]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/ctree.c
btrfs: heuristic: call get4bits directly
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
adf02123 22#include <linux/mm.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
7f5c1516 25#include "transaction.h"
5f39d397 26#include "print-tree.h"
925baedd 27#include "locking.h"
9a8dd150 28
e089f05c
CM
29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_path *path, int level);
310712b2
OS
31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 const struct btrfs_key *ins_key, struct btrfs_path *path,
33 int data_size, int extend);
5f39d397 34static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
35 struct btrfs_fs_info *fs_info,
36 struct extent_buffer *dst,
971a1f66 37 struct extent_buffer *src, int empty);
5f39d397 38static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 39 struct btrfs_fs_info *fs_info,
5f39d397
CM
40 struct extent_buffer *dst_buf,
41 struct extent_buffer *src_buf);
afe5fea7
TI
42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 int level, int slot);
5de865ee 44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
f230475e 45 struct extent_buffer *eb);
d97e63b6 46
df24a2b9 47struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 48{
e2c89907 49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
50}
51
b4ce94de
CM
52/*
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
55 */
56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57{
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
67 }
68}
69
70/*
71 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
72 *
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
b4ce94de 77 */
4008c04a 78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 79 struct extent_buffer *held, int held_rw)
b4ce94de
CM
80{
81 int i;
4008c04a 82
bd681513
CM
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
89 }
4008c04a 90 btrfs_set_path_blocking(p);
4008c04a
CM
91
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
99 }
b4ce94de 100 }
4008c04a 101
4008c04a 102 if (held)
bd681513 103 btrfs_clear_lock_blocking_rw(held, held_rw);
b4ce94de
CM
104}
105
d352ac68 106/* this also releases the path */
df24a2b9 107void btrfs_free_path(struct btrfs_path *p)
be0e5c09 108{
ff175d57
JJ
109 if (!p)
110 return;
b3b4aa74 111 btrfs_release_path(p);
df24a2b9 112 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
113}
114
d352ac68
CM
115/*
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
118 *
119 * It is safe to call this on paths that no locks or extent buffers held.
120 */
b3b4aa74 121noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
122{
123 int i;
a2135011 124
234b63a0 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 126 p->slots[i] = 0;
eb60ceac 127 if (!p->nodes[i])
925baedd
CM
128 continue;
129 if (p->locks[i]) {
bd681513 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
131 p->locks[i] = 0;
132 }
5f39d397 133 free_extent_buffer(p->nodes[i]);
3f157a2f 134 p->nodes[i] = NULL;
eb60ceac
CM
135 }
136}
137
d352ac68
CM
138/*
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
143 *
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
147 */
925baedd
CM
148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149{
150 struct extent_buffer *eb;
240f62c8 151
3083ee2e
JB
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
155
156 /*
157 * RCU really hurts here, we could free up the root node because
01327610 158 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
161 */
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
165 }
166 rcu_read_unlock();
167 synchronize_rcu();
168 }
925baedd
CM
169 return eb;
170}
171
d352ac68
CM
172/* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
175 */
925baedd
CM
176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177{
178 struct extent_buffer *eb;
179
d397712b 180 while (1) {
925baedd
CM
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
240f62c8 183 if (eb == root->node)
925baedd 184 break;
925baedd
CM
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
187 }
188 return eb;
189}
190
bd681513
CM
191/* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
194 */
84f7d8e6 195struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
196{
197 struct extent_buffer *eb;
198
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
206 }
207 return eb;
208}
209
d352ac68
CM
210/* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
213 */
0b86a832
CM
214static void add_root_to_dirty_list(struct btrfs_root *root)
215{
0b246afa
JM
216 struct btrfs_fs_info *fs_info = root->fs_info;
217
e7070be1
JB
218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
220 return;
221
0b246afa 222 spin_lock(&fs_info->trans_lock);
e7070be1
JB
223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
224 /* Want the extent tree to be the last on the list */
225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
226 list_move_tail(&root->dirty_list,
0b246afa 227 &fs_info->dirty_cowonly_roots);
e7070be1
JB
228 else
229 list_move(&root->dirty_list,
0b246afa 230 &fs_info->dirty_cowonly_roots);
0b86a832 231 }
0b246afa 232 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
233}
234
d352ac68
CM
235/*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
be20aa9d
CM
240int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244{
0b246afa 245 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 246 struct extent_buffer *cow;
be20aa9d
CM
247 int ret = 0;
248 int level;
5d4f98a2 249 struct btrfs_disk_key disk_key;
be20aa9d 250
27cdeb70 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 252 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
254 trans->transid != root->last_trans);
be20aa9d
CM
255
256 level = btrfs_header_level(buf);
5d4f98a2
YZ
257 if (level == 0)
258 btrfs_item_key(buf, &disk_key, 0);
259 else
260 btrfs_node_key(buf, &disk_key, 0);
31840ae1 261
4d75f8a9
DS
262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
263 &disk_key, level, buf->start, 0);
5d4f98a2 264 if (IS_ERR(cow))
be20aa9d
CM
265 return PTR_ERR(cow);
266
58e8012c 267 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
268 btrfs_set_header_bytenr(cow, cow->start);
269 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 BTRFS_HEADER_FLAG_RELOC);
273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 else
276 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 277
0b246afa 278 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 279
be20aa9d 280 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 282 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 283 else
e339a6b0 284 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 285
be20aa9d
CM
286 if (ret)
287 return ret;
288
289 btrfs_mark_buffer_dirty(cow);
290 *cow_ret = cow;
291 return 0;
292}
293
bd989ba3
JS
294enum mod_log_op {
295 MOD_LOG_KEY_REPLACE,
296 MOD_LOG_KEY_ADD,
297 MOD_LOG_KEY_REMOVE,
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_MOVE_KEYS,
301 MOD_LOG_ROOT_REPLACE,
302};
303
304struct tree_mod_move {
305 int dst_slot;
306 int nr_items;
307};
308
309struct tree_mod_root {
310 u64 logical;
311 u8 level;
312};
313
314struct tree_mod_elem {
315 struct rb_node node;
298cfd36 316 u64 logical;
097b8a7c 317 u64 seq;
bd989ba3
JS
318 enum mod_log_op op;
319
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 int slot;
322
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 u64 generation;
325
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key;
328 u64 blockptr;
329
330 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move;
332
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root;
335};
336
097b8a7c 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 338{
097b8a7c 339 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
340}
341
097b8a7c
JS
342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343{
344 read_unlock(&fs_info->tree_mod_log_lock);
345}
346
347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348{
349 write_lock(&fs_info->tree_mod_log_lock);
350}
351
352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353{
354 write_unlock(&fs_info->tree_mod_log_lock);
355}
356
fc36ed7e 357/*
fcebe456 358 * Pull a new tree mod seq number for our operation.
fc36ed7e 359 */
fcebe456 360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
361{
362 return atomic64_inc_return(&fs_info->tree_mod_seq);
363}
364
097b8a7c
JS
365/*
366 * This adds a new blocker to the tree mod log's blocker list if the @elem
367 * passed does not already have a sequence number set. So when a caller expects
368 * to record tree modifications, it should ensure to set elem->seq to zero
369 * before calling btrfs_get_tree_mod_seq.
370 * Returns a fresh, unused tree log modification sequence number, even if no new
371 * blocker was added.
372 */
373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374 struct seq_list *elem)
bd989ba3 375{
097b8a7c 376 tree_mod_log_write_lock(fs_info);
bd989ba3 377 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 378 if (!elem->seq) {
fcebe456 379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 }
bd989ba3 382 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
383 tree_mod_log_write_unlock(fs_info);
384
fcebe456 385 return elem->seq;
bd989ba3
JS
386}
387
388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389 struct seq_list *elem)
390{
391 struct rb_root *tm_root;
392 struct rb_node *node;
393 struct rb_node *next;
394 struct seq_list *cur_elem;
395 struct tree_mod_elem *tm;
396 u64 min_seq = (u64)-1;
397 u64 seq_putting = elem->seq;
398
399 if (!seq_putting)
400 return;
401
bd989ba3
JS
402 spin_lock(&fs_info->tree_mod_seq_lock);
403 list_del(&elem->list);
097b8a7c 404 elem->seq = 0;
bd989ba3
JS
405
406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 407 if (cur_elem->seq < min_seq) {
bd989ba3
JS
408 if (seq_putting > cur_elem->seq) {
409 /*
410 * blocker with lower sequence number exists, we
411 * cannot remove anything from the log
412 */
097b8a7c
JS
413 spin_unlock(&fs_info->tree_mod_seq_lock);
414 return;
bd989ba3
JS
415 }
416 min_seq = cur_elem->seq;
417 }
418 }
097b8a7c
JS
419 spin_unlock(&fs_info->tree_mod_seq_lock);
420
bd989ba3
JS
421 /*
422 * anything that's lower than the lowest existing (read: blocked)
423 * sequence number can be removed from the tree.
424 */
097b8a7c 425 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
426 tm_root = &fs_info->tree_mod_log;
427 for (node = rb_first(tm_root); node; node = next) {
428 next = rb_next(node);
6b4df8b6 429 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 430 if (tm->seq > min_seq)
bd989ba3
JS
431 continue;
432 rb_erase(node, tm_root);
bd989ba3
JS
433 kfree(tm);
434 }
097b8a7c 435 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
436}
437
438/*
439 * key order of the log:
298cfd36 440 * node/leaf start address -> sequence
bd989ba3 441 *
298cfd36
CR
442 * The 'start address' is the logical address of the *new* root node
443 * for root replace operations, or the logical address of the affected
444 * block for all other operations.
5de865ee
FDBM
445 *
446 * Note: must be called with write lock (tree_mod_log_write_lock).
bd989ba3
JS
447 */
448static noinline int
449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450{
451 struct rb_root *tm_root;
452 struct rb_node **new;
453 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur;
c8cc6341 455
fcebe456 456 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 457
bd989ba3
JS
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
6b4df8b6 461 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 462 parent = *new;
298cfd36 463 if (cur->logical < tm->logical)
bd989ba3 464 new = &((*new)->rb_left);
298cfd36 465 else if (cur->logical > tm->logical)
bd989ba3 466 new = &((*new)->rb_right);
097b8a7c 467 else if (cur->seq < tm->seq)
bd989ba3 468 new = &((*new)->rb_left);
097b8a7c 469 else if (cur->seq > tm->seq)
bd989ba3 470 new = &((*new)->rb_right);
5de865ee
FDBM
471 else
472 return -EEXIST;
bd989ba3
JS
473 }
474
475 rb_link_node(&tm->node, parent, new);
476 rb_insert_color(&tm->node, tm_root);
5de865ee 477 return 0;
bd989ba3
JS
478}
479
097b8a7c
JS
480/*
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
485 */
e9b7fd4d
JS
486static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 struct extent_buffer *eb) {
488 smp_mb();
489 if (list_empty(&(fs_info)->tree_mod_seq_list))
490 return 1;
097b8a7c
JS
491 if (eb && btrfs_header_level(eb) == 0)
492 return 1;
5de865ee
FDBM
493
494 tree_mod_log_write_lock(fs_info);
495 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 tree_mod_log_write_unlock(fs_info);
497 return 1;
498 }
499
e9b7fd4d
JS
500 return 0;
501}
502
5de865ee
FDBM
503/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 struct extent_buffer *eb)
506{
507 smp_mb();
508 if (list_empty(&(fs_info)->tree_mod_seq_list))
509 return 0;
510 if (eb && btrfs_header_level(eb) == 0)
511 return 0;
512
513 return 1;
514}
515
516static struct tree_mod_elem *
517alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
bd989ba3 519{
097b8a7c 520 struct tree_mod_elem *tm;
bd989ba3 521
c8cc6341
JB
522 tm = kzalloc(sizeof(*tm), flags);
523 if (!tm)
5de865ee 524 return NULL;
bd989ba3 525
298cfd36 526 tm->logical = eb->start;
bd989ba3
JS
527 if (op != MOD_LOG_KEY_ADD) {
528 btrfs_node_key(eb, &tm->key, slot);
529 tm->blockptr = btrfs_node_blockptr(eb, slot);
530 }
531 tm->op = op;
532 tm->slot = slot;
533 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 534 RB_CLEAR_NODE(&tm->node);
bd989ba3 535
5de865ee 536 return tm;
097b8a7c
JS
537}
538
539static noinline int
c8cc6341
JB
540tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb, int slot,
542 enum mod_log_op op, gfp_t flags)
097b8a7c 543{
5de865ee
FDBM
544 struct tree_mod_elem *tm;
545 int ret;
546
547 if (!tree_mod_need_log(fs_info, eb))
548 return 0;
549
550 tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 if (!tm)
552 return -ENOMEM;
553
554 if (tree_mod_dont_log(fs_info, eb)) {
555 kfree(tm);
097b8a7c 556 return 0;
5de865ee
FDBM
557 }
558
559 ret = __tree_mod_log_insert(fs_info, tm);
560 tree_mod_log_write_unlock(fs_info);
561 if (ret)
562 kfree(tm);
097b8a7c 563
5de865ee 564 return ret;
097b8a7c
JS
565}
566
bd989ba3
JS
567static noinline int
568tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int dst_slot, int src_slot,
176ef8f5 570 int nr_items)
bd989ba3 571{
5de865ee
FDBM
572 struct tree_mod_elem *tm = NULL;
573 struct tree_mod_elem **tm_list = NULL;
574 int ret = 0;
bd989ba3 575 int i;
5de865ee 576 int locked = 0;
bd989ba3 577
5de865ee 578 if (!tree_mod_need_log(fs_info, eb))
f395694c 579 return 0;
bd989ba3 580
176ef8f5 581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
582 if (!tm_list)
583 return -ENOMEM;
584
176ef8f5 585 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
586 if (!tm) {
587 ret = -ENOMEM;
588 goto free_tms;
589 }
590
298cfd36 591 tm->logical = eb->start;
5de865ee
FDBM
592 tm->slot = src_slot;
593 tm->move.dst_slot = dst_slot;
594 tm->move.nr_items = nr_items;
595 tm->op = MOD_LOG_MOVE_KEYS;
596
597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
600 if (!tm_list[i]) {
601 ret = -ENOMEM;
602 goto free_tms;
603 }
604 }
605
606 if (tree_mod_dont_log(fs_info, eb))
607 goto free_tms;
608 locked = 1;
609
01763a2e
JS
610 /*
611 * When we override something during the move, we log these removals.
612 * This can only happen when we move towards the beginning of the
613 * buffer, i.e. dst_slot < src_slot.
614 */
bd989ba3 615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
5de865ee
FDBM
616 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617 if (ret)
618 goto free_tms;
bd989ba3
JS
619 }
620
5de865ee
FDBM
621 ret = __tree_mod_log_insert(fs_info, tm);
622 if (ret)
623 goto free_tms;
624 tree_mod_log_write_unlock(fs_info);
625 kfree(tm_list);
f395694c 626
5de865ee
FDBM
627 return 0;
628free_tms:
629 for (i = 0; i < nr_items; i++) {
630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632 kfree(tm_list[i]);
633 }
634 if (locked)
635 tree_mod_log_write_unlock(fs_info);
636 kfree(tm_list);
637 kfree(tm);
bd989ba3 638
5de865ee 639 return ret;
bd989ba3
JS
640}
641
5de865ee
FDBM
642static inline int
643__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 struct tree_mod_elem **tm_list,
645 int nritems)
097b8a7c 646{
5de865ee 647 int i, j;
097b8a7c
JS
648 int ret;
649
097b8a7c 650 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
651 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652 if (ret) {
653 for (j = nritems - 1; j > i; j--)
654 rb_erase(&tm_list[j]->node,
655 &fs_info->tree_mod_log);
656 return ret;
657 }
097b8a7c 658 }
5de865ee
FDBM
659
660 return 0;
097b8a7c
JS
661}
662
bd989ba3
JS
663static noinline int
664tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 struct extent_buffer *old_root,
bcc8e07f 666 struct extent_buffer *new_root,
90f8d62e 667 int log_removal)
bd989ba3 668{
5de865ee
FDBM
669 struct tree_mod_elem *tm = NULL;
670 struct tree_mod_elem **tm_list = NULL;
671 int nritems = 0;
672 int ret = 0;
673 int i;
bd989ba3 674
5de865ee 675 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
676 return 0;
677
5de865ee
FDBM
678 if (log_removal && btrfs_header_level(old_root) > 0) {
679 nritems = btrfs_header_nritems(old_root);
31e818fe 680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 681 GFP_NOFS);
5de865ee
FDBM
682 if (!tm_list) {
683 ret = -ENOMEM;
684 goto free_tms;
685 }
686 for (i = 0; i < nritems; i++) {
687 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
689 if (!tm_list[i]) {
690 ret = -ENOMEM;
691 goto free_tms;
692 }
693 }
694 }
d9abbf1c 695
bcc8e07f 696 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
697 if (!tm) {
698 ret = -ENOMEM;
699 goto free_tms;
700 }
bd989ba3 701
298cfd36 702 tm->logical = new_root->start;
bd989ba3
JS
703 tm->old_root.logical = old_root->start;
704 tm->old_root.level = btrfs_header_level(old_root);
705 tm->generation = btrfs_header_generation(old_root);
706 tm->op = MOD_LOG_ROOT_REPLACE;
707
5de865ee
FDBM
708 if (tree_mod_dont_log(fs_info, NULL))
709 goto free_tms;
710
711 if (tm_list)
712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713 if (!ret)
714 ret = __tree_mod_log_insert(fs_info, tm);
715
716 tree_mod_log_write_unlock(fs_info);
717 if (ret)
718 goto free_tms;
719 kfree(tm_list);
720
721 return ret;
722
723free_tms:
724 if (tm_list) {
725 for (i = 0; i < nritems; i++)
726 kfree(tm_list[i]);
727 kfree(tm_list);
728 }
729 kfree(tm);
730
731 return ret;
bd989ba3
JS
732}
733
734static struct tree_mod_elem *
735__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 int smallest)
737{
738 struct rb_root *tm_root;
739 struct rb_node *node;
740 struct tree_mod_elem *cur = NULL;
741 struct tree_mod_elem *found = NULL;
bd989ba3 742
097b8a7c 743 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
744 tm_root = &fs_info->tree_mod_log;
745 node = tm_root->rb_node;
746 while (node) {
6b4df8b6 747 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 748 if (cur->logical < start) {
bd989ba3 749 node = node->rb_left;
298cfd36 750 } else if (cur->logical > start) {
bd989ba3 751 node = node->rb_right;
097b8a7c 752 } else if (cur->seq < min_seq) {
bd989ba3
JS
753 node = node->rb_left;
754 } else if (!smallest) {
755 /* we want the node with the highest seq */
756 if (found)
097b8a7c 757 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
758 found = cur;
759 node = node->rb_left;
097b8a7c 760 } else if (cur->seq > min_seq) {
bd989ba3
JS
761 /* we want the node with the smallest seq */
762 if (found)
097b8a7c 763 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
764 found = cur;
765 node = node->rb_right;
766 } else {
767 found = cur;
768 break;
769 }
770 }
097b8a7c 771 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
772
773 return found;
774}
775
776/*
777 * this returns the element from the log with the smallest time sequence
778 * value that's in the log (the oldest log item). any element with a time
779 * sequence lower than min_seq will be ignored.
780 */
781static struct tree_mod_elem *
782tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
783 u64 min_seq)
784{
785 return __tree_mod_log_search(fs_info, start, min_seq, 1);
786}
787
788/*
789 * this returns the element from the log with the largest time sequence
790 * value that's in the log (the most recent log item). any element with
791 * a time sequence lower than min_seq will be ignored.
792 */
793static struct tree_mod_elem *
794tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
795{
796 return __tree_mod_log_search(fs_info, start, min_seq, 0);
797}
798
5de865ee 799static noinline int
bd989ba3
JS
800tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
801 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 802 unsigned long src_offset, int nr_items)
bd989ba3 803{
5de865ee
FDBM
804 int ret = 0;
805 struct tree_mod_elem **tm_list = NULL;
806 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 807 int i;
5de865ee 808 int locked = 0;
bd989ba3 809
5de865ee
FDBM
810 if (!tree_mod_need_log(fs_info, NULL))
811 return 0;
bd989ba3 812
c8cc6341 813 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
814 return 0;
815
31e818fe 816 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
817 GFP_NOFS);
818 if (!tm_list)
819 return -ENOMEM;
bd989ba3 820
5de865ee
FDBM
821 tm_list_add = tm_list;
822 tm_list_rem = tm_list + nr_items;
bd989ba3 823 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
824 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
825 MOD_LOG_KEY_REMOVE, GFP_NOFS);
826 if (!tm_list_rem[i]) {
827 ret = -ENOMEM;
828 goto free_tms;
829 }
830
831 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
832 MOD_LOG_KEY_ADD, GFP_NOFS);
833 if (!tm_list_add[i]) {
834 ret = -ENOMEM;
835 goto free_tms;
836 }
837 }
838
839 if (tree_mod_dont_log(fs_info, NULL))
840 goto free_tms;
841 locked = 1;
842
843 for (i = 0; i < nr_items; i++) {
844 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
845 if (ret)
846 goto free_tms;
847 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
848 if (ret)
849 goto free_tms;
bd989ba3 850 }
5de865ee
FDBM
851
852 tree_mod_log_write_unlock(fs_info);
853 kfree(tm_list);
854
855 return 0;
856
857free_tms:
858 for (i = 0; i < nr_items * 2; i++) {
859 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
860 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
861 kfree(tm_list[i]);
862 }
863 if (locked)
864 tree_mod_log_write_unlock(fs_info);
865 kfree(tm_list);
866
867 return ret;
bd989ba3
JS
868}
869
870static inline void
871tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
872 int dst_offset, int src_offset, int nr_items)
873{
874 int ret;
875 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
176ef8f5 876 nr_items);
bd989ba3
JS
877 BUG_ON(ret < 0);
878}
879
097b8a7c 880static noinline void
bd989ba3 881tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 882 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
883{
884 int ret;
885
78357766 886 ret = tree_mod_log_insert_key(fs_info, eb, slot,
c8cc6341
JB
887 MOD_LOG_KEY_REPLACE,
888 atomic ? GFP_ATOMIC : GFP_NOFS);
bd989ba3
JS
889 BUG_ON(ret < 0);
890}
891
5de865ee 892static noinline int
097b8a7c 893tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 894{
5de865ee
FDBM
895 struct tree_mod_elem **tm_list = NULL;
896 int nritems = 0;
897 int i;
898 int ret = 0;
899
900 if (btrfs_header_level(eb) == 0)
901 return 0;
902
903 if (!tree_mod_need_log(fs_info, NULL))
904 return 0;
905
906 nritems = btrfs_header_nritems(eb);
31e818fe 907 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
908 if (!tm_list)
909 return -ENOMEM;
910
911 for (i = 0; i < nritems; i++) {
912 tm_list[i] = alloc_tree_mod_elem(eb, i,
913 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
914 if (!tm_list[i]) {
915 ret = -ENOMEM;
916 goto free_tms;
917 }
918 }
919
e9b7fd4d 920 if (tree_mod_dont_log(fs_info, eb))
5de865ee
FDBM
921 goto free_tms;
922
923 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
924 tree_mod_log_write_unlock(fs_info);
925 if (ret)
926 goto free_tms;
927 kfree(tm_list);
928
929 return 0;
930
931free_tms:
932 for (i = 0; i < nritems; i++)
933 kfree(tm_list[i]);
934 kfree(tm_list);
935
936 return ret;
bd989ba3
JS
937}
938
097b8a7c 939static noinline void
bd989ba3 940tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
941 struct extent_buffer *new_root_node,
942 int log_removal)
bd989ba3
JS
943{
944 int ret;
bd989ba3 945 ret = tree_mod_log_insert_root(root->fs_info, root->node,
bcc8e07f 946 new_root_node, log_removal);
bd989ba3
JS
947 BUG_ON(ret < 0);
948}
949
5d4f98a2
YZ
950/*
951 * check if the tree block can be shared by multiple trees
952 */
953int btrfs_block_can_be_shared(struct btrfs_root *root,
954 struct extent_buffer *buf)
955{
956 /*
01327610 957 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
958 * are never shared. If a block was allocated after the last
959 * snapshot and the block was not allocated by tree relocation,
960 * we know the block is not shared.
961 */
27cdeb70 962 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
963 buf != root->node && buf != root->commit_root &&
964 (btrfs_header_generation(buf) <=
965 btrfs_root_last_snapshot(&root->root_item) ||
966 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
967 return 1;
968#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 969 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
970 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
971 return 1;
972#endif
973 return 0;
974}
975
976static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
977 struct btrfs_root *root,
978 struct extent_buffer *buf,
f0486c68
YZ
979 struct extent_buffer *cow,
980 int *last_ref)
5d4f98a2 981{
0b246afa 982 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
988
989 /*
990 * Backrefs update rules:
991 *
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
994 *
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
998 *
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1004 */
1005
1006 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 1007 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
be1a5564
MF
1010 if (ret)
1011 return ret;
e5df9573
MF
1012 if (refs == 0) {
1013 ret = -EROFS;
0b246afa 1014 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
1015 return ret;
1016 }
5d4f98a2
YZ
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1024 }
1025
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 1034 ret = btrfs_inc_ref(trans, root, buf, 1);
692826b2
JM
1035 if (ret)
1036 return ret;
5d4f98a2
YZ
1037
1038 if (root->root_key.objectid ==
1039 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 1040 ret = btrfs_dec_ref(trans, root, buf, 0);
692826b2
JM
1041 if (ret)
1042 return ret;
e339a6b0 1043 ret = btrfs_inc_ref(trans, root, cow, 1);
692826b2
JM
1044 if (ret)
1045 return ret;
5d4f98a2
YZ
1046 }
1047 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1048 } else {
1049
1050 if (root->root_key.objectid ==
1051 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1052 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1053 else
e339a6b0 1054 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
1055 if (ret)
1056 return ret;
5d4f98a2
YZ
1057 }
1058 if (new_flags != 0) {
b1c79e09
JB
1059 int level = btrfs_header_level(buf);
1060
2ff7e61e 1061 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
1062 buf->start,
1063 buf->len,
b1c79e09 1064 new_flags, level, 0);
be1a5564
MF
1065 if (ret)
1066 return ret;
5d4f98a2
YZ
1067 }
1068 } else {
1069 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1070 if (root->root_key.objectid ==
1071 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 1072 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 1073 else
e339a6b0 1074 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
1075 if (ret)
1076 return ret;
e339a6b0 1077 ret = btrfs_dec_ref(trans, root, buf, 1);
692826b2
JM
1078 if (ret)
1079 return ret;
5d4f98a2 1080 }
7c302b49 1081 clean_tree_block(fs_info, buf);
f0486c68 1082 *last_ref = 1;
5d4f98a2
YZ
1083 }
1084 return 0;
1085}
1086
d352ac68 1087/*
d397712b
CM
1088 * does the dirty work in cow of a single block. The parent block (if
1089 * supplied) is updated to point to the new cow copy. The new buffer is marked
1090 * dirty and returned locked. If you modify the block it needs to be marked
1091 * dirty again.
d352ac68
CM
1092 *
1093 * search_start -- an allocation hint for the new block
1094 *
d397712b
CM
1095 * empty_size -- a hint that you plan on doing more cow. This is the size in
1096 * bytes the allocator should try to find free next to the block it returns.
1097 * This is just a hint and may be ignored by the allocator.
d352ac68 1098 */
d397712b 1099static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1100 struct btrfs_root *root,
1101 struct extent_buffer *buf,
1102 struct extent_buffer *parent, int parent_slot,
1103 struct extent_buffer **cow_ret,
9fa8cfe7 1104 u64 search_start, u64 empty_size)
02217ed2 1105{
0b246afa 1106 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 1107 struct btrfs_disk_key disk_key;
5f39d397 1108 struct extent_buffer *cow;
be1a5564 1109 int level, ret;
f0486c68 1110 int last_ref = 0;
925baedd 1111 int unlock_orig = 0;
0f5053eb 1112 u64 parent_start = 0;
7bb86316 1113
925baedd
CM
1114 if (*cow_ret == buf)
1115 unlock_orig = 1;
1116
b9447ef8 1117 btrfs_assert_tree_locked(buf);
925baedd 1118
27cdeb70 1119 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1120 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1121 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1122 trans->transid != root->last_trans);
5f39d397 1123
7bb86316 1124 level = btrfs_header_level(buf);
31840ae1 1125
5d4f98a2
YZ
1126 if (level == 0)
1127 btrfs_item_key(buf, &disk_key, 0);
1128 else
1129 btrfs_node_key(buf, &disk_key, 0);
1130
0f5053eb
GR
1131 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1132 parent_start = parent->start;
5d4f98a2 1133
4d75f8a9
DS
1134 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1135 root->root_key.objectid, &disk_key, level,
1136 search_start, empty_size);
54aa1f4d
CM
1137 if (IS_ERR(cow))
1138 return PTR_ERR(cow);
6702ed49 1139
b4ce94de
CM
1140 /* cow is set to blocking by btrfs_init_new_buffer */
1141
58e8012c 1142 copy_extent_buffer_full(cow, buf);
db94535d 1143 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1144 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1145 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1146 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1147 BTRFS_HEADER_FLAG_RELOC);
1148 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1149 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1150 else
1151 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1152
0b246afa 1153 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 1154
be1a5564 1155 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1156 if (ret) {
66642832 1157 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1158 return ret;
1159 }
1a40e23b 1160
27cdeb70 1161 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1162 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1163 if (ret) {
66642832 1164 btrfs_abort_transaction(trans, ret);
83d4cfd4 1165 return ret;
93314e3b 1166 }
83d4cfd4 1167 }
3fd0a558 1168
02217ed2 1169 if (buf == root->node) {
925baedd 1170 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1171 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1172 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1173 parent_start = buf->start;
925baedd 1174
5f39d397 1175 extent_buffer_get(cow);
90f8d62e 1176 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1177 rcu_assign_pointer(root->node, cow);
925baedd 1178
f0486c68 1179 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1180 last_ref);
5f39d397 1181 free_extent_buffer(buf);
0b86a832 1182 add_root_to_dirty_list(root);
02217ed2 1183 } else {
5d4f98a2 1184 WARN_ON(trans->transid != btrfs_header_generation(parent));
0b246afa 1185 tree_mod_log_insert_key(fs_info, parent, parent_slot,
c8cc6341 1186 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1187 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1188 cow->start);
74493f7a
CM
1189 btrfs_set_node_ptr_generation(parent, parent_slot,
1190 trans->transid);
d6025579 1191 btrfs_mark_buffer_dirty(parent);
5de865ee 1192 if (last_ref) {
0b246afa 1193 ret = tree_mod_log_free_eb(fs_info, buf);
5de865ee 1194 if (ret) {
66642832 1195 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1196 return ret;
1197 }
1198 }
f0486c68 1199 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1200 last_ref);
02217ed2 1201 }
925baedd
CM
1202 if (unlock_orig)
1203 btrfs_tree_unlock(buf);
3083ee2e 1204 free_extent_buffer_stale(buf);
ccd467d6 1205 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1206 *cow_ret = cow;
02217ed2
CM
1207 return 0;
1208}
1209
5d9e75c4
JS
1210/*
1211 * returns the logical address of the oldest predecessor of the given root.
1212 * entries older than time_seq are ignored.
1213 */
1214static struct tree_mod_elem *
1215__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
30b0463a 1216 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1217{
1218 struct tree_mod_elem *tm;
1219 struct tree_mod_elem *found = NULL;
30b0463a 1220 u64 root_logical = eb_root->start;
5d9e75c4
JS
1221 int looped = 0;
1222
1223 if (!time_seq)
35a3621b 1224 return NULL;
5d9e75c4
JS
1225
1226 /*
298cfd36
CR
1227 * the very last operation that's logged for a root is the
1228 * replacement operation (if it is replaced at all). this has
1229 * the logical address of the *new* root, making it the very
1230 * first operation that's logged for this root.
5d9e75c4
JS
1231 */
1232 while (1) {
1233 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1234 time_seq);
1235 if (!looped && !tm)
35a3621b 1236 return NULL;
5d9e75c4 1237 /*
28da9fb4
JS
1238 * if there are no tree operation for the oldest root, we simply
1239 * return it. this should only happen if that (old) root is at
1240 * level 0.
5d9e75c4 1241 */
28da9fb4
JS
1242 if (!tm)
1243 break;
5d9e75c4 1244
28da9fb4
JS
1245 /*
1246 * if there's an operation that's not a root replacement, we
1247 * found the oldest version of our root. normally, we'll find a
1248 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1249 */
5d9e75c4
JS
1250 if (tm->op != MOD_LOG_ROOT_REPLACE)
1251 break;
1252
1253 found = tm;
1254 root_logical = tm->old_root.logical;
5d9e75c4
JS
1255 looped = 1;
1256 }
1257
a95236d9
JS
1258 /* if there's no old root to return, return what we found instead */
1259 if (!found)
1260 found = tm;
1261
5d9e75c4
JS
1262 return found;
1263}
1264
1265/*
1266 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1267 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1268 * time_seq).
1269 */
1270static void
f1ca7e98
JB
1271__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1272 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1273{
1274 u32 n;
1275 struct rb_node *next;
1276 struct tree_mod_elem *tm = first_tm;
1277 unsigned long o_dst;
1278 unsigned long o_src;
1279 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1280
1281 n = btrfs_header_nritems(eb);
f1ca7e98 1282 tree_mod_log_read_lock(fs_info);
097b8a7c 1283 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1284 /*
1285 * all the operations are recorded with the operator used for
1286 * the modification. as we're going backwards, we do the
1287 * opposite of each operation here.
1288 */
1289 switch (tm->op) {
1290 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1291 BUG_ON(tm->slot < n);
1c697d4a 1292 /* Fallthrough */
95c80bb1 1293 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1294 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1295 btrfs_set_node_key(eb, &tm->key, tm->slot);
1296 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1297 btrfs_set_node_ptr_generation(eb, tm->slot,
1298 tm->generation);
4c3e6969 1299 n++;
5d9e75c4
JS
1300 break;
1301 case MOD_LOG_KEY_REPLACE:
1302 BUG_ON(tm->slot >= n);
1303 btrfs_set_node_key(eb, &tm->key, tm->slot);
1304 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1305 btrfs_set_node_ptr_generation(eb, tm->slot,
1306 tm->generation);
1307 break;
1308 case MOD_LOG_KEY_ADD:
19956c7e 1309 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1310 n--;
1311 break;
1312 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1313 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1314 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1315 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1316 tm->move.nr_items * p_size);
1317 break;
1318 case MOD_LOG_ROOT_REPLACE:
1319 /*
1320 * this operation is special. for roots, this must be
1321 * handled explicitly before rewinding.
1322 * for non-roots, this operation may exist if the node
1323 * was a root: root A -> child B; then A gets empty and
1324 * B is promoted to the new root. in the mod log, we'll
1325 * have a root-replace operation for B, a tree block
1326 * that is no root. we simply ignore that operation.
1327 */
1328 break;
1329 }
1330 next = rb_next(&tm->node);
1331 if (!next)
1332 break;
6b4df8b6 1333 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1334 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1335 break;
1336 }
f1ca7e98 1337 tree_mod_log_read_unlock(fs_info);
5d9e75c4
JS
1338 btrfs_set_header_nritems(eb, n);
1339}
1340
47fb091f 1341/*
01327610 1342 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1343 * is returned. If rewind operations happen, a fresh buffer is returned. The
1344 * returned buffer is always read-locked. If the returned buffer is not the
1345 * input buffer, the lock on the input buffer is released and the input buffer
1346 * is freed (its refcount is decremented).
1347 */
5d9e75c4 1348static struct extent_buffer *
9ec72677
JB
1349tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1350 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1351{
1352 struct extent_buffer *eb_rewin;
1353 struct tree_mod_elem *tm;
1354
1355 if (!time_seq)
1356 return eb;
1357
1358 if (btrfs_header_level(eb) == 0)
1359 return eb;
1360
1361 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1362 if (!tm)
1363 return eb;
1364
9ec72677
JB
1365 btrfs_set_path_blocking(path);
1366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1367
5d9e75c4
JS
1368 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1369 BUG_ON(tm->slot != 0);
da17066c 1370 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1371 if (!eb_rewin) {
9ec72677 1372 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1373 free_extent_buffer(eb);
1374 return NULL;
1375 }
5d9e75c4
JS
1376 btrfs_set_header_bytenr(eb_rewin, eb->start);
1377 btrfs_set_header_backref_rev(eb_rewin,
1378 btrfs_header_backref_rev(eb));
1379 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1380 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1381 } else {
1382 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1383 if (!eb_rewin) {
9ec72677 1384 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1385 free_extent_buffer(eb);
1386 return NULL;
1387 }
5d9e75c4
JS
1388 }
1389
9ec72677
JB
1390 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1391 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1392 free_extent_buffer(eb);
1393
47fb091f
JS
1394 extent_buffer_get(eb_rewin);
1395 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1396 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1397 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1398 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1399
1400 return eb_rewin;
1401}
1402
8ba97a15
JS
1403/*
1404 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1405 * value. If there are no changes, the current root->root_node is returned. If
1406 * anything changed in between, there's a fresh buffer allocated on which the
1407 * rewind operations are done. In any case, the returned buffer is read locked.
1408 * Returns NULL on error (with no locks held).
1409 */
5d9e75c4
JS
1410static inline struct extent_buffer *
1411get_old_root(struct btrfs_root *root, u64 time_seq)
1412{
0b246afa 1413 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1414 struct tree_mod_elem *tm;
30b0463a
JS
1415 struct extent_buffer *eb = NULL;
1416 struct extent_buffer *eb_root;
7bfdcf7f 1417 struct extent_buffer *old;
a95236d9 1418 struct tree_mod_root *old_root = NULL;
4325edd0 1419 u64 old_generation = 0;
a95236d9 1420 u64 logical;
5d9e75c4 1421
30b0463a 1422 eb_root = btrfs_read_lock_root_node(root);
0b246afa 1423 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
5d9e75c4 1424 if (!tm)
30b0463a 1425 return eb_root;
5d9e75c4 1426
a95236d9
JS
1427 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1428 old_root = &tm->old_root;
1429 old_generation = tm->generation;
1430 logical = old_root->logical;
1431 } else {
30b0463a 1432 logical = eb_root->start;
a95236d9 1433 }
5d9e75c4 1434
0b246afa 1435 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1436 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1437 btrfs_tree_read_unlock(eb_root);
1438 free_extent_buffer(eb_root);
2ff7e61e 1439 old = read_tree_block(fs_info, logical, 0);
64c043de
LB
1440 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1441 if (!IS_ERR(old))
1442 free_extent_buffer(old);
0b246afa
JM
1443 btrfs_warn(fs_info,
1444 "failed to read tree block %llu from get_old_root",
1445 logical);
834328a8 1446 } else {
7bfdcf7f
LB
1447 eb = btrfs_clone_extent_buffer(old);
1448 free_extent_buffer(old);
834328a8
JS
1449 }
1450 } else if (old_root) {
30b0463a
JS
1451 btrfs_tree_read_unlock(eb_root);
1452 free_extent_buffer(eb_root);
0b246afa 1453 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1454 } else {
9ec72677 1455 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1456 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1457 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1458 free_extent_buffer(eb_root);
834328a8
JS
1459 }
1460
8ba97a15
JS
1461 if (!eb)
1462 return NULL;
d6381084 1463 extent_buffer_get(eb);
8ba97a15 1464 btrfs_tree_read_lock(eb);
a95236d9 1465 if (old_root) {
5d9e75c4
JS
1466 btrfs_set_header_bytenr(eb, eb->start);
1467 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1468 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1469 btrfs_set_header_level(eb, old_root->level);
1470 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1471 }
28da9fb4 1472 if (tm)
0b246afa 1473 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1474 else
1475 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1476 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1477
1478 return eb;
1479}
1480
5b6602e7
JS
1481int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1482{
1483 struct tree_mod_elem *tm;
1484 int level;
30b0463a 1485 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1486
30b0463a 1487 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5b6602e7
JS
1488 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1489 level = tm->old_root.level;
1490 } else {
30b0463a 1491 level = btrfs_header_level(eb_root);
5b6602e7 1492 }
30b0463a 1493 free_extent_buffer(eb_root);
5b6602e7
JS
1494
1495 return level;
1496}
1497
5d4f98a2
YZ
1498static inline int should_cow_block(struct btrfs_trans_handle *trans,
1499 struct btrfs_root *root,
1500 struct extent_buffer *buf)
1501{
f5ee5c9a 1502 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1503 return 0;
fccb84c9 1504
f1ebcc74
LB
1505 /* ensure we can see the force_cow */
1506 smp_rmb();
1507
1508 /*
1509 * We do not need to cow a block if
1510 * 1) this block is not created or changed in this transaction;
1511 * 2) this block does not belong to TREE_RELOC tree;
1512 * 3) the root is not forced COW.
1513 *
1514 * What is forced COW:
01327610 1515 * when we create snapshot during committing the transaction,
f1ebcc74
LB
1516 * after we've finished coping src root, we must COW the shared
1517 * block to ensure the metadata consistency.
1518 */
5d4f98a2
YZ
1519 if (btrfs_header_generation(buf) == trans->transid &&
1520 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1521 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1522 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1523 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1524 return 0;
1525 return 1;
1526}
1527
d352ac68
CM
1528/*
1529 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1530 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1531 * once per transaction, as long as it hasn't been written yet
1532 */
d397712b 1533noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1534 struct btrfs_root *root, struct extent_buffer *buf,
1535 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1536 struct extent_buffer **cow_ret)
6702ed49 1537{
0b246afa 1538 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1539 u64 search_start;
f510cfec 1540 int ret;
dc17ff8f 1541
0b246afa 1542 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1543 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1544 trans->transid,
0b246afa 1545 fs_info->running_transaction->transid);
31b1a2bd 1546
0b246afa 1547 if (trans->transid != fs_info->generation)
31b1a2bd 1548 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1549 trans->transid, fs_info->generation);
dc17ff8f 1550
5d4f98a2 1551 if (!should_cow_block(trans, root, buf)) {
64c12921 1552 trans->dirty = true;
6702ed49
CM
1553 *cow_ret = buf;
1554 return 0;
1555 }
c487685d 1556
ee22184b 1557 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1558
1559 if (parent)
1560 btrfs_set_lock_blocking(parent);
1561 btrfs_set_lock_blocking(buf);
1562
f510cfec 1563 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1564 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1565
1566 trace_btrfs_cow_block(root, buf, *cow_ret);
1567
f510cfec 1568 return ret;
6702ed49
CM
1569}
1570
d352ac68
CM
1571/*
1572 * helper function for defrag to decide if two blocks pointed to by a
1573 * node are actually close by
1574 */
6b80053d 1575static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1576{
6b80053d 1577 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1578 return 1;
6b80053d 1579 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1580 return 1;
1581 return 0;
1582}
1583
081e9573
CM
1584/*
1585 * compare two keys in a memcmp fashion
1586 */
310712b2
OS
1587static int comp_keys(const struct btrfs_disk_key *disk,
1588 const struct btrfs_key *k2)
081e9573
CM
1589{
1590 struct btrfs_key k1;
1591
1592 btrfs_disk_key_to_cpu(&k1, disk);
1593
20736aba 1594 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1595}
1596
f3465ca4
JB
1597/*
1598 * same as comp_keys only with two btrfs_key's
1599 */
310712b2 1600int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1601{
1602 if (k1->objectid > k2->objectid)
1603 return 1;
1604 if (k1->objectid < k2->objectid)
1605 return -1;
1606 if (k1->type > k2->type)
1607 return 1;
1608 if (k1->type < k2->type)
1609 return -1;
1610 if (k1->offset > k2->offset)
1611 return 1;
1612 if (k1->offset < k2->offset)
1613 return -1;
1614 return 0;
1615}
081e9573 1616
d352ac68
CM
1617/*
1618 * this is used by the defrag code to go through all the
1619 * leaves pointed to by a node and reallocate them so that
1620 * disk order is close to key order
1621 */
6702ed49 1622int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1623 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1624 int start_slot, u64 *last_ret,
a6b6e75e 1625 struct btrfs_key *progress)
6702ed49 1626{
0b246afa 1627 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1628 struct extent_buffer *cur;
6702ed49 1629 u64 blocknr;
ca7a79ad 1630 u64 gen;
e9d0b13b
CM
1631 u64 search_start = *last_ret;
1632 u64 last_block = 0;
6702ed49
CM
1633 u64 other;
1634 u32 parent_nritems;
6702ed49
CM
1635 int end_slot;
1636 int i;
1637 int err = 0;
f2183bde 1638 int parent_level;
6b80053d
CM
1639 int uptodate;
1640 u32 blocksize;
081e9573
CM
1641 int progress_passed = 0;
1642 struct btrfs_disk_key disk_key;
6702ed49 1643
5708b959 1644 parent_level = btrfs_header_level(parent);
5708b959 1645
0b246afa
JM
1646 WARN_ON(trans->transaction != fs_info->running_transaction);
1647 WARN_ON(trans->transid != fs_info->generation);
86479a04 1648
6b80053d 1649 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1650 blocksize = fs_info->nodesize;
5dfe2be7 1651 end_slot = parent_nritems - 1;
6702ed49 1652
5dfe2be7 1653 if (parent_nritems <= 1)
6702ed49
CM
1654 return 0;
1655
b4ce94de
CM
1656 btrfs_set_lock_blocking(parent);
1657
5dfe2be7 1658 for (i = start_slot; i <= end_slot; i++) {
6702ed49 1659 int close = 1;
a6b6e75e 1660
081e9573
CM
1661 btrfs_node_key(parent, &disk_key, i);
1662 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1663 continue;
1664
1665 progress_passed = 1;
6b80053d 1666 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1667 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1668 if (last_block == 0)
1669 last_block = blocknr;
5708b959 1670
6702ed49 1671 if (i > 0) {
6b80053d
CM
1672 other = btrfs_node_blockptr(parent, i - 1);
1673 close = close_blocks(blocknr, other, blocksize);
6702ed49 1674 }
5dfe2be7 1675 if (!close && i < end_slot) {
6b80053d
CM
1676 other = btrfs_node_blockptr(parent, i + 1);
1677 close = close_blocks(blocknr, other, blocksize);
6702ed49 1678 }
e9d0b13b
CM
1679 if (close) {
1680 last_block = blocknr;
6702ed49 1681 continue;
e9d0b13b 1682 }
6702ed49 1683
0b246afa 1684 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1685 if (cur)
b9fab919 1686 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1687 else
1688 uptodate = 0;
5708b959 1689 if (!cur || !uptodate) {
6b80053d 1690 if (!cur) {
2ff7e61e 1691 cur = read_tree_block(fs_info, blocknr, gen);
64c043de
LB
1692 if (IS_ERR(cur)) {
1693 return PTR_ERR(cur);
1694 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1695 free_extent_buffer(cur);
97d9a8a4 1696 return -EIO;
416bc658 1697 }
6b80053d 1698 } else if (!uptodate) {
018642a1
TI
1699 err = btrfs_read_buffer(cur, gen);
1700 if (err) {
1701 free_extent_buffer(cur);
1702 return err;
1703 }
f2183bde 1704 }
6702ed49 1705 }
e9d0b13b 1706 if (search_start == 0)
6b80053d 1707 search_start = last_block;
e9d0b13b 1708
e7a84565 1709 btrfs_tree_lock(cur);
b4ce94de 1710 btrfs_set_lock_blocking(cur);
6b80053d 1711 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1712 &cur, search_start,
6b80053d 1713 min(16 * blocksize,
9fa8cfe7 1714 (end_slot - i) * blocksize));
252c38f0 1715 if (err) {
e7a84565 1716 btrfs_tree_unlock(cur);
6b80053d 1717 free_extent_buffer(cur);
6702ed49 1718 break;
252c38f0 1719 }
e7a84565
CM
1720 search_start = cur->start;
1721 last_block = cur->start;
f2183bde 1722 *last_ret = search_start;
e7a84565
CM
1723 btrfs_tree_unlock(cur);
1724 free_extent_buffer(cur);
6702ed49
CM
1725 }
1726 return err;
1727}
1728
74123bd7 1729/*
5f39d397
CM
1730 * search for key in the extent_buffer. The items start at offset p,
1731 * and they are item_size apart. There are 'max' items in p.
1732 *
74123bd7
CM
1733 * the slot in the array is returned via slot, and it points to
1734 * the place where you would insert key if it is not found in
1735 * the array.
1736 *
1737 * slot may point to max if the key is bigger than all of the keys
1738 */
e02119d5 1739static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1740 unsigned long p, int item_size,
1741 const struct btrfs_key *key,
e02119d5 1742 int max, int *slot)
be0e5c09
CM
1743{
1744 int low = 0;
1745 int high = max;
1746 int mid;
1747 int ret;
479965d6 1748 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1749 struct btrfs_disk_key unaligned;
1750 unsigned long offset;
5f39d397
CM
1751 char *kaddr = NULL;
1752 unsigned long map_start = 0;
1753 unsigned long map_len = 0;
479965d6 1754 int err;
be0e5c09 1755
5e24e9af
LB
1756 if (low > high) {
1757 btrfs_err(eb->fs_info,
1758 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1759 __func__, low, high, eb->start,
1760 btrfs_header_owner(eb), btrfs_header_level(eb));
1761 return -EINVAL;
1762 }
1763
d397712b 1764 while (low < high) {
be0e5c09 1765 mid = (low + high) / 2;
5f39d397
CM
1766 offset = p + mid * item_size;
1767
a6591715 1768 if (!kaddr || offset < map_start ||
5f39d397
CM
1769 (offset + sizeof(struct btrfs_disk_key)) >
1770 map_start + map_len) {
934d375b
CM
1771
1772 err = map_private_extent_buffer(eb, offset,
479965d6 1773 sizeof(struct btrfs_disk_key),
a6591715 1774 &kaddr, &map_start, &map_len);
479965d6
CM
1775
1776 if (!err) {
1777 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1778 map_start);
415b35a5 1779 } else if (err == 1) {
479965d6
CM
1780 read_extent_buffer(eb, &unaligned,
1781 offset, sizeof(unaligned));
1782 tmp = &unaligned;
415b35a5
LB
1783 } else {
1784 return err;
479965d6 1785 }
5f39d397 1786
5f39d397
CM
1787 } else {
1788 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1789 map_start);
1790 }
be0e5c09
CM
1791 ret = comp_keys(tmp, key);
1792
1793 if (ret < 0)
1794 low = mid + 1;
1795 else if (ret > 0)
1796 high = mid;
1797 else {
1798 *slot = mid;
1799 return 0;
1800 }
1801 }
1802 *slot = low;
1803 return 1;
1804}
1805
97571fd0
CM
1806/*
1807 * simple bin_search frontend that does the right thing for
1808 * leaves vs nodes
1809 */
a74b35ec
NB
1810int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1811 int level, int *slot)
be0e5c09 1812{
f775738f 1813 if (level == 0)
5f39d397
CM
1814 return generic_bin_search(eb,
1815 offsetof(struct btrfs_leaf, items),
0783fcfc 1816 sizeof(struct btrfs_item),
5f39d397 1817 key, btrfs_header_nritems(eb),
7518a238 1818 slot);
f775738f 1819 else
5f39d397
CM
1820 return generic_bin_search(eb,
1821 offsetof(struct btrfs_node, ptrs),
123abc88 1822 sizeof(struct btrfs_key_ptr),
5f39d397 1823 key, btrfs_header_nritems(eb),
7518a238 1824 slot);
be0e5c09
CM
1825}
1826
f0486c68
YZ
1827static void root_add_used(struct btrfs_root *root, u32 size)
1828{
1829 spin_lock(&root->accounting_lock);
1830 btrfs_set_root_used(&root->root_item,
1831 btrfs_root_used(&root->root_item) + size);
1832 spin_unlock(&root->accounting_lock);
1833}
1834
1835static void root_sub_used(struct btrfs_root *root, u32 size)
1836{
1837 spin_lock(&root->accounting_lock);
1838 btrfs_set_root_used(&root->root_item,
1839 btrfs_root_used(&root->root_item) - size);
1840 spin_unlock(&root->accounting_lock);
1841}
1842
d352ac68
CM
1843/* given a node and slot number, this reads the blocks it points to. The
1844 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1845 */
2ff7e61e
JM
1846static noinline struct extent_buffer *
1847read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1848 int slot)
bb803951 1849{
ca7a79ad 1850 int level = btrfs_header_level(parent);
416bc658
JB
1851 struct extent_buffer *eb;
1852
fb770ae4
LB
1853 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1854 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1855
1856 BUG_ON(level == 0);
1857
2ff7e61e 1858 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
416bc658 1859 btrfs_node_ptr_generation(parent, slot));
fb770ae4
LB
1860 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1861 free_extent_buffer(eb);
1862 eb = ERR_PTR(-EIO);
416bc658
JB
1863 }
1864
1865 return eb;
bb803951
CM
1866}
1867
d352ac68
CM
1868/*
1869 * node level balancing, used to make sure nodes are in proper order for
1870 * item deletion. We balance from the top down, so we have to make sure
1871 * that a deletion won't leave an node completely empty later on.
1872 */
e02119d5 1873static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1874 struct btrfs_root *root,
1875 struct btrfs_path *path, int level)
bb803951 1876{
0b246afa 1877 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1878 struct extent_buffer *right = NULL;
1879 struct extent_buffer *mid;
1880 struct extent_buffer *left = NULL;
1881 struct extent_buffer *parent = NULL;
bb803951
CM
1882 int ret = 0;
1883 int wret;
1884 int pslot;
bb803951 1885 int orig_slot = path->slots[level];
79f95c82 1886 u64 orig_ptr;
bb803951
CM
1887
1888 if (level == 0)
1889 return 0;
1890
5f39d397 1891 mid = path->nodes[level];
b4ce94de 1892
bd681513
CM
1893 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1894 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1895 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1896
1d4f8a0c 1897 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1898
a05a9bb1 1899 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1900 parent = path->nodes[level + 1];
a05a9bb1
LZ
1901 pslot = path->slots[level + 1];
1902 }
bb803951 1903
40689478
CM
1904 /*
1905 * deal with the case where there is only one pointer in the root
1906 * by promoting the node below to a root
1907 */
5f39d397
CM
1908 if (!parent) {
1909 struct extent_buffer *child;
bb803951 1910
5f39d397 1911 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1912 return 0;
1913
1914 /* promote the child to a root */
2ff7e61e 1915 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1916 if (IS_ERR(child)) {
1917 ret = PTR_ERR(child);
0b246afa 1918 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1919 goto enospc;
1920 }
1921
925baedd 1922 btrfs_tree_lock(child);
b4ce94de 1923 btrfs_set_lock_blocking(child);
9fa8cfe7 1924 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1925 if (ret) {
1926 btrfs_tree_unlock(child);
1927 free_extent_buffer(child);
1928 goto enospc;
1929 }
2f375ab9 1930
90f8d62e 1931 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1932 rcu_assign_pointer(root->node, child);
925baedd 1933
0b86a832 1934 add_root_to_dirty_list(root);
925baedd 1935 btrfs_tree_unlock(child);
b4ce94de 1936
925baedd 1937 path->locks[level] = 0;
bb803951 1938 path->nodes[level] = NULL;
7c302b49 1939 clean_tree_block(fs_info, mid);
925baedd 1940 btrfs_tree_unlock(mid);
bb803951 1941 /* once for the path */
5f39d397 1942 free_extent_buffer(mid);
f0486c68
YZ
1943
1944 root_sub_used(root, mid->len);
5581a51a 1945 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1946 /* once for the root ptr */
3083ee2e 1947 free_extent_buffer_stale(mid);
f0486c68 1948 return 0;
bb803951 1949 }
5f39d397 1950 if (btrfs_header_nritems(mid) >
0b246afa 1951 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1952 return 0;
1953
2ff7e61e 1954 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1955 if (IS_ERR(left))
1956 left = NULL;
1957
5f39d397 1958 if (left) {
925baedd 1959 btrfs_tree_lock(left);
b4ce94de 1960 btrfs_set_lock_blocking(left);
5f39d397 1961 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1962 parent, pslot - 1, &left);
54aa1f4d
CM
1963 if (wret) {
1964 ret = wret;
1965 goto enospc;
1966 }
2cc58cf2 1967 }
fb770ae4 1968
2ff7e61e 1969 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1970 if (IS_ERR(right))
1971 right = NULL;
1972
5f39d397 1973 if (right) {
925baedd 1974 btrfs_tree_lock(right);
b4ce94de 1975 btrfs_set_lock_blocking(right);
5f39d397 1976 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1977 parent, pslot + 1, &right);
2cc58cf2
CM
1978 if (wret) {
1979 ret = wret;
1980 goto enospc;
1981 }
1982 }
1983
1984 /* first, try to make some room in the middle buffer */
5f39d397
CM
1985 if (left) {
1986 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1987 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1988 if (wret < 0)
1989 ret = wret;
bb803951 1990 }
79f95c82
CM
1991
1992 /*
1993 * then try to empty the right most buffer into the middle
1994 */
5f39d397 1995 if (right) {
2ff7e61e 1996 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 1997 if (wret < 0 && wret != -ENOSPC)
79f95c82 1998 ret = wret;
5f39d397 1999 if (btrfs_header_nritems(right) == 0) {
7c302b49 2000 clean_tree_block(fs_info, right);
925baedd 2001 btrfs_tree_unlock(right);
afe5fea7 2002 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 2003 root_sub_used(root, right->len);
5581a51a 2004 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 2005 free_extent_buffer_stale(right);
f0486c68 2006 right = NULL;
bb803951 2007 } else {
5f39d397
CM
2008 struct btrfs_disk_key right_key;
2009 btrfs_node_key(right, &right_key, 0);
0b246afa 2010 tree_mod_log_set_node_key(fs_info, parent,
32adf090 2011 pslot + 1, 0);
5f39d397
CM
2012 btrfs_set_node_key(parent, &right_key, pslot + 1);
2013 btrfs_mark_buffer_dirty(parent);
bb803951
CM
2014 }
2015 }
5f39d397 2016 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
2017 /*
2018 * we're not allowed to leave a node with one item in the
2019 * tree during a delete. A deletion from lower in the tree
2020 * could try to delete the only pointer in this node.
2021 * So, pull some keys from the left.
2022 * There has to be a left pointer at this point because
2023 * otherwise we would have pulled some pointers from the
2024 * right
2025 */
305a26af
MF
2026 if (!left) {
2027 ret = -EROFS;
0b246afa 2028 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
2029 goto enospc;
2030 }
2ff7e61e 2031 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 2032 if (wret < 0) {
79f95c82 2033 ret = wret;
54aa1f4d
CM
2034 goto enospc;
2035 }
bce4eae9 2036 if (wret == 1) {
2ff7e61e 2037 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
2038 if (wret < 0)
2039 ret = wret;
2040 }
79f95c82
CM
2041 BUG_ON(wret == 1);
2042 }
5f39d397 2043 if (btrfs_header_nritems(mid) == 0) {
7c302b49 2044 clean_tree_block(fs_info, mid);
925baedd 2045 btrfs_tree_unlock(mid);
afe5fea7 2046 del_ptr(root, path, level + 1, pslot);
f0486c68 2047 root_sub_used(root, mid->len);
5581a51a 2048 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2049 free_extent_buffer_stale(mid);
f0486c68 2050 mid = NULL;
79f95c82
CM
2051 } else {
2052 /* update the parent key to reflect our changes */
5f39d397
CM
2053 struct btrfs_disk_key mid_key;
2054 btrfs_node_key(mid, &mid_key, 0);
0b246afa 2055 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
5f39d397
CM
2056 btrfs_set_node_key(parent, &mid_key, pslot);
2057 btrfs_mark_buffer_dirty(parent);
79f95c82 2058 }
bb803951 2059
79f95c82 2060 /* update the path */
5f39d397
CM
2061 if (left) {
2062 if (btrfs_header_nritems(left) > orig_slot) {
2063 extent_buffer_get(left);
925baedd 2064 /* left was locked after cow */
5f39d397 2065 path->nodes[level] = left;
bb803951
CM
2066 path->slots[level + 1] -= 1;
2067 path->slots[level] = orig_slot;
925baedd
CM
2068 if (mid) {
2069 btrfs_tree_unlock(mid);
5f39d397 2070 free_extent_buffer(mid);
925baedd 2071 }
bb803951 2072 } else {
5f39d397 2073 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2074 path->slots[level] = orig_slot;
2075 }
2076 }
79f95c82 2077 /* double check we haven't messed things up */
e20d96d6 2078 if (orig_ptr !=
5f39d397 2079 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2080 BUG();
54aa1f4d 2081enospc:
925baedd
CM
2082 if (right) {
2083 btrfs_tree_unlock(right);
5f39d397 2084 free_extent_buffer(right);
925baedd
CM
2085 }
2086 if (left) {
2087 if (path->nodes[level] != left)
2088 btrfs_tree_unlock(left);
5f39d397 2089 free_extent_buffer(left);
925baedd 2090 }
bb803951
CM
2091 return ret;
2092}
2093
d352ac68
CM
2094/* Node balancing for insertion. Here we only split or push nodes around
2095 * when they are completely full. This is also done top down, so we
2096 * have to be pessimistic.
2097 */
d397712b 2098static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2099 struct btrfs_root *root,
2100 struct btrfs_path *path, int level)
e66f709b 2101{
0b246afa 2102 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2103 struct extent_buffer *right = NULL;
2104 struct extent_buffer *mid;
2105 struct extent_buffer *left = NULL;
2106 struct extent_buffer *parent = NULL;
e66f709b
CM
2107 int ret = 0;
2108 int wret;
2109 int pslot;
2110 int orig_slot = path->slots[level];
e66f709b
CM
2111
2112 if (level == 0)
2113 return 1;
2114
5f39d397 2115 mid = path->nodes[level];
7bb86316 2116 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2117
a05a9bb1 2118 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2119 parent = path->nodes[level + 1];
a05a9bb1
LZ
2120 pslot = path->slots[level + 1];
2121 }
e66f709b 2122
5f39d397 2123 if (!parent)
e66f709b 2124 return 1;
e66f709b 2125
2ff7e61e 2126 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2127 if (IS_ERR(left))
2128 left = NULL;
e66f709b
CM
2129
2130 /* first, try to make some room in the middle buffer */
5f39d397 2131 if (left) {
e66f709b 2132 u32 left_nr;
925baedd
CM
2133
2134 btrfs_tree_lock(left);
b4ce94de
CM
2135 btrfs_set_lock_blocking(left);
2136
5f39d397 2137 left_nr = btrfs_header_nritems(left);
0b246afa 2138 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2139 wret = 1;
2140 } else {
5f39d397 2141 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2142 pslot - 1, &left);
54aa1f4d
CM
2143 if (ret)
2144 wret = 1;
2145 else {
2ff7e61e 2146 wret = push_node_left(trans, fs_info,
971a1f66 2147 left, mid, 0);
54aa1f4d 2148 }
33ade1f8 2149 }
e66f709b
CM
2150 if (wret < 0)
2151 ret = wret;
2152 if (wret == 0) {
5f39d397 2153 struct btrfs_disk_key disk_key;
e66f709b 2154 orig_slot += left_nr;
5f39d397 2155 btrfs_node_key(mid, &disk_key, 0);
0b246afa 2156 tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
5f39d397
CM
2157 btrfs_set_node_key(parent, &disk_key, pslot);
2158 btrfs_mark_buffer_dirty(parent);
2159 if (btrfs_header_nritems(left) > orig_slot) {
2160 path->nodes[level] = left;
e66f709b
CM
2161 path->slots[level + 1] -= 1;
2162 path->slots[level] = orig_slot;
925baedd 2163 btrfs_tree_unlock(mid);
5f39d397 2164 free_extent_buffer(mid);
e66f709b
CM
2165 } else {
2166 orig_slot -=
5f39d397 2167 btrfs_header_nritems(left);
e66f709b 2168 path->slots[level] = orig_slot;
925baedd 2169 btrfs_tree_unlock(left);
5f39d397 2170 free_extent_buffer(left);
e66f709b 2171 }
e66f709b
CM
2172 return 0;
2173 }
925baedd 2174 btrfs_tree_unlock(left);
5f39d397 2175 free_extent_buffer(left);
e66f709b 2176 }
2ff7e61e 2177 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2178 if (IS_ERR(right))
2179 right = NULL;
e66f709b
CM
2180
2181 /*
2182 * then try to empty the right most buffer into the middle
2183 */
5f39d397 2184 if (right) {
33ade1f8 2185 u32 right_nr;
b4ce94de 2186
925baedd 2187 btrfs_tree_lock(right);
b4ce94de
CM
2188 btrfs_set_lock_blocking(right);
2189
5f39d397 2190 right_nr = btrfs_header_nritems(right);
0b246afa 2191 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2192 wret = 1;
2193 } else {
5f39d397
CM
2194 ret = btrfs_cow_block(trans, root, right,
2195 parent, pslot + 1,
9fa8cfe7 2196 &right);
54aa1f4d
CM
2197 if (ret)
2198 wret = 1;
2199 else {
2ff7e61e 2200 wret = balance_node_right(trans, fs_info,
5f39d397 2201 right, mid);
54aa1f4d 2202 }
33ade1f8 2203 }
e66f709b
CM
2204 if (wret < 0)
2205 ret = wret;
2206 if (wret == 0) {
5f39d397
CM
2207 struct btrfs_disk_key disk_key;
2208
2209 btrfs_node_key(right, &disk_key, 0);
0b246afa 2210 tree_mod_log_set_node_key(fs_info, parent,
32adf090 2211 pslot + 1, 0);
5f39d397
CM
2212 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2213 btrfs_mark_buffer_dirty(parent);
2214
2215 if (btrfs_header_nritems(mid) <= orig_slot) {
2216 path->nodes[level] = right;
e66f709b
CM
2217 path->slots[level + 1] += 1;
2218 path->slots[level] = orig_slot -
5f39d397 2219 btrfs_header_nritems(mid);
925baedd 2220 btrfs_tree_unlock(mid);
5f39d397 2221 free_extent_buffer(mid);
e66f709b 2222 } else {
925baedd 2223 btrfs_tree_unlock(right);
5f39d397 2224 free_extent_buffer(right);
e66f709b 2225 }
e66f709b
CM
2226 return 0;
2227 }
925baedd 2228 btrfs_tree_unlock(right);
5f39d397 2229 free_extent_buffer(right);
e66f709b 2230 }
e66f709b
CM
2231 return 1;
2232}
2233
3c69faec 2234/*
d352ac68
CM
2235 * readahead one full node of leaves, finding things that are close
2236 * to the block in 'slot', and triggering ra on them.
3c69faec 2237 */
2ff7e61e 2238static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2239 struct btrfs_path *path,
2240 int level, int slot, u64 objectid)
3c69faec 2241{
5f39d397 2242 struct extent_buffer *node;
01f46658 2243 struct btrfs_disk_key disk_key;
3c69faec 2244 u32 nritems;
3c69faec 2245 u64 search;
a7175319 2246 u64 target;
6b80053d 2247 u64 nread = 0;
5f39d397 2248 struct extent_buffer *eb;
6b80053d
CM
2249 u32 nr;
2250 u32 blocksize;
2251 u32 nscan = 0;
db94535d 2252
a6b6e75e 2253 if (level != 1)
6702ed49
CM
2254 return;
2255
2256 if (!path->nodes[level])
3c69faec
CM
2257 return;
2258
5f39d397 2259 node = path->nodes[level];
925baedd 2260
3c69faec 2261 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2262 blocksize = fs_info->nodesize;
2263 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2264 if (eb) {
2265 free_extent_buffer(eb);
3c69faec
CM
2266 return;
2267 }
2268
a7175319 2269 target = search;
6b80053d 2270
5f39d397 2271 nritems = btrfs_header_nritems(node);
6b80053d 2272 nr = slot;
25b8b936 2273
d397712b 2274 while (1) {
e4058b54 2275 if (path->reada == READA_BACK) {
6b80053d
CM
2276 if (nr == 0)
2277 break;
2278 nr--;
e4058b54 2279 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2280 nr++;
2281 if (nr >= nritems)
2282 break;
3c69faec 2283 }
e4058b54 2284 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2285 btrfs_node_key(node, &disk_key, nr);
2286 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2287 break;
2288 }
6b80053d 2289 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2290 if ((search <= target && target - search <= 65536) ||
2291 (search > target && search - target <= 65536)) {
2ff7e61e 2292 readahead_tree_block(fs_info, search);
6b80053d
CM
2293 nread += blocksize;
2294 }
2295 nscan++;
a7175319 2296 if ((nread > 65536 || nscan > 32))
6b80053d 2297 break;
3c69faec
CM
2298 }
2299}
925baedd 2300
2ff7e61e 2301static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2302 struct btrfs_path *path, int level)
b4ce94de
CM
2303{
2304 int slot;
2305 int nritems;
2306 struct extent_buffer *parent;
2307 struct extent_buffer *eb;
2308 u64 gen;
2309 u64 block1 = 0;
2310 u64 block2 = 0;
b4ce94de 2311
8c594ea8 2312 parent = path->nodes[level + 1];
b4ce94de 2313 if (!parent)
0b08851f 2314 return;
b4ce94de
CM
2315
2316 nritems = btrfs_header_nritems(parent);
8c594ea8 2317 slot = path->slots[level + 1];
b4ce94de
CM
2318
2319 if (slot > 0) {
2320 block1 = btrfs_node_blockptr(parent, slot - 1);
2321 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2322 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2323 /*
2324 * if we get -eagain from btrfs_buffer_uptodate, we
2325 * don't want to return eagain here. That will loop
2326 * forever
2327 */
2328 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2329 block1 = 0;
2330 free_extent_buffer(eb);
2331 }
8c594ea8 2332 if (slot + 1 < nritems) {
b4ce94de
CM
2333 block2 = btrfs_node_blockptr(parent, slot + 1);
2334 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2335 eb = find_extent_buffer(fs_info, block2);
b9fab919 2336 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2337 block2 = 0;
2338 free_extent_buffer(eb);
2339 }
8c594ea8 2340
0b08851f 2341 if (block1)
2ff7e61e 2342 readahead_tree_block(fs_info, block1);
0b08851f 2343 if (block2)
2ff7e61e 2344 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2345}
2346
2347
d352ac68 2348/*
d397712b
CM
2349 * when we walk down the tree, it is usually safe to unlock the higher layers
2350 * in the tree. The exceptions are when our path goes through slot 0, because
2351 * operations on the tree might require changing key pointers higher up in the
2352 * tree.
d352ac68 2353 *
d397712b
CM
2354 * callers might also have set path->keep_locks, which tells this code to keep
2355 * the lock if the path points to the last slot in the block. This is part of
2356 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2357 *
d397712b
CM
2358 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2359 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2360 */
e02119d5 2361static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2362 int lowest_unlock, int min_write_lock_level,
2363 int *write_lock_level)
925baedd
CM
2364{
2365 int i;
2366 int skip_level = level;
051e1b9f 2367 int no_skips = 0;
925baedd
CM
2368 struct extent_buffer *t;
2369
2370 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2371 if (!path->nodes[i])
2372 break;
2373 if (!path->locks[i])
2374 break;
051e1b9f 2375 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2376 skip_level = i + 1;
2377 continue;
2378 }
051e1b9f 2379 if (!no_skips && path->keep_locks) {
925baedd
CM
2380 u32 nritems;
2381 t = path->nodes[i];
2382 nritems = btrfs_header_nritems(t);
051e1b9f 2383 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2384 skip_level = i + 1;
2385 continue;
2386 }
2387 }
051e1b9f
CM
2388 if (skip_level < i && i >= lowest_unlock)
2389 no_skips = 1;
2390
925baedd
CM
2391 t = path->nodes[i];
2392 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2393 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2394 path->locks[i] = 0;
f7c79f30
CM
2395 if (write_lock_level &&
2396 i > min_write_lock_level &&
2397 i <= *write_lock_level) {
2398 *write_lock_level = i - 1;
2399 }
925baedd
CM
2400 }
2401 }
2402}
2403
b4ce94de
CM
2404/*
2405 * This releases any locks held in the path starting at level and
2406 * going all the way up to the root.
2407 *
2408 * btrfs_search_slot will keep the lock held on higher nodes in a few
2409 * corner cases, such as COW of the block at slot zero in the node. This
2410 * ignores those rules, and it should only be called when there are no
2411 * more updates to be done higher up in the tree.
2412 */
2413noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2414{
2415 int i;
2416
09a2a8f9 2417 if (path->keep_locks)
b4ce94de
CM
2418 return;
2419
2420 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2421 if (!path->nodes[i])
12f4dacc 2422 continue;
b4ce94de 2423 if (!path->locks[i])
12f4dacc 2424 continue;
bd681513 2425 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2426 path->locks[i] = 0;
2427 }
2428}
2429
c8c42864
CM
2430/*
2431 * helper function for btrfs_search_slot. The goal is to find a block
2432 * in cache without setting the path to blocking. If we find the block
2433 * we return zero and the path is unchanged.
2434 *
2435 * If we can't find the block, we set the path blocking and do some
2436 * reada. -EAGAIN is returned and the search must be repeated.
2437 */
2438static int
d07b8528
LB
2439read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2440 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2441 const struct btrfs_key *key)
c8c42864 2442{
0b246afa 2443 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2444 u64 blocknr;
2445 u64 gen;
c8c42864
CM
2446 struct extent_buffer *b = *eb_ret;
2447 struct extent_buffer *tmp;
76a05b35 2448 int ret;
c8c42864
CM
2449
2450 blocknr = btrfs_node_blockptr(b, slot);
2451 gen = btrfs_node_ptr_generation(b, slot);
c8c42864 2452
0b246afa 2453 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2454 if (tmp) {
b9fab919 2455 /* first we do an atomic uptodate check */
bdf7c00e
JB
2456 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2457 *eb_ret = tmp;
2458 return 0;
2459 }
2460
2461 /* the pages were up to date, but we failed
2462 * the generation number check. Do a full
2463 * read for the generation number that is correct.
2464 * We must do this without dropping locks so
2465 * we can trust our generation number
2466 */
2467 btrfs_set_path_blocking(p);
2468
2469 /* now we're allowed to do a blocking uptodate check */
2470 ret = btrfs_read_buffer(tmp, gen);
2471 if (!ret) {
2472 *eb_ret = tmp;
2473 return 0;
cb44921a 2474 }
bdf7c00e
JB
2475 free_extent_buffer(tmp);
2476 btrfs_release_path(p);
2477 return -EIO;
c8c42864
CM
2478 }
2479
2480 /*
2481 * reduce lock contention at high levels
2482 * of the btree by dropping locks before
76a05b35
CM
2483 * we read. Don't release the lock on the current
2484 * level because we need to walk this node to figure
2485 * out which blocks to read.
c8c42864 2486 */
8c594ea8
CM
2487 btrfs_unlock_up_safe(p, level + 1);
2488 btrfs_set_path_blocking(p);
2489
cb44921a 2490 free_extent_buffer(tmp);
e4058b54 2491 if (p->reada != READA_NONE)
2ff7e61e 2492 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2493
b3b4aa74 2494 btrfs_release_path(p);
76a05b35
CM
2495
2496 ret = -EAGAIN;
2ff7e61e 2497 tmp = read_tree_block(fs_info, blocknr, 0);
64c043de 2498 if (!IS_ERR(tmp)) {
76a05b35
CM
2499 /*
2500 * If the read above didn't mark this buffer up to date,
2501 * it will never end up being up to date. Set ret to EIO now
2502 * and give up so that our caller doesn't loop forever
2503 * on our EAGAINs.
2504 */
b9fab919 2505 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2506 ret = -EIO;
c8c42864 2507 free_extent_buffer(tmp);
c871b0f2
LB
2508 } else {
2509 ret = PTR_ERR(tmp);
76a05b35
CM
2510 }
2511 return ret;
c8c42864
CM
2512}
2513
2514/*
2515 * helper function for btrfs_search_slot. This does all of the checks
2516 * for node-level blocks and does any balancing required based on
2517 * the ins_len.
2518 *
2519 * If no extra work was required, zero is returned. If we had to
2520 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2521 * start over
2522 */
2523static int
2524setup_nodes_for_search(struct btrfs_trans_handle *trans,
2525 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2526 struct extent_buffer *b, int level, int ins_len,
2527 int *write_lock_level)
c8c42864 2528{
0b246afa 2529 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2530 int ret;
0b246afa 2531
c8c42864 2532 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2533 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2534 int sret;
2535
bd681513
CM
2536 if (*write_lock_level < level + 1) {
2537 *write_lock_level = level + 1;
2538 btrfs_release_path(p);
2539 goto again;
2540 }
2541
c8c42864 2542 btrfs_set_path_blocking(p);
2ff7e61e 2543 reada_for_balance(fs_info, p, level);
c8c42864 2544 sret = split_node(trans, root, p, level);
bd681513 2545 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2546
2547 BUG_ON(sret > 0);
2548 if (sret) {
2549 ret = sret;
2550 goto done;
2551 }
2552 b = p->nodes[level];
2553 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2554 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2555 int sret;
2556
bd681513
CM
2557 if (*write_lock_level < level + 1) {
2558 *write_lock_level = level + 1;
2559 btrfs_release_path(p);
2560 goto again;
2561 }
2562
c8c42864 2563 btrfs_set_path_blocking(p);
2ff7e61e 2564 reada_for_balance(fs_info, p, level);
c8c42864 2565 sret = balance_level(trans, root, p, level);
bd681513 2566 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2567
2568 if (sret) {
2569 ret = sret;
2570 goto done;
2571 }
2572 b = p->nodes[level];
2573 if (!b) {
b3b4aa74 2574 btrfs_release_path(p);
c8c42864
CM
2575 goto again;
2576 }
2577 BUG_ON(btrfs_header_nritems(b) == 1);
2578 }
2579 return 0;
2580
2581again:
2582 ret = -EAGAIN;
2583done:
2584 return ret;
2585}
2586
d7396f07 2587static void key_search_validate(struct extent_buffer *b,
310712b2 2588 const struct btrfs_key *key,
d7396f07
FDBM
2589 int level)
2590{
2591#ifdef CONFIG_BTRFS_ASSERT
2592 struct btrfs_disk_key disk_key;
2593
2594 btrfs_cpu_key_to_disk(&disk_key, key);
2595
2596 if (level == 0)
2597 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2598 offsetof(struct btrfs_leaf, items[0].key),
2599 sizeof(disk_key)));
2600 else
2601 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2602 offsetof(struct btrfs_node, ptrs[0].key),
2603 sizeof(disk_key)));
2604#endif
2605}
2606
310712b2 2607static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2608 int level, int *prev_cmp, int *slot)
2609{
2610 if (*prev_cmp != 0) {
a74b35ec 2611 *prev_cmp = btrfs_bin_search(b, key, level, slot);
d7396f07
FDBM
2612 return *prev_cmp;
2613 }
2614
2615 key_search_validate(b, key, level);
2616 *slot = 0;
2617
2618 return 0;
2619}
2620
381cf658 2621int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2622 u64 iobjectid, u64 ioff, u8 key_type,
2623 struct btrfs_key *found_key)
2624{
2625 int ret;
2626 struct btrfs_key key;
2627 struct extent_buffer *eb;
381cf658
DS
2628
2629 ASSERT(path);
1d4c08e0 2630 ASSERT(found_key);
e33d5c3d
KN
2631
2632 key.type = key_type;
2633 key.objectid = iobjectid;
2634 key.offset = ioff;
2635
2636 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2637 if (ret < 0)
e33d5c3d
KN
2638 return ret;
2639
2640 eb = path->nodes[0];
2641 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2642 ret = btrfs_next_leaf(fs_root, path);
2643 if (ret)
2644 return ret;
2645 eb = path->nodes[0];
2646 }
2647
2648 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2649 if (found_key->type != key.type ||
2650 found_key->objectid != key.objectid)
2651 return 1;
2652
2653 return 0;
2654}
2655
74123bd7
CM
2656/*
2657 * look for key in the tree. path is filled in with nodes along the way
2658 * if key is found, we return zero and you can find the item in the leaf
2659 * level of the path (level 0)
2660 *
2661 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2662 * be inserted, and 1 is returned. If there are other errors during the
2663 * search a negative error number is returned.
97571fd0
CM
2664 *
2665 * if ins_len > 0, nodes and leaves will be split as we walk down the
2666 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2667 * possible)
74123bd7 2668 */
310712b2
OS
2669int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2670 const struct btrfs_key *key, struct btrfs_path *p,
2671 int ins_len, int cow)
be0e5c09 2672{
0b246afa 2673 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2674 struct extent_buffer *b;
be0e5c09
CM
2675 int slot;
2676 int ret;
33c66f43 2677 int err;
be0e5c09 2678 int level;
925baedd 2679 int lowest_unlock = 1;
bd681513
CM
2680 int root_lock;
2681 /* everything at write_lock_level or lower must be write locked */
2682 int write_lock_level = 0;
9f3a7427 2683 u8 lowest_level = 0;
f7c79f30 2684 int min_write_lock_level;
d7396f07 2685 int prev_cmp;
9f3a7427 2686
6702ed49 2687 lowest_level = p->lowest_level;
323ac95b 2688 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2689 WARN_ON(p->nodes[0] != NULL);
eb653de1 2690 BUG_ON(!cow && ins_len);
25179201 2691
bd681513 2692 if (ins_len < 0) {
925baedd 2693 lowest_unlock = 2;
65b51a00 2694
bd681513
CM
2695 /* when we are removing items, we might have to go up to level
2696 * two as we update tree pointers Make sure we keep write
2697 * for those levels as well
2698 */
2699 write_lock_level = 2;
2700 } else if (ins_len > 0) {
2701 /*
2702 * for inserting items, make sure we have a write lock on
2703 * level 1 so we can update keys
2704 */
2705 write_lock_level = 1;
2706 }
2707
2708 if (!cow)
2709 write_lock_level = -1;
2710
09a2a8f9 2711 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2712 write_lock_level = BTRFS_MAX_LEVEL;
2713
f7c79f30
CM
2714 min_write_lock_level = write_lock_level;
2715
bb803951 2716again:
d7396f07 2717 prev_cmp = -1;
bd681513
CM
2718 /*
2719 * we try very hard to do read locks on the root
2720 */
2721 root_lock = BTRFS_READ_LOCK;
2722 level = 0;
5d4f98a2 2723 if (p->search_commit_root) {
bd681513
CM
2724 /*
2725 * the commit roots are read only
2726 * so we always do read locks
2727 */
3f8a18cc 2728 if (p->need_commit_sem)
0b246afa 2729 down_read(&fs_info->commit_root_sem);
5d4f98a2
YZ
2730 b = root->commit_root;
2731 extent_buffer_get(b);
bd681513 2732 level = btrfs_header_level(b);
3f8a18cc 2733 if (p->need_commit_sem)
0b246afa 2734 up_read(&fs_info->commit_root_sem);
5d4f98a2 2735 if (!p->skip_locking)
bd681513 2736 btrfs_tree_read_lock(b);
5d4f98a2 2737 } else {
bd681513 2738 if (p->skip_locking) {
5d4f98a2 2739 b = btrfs_root_node(root);
bd681513
CM
2740 level = btrfs_header_level(b);
2741 } else {
2742 /* we don't know the level of the root node
2743 * until we actually have it read locked
2744 */
2745 b = btrfs_read_lock_root_node(root);
2746 level = btrfs_header_level(b);
2747 if (level <= write_lock_level) {
2748 /* whoops, must trade for write lock */
2749 btrfs_tree_read_unlock(b);
2750 free_extent_buffer(b);
2751 b = btrfs_lock_root_node(root);
2752 root_lock = BTRFS_WRITE_LOCK;
2753
2754 /* the level might have changed, check again */
2755 level = btrfs_header_level(b);
2756 }
2757 }
5d4f98a2 2758 }
bd681513
CM
2759 p->nodes[level] = b;
2760 if (!p->skip_locking)
2761 p->locks[level] = root_lock;
925baedd 2762
eb60ceac 2763 while (b) {
5f39d397 2764 level = btrfs_header_level(b);
65b51a00
CM
2765
2766 /*
2767 * setup the path here so we can release it under lock
2768 * contention with the cow code
2769 */
02217ed2 2770 if (cow) {
9ea2c7c9
NB
2771 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2772
c8c42864
CM
2773 /*
2774 * if we don't really need to cow this block
2775 * then we don't want to set the path blocking,
2776 * so we test it here
2777 */
64c12921
JM
2778 if (!should_cow_block(trans, root, b)) {
2779 trans->dirty = true;
65b51a00 2780 goto cow_done;
64c12921 2781 }
5d4f98a2 2782
bd681513
CM
2783 /*
2784 * must have write locks on this node and the
2785 * parent
2786 */
5124e00e
JB
2787 if (level > write_lock_level ||
2788 (level + 1 > write_lock_level &&
2789 level + 1 < BTRFS_MAX_LEVEL &&
2790 p->nodes[level + 1])) {
bd681513
CM
2791 write_lock_level = level + 1;
2792 btrfs_release_path(p);
2793 goto again;
2794 }
2795
160f4089 2796 btrfs_set_path_blocking(p);
9ea2c7c9
NB
2797 if (last_level)
2798 err = btrfs_cow_block(trans, root, b, NULL, 0,
2799 &b);
2800 else
2801 err = btrfs_cow_block(trans, root, b,
2802 p->nodes[level + 1],
2803 p->slots[level + 1], &b);
33c66f43 2804 if (err) {
33c66f43 2805 ret = err;
65b51a00 2806 goto done;
54aa1f4d 2807 }
02217ed2 2808 }
65b51a00 2809cow_done:
eb60ceac 2810 p->nodes[level] = b;
bd681513 2811 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2812
2813 /*
2814 * we have a lock on b and as long as we aren't changing
2815 * the tree, there is no way to for the items in b to change.
2816 * It is safe to drop the lock on our parent before we
2817 * go through the expensive btree search on b.
2818 *
eb653de1
FDBM
2819 * If we're inserting or deleting (ins_len != 0), then we might
2820 * be changing slot zero, which may require changing the parent.
2821 * So, we can't drop the lock until after we know which slot
2822 * we're operating on.
b4ce94de 2823 */
eb653de1
FDBM
2824 if (!ins_len && !p->keep_locks) {
2825 int u = level + 1;
2826
2827 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2828 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2829 p->locks[u] = 0;
2830 }
2831 }
b4ce94de 2832
d7396f07 2833 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2834 if (ret < 0)
2835 goto done;
b4ce94de 2836
5f39d397 2837 if (level != 0) {
33c66f43
YZ
2838 int dec = 0;
2839 if (ret && slot > 0) {
2840 dec = 1;
be0e5c09 2841 slot -= 1;
33c66f43 2842 }
be0e5c09 2843 p->slots[level] = slot;
33c66f43 2844 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2845 ins_len, &write_lock_level);
33c66f43 2846 if (err == -EAGAIN)
c8c42864 2847 goto again;
33c66f43
YZ
2848 if (err) {
2849 ret = err;
c8c42864 2850 goto done;
33c66f43 2851 }
c8c42864
CM
2852 b = p->nodes[level];
2853 slot = p->slots[level];
b4ce94de 2854
bd681513
CM
2855 /*
2856 * slot 0 is special, if we change the key
2857 * we have to update the parent pointer
2858 * which means we must have a write lock
2859 * on the parent
2860 */
eb653de1 2861 if (slot == 0 && ins_len &&
bd681513
CM
2862 write_lock_level < level + 1) {
2863 write_lock_level = level + 1;
2864 btrfs_release_path(p);
2865 goto again;
2866 }
2867
f7c79f30
CM
2868 unlock_up(p, level, lowest_unlock,
2869 min_write_lock_level, &write_lock_level);
f9efa9c7 2870
925baedd 2871 if (level == lowest_level) {
33c66f43
YZ
2872 if (dec)
2873 p->slots[level]++;
5b21f2ed 2874 goto done;
925baedd 2875 }
ca7a79ad 2876
d07b8528 2877 err = read_block_for_search(root, p, &b, level,
cda79c54 2878 slot, key);
33c66f43 2879 if (err == -EAGAIN)
c8c42864 2880 goto again;
33c66f43
YZ
2881 if (err) {
2882 ret = err;
76a05b35 2883 goto done;
33c66f43 2884 }
76a05b35 2885
b4ce94de 2886 if (!p->skip_locking) {
bd681513
CM
2887 level = btrfs_header_level(b);
2888 if (level <= write_lock_level) {
2889 err = btrfs_try_tree_write_lock(b);
2890 if (!err) {
2891 btrfs_set_path_blocking(p);
2892 btrfs_tree_lock(b);
2893 btrfs_clear_path_blocking(p, b,
2894 BTRFS_WRITE_LOCK);
2895 }
2896 p->locks[level] = BTRFS_WRITE_LOCK;
2897 } else {
f82c458a 2898 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2899 if (!err) {
2900 btrfs_set_path_blocking(p);
2901 btrfs_tree_read_lock(b);
2902 btrfs_clear_path_blocking(p, b,
2903 BTRFS_READ_LOCK);
2904 }
2905 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2906 }
bd681513 2907 p->nodes[level] = b;
b4ce94de 2908 }
be0e5c09
CM
2909 } else {
2910 p->slots[level] = slot;
87b29b20 2911 if (ins_len > 0 &&
2ff7e61e 2912 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2913 if (write_lock_level < 1) {
2914 write_lock_level = 1;
2915 btrfs_release_path(p);
2916 goto again;
2917 }
2918
b4ce94de 2919 btrfs_set_path_blocking(p);
33c66f43
YZ
2920 err = split_leaf(trans, root, key,
2921 p, ins_len, ret == 0);
bd681513 2922 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2923
33c66f43
YZ
2924 BUG_ON(err > 0);
2925 if (err) {
2926 ret = err;
65b51a00
CM
2927 goto done;
2928 }
5c680ed6 2929 }
459931ec 2930 if (!p->search_for_split)
f7c79f30
CM
2931 unlock_up(p, level, lowest_unlock,
2932 min_write_lock_level, &write_lock_level);
65b51a00 2933 goto done;
be0e5c09
CM
2934 }
2935 }
65b51a00
CM
2936 ret = 1;
2937done:
b4ce94de
CM
2938 /*
2939 * we don't really know what they plan on doing with the path
2940 * from here on, so for now just mark it as blocking
2941 */
b9473439
CM
2942 if (!p->leave_spinning)
2943 btrfs_set_path_blocking(p);
5f5bc6b1 2944 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2945 btrfs_release_path(p);
65b51a00 2946 return ret;
be0e5c09
CM
2947}
2948
5d9e75c4
JS
2949/*
2950 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2951 * current state of the tree together with the operations recorded in the tree
2952 * modification log to search for the key in a previous version of this tree, as
2953 * denoted by the time_seq parameter.
2954 *
2955 * Naturally, there is no support for insert, delete or cow operations.
2956 *
2957 * The resulting path and return value will be set up as if we called
2958 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2959 */
310712b2 2960int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2961 struct btrfs_path *p, u64 time_seq)
2962{
0b246afa 2963 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2964 struct extent_buffer *b;
2965 int slot;
2966 int ret;
2967 int err;
2968 int level;
2969 int lowest_unlock = 1;
2970 u8 lowest_level = 0;
d4b4087c 2971 int prev_cmp = -1;
5d9e75c4
JS
2972
2973 lowest_level = p->lowest_level;
2974 WARN_ON(p->nodes[0] != NULL);
2975
2976 if (p->search_commit_root) {
2977 BUG_ON(time_seq);
2978 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2979 }
2980
2981again:
5d9e75c4 2982 b = get_old_root(root, time_seq);
5d9e75c4 2983 level = btrfs_header_level(b);
5d9e75c4
JS
2984 p->locks[level] = BTRFS_READ_LOCK;
2985
2986 while (b) {
2987 level = btrfs_header_level(b);
2988 p->nodes[level] = b;
2989 btrfs_clear_path_blocking(p, NULL, 0);
2990
2991 /*
2992 * we have a lock on b and as long as we aren't changing
2993 * the tree, there is no way to for the items in b to change.
2994 * It is safe to drop the lock on our parent before we
2995 * go through the expensive btree search on b.
2996 */
2997 btrfs_unlock_up_safe(p, level + 1);
2998
d4b4087c 2999 /*
01327610 3000 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
3001 * time.
3002 */
3003 prev_cmp = -1;
d7396f07 3004 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
3005
3006 if (level != 0) {
3007 int dec = 0;
3008 if (ret && slot > 0) {
3009 dec = 1;
3010 slot -= 1;
3011 }
3012 p->slots[level] = slot;
3013 unlock_up(p, level, lowest_unlock, 0, NULL);
3014
3015 if (level == lowest_level) {
3016 if (dec)
3017 p->slots[level]++;
3018 goto done;
3019 }
3020
d07b8528 3021 err = read_block_for_search(root, p, &b, level,
cda79c54 3022 slot, key);
5d9e75c4
JS
3023 if (err == -EAGAIN)
3024 goto again;
3025 if (err) {
3026 ret = err;
3027 goto done;
3028 }
3029
3030 level = btrfs_header_level(b);
f82c458a 3031 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3032 if (!err) {
3033 btrfs_set_path_blocking(p);
3034 btrfs_tree_read_lock(b);
3035 btrfs_clear_path_blocking(p, b,
3036 BTRFS_READ_LOCK);
3037 }
0b246afa 3038 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3039 if (!b) {
3040 ret = -ENOMEM;
3041 goto done;
3042 }
5d9e75c4
JS
3043 p->locks[level] = BTRFS_READ_LOCK;
3044 p->nodes[level] = b;
5d9e75c4
JS
3045 } else {
3046 p->slots[level] = slot;
3047 unlock_up(p, level, lowest_unlock, 0, NULL);
3048 goto done;
3049 }
3050 }
3051 ret = 1;
3052done:
3053 if (!p->leave_spinning)
3054 btrfs_set_path_blocking(p);
3055 if (ret < 0)
3056 btrfs_release_path(p);
3057
3058 return ret;
3059}
3060
2f38b3e1
AJ
3061/*
3062 * helper to use instead of search slot if no exact match is needed but
3063 * instead the next or previous item should be returned.
3064 * When find_higher is true, the next higher item is returned, the next lower
3065 * otherwise.
3066 * When return_any and find_higher are both true, and no higher item is found,
3067 * return the next lower instead.
3068 * When return_any is true and find_higher is false, and no lower item is found,
3069 * return the next higher instead.
3070 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3071 * < 0 on error
3072 */
3073int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3074 const struct btrfs_key *key,
3075 struct btrfs_path *p, int find_higher,
3076 int return_any)
2f38b3e1
AJ
3077{
3078 int ret;
3079 struct extent_buffer *leaf;
3080
3081again:
3082 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3083 if (ret <= 0)
3084 return ret;
3085 /*
3086 * a return value of 1 means the path is at the position where the
3087 * item should be inserted. Normally this is the next bigger item,
3088 * but in case the previous item is the last in a leaf, path points
3089 * to the first free slot in the previous leaf, i.e. at an invalid
3090 * item.
3091 */
3092 leaf = p->nodes[0];
3093
3094 if (find_higher) {
3095 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3096 ret = btrfs_next_leaf(root, p);
3097 if (ret <= 0)
3098 return ret;
3099 if (!return_any)
3100 return 1;
3101 /*
3102 * no higher item found, return the next
3103 * lower instead
3104 */
3105 return_any = 0;
3106 find_higher = 0;
3107 btrfs_release_path(p);
3108 goto again;
3109 }
3110 } else {
e6793769
AJ
3111 if (p->slots[0] == 0) {
3112 ret = btrfs_prev_leaf(root, p);
3113 if (ret < 0)
3114 return ret;
3115 if (!ret) {
23c6bf6a
FDBM
3116 leaf = p->nodes[0];
3117 if (p->slots[0] == btrfs_header_nritems(leaf))
3118 p->slots[0]--;
e6793769 3119 return 0;
2f38b3e1 3120 }
e6793769
AJ
3121 if (!return_any)
3122 return 1;
3123 /*
3124 * no lower item found, return the next
3125 * higher instead
3126 */
3127 return_any = 0;
3128 find_higher = 1;
3129 btrfs_release_path(p);
3130 goto again;
3131 } else {
2f38b3e1
AJ
3132 --p->slots[0];
3133 }
3134 }
3135 return 0;
3136}
3137
74123bd7
CM
3138/*
3139 * adjust the pointers going up the tree, starting at level
3140 * making sure the right key of each node is points to 'key'.
3141 * This is used after shifting pointers to the left, so it stops
3142 * fixing up pointers when a given leaf/node is not in slot 0 of the
3143 * higher levels
aa5d6bed 3144 *
74123bd7 3145 */
b7a0365e
DD
3146static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3147 struct btrfs_path *path,
143bede5 3148 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3149{
3150 int i;
5f39d397
CM
3151 struct extent_buffer *t;
3152
234b63a0 3153 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3154 int tslot = path->slots[i];
eb60ceac 3155 if (!path->nodes[i])
be0e5c09 3156 break;
5f39d397 3157 t = path->nodes[i];
b7a0365e 3158 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
5f39d397 3159 btrfs_set_node_key(t, key, tslot);
d6025579 3160 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3161 if (tslot != 0)
3162 break;
3163 }
3164}
3165
31840ae1
ZY
3166/*
3167 * update item key.
3168 *
3169 * This function isn't completely safe. It's the caller's responsibility
3170 * that the new key won't break the order
3171 */
b7a0365e
DD
3172void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3173 struct btrfs_path *path,
310712b2 3174 const struct btrfs_key *new_key)
31840ae1
ZY
3175{
3176 struct btrfs_disk_key disk_key;
3177 struct extent_buffer *eb;
3178 int slot;
3179
3180 eb = path->nodes[0];
3181 slot = path->slots[0];
3182 if (slot > 0) {
3183 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3184 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3185 }
3186 if (slot < btrfs_header_nritems(eb) - 1) {
3187 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3188 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3189 }
3190
3191 btrfs_cpu_key_to_disk(&disk_key, new_key);
3192 btrfs_set_item_key(eb, &disk_key, slot);
3193 btrfs_mark_buffer_dirty(eb);
3194 if (slot == 0)
b7a0365e 3195 fixup_low_keys(fs_info, path, &disk_key, 1);
31840ae1
ZY
3196}
3197
74123bd7
CM
3198/*
3199 * try to push data from one node into the next node left in the
79f95c82 3200 * tree.
aa5d6bed
CM
3201 *
3202 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3203 * error, and > 0 if there was no room in the left hand block.
74123bd7 3204 */
98ed5174 3205static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3206 struct btrfs_fs_info *fs_info,
3207 struct extent_buffer *dst,
971a1f66 3208 struct extent_buffer *src, int empty)
be0e5c09 3209{
be0e5c09 3210 int push_items = 0;
bb803951
CM
3211 int src_nritems;
3212 int dst_nritems;
aa5d6bed 3213 int ret = 0;
be0e5c09 3214
5f39d397
CM
3215 src_nritems = btrfs_header_nritems(src);
3216 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3217 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3218 WARN_ON(btrfs_header_generation(src) != trans->transid);
3219 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3220
bce4eae9 3221 if (!empty && src_nritems <= 8)
971a1f66
CM
3222 return 1;
3223
d397712b 3224 if (push_items <= 0)
be0e5c09
CM
3225 return 1;
3226
bce4eae9 3227 if (empty) {
971a1f66 3228 push_items = min(src_nritems, push_items);
bce4eae9
CM
3229 if (push_items < src_nritems) {
3230 /* leave at least 8 pointers in the node if
3231 * we aren't going to empty it
3232 */
3233 if (src_nritems - push_items < 8) {
3234 if (push_items <= 8)
3235 return 1;
3236 push_items -= 8;
3237 }
3238 }
3239 } else
3240 push_items = min(src_nritems - 8, push_items);
79f95c82 3241
0b246afa 3242 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3243 push_items);
3244 if (ret) {
66642832 3245 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3246 return ret;
3247 }
5f39d397
CM
3248 copy_extent_buffer(dst, src,
3249 btrfs_node_key_ptr_offset(dst_nritems),
3250 btrfs_node_key_ptr_offset(0),
d397712b 3251 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3252
bb803951 3253 if (push_items < src_nritems) {
57911b8b
JS
3254 /*
3255 * don't call tree_mod_log_eb_move here, key removal was already
3256 * fully logged by tree_mod_log_eb_copy above.
3257 */
5f39d397
CM
3258 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3259 btrfs_node_key_ptr_offset(push_items),
3260 (src_nritems - push_items) *
3261 sizeof(struct btrfs_key_ptr));
3262 }
3263 btrfs_set_header_nritems(src, src_nritems - push_items);
3264 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3265 btrfs_mark_buffer_dirty(src);
3266 btrfs_mark_buffer_dirty(dst);
31840ae1 3267
79f95c82
CM
3268 return ret;
3269}
3270
3271/*
3272 * try to push data from one node into the next node right in the
3273 * tree.
3274 *
3275 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3276 * error, and > 0 if there was no room in the right hand block.
3277 *
3278 * this will only push up to 1/2 the contents of the left node over
3279 */
5f39d397 3280static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3281 struct btrfs_fs_info *fs_info,
5f39d397
CM
3282 struct extent_buffer *dst,
3283 struct extent_buffer *src)
79f95c82 3284{
79f95c82
CM
3285 int push_items = 0;
3286 int max_push;
3287 int src_nritems;
3288 int dst_nritems;
3289 int ret = 0;
79f95c82 3290
7bb86316
CM
3291 WARN_ON(btrfs_header_generation(src) != trans->transid);
3292 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3293
5f39d397
CM
3294 src_nritems = btrfs_header_nritems(src);
3295 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3296 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3297 if (push_items <= 0)
79f95c82 3298 return 1;
bce4eae9 3299
d397712b 3300 if (src_nritems < 4)
bce4eae9 3301 return 1;
79f95c82
CM
3302
3303 max_push = src_nritems / 2 + 1;
3304 /* don't try to empty the node */
d397712b 3305 if (max_push >= src_nritems)
79f95c82 3306 return 1;
252c38f0 3307
79f95c82
CM
3308 if (max_push < push_items)
3309 push_items = max_push;
3310
0b246afa 3311 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3312 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3313 btrfs_node_key_ptr_offset(0),
3314 (dst_nritems) *
3315 sizeof(struct btrfs_key_ptr));
d6025579 3316
0b246afa 3317 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3318 src_nritems - push_items, push_items);
3319 if (ret) {
66642832 3320 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3321 return ret;
3322 }
5f39d397
CM
3323 copy_extent_buffer(dst, src,
3324 btrfs_node_key_ptr_offset(0),
3325 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3326 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3327
5f39d397
CM
3328 btrfs_set_header_nritems(src, src_nritems - push_items);
3329 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3330
5f39d397
CM
3331 btrfs_mark_buffer_dirty(src);
3332 btrfs_mark_buffer_dirty(dst);
31840ae1 3333
aa5d6bed 3334 return ret;
be0e5c09
CM
3335}
3336
97571fd0
CM
3337/*
3338 * helper function to insert a new root level in the tree.
3339 * A new node is allocated, and a single item is inserted to
3340 * point to the existing root
aa5d6bed
CM
3341 *
3342 * returns zero on success or < 0 on failure.
97571fd0 3343 */
d397712b 3344static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3345 struct btrfs_root *root,
fdd99c72 3346 struct btrfs_path *path, int level)
5c680ed6 3347{
0b246afa 3348 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3349 u64 lower_gen;
5f39d397
CM
3350 struct extent_buffer *lower;
3351 struct extent_buffer *c;
925baedd 3352 struct extent_buffer *old;
5f39d397 3353 struct btrfs_disk_key lower_key;
5c680ed6
CM
3354
3355 BUG_ON(path->nodes[level]);
3356 BUG_ON(path->nodes[level-1] != root->node);
3357
7bb86316
CM
3358 lower = path->nodes[level-1];
3359 if (level == 1)
3360 btrfs_item_key(lower, &lower_key, 0);
3361 else
3362 btrfs_node_key(lower, &lower_key, 0);
3363
4d75f8a9
DS
3364 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3365 &lower_key, level, root->node->start, 0);
5f39d397
CM
3366 if (IS_ERR(c))
3367 return PTR_ERR(c);
925baedd 3368
0b246afa 3369 root_add_used(root, fs_info->nodesize);
f0486c68 3370
b159fa28 3371 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
5f39d397
CM
3372 btrfs_set_header_nritems(c, 1);
3373 btrfs_set_header_level(c, level);
db94535d 3374 btrfs_set_header_bytenr(c, c->start);
5f39d397 3375 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3376 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3377 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3378
0b246afa
JM
3379 write_extent_buffer_fsid(c, fs_info->fsid);
3380 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
e17cade2 3381
5f39d397 3382 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3383 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3384 lower_gen = btrfs_header_generation(lower);
31840ae1 3385 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3386
3387 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3388
5f39d397 3389 btrfs_mark_buffer_dirty(c);
d5719762 3390
925baedd 3391 old = root->node;
fdd99c72 3392 tree_mod_log_set_root_pointer(root, c, 0);
240f62c8 3393 rcu_assign_pointer(root->node, c);
925baedd
CM
3394
3395 /* the super has an extra ref to root->node */
3396 free_extent_buffer(old);
3397
0b86a832 3398 add_root_to_dirty_list(root);
5f39d397
CM
3399 extent_buffer_get(c);
3400 path->nodes[level] = c;
95449a16 3401 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3402 path->slots[level] = 0;
3403 return 0;
3404}
3405
74123bd7
CM
3406/*
3407 * worker function to insert a single pointer in a node.
3408 * the node should have enough room for the pointer already
97571fd0 3409 *
74123bd7
CM
3410 * slot and level indicate where you want the key to go, and
3411 * blocknr is the block the key points to.
3412 */
143bede5 3413static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3414 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3415 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3416 int slot, int level)
74123bd7 3417{
5f39d397 3418 struct extent_buffer *lower;
74123bd7 3419 int nritems;
f3ea38da 3420 int ret;
5c680ed6
CM
3421
3422 BUG_ON(!path->nodes[level]);
f0486c68 3423 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3424 lower = path->nodes[level];
3425 nritems = btrfs_header_nritems(lower);
c293498b 3426 BUG_ON(slot > nritems);
0b246afa 3427 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3428 if (slot != nritems) {
c3e06965 3429 if (level)
0b246afa 3430 tree_mod_log_eb_move(fs_info, lower, slot + 1,
f3ea38da 3431 slot, nritems - slot);
5f39d397
CM
3432 memmove_extent_buffer(lower,
3433 btrfs_node_key_ptr_offset(slot + 1),
3434 btrfs_node_key_ptr_offset(slot),
d6025579 3435 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3436 }
c3e06965 3437 if (level) {
0b246afa 3438 ret = tree_mod_log_insert_key(fs_info, lower, slot,
c8cc6341 3439 MOD_LOG_KEY_ADD, GFP_NOFS);
f3ea38da
JS
3440 BUG_ON(ret < 0);
3441 }
5f39d397 3442 btrfs_set_node_key(lower, key, slot);
db94535d 3443 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3444 WARN_ON(trans->transid == 0);
3445 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3446 btrfs_set_header_nritems(lower, nritems + 1);
3447 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3448}
3449
97571fd0
CM
3450/*
3451 * split the node at the specified level in path in two.
3452 * The path is corrected to point to the appropriate node after the split
3453 *
3454 * Before splitting this tries to make some room in the node by pushing
3455 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3456 *
3457 * returns 0 on success and < 0 on failure
97571fd0 3458 */
e02119d5
CM
3459static noinline int split_node(struct btrfs_trans_handle *trans,
3460 struct btrfs_root *root,
3461 struct btrfs_path *path, int level)
be0e5c09 3462{
0b246afa 3463 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3464 struct extent_buffer *c;
3465 struct extent_buffer *split;
3466 struct btrfs_disk_key disk_key;
be0e5c09 3467 int mid;
5c680ed6 3468 int ret;
7518a238 3469 u32 c_nritems;
eb60ceac 3470
5f39d397 3471 c = path->nodes[level];
7bb86316 3472 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3473 if (c == root->node) {
d9abbf1c 3474 /*
90f8d62e
JS
3475 * trying to split the root, lets make a new one
3476 *
fdd99c72 3477 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3478 * insert_new_root, because that root buffer will be kept as a
3479 * normal node. We are going to log removal of half of the
3480 * elements below with tree_mod_log_eb_copy. We're holding a
3481 * tree lock on the buffer, which is why we cannot race with
3482 * other tree_mod_log users.
d9abbf1c 3483 */
fdd99c72 3484 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3485 if (ret)
3486 return ret;
b3612421 3487 } else {
e66f709b 3488 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3489 c = path->nodes[level];
3490 if (!ret && btrfs_header_nritems(c) <
0b246afa 3491 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3492 return 0;
54aa1f4d
CM
3493 if (ret < 0)
3494 return ret;
be0e5c09 3495 }
e66f709b 3496
5f39d397 3497 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3498 mid = (c_nritems + 1) / 2;
3499 btrfs_node_key(c, &disk_key, mid);
7bb86316 3500
4d75f8a9
DS
3501 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3502 &disk_key, level, c->start, 0);
5f39d397
CM
3503 if (IS_ERR(split))
3504 return PTR_ERR(split);
3505
0b246afa 3506 root_add_used(root, fs_info->nodesize);
f0486c68 3507
b159fa28 3508 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
5f39d397 3509 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3510 btrfs_set_header_bytenr(split, split->start);
5f39d397 3511 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3512 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397 3513 btrfs_set_header_owner(split, root->root_key.objectid);
0b246afa
JM
3514 write_extent_buffer_fsid(split, fs_info->fsid);
3515 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
54aa1f4d 3516
0b246afa 3517 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3518 if (ret) {
66642832 3519 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3520 return ret;
3521 }
5f39d397
CM
3522 copy_extent_buffer(split, c,
3523 btrfs_node_key_ptr_offset(0),
3524 btrfs_node_key_ptr_offset(mid),
3525 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3526 btrfs_set_header_nritems(split, c_nritems - mid);
3527 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3528 ret = 0;
3529
5f39d397
CM
3530 btrfs_mark_buffer_dirty(c);
3531 btrfs_mark_buffer_dirty(split);
3532
2ff7e61e 3533 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3534 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3535
5de08d7d 3536 if (path->slots[level] >= mid) {
5c680ed6 3537 path->slots[level] -= mid;
925baedd 3538 btrfs_tree_unlock(c);
5f39d397
CM
3539 free_extent_buffer(c);
3540 path->nodes[level] = split;
5c680ed6
CM
3541 path->slots[level + 1] += 1;
3542 } else {
925baedd 3543 btrfs_tree_unlock(split);
5f39d397 3544 free_extent_buffer(split);
be0e5c09 3545 }
aa5d6bed 3546 return ret;
be0e5c09
CM
3547}
3548
74123bd7
CM
3549/*
3550 * how many bytes are required to store the items in a leaf. start
3551 * and nr indicate which items in the leaf to check. This totals up the
3552 * space used both by the item structs and the item data
3553 */
5f39d397 3554static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3555{
41be1f3b
JB
3556 struct btrfs_item *start_item;
3557 struct btrfs_item *end_item;
3558 struct btrfs_map_token token;
be0e5c09 3559 int data_len;
5f39d397 3560 int nritems = btrfs_header_nritems(l);
d4dbff95 3561 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3562
3563 if (!nr)
3564 return 0;
41be1f3b 3565 btrfs_init_map_token(&token);
dd3cc16b
RK
3566 start_item = btrfs_item_nr(start);
3567 end_item = btrfs_item_nr(end);
41be1f3b
JB
3568 data_len = btrfs_token_item_offset(l, start_item, &token) +
3569 btrfs_token_item_size(l, start_item, &token);
3570 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3571 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3572 WARN_ON(data_len < 0);
be0e5c09
CM
3573 return data_len;
3574}
3575
d4dbff95
CM
3576/*
3577 * The space between the end of the leaf items and
3578 * the start of the leaf data. IOW, how much room
3579 * the leaf has left for both items and data
3580 */
2ff7e61e 3581noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3582 struct extent_buffer *leaf)
d4dbff95 3583{
5f39d397
CM
3584 int nritems = btrfs_header_nritems(leaf);
3585 int ret;
0b246afa
JM
3586
3587 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3588 if (ret < 0) {
0b246afa
JM
3589 btrfs_crit(fs_info,
3590 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3591 ret,
3592 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3593 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3594 }
3595 return ret;
d4dbff95
CM
3596}
3597
99d8f83c
CM
3598/*
3599 * min slot controls the lowest index we're willing to push to the
3600 * right. We'll push up to and including min_slot, but no lower
3601 */
1e47eef2 3602static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
44871b1b
CM
3603 struct btrfs_path *path,
3604 int data_size, int empty,
3605 struct extent_buffer *right,
99d8f83c
CM
3606 int free_space, u32 left_nritems,
3607 u32 min_slot)
00ec4c51 3608{
5f39d397 3609 struct extent_buffer *left = path->nodes[0];
44871b1b 3610 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3611 struct btrfs_map_token token;
5f39d397 3612 struct btrfs_disk_key disk_key;
00ec4c51 3613 int slot;
34a38218 3614 u32 i;
00ec4c51
CM
3615 int push_space = 0;
3616 int push_items = 0;
0783fcfc 3617 struct btrfs_item *item;
34a38218 3618 u32 nr;
7518a238 3619 u32 right_nritems;
5f39d397 3620 u32 data_end;
db94535d 3621 u32 this_item_size;
00ec4c51 3622
cfed81a0
CM
3623 btrfs_init_map_token(&token);
3624
34a38218
CM
3625 if (empty)
3626 nr = 0;
3627 else
99d8f83c 3628 nr = max_t(u32, 1, min_slot);
34a38218 3629
31840ae1 3630 if (path->slots[0] >= left_nritems)
87b29b20 3631 push_space += data_size;
31840ae1 3632
44871b1b 3633 slot = path->slots[1];
34a38218
CM
3634 i = left_nritems - 1;
3635 while (i >= nr) {
dd3cc16b 3636 item = btrfs_item_nr(i);
db94535d 3637
31840ae1
ZY
3638 if (!empty && push_items > 0) {
3639 if (path->slots[0] > i)
3640 break;
3641 if (path->slots[0] == i) {
2ff7e61e 3642 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3643 if (space + push_space * 2 > free_space)
3644 break;
3645 }
3646 }
3647
00ec4c51 3648 if (path->slots[0] == i)
87b29b20 3649 push_space += data_size;
db94535d 3650
db94535d
CM
3651 this_item_size = btrfs_item_size(left, item);
3652 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3653 break;
31840ae1 3654
00ec4c51 3655 push_items++;
db94535d 3656 push_space += this_item_size + sizeof(*item);
34a38218
CM
3657 if (i == 0)
3658 break;
3659 i--;
db94535d 3660 }
5f39d397 3661
925baedd
CM
3662 if (push_items == 0)
3663 goto out_unlock;
5f39d397 3664
6c1500f2 3665 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3666
00ec4c51 3667 /* push left to right */
5f39d397 3668 right_nritems = btrfs_header_nritems(right);
34a38218 3669
5f39d397 3670 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3671 push_space -= leaf_data_end(fs_info, left);
5f39d397 3672
00ec4c51 3673 /* make room in the right data area */
2ff7e61e 3674 data_end = leaf_data_end(fs_info, right);
5f39d397 3675 memmove_extent_buffer(right,
3d9ec8c4
NB
3676 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3677 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3678 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3679
00ec4c51 3680 /* copy from the left data area */
3d9ec8c4 3681 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3682 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3683 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
d6025579 3684 push_space);
5f39d397
CM
3685
3686 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3687 btrfs_item_nr_offset(0),
3688 right_nritems * sizeof(struct btrfs_item));
3689
00ec4c51 3690 /* copy the items from left to right */
5f39d397
CM
3691 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3692 btrfs_item_nr_offset(left_nritems - push_items),
3693 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3694
3695 /* update the item pointers */
7518a238 3696 right_nritems += push_items;
5f39d397 3697 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3698 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3699 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3700 item = btrfs_item_nr(i);
cfed81a0
CM
3701 push_space -= btrfs_token_item_size(right, item, &token);
3702 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3703 }
3704
7518a238 3705 left_nritems -= push_items;
5f39d397 3706 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3707
34a38218
CM
3708 if (left_nritems)
3709 btrfs_mark_buffer_dirty(left);
f0486c68 3710 else
7c302b49 3711 clean_tree_block(fs_info, left);
f0486c68 3712
5f39d397 3713 btrfs_mark_buffer_dirty(right);
a429e513 3714
5f39d397
CM
3715 btrfs_item_key(right, &disk_key, 0);
3716 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3717 btrfs_mark_buffer_dirty(upper);
02217ed2 3718
00ec4c51 3719 /* then fixup the leaf pointer in the path */
7518a238
CM
3720 if (path->slots[0] >= left_nritems) {
3721 path->slots[0] -= left_nritems;
925baedd 3722 if (btrfs_header_nritems(path->nodes[0]) == 0)
7c302b49 3723 clean_tree_block(fs_info, path->nodes[0]);
925baedd 3724 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3725 free_extent_buffer(path->nodes[0]);
3726 path->nodes[0] = right;
00ec4c51
CM
3727 path->slots[1] += 1;
3728 } else {
925baedd 3729 btrfs_tree_unlock(right);
5f39d397 3730 free_extent_buffer(right);
00ec4c51
CM
3731 }
3732 return 0;
925baedd
CM
3733
3734out_unlock:
3735 btrfs_tree_unlock(right);
3736 free_extent_buffer(right);
3737 return 1;
00ec4c51 3738}
925baedd 3739
44871b1b
CM
3740/*
3741 * push some data in the path leaf to the right, trying to free up at
3742 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3743 *
3744 * returns 1 if the push failed because the other node didn't have enough
3745 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3746 *
3747 * this will push starting from min_slot to the end of the leaf. It won't
3748 * push any slot lower than min_slot
44871b1b
CM
3749 */
3750static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3751 *root, struct btrfs_path *path,
3752 int min_data_size, int data_size,
3753 int empty, u32 min_slot)
44871b1b 3754{
2ff7e61e 3755 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3756 struct extent_buffer *left = path->nodes[0];
3757 struct extent_buffer *right;
3758 struct extent_buffer *upper;
3759 int slot;
3760 int free_space;
3761 u32 left_nritems;
3762 int ret;
3763
3764 if (!path->nodes[1])
3765 return 1;
3766
3767 slot = path->slots[1];
3768 upper = path->nodes[1];
3769 if (slot >= btrfs_header_nritems(upper) - 1)
3770 return 1;
3771
3772 btrfs_assert_tree_locked(path->nodes[1]);
3773
2ff7e61e 3774 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3775 /*
3776 * slot + 1 is not valid or we fail to read the right node,
3777 * no big deal, just return.
3778 */
3779 if (IS_ERR(right))
91ca338d
TI
3780 return 1;
3781
44871b1b
CM
3782 btrfs_tree_lock(right);
3783 btrfs_set_lock_blocking(right);
3784
2ff7e61e 3785 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3786 if (free_space < data_size)
3787 goto out_unlock;
3788
3789 /* cow and double check */
3790 ret = btrfs_cow_block(trans, root, right, upper,
3791 slot + 1, &right);
3792 if (ret)
3793 goto out_unlock;
3794
2ff7e61e 3795 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3796 if (free_space < data_size)
3797 goto out_unlock;
3798
3799 left_nritems = btrfs_header_nritems(left);
3800 if (left_nritems == 0)
3801 goto out_unlock;
3802
2ef1fed2
FDBM
3803 if (path->slots[0] == left_nritems && !empty) {
3804 /* Key greater than all keys in the leaf, right neighbor has
3805 * enough room for it and we're not emptying our leaf to delete
3806 * it, therefore use right neighbor to insert the new item and
3807 * no need to touch/dirty our left leaft. */
3808 btrfs_tree_unlock(left);
3809 free_extent_buffer(left);
3810 path->nodes[0] = right;
3811 path->slots[0] = 0;
3812 path->slots[1]++;
3813 return 0;
3814 }
3815
1e47eef2 3816 return __push_leaf_right(fs_info, path, min_data_size, empty,
99d8f83c 3817 right, free_space, left_nritems, min_slot);
44871b1b
CM
3818out_unlock:
3819 btrfs_tree_unlock(right);
3820 free_extent_buffer(right);
3821 return 1;
3822}
3823
74123bd7
CM
3824/*
3825 * push some data in the path leaf to the left, trying to free up at
3826 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3827 *
3828 * max_slot can put a limit on how far into the leaf we'll push items. The
3829 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3830 * items
74123bd7 3831 */
66cb7ddb 3832static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
44871b1b
CM
3833 struct btrfs_path *path, int data_size,
3834 int empty, struct extent_buffer *left,
99d8f83c
CM
3835 int free_space, u32 right_nritems,
3836 u32 max_slot)
be0e5c09 3837{
5f39d397
CM
3838 struct btrfs_disk_key disk_key;
3839 struct extent_buffer *right = path->nodes[0];
be0e5c09 3840 int i;
be0e5c09
CM
3841 int push_space = 0;
3842 int push_items = 0;
0783fcfc 3843 struct btrfs_item *item;
7518a238 3844 u32 old_left_nritems;
34a38218 3845 u32 nr;
aa5d6bed 3846 int ret = 0;
db94535d
CM
3847 u32 this_item_size;
3848 u32 old_left_item_size;
cfed81a0
CM
3849 struct btrfs_map_token token;
3850
3851 btrfs_init_map_token(&token);
be0e5c09 3852
34a38218 3853 if (empty)
99d8f83c 3854 nr = min(right_nritems, max_slot);
34a38218 3855 else
99d8f83c 3856 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3857
3858 for (i = 0; i < nr; i++) {
dd3cc16b 3859 item = btrfs_item_nr(i);
db94535d 3860
31840ae1
ZY
3861 if (!empty && push_items > 0) {
3862 if (path->slots[0] < i)
3863 break;
3864 if (path->slots[0] == i) {
2ff7e61e 3865 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3866 if (space + push_space * 2 > free_space)
3867 break;
3868 }
3869 }
3870
be0e5c09 3871 if (path->slots[0] == i)
87b29b20 3872 push_space += data_size;
db94535d
CM
3873
3874 this_item_size = btrfs_item_size(right, item);
3875 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3876 break;
db94535d 3877
be0e5c09 3878 push_items++;
db94535d
CM
3879 push_space += this_item_size + sizeof(*item);
3880 }
3881
be0e5c09 3882 if (push_items == 0) {
925baedd
CM
3883 ret = 1;
3884 goto out;
be0e5c09 3885 }
fae7f21c 3886 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3887
be0e5c09 3888 /* push data from right to left */
5f39d397
CM
3889 copy_extent_buffer(left, right,
3890 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3891 btrfs_item_nr_offset(0),
3892 push_items * sizeof(struct btrfs_item));
3893
0b246afa 3894 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3895 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3896
3d9ec8c4 3897 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3898 leaf_data_end(fs_info, left) - push_space,
3d9ec8c4 3899 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3900 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3901 push_space);
5f39d397 3902 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3903 BUG_ON(old_left_nritems <= 0);
eb60ceac 3904
db94535d 3905 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3906 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3907 u32 ioff;
db94535d 3908
dd3cc16b 3909 item = btrfs_item_nr(i);
db94535d 3910
cfed81a0
CM
3911 ioff = btrfs_token_item_offset(left, item, &token);
3912 btrfs_set_token_item_offset(left, item,
0b246afa 3913 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3914 &token);
be0e5c09 3915 }
5f39d397 3916 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3917
3918 /* fixup right node */
31b1a2bd
JL
3919 if (push_items > right_nritems)
3920 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3921 right_nritems);
34a38218
CM
3922
3923 if (push_items < right_nritems) {
3924 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3925 leaf_data_end(fs_info, right);
3d9ec8c4 3926 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3927 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3928 BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3929 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3930
3931 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3932 btrfs_item_nr_offset(push_items),
3933 (btrfs_header_nritems(right) - push_items) *
3934 sizeof(struct btrfs_item));
34a38218 3935 }
eef1c494
Y
3936 right_nritems -= push_items;
3937 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3938 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3939 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3940 item = btrfs_item_nr(i);
db94535d 3941
cfed81a0
CM
3942 push_space = push_space - btrfs_token_item_size(right,
3943 item, &token);
3944 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3945 }
eb60ceac 3946
5f39d397 3947 btrfs_mark_buffer_dirty(left);
34a38218
CM
3948 if (right_nritems)
3949 btrfs_mark_buffer_dirty(right);
f0486c68 3950 else
7c302b49 3951 clean_tree_block(fs_info, right);
098f59c2 3952
5f39d397 3953 btrfs_item_key(right, &disk_key, 0);
0b246afa 3954 fixup_low_keys(fs_info, path, &disk_key, 1);
be0e5c09
CM
3955
3956 /* then fixup the leaf pointer in the path */
3957 if (path->slots[0] < push_items) {
3958 path->slots[0] += old_left_nritems;
925baedd 3959 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3960 free_extent_buffer(path->nodes[0]);
3961 path->nodes[0] = left;
be0e5c09
CM
3962 path->slots[1] -= 1;
3963 } else {
925baedd 3964 btrfs_tree_unlock(left);
5f39d397 3965 free_extent_buffer(left);
be0e5c09
CM
3966 path->slots[0] -= push_items;
3967 }
eb60ceac 3968 BUG_ON(path->slots[0] < 0);
aa5d6bed 3969 return ret;
925baedd
CM
3970out:
3971 btrfs_tree_unlock(left);
3972 free_extent_buffer(left);
3973 return ret;
be0e5c09
CM
3974}
3975
44871b1b
CM
3976/*
3977 * push some data in the path leaf to the left, trying to free up at
3978 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3979 *
3980 * max_slot can put a limit on how far into the leaf we'll push items. The
3981 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3982 * items
44871b1b
CM
3983 */
3984static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3985 *root, struct btrfs_path *path, int min_data_size,
3986 int data_size, int empty, u32 max_slot)
44871b1b 3987{
2ff7e61e 3988 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3989 struct extent_buffer *right = path->nodes[0];
3990 struct extent_buffer *left;
3991 int slot;
3992 int free_space;
3993 u32 right_nritems;
3994 int ret = 0;
3995
3996 slot = path->slots[1];
3997 if (slot == 0)
3998 return 1;
3999 if (!path->nodes[1])
4000 return 1;
4001
4002 right_nritems = btrfs_header_nritems(right);
4003 if (right_nritems == 0)
4004 return 1;
4005
4006 btrfs_assert_tree_locked(path->nodes[1]);
4007
2ff7e61e 4008 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
4009 /*
4010 * slot - 1 is not valid or we fail to read the left node,
4011 * no big deal, just return.
4012 */
4013 if (IS_ERR(left))
91ca338d
TI
4014 return 1;
4015
44871b1b
CM
4016 btrfs_tree_lock(left);
4017 btrfs_set_lock_blocking(left);
4018
2ff7e61e 4019 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4020 if (free_space < data_size) {
4021 ret = 1;
4022 goto out;
4023 }
4024
4025 /* cow and double check */
4026 ret = btrfs_cow_block(trans, root, left,
4027 path->nodes[1], slot - 1, &left);
4028 if (ret) {
4029 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4030 if (ret == -ENOSPC)
4031 ret = 1;
44871b1b
CM
4032 goto out;
4033 }
4034
2ff7e61e 4035 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4036 if (free_space < data_size) {
4037 ret = 1;
4038 goto out;
4039 }
4040
66cb7ddb 4041 return __push_leaf_left(fs_info, path, min_data_size,
99d8f83c
CM
4042 empty, left, free_space, right_nritems,
4043 max_slot);
44871b1b
CM
4044out:
4045 btrfs_tree_unlock(left);
4046 free_extent_buffer(left);
4047 return ret;
4048}
4049
4050/*
4051 * split the path's leaf in two, making sure there is at least data_size
4052 * available for the resulting leaf level of the path.
44871b1b 4053 */
143bede5 4054static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4055 struct btrfs_fs_info *fs_info,
143bede5
JM
4056 struct btrfs_path *path,
4057 struct extent_buffer *l,
4058 struct extent_buffer *right,
4059 int slot, int mid, int nritems)
44871b1b
CM
4060{
4061 int data_copy_size;
4062 int rt_data_off;
4063 int i;
44871b1b 4064 struct btrfs_disk_key disk_key;
cfed81a0
CM
4065 struct btrfs_map_token token;
4066
4067 btrfs_init_map_token(&token);
44871b1b
CM
4068
4069 nritems = nritems - mid;
4070 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4071 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4072
4073 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4074 btrfs_item_nr_offset(mid),
4075 nritems * sizeof(struct btrfs_item));
4076
4077 copy_extent_buffer(right, l,
3d9ec8c4
NB
4078 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4079 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 4080 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4081
0b246afa 4082 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4083
4084 for (i = 0; i < nritems; i++) {
dd3cc16b 4085 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4086 u32 ioff;
4087
cfed81a0
CM
4088 ioff = btrfs_token_item_offset(right, item, &token);
4089 btrfs_set_token_item_offset(right, item,
4090 ioff + rt_data_off, &token);
44871b1b
CM
4091 }
4092
44871b1b 4093 btrfs_set_header_nritems(l, mid);
44871b1b 4094 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4095 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4096 path->slots[1] + 1, 1);
44871b1b
CM
4097
4098 btrfs_mark_buffer_dirty(right);
4099 btrfs_mark_buffer_dirty(l);
4100 BUG_ON(path->slots[0] != slot);
4101
44871b1b
CM
4102 if (mid <= slot) {
4103 btrfs_tree_unlock(path->nodes[0]);
4104 free_extent_buffer(path->nodes[0]);
4105 path->nodes[0] = right;
4106 path->slots[0] -= mid;
4107 path->slots[1] += 1;
4108 } else {
4109 btrfs_tree_unlock(right);
4110 free_extent_buffer(right);
4111 }
4112
4113 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4114}
4115
99d8f83c
CM
4116/*
4117 * double splits happen when we need to insert a big item in the middle
4118 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4119 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4120 * A B C
4121 *
4122 * We avoid this by trying to push the items on either side of our target
4123 * into the adjacent leaves. If all goes well we can avoid the double split
4124 * completely.
4125 */
4126static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4127 struct btrfs_root *root,
4128 struct btrfs_path *path,
4129 int data_size)
4130{
2ff7e61e 4131 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4132 int ret;
4133 int progress = 0;
4134 int slot;
4135 u32 nritems;
5a4267ca 4136 int space_needed = data_size;
99d8f83c
CM
4137
4138 slot = path->slots[0];
5a4267ca 4139 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4140 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4141
4142 /*
4143 * try to push all the items after our slot into the
4144 * right leaf
4145 */
5a4267ca 4146 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4147 if (ret < 0)
4148 return ret;
4149
4150 if (ret == 0)
4151 progress++;
4152
4153 nritems = btrfs_header_nritems(path->nodes[0]);
4154 /*
4155 * our goal is to get our slot at the start or end of a leaf. If
4156 * we've done so we're done
4157 */
4158 if (path->slots[0] == 0 || path->slots[0] == nritems)
4159 return 0;
4160
2ff7e61e 4161 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4162 return 0;
4163
4164 /* try to push all the items before our slot into the next leaf */
4165 slot = path->slots[0];
263d3995
FM
4166 space_needed = data_size;
4167 if (slot > 0)
4168 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
5a4267ca 4169 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4170 if (ret < 0)
4171 return ret;
4172
4173 if (ret == 0)
4174 progress++;
4175
4176 if (progress)
4177 return 0;
4178 return 1;
4179}
4180
74123bd7
CM
4181/*
4182 * split the path's leaf in two, making sure there is at least data_size
4183 * available for the resulting leaf level of the path.
aa5d6bed
CM
4184 *
4185 * returns 0 if all went well and < 0 on failure.
74123bd7 4186 */
e02119d5
CM
4187static noinline int split_leaf(struct btrfs_trans_handle *trans,
4188 struct btrfs_root *root,
310712b2 4189 const struct btrfs_key *ins_key,
e02119d5
CM
4190 struct btrfs_path *path, int data_size,
4191 int extend)
be0e5c09 4192{
5d4f98a2 4193 struct btrfs_disk_key disk_key;
5f39d397 4194 struct extent_buffer *l;
7518a238 4195 u32 nritems;
eb60ceac
CM
4196 int mid;
4197 int slot;
5f39d397 4198 struct extent_buffer *right;
b7a0365e 4199 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4200 int ret = 0;
aa5d6bed 4201 int wret;
5d4f98a2 4202 int split;
cc0c5538 4203 int num_doubles = 0;
99d8f83c 4204 int tried_avoid_double = 0;
aa5d6bed 4205
a5719521
YZ
4206 l = path->nodes[0];
4207 slot = path->slots[0];
4208 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4209 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4210 return -EOVERFLOW;
4211
40689478 4212 /* first try to make some room by pushing left and right */
33157e05 4213 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4214 int space_needed = data_size;
4215
4216 if (slot < btrfs_header_nritems(l))
2ff7e61e 4217 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4218
4219 wret = push_leaf_right(trans, root, path, space_needed,
4220 space_needed, 0, 0);
d397712b 4221 if (wret < 0)
eaee50e8 4222 return wret;
3685f791 4223 if (wret) {
263d3995
FM
4224 space_needed = data_size;
4225 if (slot > 0)
4226 space_needed -= btrfs_leaf_free_space(fs_info,
4227 l);
5a4267ca
FDBM
4228 wret = push_leaf_left(trans, root, path, space_needed,
4229 space_needed, 0, (u32)-1);
3685f791
CM
4230 if (wret < 0)
4231 return wret;
4232 }
4233 l = path->nodes[0];
aa5d6bed 4234
3685f791 4235 /* did the pushes work? */
2ff7e61e 4236 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4237 return 0;
3326d1b0 4238 }
aa5d6bed 4239
5c680ed6 4240 if (!path->nodes[1]) {
fdd99c72 4241 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4242 if (ret)
4243 return ret;
4244 }
cc0c5538 4245again:
5d4f98a2 4246 split = 1;
cc0c5538 4247 l = path->nodes[0];
eb60ceac 4248 slot = path->slots[0];
5f39d397 4249 nritems = btrfs_header_nritems(l);
d397712b 4250 mid = (nritems + 1) / 2;
54aa1f4d 4251
5d4f98a2
YZ
4252 if (mid <= slot) {
4253 if (nritems == 1 ||
4254 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4255 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4256 if (slot >= nritems) {
4257 split = 0;
4258 } else {
4259 mid = slot;
4260 if (mid != nritems &&
4261 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4262 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4263 if (data_size && !tried_avoid_double)
4264 goto push_for_double;
5d4f98a2
YZ
4265 split = 2;
4266 }
4267 }
4268 }
4269 } else {
4270 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4271 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4272 if (!extend && data_size && slot == 0) {
4273 split = 0;
4274 } else if ((extend || !data_size) && slot == 0) {
4275 mid = 1;
4276 } else {
4277 mid = slot;
4278 if (mid != nritems &&
4279 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4280 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4281 if (data_size && !tried_avoid_double)
4282 goto push_for_double;
67871254 4283 split = 2;
5d4f98a2
YZ
4284 }
4285 }
4286 }
4287 }
4288
4289 if (split == 0)
4290 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4291 else
4292 btrfs_item_key(l, &disk_key, mid);
4293
4d75f8a9
DS
4294 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4295 &disk_key, 0, l->start, 0);
f0486c68 4296 if (IS_ERR(right))
5f39d397 4297 return PTR_ERR(right);
f0486c68 4298
0b246afa 4299 root_add_used(root, fs_info->nodesize);
5f39d397 4300
b159fa28 4301 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
db94535d 4302 btrfs_set_header_bytenr(right, right->start);
5f39d397 4303 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4304 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4305 btrfs_set_header_owner(right, root->root_key.objectid);
4306 btrfs_set_header_level(right, 0);
d24ee97b
DS
4307 write_extent_buffer_fsid(right, fs_info->fsid);
4308 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
44871b1b 4309
5d4f98a2
YZ
4310 if (split == 0) {
4311 if (mid <= slot) {
4312 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4313 insert_ptr(trans, fs_info, path, &disk_key,
4314 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4315 btrfs_tree_unlock(path->nodes[0]);
4316 free_extent_buffer(path->nodes[0]);
4317 path->nodes[0] = right;
4318 path->slots[0] = 0;
4319 path->slots[1] += 1;
4320 } else {
4321 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4322 insert_ptr(trans, fs_info, path, &disk_key,
4323 right->start, path->slots[1], 1);
5d4f98a2
YZ
4324 btrfs_tree_unlock(path->nodes[0]);
4325 free_extent_buffer(path->nodes[0]);
4326 path->nodes[0] = right;
4327 path->slots[0] = 0;
143bede5 4328 if (path->slots[1] == 0)
b7a0365e 4329 fixup_low_keys(fs_info, path, &disk_key, 1);
d4dbff95 4330 }
196e0249
LB
4331 /*
4332 * We create a new leaf 'right' for the required ins_len and
4333 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4334 * the content of ins_len to 'right'.
4335 */
5d4f98a2 4336 return ret;
d4dbff95 4337 }
74123bd7 4338
2ff7e61e 4339 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4340
5d4f98a2 4341 if (split == 2) {
cc0c5538
CM
4342 BUG_ON(num_doubles != 0);
4343 num_doubles++;
4344 goto again;
a429e513 4345 }
44871b1b 4346
143bede5 4347 return 0;
99d8f83c
CM
4348
4349push_for_double:
4350 push_for_double_split(trans, root, path, data_size);
4351 tried_avoid_double = 1;
2ff7e61e 4352 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4353 return 0;
4354 goto again;
be0e5c09
CM
4355}
4356
ad48fd75
YZ
4357static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4358 struct btrfs_root *root,
4359 struct btrfs_path *path, int ins_len)
459931ec 4360{
2ff7e61e 4361 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4362 struct btrfs_key key;
459931ec 4363 struct extent_buffer *leaf;
ad48fd75
YZ
4364 struct btrfs_file_extent_item *fi;
4365 u64 extent_len = 0;
4366 u32 item_size;
4367 int ret;
459931ec
CM
4368
4369 leaf = path->nodes[0];
ad48fd75
YZ
4370 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4371
4372 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4373 key.type != BTRFS_EXTENT_CSUM_KEY);
4374
2ff7e61e 4375 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4376 return 0;
459931ec
CM
4377
4378 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4379 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4380 fi = btrfs_item_ptr(leaf, path->slots[0],
4381 struct btrfs_file_extent_item);
4382 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4383 }
b3b4aa74 4384 btrfs_release_path(path);
459931ec 4385
459931ec 4386 path->keep_locks = 1;
ad48fd75
YZ
4387 path->search_for_split = 1;
4388 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4389 path->search_for_split = 0;
a8df6fe6
FM
4390 if (ret > 0)
4391 ret = -EAGAIN;
ad48fd75
YZ
4392 if (ret < 0)
4393 goto err;
459931ec 4394
ad48fd75
YZ
4395 ret = -EAGAIN;
4396 leaf = path->nodes[0];
a8df6fe6
FM
4397 /* if our item isn't there, return now */
4398 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4399 goto err;
4400
109f6aef 4401 /* the leaf has changed, it now has room. return now */
2ff7e61e 4402 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4403 goto err;
4404
ad48fd75
YZ
4405 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4406 fi = btrfs_item_ptr(leaf, path->slots[0],
4407 struct btrfs_file_extent_item);
4408 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4409 goto err;
459931ec
CM
4410 }
4411
b9473439 4412 btrfs_set_path_blocking(path);
ad48fd75 4413 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4414 if (ret)
4415 goto err;
459931ec 4416
ad48fd75 4417 path->keep_locks = 0;
b9473439 4418 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4419 return 0;
4420err:
4421 path->keep_locks = 0;
4422 return ret;
4423}
4424
4961e293 4425static noinline int split_item(struct btrfs_fs_info *fs_info,
ad48fd75 4426 struct btrfs_path *path,
310712b2 4427 const struct btrfs_key *new_key,
ad48fd75
YZ
4428 unsigned long split_offset)
4429{
4430 struct extent_buffer *leaf;
4431 struct btrfs_item *item;
4432 struct btrfs_item *new_item;
4433 int slot;
4434 char *buf;
4435 u32 nritems;
4436 u32 item_size;
4437 u32 orig_offset;
4438 struct btrfs_disk_key disk_key;
4439
b9473439 4440 leaf = path->nodes[0];
2ff7e61e 4441 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4442
b4ce94de
CM
4443 btrfs_set_path_blocking(path);
4444
dd3cc16b 4445 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4446 orig_offset = btrfs_item_offset(leaf, item);
4447 item_size = btrfs_item_size(leaf, item);
4448
459931ec 4449 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4450 if (!buf)
4451 return -ENOMEM;
4452
459931ec
CM
4453 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4454 path->slots[0]), item_size);
459931ec 4455
ad48fd75 4456 slot = path->slots[0] + 1;
459931ec 4457 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4458 if (slot != nritems) {
4459 /* shift the items */
4460 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4461 btrfs_item_nr_offset(slot),
4462 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4463 }
4464
4465 btrfs_cpu_key_to_disk(&disk_key, new_key);
4466 btrfs_set_item_key(leaf, &disk_key, slot);
4467
dd3cc16b 4468 new_item = btrfs_item_nr(slot);
459931ec
CM
4469
4470 btrfs_set_item_offset(leaf, new_item, orig_offset);
4471 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4472
4473 btrfs_set_item_offset(leaf, item,
4474 orig_offset + item_size - split_offset);
4475 btrfs_set_item_size(leaf, item, split_offset);
4476
4477 btrfs_set_header_nritems(leaf, nritems + 1);
4478
4479 /* write the data for the start of the original item */
4480 write_extent_buffer(leaf, buf,
4481 btrfs_item_ptr_offset(leaf, path->slots[0]),
4482 split_offset);
4483
4484 /* write the data for the new item */
4485 write_extent_buffer(leaf, buf + split_offset,
4486 btrfs_item_ptr_offset(leaf, slot),
4487 item_size - split_offset);
4488 btrfs_mark_buffer_dirty(leaf);
4489
2ff7e61e 4490 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4491 kfree(buf);
ad48fd75
YZ
4492 return 0;
4493}
4494
4495/*
4496 * This function splits a single item into two items,
4497 * giving 'new_key' to the new item and splitting the
4498 * old one at split_offset (from the start of the item).
4499 *
4500 * The path may be released by this operation. After
4501 * the split, the path is pointing to the old item. The
4502 * new item is going to be in the same node as the old one.
4503 *
4504 * Note, the item being split must be smaller enough to live alone on
4505 * a tree block with room for one extra struct btrfs_item
4506 *
4507 * This allows us to split the item in place, keeping a lock on the
4508 * leaf the entire time.
4509 */
4510int btrfs_split_item(struct btrfs_trans_handle *trans,
4511 struct btrfs_root *root,
4512 struct btrfs_path *path,
310712b2 4513 const struct btrfs_key *new_key,
ad48fd75
YZ
4514 unsigned long split_offset)
4515{
4516 int ret;
4517 ret = setup_leaf_for_split(trans, root, path,
4518 sizeof(struct btrfs_item));
4519 if (ret)
4520 return ret;
4521
4961e293 4522 ret = split_item(root->fs_info, path, new_key, split_offset);
459931ec
CM
4523 return ret;
4524}
4525
ad48fd75
YZ
4526/*
4527 * This function duplicate a item, giving 'new_key' to the new item.
4528 * It guarantees both items live in the same tree leaf and the new item
4529 * is contiguous with the original item.
4530 *
4531 * This allows us to split file extent in place, keeping a lock on the
4532 * leaf the entire time.
4533 */
4534int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4535 struct btrfs_root *root,
4536 struct btrfs_path *path,
310712b2 4537 const struct btrfs_key *new_key)
ad48fd75
YZ
4538{
4539 struct extent_buffer *leaf;
4540 int ret;
4541 u32 item_size;
4542
4543 leaf = path->nodes[0];
4544 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4545 ret = setup_leaf_for_split(trans, root, path,
4546 item_size + sizeof(struct btrfs_item));
4547 if (ret)
4548 return ret;
4549
4550 path->slots[0]++;
afe5fea7 4551 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4552 item_size, item_size +
4553 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4554 leaf = path->nodes[0];
4555 memcpy_extent_buffer(leaf,
4556 btrfs_item_ptr_offset(leaf, path->slots[0]),
4557 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4558 item_size);
4559 return 0;
4560}
4561
d352ac68
CM
4562/*
4563 * make the item pointed to by the path smaller. new_size indicates
4564 * how small to make it, and from_end tells us if we just chop bytes
4565 * off the end of the item or if we shift the item to chop bytes off
4566 * the front.
4567 */
2ff7e61e
JM
4568void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4569 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4570{
b18c6685 4571 int slot;
5f39d397
CM
4572 struct extent_buffer *leaf;
4573 struct btrfs_item *item;
b18c6685
CM
4574 u32 nritems;
4575 unsigned int data_end;
4576 unsigned int old_data_start;
4577 unsigned int old_size;
4578 unsigned int size_diff;
4579 int i;
cfed81a0
CM
4580 struct btrfs_map_token token;
4581
4582 btrfs_init_map_token(&token);
b18c6685 4583
5f39d397 4584 leaf = path->nodes[0];
179e29e4
CM
4585 slot = path->slots[0];
4586
4587 old_size = btrfs_item_size_nr(leaf, slot);
4588 if (old_size == new_size)
143bede5 4589 return;
b18c6685 4590
5f39d397 4591 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4592 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4593
5f39d397 4594 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4595
b18c6685
CM
4596 size_diff = old_size - new_size;
4597
4598 BUG_ON(slot < 0);
4599 BUG_ON(slot >= nritems);
4600
4601 /*
4602 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4603 */
4604 /* first correct the data pointers */
4605 for (i = slot; i < nritems; i++) {
5f39d397 4606 u32 ioff;
dd3cc16b 4607 item = btrfs_item_nr(i);
db94535d 4608
cfed81a0
CM
4609 ioff = btrfs_token_item_offset(leaf, item, &token);
4610 btrfs_set_token_item_offset(leaf, item,
4611 ioff + size_diff, &token);
b18c6685 4612 }
db94535d 4613
b18c6685 4614 /* shift the data */
179e29e4 4615 if (from_end) {
3d9ec8c4
NB
4616 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4617 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4618 data_end, old_data_start + new_size - data_end);
4619 } else {
4620 struct btrfs_disk_key disk_key;
4621 u64 offset;
4622
4623 btrfs_item_key(leaf, &disk_key, slot);
4624
4625 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4626 unsigned long ptr;
4627 struct btrfs_file_extent_item *fi;
4628
4629 fi = btrfs_item_ptr(leaf, slot,
4630 struct btrfs_file_extent_item);
4631 fi = (struct btrfs_file_extent_item *)(
4632 (unsigned long)fi - size_diff);
4633
4634 if (btrfs_file_extent_type(leaf, fi) ==
4635 BTRFS_FILE_EXTENT_INLINE) {
4636 ptr = btrfs_item_ptr_offset(leaf, slot);
4637 memmove_extent_buffer(leaf, ptr,
d397712b 4638 (unsigned long)fi,
7ec20afb 4639 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4640 }
4641 }
4642
3d9ec8c4
NB
4643 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4644 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4645 data_end, old_data_start - data_end);
4646
4647 offset = btrfs_disk_key_offset(&disk_key);
4648 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4649 btrfs_set_item_key(leaf, &disk_key, slot);
4650 if (slot == 0)
0b246afa 4651 fixup_low_keys(fs_info, path, &disk_key, 1);
179e29e4 4652 }
5f39d397 4653
dd3cc16b 4654 item = btrfs_item_nr(slot);
5f39d397
CM
4655 btrfs_set_item_size(leaf, item, new_size);
4656 btrfs_mark_buffer_dirty(leaf);
b18c6685 4657
2ff7e61e 4658 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4659 btrfs_print_leaf(leaf);
b18c6685 4660 BUG();
5f39d397 4661 }
b18c6685
CM
4662}
4663
d352ac68 4664/*
8f69dbd2 4665 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4666 */
2ff7e61e 4667void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4668 u32 data_size)
6567e837 4669{
6567e837 4670 int slot;
5f39d397
CM
4671 struct extent_buffer *leaf;
4672 struct btrfs_item *item;
6567e837
CM
4673 u32 nritems;
4674 unsigned int data_end;
4675 unsigned int old_data;
4676 unsigned int old_size;
4677 int i;
cfed81a0
CM
4678 struct btrfs_map_token token;
4679
4680 btrfs_init_map_token(&token);
6567e837 4681
5f39d397 4682 leaf = path->nodes[0];
6567e837 4683
5f39d397 4684 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4685 data_end = leaf_data_end(fs_info, leaf);
6567e837 4686
2ff7e61e 4687 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
a4f78750 4688 btrfs_print_leaf(leaf);
6567e837 4689 BUG();
5f39d397 4690 }
6567e837 4691 slot = path->slots[0];
5f39d397 4692 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4693
4694 BUG_ON(slot < 0);
3326d1b0 4695 if (slot >= nritems) {
a4f78750 4696 btrfs_print_leaf(leaf);
0b246afa
JM
4697 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4698 slot, nritems);
3326d1b0
CM
4699 BUG_ON(1);
4700 }
6567e837
CM
4701
4702 /*
4703 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4704 */
4705 /* first correct the data pointers */
4706 for (i = slot; i < nritems; i++) {
5f39d397 4707 u32 ioff;
dd3cc16b 4708 item = btrfs_item_nr(i);
db94535d 4709
cfed81a0
CM
4710 ioff = btrfs_token_item_offset(leaf, item, &token);
4711 btrfs_set_token_item_offset(leaf, item,
4712 ioff - data_size, &token);
6567e837 4713 }
5f39d397 4714
6567e837 4715 /* shift the data */
3d9ec8c4
NB
4716 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4717 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4718 data_end, old_data - data_end);
5f39d397 4719
6567e837 4720 data_end = old_data;
5f39d397 4721 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4722 item = btrfs_item_nr(slot);
5f39d397
CM
4723 btrfs_set_item_size(leaf, item, old_size + data_size);
4724 btrfs_mark_buffer_dirty(leaf);
6567e837 4725
2ff7e61e 4726 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4727 btrfs_print_leaf(leaf);
6567e837 4728 BUG();
5f39d397 4729 }
6567e837
CM
4730}
4731
74123bd7 4732/*
44871b1b
CM
4733 * this is a helper for btrfs_insert_empty_items, the main goal here is
4734 * to save stack depth by doing the bulk of the work in a function
4735 * that doesn't call btrfs_search_slot
74123bd7 4736 */
afe5fea7 4737void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4738 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4739 u32 total_data, u32 total_size, int nr)
be0e5c09 4740{
0b246afa 4741 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4742 struct btrfs_item *item;
9c58309d 4743 int i;
7518a238 4744 u32 nritems;
be0e5c09 4745 unsigned int data_end;
e2fa7227 4746 struct btrfs_disk_key disk_key;
44871b1b
CM
4747 struct extent_buffer *leaf;
4748 int slot;
cfed81a0
CM
4749 struct btrfs_map_token token;
4750
24cdc847
FM
4751 if (path->slots[0] == 0) {
4752 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
0b246afa 4753 fixup_low_keys(fs_info, path, &disk_key, 1);
24cdc847
FM
4754 }
4755 btrfs_unlock_up_safe(path, 1);
4756
cfed81a0 4757 btrfs_init_map_token(&token);
e2fa7227 4758
5f39d397 4759 leaf = path->nodes[0];
44871b1b 4760 slot = path->slots[0];
74123bd7 4761
5f39d397 4762 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4763 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4764
2ff7e61e 4765 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
a4f78750 4766 btrfs_print_leaf(leaf);
0b246afa 4767 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4768 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4769 BUG();
d4dbff95 4770 }
5f39d397 4771
be0e5c09 4772 if (slot != nritems) {
5f39d397 4773 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4774
5f39d397 4775 if (old_data < data_end) {
a4f78750 4776 btrfs_print_leaf(leaf);
0b246afa 4777 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4778 slot, old_data, data_end);
5f39d397
CM
4779 BUG_ON(1);
4780 }
be0e5c09
CM
4781 /*
4782 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4783 */
4784 /* first correct the data pointers */
0783fcfc 4785 for (i = slot; i < nritems; i++) {
5f39d397 4786 u32 ioff;
db94535d 4787
62e85577 4788 item = btrfs_item_nr(i);
cfed81a0
CM
4789 ioff = btrfs_token_item_offset(leaf, item, &token);
4790 btrfs_set_token_item_offset(leaf, item,
4791 ioff - total_data, &token);
0783fcfc 4792 }
be0e5c09 4793 /* shift the items */
9c58309d 4794 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4795 btrfs_item_nr_offset(slot),
d6025579 4796 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4797
4798 /* shift the data */
3d9ec8c4
NB
4799 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4800 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4801 data_end, old_data - data_end);
be0e5c09
CM
4802 data_end = old_data;
4803 }
5f39d397 4804
62e2749e 4805 /* setup the item for the new data */
9c58309d
CM
4806 for (i = 0; i < nr; i++) {
4807 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4808 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4809 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4810 btrfs_set_token_item_offset(leaf, item,
4811 data_end - data_size[i], &token);
9c58309d 4812 data_end -= data_size[i];
cfed81a0 4813 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4814 }
44871b1b 4815
9c58309d 4816 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4817 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4818
2ff7e61e 4819 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4820 btrfs_print_leaf(leaf);
be0e5c09 4821 BUG();
5f39d397 4822 }
44871b1b
CM
4823}
4824
4825/*
4826 * Given a key and some data, insert items into the tree.
4827 * This does all the path init required, making room in the tree if needed.
4828 */
4829int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4830 struct btrfs_root *root,
4831 struct btrfs_path *path,
310712b2 4832 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4833 int nr)
4834{
44871b1b
CM
4835 int ret = 0;
4836 int slot;
4837 int i;
4838 u32 total_size = 0;
4839 u32 total_data = 0;
4840
4841 for (i = 0; i < nr; i++)
4842 total_data += data_size[i];
4843
4844 total_size = total_data + (nr * sizeof(struct btrfs_item));
4845 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4846 if (ret == 0)
4847 return -EEXIST;
4848 if (ret < 0)
143bede5 4849 return ret;
44871b1b 4850
44871b1b
CM
4851 slot = path->slots[0];
4852 BUG_ON(slot < 0);
4853
afe5fea7 4854 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4855 total_data, total_size, nr);
143bede5 4856 return 0;
62e2749e
CM
4857}
4858
4859/*
4860 * Given a key and some data, insert an item into the tree.
4861 * This does all the path init required, making room in the tree if needed.
4862 */
310712b2
OS
4863int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4864 const struct btrfs_key *cpu_key, void *data,
4865 u32 data_size)
62e2749e
CM
4866{
4867 int ret = 0;
2c90e5d6 4868 struct btrfs_path *path;
5f39d397
CM
4869 struct extent_buffer *leaf;
4870 unsigned long ptr;
62e2749e 4871
2c90e5d6 4872 path = btrfs_alloc_path();
db5b493a
TI
4873 if (!path)
4874 return -ENOMEM;
2c90e5d6 4875 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4876 if (!ret) {
5f39d397
CM
4877 leaf = path->nodes[0];
4878 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4879 write_extent_buffer(leaf, data, ptr, data_size);
4880 btrfs_mark_buffer_dirty(leaf);
62e2749e 4881 }
2c90e5d6 4882 btrfs_free_path(path);
aa5d6bed 4883 return ret;
be0e5c09
CM
4884}
4885
74123bd7 4886/*
5de08d7d 4887 * delete the pointer from a given node.
74123bd7 4888 *
d352ac68
CM
4889 * the tree should have been previously balanced so the deletion does not
4890 * empty a node.
74123bd7 4891 */
afe5fea7
TI
4892static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4893 int level, int slot)
be0e5c09 4894{
0b246afa 4895 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4896 struct extent_buffer *parent = path->nodes[level];
7518a238 4897 u32 nritems;
f3ea38da 4898 int ret;
be0e5c09 4899
5f39d397 4900 nritems = btrfs_header_nritems(parent);
d397712b 4901 if (slot != nritems - 1) {
0e411ece 4902 if (level)
0b246afa 4903 tree_mod_log_eb_move(fs_info, parent, slot,
f3ea38da 4904 slot + 1, nritems - slot - 1);
5f39d397
CM
4905 memmove_extent_buffer(parent,
4906 btrfs_node_key_ptr_offset(slot),
4907 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4908 sizeof(struct btrfs_key_ptr) *
4909 (nritems - slot - 1));
57ba86c0 4910 } else if (level) {
0b246afa 4911 ret = tree_mod_log_insert_key(fs_info, parent, slot,
c8cc6341 4912 MOD_LOG_KEY_REMOVE, GFP_NOFS);
57ba86c0 4913 BUG_ON(ret < 0);
bb803951 4914 }
f3ea38da 4915
7518a238 4916 nritems--;
5f39d397 4917 btrfs_set_header_nritems(parent, nritems);
7518a238 4918 if (nritems == 0 && parent == root->node) {
5f39d397 4919 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4920 /* just turn the root into a leaf and break */
5f39d397 4921 btrfs_set_header_level(root->node, 0);
bb803951 4922 } else if (slot == 0) {
5f39d397
CM
4923 struct btrfs_disk_key disk_key;
4924
4925 btrfs_node_key(parent, &disk_key, 0);
0b246afa 4926 fixup_low_keys(fs_info, path, &disk_key, level + 1);
be0e5c09 4927 }
d6025579 4928 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4929}
4930
323ac95b
CM
4931/*
4932 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4933 * path->nodes[1].
323ac95b
CM
4934 *
4935 * This deletes the pointer in path->nodes[1] and frees the leaf
4936 * block extent. zero is returned if it all worked out, < 0 otherwise.
4937 *
4938 * The path must have already been setup for deleting the leaf, including
4939 * all the proper balancing. path->nodes[1] must be locked.
4940 */
143bede5
JM
4941static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4942 struct btrfs_root *root,
4943 struct btrfs_path *path,
4944 struct extent_buffer *leaf)
323ac95b 4945{
5d4f98a2 4946 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4947 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4948
4d081c41
CM
4949 /*
4950 * btrfs_free_extent is expensive, we want to make sure we
4951 * aren't holding any locks when we call it
4952 */
4953 btrfs_unlock_up_safe(path, 0);
4954
f0486c68
YZ
4955 root_sub_used(root, leaf->len);
4956
3083ee2e 4957 extent_buffer_get(leaf);
5581a51a 4958 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4959 free_extent_buffer_stale(leaf);
323ac95b 4960}
74123bd7
CM
4961/*
4962 * delete the item at the leaf level in path. If that empties
4963 * the leaf, remove it from the tree
4964 */
85e21bac
CM
4965int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4966 struct btrfs_path *path, int slot, int nr)
be0e5c09 4967{
0b246afa 4968 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4969 struct extent_buffer *leaf;
4970 struct btrfs_item *item;
ce0eac2a
AM
4971 u32 last_off;
4972 u32 dsize = 0;
aa5d6bed
CM
4973 int ret = 0;
4974 int wret;
85e21bac 4975 int i;
7518a238 4976 u32 nritems;
cfed81a0
CM
4977 struct btrfs_map_token token;
4978
4979 btrfs_init_map_token(&token);
be0e5c09 4980
5f39d397 4981 leaf = path->nodes[0];
85e21bac
CM
4982 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4983
4984 for (i = 0; i < nr; i++)
4985 dsize += btrfs_item_size_nr(leaf, slot + i);
4986
5f39d397 4987 nritems = btrfs_header_nritems(leaf);
be0e5c09 4988
85e21bac 4989 if (slot + nr != nritems) {
2ff7e61e 4990 int data_end = leaf_data_end(fs_info, leaf);
5f39d397 4991
3d9ec8c4 4992 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 4993 data_end + dsize,
3d9ec8c4 4994 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 4995 last_off - data_end);
5f39d397 4996
85e21bac 4997 for (i = slot + nr; i < nritems; i++) {
5f39d397 4998 u32 ioff;
db94535d 4999
dd3cc16b 5000 item = btrfs_item_nr(i);
cfed81a0
CM
5001 ioff = btrfs_token_item_offset(leaf, item, &token);
5002 btrfs_set_token_item_offset(leaf, item,
5003 ioff + dsize, &token);
0783fcfc 5004 }
db94535d 5005
5f39d397 5006 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 5007 btrfs_item_nr_offset(slot + nr),
d6025579 5008 sizeof(struct btrfs_item) *
85e21bac 5009 (nritems - slot - nr));
be0e5c09 5010 }
85e21bac
CM
5011 btrfs_set_header_nritems(leaf, nritems - nr);
5012 nritems -= nr;
5f39d397 5013
74123bd7 5014 /* delete the leaf if we've emptied it */
7518a238 5015 if (nritems == 0) {
5f39d397
CM
5016 if (leaf == root->node) {
5017 btrfs_set_header_level(leaf, 0);
9a8dd150 5018 } else {
f0486c68 5019 btrfs_set_path_blocking(path);
7c302b49 5020 clean_tree_block(fs_info, leaf);
143bede5 5021 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5022 }
be0e5c09 5023 } else {
7518a238 5024 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5025 if (slot == 0) {
5f39d397
CM
5026 struct btrfs_disk_key disk_key;
5027
5028 btrfs_item_key(leaf, &disk_key, 0);
0b246afa 5029 fixup_low_keys(fs_info, path, &disk_key, 1);
aa5d6bed 5030 }
aa5d6bed 5031
74123bd7 5032 /* delete the leaf if it is mostly empty */
0b246afa 5033 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
5034 /* push_leaf_left fixes the path.
5035 * make sure the path still points to our leaf
5036 * for possible call to del_ptr below
5037 */
4920c9ac 5038 slot = path->slots[1];
5f39d397
CM
5039 extent_buffer_get(leaf);
5040
b9473439 5041 btrfs_set_path_blocking(path);
99d8f83c
CM
5042 wret = push_leaf_left(trans, root, path, 1, 1,
5043 1, (u32)-1);
54aa1f4d 5044 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5045 ret = wret;
5f39d397
CM
5046
5047 if (path->nodes[0] == leaf &&
5048 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5049 wret = push_leaf_right(trans, root, path, 1,
5050 1, 1, 0);
54aa1f4d 5051 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5052 ret = wret;
5053 }
5f39d397
CM
5054
5055 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5056 path->slots[1] = slot;
143bede5 5057 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5058 free_extent_buffer(leaf);
143bede5 5059 ret = 0;
5de08d7d 5060 } else {
925baedd
CM
5061 /* if we're still in the path, make sure
5062 * we're dirty. Otherwise, one of the
5063 * push_leaf functions must have already
5064 * dirtied this buffer
5065 */
5066 if (path->nodes[0] == leaf)
5067 btrfs_mark_buffer_dirty(leaf);
5f39d397 5068 free_extent_buffer(leaf);
be0e5c09 5069 }
d5719762 5070 } else {
5f39d397 5071 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5072 }
5073 }
aa5d6bed 5074 return ret;
be0e5c09
CM
5075}
5076
7bb86316 5077/*
925baedd 5078 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5079 * returns 0 if it found something or 1 if there are no lesser leaves.
5080 * returns < 0 on io errors.
d352ac68
CM
5081 *
5082 * This may release the path, and so you may lose any locks held at the
5083 * time you call it.
7bb86316 5084 */
16e7549f 5085int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5086{
925baedd
CM
5087 struct btrfs_key key;
5088 struct btrfs_disk_key found_key;
5089 int ret;
7bb86316 5090
925baedd 5091 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5092
e8b0d724 5093 if (key.offset > 0) {
925baedd 5094 key.offset--;
e8b0d724 5095 } else if (key.type > 0) {
925baedd 5096 key.type--;
e8b0d724
FDBM
5097 key.offset = (u64)-1;
5098 } else if (key.objectid > 0) {
925baedd 5099 key.objectid--;
e8b0d724
FDBM
5100 key.type = (u8)-1;
5101 key.offset = (u64)-1;
5102 } else {
925baedd 5103 return 1;
e8b0d724 5104 }
7bb86316 5105
b3b4aa74 5106 btrfs_release_path(path);
925baedd
CM
5107 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5108 if (ret < 0)
5109 return ret;
5110 btrfs_item_key(path->nodes[0], &found_key, 0);
5111 ret = comp_keys(&found_key, &key);
337c6f68
FM
5112 /*
5113 * We might have had an item with the previous key in the tree right
5114 * before we released our path. And after we released our path, that
5115 * item might have been pushed to the first slot (0) of the leaf we
5116 * were holding due to a tree balance. Alternatively, an item with the
5117 * previous key can exist as the only element of a leaf (big fat item).
5118 * Therefore account for these 2 cases, so that our callers (like
5119 * btrfs_previous_item) don't miss an existing item with a key matching
5120 * the previous key we computed above.
5121 */
5122 if (ret <= 0)
925baedd
CM
5123 return 0;
5124 return 1;
7bb86316
CM
5125}
5126
3f157a2f
CM
5127/*
5128 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5129 * for nodes or leaves that are have a minimum transaction id.
5130 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5131 *
5132 * This does not cow, but it does stuff the starting key it finds back
5133 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5134 * key and get a writable path.
5135 *
5136 * This does lock as it descends, and path->keep_locks should be set
5137 * to 1 by the caller.
5138 *
5139 * This honors path->lowest_level to prevent descent past a given level
5140 * of the tree.
5141 *
d352ac68
CM
5142 * min_trans indicates the oldest transaction that you are interested
5143 * in walking through. Any nodes or leaves older than min_trans are
5144 * skipped over (without reading them).
5145 *
3f157a2f
CM
5146 * returns zero if something useful was found, < 0 on error and 1 if there
5147 * was nothing in the tree that matched the search criteria.
5148 */
5149int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5150 struct btrfs_path *path,
3f157a2f
CM
5151 u64 min_trans)
5152{
2ff7e61e 5153 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5154 struct extent_buffer *cur;
5155 struct btrfs_key found_key;
5156 int slot;
9652480b 5157 int sret;
3f157a2f
CM
5158 u32 nritems;
5159 int level;
5160 int ret = 1;
f98de9b9 5161 int keep_locks = path->keep_locks;
3f157a2f 5162
f98de9b9 5163 path->keep_locks = 1;
3f157a2f 5164again:
bd681513 5165 cur = btrfs_read_lock_root_node(root);
3f157a2f 5166 level = btrfs_header_level(cur);
e02119d5 5167 WARN_ON(path->nodes[level]);
3f157a2f 5168 path->nodes[level] = cur;
bd681513 5169 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5170
5171 if (btrfs_header_generation(cur) < min_trans) {
5172 ret = 1;
5173 goto out;
5174 }
d397712b 5175 while (1) {
3f157a2f
CM
5176 nritems = btrfs_header_nritems(cur);
5177 level = btrfs_header_level(cur);
a74b35ec 5178 sret = btrfs_bin_search(cur, min_key, level, &slot);
3f157a2f 5179
323ac95b
CM
5180 /* at the lowest level, we're done, setup the path and exit */
5181 if (level == path->lowest_level) {
e02119d5
CM
5182 if (slot >= nritems)
5183 goto find_next_key;
3f157a2f
CM
5184 ret = 0;
5185 path->slots[level] = slot;
5186 btrfs_item_key_to_cpu(cur, &found_key, slot);
5187 goto out;
5188 }
9652480b
Y
5189 if (sret && slot > 0)
5190 slot--;
3f157a2f 5191 /*
de78b51a
ES
5192 * check this node pointer against the min_trans parameters.
5193 * If it is too old, old, skip to the next one.
3f157a2f 5194 */
d397712b 5195 while (slot < nritems) {
3f157a2f 5196 u64 gen;
e02119d5 5197
3f157a2f
CM
5198 gen = btrfs_node_ptr_generation(cur, slot);
5199 if (gen < min_trans) {
5200 slot++;
5201 continue;
5202 }
de78b51a 5203 break;
3f157a2f 5204 }
e02119d5 5205find_next_key:
3f157a2f
CM
5206 /*
5207 * we didn't find a candidate key in this node, walk forward
5208 * and find another one
5209 */
5210 if (slot >= nritems) {
e02119d5 5211 path->slots[level] = slot;
b4ce94de 5212 btrfs_set_path_blocking(path);
e02119d5 5213 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5214 min_trans);
e02119d5 5215 if (sret == 0) {
b3b4aa74 5216 btrfs_release_path(path);
3f157a2f
CM
5217 goto again;
5218 } else {
5219 goto out;
5220 }
5221 }
5222 /* save our key for returning back */
5223 btrfs_node_key_to_cpu(cur, &found_key, slot);
5224 path->slots[level] = slot;
5225 if (level == path->lowest_level) {
5226 ret = 0;
3f157a2f
CM
5227 goto out;
5228 }
b4ce94de 5229 btrfs_set_path_blocking(path);
2ff7e61e 5230 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5231 if (IS_ERR(cur)) {
5232 ret = PTR_ERR(cur);
5233 goto out;
5234 }
3f157a2f 5235
bd681513 5236 btrfs_tree_read_lock(cur);
b4ce94de 5237
bd681513 5238 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5239 path->nodes[level - 1] = cur;
f7c79f30 5240 unlock_up(path, level, 1, 0, NULL);
bd681513 5241 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5242 }
5243out:
f98de9b9
FM
5244 path->keep_locks = keep_locks;
5245 if (ret == 0) {
5246 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5247 btrfs_set_path_blocking(path);
3f157a2f 5248 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5249 }
3f157a2f
CM
5250 return ret;
5251}
5252
2ff7e61e 5253static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a 5254 struct btrfs_path *path,
ab6a43e1 5255 int *level)
7069830a 5256{
fb770ae4
LB
5257 struct extent_buffer *eb;
5258
74dd17fb 5259 BUG_ON(*level == 0);
2ff7e61e 5260 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5261 if (IS_ERR(eb))
5262 return PTR_ERR(eb);
5263
5264 path->nodes[*level - 1] = eb;
7069830a
AB
5265 path->slots[*level - 1] = 0;
5266 (*level)--;
fb770ae4 5267 return 0;
7069830a
AB
5268}
5269
f1e30261 5270static int tree_move_next_or_upnext(struct btrfs_path *path,
7069830a
AB
5271 int *level, int root_level)
5272{
5273 int ret = 0;
5274 int nritems;
5275 nritems = btrfs_header_nritems(path->nodes[*level]);
5276
5277 path->slots[*level]++;
5278
74dd17fb 5279 while (path->slots[*level] >= nritems) {
7069830a
AB
5280 if (*level == root_level)
5281 return -1;
5282
5283 /* move upnext */
5284 path->slots[*level] = 0;
5285 free_extent_buffer(path->nodes[*level]);
5286 path->nodes[*level] = NULL;
5287 (*level)++;
5288 path->slots[*level]++;
5289
5290 nritems = btrfs_header_nritems(path->nodes[*level]);
5291 ret = 1;
5292 }
5293 return ret;
5294}
5295
5296/*
5297 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5298 * or down.
5299 */
2ff7e61e 5300static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5301 struct btrfs_path *path,
5302 int *level, int root_level,
5303 int allow_down,
5304 struct btrfs_key *key)
5305{
5306 int ret;
5307
5308 if (*level == 0 || !allow_down) {
f1e30261 5309 ret = tree_move_next_or_upnext(path, level, root_level);
7069830a 5310 } else {
ab6a43e1 5311 ret = tree_move_down(fs_info, path, level);
7069830a
AB
5312 }
5313 if (ret >= 0) {
5314 if (*level == 0)
5315 btrfs_item_key_to_cpu(path->nodes[*level], key,
5316 path->slots[*level]);
5317 else
5318 btrfs_node_key_to_cpu(path->nodes[*level], key,
5319 path->slots[*level]);
5320 }
5321 return ret;
5322}
5323
2ff7e61e 5324static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5325 struct btrfs_path *right_path,
5326 char *tmp_buf)
5327{
5328 int cmp;
5329 int len1, len2;
5330 unsigned long off1, off2;
5331
5332 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5333 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5334 if (len1 != len2)
5335 return 1;
5336
5337 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5338 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5339 right_path->slots[0]);
5340
5341 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5342
5343 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5344 if (cmp)
5345 return 1;
5346 return 0;
5347}
5348
5349#define ADVANCE 1
5350#define ADVANCE_ONLY_NEXT -1
5351
5352/*
5353 * This function compares two trees and calls the provided callback for
5354 * every changed/new/deleted item it finds.
5355 * If shared tree blocks are encountered, whole subtrees are skipped, making
5356 * the compare pretty fast on snapshotted subvolumes.
5357 *
5358 * This currently works on commit roots only. As commit roots are read only,
5359 * we don't do any locking. The commit roots are protected with transactions.
5360 * Transactions are ended and rejoined when a commit is tried in between.
5361 *
5362 * This function checks for modifications done to the trees while comparing.
5363 * If it detects a change, it aborts immediately.
5364 */
5365int btrfs_compare_trees(struct btrfs_root *left_root,
5366 struct btrfs_root *right_root,
5367 btrfs_changed_cb_t changed_cb, void *ctx)
5368{
0b246afa 5369 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5370 int ret;
5371 int cmp;
7069830a
AB
5372 struct btrfs_path *left_path = NULL;
5373 struct btrfs_path *right_path = NULL;
5374 struct btrfs_key left_key;
5375 struct btrfs_key right_key;
5376 char *tmp_buf = NULL;
5377 int left_root_level;
5378 int right_root_level;
5379 int left_level;
5380 int right_level;
5381 int left_end_reached;
5382 int right_end_reached;
5383 int advance_left;
5384 int advance_right;
5385 u64 left_blockptr;
5386 u64 right_blockptr;
6baa4293
FM
5387 u64 left_gen;
5388 u64 right_gen;
7069830a
AB
5389
5390 left_path = btrfs_alloc_path();
5391 if (!left_path) {
5392 ret = -ENOMEM;
5393 goto out;
5394 }
5395 right_path = btrfs_alloc_path();
5396 if (!right_path) {
5397 ret = -ENOMEM;
5398 goto out;
5399 }
5400
752ade68 5401 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7069830a 5402 if (!tmp_buf) {
752ade68
MH
5403 ret = -ENOMEM;
5404 goto out;
7069830a
AB
5405 }
5406
5407 left_path->search_commit_root = 1;
5408 left_path->skip_locking = 1;
5409 right_path->search_commit_root = 1;
5410 right_path->skip_locking = 1;
5411
7069830a
AB
5412 /*
5413 * Strategy: Go to the first items of both trees. Then do
5414 *
5415 * If both trees are at level 0
5416 * Compare keys of current items
5417 * If left < right treat left item as new, advance left tree
5418 * and repeat
5419 * If left > right treat right item as deleted, advance right tree
5420 * and repeat
5421 * If left == right do deep compare of items, treat as changed if
5422 * needed, advance both trees and repeat
5423 * If both trees are at the same level but not at level 0
5424 * Compare keys of current nodes/leafs
5425 * If left < right advance left tree and repeat
5426 * If left > right advance right tree and repeat
5427 * If left == right compare blockptrs of the next nodes/leafs
5428 * If they match advance both trees but stay at the same level
5429 * and repeat
5430 * If they don't match advance both trees while allowing to go
5431 * deeper and repeat
5432 * If tree levels are different
5433 * Advance the tree that needs it and repeat
5434 *
5435 * Advancing a tree means:
5436 * If we are at level 0, try to go to the next slot. If that's not
5437 * possible, go one level up and repeat. Stop when we found a level
5438 * where we could go to the next slot. We may at this point be on a
5439 * node or a leaf.
5440 *
5441 * If we are not at level 0 and not on shared tree blocks, go one
5442 * level deeper.
5443 *
5444 * If we are not at level 0 and on shared tree blocks, go one slot to
5445 * the right if possible or go up and right.
5446 */
5447
0b246afa 5448 down_read(&fs_info->commit_root_sem);
7069830a
AB
5449 left_level = btrfs_header_level(left_root->commit_root);
5450 left_root_level = left_level;
5451 left_path->nodes[left_level] = left_root->commit_root;
5452 extent_buffer_get(left_path->nodes[left_level]);
5453
5454 right_level = btrfs_header_level(right_root->commit_root);
5455 right_root_level = right_level;
5456 right_path->nodes[right_level] = right_root->commit_root;
5457 extent_buffer_get(right_path->nodes[right_level]);
0b246afa 5458 up_read(&fs_info->commit_root_sem);
7069830a
AB
5459
5460 if (left_level == 0)
5461 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5462 &left_key, left_path->slots[left_level]);
5463 else
5464 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5465 &left_key, left_path->slots[left_level]);
5466 if (right_level == 0)
5467 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5468 &right_key, right_path->slots[right_level]);
5469 else
5470 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5471 &right_key, right_path->slots[right_level]);
5472
5473 left_end_reached = right_end_reached = 0;
5474 advance_left = advance_right = 0;
5475
5476 while (1) {
7069830a 5477 if (advance_left && !left_end_reached) {
2ff7e61e 5478 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5479 left_root_level,
5480 advance_left != ADVANCE_ONLY_NEXT,
5481 &left_key);
fb770ae4 5482 if (ret == -1)
7069830a 5483 left_end_reached = ADVANCE;
fb770ae4
LB
5484 else if (ret < 0)
5485 goto out;
7069830a
AB
5486 advance_left = 0;
5487 }
5488 if (advance_right && !right_end_reached) {
2ff7e61e 5489 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5490 right_root_level,
5491 advance_right != ADVANCE_ONLY_NEXT,
5492 &right_key);
fb770ae4 5493 if (ret == -1)
7069830a 5494 right_end_reached = ADVANCE;
fb770ae4
LB
5495 else if (ret < 0)
5496 goto out;
7069830a
AB
5497 advance_right = 0;
5498 }
5499
5500 if (left_end_reached && right_end_reached) {
5501 ret = 0;
5502 goto out;
5503 } else if (left_end_reached) {
5504 if (right_level == 0) {
ee8c494f 5505 ret = changed_cb(left_path, right_path,
7069830a
AB
5506 &right_key,
5507 BTRFS_COMPARE_TREE_DELETED,
5508 ctx);
5509 if (ret < 0)
5510 goto out;
5511 }
5512 advance_right = ADVANCE;
5513 continue;
5514 } else if (right_end_reached) {
5515 if (left_level == 0) {
ee8c494f 5516 ret = changed_cb(left_path, right_path,
7069830a
AB
5517 &left_key,
5518 BTRFS_COMPARE_TREE_NEW,
5519 ctx);
5520 if (ret < 0)
5521 goto out;
5522 }
5523 advance_left = ADVANCE;
5524 continue;
5525 }
5526
5527 if (left_level == 0 && right_level == 0) {
5528 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5529 if (cmp < 0) {
ee8c494f 5530 ret = changed_cb(left_path, right_path,
7069830a
AB
5531 &left_key,
5532 BTRFS_COMPARE_TREE_NEW,
5533 ctx);
5534 if (ret < 0)
5535 goto out;
5536 advance_left = ADVANCE;
5537 } else if (cmp > 0) {
ee8c494f 5538 ret = changed_cb(left_path, right_path,
7069830a
AB
5539 &right_key,
5540 BTRFS_COMPARE_TREE_DELETED,
5541 ctx);
5542 if (ret < 0)
5543 goto out;
5544 advance_right = ADVANCE;
5545 } else {
b99d9a6a 5546 enum btrfs_compare_tree_result result;
ba5e8f2e 5547
74dd17fb 5548 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5549 ret = tree_compare_item(left_path, right_path,
5550 tmp_buf);
ba5e8f2e 5551 if (ret)
b99d9a6a 5552 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5553 else
b99d9a6a 5554 result = BTRFS_COMPARE_TREE_SAME;
ee8c494f 5555 ret = changed_cb(left_path, right_path,
b99d9a6a 5556 &left_key, result, ctx);
ba5e8f2e
JB
5557 if (ret < 0)
5558 goto out;
7069830a
AB
5559 advance_left = ADVANCE;
5560 advance_right = ADVANCE;
5561 }
5562 } else if (left_level == right_level) {
5563 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5564 if (cmp < 0) {
5565 advance_left = ADVANCE;
5566 } else if (cmp > 0) {
5567 advance_right = ADVANCE;
5568 } else {
5569 left_blockptr = btrfs_node_blockptr(
5570 left_path->nodes[left_level],
5571 left_path->slots[left_level]);
5572 right_blockptr = btrfs_node_blockptr(
5573 right_path->nodes[right_level],
5574 right_path->slots[right_level]);
6baa4293
FM
5575 left_gen = btrfs_node_ptr_generation(
5576 left_path->nodes[left_level],
5577 left_path->slots[left_level]);
5578 right_gen = btrfs_node_ptr_generation(
5579 right_path->nodes[right_level],
5580 right_path->slots[right_level]);
5581 if (left_blockptr == right_blockptr &&
5582 left_gen == right_gen) {
7069830a
AB
5583 /*
5584 * As we're on a shared block, don't
5585 * allow to go deeper.
5586 */
5587 advance_left = ADVANCE_ONLY_NEXT;
5588 advance_right = ADVANCE_ONLY_NEXT;
5589 } else {
5590 advance_left = ADVANCE;
5591 advance_right = ADVANCE;
5592 }
5593 }
5594 } else if (left_level < right_level) {
5595 advance_right = ADVANCE;
5596 } else {
5597 advance_left = ADVANCE;
5598 }
5599 }
5600
5601out:
5602 btrfs_free_path(left_path);
5603 btrfs_free_path(right_path);
8f282f71 5604 kvfree(tmp_buf);
7069830a
AB
5605 return ret;
5606}
5607
3f157a2f
CM
5608/*
5609 * this is similar to btrfs_next_leaf, but does not try to preserve
5610 * and fixup the path. It looks for and returns the next key in the
de78b51a 5611 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5612 *
5613 * 0 is returned if another key is found, < 0 if there are any errors
5614 * and 1 is returned if there are no higher keys in the tree
5615 *
5616 * path->keep_locks should be set to 1 on the search made before
5617 * calling this function.
5618 */
e7a84565 5619int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5620 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5621{
e7a84565
CM
5622 int slot;
5623 struct extent_buffer *c;
5624
934d375b 5625 WARN_ON(!path->keep_locks);
d397712b 5626 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5627 if (!path->nodes[level])
5628 return 1;
5629
5630 slot = path->slots[level] + 1;
5631 c = path->nodes[level];
3f157a2f 5632next:
e7a84565 5633 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5634 int ret;
5635 int orig_lowest;
5636 struct btrfs_key cur_key;
5637 if (level + 1 >= BTRFS_MAX_LEVEL ||
5638 !path->nodes[level + 1])
e7a84565 5639 return 1;
33c66f43
YZ
5640
5641 if (path->locks[level + 1]) {
5642 level++;
5643 continue;
5644 }
5645
5646 slot = btrfs_header_nritems(c) - 1;
5647 if (level == 0)
5648 btrfs_item_key_to_cpu(c, &cur_key, slot);
5649 else
5650 btrfs_node_key_to_cpu(c, &cur_key, slot);
5651
5652 orig_lowest = path->lowest_level;
b3b4aa74 5653 btrfs_release_path(path);
33c66f43
YZ
5654 path->lowest_level = level;
5655 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5656 0, 0);
5657 path->lowest_level = orig_lowest;
5658 if (ret < 0)
5659 return ret;
5660
5661 c = path->nodes[level];
5662 slot = path->slots[level];
5663 if (ret == 0)
5664 slot++;
5665 goto next;
e7a84565 5666 }
33c66f43 5667
e7a84565
CM
5668 if (level == 0)
5669 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5670 else {
3f157a2f
CM
5671 u64 gen = btrfs_node_ptr_generation(c, slot);
5672
3f157a2f
CM
5673 if (gen < min_trans) {
5674 slot++;
5675 goto next;
5676 }
e7a84565 5677 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5678 }
e7a84565
CM
5679 return 0;
5680 }
5681 return 1;
5682}
5683
97571fd0 5684/*
925baedd 5685 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5686 * returns 0 if it found something or 1 if there are no greater leaves.
5687 * returns < 0 on io errors.
97571fd0 5688 */
234b63a0 5689int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5690{
5691 return btrfs_next_old_leaf(root, path, 0);
5692}
5693
5694int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5695 u64 time_seq)
d97e63b6
CM
5696{
5697 int slot;
8e73f275 5698 int level;
5f39d397 5699 struct extent_buffer *c;
8e73f275 5700 struct extent_buffer *next;
925baedd
CM
5701 struct btrfs_key key;
5702 u32 nritems;
5703 int ret;
8e73f275 5704 int old_spinning = path->leave_spinning;
bd681513 5705 int next_rw_lock = 0;
925baedd
CM
5706
5707 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5708 if (nritems == 0)
925baedd 5709 return 1;
925baedd 5710
8e73f275
CM
5711 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5712again:
5713 level = 1;
5714 next = NULL;
bd681513 5715 next_rw_lock = 0;
b3b4aa74 5716 btrfs_release_path(path);
8e73f275 5717
a2135011 5718 path->keep_locks = 1;
31533fb2 5719 path->leave_spinning = 1;
8e73f275 5720
3d7806ec
JS
5721 if (time_seq)
5722 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5723 else
5724 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5725 path->keep_locks = 0;
5726
5727 if (ret < 0)
5728 return ret;
5729
a2135011 5730 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5731 /*
5732 * by releasing the path above we dropped all our locks. A balance
5733 * could have added more items next to the key that used to be
5734 * at the very end of the block. So, check again here and
5735 * advance the path if there are now more items available.
5736 */
a2135011 5737 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5738 if (ret == 0)
5739 path->slots[0]++;
8e73f275 5740 ret = 0;
925baedd
CM
5741 goto done;
5742 }
0b43e04f
LB
5743 /*
5744 * So the above check misses one case:
5745 * - after releasing the path above, someone has removed the item that
5746 * used to be at the very end of the block, and balance between leafs
5747 * gets another one with bigger key.offset to replace it.
5748 *
5749 * This one should be returned as well, or we can get leaf corruption
5750 * later(esp. in __btrfs_drop_extents()).
5751 *
5752 * And a bit more explanation about this check,
5753 * with ret > 0, the key isn't found, the path points to the slot
5754 * where it should be inserted, so the path->slots[0] item must be the
5755 * bigger one.
5756 */
5757 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5758 ret = 0;
5759 goto done;
5760 }
d97e63b6 5761
d397712b 5762 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5763 if (!path->nodes[level]) {
5764 ret = 1;
5765 goto done;
5766 }
5f39d397 5767
d97e63b6
CM
5768 slot = path->slots[level] + 1;
5769 c = path->nodes[level];
5f39d397 5770 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5771 level++;
8e73f275
CM
5772 if (level == BTRFS_MAX_LEVEL) {
5773 ret = 1;
5774 goto done;
5775 }
d97e63b6
CM
5776 continue;
5777 }
5f39d397 5778
925baedd 5779 if (next) {
bd681513 5780 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5781 free_extent_buffer(next);
925baedd 5782 }
5f39d397 5783
8e73f275 5784 next = c;
bd681513 5785 next_rw_lock = path->locks[level];
d07b8528 5786 ret = read_block_for_search(root, path, &next, level,
cda79c54 5787 slot, &key);
8e73f275
CM
5788 if (ret == -EAGAIN)
5789 goto again;
5f39d397 5790
76a05b35 5791 if (ret < 0) {
b3b4aa74 5792 btrfs_release_path(path);
76a05b35
CM
5793 goto done;
5794 }
5795
5cd57b2c 5796 if (!path->skip_locking) {
bd681513 5797 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5798 if (!ret && time_seq) {
5799 /*
5800 * If we don't get the lock, we may be racing
5801 * with push_leaf_left, holding that lock while
5802 * itself waiting for the leaf we've currently
5803 * locked. To solve this situation, we give up
5804 * on our lock and cycle.
5805 */
cf538830 5806 free_extent_buffer(next);
d42244a0
JS
5807 btrfs_release_path(path);
5808 cond_resched();
5809 goto again;
5810 }
8e73f275
CM
5811 if (!ret) {
5812 btrfs_set_path_blocking(path);
bd681513 5813 btrfs_tree_read_lock(next);
31533fb2 5814 btrfs_clear_path_blocking(path, next,
bd681513 5815 BTRFS_READ_LOCK);
8e73f275 5816 }
31533fb2 5817 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5818 }
d97e63b6
CM
5819 break;
5820 }
5821 path->slots[level] = slot;
d397712b 5822 while (1) {
d97e63b6
CM
5823 level--;
5824 c = path->nodes[level];
925baedd 5825 if (path->locks[level])
bd681513 5826 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5827
5f39d397 5828 free_extent_buffer(c);
d97e63b6
CM
5829 path->nodes[level] = next;
5830 path->slots[level] = 0;
a74a4b97 5831 if (!path->skip_locking)
bd681513 5832 path->locks[level] = next_rw_lock;
d97e63b6
CM
5833 if (!level)
5834 break;
b4ce94de 5835
d07b8528 5836 ret = read_block_for_search(root, path, &next, level,
cda79c54 5837 0, &key);
8e73f275
CM
5838 if (ret == -EAGAIN)
5839 goto again;
5840
76a05b35 5841 if (ret < 0) {
b3b4aa74 5842 btrfs_release_path(path);
76a05b35
CM
5843 goto done;
5844 }
5845
5cd57b2c 5846 if (!path->skip_locking) {
bd681513 5847 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5848 if (!ret) {
5849 btrfs_set_path_blocking(path);
bd681513 5850 btrfs_tree_read_lock(next);
31533fb2 5851 btrfs_clear_path_blocking(path, next,
bd681513
CM
5852 BTRFS_READ_LOCK);
5853 }
31533fb2 5854 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5855 }
d97e63b6 5856 }
8e73f275 5857 ret = 0;
925baedd 5858done:
f7c79f30 5859 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5860 path->leave_spinning = old_spinning;
5861 if (!old_spinning)
5862 btrfs_set_path_blocking(path);
5863
5864 return ret;
d97e63b6 5865}
0b86a832 5866
3f157a2f
CM
5867/*
5868 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5869 * searching until it gets past min_objectid or finds an item of 'type'
5870 *
5871 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5872 */
0b86a832
CM
5873int btrfs_previous_item(struct btrfs_root *root,
5874 struct btrfs_path *path, u64 min_objectid,
5875 int type)
5876{
5877 struct btrfs_key found_key;
5878 struct extent_buffer *leaf;
e02119d5 5879 u32 nritems;
0b86a832
CM
5880 int ret;
5881
d397712b 5882 while (1) {
0b86a832 5883 if (path->slots[0] == 0) {
b4ce94de 5884 btrfs_set_path_blocking(path);
0b86a832
CM
5885 ret = btrfs_prev_leaf(root, path);
5886 if (ret != 0)
5887 return ret;
5888 } else {
5889 path->slots[0]--;
5890 }
5891 leaf = path->nodes[0];
e02119d5
CM
5892 nritems = btrfs_header_nritems(leaf);
5893 if (nritems == 0)
5894 return 1;
5895 if (path->slots[0] == nritems)
5896 path->slots[0]--;
5897
0b86a832 5898 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5899 if (found_key.objectid < min_objectid)
5900 break;
0a4eefbb
YZ
5901 if (found_key.type == type)
5902 return 0;
e02119d5
CM
5903 if (found_key.objectid == min_objectid &&
5904 found_key.type < type)
5905 break;
0b86a832
CM
5906 }
5907 return 1;
5908}
ade2e0b3
WS
5909
5910/*
5911 * search in extent tree to find a previous Metadata/Data extent item with
5912 * min objecitd.
5913 *
5914 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5915 */
5916int btrfs_previous_extent_item(struct btrfs_root *root,
5917 struct btrfs_path *path, u64 min_objectid)
5918{
5919 struct btrfs_key found_key;
5920 struct extent_buffer *leaf;
5921 u32 nritems;
5922 int ret;
5923
5924 while (1) {
5925 if (path->slots[0] == 0) {
5926 btrfs_set_path_blocking(path);
5927 ret = btrfs_prev_leaf(root, path);
5928 if (ret != 0)
5929 return ret;
5930 } else {
5931 path->slots[0]--;
5932 }
5933 leaf = path->nodes[0];
5934 nritems = btrfs_header_nritems(leaf);
5935 if (nritems == 0)
5936 return 1;
5937 if (path->slots[0] == nritems)
5938 path->slots[0]--;
5939
5940 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5941 if (found_key.objectid < min_objectid)
5942 break;
5943 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5944 found_key.type == BTRFS_METADATA_ITEM_KEY)
5945 return 0;
5946 if (found_key.objectid == min_objectid &&
5947 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5948 break;
5949 }
5950 return 1;
5951}