for_double:
4336 push_for_double_split(trans, root, path, data_size);
4337 tried_avoid_double = 1;
2ff7e61e 4338 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4339 return 0;
4340 goto again;
be0e5c09
CM
4341}
4342
ad48fd75
YZ
4343static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4344 struct btrfs_root *root,
4345 struct btrfs_path *path, int ins_len)
459931ec 4346{
2ff7e61e 4347 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4348 struct btrfs_key key;
459931ec 4349 struct extent_buffer *leaf;
ad48fd75
YZ
4350 struct btrfs_file_extent_item *fi;
4351 u64 extent_len = 0;
4352 u32 item_size;
4353 int ret;
459931ec
CM
4354
4355 leaf = path->nodes[0];
ad48fd75
YZ
4356 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4357
4358 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4359 key.type != BTRFS_EXTENT_CSUM_KEY);
4360
2ff7e61e 4361 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4362 return 0;
459931ec
CM
4363
4364 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4365 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4366 fi = btrfs_item_ptr(leaf, path->slots[0],
4367 struct btrfs_file_extent_item);
4368 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4369 }
b3b4aa74 4370 btrfs_release_path(path);
459931ec 4371
459931ec 4372 path->keep_locks = 1;
ad48fd75
YZ
4373 path->search_for_split = 1;
4374 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4375 path->search_for_split = 0;
a8df6fe6
FM
4376 if (ret > 0)
4377 ret = -EAGAIN;
ad48fd75
YZ
4378 if (ret < 0)
4379 goto err;
459931ec 4380
ad48fd75
YZ
4381 ret = -EAGAIN;
4382 leaf = path->nodes[0];
a8df6fe6
FM
4383 /* if our item isn't there, return now */
4384 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4385 goto err;
4386
109f6aef 4387 /* the leaf has changed, it now has room. return now */
2ff7e61e 4388 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4389 goto err;
4390
ad48fd75
YZ
4391 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4392 fi = btrfs_item_ptr(leaf, path->slots[0],
4393 struct btrfs_file_extent_item);
4394 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4395 goto err;
459931ec
CM
4396 }
4397
b9473439 4398 btrfs_set_path_blocking(path);
ad48fd75 4399 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4400 if (ret)
4401 goto err;
459931ec 4402
ad48fd75 4403 path->keep_locks = 0;
b9473439 4404 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4405 return 0;
4406err:
4407 path->keep_locks = 0;
4408 return ret;
4409}
4410
4961e293 4411static noinline int split_item(struct btrfs_fs_info *fs_info,
ad48fd75 4412 struct btrfs_path *path,
310712b2 4413 const struct btrfs_key *new_key,
ad48fd75
YZ
4414 unsigned long split_offset)
4415{
4416 struct extent_buffer *leaf;
4417 struct btrfs_item *item;
4418 struct btrfs_item *new_item;
4419 int slot;
4420 char *buf;
4421 u32 nritems;
4422 u32 item_size;
4423 u32 orig_offset;
4424 struct btrfs_disk_key disk_key;
4425
b9473439 4426 leaf = path->nodes[0];
2ff7e61e 4427 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4428
b4ce94de
CM
4429 btrfs_set_path_blocking(path);
4430
dd3cc16b 4431 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4432 orig_offset = btrfs_item_offset(leaf, item);
4433 item_size = btrfs_item_size(leaf, item);
4434
459931ec 4435 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4436 if (!buf)
4437 return -ENOMEM;
4438
459931ec
CM
4439 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4440 path->slots[0]), item_size);
459931ec 4441
ad48fd75 4442 slot = path->slots[0] + 1;
459931ec 4443 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4444 if (slot != nritems) {
4445 /* shift the items */
4446 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4447 btrfs_item_nr_offset(slot),
4448 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4449 }
4450
4451 btrfs_cpu_key_to_disk(&disk_key, new_key);
4452 btrfs_set_item_key(leaf, &disk_key, slot);
4453
dd3cc16b 4454 new_item = btrfs_item_nr(slot);
459931ec
CM
4455
4456 btrfs_set_item_offset(leaf, new_item, orig_offset);
4457 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4458
4459 btrfs_set_item_offset(leaf, item,
4460 orig_offset + item_size - split_offset);
4461 btrfs_set_item_size(leaf, item, split_offset);
4462
4463 btrfs_set_header_nritems(leaf, nritems + 1);
4464
4465 /* write the data for the start of the original item */
4466 write_extent_buffer(leaf, buf,
4467 btrfs_item_ptr_offset(leaf, path->slots[0]),
4468 split_offset);
4469
4470 /* write the data for the new item */
4471 write_extent_buffer(leaf, buf + split_offset,
4472 btrfs_item_ptr_offset(leaf, slot),
4473 item_size - split_offset);
4474 btrfs_mark_buffer_dirty(leaf);
4475
2ff7e61e 4476 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4477 kfree(buf);
ad48fd75
YZ
4478 return 0;
4479}
4480
4481/*
4482 * This function splits a single item into two items,
4483 * giving 'new_key' to the new item and splitting the
4484 * old one at split_offset (from the start of the item).
4485 *
4486 * The path may be released by this operation. After
4487 * the split, the path is pointing to the old item. The
4488 * new item is going to be in the same node as the old one.
4489 *
4490 * Note, the item being split must be smaller enough to live alone on
4491 * a tree block with room for one extra struct btrfs_item
4492 *
4493 * This allows us to split the item in place, keeping a lock on the
4494 * leaf the entire time.
4495 */
4496int btrfs_split_item(struct btrfs_trans_handle *trans,
4497 struct btrfs_root *root,
4498 struct btrfs_path *path,
310712b2 4499 const struct btrfs_key *new_key,
ad48fd75
YZ
4500 unsigned long split_offset)
4501{
4502 int ret;
4503 ret = setup_leaf_for_split(trans, root, path,
4504 sizeof(struct btrfs_item));
4505 if (ret)
4506 return ret;
4507
4961e293 4508 ret = split_item(root->fs_info, path, new_key, split_offset);
459931ec
CM
4509 return ret;
4510}
4511
ad48fd75
YZ
4512/*
4513 * This function duplicate a item, giving 'new_key' to the new item.
4514 * It guarantees both items live in the same tree leaf and the new item
4515 * is contiguous with the original item.
4516 *
4517 * This allows us to split file extent in place, keeping a lock on the
4518 * leaf the entire time.
4519 */
4520int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4521 struct btrfs_root *root,
4522 struct btrfs_path *path,
310712b2 4523 const struct btrfs_key *new_key)
ad48fd75
YZ
4524{
4525 struct extent_buffer *leaf;
4526 int ret;
4527 u32 item_size;
4528
4529 leaf = path->nodes[0];
4530 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4531 ret = setup_leaf_for_split(trans, root, path,
4532 item_size + sizeof(struct btrfs_item));
4533 if (ret)
4534 return ret;
4535
4536 path->slots[0]++;
afe5fea7 4537 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4538 item_size, item_size +
4539 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4540 leaf = path->nodes[0];
4541 memcpy_extent_buffer(leaf,
4542 btrfs_item_ptr_offset(leaf, path->slots[0]),
4543 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4544 item_size);
4545 return 0;
4546}
4547
d352ac68
CM
4548/*
4549 * make the item pointed to by the path smaller. new_size indicates
4550 * how small to make it, and from_end tells us if we just chop bytes
4551 * off the end of the item or if we shift the item to chop bytes off
4552 * the front.
4553 */
2ff7e61e
JM
4554void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4555 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4556{
b18c6685 4557 int slot;
5f39d397
CM
4558 struct extent_buffer *leaf;
4559 struct btrfs_item *item;
b18c6685
CM
4560 u32 nritems;
4561 unsigned int data_end;
4562 unsigned int old_data_start;
4563 unsigned int old_size;
4564 unsigned int size_diff;
4565 int i;
cfed81a0
CM
4566 struct btrfs_map_token token;
4567
4568 btrfs_init_map_token(&token);
b18c6685 4569
5f39d397 4570 leaf = path->nodes[0];
179e29e4
CM
4571 slot = path->slots[0];
4572
4573 old_size = btrfs_item_size_nr(leaf, slot);
4574 if (old_size == new_size)
143bede5 4575 return;
b18c6685 4576
5f39d397 4577 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4578 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4579
5f39d397 4580 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4581
b18c6685
CM
4582 size_diff = old_size - new_size;
4583
4584 BUG_ON(slot < 0);
4585 BUG_ON(slot >= nritems);
4586
4587 /*
4588 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4589 */
4590 /* first correct the data pointers */
4591 for (i = slot; i < nritems; i++) {
5f39d397 4592 u32 ioff;
dd3cc16b 4593 item = btrfs_item_nr(i);
db94535d 4594
cfed81a0
CM
4595 ioff = btrfs_token_item_offset(leaf, item, &token);
4596 btrfs_set_token_item_offset(leaf, item,
4597 ioff + size_diff, &token);
b18c6685 4598 }
db94535d 4599
b18c6685 4600 /* shift the data */
179e29e4 4601 if (from_end) {
3d9ec8c4
NB
4602 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4603 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4604 data_end, old_data_start + new_size - data_end);
4605 } else {
4606 struct btrfs_disk_key disk_key;
4607 u64 offset;
4608
4609 btrfs_item_key(leaf, &disk_key, slot);
4610
4611 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4612 unsigned long ptr;
4613 struct btrfs_file_extent_item *fi;
4614
4615 fi = btrfs_item_ptr(leaf, slot,
4616 struct btrfs_file_extent_item);
4617 fi = (struct btrfs_file_extent_item *)(
4618 (unsigned long)fi - size_diff);
4619
4620 if (btrfs_file_extent_type(leaf, fi) ==
4621 BTRFS_FILE_EXTENT_INLINE) {
4622 ptr = btrfs_item_ptr_offset(leaf, slot);
4623 memmove_extent_buffer(leaf, ptr,
d397712b 4624 (unsigned long)fi,
7ec20afb 4625 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4626 }
4627 }
4628
3d9ec8c4
NB
4629 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4630 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4631 data_end, old_data_start - data_end);
4632
4633 offset = btrfs_disk_key_offset(&disk_key);
4634 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4635 btrfs_set_item_key(leaf, &disk_key, slot);
4636 if (slot == 0)
0b246afa 4637 fixup_low_keys(fs_info, path, &disk_key, 1);
179e29e4 4638 }
5f39d397 4639
dd3cc16b 4640 item = btrfs_item_nr(slot);
5f39d397
CM
4641 btrfs_set_item_size(leaf, item, new_size);
4642 btrfs_mark_buffer_dirty(leaf);
b18c6685 4643
2ff7e61e 4644 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4645 btrfs_print_leaf(leaf);
b18c6685 4646 BUG();
5f39d397 4647 }
b18c6685
CM
4648}
4649
d352ac68 4650/*
8f69dbd2 4651 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4652 */
2ff7e61e 4653void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4654 u32 data_size)
6567e837 4655{
6567e837 4656 int slot;
5f39d397
CM
4657 struct extent_buffer *leaf;
4658 struct btrfs_item *item;
6567e837
CM
4659 u32 nritems;
4660 unsigned int data_end;
4661 unsigned int old_data;
4662 unsigned int old_size;
4663 int i;
cfed81a0
CM
4664 struct btrfs_map_token token;
4665
4666 btrfs_init_map_token(&token);
6567e837 4667
5f39d397 4668 leaf = path->nodes[0];
6567e837 4669
5f39d397 4670 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4671 data_end = leaf_data_end(fs_info, leaf);
6567e837 4672
2ff7e61e 4673 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
a4f78750 4674 btrfs_print_leaf(leaf);
6567e837 4675 BUG();
5f39d397 4676 }
6567e837 4677 slot = path->slots[0];
5f39d397 4678 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4679
4680 BUG_ON(slot < 0);
3326d1b0 4681 if (slot >= nritems) {
a4f78750 4682 btrfs_print_leaf(leaf);
0b246afa
JM
4683 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4684 slot, nritems);
3326d1b0
CM
4685 BUG_ON(1);
4686 }
6567e837
CM
4687
4688 /*
4689 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4690 */
4691 /* first correct the data pointers */
4692 for (i = slot; i < nritems; i++) {
5f39d397 4693 u32 ioff;
dd3cc16b 4694 item = btrfs_item_nr(i);
db94535d 4695
cfed81a0
CM
4696 ioff = btrfs_token_item_offset(leaf, item, &token);
4697 btrfs_set_token_item_offset(leaf, item,
4698 ioff - data_size, &token);
6567e837 4699 }
5f39d397 4700
6567e837 4701 /* shift the data */
3d9ec8c4
NB
4702 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4703 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4704 data_end, old_data - data_end);
5f39d397 4705
6567e837 4706 data_end = old_data;
5f39d397 4707 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4708 item = btrfs_item_nr(slot);
5f39d397
CM
4709 btrfs_set_item_size(leaf, item, old_size + data_size);
4710 btrfs_mark_buffer_dirty(leaf);
6567e837 4711
2ff7e61e 4712 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4713 btrfs_print_leaf(leaf);
6567e837 4714 BUG();
5f39d397 4715 }
6567e837
CM
4716}
4717
74123bd7 4718/*
44871b1b
CM
4719 * this is a helper for btrfs_insert_empty_items, the main goal here is
4720 * to save stack depth by doing the bulk of the work in a function
4721 * that doesn't call btrfs_search_slot
74123bd7 4722 */
afe5fea7 4723void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4724 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4725 u32 total_data, u32 total_size, int nr)
be0e5c09 4726{
0b246afa 4727 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4728 struct btrfs_item *item;
9c58309d 4729 int i;
7518a238 4730 u32 nritems;
be0e5c09 4731 unsigned int data_end;
e2fa7227 4732 struct btrfs_disk_key disk_key;
44871b1b
CM
4733 struct extent_buffer *leaf;
4734 int slot;
cfed81a0
CM
4735 struct btrfs_map_token token;
4736
24cdc847
FM
4737 if (path->slots[0] == 0) {
4738 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
0b246afa 4739 fixup_low_keys(fs_info, path, &disk_key, 1);
24cdc847
FM
4740 }
4741 btrfs_unlock_up_safe(path, 1);
4742
cfed81a0 4743 btrfs_init_map_token(&token);
e2fa7227 4744
5f39d397 4745 leaf = path->nodes[0];
44871b1b 4746 slot = path->slots[0];
74123bd7 4747
5f39d397 4748 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4749 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4750
2ff7e61e 4751 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
a4f78750 4752 btrfs_print_leaf(leaf);
0b246afa 4753 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4754 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4755 BUG();
d4dbff95 4756 }
5f39d397 4757
be0e5c09 4758 if (slot != nritems) {
5f39d397 4759 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4760
5f39d397 4761 if (old_data < data_end) {
a4f78750 4762 btrfs_print_leaf(leaf);
0b246afa 4763 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4764 slot, old_data, data_end);
5f39d397
CM
4765 BUG_ON(1);
4766 }
be0e5c09
CM
4767 /*
4768 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4769 */
4770 /* first correct the data pointers */
0783fcfc 4771 for (i = slot; i < nritems; i++) {
5f39d397 4772 u32 ioff;
db94535d 4773
62e85577 4774 item = btrfs_item_nr(i);
cfed81a0
CM
4775 ioff = btrfs_token_item_offset(leaf, item, &token);
4776 btrfs_set_token_item_offset(leaf, item,
4777 ioff - total_data, &token);
0783fcfc 4778 }
be0e5c09 4779 /* shift the items */
9c58309d 4780 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4781 btrfs_item_nr_offset(slot),
d6025579 4782 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4783
4784 /* shift the data */
3d9ec8c4
NB
4785 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4786 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4787 data_end, old_data - data_end);
be0e5c09
CM
4788 data_end = old_data;
4789 }
5f39d397 4790
62e2749e 4791 /* setup the item for the new data */
9c58309d
CM
4792 for (i = 0; i < nr; i++) {
4793 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4794 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4795 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4796 btrfs_set_token_item_offset(leaf, item,
4797 data_end - data_size[i], &token);
9c58309d 4798 data_end -= data_size[i];
cfed81a0 4799 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4800 }
44871b1b 4801
9c58309d 4802 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4803 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4804
2ff7e61e 4805 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4806 btrfs_print_leaf(leaf);
be0e5c09 4807 BUG();
5f39d397 4808 }
44871b1b
CM
4809}
4810
4811/*
4812 * Given a key and some data, insert items into the tree.
4813 * This does all the path init required, making room in the tree if needed.
4814 */
4815int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4816 struct btrfs_root *root,
4817 struct btrfs_path *path,
310712b2 4818 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4819 int nr)
4820{
44871b1b
CM
4821 int ret = 0;
4822 int slot;
4823 int i;
4824 u32 total_size = 0;
4825 u32 total_data = 0;
4826
4827 for (i = 0; i < nr; i++)
4828 total_data += data_size[i];
4829
4830 total_size = total_data + (nr * sizeof(struct btrfs_item));
4831 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4832 if (ret == 0)
4833 return -EEXIST;
4834 if (ret < 0)
143bede5 4835 return ret;
44871b1b 4836
44871b1b
CM
4837 slot = path->slots[0];
4838 BUG_ON(slot < 0);
4839
afe5fea7 4840 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4841 total_data, total_size, nr);
143bede5 4842 return 0;
62e2749e
CM
4843}
4844
4845/*
4846 * Given a key and some data, insert an item into the tree.
4847 * This does all the path init required, making room in the tree if needed.
4848 */
310712b2
OS
4849int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4850 const struct btrfs_key *cpu_key, void *data,
4851 u32 data_size)
62e2749e
CM
4852{
4853 int ret = 0;
2c90e5d6 4854 struct btrfs_path *path;
5f39d397
CM
4855 struct extent_buffer *leaf;
4856 unsigned long ptr;
62e2749e 4857
2c90e5d6 4858 path = btrfs_alloc_path();
db5b493a
TI
4859 if (!path)
4860 return -ENOMEM;
2c90e5d6 4861 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4862 if (!ret) {
5f39d397
CM
4863 leaf = path->nodes[0];
4864 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4865 write_extent_buffer(leaf, data, ptr, data_size);
4866 btrfs_mark_buffer_dirty(leaf);
62e2749e 4867 }
2c90e5d6 4868 btrfs_free_path(path);
aa5d6bed 4869 return ret;
be0e5c09
CM
4870}
4871
74123bd7 4872/*
5de08d7d 4873 * delete the pointer from a given node.
74123bd7 4874 *
d352ac68
CM
4875 * the tree should have been previously balanced so the deletion does not
4876 * empty a node.
74123bd7 4877 */
afe5fea7
TI
4878static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4879 int level, int slot)
be0e5c09 4880{
0b246afa 4881 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4882 struct extent_buffer *parent = path->nodes[level];
7518a238 4883 u32 nritems;
f3ea38da 4884 int ret;
be0e5c09 4885
5f39d397 4886 nritems = btrfs_header_nritems(parent);
d397712b 4887 if (slot != nritems - 1) {
bf1d3425
DS
4888 if (level) {
4889 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
a446a979 4890 nritems - slot - 1);
bf1d3425
DS
4891 BUG_ON(ret < 0);
4892 }
5f39d397
CM
4893 memmove_extent_buffer(parent,
4894 btrfs_node_key_ptr_offset(slot),
4895 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4896 sizeof(struct btrfs_key_ptr) *
4897 (nritems - slot - 1));
57ba86c0 4898 } else if (level) {
e09c2efe
DS
4899 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4900 GFP_NOFS);
57ba86c0 4901 BUG_ON(ret < 0);
bb803951 4902 }
f3ea38da 4903
7518a238 4904 nritems--;
5f39d397 4905 btrfs_set_header_nritems(parent, nritems);
7518a238 4906 if (nritems == 0 && parent == root->node) {
5f39d397 4907 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4908 /* just turn the root into a leaf and break */
5f39d397 4909 btrfs_set_header_level(root->node, 0);
bb803951 4910 } else if (slot == 0) {
5f39d397
CM
4911 struct btrfs_disk_key disk_key;
4912
4913 btrfs_node_key(parent, &disk_key, 0);
0b246afa 4914 fixup_low_keys(fs_info, path, &disk_key, level + 1);
be0e5c09 4915 }
d6025579 4916 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4917}
4918
323ac95b
CM
4919/*
4920 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4921 * path->nodes[1].
323ac95b
CM
4922 *
4923 * This deletes the pointer in path->nodes[1] and frees the leaf
4924 * block extent. zero is returned if it all worked out, < 0 otherwise.
4925 *
4926 * The path must have already been setup for deleting the leaf, including
4927 * all the proper balancing. path->nodes[1] must be locked.
4928 */
143bede5
JM
4929static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4930 struct btrfs_root *root,
4931 struct btrfs_path *path,
4932 struct extent_buffer *leaf)
323ac95b 4933{
5d4f98a2 4934 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4935 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4936
4d081c41
CM
4937 /*
4938 * btrfs_free_extent is expensive, we want to make sure we
4939 * aren't holding any locks when we call it
4940 */
4941 btrfs_unlock_up_safe(path, 0);
4942
f0486c68
YZ
4943 root_sub_used(root, leaf->len);
4944
3083ee2e 4945 extent_buffer_get(leaf);
5581a51a 4946 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4947 free_extent_buffer_stale(leaf);
323ac95b 4948}
74123bd7
CM
4949/*
4950 * delete the item at the leaf level in path. If that empties
4951 * the leaf, remove it from the tree
4952 */
85e21bac
CM
4953int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4954 struct btrfs_path *path, int slot, int nr)
be0e5c09 4955{
0b246afa 4956 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4957 struct extent_buffer *leaf;
4958 struct btrfs_item *item;
ce0eac2a
AM
4959 u32 last_off;
4960 u32 dsize = 0;
aa5d6bed
CM
4961 int ret = 0;
4962 int wret;
85e21bac 4963 int i;
7518a238 4964 u32 nritems;
cfed81a0
CM
4965 struct btrfs_map_token token;
4966
4967 btrfs_init_map_token(&token);
be0e5c09 4968
5f39d397 4969 leaf = path->nodes[0];
85e21bac
CM
4970 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4971
4972 for (i = 0; i < nr; i++)
4973 dsize += btrfs_item_size_nr(leaf, slot + i);
4974
5f39d397 4975 nritems = btrfs_header_nritems(leaf);
be0e5c09 4976
85e21bac 4977 if (slot + nr != nritems) {
2ff7e61e 4978 int data_end = leaf_data_end(fs_info, leaf);
5f39d397 4979
3d9ec8c4 4980 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 4981 data_end + dsize,
3d9ec8c4 4982 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 4983 last_off - data_end);
5f39d397 4984
85e21bac 4985 for (i = slot + nr; i < nritems; i++) {
5f39d397 4986 u32 ioff;
db94535d 4987
dd3cc16b 4988 item = btrfs_item_nr(i);
cfed81a0
CM
4989 ioff = btrfs_token_item_offset(leaf, item, &token);
4990 btrfs_set_token_item_offset(leaf, item,
4991 ioff + dsize, &token);
0783fcfc 4992 }
db94535d 4993
5f39d397 4994 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4995 btrfs_item_nr_offset(slot + nr),
d6025579 4996 sizeof(struct btrfs_item) *
85e21bac 4997 (nritems - slot - nr));
be0e5c09 4998 }
85e21bac
CM
4999 btrfs_set_header_nritems(leaf, nritems - nr);
5000 nritems -= nr;
5f39d397 5001
74123bd7 5002 /* delete the leaf if we've emptied it */
7518a238 5003 if (nritems == 0) {
5f39d397
CM
5004 if (leaf == root->node) {
5005 btrfs_set_header_level(leaf, 0);
9a8dd150 5006 } else {
f0486c68 5007 btrfs_set_path_blocking(path);
7c302b49 5008 clean_tree_block(fs_info, leaf);
143bede5 5009 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5010 }
be0e5c09 5011 } else {
7518a238 5012 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5013 if (slot == 0) {
5f39d397
CM
5014 struct btrfs_disk_key disk_key;
5015
5016 btrfs_item_key(leaf, &disk_key, 0);
0b246afa 5017 fixup_low_keys(fs_info, path, &disk_key, 1);
aa5d6bed 5018 }
aa5d6bed 5019
74123bd7 5020 /* delete the leaf if it is mostly empty */
0b246afa 5021 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
5022 /* push_leaf_left fixes the path.
5023 * make sure the path still points to our leaf
5024 * for possible call to del_ptr below
5025 */
4920c9ac 5026 slot = path->slots[1];
5f39d397
CM
5027 extent_buffer_get(leaf);
5028
b9473439 5029 btrfs_set_path_blocking(path);
99d8f83c
CM
5030 wret = push_leaf_left(trans, root, path, 1, 1,
5031 1, (u32)-1);
54aa1f4d 5032 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5033 ret = wret;
5f39d397
CM
5034
5035 if (path->nodes[0] == leaf &&
5036 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5037 wret = push_leaf_right(trans, root, path, 1,
5038 1, 1, 0);
54aa1f4d 5039 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5040 ret = wret;
5041 }
5f39d397
CM
5042
5043 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5044 path->slots[1] = slot;
143bede5 5045 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5046 free_extent_buffer(leaf);
143bede5 5047 ret = 0;
5de08d7d 5048 } else {
925baedd
CM
5049 /* if we're still in the path, make sure
5050 * we're dirty. Otherwise, one of the
5051 * push_leaf functions must have already
5052 * dirtied this buffer
5053 */
5054 if (path->nodes[0] == leaf)
5055 btrfs_mark_buffer_dirty(leaf);
5f39d397 5056 free_extent_buffer(leaf);
be0e5c09 5057 }
d5719762 5058 } else {
5f39d397 5059 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5060 }
5061 }
aa5d6bed 5062 return ret;
be0e5c09
CM
5063}
5064
7bb86316 5065/*
925baedd 5066 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5067 * returns 0 if it found something or 1 if there are no lesser leaves.
5068 * returns < 0 on io errors.
d352ac68
CM
5069 *
5070 * This may release the path, and so you may lose any locks held at the
5071 * time you call it.
7bb86316 5072 */
16e7549f 5073int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5074{
925baedd
CM
5075 struct btrfs_key key;
5076 struct btrfs_disk_key found_key;
5077 int ret;
7bb86316 5078
925baedd 5079 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5080
e8b0d724 5081 if (key.offset > 0) {
925baedd 5082 key.offset--;
e8b0d724 5083 } else if (key.type > 0) {
925baedd 5084 key.type--;
e8b0d724
FDBM
5085 key.offset = (u64)-1;
5086 } else if (key.objectid > 0) {
925baedd 5087 key.objectid--;
e8b0d724
FDBM
5088 key.type = (u8)-1;
5089 key.offset = (u64)-1;
5090 } else {
925baedd 5091 return 1;
e8b0d724 5092 }
7bb86316 5093
b3b4aa74 5094 btrfs_release_path(path);
925baedd
CM
5095 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5096 if (ret < 0)
5097 return ret;
5098 btrfs_item_key(path->nodes[0], &found_key, 0);
5099 ret = comp_keys(&found_key, &key);
337c6f68
FM
5100 /*
5101 * We might have had an item with the previous key in the tree right
5102 * before we released our path. And after we released our path, that
5103 * item might have been pushed to the first slot (0) of the leaf we
5104 * were holding due to a tree balance. Alternatively, an item with the
5105 * previous key can exist as the only element of a leaf (big fat item).
5106 * Therefore account for these 2 cases, so that our callers (like
5107 * btrfs_previous_item) don't miss an existing item with a key matching
5108 * the previous key we computed above.
5109 */
5110 if (ret <= 0)
925baedd
CM
5111 return 0;
5112 return 1;
7bb86316
CM
5113}
5114
3f157a2f
CM
5115/*
5116 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5117 * for nodes or leaves that are have a minimum transaction id.
5118 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5119 *
5120 * This does not cow, but it does stuff the starting key it finds back
5121 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5122 * key and get a writable path.
5123 *
3f157a2f
CM
5124 * This honors path->lowest_level to prevent descent past a given level
5125 * of the tree.
5126 *
d352ac68
CM
5127 * min_trans indicates the oldest transaction that you are interested
5128 * in walking through. Any nodes or leaves older than min_trans are
5129 * skipped over (without reading them).
5130 *
3f157a2f
CM
5131 * returns zero if something useful was found, < 0 on error and 1 if there
5132 * was nothing in the tree that matched the search criteria.
5133 */
5134int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5135 struct btrfs_path *path,
3f157a2f
CM
5136 u64 min_trans)
5137{
2ff7e61e 5138 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5139 struct extent_buffer *cur;
5140 struct btrfs_key found_key;
5141 int slot;
9652480b 5142 int sret;
3f157a2f
CM
5143 u32 nritems;
5144 int level;
5145 int ret = 1;
f98de9b9 5146 int keep_locks = path->keep_locks;
3f157a2f 5147
f98de9b9 5148 path->keep_locks = 1;
3f157a2f 5149again:
bd681513 5150 cur = btrfs_read_lock_root_node(root);
3f157a2f 5151 level = btrfs_header_level(cur);
e02119d5 5152 WARN_ON(path->nodes[level]);
3f157a2f 5153 path->nodes[level] = cur;
bd681513 5154 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5155
5156 if (btrfs_header_generation(cur) < min_trans) {
5157 ret = 1;
5158 goto out;
5159 }
d397712b 5160 while (1) {
3f157a2f
CM
5161 nritems = btrfs_header_nritems(cur);
5162 level = btrfs_header_level(cur);
a74b35ec 5163 sret = btrfs_bin_search(cur, min_key, level, &slot);
3f157a2f 5164
323ac95b
CM
5165 /* at the lowest level, we're done, setup the path and exit */
5166 if (level == path->lowest_level) {
e02119d5
CM
5167 if (slot >= nritems)
5168 goto find_next_key;
3f157a2f
CM
5169 ret = 0;
5170 path->slots[level] = slot;
5171 btrfs_item_key_to_cpu(cur, &found_key, slot);
5172 goto out;
5173 }
9652480b
Y
5174 if (sret && slot > 0)
5175 slot--;
3f157a2f 5176 /*
de78b51a
ES
5177 * check this node pointer against the min_trans parameters.
5178 * If it is too old, old, skip to the next one.
3f157a2f 5179 */
d397712b 5180 while (slot < nritems) {
3f157a2f 5181 u64 gen;
e02119d5 5182
3f157a2f
CM
5183 gen = btrfs_node_ptr_generation(cur, slot);
5184 if (gen < min_trans) {
5185 slot++;
5186 continue;
5187 }
de78b51a 5188 break;
3f157a2f 5189 }
e02119d5 5190find_next_key:
3f157a2f
CM
5191 /*
5192 * we didn't find a candidate key in this node, walk forward
5193 * and find another one
5194 */
5195 if (slot >= nritems) {
e02119d5 5196 path->slots[level] = slot;
b4ce94de 5197 btrfs_set_path_blocking(path);
e02119d5 5198 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5199 min_trans);
e02119d5 5200 if (sret == 0) {
b3b4aa74 5201 btrfs_release_path(path);
3f157a2f
CM
5202 goto again;
5203 } else {
5204 goto out;
5205 }
5206 }
5207 /* save our key for returning back */
5208 btrfs_node_key_to_cpu(cur, &found_key, slot);
5209 path->slots[level] = slot;
5210 if (level == path->lowest_level) {
5211 ret = 0;
3f157a2f
CM
5212 goto out;
5213 }
b4ce94de 5214 btrfs_set_path_blocking(path);
2ff7e61e 5215 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5216 if (IS_ERR(cur)) {
5217 ret = PTR_ERR(cur);
5218 goto out;
5219 }
3f157a2f 5220
bd681513 5221 btrfs_tree_read_lock(cur);
b4ce94de 5222
bd681513 5223 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5224 path->nodes[level - 1] = cur;
f7c79f30 5225 unlock_up(path, level, 1, 0, NULL);
bd681513 5226 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5227 }
5228out:
f98de9b9
FM
5229 path->keep_locks = keep_locks;
5230 if (ret == 0) {
5231 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5232 btrfs_set_path_blocking(path);
3f157a2f 5233 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5234 }
3f157a2f
CM
5235 return ret;
5236}
5237
2ff7e61e 5238static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a 5239 struct btrfs_path *path,
ab6a43e1 5240 int *level)
7069830a 5241{
fb770ae4
LB
5242 struct extent_buffer *eb;
5243
74dd17fb 5244 BUG_ON(*level == 0);
2ff7e61e 5245 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5246 if (IS_ERR(eb))
5247 return PTR_ERR(eb);
5248
5249 path->nodes[*level - 1] = eb;
7069830a
AB
5250 path->slots[*level - 1] = 0;
5251 (*level)--;
fb770ae4 5252 return 0;
7069830a
AB
5253}
5254
f1e30261 5255static int tree_move_next_or_upnext(struct btrfs_path *path,
7069830a
AB
5256 int *level, int root_level)
5257{
5258 int ret = 0;
5259 int nritems;
5260 nritems = btrfs_header_nritems(path->nodes[*level]);
5261
5262 path->slots[*level]++;
5263
74dd17fb 5264 while (path->slots[*level] >= nritems) {
7069830a
AB
5265 if (*level == root_level)
5266 return -1;
5267
5268 /* move upnext */
5269 path->slots[*level] = 0;
5270 free_extent_buffer(path->nodes[*level]);
5271 path->nodes[*level] = NULL;
5272 (*level)++;
5273 path->slots[*level]++;
5274
5275 nritems = btrfs_header_nritems(path->nodes[*level]);
5276 ret = 1;
5277 }
5278 return ret;
5279}
5280
5281/*
5282 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5283 * or down.
5284 */
2ff7e61e 5285static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5286 struct btrfs_path *path,
5287 int *level, int root_level,
5288 int allow_down,
5289 struct btrfs_key *key)
5290{
5291 int ret;
5292
5293 if (*level == 0 || !allow_down) {
f1e30261 5294 ret = tree_move_next_or_upnext(path, level, root_level);
7069830a 5295 } else {
ab6a43e1 5296 ret = tree_move_down(fs_info, path, level);
7069830a
AB
5297 }
5298 if (ret >= 0) {
5299 if (*level == 0)
5300 btrfs_item_key_to_cpu(path->nodes[*level], key,
5301 path->slots[*level]);
5302 else
5303 btrfs_node_key_to_cpu(path->nodes[*level], key,
5304 path->slots[*level]);
5305 }
5306 return ret;
5307}
5308
2ff7e61e 5309static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5310 struct btrfs_path *right_path,
5311 char *tmp_buf)
5312{
5313 int cmp;
5314 int len1, len2;
5315 unsigned long off1, off2;
5316
5317 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5318 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5319 if (len1 != len2)
5320 return 1;
5321
5322 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5323 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5324 right_path->slots[0]);
5325
5326 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5327
5328 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5329 if (cmp)
5330 return 1;
5331 return 0;
5332}
5333
5334#define ADVANCE 1
5335#define ADVANCE_ONLY_NEXT -1
5336
5337/*
5338 * This function compares two trees and calls the provided callback for
5339 * every changed/new/deleted item it finds.
5340 * If shared tree blocks are encountered, whole subtrees are skipped, making
5341 * the compare pretty fast on snapshotted subvolumes.
5342 *
5343 * This currently works on commit roots only. As commit roots are read only,
5344 * we don't do any locking. The commit roots are protected with transactions.
5345 * Transactions are ended and rejoined when a commit is tried in between.
5346 *
5347 * This function checks for modifications done to the trees while comparing.
5348 * If it detects a change, it aborts immediately.
5349 */
5350int btrfs_compare_trees(struct btrfs_root *left_root,
5351 struct btrfs_root *right_root,
5352 btrfs_changed_cb_t changed_cb, void *ctx)
5353{
0b246afa 5354 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5355 int ret;
5356 int cmp;
7069830a
AB
5357 struct btrfs_path *left_path = NULL;
5358 struct btrfs_path *right_path = NULL;
5359 struct btrfs_key left_key;
5360 struct btrfs_key right_key;
5361 char *tmp_buf = NULL;
5362 int left_root_level;
5363 int right_root_level;
5364 int left_level;
5365 int right_level;
5366 int left_end_reached;
5367 int right_end_reached;
5368 int advance_left;
5369 int advance_right;
5370 u64 left_blockptr;
5371 u64 right_blockptr;
6baa4293
FM
5372 u64 left_gen;
5373 u64 right_gen;
7069830a
AB
5374
5375 left_path = btrfs_alloc_path();
5376 if (!left_path) {
5377 ret = -ENOMEM;
5378 goto out;
5379 }
5380 right_path = btrfs_alloc_path();
5381 if (!right_path) {
5382 ret = -ENOMEM;
5383 goto out;
5384 }
5385
752ade68 5386 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7069830a 5387 if (!tmp_buf) {
752ade68
MH
5388 ret = -ENOMEM;
5389 goto out;
7069830a
AB
5390 }
5391
5392 left_path->search_commit_root = 1;
5393 left_path->skip_locking = 1;
5394 right_path->search_commit_root = 1;
5395 right_path->skip_locking = 1;
5396
7069830a
AB
5397 /*
5398 * Strategy: Go to the first items of both trees. Then do
5399 *
5400 * If both trees are at level 0
5401 * Compare keys of current items
5402 * If left < right treat left item as new, advance left tree
5403 * and repeat
5404 * If left > right treat right item as deleted, advance right tree
5405 * and repeat
5406 * If left == right do deep compare of items, treat as changed if
5407 * needed, advance both trees and repeat
5408 * If both trees are at the same level but not at level 0
5409 * Compare keys of current nodes/leafs
5410 * If left < right advance left tree and repeat
5411 * If left > right advance right tree and repeat
5412 * If left == right compare blockptrs of the next nodes/leafs
5413 * If they match advance both trees but stay at the same level
5414 * and repeat
5415 * If they don't match advance both trees while allowing to go
5416 * deeper and repeat
5417 * If tree levels are different
5418 * Advance the tree that needs it and repeat
5419 *
5420 * Advancing a tree means:
5421 * If we are at level 0, try to go to the next slot. If that's not
5422 * possible, go one level up and repeat. Stop when we found a level
5423 * where we could go to the next slot. We may at this point be on a
5424 * node or a leaf.
5425 *
5426 * If we are not at level 0 and not on shared tree blocks, go one
5427 * level deeper.
5428 *
5429 * If we are not at level 0 and on shared tree blocks, go one slot to
5430 * the right if possible or go up and right.
5431 */
5432
0b246afa 5433 down_read(&fs_info->commit_root_sem);
7069830a
AB
5434 left_level = btrfs_header_level(left_root->commit_root);
5435 left_root_level = left_level;
6f2f0b39
RK
5436 left_path->nodes[left_level] =
5437 btrfs_clone_extent_buffer(left_root->commit_root);
5438 if (!left_path->nodes[left_level]) {
5439 up_read(&fs_info->commit_root_sem);
5440 ret = -ENOMEM;
5441 goto out;
5442 }
7069830a
AB
5443 extent_buffer_get(left_path->nodes[left_level]);
5444
5445 right_level = btrfs_header_level(right_root->commit_root);
5446 right_root_level = right_level;
6f2f0b39
RK
5447 right_path->nodes[right_level] =
5448 btrfs_clone_extent_buffer(right_root->commit_root);
5449 if (!right_path->nodes[right_level]) {
5450 up_read(&fs_info->commit_root_sem);
5451 ret = -ENOMEM;
5452 goto out;
5453 }
7069830a 5454 extent_buffer_get(right_path->nodes[right_level]);
0b246afa 5455 up_read(&fs_info->commit_root_sem);
7069830a
AB
5456
5457 if (left_level == 0)
5458 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5459 &left_key, left_path->slots[left_level]);
5460 else
5461 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5462 &left_key, left_path->slots[left_level]);
5463 if (right_level == 0)
5464 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5465 &right_key, right_path->slots[right_level]);
5466 else
5467 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5468 &right_key, right_path->slots[right_level]);
5469
5470 left_end_reached = right_end_reached = 0;
5471 advance_left = advance_right = 0;
5472
5473 while (1) {
7069830a 5474 if (advance_left && !left_end_reached) {
2ff7e61e 5475 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5476 left_root_level,
5477 advance_left != ADVANCE_ONLY_NEXT,
5478 &left_key);
fb770ae4 5479 if (ret == -1)
7069830a 5480 left_end_reached = ADVANCE;
fb770ae4
LB
5481 else if (ret < 0)
5482 goto out;
7069830a
AB
5483 advance_left = 0;
5484 }
5485 if (advance_right && !right_end_reached) {
2ff7e61e 5486 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5487 right_root_level,
5488 advance_right != ADVANCE_ONLY_NEXT,
5489 &right_key);
fb770ae4 5490 if (ret == -1)
7069830a 5491 right_end_reached = ADVANCE;
fb770ae4
LB
5492 else if (ret < 0)
5493 goto out;
7069830a
AB
5494 advance_right = 0;
5495 }
5496
5497 if (left_end_reached && right_end_reached) {
5498 ret = 0;
5499 goto out;
5500 } else if (left_end_reached) {
5501 if (right_level == 0) {
ee8c494f 5502 ret = changed_cb(left_path, right_path,
7069830a
AB
5503 &right_key,
5504 BTRFS_COMPARE_TREE_DELETED,
5505 ctx);
5506 if (ret < 0)
5507 goto out;
5508 }
5509 advance_right = ADVANCE;
5510 continue;
5511 } else if (right_end_reached) {
5512 if (left_level == 0) {
ee8c494f 5513 ret = changed_cb(left_path, right_path,
7069830a
AB
5514 &left_key,
5515 BTRFS_COMPARE_TREE_NEW,
5516 ctx);
5517 if (ret < 0)
5518 goto out;
5519 }
5520 advance_left = ADVANCE;
5521 continue;
5522 }
5523
5524 if (left_level == 0 && right_level == 0) {
5525 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5526 if (cmp < 0) {
ee8c494f 5527 ret = changed_cb(left_path, right_path,
7069830a
AB
5528 &left_key,
5529 BTRFS_COMPARE_TREE_NEW,
5530 ctx);
5531 if (ret < 0)
5532 goto out;
5533 advance_left = ADVANCE;
5534 } else if (cmp > 0) {
ee8c494f 5535 ret = changed_cb(left_path, right_path,
7069830a
AB
5536 &right_key,
5537 BTRFS_COMPARE_TREE_DELETED,
5538 ctx);
5539 if (ret < 0)
5540 goto out;
5541 advance_right = ADVANCE;
5542 } else {
b99d9a6a 5543 enum btrfs_compare_tree_result result;
ba5e8f2e 5544
74dd17fb 5545 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5546 ret = tree_compare_item(left_path, right_path,
5547 tmp_buf);
ba5e8f2e 5548 if (ret)
b99d9a6a 5549 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5550 else
b99d9a6a 5551 result = BTRFS_COMPARE_TREE_SAME;
ee8c494f 5552 ret = changed_cb(left_path, right_path,
b99d9a6a 5553 &left_key, result, ctx);
ba5e8f2e
JB
5554 if (ret < 0)
5555 goto out;
7069830a
AB
5556 advance_left = ADVANCE;
5557 advance_right = ADVANCE;
5558 }
5559 } else if (left_level == right_level) {
5560 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5561 if (cmp < 0) {
5562 advance_left = ADVANCE;
5563 } else if (cmp > 0) {
5564 advance_right = ADVANCE;
5565 } else {
5566 left_blockptr = btrfs_node_blockptr(
5567 left_path->nodes[left_level],
5568 left_path->slots[left_level]);
5569 right_blockptr = btrfs_node_blockptr(
5570 right_path->nodes[right_level],
5571 right_path->slots[right_level]);
6baa4293
FM
5572 left_gen = btrfs_node_ptr_generation(
5573 left_path->nodes[left_level],
5574 left_path->slots[left_level]);
5575 right_gen = btrfs_node_ptr_generation(
5576 right_path->nodes[right_level],
5577 right_path->slots[right_level]);
5578 if (left_blockptr == right_blockptr &&
5579 left_gen == right_gen) {
7069830a
AB
5580 /*
5581 * As we're on a shared block, don't
5582 * allow to go deeper.
5583 */
5584 advance_left = ADVANCE_ONLY_NEXT;
5585 advance_right = ADVANCE_ONLY_NEXT;
5586 } else {
5587 advance_left = ADVANCE;
5588 advance_right = ADVANCE;
5589 }
5590 }
5591 } else if (left_level < right_level) {
5592 advance_right = ADVANCE;
5593 } else {
5594 advance_left = ADVANCE;
5595 }
5596 }
5597
5598out:
5599 btrfs_free_path(left_path);
5600 btrfs_free_path(right_path);
8f282f71 5601 kvfree(tmp_buf);
7069830a
AB
5602 return ret;
5603}
5604
3f157a2f
CM
5605/*
5606 * this is similar to btrfs_next_leaf, but does not try to preserve
5607 * and fixup the path. It looks for and returns the next key in the
de78b51a 5608 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5609 *
5610 * 0 is returned if another key is found, < 0 if there are any errors
5611 * and 1 is returned if there are no higher keys in the tree
5612 *
5613 * path->keep_locks should be set to 1 on the search made before
5614 * calling this function.
5615 */
e7a84565 5616int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5617 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5618{
e7a84565
CM
5619 int slot;
5620 struct extent_buffer *c;
5621
934d375b 5622 WARN_ON(!path->keep_locks);
d397712b 5623 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5624 if (!path->nodes[level])
5625 return 1;
5626
5627 slot = path->slots[level] + 1;
5628 c = path->nodes[level];
3f157a2f 5629next:
e7a84565 5630 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5631 int ret;
5632 int orig_lowest;
5633 struct btrfs_key cur_key;
5634 if (level + 1 >= BTRFS_MAX_LEVEL ||
5635 !path->nodes[level + 1])
e7a84565 5636 return 1;
33c66f43
YZ
5637
5638 if (path->locks[level + 1]) {
5639 level++;
5640 continue;
5641 }
5642
5643 slot = btrfs_header_nritems(c) - 1;
5644 if (level == 0)
5645 btrfs_item_key_to_cpu(c, &cur_key, slot);
5646 else
5647 btrfs_node_key_to_cpu(c, &cur_key, slot);
5648
5649 orig_lowest = path->lowest_level;
b3b4aa74 5650 btrfs_release_path(path);
33c66f43
YZ
5651 path->lowest_level = level;
5652 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5653 0, 0);
5654 path->lowest_level = orig_lowest;
5655 if (ret < 0)
5656 return ret;
5657
5658 c = path->nodes[level];
5659 slot = path->slots[level];
5660 if (ret == 0)
5661 slot++;
5662 goto next;
e7a84565 5663 }
33c66f43 5664
e7a84565
CM
5665 if (level == 0)
5666 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5667 else {
3f157a2f
CM
5668 u64 gen = btrfs_node_ptr_generation(c, slot);
5669
3f157a2f
CM
5670 if (gen < min_trans) {
5671 slot++;
5672 goto next;
5673 }
e7a84565 5674 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5675 }
e7a84565
CM
5676 return 0;
5677 }
5678 return 1;
5679}
5680
97571fd0 5681/*
925baedd 5682 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5683 * returns 0 if it found something or 1 if there are no greater leaves.
5684 * returns < 0 on io errors.
97571fd0 5685 */
234b63a0 5686int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5687{
5688 return btrfs_next_old_leaf(root, path, 0);
5689}
5690
5691int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5692 u64 time_seq)
d97e63b6
CM
5693{
5694 int slot;
8e73f275 5695 int level;
5f39d397 5696 struct extent_buffer *c;
8e73f275 5697 struct extent_buffer *next;
925baedd
CM
5698 struct btrfs_key key;
5699 u32 nritems;
5700 int ret;
8e73f275 5701 int old_spinning = path->leave_spinning;
bd681513 5702 int next_rw_lock = 0;
925baedd
CM
5703
5704 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5705 if (nritems == 0)
925baedd 5706 return 1;
925baedd 5707
8e73f275
CM
5708 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5709again:
5710 level = 1;
5711 next = NULL;
bd681513 5712 next_rw_lock = 0;
b3b4aa74 5713 btrfs_release_path(path);
8e73f275 5714
a2135011 5715 path->keep_locks = 1;
31533fb2 5716 path->leave_spinning = 1;
8e73f275 5717
3d7806ec
JS
5718 if (time_seq)
5719 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5720 else
5721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5722 path->keep_locks = 0;
5723
5724 if (ret < 0)
5725 return ret;
5726
a2135011 5727 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5728 /*
5729 * by releasing the path above we dropped all our locks. A balance
5730 * could have added more items next to the key that used to be
5731 * at the very end of the block. So, check again here and
5732 * advance the path if there are now more items available.
5733 */
a2135011 5734 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5735 if (ret == 0)
5736 path->slots[0]++;
8e73f275 5737 ret = 0;
925baedd
CM
5738 goto done;
5739 }
0b43e04f
LB
5740 /*
5741 * So the above check misses one case:
5742 * - after releasing the path above, someone has removed the item that
5743 * used to be at the very end of the block, and balance between leafs
5744 * gets another one with bigger key.offset to replace it.
5745 *
5746 * This one should be returned as well, or we can get leaf corruption
5747 * later(esp. in __btrfs_drop_extents()).
5748 *
5749 * And a bit more explanation about this check,
5750 * with ret > 0, the key isn't found, the path points to the slot
5751 * where it should be inserted, so the path->slots[0] item must be the
5752 * bigger one.
5753 */
5754 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5755 ret = 0;
5756 goto done;
5757 }
d97e63b6 5758
d397712b 5759 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5760 if (!path->nodes[level]) {
5761 ret = 1;
5762 goto done;
5763 }
5f39d397 5764
d97e63b6
CM
5765 slot = path->slots[level] + 1;
5766 c = path->nodes[level];
5f39d397 5767 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5768 level++;
8e73f275
CM
5769 if (level == BTRFS_MAX_LEVEL) {
5770 ret = 1;
5771 goto done;
5772 }
d97e63b6
CM
5773 continue;
5774 }
5f39d397 5775
925baedd 5776 if (next) {
bd681513 5777 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5778 free_extent_buffer(next);
925baedd 5779 }
5f39d397 5780
8e73f275 5781 next = c;
bd681513 5782 next_rw_lock = path->locks[level];
d07b8528 5783 ret = read_block_for_search(root, path, &next, level,
cda79c54 5784 slot, &key);
8e73f275
CM
5785 if (ret == -EAGAIN)
5786 goto again;
5f39d397 5787
76a05b35 5788 if (ret < 0) {
b3b4aa74 5789 btrfs_release_path(path);
76a05b35
CM
5790 goto done;
5791 }
5792
5cd57b2c 5793 if (!path->skip_locking) {
bd681513 5794 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5795 if (!ret && time_seq) {
5796 /*
5797 * If we don't get the lock, we may be racing
5798 * with push_leaf_left, holding that lock while
5799 * itself waiting for the leaf we've currently
5800 * locked. To solve this situation, we give up
5801 * on our lock and cycle.
5802 */
cf538830 5803 free_extent_buffer(next);
d42244a0
JS
5804 btrfs_release_path(path);
5805 cond_resched();
5806 goto again;
5807 }
8e73f275
CM
5808 if (!ret) {
5809 btrfs_set_path_blocking(path);
bd681513 5810 btrfs_tree_read_lock(next);
31533fb2 5811 btrfs_clear_path_blocking(path, next,
bd681513 5812 BTRFS_READ_LOCK);
8e73f275 5813 }
31533fb2 5814 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5815 }
d97e63b6
CM
5816 break;
5817 }
5818 path->slots[level] = slot;
d397712b 5819 while (1) {
d97e63b6
CM
5820 level--;
5821 c = path->nodes[level];
925baedd 5822 if (path->locks[level])
bd681513 5823 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5824
5f39d397 5825 free_extent_buffer(c);
d97e63b6
CM
5826 path->nodes[level] = next;
5827 path->slots[level] = 0;
a74a4b97 5828 if (!path->skip_locking)
bd681513 5829 path->locks[level] = next_rw_lock;
d97e63b6
CM
5830 if (!level)
5831 break;
b4ce94de 5832
d07b8528 5833 ret = read_block_for_search(root, path, &next, level,
cda79c54 5834 0, &key);
8e73f275
CM
5835 if (ret == -EAGAIN)
5836 goto again;
5837
76a05b35 5838 if (ret < 0) {
b3b4aa74 5839 btrfs_release_path(path);
76a05b35
CM
5840 goto done;
5841 }
5842
5cd57b2c 5843 if (!path->skip_locking) {
bd681513 5844 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5845 if (!ret) {
5846 btrfs_set_path_blocking(path);
bd681513 5847 btrfs_tree_read_lock(next);
31533fb2 5848 btrfs_clear_path_blocking(path, next,
bd681513
CM
5849 BTRFS_READ_LOCK);
5850 }
31533fb2 5851 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5852 }
d97e63b6 5853 }
8e73f275 5854 ret = 0;
925baedd 5855done:
f7c79f30 5856 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5857 path->leave_spinning = old_spinning;
5858 if (!old_spinning)
5859 btrfs_set_path_blocking(path);
5860
5861 return ret;
d97e63b6 5862}
0b86a832 5863
3f157a2f
CM
5864/*
5865 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5866 * searching until it gets past min_objectid or finds an item of 'type'
5867 *
5868 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5869 */
0b86a832
CM
5870int btrfs_previous_item(struct btrfs_root *root,
5871 struct btrfs_path *path, u64 min_objectid,
5872 int type)
5873{
5874 struct btrfs_key found_key;
5875 struct extent_buffer *leaf;
e02119d5 5876 u32 nritems;
0b86a832
CM
5877 int ret;
5878
d397712b 5879 while (1) {
0b86a832 5880 if (path->slots[0] == 0) {
b4ce94de 5881 btrfs_set_path_blocking(path);
0b86a832
CM
5882 ret = btrfs_prev_leaf(root, path);
5883 if (ret != 0)
5884 return ret;
5885 } else {
5886 path->slots[0]--;
5887 }
5888 leaf = path->nodes[0];
e02119d5
CM
5889 nritems = btrfs_header_nritems(leaf);
5890 if (nritems == 0)
5891 return 1;
5892 if (path->slots[0] == nritems)
5893 path->slots[0]--;
5894
0b86a832 5895 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5896 if (found_key.objectid < min_objectid)
5897 break;
0a4eefbb
YZ
5898 if (found_key.type == type)
5899 return 0;
e02119d5
CM
5900 if (found_key.objectid == min_objectid &&
5901 found_key.type < type)
5902 break;
0b86a832
CM
5903 }
5904 return 1;
5905}
ade2e0b3
WS
5906
5907/*
5908 * search in extent tree to find a previous Metadata/Data extent item with
5909 * min objecitd.
5910 *
5911 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5912 */
5913int btrfs_previous_extent_item(struct btrfs_root *root,
5914 struct btrfs_path *path, u64 min_objectid)
5915{
5916 struct btrfs_key found_key;
5917 struct extent_buffer *leaf;
5918 u32 nritems;
5919 int ret;
5920
5921 while (1) {
5922 if (path->slots[0] == 0) {
5923 btrfs_set_path_blocking(path);
5924 ret = btrfs_prev_leaf(root, path);
5925 if (ret != 0)
5926 return ret;
5927 } else {
5928 path->slots[0]--;
5929 }
5930 leaf = path->nodes[0];
5931 nritems = btrfs_header_nritems(leaf);
5932 if (nritems == 0)
5933 return 1;
5934 if (path->slots[0] == nritems)
5935 path->slots[0]--;
5936
5937 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5938 if (found_key.objectid < min_objectid)
5939 break;
5940 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5941 found_key.type == BTRFS_METADATA_ITEM_KEY)
5942 return 0;
5943 if (found_key.objectid == min_objectid &&
5944 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5945 break;
5946 }
5947 return 1;
5948}