]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/ctree.c
Btrfs: optimize key searches in btrfs_search_slot
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ctree.c
CommitLineData
6cbd5570 1/*
d352ac68 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a6b6e75e 19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
bd989ba3 21#include <linux/rbtree.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
7f5c1516 24#include "transaction.h"
5f39d397 25#include "print-tree.h"
925baedd 26#include "locking.h"
9a8dd150 27
e089f05c
CM
28static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
d4dbff95 31 *root, struct btrfs_key *ins_key,
cc0c5538 32 struct btrfs_path *path, int data_size, int extend);
5f39d397
CM
33static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 35 struct extent_buffer *src, int empty);
5f39d397
CM
36static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
afe5fea7
TI
40static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
f230475e
JS
42static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
48a3b636 44static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
d97e63b6 45
df24a2b9 46struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 47{
df24a2b9 48 struct btrfs_path *path;
e00f7308 49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
df24a2b9 50 return path;
2c90e5d6
CM
51}
52
b4ce94de
CM
53/*
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
56 */
57noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58{
59 int i;
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
61 if (!p->nodes[i] || !p->locks[i])
62 continue;
63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 if (p->locks[i] == BTRFS_READ_LOCK)
65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
68 }
69}
70
71/*
72 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
73 *
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
77 * for held
b4ce94de 78 */
4008c04a 79noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 80 struct extent_buffer *held, int held_rw)
b4ce94de
CM
81{
82 int i;
4008c04a
CM
83
84#ifdef CONFIG_DEBUG_LOCK_ALLOC
85 /* lockdep really cares that we take all of these spinlocks
86 * in the right order. If any of the locks in the path are not
87 * currently blocking, it is going to complain. So, make really
88 * really sure by forcing the path to blocking before we clear
89 * the path blocking.
90 */
bd681513
CM
91 if (held) {
92 btrfs_set_lock_blocking_rw(held, held_rw);
93 if (held_rw == BTRFS_WRITE_LOCK)
94 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95 else if (held_rw == BTRFS_READ_LOCK)
96 held_rw = BTRFS_READ_LOCK_BLOCKING;
97 }
4008c04a
CM
98 btrfs_set_path_blocking(p);
99#endif
100
101 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
102 if (p->nodes[i] && p->locks[i]) {
103 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105 p->locks[i] = BTRFS_WRITE_LOCK;
106 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107 p->locks[i] = BTRFS_READ_LOCK;
108 }
b4ce94de 109 }
4008c04a
CM
110
111#ifdef CONFIG_DEBUG_LOCK_ALLOC
112 if (held)
bd681513 113 btrfs_clear_lock_blocking_rw(held, held_rw);
4008c04a 114#endif
b4ce94de
CM
115}
116
d352ac68 117/* this also releases the path */
df24a2b9 118void btrfs_free_path(struct btrfs_path *p)
be0e5c09 119{
ff175d57
JJ
120 if (!p)
121 return;
b3b4aa74 122 btrfs_release_path(p);
df24a2b9 123 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
124}
125
d352ac68
CM
126/*
127 * path release drops references on the extent buffers in the path
128 * and it drops any locks held by this path
129 *
130 * It is safe to call this on paths that no locks or extent buffers held.
131 */
b3b4aa74 132noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
133{
134 int i;
a2135011 135
234b63a0 136 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 137 p->slots[i] = 0;
eb60ceac 138 if (!p->nodes[i])
925baedd
CM
139 continue;
140 if (p->locks[i]) {
bd681513 141 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
142 p->locks[i] = 0;
143 }
5f39d397 144 free_extent_buffer(p->nodes[i]);
3f157a2f 145 p->nodes[i] = NULL;
eb60ceac
CM
146 }
147}
148
d352ac68
CM
149/*
150 * safely gets a reference on the root node of a tree. A lock
151 * is not taken, so a concurrent writer may put a different node
152 * at the root of the tree. See btrfs_lock_root_node for the
153 * looping required.
154 *
155 * The extent buffer returned by this has a reference taken, so
156 * it won't disappear. It may stop being the root of the tree
157 * at any time because there are no locks held.
158 */
925baedd
CM
159struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160{
161 struct extent_buffer *eb;
240f62c8 162
3083ee2e
JB
163 while (1) {
164 rcu_read_lock();
165 eb = rcu_dereference(root->node);
166
167 /*
168 * RCU really hurts here, we could free up the root node because
169 * it was cow'ed but we may not get the new root node yet so do
170 * the inc_not_zero dance and if it doesn't work then
171 * synchronize_rcu and try again.
172 */
173 if (atomic_inc_not_zero(&eb->refs)) {
174 rcu_read_unlock();
175 break;
176 }
177 rcu_read_unlock();
178 synchronize_rcu();
179 }
925baedd
CM
180 return eb;
181}
182
d352ac68
CM
183/* loop around taking references on and locking the root node of the
184 * tree until you end up with a lock on the root. A locked buffer
185 * is returned, with a reference held.
186 */
925baedd
CM
187struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188{
189 struct extent_buffer *eb;
190
d397712b 191 while (1) {
925baedd
CM
192 eb = btrfs_root_node(root);
193 btrfs_tree_lock(eb);
240f62c8 194 if (eb == root->node)
925baedd 195 break;
925baedd
CM
196 btrfs_tree_unlock(eb);
197 free_extent_buffer(eb);
198 }
199 return eb;
200}
201
bd681513
CM
202/* loop around taking references on and locking the root node of the
203 * tree until you end up with a lock on the root. A locked buffer
204 * is returned, with a reference held.
205 */
48a3b636 206static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
207{
208 struct extent_buffer *eb;
209
210 while (1) {
211 eb = btrfs_root_node(root);
212 btrfs_tree_read_lock(eb);
213 if (eb == root->node)
214 break;
215 btrfs_tree_read_unlock(eb);
216 free_extent_buffer(eb);
217 }
218 return eb;
219}
220
d352ac68
CM
221/* cowonly root (everything not a reference counted cow subvolume), just get
222 * put onto a simple dirty list. transaction.c walks this to make sure they
223 * get properly updated on disk.
224 */
0b86a832
CM
225static void add_root_to_dirty_list(struct btrfs_root *root)
226{
e5846fc6 227 spin_lock(&root->fs_info->trans_lock);
0b86a832
CM
228 if (root->track_dirty && list_empty(&root->dirty_list)) {
229 list_add(&root->dirty_list,
230 &root->fs_info->dirty_cowonly_roots);
231 }
e5846fc6 232 spin_unlock(&root->fs_info->trans_lock);
0b86a832
CM
233}
234
d352ac68
CM
235/*
236 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code.
239 */
be20aa9d
CM
240int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root,
242 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid)
244{
245 struct extent_buffer *cow;
be20aa9d
CM
246 int ret = 0;
247 int level;
5d4f98a2 248 struct btrfs_disk_key disk_key;
be20aa9d
CM
249
250 WARN_ON(root->ref_cows && trans->transid !=
251 root->fs_info->running_transaction->transid);
252 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253
254 level = btrfs_header_level(buf);
5d4f98a2
YZ
255 if (level == 0)
256 btrfs_item_key(buf, &disk_key, 0);
257 else
258 btrfs_node_key(buf, &disk_key, 0);
31840ae1 259
5d4f98a2
YZ
260 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261 new_root_objectid, &disk_key, level,
5581a51a 262 buf->start, 0);
5d4f98a2 263 if (IS_ERR(cow))
be20aa9d
CM
264 return PTR_ERR(cow);
265
266 copy_extent_buffer(cow, buf, 0, 0, cow->len);
267 btrfs_set_header_bytenr(cow, cow->start);
268 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
269 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271 BTRFS_HEADER_FLAG_RELOC);
272 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274 else
275 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 276
fba6aa75 277 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(cow),
2b82032c
YZ
278 BTRFS_FSID_SIZE);
279
be20aa9d 280 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 282 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 283 else
66d7e7f0 284 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
4aec2b52 285
be20aa9d
CM
286 if (ret)
287 return ret;
288
289 btrfs_mark_buffer_dirty(cow);
290 *cow_ret = cow;
291 return 0;
292}
293
bd989ba3
JS
294enum mod_log_op {
295 MOD_LOG_KEY_REPLACE,
296 MOD_LOG_KEY_ADD,
297 MOD_LOG_KEY_REMOVE,
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_MOVE_KEYS,
301 MOD_LOG_ROOT_REPLACE,
302};
303
304struct tree_mod_move {
305 int dst_slot;
306 int nr_items;
307};
308
309struct tree_mod_root {
310 u64 logical;
311 u8 level;
312};
313
314struct tree_mod_elem {
315 struct rb_node node;
316 u64 index; /* shifted logical */
097b8a7c 317 u64 seq;
bd989ba3
JS
318 enum mod_log_op op;
319
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 int slot;
322
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 u64 generation;
325
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key;
328 u64 blockptr;
329
330 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move;
332
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root;
335};
336
097b8a7c 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
bd989ba3 338{
097b8a7c 339 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
340}
341
097b8a7c
JS
342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343{
344 read_unlock(&fs_info->tree_mod_log_lock);
345}
346
347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348{
349 write_lock(&fs_info->tree_mod_log_lock);
350}
351
352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353{
354 write_unlock(&fs_info->tree_mod_log_lock);
355}
356
fc36ed7e
JS
357/*
358 * Increment the upper half of tree_mod_seq, set lower half zero.
359 *
360 * Must be called with fs_info->tree_mod_seq_lock held.
361 */
362static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
363{
364 u64 seq = atomic64_read(&fs_info->tree_mod_seq);
365 seq &= 0xffffffff00000000ull;
366 seq += 1ull << 32;
367 atomic64_set(&fs_info->tree_mod_seq, seq);
368 return seq;
369}
370
371/*
372 * Increment the lower half of tree_mod_seq.
373 *
374 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
375 * are generated should not technically require a spin lock here. (Rationale:
376 * incrementing the minor while incrementing the major seq number is between its
377 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
378 * just returns a unique sequence number as usual.) We have decided to leave
379 * that requirement in here and rethink it once we notice it really imposes a
380 * problem on some workload.
381 */
382static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
383{
384 return atomic64_inc_return(&fs_info->tree_mod_seq);
385}
386
387/*
388 * return the last minor in the previous major tree_mod_seq number
389 */
390u64 btrfs_tree_mod_seq_prev(u64 seq)
391{
392 return (seq & 0xffffffff00000000ull) - 1ull;
393}
394
097b8a7c
JS
395/*
396 * This adds a new blocker to the tree mod log's blocker list if the @elem
397 * passed does not already have a sequence number set. So when a caller expects
398 * to record tree modifications, it should ensure to set elem->seq to zero
399 * before calling btrfs_get_tree_mod_seq.
400 * Returns a fresh, unused tree log modification sequence number, even if no new
401 * blocker was added.
402 */
403u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
404 struct seq_list *elem)
bd989ba3 405{
097b8a7c
JS
406 u64 seq;
407
408 tree_mod_log_write_lock(fs_info);
bd989ba3 409 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 410 if (!elem->seq) {
fc36ed7e 411 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
097b8a7c
JS
412 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
413 }
fc36ed7e 414 seq = btrfs_inc_tree_mod_seq_minor(fs_info);
bd989ba3 415 spin_unlock(&fs_info->tree_mod_seq_lock);
097b8a7c
JS
416 tree_mod_log_write_unlock(fs_info);
417
418 return seq;
bd989ba3
JS
419}
420
421void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
422 struct seq_list *elem)
423{
424 struct rb_root *tm_root;
425 struct rb_node *node;
426 struct rb_node *next;
427 struct seq_list *cur_elem;
428 struct tree_mod_elem *tm;
429 u64 min_seq = (u64)-1;
430 u64 seq_putting = elem->seq;
431
432 if (!seq_putting)
433 return;
434
bd989ba3
JS
435 spin_lock(&fs_info->tree_mod_seq_lock);
436 list_del(&elem->list);
097b8a7c 437 elem->seq = 0;
bd989ba3
JS
438
439 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 440 if (cur_elem->seq < min_seq) {
bd989ba3
JS
441 if (seq_putting > cur_elem->seq) {
442 /*
443 * blocker with lower sequence number exists, we
444 * cannot remove anything from the log
445 */
097b8a7c
JS
446 spin_unlock(&fs_info->tree_mod_seq_lock);
447 return;
bd989ba3
JS
448 }
449 min_seq = cur_elem->seq;
450 }
451 }
097b8a7c
JS
452 spin_unlock(&fs_info->tree_mod_seq_lock);
453
bd989ba3
JS
454 /*
455 * anything that's lower than the lowest existing (read: blocked)
456 * sequence number can be removed from the tree.
457 */
097b8a7c 458 tree_mod_log_write_lock(fs_info);
bd989ba3
JS
459 tm_root = &fs_info->tree_mod_log;
460 for (node = rb_first(tm_root); node; node = next) {
461 next = rb_next(node);
462 tm = container_of(node, struct tree_mod_elem, node);
097b8a7c 463 if (tm->seq > min_seq)
bd989ba3
JS
464 continue;
465 rb_erase(node, tm_root);
bd989ba3
JS
466 kfree(tm);
467 }
097b8a7c 468 tree_mod_log_write_unlock(fs_info);
bd989ba3
JS
469}
470
471/*
472 * key order of the log:
473 * index -> sequence
474 *
475 * the index is the shifted logical of the *new* root node for root replace
476 * operations, or the shifted logical of the affected block for all other
477 * operations.
478 */
479static noinline int
480__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
481{
482 struct rb_root *tm_root;
483 struct rb_node **new;
484 struct rb_node *parent = NULL;
485 struct tree_mod_elem *cur;
c8cc6341
JB
486 int ret = 0;
487
488 BUG_ON(!tm);
489
490 tree_mod_log_write_lock(fs_info);
491 if (list_empty(&fs_info->tree_mod_seq_list)) {
492 tree_mod_log_write_unlock(fs_info);
493 /*
494 * Ok we no longer care about logging modifications, free up tm
495 * and return 0. Any callers shouldn't be using tm after
496 * calling tree_mod_log_insert, but if they do we can just
497 * change this to return a special error code to let the callers
498 * do their own thing.
499 */
500 kfree(tm);
501 return 0;
502 }
bd989ba3 503
c8cc6341
JB
504 spin_lock(&fs_info->tree_mod_seq_lock);
505 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
506 spin_unlock(&fs_info->tree_mod_seq_lock);
bd989ba3 507
bd989ba3
JS
508 tm_root = &fs_info->tree_mod_log;
509 new = &tm_root->rb_node;
510 while (*new) {
511 cur = container_of(*new, struct tree_mod_elem, node);
512 parent = *new;
513 if (cur->index < tm->index)
514 new = &((*new)->rb_left);
515 else if (cur->index > tm->index)
516 new = &((*new)->rb_right);
097b8a7c 517 else if (cur->seq < tm->seq)
bd989ba3 518 new = &((*new)->rb_left);
097b8a7c 519 else if (cur->seq > tm->seq)
bd989ba3
JS
520 new = &((*new)->rb_right);
521 else {
c8cc6341 522 ret = -EEXIST;
bd989ba3 523 kfree(tm);
c8cc6341 524 goto out;
bd989ba3
JS
525 }
526 }
527
528 rb_link_node(&tm->node, parent, new);
529 rb_insert_color(&tm->node, tm_root);
c8cc6341
JB
530out:
531 tree_mod_log_write_unlock(fs_info);
532 return ret;
bd989ba3
JS
533}
534
097b8a7c
JS
535/*
536 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
537 * returns zero with the tree_mod_log_lock acquired. The caller must hold
538 * this until all tree mod log insertions are recorded in the rb tree and then
539 * call tree_mod_log_write_unlock() to release.
540 */
e9b7fd4d
JS
541static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
542 struct extent_buffer *eb) {
543 smp_mb();
544 if (list_empty(&(fs_info)->tree_mod_seq_list))
545 return 1;
097b8a7c
JS
546 if (eb && btrfs_header_level(eb) == 0)
547 return 1;
e9b7fd4d
JS
548 return 0;
549}
550
097b8a7c
JS
551static inline int
552__tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
553 struct extent_buffer *eb, int slot,
554 enum mod_log_op op, gfp_t flags)
bd989ba3 555{
097b8a7c 556 struct tree_mod_elem *tm;
bd989ba3 557
c8cc6341
JB
558 tm = kzalloc(sizeof(*tm), flags);
559 if (!tm)
560 return -ENOMEM;
bd989ba3
JS
561
562 tm->index = eb->start >> PAGE_CACHE_SHIFT;
563 if (op != MOD_LOG_KEY_ADD) {
564 btrfs_node_key(eb, &tm->key, slot);
565 tm->blockptr = btrfs_node_blockptr(eb, slot);
566 }
567 tm->op = op;
568 tm->slot = slot;
569 tm->generation = btrfs_node_ptr_generation(eb, slot);
570
097b8a7c
JS
571 return __tree_mod_log_insert(fs_info, tm);
572}
573
574static noinline int
c8cc6341
JB
575tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
576 struct extent_buffer *eb, int slot,
577 enum mod_log_op op, gfp_t flags)
097b8a7c 578{
097b8a7c
JS
579 if (tree_mod_dont_log(fs_info, eb))
580 return 0;
581
c8cc6341 582 return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
097b8a7c
JS
583}
584
bd989ba3
JS
585static noinline int
586tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
587 struct extent_buffer *eb, int dst_slot, int src_slot,
588 int nr_items, gfp_t flags)
589{
590 struct tree_mod_elem *tm;
591 int ret;
592 int i;
593
f395694c
JS
594 if (tree_mod_dont_log(fs_info, eb))
595 return 0;
bd989ba3 596
01763a2e
JS
597 /*
598 * When we override something during the move, we log these removals.
599 * This can only happen when we move towards the beginning of the
600 * buffer, i.e. dst_slot < src_slot.
601 */
bd989ba3 602 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
c8cc6341
JB
603 ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
604 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
bd989ba3
JS
605 BUG_ON(ret < 0);
606 }
607
c8cc6341
JB
608 tm = kzalloc(sizeof(*tm), flags);
609 if (!tm)
610 return -ENOMEM;
f395694c 611
bd989ba3
JS
612 tm->index = eb->start >> PAGE_CACHE_SHIFT;
613 tm->slot = src_slot;
614 tm->move.dst_slot = dst_slot;
615 tm->move.nr_items = nr_items;
616 tm->op = MOD_LOG_MOVE_KEYS;
617
c8cc6341 618 return __tree_mod_log_insert(fs_info, tm);
bd989ba3
JS
619}
620
097b8a7c
JS
621static inline void
622__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
623{
624 int i;
625 u32 nritems;
626 int ret;
627
b12a3b1e
CM
628 if (btrfs_header_level(eb) == 0)
629 return;
630
097b8a7c
JS
631 nritems = btrfs_header_nritems(eb);
632 for (i = nritems - 1; i >= 0; i--) {
c8cc6341
JB
633 ret = __tree_mod_log_insert_key(fs_info, eb, i,
634 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
097b8a7c
JS
635 BUG_ON(ret < 0);
636 }
637}
638
bd989ba3
JS
639static noinline int
640tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641 struct extent_buffer *old_root,
90f8d62e
JS
642 struct extent_buffer *new_root, gfp_t flags,
643 int log_removal)
bd989ba3
JS
644{
645 struct tree_mod_elem *tm;
bd989ba3 646
097b8a7c
JS
647 if (tree_mod_dont_log(fs_info, NULL))
648 return 0;
649
90f8d62e
JS
650 if (log_removal)
651 __tree_mod_log_free_eb(fs_info, old_root);
d9abbf1c 652
c8cc6341
JB
653 tm = kzalloc(sizeof(*tm), flags);
654 if (!tm)
655 return -ENOMEM;
bd989ba3
JS
656
657 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
658 tm->old_root.logical = old_root->start;
659 tm->old_root.level = btrfs_header_level(old_root);
660 tm->generation = btrfs_header_generation(old_root);
661 tm->op = MOD_LOG_ROOT_REPLACE;
662
c8cc6341 663 return __tree_mod_log_insert(fs_info, tm);
bd989ba3
JS
664}
665
666static struct tree_mod_elem *
667__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
668 int smallest)
669{
670 struct rb_root *tm_root;
671 struct rb_node *node;
672 struct tree_mod_elem *cur = NULL;
673 struct tree_mod_elem *found = NULL;
674 u64 index = start >> PAGE_CACHE_SHIFT;
675
097b8a7c 676 tree_mod_log_read_lock(fs_info);
bd989ba3
JS
677 tm_root = &fs_info->tree_mod_log;
678 node = tm_root->rb_node;
679 while (node) {
680 cur = container_of(node, struct tree_mod_elem, node);
681 if (cur->index < index) {
682 node = node->rb_left;
683 } else if (cur->index > index) {
684 node = node->rb_right;
097b8a7c 685 } else if (cur->seq < min_seq) {
bd989ba3
JS
686 node = node->rb_left;
687 } else if (!smallest) {
688 /* we want the node with the highest seq */
689 if (found)
097b8a7c 690 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
691 found = cur;
692 node = node->rb_left;
097b8a7c 693 } else if (cur->seq > min_seq) {
bd989ba3
JS
694 /* we want the node with the smallest seq */
695 if (found)
097b8a7c 696 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
697 found = cur;
698 node = node->rb_right;
699 } else {
700 found = cur;
701 break;
702 }
703 }
097b8a7c 704 tree_mod_log_read_unlock(fs_info);
bd989ba3
JS
705
706 return found;
707}
708
709/*
710 * this returns the element from the log with the smallest time sequence
711 * value that's in the log (the oldest log item). any element with a time
712 * sequence lower than min_seq will be ignored.
713 */
714static struct tree_mod_elem *
715tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
716 u64 min_seq)
717{
718 return __tree_mod_log_search(fs_info, start, min_seq, 1);
719}
720
721/*
722 * this returns the element from the log with the largest time sequence
723 * value that's in the log (the most recent log item). any element with
724 * a time sequence lower than min_seq will be ignored.
725 */
726static struct tree_mod_elem *
727tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
728{
729 return __tree_mod_log_search(fs_info, start, min_seq, 0);
730}
731
097b8a7c 732static noinline void
bd989ba3
JS
733tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
734 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 735 unsigned long src_offset, int nr_items)
bd989ba3
JS
736{
737 int ret;
738 int i;
739
e9b7fd4d 740 if (tree_mod_dont_log(fs_info, NULL))
bd989ba3
JS
741 return;
742
c8cc6341 743 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
bd989ba3
JS
744 return;
745
bd989ba3 746 for (i = 0; i < nr_items; i++) {
c8cc6341 747 ret = __tree_mod_log_insert_key(fs_info, src,
90f8d62e 748 i + src_offset,
c8cc6341 749 MOD_LOG_KEY_REMOVE, GFP_NOFS);
90f8d62e 750 BUG_ON(ret < 0);
c8cc6341 751 ret = __tree_mod_log_insert_key(fs_info, dst,
097b8a7c 752 i + dst_offset,
c8cc6341
JB
753 MOD_LOG_KEY_ADD,
754 GFP_NOFS);
bd989ba3
JS
755 BUG_ON(ret < 0);
756 }
757}
758
759static inline void
760tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
761 int dst_offset, int src_offset, int nr_items)
762{
763 int ret;
764 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
765 nr_items, GFP_NOFS);
766 BUG_ON(ret < 0);
767}
768
097b8a7c 769static noinline void
bd989ba3 770tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
32adf090 771 struct extent_buffer *eb, int slot, int atomic)
bd989ba3
JS
772{
773 int ret;
774
c8cc6341
JB
775 ret = __tree_mod_log_insert_key(fs_info, eb, slot,
776 MOD_LOG_KEY_REPLACE,
777 atomic ? GFP_ATOMIC : GFP_NOFS);
bd989ba3
JS
778 BUG_ON(ret < 0);
779}
780
097b8a7c
JS
781static noinline void
782tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
bd989ba3 783{
e9b7fd4d 784 if (tree_mod_dont_log(fs_info, eb))
bd989ba3 785 return;
097b8a7c 786 __tree_mod_log_free_eb(fs_info, eb);
bd989ba3
JS
787}
788
097b8a7c 789static noinline void
bd989ba3 790tree_mod_log_set_root_pointer(struct btrfs_root *root,
90f8d62e
JS
791 struct extent_buffer *new_root_node,
792 int log_removal)
bd989ba3
JS
793{
794 int ret;
bd989ba3 795 ret = tree_mod_log_insert_root(root->fs_info, root->node,
90f8d62e 796 new_root_node, GFP_NOFS, log_removal);
bd989ba3
JS
797 BUG_ON(ret < 0);
798}
799
5d4f98a2
YZ
800/*
801 * check if the tree block can be shared by multiple trees
802 */
803int btrfs_block_can_be_shared(struct btrfs_root *root,
804 struct extent_buffer *buf)
805{
806 /*
807 * Tree blocks not in refernece counted trees and tree roots
808 * are never shared. If a block was allocated after the last
809 * snapshot and the block was not allocated by tree relocation,
810 * we know the block is not shared.
811 */
812 if (root->ref_cows &&
813 buf != root->node && buf != root->commit_root &&
814 (btrfs_header_generation(buf) <=
815 btrfs_root_last_snapshot(&root->root_item) ||
816 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
817 return 1;
818#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819 if (root->ref_cows &&
820 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
821 return 1;
822#endif
823 return 0;
824}
825
826static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
827 struct btrfs_root *root,
828 struct extent_buffer *buf,
f0486c68
YZ
829 struct extent_buffer *cow,
830 int *last_ref)
5d4f98a2
YZ
831{
832 u64 refs;
833 u64 owner;
834 u64 flags;
835 u64 new_flags = 0;
836 int ret;
837
838 /*
839 * Backrefs update rules:
840 *
841 * Always use full backrefs for extent pointers in tree block
842 * allocated by tree relocation.
843 *
844 * If a shared tree block is no longer referenced by its owner
845 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
846 * use full backrefs for extent pointers in tree block.
847 *
848 * If a tree block is been relocating
849 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
850 * use full backrefs for extent pointers in tree block.
851 * The reason for this is some operations (such as drop tree)
852 * are only allowed for blocks use full backrefs.
853 */
854
855 if (btrfs_block_can_be_shared(root, buf)) {
856 ret = btrfs_lookup_extent_info(trans, root, buf->start,
3173a18f
JB
857 btrfs_header_level(buf), 1,
858 &refs, &flags);
be1a5564
MF
859 if (ret)
860 return ret;
e5df9573
MF
861 if (refs == 0) {
862 ret = -EROFS;
863 btrfs_std_error(root->fs_info, ret);
864 return ret;
865 }
5d4f98a2
YZ
866 } else {
867 refs = 1;
868 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
869 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
870 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
871 else
872 flags = 0;
873 }
874
875 owner = btrfs_header_owner(buf);
876 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
877 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
878
879 if (refs > 1) {
880 if ((owner == root->root_key.objectid ||
881 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
882 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
66d7e7f0 883 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
79787eaa 884 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
885
886 if (root->root_key.objectid ==
887 BTRFS_TREE_RELOC_OBJECTID) {
66d7e7f0 888 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
79787eaa 889 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 890 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
79787eaa 891 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
892 }
893 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
894 } else {
895
896 if (root->root_key.objectid ==
897 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 898 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 899 else
66d7e7f0 900 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 901 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
902 }
903 if (new_flags != 0) {
b1c79e09
JB
904 int level = btrfs_header_level(buf);
905
5d4f98a2
YZ
906 ret = btrfs_set_disk_extent_flags(trans, root,
907 buf->start,
908 buf->len,
b1c79e09 909 new_flags, level, 0);
be1a5564
MF
910 if (ret)
911 return ret;
5d4f98a2
YZ
912 }
913 } else {
914 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
915 if (root->root_key.objectid ==
916 BTRFS_TREE_RELOC_OBJECTID)
66d7e7f0 917 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
5d4f98a2 918 else
66d7e7f0 919 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
79787eaa 920 BUG_ON(ret); /* -ENOMEM */
66d7e7f0 921 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
79787eaa 922 BUG_ON(ret); /* -ENOMEM */
5d4f98a2
YZ
923 }
924 clean_tree_block(trans, root, buf);
f0486c68 925 *last_ref = 1;
5d4f98a2
YZ
926 }
927 return 0;
928}
929
d352ac68 930/*
d397712b
CM
931 * does the dirty work in cow of a single block. The parent block (if
932 * supplied) is updated to point to the new cow copy. The new buffer is marked
933 * dirty and returned locked. If you modify the block it needs to be marked
934 * dirty again.
d352ac68
CM
935 *
936 * search_start -- an allocation hint for the new block
937 *
d397712b
CM
938 * empty_size -- a hint that you plan on doing more cow. This is the size in
939 * bytes the allocator should try to find free next to the block it returns.
940 * This is just a hint and may be ignored by the allocator.
d352ac68 941 */
d397712b 942static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
943 struct btrfs_root *root,
944 struct extent_buffer *buf,
945 struct extent_buffer *parent, int parent_slot,
946 struct extent_buffer **cow_ret,
9fa8cfe7 947 u64 search_start, u64 empty_size)
02217ed2 948{
5d4f98a2 949 struct btrfs_disk_key disk_key;
5f39d397 950 struct extent_buffer *cow;
be1a5564 951 int level, ret;
f0486c68 952 int last_ref = 0;
925baedd 953 int unlock_orig = 0;
5d4f98a2 954 u64 parent_start;
7bb86316 955
925baedd
CM
956 if (*cow_ret == buf)
957 unlock_orig = 1;
958
b9447ef8 959 btrfs_assert_tree_locked(buf);
925baedd 960
7bb86316
CM
961 WARN_ON(root->ref_cows && trans->transid !=
962 root->fs_info->running_transaction->transid);
6702ed49 963 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
5f39d397 964
7bb86316 965 level = btrfs_header_level(buf);
31840ae1 966
5d4f98a2
YZ
967 if (level == 0)
968 btrfs_item_key(buf, &disk_key, 0);
969 else
970 btrfs_node_key(buf, &disk_key, 0);
971
972 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
973 if (parent)
974 parent_start = parent->start;
975 else
976 parent_start = 0;
977 } else
978 parent_start = 0;
979
980 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
981 root->root_key.objectid, &disk_key,
5581a51a 982 level, search_start, empty_size);
54aa1f4d
CM
983 if (IS_ERR(cow))
984 return PTR_ERR(cow);
6702ed49 985
b4ce94de
CM
986 /* cow is set to blocking by btrfs_init_new_buffer */
987
5f39d397 988 copy_extent_buffer(cow, buf, 0, 0, cow->len);
db94535d 989 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 990 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
991 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
992 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
993 BTRFS_HEADER_FLAG_RELOC);
994 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
995 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
996 else
997 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 998
fba6aa75 999 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(cow),
2b82032c
YZ
1000 BTRFS_FSID_SIZE);
1001
be1a5564 1002 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1003 if (ret) {
79787eaa 1004 btrfs_abort_transaction(trans, root, ret);
b68dc2a9
MF
1005 return ret;
1006 }
1a40e23b 1007
3fd0a558
YZ
1008 if (root->ref_cows)
1009 btrfs_reloc_cow_block(trans, root, buf, cow);
1010
02217ed2 1011 if (buf == root->node) {
925baedd 1012 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1013 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1014 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1015 parent_start = buf->start;
1016 else
1017 parent_start = 0;
925baedd 1018
5f39d397 1019 extent_buffer_get(cow);
90f8d62e 1020 tree_mod_log_set_root_pointer(root, cow, 1);
240f62c8 1021 rcu_assign_pointer(root->node, cow);
925baedd 1022
f0486c68 1023 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1024 last_ref);
5f39d397 1025 free_extent_buffer(buf);
0b86a832 1026 add_root_to_dirty_list(root);
02217ed2 1027 } else {
5d4f98a2
YZ
1028 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1029 parent_start = parent->start;
1030 else
1031 parent_start = 0;
1032
1033 WARN_ON(trans->transid != btrfs_header_generation(parent));
f230475e 1034 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
c8cc6341 1035 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1036 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1037 cow->start);
74493f7a
CM
1038 btrfs_set_node_ptr_generation(parent, parent_slot,
1039 trans->transid);
d6025579 1040 btrfs_mark_buffer_dirty(parent);
7fb7d76f
JB
1041 if (last_ref)
1042 tree_mod_log_free_eb(root->fs_info, buf);
f0486c68 1043 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1044 last_ref);
02217ed2 1045 }
925baedd
CM
1046 if (unlock_orig)
1047 btrfs_tree_unlock(buf);
3083ee2e 1048 free_extent_buffer_stale(buf);
ccd467d6 1049 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1050 *cow_ret = cow;
02217ed2
CM
1051 return 0;
1052}
1053
5d9e75c4
JS
1054/*
1055 * returns the logical address of the oldest predecessor of the given root.
1056 * entries older than time_seq are ignored.
1057 */
1058static struct tree_mod_elem *
1059__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
30b0463a 1060 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1061{
1062 struct tree_mod_elem *tm;
1063 struct tree_mod_elem *found = NULL;
30b0463a 1064 u64 root_logical = eb_root->start;
5d9e75c4
JS
1065 int looped = 0;
1066
1067 if (!time_seq)
35a3621b 1068 return NULL;
5d9e75c4
JS
1069
1070 /*
1071 * the very last operation that's logged for a root is the replacement
1072 * operation (if it is replaced at all). this has the index of the *new*
1073 * root, making it the very first operation that's logged for this root.
1074 */
1075 while (1) {
1076 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1077 time_seq);
1078 if (!looped && !tm)
35a3621b 1079 return NULL;
5d9e75c4 1080 /*
28da9fb4
JS
1081 * if there are no tree operation for the oldest root, we simply
1082 * return it. this should only happen if that (old) root is at
1083 * level 0.
5d9e75c4 1084 */
28da9fb4
JS
1085 if (!tm)
1086 break;
5d9e75c4 1087
28da9fb4
JS
1088 /*
1089 * if there's an operation that's not a root replacement, we
1090 * found the oldest version of our root. normally, we'll find a
1091 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1092 */
5d9e75c4
JS
1093 if (tm->op != MOD_LOG_ROOT_REPLACE)
1094 break;
1095
1096 found = tm;
1097 root_logical = tm->old_root.logical;
5d9e75c4
JS
1098 looped = 1;
1099 }
1100
a95236d9
JS
1101 /* if there's no old root to return, return what we found instead */
1102 if (!found)
1103 found = tm;
1104
5d9e75c4
JS
1105 return found;
1106}
1107
1108/*
1109 * tm is a pointer to the first operation to rewind within eb. then, all
1110 * previous operations will be rewinded (until we reach something older than
1111 * time_seq).
1112 */
1113static void
f1ca7e98
JB
1114__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1115 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1116{
1117 u32 n;
1118 struct rb_node *next;
1119 struct tree_mod_elem *tm = first_tm;
1120 unsigned long o_dst;
1121 unsigned long o_src;
1122 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1123
1124 n = btrfs_header_nritems(eb);
f1ca7e98 1125 tree_mod_log_read_lock(fs_info);
097b8a7c 1126 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1127 /*
1128 * all the operations are recorded with the operator used for
1129 * the modification. as we're going backwards, we do the
1130 * opposite of each operation here.
1131 */
1132 switch (tm->op) {
1133 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1134 BUG_ON(tm->slot < n);
1c697d4a 1135 /* Fallthrough */
95c80bb1 1136 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1137 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1138 btrfs_set_node_key(eb, &tm->key, tm->slot);
1139 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1140 btrfs_set_node_ptr_generation(eb, tm->slot,
1141 tm->generation);
4c3e6969 1142 n++;
5d9e75c4
JS
1143 break;
1144 case MOD_LOG_KEY_REPLACE:
1145 BUG_ON(tm->slot >= n);
1146 btrfs_set_node_key(eb, &tm->key, tm->slot);
1147 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1148 btrfs_set_node_ptr_generation(eb, tm->slot,
1149 tm->generation);
1150 break;
1151 case MOD_LOG_KEY_ADD:
19956c7e 1152 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1153 n--;
1154 break;
1155 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1156 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1157 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1158 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1159 tm->move.nr_items * p_size);
1160 break;
1161 case MOD_LOG_ROOT_REPLACE:
1162 /*
1163 * this operation is special. for roots, this must be
1164 * handled explicitly before rewinding.
1165 * for non-roots, this operation may exist if the node
1166 * was a root: root A -> child B; then A gets empty and
1167 * B is promoted to the new root. in the mod log, we'll
1168 * have a root-replace operation for B, a tree block
1169 * that is no root. we simply ignore that operation.
1170 */
1171 break;
1172 }
1173 next = rb_next(&tm->node);
1174 if (!next)
1175 break;
1176 tm = container_of(next, struct tree_mod_elem, node);
1177 if (tm->index != first_tm->index)
1178 break;
1179 }
f1ca7e98 1180 tree_mod_log_read_unlock(fs_info);
5d9e75c4
JS
1181 btrfs_set_header_nritems(eb, n);
1182}
1183
47fb091f
JS
1184/*
1185 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1186 * is returned. If rewind operations happen, a fresh buffer is returned. The
1187 * returned buffer is always read-locked. If the returned buffer is not the
1188 * input buffer, the lock on the input buffer is released and the input buffer
1189 * is freed (its refcount is decremented).
1190 */
5d9e75c4 1191static struct extent_buffer *
9ec72677
JB
1192tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1193 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1194{
1195 struct extent_buffer *eb_rewin;
1196 struct tree_mod_elem *tm;
1197
1198 if (!time_seq)
1199 return eb;
1200
1201 if (btrfs_header_level(eb) == 0)
1202 return eb;
1203
1204 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1205 if (!tm)
1206 return eb;
1207
9ec72677
JB
1208 btrfs_set_path_blocking(path);
1209 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1210
5d9e75c4
JS
1211 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1212 BUG_ON(tm->slot != 0);
1213 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1214 fs_info->tree_root->nodesize);
db7f3436 1215 if (!eb_rewin) {
9ec72677 1216 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1217 free_extent_buffer(eb);
1218 return NULL;
1219 }
5d9e75c4
JS
1220 btrfs_set_header_bytenr(eb_rewin, eb->start);
1221 btrfs_set_header_backref_rev(eb_rewin,
1222 btrfs_header_backref_rev(eb));
1223 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1224 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1225 } else {
1226 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1227 if (!eb_rewin) {
9ec72677 1228 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1229 free_extent_buffer(eb);
1230 return NULL;
1231 }
5d9e75c4
JS
1232 }
1233
9ec72677
JB
1234 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1235 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1236 free_extent_buffer(eb);
1237
47fb091f
JS
1238 extent_buffer_get(eb_rewin);
1239 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1240 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1241 WARN_ON(btrfs_header_nritems(eb_rewin) >
2a745b14 1242 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
5d9e75c4
JS
1243
1244 return eb_rewin;
1245}
1246
8ba97a15
JS
1247/*
1248 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1249 * value. If there are no changes, the current root->root_node is returned. If
1250 * anything changed in between, there's a fresh buffer allocated on which the
1251 * rewind operations are done. In any case, the returned buffer is read locked.
1252 * Returns NULL on error (with no locks held).
1253 */
5d9e75c4
JS
1254static inline struct extent_buffer *
1255get_old_root(struct btrfs_root *root, u64 time_seq)
1256{
1257 struct tree_mod_elem *tm;
30b0463a
JS
1258 struct extent_buffer *eb = NULL;
1259 struct extent_buffer *eb_root;
7bfdcf7f 1260 struct extent_buffer *old;
a95236d9 1261 struct tree_mod_root *old_root = NULL;
4325edd0 1262 u64 old_generation = 0;
a95236d9 1263 u64 logical;
834328a8 1264 u32 blocksize;
5d9e75c4 1265
30b0463a
JS
1266 eb_root = btrfs_read_lock_root_node(root);
1267 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5d9e75c4 1268 if (!tm)
30b0463a 1269 return eb_root;
5d9e75c4 1270
a95236d9
JS
1271 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1272 old_root = &tm->old_root;
1273 old_generation = tm->generation;
1274 logical = old_root->logical;
1275 } else {
30b0463a 1276 logical = eb_root->start;
a95236d9 1277 }
5d9e75c4 1278
a95236d9 1279 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
834328a8 1280 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1281 btrfs_tree_read_unlock(eb_root);
1282 free_extent_buffer(eb_root);
834328a8 1283 blocksize = btrfs_level_size(root, old_root->level);
7bfdcf7f 1284 old = read_tree_block(root, logical, blocksize, 0);
416bc658
JB
1285 if (!old || !extent_buffer_uptodate(old)) {
1286 free_extent_buffer(old);
834328a8
JS
1287 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1288 logical);
1289 WARN_ON(1);
1290 } else {
7bfdcf7f
LB
1291 eb = btrfs_clone_extent_buffer(old);
1292 free_extent_buffer(old);
834328a8
JS
1293 }
1294 } else if (old_root) {
30b0463a
JS
1295 btrfs_tree_read_unlock(eb_root);
1296 free_extent_buffer(eb_root);
28da9fb4 1297 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
834328a8 1298 } else {
9ec72677 1299 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1300 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1301 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1302 free_extent_buffer(eb_root);
834328a8
JS
1303 }
1304
8ba97a15
JS
1305 if (!eb)
1306 return NULL;
d6381084 1307 extent_buffer_get(eb);
8ba97a15 1308 btrfs_tree_read_lock(eb);
a95236d9 1309 if (old_root) {
5d9e75c4
JS
1310 btrfs_set_header_bytenr(eb, eb->start);
1311 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1312 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1313 btrfs_set_header_level(eb, old_root->level);
1314 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1315 }
28da9fb4 1316 if (tm)
f1ca7e98 1317 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
28da9fb4
JS
1318 else
1319 WARN_ON(btrfs_header_level(eb) != 0);
57911b8b 1320 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
5d9e75c4
JS
1321
1322 return eb;
1323}
1324
5b6602e7
JS
1325int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1326{
1327 struct tree_mod_elem *tm;
1328 int level;
30b0463a 1329 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1330
30b0463a 1331 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
5b6602e7
JS
1332 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1333 level = tm->old_root.level;
1334 } else {
30b0463a 1335 level = btrfs_header_level(eb_root);
5b6602e7 1336 }
30b0463a 1337 free_extent_buffer(eb_root);
5b6602e7
JS
1338
1339 return level;
1340}
1341
5d4f98a2
YZ
1342static inline int should_cow_block(struct btrfs_trans_handle *trans,
1343 struct btrfs_root *root,
1344 struct extent_buffer *buf)
1345{
f1ebcc74
LB
1346 /* ensure we can see the force_cow */
1347 smp_rmb();
1348
1349 /*
1350 * We do not need to cow a block if
1351 * 1) this block is not created or changed in this transaction;
1352 * 2) this block does not belong to TREE_RELOC tree;
1353 * 3) the root is not forced COW.
1354 *
1355 * What is forced COW:
1356 * when we create snapshot during commiting the transaction,
1357 * after we've finished coping src root, we must COW the shared
1358 * block to ensure the metadata consistency.
1359 */
5d4f98a2
YZ
1360 if (btrfs_header_generation(buf) == trans->transid &&
1361 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1362 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74
LB
1363 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1364 !root->force_cow)
5d4f98a2
YZ
1365 return 0;
1366 return 1;
1367}
1368
d352ac68
CM
1369/*
1370 * cows a single block, see __btrfs_cow_block for the real work.
1371 * This version of it has extra checks so that a block isn't cow'd more than
1372 * once per transaction, as long as it hasn't been written yet
1373 */
d397712b 1374noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1375 struct btrfs_root *root, struct extent_buffer *buf,
1376 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1377 struct extent_buffer **cow_ret)
6702ed49
CM
1378{
1379 u64 search_start;
f510cfec 1380 int ret;
dc17ff8f 1381
31b1a2bd
JL
1382 if (trans->transaction != root->fs_info->running_transaction)
1383 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1384 trans->transid,
6702ed49 1385 root->fs_info->running_transaction->transid);
31b1a2bd
JL
1386
1387 if (trans->transid != root->fs_info->generation)
1388 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1389 trans->transid, root->fs_info->generation);
dc17ff8f 1390
5d4f98a2 1391 if (!should_cow_block(trans, root, buf)) {
6702ed49
CM
1392 *cow_ret = buf;
1393 return 0;
1394 }
c487685d 1395
0b86a832 1396 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
b4ce94de
CM
1397
1398 if (parent)
1399 btrfs_set_lock_blocking(parent);
1400 btrfs_set_lock_blocking(buf);
1401
f510cfec 1402 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1403 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1404
1405 trace_btrfs_cow_block(root, buf, *cow_ret);
1406
f510cfec 1407 return ret;
6702ed49
CM
1408}
1409
d352ac68
CM
1410/*
1411 * helper function for defrag to decide if two blocks pointed to by a
1412 * node are actually close by
1413 */
6b80053d 1414static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1415{
6b80053d 1416 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1417 return 1;
6b80053d 1418 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1419 return 1;
1420 return 0;
1421}
1422
081e9573
CM
1423/*
1424 * compare two keys in a memcmp fashion
1425 */
1426static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1427{
1428 struct btrfs_key k1;
1429
1430 btrfs_disk_key_to_cpu(&k1, disk);
1431
20736aba 1432 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1433}
1434
f3465ca4
JB
1435/*
1436 * same as comp_keys only with two btrfs_key's
1437 */
5d4f98a2 1438int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
f3465ca4
JB
1439{
1440 if (k1->objectid > k2->objectid)
1441 return 1;
1442 if (k1->objectid < k2->objectid)
1443 return -1;
1444 if (k1->type > k2->type)
1445 return 1;
1446 if (k1->type < k2->type)
1447 return -1;
1448 if (k1->offset > k2->offset)
1449 return 1;
1450 if (k1->offset < k2->offset)
1451 return -1;
1452 return 0;
1453}
081e9573 1454
d352ac68
CM
1455/*
1456 * this is used by the defrag code to go through all the
1457 * leaves pointed to by a node and reallocate them so that
1458 * disk order is close to key order
1459 */
6702ed49 1460int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1461 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1462 int start_slot, u64 *last_ret,
a6b6e75e 1463 struct btrfs_key *progress)
6702ed49 1464{
6b80053d 1465 struct extent_buffer *cur;
6702ed49 1466 u64 blocknr;
ca7a79ad 1467 u64 gen;
e9d0b13b
CM
1468 u64 search_start = *last_ret;
1469 u64 last_block = 0;
6702ed49
CM
1470 u64 other;
1471 u32 parent_nritems;
6702ed49
CM
1472 int end_slot;
1473 int i;
1474 int err = 0;
f2183bde 1475 int parent_level;
6b80053d
CM
1476 int uptodate;
1477 u32 blocksize;
081e9573
CM
1478 int progress_passed = 0;
1479 struct btrfs_disk_key disk_key;
6702ed49 1480
5708b959 1481 parent_level = btrfs_header_level(parent);
5708b959 1482
6c1500f2
JL
1483 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1484 WARN_ON(trans->transid != root->fs_info->generation);
86479a04 1485
6b80053d 1486 parent_nritems = btrfs_header_nritems(parent);
6b80053d 1487 blocksize = btrfs_level_size(root, parent_level - 1);
6702ed49
CM
1488 end_slot = parent_nritems;
1489
1490 if (parent_nritems == 1)
1491 return 0;
1492
b4ce94de
CM
1493 btrfs_set_lock_blocking(parent);
1494
6702ed49
CM
1495 for (i = start_slot; i < end_slot; i++) {
1496 int close = 1;
a6b6e75e 1497
081e9573
CM
1498 btrfs_node_key(parent, &disk_key, i);
1499 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1500 continue;
1501
1502 progress_passed = 1;
6b80053d 1503 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1504 gen = btrfs_node_ptr_generation(parent, i);
e9d0b13b
CM
1505 if (last_block == 0)
1506 last_block = blocknr;
5708b959 1507
6702ed49 1508 if (i > 0) {
6b80053d
CM
1509 other = btrfs_node_blockptr(parent, i - 1);
1510 close = close_blocks(blocknr, other, blocksize);
6702ed49 1511 }
0ef3e66b 1512 if (!close && i < end_slot - 2) {
6b80053d
CM
1513 other = btrfs_node_blockptr(parent, i + 1);
1514 close = close_blocks(blocknr, other, blocksize);
6702ed49 1515 }
e9d0b13b
CM
1516 if (close) {
1517 last_block = blocknr;
6702ed49 1518 continue;
e9d0b13b 1519 }
6702ed49 1520
6b80053d
CM
1521 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1522 if (cur)
b9fab919 1523 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1524 else
1525 uptodate = 0;
5708b959 1526 if (!cur || !uptodate) {
6b80053d
CM
1527 if (!cur) {
1528 cur = read_tree_block(root, blocknr,
ca7a79ad 1529 blocksize, gen);
416bc658
JB
1530 if (!cur || !extent_buffer_uptodate(cur)) {
1531 free_extent_buffer(cur);
97d9a8a4 1532 return -EIO;
416bc658 1533 }
6b80053d 1534 } else if (!uptodate) {
018642a1
TI
1535 err = btrfs_read_buffer(cur, gen);
1536 if (err) {
1537 free_extent_buffer(cur);
1538 return err;
1539 }
f2183bde 1540 }
6702ed49 1541 }
e9d0b13b 1542 if (search_start == 0)
6b80053d 1543 search_start = last_block;
e9d0b13b 1544
e7a84565 1545 btrfs_tree_lock(cur);
b4ce94de 1546 btrfs_set_lock_blocking(cur);
6b80053d 1547 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1548 &cur, search_start,
6b80053d 1549 min(16 * blocksize,
9fa8cfe7 1550 (end_slot - i) * blocksize));
252c38f0 1551 if (err) {
e7a84565 1552 btrfs_tree_unlock(cur);
6b80053d 1553 free_extent_buffer(cur);
6702ed49 1554 break;
252c38f0 1555 }
e7a84565
CM
1556 search_start = cur->start;
1557 last_block = cur->start;
f2183bde 1558 *last_ret = search_start;
e7a84565
CM
1559 btrfs_tree_unlock(cur);
1560 free_extent_buffer(cur);
6702ed49
CM
1561 }
1562 return err;
1563}
1564
74123bd7
CM
1565/*
1566 * The leaf data grows from end-to-front in the node.
1567 * this returns the address of the start of the last item,
1568 * which is the stop of the leaf data stack
1569 */
123abc88 1570static inline unsigned int leaf_data_end(struct btrfs_root *root,
5f39d397 1571 struct extent_buffer *leaf)
be0e5c09 1572{
5f39d397 1573 u32 nr = btrfs_header_nritems(leaf);
be0e5c09 1574 if (nr == 0)
123abc88 1575 return BTRFS_LEAF_DATA_SIZE(root);
5f39d397 1576 return btrfs_item_offset_nr(leaf, nr - 1);
be0e5c09
CM
1577}
1578
aa5d6bed 1579
74123bd7 1580/*
5f39d397
CM
1581 * search for key in the extent_buffer. The items start at offset p,
1582 * and they are item_size apart. There are 'max' items in p.
1583 *
74123bd7
CM
1584 * the slot in the array is returned via slot, and it points to
1585 * the place where you would insert key if it is not found in
1586 * the array.
1587 *
1588 * slot may point to max if the key is bigger than all of the keys
1589 */
e02119d5
CM
1590static noinline int generic_bin_search(struct extent_buffer *eb,
1591 unsigned long p,
1592 int item_size, struct btrfs_key *key,
1593 int max, int *slot)
be0e5c09
CM
1594{
1595 int low = 0;
1596 int high = max;
1597 int mid;
1598 int ret;
479965d6 1599 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1600 struct btrfs_disk_key unaligned;
1601 unsigned long offset;
5f39d397
CM
1602 char *kaddr = NULL;
1603 unsigned long map_start = 0;
1604 unsigned long map_len = 0;
479965d6 1605 int err;
be0e5c09 1606
d397712b 1607 while (low < high) {
be0e5c09 1608 mid = (low + high) / 2;
5f39d397
CM
1609 offset = p + mid * item_size;
1610
a6591715 1611 if (!kaddr || offset < map_start ||
5f39d397
CM
1612 (offset + sizeof(struct btrfs_disk_key)) >
1613 map_start + map_len) {
934d375b
CM
1614
1615 err = map_private_extent_buffer(eb, offset,
479965d6 1616 sizeof(struct btrfs_disk_key),
a6591715 1617 &kaddr, &map_start, &map_len);
479965d6
CM
1618
1619 if (!err) {
1620 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1621 map_start);
1622 } else {
1623 read_extent_buffer(eb, &unaligned,
1624 offset, sizeof(unaligned));
1625 tmp = &unaligned;
1626 }
5f39d397 1627
5f39d397
CM
1628 } else {
1629 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1630 map_start);
1631 }
be0e5c09
CM
1632 ret = comp_keys(tmp, key);
1633
1634 if (ret < 0)
1635 low = mid + 1;
1636 else if (ret > 0)
1637 high = mid;
1638 else {
1639 *slot = mid;
1640 return 0;
1641 }
1642 }
1643 *slot = low;
1644 return 1;
1645}
1646
97571fd0
CM
1647/*
1648 * simple bin_search frontend that does the right thing for
1649 * leaves vs nodes
1650 */
5f39d397
CM
1651static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1652 int level, int *slot)
be0e5c09 1653{
f775738f 1654 if (level == 0)
5f39d397
CM
1655 return generic_bin_search(eb,
1656 offsetof(struct btrfs_leaf, items),
0783fcfc 1657 sizeof(struct btrfs_item),
5f39d397 1658 key, btrfs_header_nritems(eb),
7518a238 1659 slot);
f775738f 1660 else
5f39d397
CM
1661 return generic_bin_search(eb,
1662 offsetof(struct btrfs_node, ptrs),
123abc88 1663 sizeof(struct btrfs_key_ptr),
5f39d397 1664 key, btrfs_header_nritems(eb),
7518a238 1665 slot);
be0e5c09
CM
1666}
1667
5d4f98a2
YZ
1668int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1669 int level, int *slot)
1670{
1671 return bin_search(eb, key, level, slot);
1672}
1673
f0486c68
YZ
1674static void root_add_used(struct btrfs_root *root, u32 size)
1675{
1676 spin_lock(&root->accounting_lock);
1677 btrfs_set_root_used(&root->root_item,
1678 btrfs_root_used(&root->root_item) + size);
1679 spin_unlock(&root->accounting_lock);
1680}
1681
1682static void root_sub_used(struct btrfs_root *root, u32 size)
1683{
1684 spin_lock(&root->accounting_lock);
1685 btrfs_set_root_used(&root->root_item,
1686 btrfs_root_used(&root->root_item) - size);
1687 spin_unlock(&root->accounting_lock);
1688}
1689
d352ac68
CM
1690/* given a node and slot number, this reads the blocks it points to. The
1691 * extent buffer is returned with a reference taken (but unlocked).
1692 * NULL is returned on error.
1693 */
e02119d5 1694static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
5f39d397 1695 struct extent_buffer *parent, int slot)
bb803951 1696{
ca7a79ad 1697 int level = btrfs_header_level(parent);
416bc658
JB
1698 struct extent_buffer *eb;
1699
bb803951
CM
1700 if (slot < 0)
1701 return NULL;
5f39d397 1702 if (slot >= btrfs_header_nritems(parent))
bb803951 1703 return NULL;
ca7a79ad
CM
1704
1705 BUG_ON(level == 0);
1706
416bc658
JB
1707 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1708 btrfs_level_size(root, level - 1),
1709 btrfs_node_ptr_generation(parent, slot));
1710 if (eb && !extent_buffer_uptodate(eb)) {
1711 free_extent_buffer(eb);
1712 eb = NULL;
1713 }
1714
1715 return eb;
bb803951
CM
1716}
1717
d352ac68
CM
1718/*
1719 * node level balancing, used to make sure nodes are in proper order for
1720 * item deletion. We balance from the top down, so we have to make sure
1721 * that a deletion won't leave an node completely empty later on.
1722 */
e02119d5 1723static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1724 struct btrfs_root *root,
1725 struct btrfs_path *path, int level)
bb803951 1726{
5f39d397
CM
1727 struct extent_buffer *right = NULL;
1728 struct extent_buffer *mid;
1729 struct extent_buffer *left = NULL;
1730 struct extent_buffer *parent = NULL;
bb803951
CM
1731 int ret = 0;
1732 int wret;
1733 int pslot;
bb803951 1734 int orig_slot = path->slots[level];
79f95c82 1735 u64 orig_ptr;
bb803951
CM
1736
1737 if (level == 0)
1738 return 0;
1739
5f39d397 1740 mid = path->nodes[level];
b4ce94de 1741
bd681513
CM
1742 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1743 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1744 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1745
1d4f8a0c 1746 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1747
a05a9bb1 1748 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1749 parent = path->nodes[level + 1];
a05a9bb1
LZ
1750 pslot = path->slots[level + 1];
1751 }
bb803951 1752
40689478
CM
1753 /*
1754 * deal with the case where there is only one pointer in the root
1755 * by promoting the node below to a root
1756 */
5f39d397
CM
1757 if (!parent) {
1758 struct extent_buffer *child;
bb803951 1759
5f39d397 1760 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1761 return 0;
1762
1763 /* promote the child to a root */
5f39d397 1764 child = read_node_slot(root, mid, 0);
305a26af
MF
1765 if (!child) {
1766 ret = -EROFS;
1767 btrfs_std_error(root->fs_info, ret);
1768 goto enospc;
1769 }
1770
925baedd 1771 btrfs_tree_lock(child);
b4ce94de 1772 btrfs_set_lock_blocking(child);
9fa8cfe7 1773 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1774 if (ret) {
1775 btrfs_tree_unlock(child);
1776 free_extent_buffer(child);
1777 goto enospc;
1778 }
2f375ab9 1779
90f8d62e 1780 tree_mod_log_set_root_pointer(root, child, 1);
240f62c8 1781 rcu_assign_pointer(root->node, child);
925baedd 1782
0b86a832 1783 add_root_to_dirty_list(root);
925baedd 1784 btrfs_tree_unlock(child);
b4ce94de 1785
925baedd 1786 path->locks[level] = 0;
bb803951 1787 path->nodes[level] = NULL;
5f39d397 1788 clean_tree_block(trans, root, mid);
925baedd 1789 btrfs_tree_unlock(mid);
bb803951 1790 /* once for the path */
5f39d397 1791 free_extent_buffer(mid);
f0486c68
YZ
1792
1793 root_sub_used(root, mid->len);
5581a51a 1794 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1795 /* once for the root ptr */
3083ee2e 1796 free_extent_buffer_stale(mid);
f0486c68 1797 return 0;
bb803951 1798 }
5f39d397 1799 if (btrfs_header_nritems(mid) >
123abc88 1800 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
bb803951
CM
1801 return 0;
1802
5f39d397
CM
1803 left = read_node_slot(root, parent, pslot - 1);
1804 if (left) {
925baedd 1805 btrfs_tree_lock(left);
b4ce94de 1806 btrfs_set_lock_blocking(left);
5f39d397 1807 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1808 parent, pslot - 1, &left);
54aa1f4d
CM
1809 if (wret) {
1810 ret = wret;
1811 goto enospc;
1812 }
2cc58cf2 1813 }
5f39d397
CM
1814 right = read_node_slot(root, parent, pslot + 1);
1815 if (right) {
925baedd 1816 btrfs_tree_lock(right);
b4ce94de 1817 btrfs_set_lock_blocking(right);
5f39d397 1818 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1819 parent, pslot + 1, &right);
2cc58cf2
CM
1820 if (wret) {
1821 ret = wret;
1822 goto enospc;
1823 }
1824 }
1825
1826 /* first, try to make some room in the middle buffer */
5f39d397
CM
1827 if (left) {
1828 orig_slot += btrfs_header_nritems(left);
bce4eae9 1829 wret = push_node_left(trans, root, left, mid, 1);
79f95c82
CM
1830 if (wret < 0)
1831 ret = wret;
bb803951 1832 }
79f95c82
CM
1833
1834 /*
1835 * then try to empty the right most buffer into the middle
1836 */
5f39d397 1837 if (right) {
971a1f66 1838 wret = push_node_left(trans, root, mid, right, 1);
54aa1f4d 1839 if (wret < 0 && wret != -ENOSPC)
79f95c82 1840 ret = wret;
5f39d397 1841 if (btrfs_header_nritems(right) == 0) {
5f39d397 1842 clean_tree_block(trans, root, right);
925baedd 1843 btrfs_tree_unlock(right);
afe5fea7 1844 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 1845 root_sub_used(root, right->len);
5581a51a 1846 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1847 free_extent_buffer_stale(right);
f0486c68 1848 right = NULL;
bb803951 1849 } else {
5f39d397
CM
1850 struct btrfs_disk_key right_key;
1851 btrfs_node_key(right, &right_key, 0);
f230475e 1852 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 1853 pslot + 1, 0);
5f39d397
CM
1854 btrfs_set_node_key(parent, &right_key, pslot + 1);
1855 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1856 }
1857 }
5f39d397 1858 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1859 /*
1860 * we're not allowed to leave a node with one item in the
1861 * tree during a delete. A deletion from lower in the tree
1862 * could try to delete the only pointer in this node.
1863 * So, pull some keys from the left.
1864 * There has to be a left pointer at this point because
1865 * otherwise we would have pulled some pointers from the
1866 * right
1867 */
305a26af
MF
1868 if (!left) {
1869 ret = -EROFS;
1870 btrfs_std_error(root->fs_info, ret);
1871 goto enospc;
1872 }
5f39d397 1873 wret = balance_node_right(trans, root, mid, left);
54aa1f4d 1874 if (wret < 0) {
79f95c82 1875 ret = wret;
54aa1f4d
CM
1876 goto enospc;
1877 }
bce4eae9
CM
1878 if (wret == 1) {
1879 wret = push_node_left(trans, root, left, mid, 1);
1880 if (wret < 0)
1881 ret = wret;
1882 }
79f95c82
CM
1883 BUG_ON(wret == 1);
1884 }
5f39d397 1885 if (btrfs_header_nritems(mid) == 0) {
5f39d397 1886 clean_tree_block(trans, root, mid);
925baedd 1887 btrfs_tree_unlock(mid);
afe5fea7 1888 del_ptr(root, path, level + 1, pslot);
f0486c68 1889 root_sub_used(root, mid->len);
5581a51a 1890 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1891 free_extent_buffer_stale(mid);
f0486c68 1892 mid = NULL;
79f95c82
CM
1893 } else {
1894 /* update the parent key to reflect our changes */
5f39d397
CM
1895 struct btrfs_disk_key mid_key;
1896 btrfs_node_key(mid, &mid_key, 0);
32adf090 1897 tree_mod_log_set_node_key(root->fs_info, parent,
f230475e 1898 pslot, 0);
5f39d397
CM
1899 btrfs_set_node_key(parent, &mid_key, pslot);
1900 btrfs_mark_buffer_dirty(parent);
79f95c82 1901 }
bb803951 1902
79f95c82 1903 /* update the path */
5f39d397
CM
1904 if (left) {
1905 if (btrfs_header_nritems(left) > orig_slot) {
1906 extent_buffer_get(left);
925baedd 1907 /* left was locked after cow */
5f39d397 1908 path->nodes[level] = left;
bb803951
CM
1909 path->slots[level + 1] -= 1;
1910 path->slots[level] = orig_slot;
925baedd
CM
1911 if (mid) {
1912 btrfs_tree_unlock(mid);
5f39d397 1913 free_extent_buffer(mid);
925baedd 1914 }
bb803951 1915 } else {
5f39d397 1916 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
1917 path->slots[level] = orig_slot;
1918 }
1919 }
79f95c82 1920 /* double check we haven't messed things up */
e20d96d6 1921 if (orig_ptr !=
5f39d397 1922 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 1923 BUG();
54aa1f4d 1924enospc:
925baedd
CM
1925 if (right) {
1926 btrfs_tree_unlock(right);
5f39d397 1927 free_extent_buffer(right);
925baedd
CM
1928 }
1929 if (left) {
1930 if (path->nodes[level] != left)
1931 btrfs_tree_unlock(left);
5f39d397 1932 free_extent_buffer(left);
925baedd 1933 }
bb803951
CM
1934 return ret;
1935}
1936
d352ac68
CM
1937/* Node balancing for insertion. Here we only split or push nodes around
1938 * when they are completely full. This is also done top down, so we
1939 * have to be pessimistic.
1940 */
d397712b 1941static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
1942 struct btrfs_root *root,
1943 struct btrfs_path *path, int level)
e66f709b 1944{
5f39d397
CM
1945 struct extent_buffer *right = NULL;
1946 struct extent_buffer *mid;
1947 struct extent_buffer *left = NULL;
1948 struct extent_buffer *parent = NULL;
e66f709b
CM
1949 int ret = 0;
1950 int wret;
1951 int pslot;
1952 int orig_slot = path->slots[level];
e66f709b
CM
1953
1954 if (level == 0)
1955 return 1;
1956
5f39d397 1957 mid = path->nodes[level];
7bb86316 1958 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 1959
a05a9bb1 1960 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1961 parent = path->nodes[level + 1];
a05a9bb1
LZ
1962 pslot = path->slots[level + 1];
1963 }
e66f709b 1964
5f39d397 1965 if (!parent)
e66f709b 1966 return 1;
e66f709b 1967
5f39d397 1968 left = read_node_slot(root, parent, pslot - 1);
e66f709b
CM
1969
1970 /* first, try to make some room in the middle buffer */
5f39d397 1971 if (left) {
e66f709b 1972 u32 left_nr;
925baedd
CM
1973
1974 btrfs_tree_lock(left);
b4ce94de
CM
1975 btrfs_set_lock_blocking(left);
1976
5f39d397 1977 left_nr = btrfs_header_nritems(left);
33ade1f8
CM
1978 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1979 wret = 1;
1980 } else {
5f39d397 1981 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 1982 pslot - 1, &left);
54aa1f4d
CM
1983 if (ret)
1984 wret = 1;
1985 else {
54aa1f4d 1986 wret = push_node_left(trans, root,
971a1f66 1987 left, mid, 0);
54aa1f4d 1988 }
33ade1f8 1989 }
e66f709b
CM
1990 if (wret < 0)
1991 ret = wret;
1992 if (wret == 0) {
5f39d397 1993 struct btrfs_disk_key disk_key;
e66f709b 1994 orig_slot += left_nr;
5f39d397 1995 btrfs_node_key(mid, &disk_key, 0);
f230475e 1996 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 1997 pslot, 0);
5f39d397
CM
1998 btrfs_set_node_key(parent, &disk_key, pslot);
1999 btrfs_mark_buffer_dirty(parent);
2000 if (btrfs_header_nritems(left) > orig_slot) {
2001 path->nodes[level] = left;
e66f709b
CM
2002 path->slots[level + 1] -= 1;
2003 path->slots[level] = orig_slot;
925baedd 2004 btrfs_tree_unlock(mid);
5f39d397 2005 free_extent_buffer(mid);
e66f709b
CM
2006 } else {
2007 orig_slot -=
5f39d397 2008 btrfs_header_nritems(left);
e66f709b 2009 path->slots[level] = orig_slot;
925baedd 2010 btrfs_tree_unlock(left);
5f39d397 2011 free_extent_buffer(left);
e66f709b 2012 }
e66f709b
CM
2013 return 0;
2014 }
925baedd 2015 btrfs_tree_unlock(left);
5f39d397 2016 free_extent_buffer(left);
e66f709b 2017 }
925baedd 2018 right = read_node_slot(root, parent, pslot + 1);
e66f709b
CM
2019
2020 /*
2021 * then try to empty the right most buffer into the middle
2022 */
5f39d397 2023 if (right) {
33ade1f8 2024 u32 right_nr;
b4ce94de 2025
925baedd 2026 btrfs_tree_lock(right);
b4ce94de
CM
2027 btrfs_set_lock_blocking(right);
2028
5f39d397 2029 right_nr = btrfs_header_nritems(right);
33ade1f8
CM
2030 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2031 wret = 1;
2032 } else {
5f39d397
CM
2033 ret = btrfs_cow_block(trans, root, right,
2034 parent, pslot + 1,
9fa8cfe7 2035 &right);
54aa1f4d
CM
2036 if (ret)
2037 wret = 1;
2038 else {
54aa1f4d 2039 wret = balance_node_right(trans, root,
5f39d397 2040 right, mid);
54aa1f4d 2041 }
33ade1f8 2042 }
e66f709b
CM
2043 if (wret < 0)
2044 ret = wret;
2045 if (wret == 0) {
5f39d397
CM
2046 struct btrfs_disk_key disk_key;
2047
2048 btrfs_node_key(right, &disk_key, 0);
f230475e 2049 tree_mod_log_set_node_key(root->fs_info, parent,
32adf090 2050 pslot + 1, 0);
5f39d397
CM
2051 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2052 btrfs_mark_buffer_dirty(parent);
2053
2054 if (btrfs_header_nritems(mid) <= orig_slot) {
2055 path->nodes[level] = right;
e66f709b
CM
2056 path->slots[level + 1] += 1;
2057 path->slots[level] = orig_slot -
5f39d397 2058 btrfs_header_nritems(mid);
925baedd 2059 btrfs_tree_unlock(mid);
5f39d397 2060 free_extent_buffer(mid);
e66f709b 2061 } else {
925baedd 2062 btrfs_tree_unlock(right);
5f39d397 2063 free_extent_buffer(right);
e66f709b 2064 }
e66f709b
CM
2065 return 0;
2066 }
925baedd 2067 btrfs_tree_unlock(right);
5f39d397 2068 free_extent_buffer(right);
e66f709b 2069 }
e66f709b
CM
2070 return 1;
2071}
2072
3c69faec 2073/*
d352ac68
CM
2074 * readahead one full node of leaves, finding things that are close
2075 * to the block in 'slot', and triggering ra on them.
3c69faec 2076 */
c8c42864
CM
2077static void reada_for_search(struct btrfs_root *root,
2078 struct btrfs_path *path,
2079 int level, int slot, u64 objectid)
3c69faec 2080{
5f39d397 2081 struct extent_buffer *node;
01f46658 2082 struct btrfs_disk_key disk_key;
3c69faec 2083 u32 nritems;
3c69faec 2084 u64 search;
a7175319 2085 u64 target;
6b80053d 2086 u64 nread = 0;
cb25c2ea 2087 u64 gen;
3c69faec 2088 int direction = path->reada;
5f39d397 2089 struct extent_buffer *eb;
6b80053d
CM
2090 u32 nr;
2091 u32 blocksize;
2092 u32 nscan = 0;
db94535d 2093
a6b6e75e 2094 if (level != 1)
6702ed49
CM
2095 return;
2096
2097 if (!path->nodes[level])
3c69faec
CM
2098 return;
2099
5f39d397 2100 node = path->nodes[level];
925baedd 2101
3c69faec 2102 search = btrfs_node_blockptr(node, slot);
6b80053d
CM
2103 blocksize = btrfs_level_size(root, level - 1);
2104 eb = btrfs_find_tree_block(root, search, blocksize);
5f39d397
CM
2105 if (eb) {
2106 free_extent_buffer(eb);
3c69faec
CM
2107 return;
2108 }
2109
a7175319 2110 target = search;
6b80053d 2111
5f39d397 2112 nritems = btrfs_header_nritems(node);
6b80053d 2113 nr = slot;
25b8b936 2114
d397712b 2115 while (1) {
6b80053d
CM
2116 if (direction < 0) {
2117 if (nr == 0)
2118 break;
2119 nr--;
2120 } else if (direction > 0) {
2121 nr++;
2122 if (nr >= nritems)
2123 break;
3c69faec 2124 }
01f46658
CM
2125 if (path->reada < 0 && objectid) {
2126 btrfs_node_key(node, &disk_key, nr);
2127 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2128 break;
2129 }
6b80053d 2130 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2131 if ((search <= target && target - search <= 65536) ||
2132 (search > target && search - target <= 65536)) {
cb25c2ea 2133 gen = btrfs_node_ptr_generation(node, nr);
cb25c2ea 2134 readahead_tree_block(root, search, blocksize, gen);
6b80053d
CM
2135 nread += blocksize;
2136 }
2137 nscan++;
a7175319 2138 if ((nread > 65536 || nscan > 32))
6b80053d 2139 break;
3c69faec
CM
2140 }
2141}
925baedd 2142
0b08851f
JB
2143static noinline void reada_for_balance(struct btrfs_root *root,
2144 struct btrfs_path *path, int level)
b4ce94de
CM
2145{
2146 int slot;
2147 int nritems;
2148 struct extent_buffer *parent;
2149 struct extent_buffer *eb;
2150 u64 gen;
2151 u64 block1 = 0;
2152 u64 block2 = 0;
b4ce94de
CM
2153 int blocksize;
2154
8c594ea8 2155 parent = path->nodes[level + 1];
b4ce94de 2156 if (!parent)
0b08851f 2157 return;
b4ce94de
CM
2158
2159 nritems = btrfs_header_nritems(parent);
8c594ea8 2160 slot = path->slots[level + 1];
b4ce94de
CM
2161 blocksize = btrfs_level_size(root, level);
2162
2163 if (slot > 0) {
2164 block1 = btrfs_node_blockptr(parent, slot - 1);
2165 gen = btrfs_node_ptr_generation(parent, slot - 1);
2166 eb = btrfs_find_tree_block(root, block1, blocksize);
b9fab919
CM
2167 /*
2168 * if we get -eagain from btrfs_buffer_uptodate, we
2169 * don't want to return eagain here. That will loop
2170 * forever
2171 */
2172 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2173 block1 = 0;
2174 free_extent_buffer(eb);
2175 }
8c594ea8 2176 if (slot + 1 < nritems) {
b4ce94de
CM
2177 block2 = btrfs_node_blockptr(parent, slot + 1);
2178 gen = btrfs_node_ptr_generation(parent, slot + 1);
2179 eb = btrfs_find_tree_block(root, block2, blocksize);
b9fab919 2180 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2181 block2 = 0;
2182 free_extent_buffer(eb);
2183 }
8c594ea8 2184
0b08851f
JB
2185 if (block1)
2186 readahead_tree_block(root, block1, blocksize, 0);
2187 if (block2)
2188 readahead_tree_block(root, block2, blocksize, 0);
b4ce94de
CM
2189}
2190
2191
d352ac68 2192/*
d397712b
CM
2193 * when we walk down the tree, it is usually safe to unlock the higher layers
2194 * in the tree. The exceptions are when our path goes through slot 0, because
2195 * operations on the tree might require changing key pointers higher up in the
2196 * tree.
d352ac68 2197 *
d397712b
CM
2198 * callers might also have set path->keep_locks, which tells this code to keep
2199 * the lock if the path points to the last slot in the block. This is part of
2200 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2201 *
d397712b
CM
2202 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2203 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2204 */
e02119d5 2205static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2206 int lowest_unlock, int min_write_lock_level,
2207 int *write_lock_level)
925baedd
CM
2208{
2209 int i;
2210 int skip_level = level;
051e1b9f 2211 int no_skips = 0;
925baedd
CM
2212 struct extent_buffer *t;
2213
2214 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2215 if (!path->nodes[i])
2216 break;
2217 if (!path->locks[i])
2218 break;
051e1b9f 2219 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2220 skip_level = i + 1;
2221 continue;
2222 }
051e1b9f 2223 if (!no_skips && path->keep_locks) {
925baedd
CM
2224 u32 nritems;
2225 t = path->nodes[i];
2226 nritems = btrfs_header_nritems(t);
051e1b9f 2227 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2228 skip_level = i + 1;
2229 continue;
2230 }
2231 }
051e1b9f
CM
2232 if (skip_level < i && i >= lowest_unlock)
2233 no_skips = 1;
2234
925baedd
CM
2235 t = path->nodes[i];
2236 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
bd681513 2237 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2238 path->locks[i] = 0;
f7c79f30
CM
2239 if (write_lock_level &&
2240 i > min_write_lock_level &&
2241 i <= *write_lock_level) {
2242 *write_lock_level = i - 1;
2243 }
925baedd
CM
2244 }
2245 }
2246}
2247
b4ce94de
CM
2248/*
2249 * This releases any locks held in the path starting at level and
2250 * going all the way up to the root.
2251 *
2252 * btrfs_search_slot will keep the lock held on higher nodes in a few
2253 * corner cases, such as COW of the block at slot zero in the node. This
2254 * ignores those rules, and it should only be called when there are no
2255 * more updates to be done higher up in the tree.
2256 */
2257noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2258{
2259 int i;
2260
09a2a8f9 2261 if (path->keep_locks)
b4ce94de
CM
2262 return;
2263
2264 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2265 if (!path->nodes[i])
12f4dacc 2266 continue;
b4ce94de 2267 if (!path->locks[i])
12f4dacc 2268 continue;
bd681513 2269 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2270 path->locks[i] = 0;
2271 }
2272}
2273
c8c42864
CM
2274/*
2275 * helper function for btrfs_search_slot. The goal is to find a block
2276 * in cache without setting the path to blocking. If we find the block
2277 * we return zero and the path is unchanged.
2278 *
2279 * If we can't find the block, we set the path blocking and do some
2280 * reada. -EAGAIN is returned and the search must be repeated.
2281 */
2282static int
2283read_block_for_search(struct btrfs_trans_handle *trans,
2284 struct btrfs_root *root, struct btrfs_path *p,
2285 struct extent_buffer **eb_ret, int level, int slot,
5d9e75c4 2286 struct btrfs_key *key, u64 time_seq)
c8c42864
CM
2287{
2288 u64 blocknr;
2289 u64 gen;
2290 u32 blocksize;
2291 struct extent_buffer *b = *eb_ret;
2292 struct extent_buffer *tmp;
76a05b35 2293 int ret;
c8c42864
CM
2294
2295 blocknr = btrfs_node_blockptr(b, slot);
2296 gen = btrfs_node_ptr_generation(b, slot);
2297 blocksize = btrfs_level_size(root, level - 1);
2298
2299 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
cb44921a 2300 if (tmp) {
b9fab919 2301 /* first we do an atomic uptodate check */
bdf7c00e
JB
2302 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2303 *eb_ret = tmp;
2304 return 0;
2305 }
2306
2307 /* the pages were up to date, but we failed
2308 * the generation number check. Do a full
2309 * read for the generation number that is correct.
2310 * We must do this without dropping locks so
2311 * we can trust our generation number
2312 */
2313 btrfs_set_path_blocking(p);
2314
2315 /* now we're allowed to do a blocking uptodate check */
2316 ret = btrfs_read_buffer(tmp, gen);
2317 if (!ret) {
2318 *eb_ret = tmp;
2319 return 0;
cb44921a 2320 }
bdf7c00e
JB
2321 free_extent_buffer(tmp);
2322 btrfs_release_path(p);
2323 return -EIO;
c8c42864
CM
2324 }
2325
2326 /*
2327 * reduce lock contention at high levels
2328 * of the btree by dropping locks before
76a05b35
CM
2329 * we read. Don't release the lock on the current
2330 * level because we need to walk this node to figure
2331 * out which blocks to read.
c8c42864 2332 */
8c594ea8
CM
2333 btrfs_unlock_up_safe(p, level + 1);
2334 btrfs_set_path_blocking(p);
2335
cb44921a 2336 free_extent_buffer(tmp);
c8c42864
CM
2337 if (p->reada)
2338 reada_for_search(root, p, level, slot, key->objectid);
2339
b3b4aa74 2340 btrfs_release_path(p);
76a05b35
CM
2341
2342 ret = -EAGAIN;
5bdd3536 2343 tmp = read_tree_block(root, blocknr, blocksize, 0);
76a05b35
CM
2344 if (tmp) {
2345 /*
2346 * If the read above didn't mark this buffer up to date,
2347 * it will never end up being up to date. Set ret to EIO now
2348 * and give up so that our caller doesn't loop forever
2349 * on our EAGAINs.
2350 */
b9fab919 2351 if (!btrfs_buffer_uptodate(tmp, 0, 0))
76a05b35 2352 ret = -EIO;
c8c42864 2353 free_extent_buffer(tmp);
76a05b35
CM
2354 }
2355 return ret;
c8c42864
CM
2356}
2357
2358/*
2359 * helper function for btrfs_search_slot. This does all of the checks
2360 * for node-level blocks and does any balancing required based on
2361 * the ins_len.
2362 *
2363 * If no extra work was required, zero is returned. If we had to
2364 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2365 * start over
2366 */
2367static int
2368setup_nodes_for_search(struct btrfs_trans_handle *trans,
2369 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2370 struct extent_buffer *b, int level, int ins_len,
2371 int *write_lock_level)
c8c42864
CM
2372{
2373 int ret;
2374 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2375 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2376 int sret;
2377
bd681513
CM
2378 if (*write_lock_level < level + 1) {
2379 *write_lock_level = level + 1;
2380 btrfs_release_path(p);
2381 goto again;
2382 }
2383
c8c42864 2384 btrfs_set_path_blocking(p);
0b08851f 2385 reada_for_balance(root, p, level);
c8c42864 2386 sret = split_node(trans, root, p, level);
bd681513 2387 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2388
2389 BUG_ON(sret > 0);
2390 if (sret) {
2391 ret = sret;
2392 goto done;
2393 }
2394 b = p->nodes[level];
2395 } else if (ins_len < 0 && btrfs_header_nritems(b) <
cfbb9308 2396 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
c8c42864
CM
2397 int sret;
2398
bd681513
CM
2399 if (*write_lock_level < level + 1) {
2400 *write_lock_level = level + 1;
2401 btrfs_release_path(p);
2402 goto again;
2403 }
2404
c8c42864 2405 btrfs_set_path_blocking(p);
0b08851f 2406 reada_for_balance(root, p, level);
c8c42864 2407 sret = balance_level(trans, root, p, level);
bd681513 2408 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2409
2410 if (sret) {
2411 ret = sret;
2412 goto done;
2413 }
2414 b = p->nodes[level];
2415 if (!b) {
b3b4aa74 2416 btrfs_release_path(p);
c8c42864
CM
2417 goto again;
2418 }
2419 BUG_ON(btrfs_header_nritems(b) == 1);
2420 }
2421 return 0;
2422
2423again:
2424 ret = -EAGAIN;
2425done:
2426 return ret;
2427}
2428
d7396f07
FDBM
2429static void key_search_validate(struct extent_buffer *b,
2430 struct btrfs_key *key,
2431 int level)
2432{
2433#ifdef CONFIG_BTRFS_ASSERT
2434 struct btrfs_disk_key disk_key;
2435
2436 btrfs_cpu_key_to_disk(&disk_key, key);
2437
2438 if (level == 0)
2439 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2440 offsetof(struct btrfs_leaf, items[0].key),
2441 sizeof(disk_key)));
2442 else
2443 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2444 offsetof(struct btrfs_node, ptrs[0].key),
2445 sizeof(disk_key)));
2446#endif
2447}
2448
2449static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2450 int level, int *prev_cmp, int *slot)
2451{
2452 if (*prev_cmp != 0) {
2453 *prev_cmp = bin_search(b, key, level, slot);
2454 return *prev_cmp;
2455 }
2456
2457 key_search_validate(b, key, level);
2458 *slot = 0;
2459
2460 return 0;
2461}
2462
74123bd7
CM
2463/*
2464 * look for key in the tree. path is filled in with nodes along the way
2465 * if key is found, we return zero and you can find the item in the leaf
2466 * level of the path (level 0)
2467 *
2468 * If the key isn't found, the path points to the slot where it should
aa5d6bed
CM
2469 * be inserted, and 1 is returned. If there are other errors during the
2470 * search a negative error number is returned.
97571fd0
CM
2471 *
2472 * if ins_len > 0, nodes and leaves will be split as we walk down the
2473 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2474 * possible)
74123bd7 2475 */
e089f05c
CM
2476int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2477 *root, struct btrfs_key *key, struct btrfs_path *p, int
2478 ins_len, int cow)
be0e5c09 2479{
5f39d397 2480 struct extent_buffer *b;
be0e5c09
CM
2481 int slot;
2482 int ret;
33c66f43 2483 int err;
be0e5c09 2484 int level;
925baedd 2485 int lowest_unlock = 1;
bd681513
CM
2486 int root_lock;
2487 /* everything at write_lock_level or lower must be write locked */
2488 int write_lock_level = 0;
9f3a7427 2489 u8 lowest_level = 0;
f7c79f30 2490 int min_write_lock_level;
d7396f07 2491 int prev_cmp;
9f3a7427 2492
6702ed49 2493 lowest_level = p->lowest_level;
323ac95b 2494 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2495 WARN_ON(p->nodes[0] != NULL);
25179201 2496
bd681513 2497 if (ins_len < 0) {
925baedd 2498 lowest_unlock = 2;
65b51a00 2499
bd681513
CM
2500 /* when we are removing items, we might have to go up to level
2501 * two as we update tree pointers Make sure we keep write
2502 * for those levels as well
2503 */
2504 write_lock_level = 2;
2505 } else if (ins_len > 0) {
2506 /*
2507 * for inserting items, make sure we have a write lock on
2508 * level 1 so we can update keys
2509 */
2510 write_lock_level = 1;
2511 }
2512
2513 if (!cow)
2514 write_lock_level = -1;
2515
09a2a8f9 2516 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2517 write_lock_level = BTRFS_MAX_LEVEL;
2518
f7c79f30
CM
2519 min_write_lock_level = write_lock_level;
2520
bb803951 2521again:
d7396f07 2522 prev_cmp = -1;
bd681513
CM
2523 /*
2524 * we try very hard to do read locks on the root
2525 */
2526 root_lock = BTRFS_READ_LOCK;
2527 level = 0;
5d4f98a2 2528 if (p->search_commit_root) {
bd681513
CM
2529 /*
2530 * the commit roots are read only
2531 * so we always do read locks
2532 */
5d4f98a2
YZ
2533 b = root->commit_root;
2534 extent_buffer_get(b);
bd681513 2535 level = btrfs_header_level(b);
5d4f98a2 2536 if (!p->skip_locking)
bd681513 2537 btrfs_tree_read_lock(b);
5d4f98a2 2538 } else {
bd681513 2539 if (p->skip_locking) {
5d4f98a2 2540 b = btrfs_root_node(root);
bd681513
CM
2541 level = btrfs_header_level(b);
2542 } else {
2543 /* we don't know the level of the root node
2544 * until we actually have it read locked
2545 */
2546 b = btrfs_read_lock_root_node(root);
2547 level = btrfs_header_level(b);
2548 if (level <= write_lock_level) {
2549 /* whoops, must trade for write lock */
2550 btrfs_tree_read_unlock(b);
2551 free_extent_buffer(b);
2552 b = btrfs_lock_root_node(root);
2553 root_lock = BTRFS_WRITE_LOCK;
2554
2555 /* the level might have changed, check again */
2556 level = btrfs_header_level(b);
2557 }
2558 }
5d4f98a2 2559 }
bd681513
CM
2560 p->nodes[level] = b;
2561 if (!p->skip_locking)
2562 p->locks[level] = root_lock;
925baedd 2563
eb60ceac 2564 while (b) {
5f39d397 2565 level = btrfs_header_level(b);
65b51a00
CM
2566
2567 /*
2568 * setup the path here so we can release it under lock
2569 * contention with the cow code
2570 */
02217ed2 2571 if (cow) {
c8c42864
CM
2572 /*
2573 * if we don't really need to cow this block
2574 * then we don't want to set the path blocking,
2575 * so we test it here
2576 */
5d4f98a2 2577 if (!should_cow_block(trans, root, b))
65b51a00 2578 goto cow_done;
5d4f98a2 2579
b4ce94de
CM
2580 btrfs_set_path_blocking(p);
2581
bd681513
CM
2582 /*
2583 * must have write locks on this node and the
2584 * parent
2585 */
5124e00e
JB
2586 if (level > write_lock_level ||
2587 (level + 1 > write_lock_level &&
2588 level + 1 < BTRFS_MAX_LEVEL &&
2589 p->nodes[level + 1])) {
bd681513
CM
2590 write_lock_level = level + 1;
2591 btrfs_release_path(p);
2592 goto again;
2593 }
2594
33c66f43
YZ
2595 err = btrfs_cow_block(trans, root, b,
2596 p->nodes[level + 1],
2597 p->slots[level + 1], &b);
2598 if (err) {
33c66f43 2599 ret = err;
65b51a00 2600 goto done;
54aa1f4d 2601 }
02217ed2 2602 }
65b51a00 2603cow_done:
02217ed2 2604 BUG_ON(!cow && ins_len);
65b51a00 2605
eb60ceac 2606 p->nodes[level] = b;
bd681513 2607 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2608
2609 /*
2610 * we have a lock on b and as long as we aren't changing
2611 * the tree, there is no way to for the items in b to change.
2612 * It is safe to drop the lock on our parent before we
2613 * go through the expensive btree search on b.
2614 *
2615 * If cow is true, then we might be changing slot zero,
2616 * which may require changing the parent. So, we can't
2617 * drop the lock until after we know which slot we're
2618 * operating on.
2619 */
2620 if (!cow)
2621 btrfs_unlock_up_safe(p, level + 1);
2622
d7396f07 2623 ret = key_search(b, key, level, &prev_cmp, &slot);
b4ce94de 2624
5f39d397 2625 if (level != 0) {
33c66f43
YZ
2626 int dec = 0;
2627 if (ret && slot > 0) {
2628 dec = 1;
be0e5c09 2629 slot -= 1;
33c66f43 2630 }
be0e5c09 2631 p->slots[level] = slot;
33c66f43 2632 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2633 ins_len, &write_lock_level);
33c66f43 2634 if (err == -EAGAIN)
c8c42864 2635 goto again;
33c66f43
YZ
2636 if (err) {
2637 ret = err;
c8c42864 2638 goto done;
33c66f43 2639 }
c8c42864
CM
2640 b = p->nodes[level];
2641 slot = p->slots[level];
b4ce94de 2642
bd681513
CM
2643 /*
2644 * slot 0 is special, if we change the key
2645 * we have to update the parent pointer
2646 * which means we must have a write lock
2647 * on the parent
2648 */
2649 if (slot == 0 && cow &&
2650 write_lock_level < level + 1) {
2651 write_lock_level = level + 1;
2652 btrfs_release_path(p);
2653 goto again;
2654 }
2655
f7c79f30
CM
2656 unlock_up(p, level, lowest_unlock,
2657 min_write_lock_level, &write_lock_level);
f9efa9c7 2658
925baedd 2659 if (level == lowest_level) {
33c66f43
YZ
2660 if (dec)
2661 p->slots[level]++;
5b21f2ed 2662 goto done;
925baedd 2663 }
ca7a79ad 2664
33c66f43 2665 err = read_block_for_search(trans, root, p,
5d9e75c4 2666 &b, level, slot, key, 0);
33c66f43 2667 if (err == -EAGAIN)
c8c42864 2668 goto again;
33c66f43
YZ
2669 if (err) {
2670 ret = err;
76a05b35 2671 goto done;
33c66f43 2672 }
76a05b35 2673
b4ce94de 2674 if (!p->skip_locking) {
bd681513
CM
2675 level = btrfs_header_level(b);
2676 if (level <= write_lock_level) {
2677 err = btrfs_try_tree_write_lock(b);
2678 if (!err) {
2679 btrfs_set_path_blocking(p);
2680 btrfs_tree_lock(b);
2681 btrfs_clear_path_blocking(p, b,
2682 BTRFS_WRITE_LOCK);
2683 }
2684 p->locks[level] = BTRFS_WRITE_LOCK;
2685 } else {
2686 err = btrfs_try_tree_read_lock(b);
2687 if (!err) {
2688 btrfs_set_path_blocking(p);
2689 btrfs_tree_read_lock(b);
2690 btrfs_clear_path_blocking(p, b,
2691 BTRFS_READ_LOCK);
2692 }
2693 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2694 }
bd681513 2695 p->nodes[level] = b;
b4ce94de 2696 }
be0e5c09
CM
2697 } else {
2698 p->slots[level] = slot;
87b29b20
YZ
2699 if (ins_len > 0 &&
2700 btrfs_leaf_free_space(root, b) < ins_len) {
bd681513
CM
2701 if (write_lock_level < 1) {
2702 write_lock_level = 1;
2703 btrfs_release_path(p);
2704 goto again;
2705 }
2706
b4ce94de 2707 btrfs_set_path_blocking(p);
33c66f43
YZ
2708 err = split_leaf(trans, root, key,
2709 p, ins_len, ret == 0);
bd681513 2710 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2711
33c66f43
YZ
2712 BUG_ON(err > 0);
2713 if (err) {
2714 ret = err;
65b51a00
CM
2715 goto done;
2716 }
5c680ed6 2717 }
459931ec 2718 if (!p->search_for_split)
f7c79f30
CM
2719 unlock_up(p, level, lowest_unlock,
2720 min_write_lock_level, &write_lock_level);
65b51a00 2721 goto done;
be0e5c09
CM
2722 }
2723 }
65b51a00
CM
2724 ret = 1;
2725done:
b4ce94de
CM
2726 /*
2727 * we don't really know what they plan on doing with the path
2728 * from here on, so for now just mark it as blocking
2729 */
b9473439
CM
2730 if (!p->leave_spinning)
2731 btrfs_set_path_blocking(p);
76a05b35 2732 if (ret < 0)
b3b4aa74 2733 btrfs_release_path(p);
65b51a00 2734 return ret;
be0e5c09
CM
2735}
2736
5d9e75c4
JS
2737/*
2738 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2739 * current state of the tree together with the operations recorded in the tree
2740 * modification log to search for the key in a previous version of this tree, as
2741 * denoted by the time_seq parameter.
2742 *
2743 * Naturally, there is no support for insert, delete or cow operations.
2744 *
2745 * The resulting path and return value will be set up as if we called
2746 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2747 */
2748int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2749 struct btrfs_path *p, u64 time_seq)
2750{
2751 struct extent_buffer *b;
2752 int slot;
2753 int ret;
2754 int err;
2755 int level;
2756 int lowest_unlock = 1;
2757 u8 lowest_level = 0;
d7396f07 2758 int prev_cmp;
5d9e75c4
JS
2759
2760 lowest_level = p->lowest_level;
2761 WARN_ON(p->nodes[0] != NULL);
2762
2763 if (p->search_commit_root) {
2764 BUG_ON(time_seq);
2765 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2766 }
2767
2768again:
d7396f07 2769 prev_cmp = -1;
5d9e75c4 2770 b = get_old_root(root, time_seq);
5d9e75c4 2771 level = btrfs_header_level(b);
5d9e75c4
JS
2772 p->locks[level] = BTRFS_READ_LOCK;
2773
2774 while (b) {
2775 level = btrfs_header_level(b);
2776 p->nodes[level] = b;
2777 btrfs_clear_path_blocking(p, NULL, 0);
2778
2779 /*
2780 * we have a lock on b and as long as we aren't changing
2781 * the tree, there is no way to for the items in b to change.
2782 * It is safe to drop the lock on our parent before we
2783 * go through the expensive btree search on b.
2784 */
2785 btrfs_unlock_up_safe(p, level + 1);
2786
d7396f07 2787 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
2788
2789 if (level != 0) {
2790 int dec = 0;
2791 if (ret && slot > 0) {
2792 dec = 1;
2793 slot -= 1;
2794 }
2795 p->slots[level] = slot;
2796 unlock_up(p, level, lowest_unlock, 0, NULL);
2797
2798 if (level == lowest_level) {
2799 if (dec)
2800 p->slots[level]++;
2801 goto done;
2802 }
2803
2804 err = read_block_for_search(NULL, root, p, &b, level,
2805 slot, key, time_seq);
2806 if (err == -EAGAIN)
2807 goto again;
2808 if (err) {
2809 ret = err;
2810 goto done;
2811 }
2812
2813 level = btrfs_header_level(b);
2814 err = btrfs_try_tree_read_lock(b);
2815 if (!err) {
2816 btrfs_set_path_blocking(p);
2817 btrfs_tree_read_lock(b);
2818 btrfs_clear_path_blocking(p, b,
2819 BTRFS_READ_LOCK);
2820 }
9ec72677 2821 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
db7f3436
JB
2822 if (!b) {
2823 ret = -ENOMEM;
2824 goto done;
2825 }
5d9e75c4
JS
2826 p->locks[level] = BTRFS_READ_LOCK;
2827 p->nodes[level] = b;
5d9e75c4
JS
2828 } else {
2829 p->slots[level] = slot;
2830 unlock_up(p, level, lowest_unlock, 0, NULL);
2831 goto done;
2832 }
2833 }
2834 ret = 1;
2835done:
2836 if (!p->leave_spinning)
2837 btrfs_set_path_blocking(p);
2838 if (ret < 0)
2839 btrfs_release_path(p);
2840
2841 return ret;
2842}
2843
2f38b3e1
AJ
2844/*
2845 * helper to use instead of search slot if no exact match is needed but
2846 * instead the next or previous item should be returned.
2847 * When find_higher is true, the next higher item is returned, the next lower
2848 * otherwise.
2849 * When return_any and find_higher are both true, and no higher item is found,
2850 * return the next lower instead.
2851 * When return_any is true and find_higher is false, and no lower item is found,
2852 * return the next higher instead.
2853 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2854 * < 0 on error
2855 */
2856int btrfs_search_slot_for_read(struct btrfs_root *root,
2857 struct btrfs_key *key, struct btrfs_path *p,
2858 int find_higher, int return_any)
2859{
2860 int ret;
2861 struct extent_buffer *leaf;
2862
2863again:
2864 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2865 if (ret <= 0)
2866 return ret;
2867 /*
2868 * a return value of 1 means the path is at the position where the
2869 * item should be inserted. Normally this is the next bigger item,
2870 * but in case the previous item is the last in a leaf, path points
2871 * to the first free slot in the previous leaf, i.e. at an invalid
2872 * item.
2873 */
2874 leaf = p->nodes[0];
2875
2876 if (find_higher) {
2877 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2878 ret = btrfs_next_leaf(root, p);
2879 if (ret <= 0)
2880 return ret;
2881 if (!return_any)
2882 return 1;
2883 /*
2884 * no higher item found, return the next
2885 * lower instead
2886 */
2887 return_any = 0;
2888 find_higher = 0;
2889 btrfs_release_path(p);
2890 goto again;
2891 }
2892 } else {
e6793769
AJ
2893 if (p->slots[0] == 0) {
2894 ret = btrfs_prev_leaf(root, p);
2895 if (ret < 0)
2896 return ret;
2897 if (!ret) {
2898 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2899 return 0;
2f38b3e1 2900 }
e6793769
AJ
2901 if (!return_any)
2902 return 1;
2903 /*
2904 * no lower item found, return the next
2905 * higher instead
2906 */
2907 return_any = 0;
2908 find_higher = 1;
2909 btrfs_release_path(p);
2910 goto again;
2911 } else {
2f38b3e1
AJ
2912 --p->slots[0];
2913 }
2914 }
2915 return 0;
2916}
2917
74123bd7
CM
2918/*
2919 * adjust the pointers going up the tree, starting at level
2920 * making sure the right key of each node is points to 'key'.
2921 * This is used after shifting pointers to the left, so it stops
2922 * fixing up pointers when a given leaf/node is not in slot 0 of the
2923 * higher levels
aa5d6bed 2924 *
74123bd7 2925 */
d6a0a126 2926static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
143bede5 2927 struct btrfs_disk_key *key, int level)
be0e5c09
CM
2928{
2929 int i;
5f39d397
CM
2930 struct extent_buffer *t;
2931
234b63a0 2932 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 2933 int tslot = path->slots[i];
eb60ceac 2934 if (!path->nodes[i])
be0e5c09 2935 break;
5f39d397 2936 t = path->nodes[i];
32adf090 2937 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
5f39d397 2938 btrfs_set_node_key(t, key, tslot);
d6025579 2939 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
2940 if (tslot != 0)
2941 break;
2942 }
2943}
2944
31840ae1
ZY
2945/*
2946 * update item key.
2947 *
2948 * This function isn't completely safe. It's the caller's responsibility
2949 * that the new key won't break the order
2950 */
afe5fea7 2951void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
143bede5 2952 struct btrfs_key *new_key)
31840ae1
ZY
2953{
2954 struct btrfs_disk_key disk_key;
2955 struct extent_buffer *eb;
2956 int slot;
2957
2958 eb = path->nodes[0];
2959 slot = path->slots[0];
2960 if (slot > 0) {
2961 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 2962 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
2963 }
2964 if (slot < btrfs_header_nritems(eb) - 1) {
2965 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 2966 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
2967 }
2968
2969 btrfs_cpu_key_to_disk(&disk_key, new_key);
2970 btrfs_set_item_key(eb, &disk_key, slot);
2971 btrfs_mark_buffer_dirty(eb);
2972 if (slot == 0)
d6a0a126 2973 fixup_low_keys(root, path, &disk_key, 1);
31840ae1
ZY
2974}
2975
74123bd7
CM
2976/*
2977 * try to push data from one node into the next node left in the
79f95c82 2978 * tree.
aa5d6bed
CM
2979 *
2980 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2981 * error, and > 0 if there was no room in the left hand block.
74123bd7 2982 */
98ed5174
CM
2983static int push_node_left(struct btrfs_trans_handle *trans,
2984 struct btrfs_root *root, struct extent_buffer *dst,
971a1f66 2985 struct extent_buffer *src, int empty)
be0e5c09 2986{
be0e5c09 2987 int push_items = 0;
bb803951
CM
2988 int src_nritems;
2989 int dst_nritems;
aa5d6bed 2990 int ret = 0;
be0e5c09 2991
5f39d397
CM
2992 src_nritems = btrfs_header_nritems(src);
2993 dst_nritems = btrfs_header_nritems(dst);
123abc88 2994 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
7bb86316
CM
2995 WARN_ON(btrfs_header_generation(src) != trans->transid);
2996 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 2997
bce4eae9 2998 if (!empty && src_nritems <= 8)
971a1f66
CM
2999 return 1;
3000
d397712b 3001 if (push_items <= 0)
be0e5c09
CM
3002 return 1;
3003
bce4eae9 3004 if (empty) {
971a1f66 3005 push_items = min(src_nritems, push_items);
bce4eae9
CM
3006 if (push_items < src_nritems) {
3007 /* leave at least 8 pointers in the node if
3008 * we aren't going to empty it
3009 */
3010 if (src_nritems - push_items < 8) {
3011 if (push_items <= 8)
3012 return 1;
3013 push_items -= 8;
3014 }
3015 }
3016 } else
3017 push_items = min(src_nritems - 8, push_items);
79f95c82 3018
f230475e 3019 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
90f8d62e 3020 push_items);
5f39d397
CM
3021 copy_extent_buffer(dst, src,
3022 btrfs_node_key_ptr_offset(dst_nritems),
3023 btrfs_node_key_ptr_offset(0),
d397712b 3024 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3025
bb803951 3026 if (push_items < src_nritems) {
57911b8b
JS
3027 /*
3028 * don't call tree_mod_log_eb_move here, key removal was already
3029 * fully logged by tree_mod_log_eb_copy above.
3030 */
5f39d397
CM
3031 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3032 btrfs_node_key_ptr_offset(push_items),
3033 (src_nritems - push_items) *
3034 sizeof(struct btrfs_key_ptr));
3035 }
3036 btrfs_set_header_nritems(src, src_nritems - push_items);
3037 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3038 btrfs_mark_buffer_dirty(src);
3039 btrfs_mark_buffer_dirty(dst);
31840ae1 3040
79f95c82
CM
3041 return ret;
3042}
3043
3044/*
3045 * try to push data from one node into the next node right in the
3046 * tree.
3047 *
3048 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3049 * error, and > 0 if there was no room in the right hand block.
3050 *
3051 * this will only push up to 1/2 the contents of the left node over
3052 */
5f39d397
CM
3053static int balance_node_right(struct btrfs_trans_handle *trans,
3054 struct btrfs_root *root,
3055 struct extent_buffer *dst,
3056 struct extent_buffer *src)
79f95c82 3057{
79f95c82
CM
3058 int push_items = 0;
3059 int max_push;
3060 int src_nritems;
3061 int dst_nritems;
3062 int ret = 0;
79f95c82 3063
7bb86316
CM
3064 WARN_ON(btrfs_header_generation(src) != trans->transid);
3065 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3066
5f39d397
CM
3067 src_nritems = btrfs_header_nritems(src);
3068 dst_nritems = btrfs_header_nritems(dst);
123abc88 3069 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
d397712b 3070 if (push_items <= 0)
79f95c82 3071 return 1;
bce4eae9 3072
d397712b 3073 if (src_nritems < 4)
bce4eae9 3074 return 1;
79f95c82
CM
3075
3076 max_push = src_nritems / 2 + 1;
3077 /* don't try to empty the node */
d397712b 3078 if (max_push >= src_nritems)
79f95c82 3079 return 1;
252c38f0 3080
79f95c82
CM
3081 if (max_push < push_items)
3082 push_items = max_push;
3083
f230475e 3084 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
5f39d397
CM
3085 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3086 btrfs_node_key_ptr_offset(0),
3087 (dst_nritems) *
3088 sizeof(struct btrfs_key_ptr));
d6025579 3089
f230475e 3090 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
90f8d62e 3091 src_nritems - push_items, push_items);
5f39d397
CM
3092 copy_extent_buffer(dst, src,
3093 btrfs_node_key_ptr_offset(0),
3094 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3095 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3096
5f39d397
CM
3097 btrfs_set_header_nritems(src, src_nritems - push_items);
3098 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3099
5f39d397
CM
3100 btrfs_mark_buffer_dirty(src);
3101 btrfs_mark_buffer_dirty(dst);
31840ae1 3102
aa5d6bed 3103 return ret;
be0e5c09
CM
3104}
3105
97571fd0
CM
3106/*
3107 * helper function to insert a new root level in the tree.
3108 * A new node is allocated, and a single item is inserted to
3109 * point to the existing root
aa5d6bed
CM
3110 *
3111 * returns zero on success or < 0 on failure.
97571fd0 3112 */
d397712b 3113static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3114 struct btrfs_root *root,
fdd99c72 3115 struct btrfs_path *path, int level)
5c680ed6 3116{
7bb86316 3117 u64 lower_gen;
5f39d397
CM
3118 struct extent_buffer *lower;
3119 struct extent_buffer *c;
925baedd 3120 struct extent_buffer *old;
5f39d397 3121 struct btrfs_disk_key lower_key;
5c680ed6
CM
3122
3123 BUG_ON(path->nodes[level]);
3124 BUG_ON(path->nodes[level-1] != root->node);
3125
7bb86316
CM
3126 lower = path->nodes[level-1];
3127 if (level == 1)
3128 btrfs_item_key(lower, &lower_key, 0);
3129 else
3130 btrfs_node_key(lower, &lower_key, 0);
3131
31840ae1 3132 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
5d4f98a2 3133 root->root_key.objectid, &lower_key,
5581a51a 3134 level, root->node->start, 0);
5f39d397
CM
3135 if (IS_ERR(c))
3136 return PTR_ERR(c);
925baedd 3137
f0486c68
YZ
3138 root_add_used(root, root->nodesize);
3139
5d4f98a2 3140 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
5f39d397
CM
3141 btrfs_set_header_nritems(c, 1);
3142 btrfs_set_header_level(c, level);
db94535d 3143 btrfs_set_header_bytenr(c, c->start);
5f39d397 3144 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3145 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3146 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3147
fba6aa75 3148 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(c),
5f39d397 3149 BTRFS_FSID_SIZE);
e17cade2
CM
3150
3151 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
b308bc2f 3152 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
e17cade2 3153
5f39d397 3154 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3155 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3156 lower_gen = btrfs_header_generation(lower);
31840ae1 3157 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3158
3159 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3160
5f39d397 3161 btrfs_mark_buffer_dirty(c);
d5719762 3162
925baedd 3163 old = root->node;
fdd99c72 3164 tree_mod_log_set_root_pointer(root, c, 0);
240f62c8 3165 rcu_assign_pointer(root->node, c);
925baedd
CM
3166
3167 /* the super has an extra ref to root->node */
3168 free_extent_buffer(old);
3169
0b86a832 3170 add_root_to_dirty_list(root);
5f39d397
CM
3171 extent_buffer_get(c);
3172 path->nodes[level] = c;
bd681513 3173 path->locks[level] = BTRFS_WRITE_LOCK;
5c680ed6
CM
3174 path->slots[level] = 0;
3175 return 0;
3176}
3177
74123bd7
CM
3178/*
3179 * worker function to insert a single pointer in a node.
3180 * the node should have enough room for the pointer already
97571fd0 3181 *
74123bd7
CM
3182 * slot and level indicate where you want the key to go, and
3183 * blocknr is the block the key points to.
3184 */
143bede5
JM
3185static void insert_ptr(struct btrfs_trans_handle *trans,
3186 struct btrfs_root *root, struct btrfs_path *path,
3187 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3188 int slot, int level)
74123bd7 3189{
5f39d397 3190 struct extent_buffer *lower;
74123bd7 3191 int nritems;
f3ea38da 3192 int ret;
5c680ed6
CM
3193
3194 BUG_ON(!path->nodes[level]);
f0486c68 3195 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3196 lower = path->nodes[level];
3197 nritems = btrfs_header_nritems(lower);
c293498b 3198 BUG_ON(slot > nritems);
143bede5 3199 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
74123bd7 3200 if (slot != nritems) {
c3e06965 3201 if (level)
f3ea38da
JS
3202 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3203 slot, nritems - slot);
5f39d397
CM
3204 memmove_extent_buffer(lower,
3205 btrfs_node_key_ptr_offset(slot + 1),
3206 btrfs_node_key_ptr_offset(slot),
d6025579 3207 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3208 }
c3e06965 3209 if (level) {
f3ea38da 3210 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
c8cc6341 3211 MOD_LOG_KEY_ADD, GFP_NOFS);
f3ea38da
JS
3212 BUG_ON(ret < 0);
3213 }
5f39d397 3214 btrfs_set_node_key(lower, key, slot);
db94535d 3215 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3216 WARN_ON(trans->transid == 0);
3217 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3218 btrfs_set_header_nritems(lower, nritems + 1);
3219 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3220}
3221
97571fd0
CM
3222/*
3223 * split the node at the specified level in path in two.
3224 * The path is corrected to point to the appropriate node after the split
3225 *
3226 * Before splitting this tries to make some room in the node by pushing
3227 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3228 *
3229 * returns 0 on success and < 0 on failure
97571fd0 3230 */
e02119d5
CM
3231static noinline int split_node(struct btrfs_trans_handle *trans,
3232 struct btrfs_root *root,
3233 struct btrfs_path *path, int level)
be0e5c09 3234{
5f39d397
CM
3235 struct extent_buffer *c;
3236 struct extent_buffer *split;
3237 struct btrfs_disk_key disk_key;
be0e5c09 3238 int mid;
5c680ed6 3239 int ret;
7518a238 3240 u32 c_nritems;
eb60ceac 3241
5f39d397 3242 c = path->nodes[level];
7bb86316 3243 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3244 if (c == root->node) {
d9abbf1c 3245 /*
90f8d62e
JS
3246 * trying to split the root, lets make a new one
3247 *
fdd99c72 3248 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3249 * insert_new_root, because that root buffer will be kept as a
3250 * normal node. We are going to log removal of half of the
3251 * elements below with tree_mod_log_eb_copy. We're holding a
3252 * tree lock on the buffer, which is why we cannot race with
3253 * other tree_mod_log users.
d9abbf1c 3254 */
fdd99c72 3255 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3256 if (ret)
3257 return ret;
b3612421 3258 } else {
e66f709b 3259 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3260 c = path->nodes[level];
3261 if (!ret && btrfs_header_nritems(c) <
c448acf0 3262 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
e66f709b 3263 return 0;
54aa1f4d
CM
3264 if (ret < 0)
3265 return ret;
be0e5c09 3266 }
e66f709b 3267
5f39d397 3268 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3269 mid = (c_nritems + 1) / 2;
3270 btrfs_node_key(c, &disk_key, mid);
7bb86316 3271
5d4f98a2 3272 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
31840ae1 3273 root->root_key.objectid,
5581a51a 3274 &disk_key, level, c->start, 0);
5f39d397
CM
3275 if (IS_ERR(split))
3276 return PTR_ERR(split);
3277
f0486c68
YZ
3278 root_add_used(root, root->nodesize);
3279
5d4f98a2 3280 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
5f39d397 3281 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3282 btrfs_set_header_bytenr(split, split->start);
5f39d397 3283 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3284 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
3285 btrfs_set_header_owner(split, root->root_key.objectid);
3286 write_extent_buffer(split, root->fs_info->fsid,
fba6aa75 3287 btrfs_header_fsid(split), BTRFS_FSID_SIZE);
e17cade2 3288 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
b308bc2f 3289 btrfs_header_chunk_tree_uuid(split),
e17cade2 3290 BTRFS_UUID_SIZE);
54aa1f4d 3291
90f8d62e 3292 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
5f39d397
CM
3293 copy_extent_buffer(split, c,
3294 btrfs_node_key_ptr_offset(0),
3295 btrfs_node_key_ptr_offset(mid),
3296 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3297 btrfs_set_header_nritems(split, c_nritems - mid);
3298 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3299 ret = 0;
3300
5f39d397
CM
3301 btrfs_mark_buffer_dirty(c);
3302 btrfs_mark_buffer_dirty(split);
3303
143bede5 3304 insert_ptr(trans, root, path, &disk_key, split->start,
c3e06965 3305 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3306
5de08d7d 3307 if (path->slots[level] >= mid) {
5c680ed6 3308 path->slots[level] -= mid;
925baedd 3309 btrfs_tree_unlock(c);
5f39d397
CM
3310 free_extent_buffer(c);
3311 path->nodes[level] = split;
5c680ed6
CM
3312 path->slots[level + 1] += 1;
3313 } else {
925baedd 3314 btrfs_tree_unlock(split);
5f39d397 3315 free_extent_buffer(split);
be0e5c09 3316 }
aa5d6bed 3317 return ret;
be0e5c09
CM
3318}
3319
74123bd7
CM
3320/*
3321 * how many bytes are required to store the items in a leaf. start
3322 * and nr indicate which items in the leaf to check. This totals up the
3323 * space used both by the item structs and the item data
3324 */
5f39d397 3325static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3326{
41be1f3b
JB
3327 struct btrfs_item *start_item;
3328 struct btrfs_item *end_item;
3329 struct btrfs_map_token token;
be0e5c09 3330 int data_len;
5f39d397 3331 int nritems = btrfs_header_nritems(l);
d4dbff95 3332 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3333
3334 if (!nr)
3335 return 0;
41be1f3b
JB
3336 btrfs_init_map_token(&token);
3337 start_item = btrfs_item_nr(l, start);
3338 end_item = btrfs_item_nr(l, end);
3339 data_len = btrfs_token_item_offset(l, start_item, &token) +
3340 btrfs_token_item_size(l, start_item, &token);
3341 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3342 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3343 WARN_ON(data_len < 0);
be0e5c09
CM
3344 return data_len;
3345}
3346
d4dbff95
CM
3347/*
3348 * The space between the end of the leaf items and
3349 * the start of the leaf data. IOW, how much room
3350 * the leaf has left for both items and data
3351 */
d397712b 3352noinline int btrfs_leaf_free_space(struct btrfs_root *root,
e02119d5 3353 struct extent_buffer *leaf)
d4dbff95 3354{
5f39d397
CM
3355 int nritems = btrfs_header_nritems(leaf);
3356 int ret;
3357 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3358 if (ret < 0) {
d397712b
CM
3359 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3360 "used %d nritems %d\n",
ae2f5411 3361 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
5f39d397
CM
3362 leaf_space_used(leaf, 0, nritems), nritems);
3363 }
3364 return ret;
d4dbff95
CM
3365}
3366
99d8f83c
CM
3367/*
3368 * min slot controls the lowest index we're willing to push to the
3369 * right. We'll push up to and including min_slot, but no lower
3370 */
44871b1b
CM
3371static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3372 struct btrfs_root *root,
3373 struct btrfs_path *path,
3374 int data_size, int empty,
3375 struct extent_buffer *right,
99d8f83c
CM
3376 int free_space, u32 left_nritems,
3377 u32 min_slot)
00ec4c51 3378{
5f39d397 3379 struct extent_buffer *left = path->nodes[0];
44871b1b 3380 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3381 struct btrfs_map_token token;
5f39d397 3382 struct btrfs_disk_key disk_key;
00ec4c51 3383 int slot;
34a38218 3384 u32 i;
00ec4c51
CM
3385 int push_space = 0;
3386 int push_items = 0;
0783fcfc 3387 struct btrfs_item *item;
34a38218 3388 u32 nr;
7518a238 3389 u32 right_nritems;
5f39d397 3390 u32 data_end;
db94535d 3391 u32 this_item_size;
00ec4c51 3392
cfed81a0
CM
3393 btrfs_init_map_token(&token);
3394
34a38218
CM
3395 if (empty)
3396 nr = 0;
3397 else
99d8f83c 3398 nr = max_t(u32, 1, min_slot);
34a38218 3399
31840ae1 3400 if (path->slots[0] >= left_nritems)
87b29b20 3401 push_space += data_size;
31840ae1 3402
44871b1b 3403 slot = path->slots[1];
34a38218
CM
3404 i = left_nritems - 1;
3405 while (i >= nr) {
5f39d397 3406 item = btrfs_item_nr(left, i);
db94535d 3407
31840ae1
ZY
3408 if (!empty && push_items > 0) {
3409 if (path->slots[0] > i)
3410 break;
3411 if (path->slots[0] == i) {
3412 int space = btrfs_leaf_free_space(root, left);
3413 if (space + push_space * 2 > free_space)
3414 break;
3415 }
3416 }
3417
00ec4c51 3418 if (path->slots[0] == i)
87b29b20 3419 push_space += data_size;
db94535d 3420
db94535d
CM
3421 this_item_size = btrfs_item_size(left, item);
3422 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3423 break;
31840ae1 3424
00ec4c51 3425 push_items++;
db94535d 3426 push_space += this_item_size + sizeof(*item);
34a38218
CM
3427 if (i == 0)
3428 break;
3429 i--;
db94535d 3430 }
5f39d397 3431
925baedd
CM
3432 if (push_items == 0)
3433 goto out_unlock;
5f39d397 3434
6c1500f2 3435 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3436
00ec4c51 3437 /* push left to right */
5f39d397 3438 right_nritems = btrfs_header_nritems(right);
34a38218 3439
5f39d397 3440 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
123abc88 3441 push_space -= leaf_data_end(root, left);
5f39d397 3442
00ec4c51 3443 /* make room in the right data area */
5f39d397
CM
3444 data_end = leaf_data_end(root, right);
3445 memmove_extent_buffer(right,
3446 btrfs_leaf_data(right) + data_end - push_space,
3447 btrfs_leaf_data(right) + data_end,
3448 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3449
00ec4c51 3450 /* copy from the left data area */
5f39d397 3451 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
d6025579
CM
3452 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3453 btrfs_leaf_data(left) + leaf_data_end(root, left),
3454 push_space);
5f39d397
CM
3455
3456 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3457 btrfs_item_nr_offset(0),
3458 right_nritems * sizeof(struct btrfs_item));
3459
00ec4c51 3460 /* copy the items from left to right */
5f39d397
CM
3461 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3462 btrfs_item_nr_offset(left_nritems - push_items),
3463 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3464
3465 /* update the item pointers */
7518a238 3466 right_nritems += push_items;
5f39d397 3467 btrfs_set_header_nritems(right, right_nritems);
123abc88 3468 push_space = BTRFS_LEAF_DATA_SIZE(root);
7518a238 3469 for (i = 0; i < right_nritems; i++) {
5f39d397 3470 item = btrfs_item_nr(right, i);
cfed81a0
CM
3471 push_space -= btrfs_token_item_size(right, item, &token);
3472 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3473 }
3474
7518a238 3475 left_nritems -= push_items;
5f39d397 3476 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3477
34a38218
CM
3478 if (left_nritems)
3479 btrfs_mark_buffer_dirty(left);
f0486c68
YZ
3480 else
3481 clean_tree_block(trans, root, left);
3482
5f39d397 3483 btrfs_mark_buffer_dirty(right);
a429e513 3484
5f39d397
CM
3485 btrfs_item_key(right, &disk_key, 0);
3486 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3487 btrfs_mark_buffer_dirty(upper);
02217ed2 3488
00ec4c51 3489 /* then fixup the leaf pointer in the path */
7518a238
CM
3490 if (path->slots[0] >= left_nritems) {
3491 path->slots[0] -= left_nritems;
925baedd
CM
3492 if (btrfs_header_nritems(path->nodes[0]) == 0)
3493 clean_tree_block(trans, root, path->nodes[0]);
3494 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3495 free_extent_buffer(path->nodes[0]);
3496 path->nodes[0] = right;
00ec4c51
CM
3497 path->slots[1] += 1;
3498 } else {
925baedd 3499 btrfs_tree_unlock(right);
5f39d397 3500 free_extent_buffer(right);
00ec4c51
CM
3501 }
3502 return 0;
925baedd
CM
3503
3504out_unlock:
3505 btrfs_tree_unlock(right);
3506 free_extent_buffer(right);
3507 return 1;
00ec4c51 3508}
925baedd 3509
44871b1b
CM
3510/*
3511 * push some data in the path leaf to the right, trying to free up at
3512 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3513 *
3514 * returns 1 if the push failed because the other node didn't have enough
3515 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3516 *
3517 * this will push starting from min_slot to the end of the leaf. It won't
3518 * push any slot lower than min_slot
44871b1b
CM
3519 */
3520static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3521 *root, struct btrfs_path *path,
3522 int min_data_size, int data_size,
3523 int empty, u32 min_slot)
44871b1b
CM
3524{
3525 struct extent_buffer *left = path->nodes[0];
3526 struct extent_buffer *right;
3527 struct extent_buffer *upper;
3528 int slot;
3529 int free_space;
3530 u32 left_nritems;
3531 int ret;
3532
3533 if (!path->nodes[1])
3534 return 1;
3535
3536 slot = path->slots[1];
3537 upper = path->nodes[1];
3538 if (slot >= btrfs_header_nritems(upper) - 1)
3539 return 1;
3540
3541 btrfs_assert_tree_locked(path->nodes[1]);
3542
3543 right = read_node_slot(root, upper, slot + 1);
91ca338d
TI
3544 if (right == NULL)
3545 return 1;
3546
44871b1b
CM
3547 btrfs_tree_lock(right);
3548 btrfs_set_lock_blocking(right);
3549
3550 free_space = btrfs_leaf_free_space(root, right);
3551 if (free_space < data_size)
3552 goto out_unlock;
3553
3554 /* cow and double check */
3555 ret = btrfs_cow_block(trans, root, right, upper,
3556 slot + 1, &right);
3557 if (ret)
3558 goto out_unlock;
3559
3560 free_space = btrfs_leaf_free_space(root, right);
3561 if (free_space < data_size)
3562 goto out_unlock;
3563
3564 left_nritems = btrfs_header_nritems(left);
3565 if (left_nritems == 0)
3566 goto out_unlock;
3567
99d8f83c
CM
3568 return __push_leaf_right(trans, root, path, min_data_size, empty,
3569 right, free_space, left_nritems, min_slot);
44871b1b
CM
3570out_unlock:
3571 btrfs_tree_unlock(right);
3572 free_extent_buffer(right);
3573 return 1;
3574}
3575
74123bd7
CM
3576/*
3577 * push some data in the path leaf to the left, trying to free up at
3578 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3579 *
3580 * max_slot can put a limit on how far into the leaf we'll push items. The
3581 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3582 * items
74123bd7 3583 */
44871b1b
CM
3584static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3585 struct btrfs_root *root,
3586 struct btrfs_path *path, int data_size,
3587 int empty, struct extent_buffer *left,
99d8f83c
CM
3588 int free_space, u32 right_nritems,
3589 u32 max_slot)
be0e5c09 3590{
5f39d397
CM
3591 struct btrfs_disk_key disk_key;
3592 struct extent_buffer *right = path->nodes[0];
be0e5c09 3593 int i;
be0e5c09
CM
3594 int push_space = 0;
3595 int push_items = 0;
0783fcfc 3596 struct btrfs_item *item;
7518a238 3597 u32 old_left_nritems;
34a38218 3598 u32 nr;
aa5d6bed 3599 int ret = 0;
db94535d
CM
3600 u32 this_item_size;
3601 u32 old_left_item_size;
cfed81a0
CM
3602 struct btrfs_map_token token;
3603
3604 btrfs_init_map_token(&token);
be0e5c09 3605
34a38218 3606 if (empty)
99d8f83c 3607 nr = min(right_nritems, max_slot);
34a38218 3608 else
99d8f83c 3609 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3610
3611 for (i = 0; i < nr; i++) {
5f39d397 3612 item = btrfs_item_nr(right, i);
db94535d 3613
31840ae1
ZY
3614 if (!empty && push_items > 0) {
3615 if (path->slots[0] < i)
3616 break;
3617 if (path->slots[0] == i) {
3618 int space = btrfs_leaf_free_space(root, right);
3619 if (space + push_space * 2 > free_space)
3620 break;
3621 }
3622 }
3623
be0e5c09 3624 if (path->slots[0] == i)
87b29b20 3625 push_space += data_size;
db94535d
CM
3626
3627 this_item_size = btrfs_item_size(right, item);
3628 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3629 break;
db94535d 3630
be0e5c09 3631 push_items++;
db94535d
CM
3632 push_space += this_item_size + sizeof(*item);
3633 }
3634
be0e5c09 3635 if (push_items == 0) {
925baedd
CM
3636 ret = 1;
3637 goto out;
be0e5c09 3638 }
34a38218 3639 if (!empty && push_items == btrfs_header_nritems(right))
a429e513 3640 WARN_ON(1);
5f39d397 3641
be0e5c09 3642 /* push data from right to left */
5f39d397
CM
3643 copy_extent_buffer(left, right,
3644 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3645 btrfs_item_nr_offset(0),
3646 push_items * sizeof(struct btrfs_item));
3647
123abc88 3648 push_space = BTRFS_LEAF_DATA_SIZE(root) -
d397712b 3649 btrfs_item_offset_nr(right, push_items - 1);
5f39d397
CM
3650
3651 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
d6025579
CM
3652 leaf_data_end(root, left) - push_space,
3653 btrfs_leaf_data(right) +
5f39d397 3654 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3655 push_space);
5f39d397 3656 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3657 BUG_ON(old_left_nritems <= 0);
eb60ceac 3658
db94535d 3659 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3660 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3661 u32 ioff;
db94535d 3662
5f39d397 3663 item = btrfs_item_nr(left, i);
db94535d 3664
cfed81a0
CM
3665 ioff = btrfs_token_item_offset(left, item, &token);
3666 btrfs_set_token_item_offset(left, item,
3667 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3668 &token);
be0e5c09 3669 }
5f39d397 3670 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3671
3672 /* fixup right node */
31b1a2bd
JL
3673 if (push_items > right_nritems)
3674 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3675 right_nritems);
34a38218
CM
3676
3677 if (push_items < right_nritems) {
3678 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3679 leaf_data_end(root, right);
3680 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3681 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3682 btrfs_leaf_data(right) +
3683 leaf_data_end(root, right), push_space);
3684
3685 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3686 btrfs_item_nr_offset(push_items),
3687 (btrfs_header_nritems(right) - push_items) *
3688 sizeof(struct btrfs_item));
34a38218 3689 }
eef1c494
Y
3690 right_nritems -= push_items;
3691 btrfs_set_header_nritems(right, right_nritems);
123abc88 3692 push_space = BTRFS_LEAF_DATA_SIZE(root);
5f39d397
CM
3693 for (i = 0; i < right_nritems; i++) {
3694 item = btrfs_item_nr(right, i);
db94535d 3695
cfed81a0
CM
3696 push_space = push_space - btrfs_token_item_size(right,
3697 item, &token);
3698 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3699 }
eb60ceac 3700
5f39d397 3701 btrfs_mark_buffer_dirty(left);
34a38218
CM
3702 if (right_nritems)
3703 btrfs_mark_buffer_dirty(right);
f0486c68
YZ
3704 else
3705 clean_tree_block(trans, root, right);
098f59c2 3706
5f39d397 3707 btrfs_item_key(right, &disk_key, 0);
d6a0a126 3708 fixup_low_keys(root, path, &disk_key, 1);
be0e5c09
CM
3709
3710 /* then fixup the leaf pointer in the path */
3711 if (path->slots[0] < push_items) {
3712 path->slots[0] += old_left_nritems;
925baedd 3713 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3714 free_extent_buffer(path->nodes[0]);
3715 path->nodes[0] = left;
be0e5c09
CM
3716 path->slots[1] -= 1;
3717 } else {
925baedd 3718 btrfs_tree_unlock(left);
5f39d397 3719 free_extent_buffer(left);
be0e5c09
CM
3720 path->slots[0] -= push_items;
3721 }
eb60ceac 3722 BUG_ON(path->slots[0] < 0);
aa5d6bed 3723 return ret;
925baedd
CM
3724out:
3725 btrfs_tree_unlock(left);
3726 free_extent_buffer(left);
3727 return ret;
be0e5c09
CM
3728}
3729
44871b1b
CM
3730/*
3731 * push some data in the path leaf to the left, trying to free up at
3732 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3733 *
3734 * max_slot can put a limit on how far into the leaf we'll push items. The
3735 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3736 * items
44871b1b
CM
3737 */
3738static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3739 *root, struct btrfs_path *path, int min_data_size,
3740 int data_size, int empty, u32 max_slot)
44871b1b
CM
3741{
3742 struct extent_buffer *right = path->nodes[0];
3743 struct extent_buffer *left;
3744 int slot;
3745 int free_space;
3746 u32 right_nritems;
3747 int ret = 0;
3748
3749 slot = path->slots[1];
3750 if (slot == 0)
3751 return 1;
3752 if (!path->nodes[1])
3753 return 1;
3754
3755 right_nritems = btrfs_header_nritems(right);
3756 if (right_nritems == 0)
3757 return 1;
3758
3759 btrfs_assert_tree_locked(path->nodes[1]);
3760
3761 left = read_node_slot(root, path->nodes[1], slot - 1);
91ca338d
TI
3762 if (left == NULL)
3763 return 1;
3764
44871b1b
CM
3765 btrfs_tree_lock(left);
3766 btrfs_set_lock_blocking(left);
3767
3768 free_space = btrfs_leaf_free_space(root, left);
3769 if (free_space < data_size) {
3770 ret = 1;
3771 goto out;
3772 }
3773
3774 /* cow and double check */
3775 ret = btrfs_cow_block(trans, root, left,
3776 path->nodes[1], slot - 1, &left);
3777 if (ret) {
3778 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
3779 if (ret == -ENOSPC)
3780 ret = 1;
44871b1b
CM
3781 goto out;
3782 }
3783
3784 free_space = btrfs_leaf_free_space(root, left);
3785 if (free_space < data_size) {
3786 ret = 1;
3787 goto out;
3788 }
3789
99d8f83c
CM
3790 return __push_leaf_left(trans, root, path, min_data_size,
3791 empty, left, free_space, right_nritems,
3792 max_slot);
44871b1b
CM
3793out:
3794 btrfs_tree_unlock(left);
3795 free_extent_buffer(left);
3796 return ret;
3797}
3798
3799/*
3800 * split the path's leaf in two, making sure there is at least data_size
3801 * available for the resulting leaf level of the path.
44871b1b 3802 */
143bede5
JM
3803static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3804 struct btrfs_root *root,
3805 struct btrfs_path *path,
3806 struct extent_buffer *l,
3807 struct extent_buffer *right,
3808 int slot, int mid, int nritems)
44871b1b
CM
3809{
3810 int data_copy_size;
3811 int rt_data_off;
3812 int i;
44871b1b 3813 struct btrfs_disk_key disk_key;
cfed81a0
CM
3814 struct btrfs_map_token token;
3815
3816 btrfs_init_map_token(&token);
44871b1b
CM
3817
3818 nritems = nritems - mid;
3819 btrfs_set_header_nritems(right, nritems);
3820 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3821
3822 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3823 btrfs_item_nr_offset(mid),
3824 nritems * sizeof(struct btrfs_item));
3825
3826 copy_extent_buffer(right, l,
3827 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3828 data_copy_size, btrfs_leaf_data(l) +
3829 leaf_data_end(root, l), data_copy_size);
3830
3831 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3832 btrfs_item_end_nr(l, mid);
3833
3834 for (i = 0; i < nritems; i++) {
3835 struct btrfs_item *item = btrfs_item_nr(right, i);
3836 u32 ioff;
3837
cfed81a0
CM
3838 ioff = btrfs_token_item_offset(right, item, &token);
3839 btrfs_set_token_item_offset(right, item,
3840 ioff + rt_data_off, &token);
44871b1b
CM
3841 }
3842
44871b1b 3843 btrfs_set_header_nritems(l, mid);
44871b1b 3844 btrfs_item_key(right, &disk_key, 0);
143bede5 3845 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 3846 path->slots[1] + 1, 1);
44871b1b
CM
3847
3848 btrfs_mark_buffer_dirty(right);
3849 btrfs_mark_buffer_dirty(l);
3850 BUG_ON(path->slots[0] != slot);
3851
44871b1b
CM
3852 if (mid <= slot) {
3853 btrfs_tree_unlock(path->nodes[0]);
3854 free_extent_buffer(path->nodes[0]);
3855 path->nodes[0] = right;
3856 path->slots[0] -= mid;
3857 path->slots[1] += 1;
3858 } else {
3859 btrfs_tree_unlock(right);
3860 free_extent_buffer(right);
3861 }
3862
3863 BUG_ON(path->slots[0] < 0);
44871b1b
CM
3864}
3865
99d8f83c
CM
3866/*
3867 * double splits happen when we need to insert a big item in the middle
3868 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3869 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3870 * A B C
3871 *
3872 * We avoid this by trying to push the items on either side of our target
3873 * into the adjacent leaves. If all goes well we can avoid the double split
3874 * completely.
3875 */
3876static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3877 struct btrfs_root *root,
3878 struct btrfs_path *path,
3879 int data_size)
3880{
3881 int ret;
3882 int progress = 0;
3883 int slot;
3884 u32 nritems;
3885
3886 slot = path->slots[0];
3887
3888 /*
3889 * try to push all the items after our slot into the
3890 * right leaf
3891 */
3892 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3893 if (ret < 0)
3894 return ret;
3895
3896 if (ret == 0)
3897 progress++;
3898
3899 nritems = btrfs_header_nritems(path->nodes[0]);
3900 /*
3901 * our goal is to get our slot at the start or end of a leaf. If
3902 * we've done so we're done
3903 */
3904 if (path->slots[0] == 0 || path->slots[0] == nritems)
3905 return 0;
3906
3907 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3908 return 0;
3909
3910 /* try to push all the items before our slot into the next leaf */
3911 slot = path->slots[0];
3912 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3913 if (ret < 0)
3914 return ret;
3915
3916 if (ret == 0)
3917 progress++;
3918
3919 if (progress)
3920 return 0;
3921 return 1;
3922}
3923
74123bd7
CM
3924/*
3925 * split the path's leaf in two, making sure there is at least data_size
3926 * available for the resulting leaf level of the path.
aa5d6bed
CM
3927 *
3928 * returns 0 if all went well and < 0 on failure.
74123bd7 3929 */
e02119d5
CM
3930static noinline int split_leaf(struct btrfs_trans_handle *trans,
3931 struct btrfs_root *root,
3932 struct btrfs_key *ins_key,
3933 struct btrfs_path *path, int data_size,
3934 int extend)
be0e5c09 3935{
5d4f98a2 3936 struct btrfs_disk_key disk_key;
5f39d397 3937 struct extent_buffer *l;
7518a238 3938 u32 nritems;
eb60ceac
CM
3939 int mid;
3940 int slot;
5f39d397 3941 struct extent_buffer *right;
d4dbff95 3942 int ret = 0;
aa5d6bed 3943 int wret;
5d4f98a2 3944 int split;
cc0c5538 3945 int num_doubles = 0;
99d8f83c 3946 int tried_avoid_double = 0;
aa5d6bed 3947
a5719521
YZ
3948 l = path->nodes[0];
3949 slot = path->slots[0];
3950 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3951 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3952 return -EOVERFLOW;
3953
40689478 3954 /* first try to make some room by pushing left and right */
33157e05 3955 if (data_size && path->nodes[1]) {
99d8f83c
CM
3956 wret = push_leaf_right(trans, root, path, data_size,
3957 data_size, 0, 0);
d397712b 3958 if (wret < 0)
eaee50e8 3959 return wret;
3685f791 3960 if (wret) {
99d8f83c
CM
3961 wret = push_leaf_left(trans, root, path, data_size,
3962 data_size, 0, (u32)-1);
3685f791
CM
3963 if (wret < 0)
3964 return wret;
3965 }
3966 l = path->nodes[0];
aa5d6bed 3967
3685f791 3968 /* did the pushes work? */
87b29b20 3969 if (btrfs_leaf_free_space(root, l) >= data_size)
3685f791 3970 return 0;
3326d1b0 3971 }
aa5d6bed 3972
5c680ed6 3973 if (!path->nodes[1]) {
fdd99c72 3974 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
3975 if (ret)
3976 return ret;
3977 }
cc0c5538 3978again:
5d4f98a2 3979 split = 1;
cc0c5538 3980 l = path->nodes[0];
eb60ceac 3981 slot = path->slots[0];
5f39d397 3982 nritems = btrfs_header_nritems(l);
d397712b 3983 mid = (nritems + 1) / 2;
54aa1f4d 3984
5d4f98a2
YZ
3985 if (mid <= slot) {
3986 if (nritems == 1 ||
3987 leaf_space_used(l, mid, nritems - mid) + data_size >
3988 BTRFS_LEAF_DATA_SIZE(root)) {
3989 if (slot >= nritems) {
3990 split = 0;
3991 } else {
3992 mid = slot;
3993 if (mid != nritems &&
3994 leaf_space_used(l, mid, nritems - mid) +
3995 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
3996 if (data_size && !tried_avoid_double)
3997 goto push_for_double;
5d4f98a2
YZ
3998 split = 2;
3999 }
4000 }
4001 }
4002 } else {
4003 if (leaf_space_used(l, 0, mid) + data_size >
4004 BTRFS_LEAF_DATA_SIZE(root)) {
4005 if (!extend && data_size && slot == 0) {
4006 split = 0;
4007 } else if ((extend || !data_size) && slot == 0) {
4008 mid = 1;
4009 } else {
4010 mid = slot;
4011 if (mid != nritems &&
4012 leaf_space_used(l, mid, nritems - mid) +
4013 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
99d8f83c
CM
4014 if (data_size && !tried_avoid_double)
4015 goto push_for_double;
5d4f98a2
YZ
4016 split = 2 ;
4017 }
4018 }
4019 }
4020 }
4021
4022 if (split == 0)
4023 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4024 else
4025 btrfs_item_key(l, &disk_key, mid);
4026
4027 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
31840ae1 4028 root->root_key.objectid,
5581a51a 4029 &disk_key, 0, l->start, 0);
f0486c68 4030 if (IS_ERR(right))
5f39d397 4031 return PTR_ERR(right);
f0486c68
YZ
4032
4033 root_add_used(root, root->leafsize);
5f39d397
CM
4034
4035 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
db94535d 4036 btrfs_set_header_bytenr(right, right->start);
5f39d397 4037 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4038 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4039 btrfs_set_header_owner(right, root->root_key.objectid);
4040 btrfs_set_header_level(right, 0);
4041 write_extent_buffer(right, root->fs_info->fsid,
fba6aa75 4042 btrfs_header_fsid(right), BTRFS_FSID_SIZE);
e17cade2
CM
4043
4044 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
b308bc2f 4045 btrfs_header_chunk_tree_uuid(right),
e17cade2 4046 BTRFS_UUID_SIZE);
44871b1b 4047
5d4f98a2
YZ
4048 if (split == 0) {
4049 if (mid <= slot) {
4050 btrfs_set_header_nritems(right, 0);
143bede5 4051 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4052 path->slots[1] + 1, 1);
5d4f98a2
YZ
4053 btrfs_tree_unlock(path->nodes[0]);
4054 free_extent_buffer(path->nodes[0]);
4055 path->nodes[0] = right;
4056 path->slots[0] = 0;
4057 path->slots[1] += 1;
4058 } else {
4059 btrfs_set_header_nritems(right, 0);
143bede5 4060 insert_ptr(trans, root, path, &disk_key, right->start,
c3e06965 4061 path->slots[1], 1);
5d4f98a2
YZ
4062 btrfs_tree_unlock(path->nodes[0]);
4063 free_extent_buffer(path->nodes[0]);
4064 path->nodes[0] = right;
4065 path->slots[0] = 0;
143bede5 4066 if (path->slots[1] == 0)
d6a0a126 4067 fixup_low_keys(root, path, &disk_key, 1);
d4dbff95 4068 }
5d4f98a2
YZ
4069 btrfs_mark_buffer_dirty(right);
4070 return ret;
d4dbff95 4071 }
74123bd7 4072
143bede5 4073 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
31840ae1 4074
5d4f98a2 4075 if (split == 2) {
cc0c5538
CM
4076 BUG_ON(num_doubles != 0);
4077 num_doubles++;
4078 goto again;
a429e513 4079 }
44871b1b 4080
143bede5 4081 return 0;
99d8f83c
CM
4082
4083push_for_double:
4084 push_for_double_split(trans, root, path, data_size);
4085 tried_avoid_double = 1;
4086 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4087 return 0;
4088 goto again;
be0e5c09
CM
4089}
4090
ad48fd75
YZ
4091static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4092 struct btrfs_root *root,
4093 struct btrfs_path *path, int ins_len)
459931ec 4094{
ad48fd75 4095 struct btrfs_key key;
459931ec 4096 struct extent_buffer *leaf;
ad48fd75
YZ
4097 struct btrfs_file_extent_item *fi;
4098 u64 extent_len = 0;
4099 u32 item_size;
4100 int ret;
459931ec
CM
4101
4102 leaf = path->nodes[0];
ad48fd75
YZ
4103 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4104
4105 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4106 key.type != BTRFS_EXTENT_CSUM_KEY);
4107
4108 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4109 return 0;
459931ec
CM
4110
4111 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4112 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4113 fi = btrfs_item_ptr(leaf, path->slots[0],
4114 struct btrfs_file_extent_item);
4115 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4116 }
b3b4aa74 4117 btrfs_release_path(path);
459931ec 4118
459931ec 4119 path->keep_locks = 1;
ad48fd75
YZ
4120 path->search_for_split = 1;
4121 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4122 path->search_for_split = 0;
ad48fd75
YZ
4123 if (ret < 0)
4124 goto err;
459931ec 4125
ad48fd75
YZ
4126 ret = -EAGAIN;
4127 leaf = path->nodes[0];
459931ec 4128 /* if our item isn't there or got smaller, return now */
ad48fd75
YZ
4129 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4130 goto err;
4131
109f6aef
CM
4132 /* the leaf has changed, it now has room. return now */
4133 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4134 goto err;
4135
ad48fd75
YZ
4136 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4137 fi = btrfs_item_ptr(leaf, path->slots[0],
4138 struct btrfs_file_extent_item);
4139 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4140 goto err;
459931ec
CM
4141 }
4142
b9473439 4143 btrfs_set_path_blocking(path);
ad48fd75 4144 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4145 if (ret)
4146 goto err;
459931ec 4147
ad48fd75 4148 path->keep_locks = 0;
b9473439 4149 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4150 return 0;
4151err:
4152 path->keep_locks = 0;
4153 return ret;
4154}
4155
4156static noinline int split_item(struct btrfs_trans_handle *trans,
4157 struct btrfs_root *root,
4158 struct btrfs_path *path,
4159 struct btrfs_key *new_key,
4160 unsigned long split_offset)
4161{
4162 struct extent_buffer *leaf;
4163 struct btrfs_item *item;
4164 struct btrfs_item *new_item;
4165 int slot;
4166 char *buf;
4167 u32 nritems;
4168 u32 item_size;
4169 u32 orig_offset;
4170 struct btrfs_disk_key disk_key;
4171
b9473439
CM
4172 leaf = path->nodes[0];
4173 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4174
b4ce94de
CM
4175 btrfs_set_path_blocking(path);
4176
459931ec
CM
4177 item = btrfs_item_nr(leaf, path->slots[0]);
4178 orig_offset = btrfs_item_offset(leaf, item);
4179 item_size = btrfs_item_size(leaf, item);
4180
459931ec 4181 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4182 if (!buf)
4183 return -ENOMEM;
4184
459931ec
CM
4185 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4186 path->slots[0]), item_size);
459931ec 4187
ad48fd75 4188 slot = path->slots[0] + 1;
459931ec 4189 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4190 if (slot != nritems) {
4191 /* shift the items */
4192 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4193 btrfs_item_nr_offset(slot),
4194 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4195 }
4196
4197 btrfs_cpu_key_to_disk(&disk_key, new_key);
4198 btrfs_set_item_key(leaf, &disk_key, slot);
4199
4200 new_item = btrfs_item_nr(leaf, slot);
4201
4202 btrfs_set_item_offset(leaf, new_item, orig_offset);
4203 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4204
4205 btrfs_set_item_offset(leaf, item,
4206 orig_offset + item_size - split_offset);
4207 btrfs_set_item_size(leaf, item, split_offset);
4208
4209 btrfs_set_header_nritems(leaf, nritems + 1);
4210
4211 /* write the data for the start of the original item */
4212 write_extent_buffer(leaf, buf,
4213 btrfs_item_ptr_offset(leaf, path->slots[0]),
4214 split_offset);
4215
4216 /* write the data for the new item */
4217 write_extent_buffer(leaf, buf + split_offset,
4218 btrfs_item_ptr_offset(leaf, slot),
4219 item_size - split_offset);
4220 btrfs_mark_buffer_dirty(leaf);
4221
ad48fd75 4222 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
459931ec 4223 kfree(buf);
ad48fd75
YZ
4224 return 0;
4225}
4226
4227/*
4228 * This function splits a single item into two items,
4229 * giving 'new_key' to the new item and splitting the
4230 * old one at split_offset (from the start of the item).
4231 *
4232 * The path may be released by this operation. After
4233 * the split, the path is pointing to the old item. The
4234 * new item is going to be in the same node as the old one.
4235 *
4236 * Note, the item being split must be smaller enough to live alone on
4237 * a tree block with room for one extra struct btrfs_item
4238 *
4239 * This allows us to split the item in place, keeping a lock on the
4240 * leaf the entire time.
4241 */
4242int btrfs_split_item(struct btrfs_trans_handle *trans,
4243 struct btrfs_root *root,
4244 struct btrfs_path *path,
4245 struct btrfs_key *new_key,
4246 unsigned long split_offset)
4247{
4248 int ret;
4249 ret = setup_leaf_for_split(trans, root, path,
4250 sizeof(struct btrfs_item));
4251 if (ret)
4252 return ret;
4253
4254 ret = split_item(trans, root, path, new_key, split_offset);
459931ec
CM
4255 return ret;
4256}
4257
ad48fd75
YZ
4258/*
4259 * This function duplicate a item, giving 'new_key' to the new item.
4260 * It guarantees both items live in the same tree leaf and the new item
4261 * is contiguous with the original item.
4262 *
4263 * This allows us to split file extent in place, keeping a lock on the
4264 * leaf the entire time.
4265 */
4266int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4267 struct btrfs_root *root,
4268 struct btrfs_path *path,
4269 struct btrfs_key *new_key)
4270{
4271 struct extent_buffer *leaf;
4272 int ret;
4273 u32 item_size;
4274
4275 leaf = path->nodes[0];
4276 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4277 ret = setup_leaf_for_split(trans, root, path,
4278 item_size + sizeof(struct btrfs_item));
4279 if (ret)
4280 return ret;
4281
4282 path->slots[0]++;
afe5fea7 4283 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4284 item_size, item_size +
4285 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4286 leaf = path->nodes[0];
4287 memcpy_extent_buffer(leaf,
4288 btrfs_item_ptr_offset(leaf, path->slots[0]),
4289 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4290 item_size);
4291 return 0;
4292}
4293
d352ac68
CM
4294/*
4295 * make the item pointed to by the path smaller. new_size indicates
4296 * how small to make it, and from_end tells us if we just chop bytes
4297 * off the end of the item or if we shift the item to chop bytes off
4298 * the front.
4299 */
afe5fea7 4300void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
143bede5 4301 u32 new_size, int from_end)
b18c6685 4302{
b18c6685 4303 int slot;
5f39d397
CM
4304 struct extent_buffer *leaf;
4305 struct btrfs_item *item;
b18c6685
CM
4306 u32 nritems;
4307 unsigned int data_end;
4308 unsigned int old_data_start;
4309 unsigned int old_size;
4310 unsigned int size_diff;
4311 int i;
cfed81a0
CM
4312 struct btrfs_map_token token;
4313
4314 btrfs_init_map_token(&token);
b18c6685 4315
5f39d397 4316 leaf = path->nodes[0];
179e29e4
CM
4317 slot = path->slots[0];
4318
4319 old_size = btrfs_item_size_nr(leaf, slot);
4320 if (old_size == new_size)
143bede5 4321 return;
b18c6685 4322
5f39d397 4323 nritems = btrfs_header_nritems(leaf);
b18c6685
CM
4324 data_end = leaf_data_end(root, leaf);
4325
5f39d397 4326 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4327
b18c6685
CM
4328 size_diff = old_size - new_size;
4329
4330 BUG_ON(slot < 0);
4331 BUG_ON(slot >= nritems);
4332
4333 /*
4334 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4335 */
4336 /* first correct the data pointers */
4337 for (i = slot; i < nritems; i++) {
5f39d397
CM
4338 u32 ioff;
4339 item = btrfs_item_nr(leaf, i);
db94535d 4340
cfed81a0
CM
4341 ioff = btrfs_token_item_offset(leaf, item, &token);
4342 btrfs_set_token_item_offset(leaf, item,
4343 ioff + size_diff, &token);
b18c6685 4344 }
db94535d 4345
b18c6685 4346 /* shift the data */
179e29e4
CM
4347 if (from_end) {
4348 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4349 data_end + size_diff, btrfs_leaf_data(leaf) +
4350 data_end, old_data_start + new_size - data_end);
4351 } else {
4352 struct btrfs_disk_key disk_key;
4353 u64 offset;
4354
4355 btrfs_item_key(leaf, &disk_key, slot);
4356
4357 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4358 unsigned long ptr;
4359 struct btrfs_file_extent_item *fi;
4360
4361 fi = btrfs_item_ptr(leaf, slot,
4362 struct btrfs_file_extent_item);
4363 fi = (struct btrfs_file_extent_item *)(
4364 (unsigned long)fi - size_diff);
4365
4366 if (btrfs_file_extent_type(leaf, fi) ==
4367 BTRFS_FILE_EXTENT_INLINE) {
4368 ptr = btrfs_item_ptr_offset(leaf, slot);
4369 memmove_extent_buffer(leaf, ptr,
d397712b
CM
4370 (unsigned long)fi,
4371 offsetof(struct btrfs_file_extent_item,
179e29e4
CM
4372 disk_bytenr));
4373 }
4374 }
4375
4376 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4377 data_end + size_diff, btrfs_leaf_data(leaf) +
4378 data_end, old_data_start - data_end);
4379
4380 offset = btrfs_disk_key_offset(&disk_key);
4381 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4382 btrfs_set_item_key(leaf, &disk_key, slot);
4383 if (slot == 0)
d6a0a126 4384 fixup_low_keys(root, path, &disk_key, 1);
179e29e4 4385 }
5f39d397
CM
4386
4387 item = btrfs_item_nr(leaf, slot);
4388 btrfs_set_item_size(leaf, item, new_size);
4389 btrfs_mark_buffer_dirty(leaf);
b18c6685 4390
5f39d397
CM
4391 if (btrfs_leaf_free_space(root, leaf) < 0) {
4392 btrfs_print_leaf(root, leaf);
b18c6685 4393 BUG();
5f39d397 4394 }
b18c6685
CM
4395}
4396
d352ac68 4397/*
8f69dbd2 4398 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4399 */
4b90c680 4400void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
143bede5 4401 u32 data_size)
6567e837 4402{
6567e837 4403 int slot;
5f39d397
CM
4404 struct extent_buffer *leaf;
4405 struct btrfs_item *item;
6567e837
CM
4406 u32 nritems;
4407 unsigned int data_end;
4408 unsigned int old_data;
4409 unsigned int old_size;
4410 int i;
cfed81a0
CM
4411 struct btrfs_map_token token;
4412
4413 btrfs_init_map_token(&token);
6567e837 4414
5f39d397 4415 leaf = path->nodes[0];
6567e837 4416
5f39d397 4417 nritems = btrfs_header_nritems(leaf);
6567e837
CM
4418 data_end = leaf_data_end(root, leaf);
4419
5f39d397
CM
4420 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4421 btrfs_print_leaf(root, leaf);
6567e837 4422 BUG();
5f39d397 4423 }
6567e837 4424 slot = path->slots[0];
5f39d397 4425 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4426
4427 BUG_ON(slot < 0);
3326d1b0
CM
4428 if (slot >= nritems) {
4429 btrfs_print_leaf(root, leaf);
d397712b
CM
4430 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4431 slot, nritems);
3326d1b0
CM
4432 BUG_ON(1);
4433 }
6567e837
CM
4434
4435 /*
4436 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4437 */
4438 /* first correct the data pointers */
4439 for (i = slot; i < nritems; i++) {
5f39d397
CM
4440 u32 ioff;
4441 item = btrfs_item_nr(leaf, i);
db94535d 4442
cfed81a0
CM
4443 ioff = btrfs_token_item_offset(leaf, item, &token);
4444 btrfs_set_token_item_offset(leaf, item,
4445 ioff - data_size, &token);
6567e837 4446 }
5f39d397 4447
6567e837 4448 /* shift the data */
5f39d397 4449 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
6567e837
CM
4450 data_end - data_size, btrfs_leaf_data(leaf) +
4451 data_end, old_data - data_end);
5f39d397 4452
6567e837 4453 data_end = old_data;
5f39d397
CM
4454 old_size = btrfs_item_size_nr(leaf, slot);
4455 item = btrfs_item_nr(leaf, slot);
4456 btrfs_set_item_size(leaf, item, old_size + data_size);
4457 btrfs_mark_buffer_dirty(leaf);
6567e837 4458
5f39d397
CM
4459 if (btrfs_leaf_free_space(root, leaf) < 0) {
4460 btrfs_print_leaf(root, leaf);
6567e837 4461 BUG();
5f39d397 4462 }
6567e837
CM
4463}
4464
74123bd7 4465/*
44871b1b
CM
4466 * this is a helper for btrfs_insert_empty_items, the main goal here is
4467 * to save stack depth by doing the bulk of the work in a function
4468 * that doesn't call btrfs_search_slot
74123bd7 4469 */
afe5fea7 4470void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
143bede5
JM
4471 struct btrfs_key *cpu_key, u32 *data_size,
4472 u32 total_data, u32 total_size, int nr)
be0e5c09 4473{
5f39d397 4474 struct btrfs_item *item;
9c58309d 4475 int i;
7518a238 4476 u32 nritems;
be0e5c09 4477 unsigned int data_end;
e2fa7227 4478 struct btrfs_disk_key disk_key;
44871b1b
CM
4479 struct extent_buffer *leaf;
4480 int slot;
cfed81a0
CM
4481 struct btrfs_map_token token;
4482
4483 btrfs_init_map_token(&token);
e2fa7227 4484
5f39d397 4485 leaf = path->nodes[0];
44871b1b 4486 slot = path->slots[0];
74123bd7 4487
5f39d397 4488 nritems = btrfs_header_nritems(leaf);
123abc88 4489 data_end = leaf_data_end(root, leaf);
eb60ceac 4490
f25956cc 4491 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3326d1b0 4492 btrfs_print_leaf(root, leaf);
d397712b 4493 printk(KERN_CRIT "not enough freespace need %u have %d\n",
9c58309d 4494 total_size, btrfs_leaf_free_space(root, leaf));
be0e5c09 4495 BUG();
d4dbff95 4496 }
5f39d397 4497
be0e5c09 4498 if (slot != nritems) {
5f39d397 4499 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4500
5f39d397
CM
4501 if (old_data < data_end) {
4502 btrfs_print_leaf(root, leaf);
d397712b 4503 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
5f39d397
CM
4504 slot, old_data, data_end);
4505 BUG_ON(1);
4506 }
be0e5c09
CM
4507 /*
4508 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4509 */
4510 /* first correct the data pointers */
0783fcfc 4511 for (i = slot; i < nritems; i++) {
5f39d397 4512 u32 ioff;
db94535d 4513
5f39d397 4514 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4515 ioff = btrfs_token_item_offset(leaf, item, &token);
4516 btrfs_set_token_item_offset(leaf, item,
4517 ioff - total_data, &token);
0783fcfc 4518 }
be0e5c09 4519 /* shift the items */
9c58309d 4520 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4521 btrfs_item_nr_offset(slot),
d6025579 4522 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4523
4524 /* shift the data */
5f39d397 4525 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
9c58309d 4526 data_end - total_data, btrfs_leaf_data(leaf) +
d6025579 4527 data_end, old_data - data_end);
be0e5c09
CM
4528 data_end = old_data;
4529 }
5f39d397 4530
62e2749e 4531 /* setup the item for the new data */
9c58309d
CM
4532 for (i = 0; i < nr; i++) {
4533 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4534 btrfs_set_item_key(leaf, &disk_key, slot + i);
4535 item = btrfs_item_nr(leaf, slot + i);
cfed81a0
CM
4536 btrfs_set_token_item_offset(leaf, item,
4537 data_end - data_size[i], &token);
9c58309d 4538 data_end -= data_size[i];
cfed81a0 4539 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4540 }
44871b1b 4541
9c58309d 4542 btrfs_set_header_nritems(leaf, nritems + nr);
aa5d6bed 4543
5a01a2e3
CM
4544 if (slot == 0) {
4545 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
d6a0a126 4546 fixup_low_keys(root, path, &disk_key, 1);
5a01a2e3 4547 }
b9473439
CM
4548 btrfs_unlock_up_safe(path, 1);
4549 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4550
5f39d397
CM
4551 if (btrfs_leaf_free_space(root, leaf) < 0) {
4552 btrfs_print_leaf(root, leaf);
be0e5c09 4553 BUG();
5f39d397 4554 }
44871b1b
CM
4555}
4556
4557/*
4558 * Given a key and some data, insert items into the tree.
4559 * This does all the path init required, making room in the tree if needed.
4560 */
4561int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4562 struct btrfs_root *root,
4563 struct btrfs_path *path,
4564 struct btrfs_key *cpu_key, u32 *data_size,
4565 int nr)
4566{
44871b1b
CM
4567 int ret = 0;
4568 int slot;
4569 int i;
4570 u32 total_size = 0;
4571 u32 total_data = 0;
4572
4573 for (i = 0; i < nr; i++)
4574 total_data += data_size[i];
4575
4576 total_size = total_data + (nr * sizeof(struct btrfs_item));
4577 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4578 if (ret == 0)
4579 return -EEXIST;
4580 if (ret < 0)
143bede5 4581 return ret;
44871b1b 4582
44871b1b
CM
4583 slot = path->slots[0];
4584 BUG_ON(slot < 0);
4585
afe5fea7 4586 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4587 total_data, total_size, nr);
143bede5 4588 return 0;
62e2749e
CM
4589}
4590
4591/*
4592 * Given a key and some data, insert an item into the tree.
4593 * This does all the path init required, making room in the tree if needed.
4594 */
e089f05c
CM
4595int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4596 *root, struct btrfs_key *cpu_key, void *data, u32
4597 data_size)
62e2749e
CM
4598{
4599 int ret = 0;
2c90e5d6 4600 struct btrfs_path *path;
5f39d397
CM
4601 struct extent_buffer *leaf;
4602 unsigned long ptr;
62e2749e 4603
2c90e5d6 4604 path = btrfs_alloc_path();
db5b493a
TI
4605 if (!path)
4606 return -ENOMEM;
2c90e5d6 4607 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4608 if (!ret) {
5f39d397
CM
4609 leaf = path->nodes[0];
4610 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4611 write_extent_buffer(leaf, data, ptr, data_size);
4612 btrfs_mark_buffer_dirty(leaf);
62e2749e 4613 }
2c90e5d6 4614 btrfs_free_path(path);
aa5d6bed 4615 return ret;
be0e5c09
CM
4616}
4617
74123bd7 4618/*
5de08d7d 4619 * delete the pointer from a given node.
74123bd7 4620 *
d352ac68
CM
4621 * the tree should have been previously balanced so the deletion does not
4622 * empty a node.
74123bd7 4623 */
afe5fea7
TI
4624static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4625 int level, int slot)
be0e5c09 4626{
5f39d397 4627 struct extent_buffer *parent = path->nodes[level];
7518a238 4628 u32 nritems;
f3ea38da 4629 int ret;
be0e5c09 4630
5f39d397 4631 nritems = btrfs_header_nritems(parent);
d397712b 4632 if (slot != nritems - 1) {
0e411ece 4633 if (level)
f3ea38da
JS
4634 tree_mod_log_eb_move(root->fs_info, parent, slot,
4635 slot + 1, nritems - slot - 1);
5f39d397
CM
4636 memmove_extent_buffer(parent,
4637 btrfs_node_key_ptr_offset(slot),
4638 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4639 sizeof(struct btrfs_key_ptr) *
4640 (nritems - slot - 1));
57ba86c0
CM
4641 } else if (level) {
4642 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
c8cc6341 4643 MOD_LOG_KEY_REMOVE, GFP_NOFS);
57ba86c0 4644 BUG_ON(ret < 0);
bb803951 4645 }
f3ea38da 4646
7518a238 4647 nritems--;
5f39d397 4648 btrfs_set_header_nritems(parent, nritems);
7518a238 4649 if (nritems == 0 && parent == root->node) {
5f39d397 4650 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4651 /* just turn the root into a leaf and break */
5f39d397 4652 btrfs_set_header_level(root->node, 0);
bb803951 4653 } else if (slot == 0) {
5f39d397
CM
4654 struct btrfs_disk_key disk_key;
4655
4656 btrfs_node_key(parent, &disk_key, 0);
d6a0a126 4657 fixup_low_keys(root, path, &disk_key, level + 1);
be0e5c09 4658 }
d6025579 4659 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4660}
4661
323ac95b
CM
4662/*
4663 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4664 * path->nodes[1].
323ac95b
CM
4665 *
4666 * This deletes the pointer in path->nodes[1] and frees the leaf
4667 * block extent. zero is returned if it all worked out, < 0 otherwise.
4668 *
4669 * The path must have already been setup for deleting the leaf, including
4670 * all the proper balancing. path->nodes[1] must be locked.
4671 */
143bede5
JM
4672static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4673 struct btrfs_root *root,
4674 struct btrfs_path *path,
4675 struct extent_buffer *leaf)
323ac95b 4676{
5d4f98a2 4677 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4678 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4679
4d081c41
CM
4680 /*
4681 * btrfs_free_extent is expensive, we want to make sure we
4682 * aren't holding any locks when we call it
4683 */
4684 btrfs_unlock_up_safe(path, 0);
4685
f0486c68
YZ
4686 root_sub_used(root, leaf->len);
4687
3083ee2e 4688 extent_buffer_get(leaf);
5581a51a 4689 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4690 free_extent_buffer_stale(leaf);
323ac95b 4691}
74123bd7
CM
4692/*
4693 * delete the item at the leaf level in path. If that empties
4694 * the leaf, remove it from the tree
4695 */
85e21bac
CM
4696int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4697 struct btrfs_path *path, int slot, int nr)
be0e5c09 4698{
5f39d397
CM
4699 struct extent_buffer *leaf;
4700 struct btrfs_item *item;
85e21bac
CM
4701 int last_off;
4702 int dsize = 0;
aa5d6bed
CM
4703 int ret = 0;
4704 int wret;
85e21bac 4705 int i;
7518a238 4706 u32 nritems;
cfed81a0
CM
4707 struct btrfs_map_token token;
4708
4709 btrfs_init_map_token(&token);
be0e5c09 4710
5f39d397 4711 leaf = path->nodes[0];
85e21bac
CM
4712 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4713
4714 for (i = 0; i < nr; i++)
4715 dsize += btrfs_item_size_nr(leaf, slot + i);
4716
5f39d397 4717 nritems = btrfs_header_nritems(leaf);
be0e5c09 4718
85e21bac 4719 if (slot + nr != nritems) {
123abc88 4720 int data_end = leaf_data_end(root, leaf);
5f39d397
CM
4721
4722 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
d6025579
CM
4723 data_end + dsize,
4724 btrfs_leaf_data(leaf) + data_end,
85e21bac 4725 last_off - data_end);
5f39d397 4726
85e21bac 4727 for (i = slot + nr; i < nritems; i++) {
5f39d397 4728 u32 ioff;
db94535d 4729
5f39d397 4730 item = btrfs_item_nr(leaf, i);
cfed81a0
CM
4731 ioff = btrfs_token_item_offset(leaf, item, &token);
4732 btrfs_set_token_item_offset(leaf, item,
4733 ioff + dsize, &token);
0783fcfc 4734 }
db94535d 4735
5f39d397 4736 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4737 btrfs_item_nr_offset(slot + nr),
d6025579 4738 sizeof(struct btrfs_item) *
85e21bac 4739 (nritems - slot - nr));
be0e5c09 4740 }
85e21bac
CM
4741 btrfs_set_header_nritems(leaf, nritems - nr);
4742 nritems -= nr;
5f39d397 4743
74123bd7 4744 /* delete the leaf if we've emptied it */
7518a238 4745 if (nritems == 0) {
5f39d397
CM
4746 if (leaf == root->node) {
4747 btrfs_set_header_level(leaf, 0);
9a8dd150 4748 } else {
f0486c68
YZ
4749 btrfs_set_path_blocking(path);
4750 clean_tree_block(trans, root, leaf);
143bede5 4751 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 4752 }
be0e5c09 4753 } else {
7518a238 4754 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 4755 if (slot == 0) {
5f39d397
CM
4756 struct btrfs_disk_key disk_key;
4757
4758 btrfs_item_key(leaf, &disk_key, 0);
d6a0a126 4759 fixup_low_keys(root, path, &disk_key, 1);
aa5d6bed 4760 }
aa5d6bed 4761
74123bd7 4762 /* delete the leaf if it is mostly empty */
d717aa1d 4763 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
be0e5c09
CM
4764 /* push_leaf_left fixes the path.
4765 * make sure the path still points to our leaf
4766 * for possible call to del_ptr below
4767 */
4920c9ac 4768 slot = path->slots[1];
5f39d397
CM
4769 extent_buffer_get(leaf);
4770
b9473439 4771 btrfs_set_path_blocking(path);
99d8f83c
CM
4772 wret = push_leaf_left(trans, root, path, 1, 1,
4773 1, (u32)-1);
54aa1f4d 4774 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 4775 ret = wret;
5f39d397
CM
4776
4777 if (path->nodes[0] == leaf &&
4778 btrfs_header_nritems(leaf)) {
99d8f83c
CM
4779 wret = push_leaf_right(trans, root, path, 1,
4780 1, 1, 0);
54aa1f4d 4781 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
4782 ret = wret;
4783 }
5f39d397
CM
4784
4785 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 4786 path->slots[1] = slot;
143bede5 4787 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 4788 free_extent_buffer(leaf);
143bede5 4789 ret = 0;
5de08d7d 4790 } else {
925baedd
CM
4791 /* if we're still in the path, make sure
4792 * we're dirty. Otherwise, one of the
4793 * push_leaf functions must have already
4794 * dirtied this buffer
4795 */
4796 if (path->nodes[0] == leaf)
4797 btrfs_mark_buffer_dirty(leaf);
5f39d397 4798 free_extent_buffer(leaf);
be0e5c09 4799 }
d5719762 4800 } else {
5f39d397 4801 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
4802 }
4803 }
aa5d6bed 4804 return ret;
be0e5c09
CM
4805}
4806
7bb86316 4807/*
925baedd 4808 * search the tree again to find a leaf with lesser keys
7bb86316
CM
4809 * returns 0 if it found something or 1 if there are no lesser leaves.
4810 * returns < 0 on io errors.
d352ac68
CM
4811 *
4812 * This may release the path, and so you may lose any locks held at the
4813 * time you call it.
7bb86316 4814 */
35a3621b 4815static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 4816{
925baedd
CM
4817 struct btrfs_key key;
4818 struct btrfs_disk_key found_key;
4819 int ret;
7bb86316 4820
925baedd 4821 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 4822
925baedd
CM
4823 if (key.offset > 0)
4824 key.offset--;
4825 else if (key.type > 0)
4826 key.type--;
4827 else if (key.objectid > 0)
4828 key.objectid--;
4829 else
4830 return 1;
7bb86316 4831
b3b4aa74 4832 btrfs_release_path(path);
925baedd
CM
4833 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4834 if (ret < 0)
4835 return ret;
4836 btrfs_item_key(path->nodes[0], &found_key, 0);
4837 ret = comp_keys(&found_key, &key);
4838 if (ret < 0)
4839 return 0;
4840 return 1;
7bb86316
CM
4841}
4842
3f157a2f
CM
4843/*
4844 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
4845 * for nodes or leaves that are have a minimum transaction id.
4846 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
4847 *
4848 * This does not cow, but it does stuff the starting key it finds back
4849 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4850 * key and get a writable path.
4851 *
4852 * This does lock as it descends, and path->keep_locks should be set
4853 * to 1 by the caller.
4854 *
4855 * This honors path->lowest_level to prevent descent past a given level
4856 * of the tree.
4857 *
d352ac68
CM
4858 * min_trans indicates the oldest transaction that you are interested
4859 * in walking through. Any nodes or leaves older than min_trans are
4860 * skipped over (without reading them).
4861 *
3f157a2f
CM
4862 * returns zero if something useful was found, < 0 on error and 1 if there
4863 * was nothing in the tree that matched the search criteria.
4864 */
4865int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
e02119d5 4866 struct btrfs_key *max_key,
de78b51a 4867 struct btrfs_path *path,
3f157a2f
CM
4868 u64 min_trans)
4869{
4870 struct extent_buffer *cur;
4871 struct btrfs_key found_key;
4872 int slot;
9652480b 4873 int sret;
3f157a2f
CM
4874 u32 nritems;
4875 int level;
4876 int ret = 1;
4877
934d375b 4878 WARN_ON(!path->keep_locks);
3f157a2f 4879again:
bd681513 4880 cur = btrfs_read_lock_root_node(root);
3f157a2f 4881 level = btrfs_header_level(cur);
e02119d5 4882 WARN_ON(path->nodes[level]);
3f157a2f 4883 path->nodes[level] = cur;
bd681513 4884 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
4885
4886 if (btrfs_header_generation(cur) < min_trans) {
4887 ret = 1;
4888 goto out;
4889 }
d397712b 4890 while (1) {
3f157a2f
CM
4891 nritems = btrfs_header_nritems(cur);
4892 level = btrfs_header_level(cur);
9652480b 4893 sret = bin_search(cur, min_key, level, &slot);
3f157a2f 4894
323ac95b
CM
4895 /* at the lowest level, we're done, setup the path and exit */
4896 if (level == path->lowest_level) {
e02119d5
CM
4897 if (slot >= nritems)
4898 goto find_next_key;
3f157a2f
CM
4899 ret = 0;
4900 path->slots[level] = slot;
4901 btrfs_item_key_to_cpu(cur, &found_key, slot);
4902 goto out;
4903 }
9652480b
Y
4904 if (sret && slot > 0)
4905 slot--;
3f157a2f 4906 /*
de78b51a
ES
4907 * check this node pointer against the min_trans parameters.
4908 * If it is too old, old, skip to the next one.
3f157a2f 4909 */
d397712b 4910 while (slot < nritems) {
3f157a2f
CM
4911 u64 blockptr;
4912 u64 gen;
e02119d5 4913
3f157a2f
CM
4914 blockptr = btrfs_node_blockptr(cur, slot);
4915 gen = btrfs_node_ptr_generation(cur, slot);
4916 if (gen < min_trans) {
4917 slot++;
4918 continue;
4919 }
de78b51a 4920 break;
3f157a2f 4921 }
e02119d5 4922find_next_key:
3f157a2f
CM
4923 /*
4924 * we didn't find a candidate key in this node, walk forward
4925 * and find another one
4926 */
4927 if (slot >= nritems) {
e02119d5 4928 path->slots[level] = slot;
b4ce94de 4929 btrfs_set_path_blocking(path);
e02119d5 4930 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 4931 min_trans);
e02119d5 4932 if (sret == 0) {
b3b4aa74 4933 btrfs_release_path(path);
3f157a2f
CM
4934 goto again;
4935 } else {
4936 goto out;
4937 }
4938 }
4939 /* save our key for returning back */
4940 btrfs_node_key_to_cpu(cur, &found_key, slot);
4941 path->slots[level] = slot;
4942 if (level == path->lowest_level) {
4943 ret = 0;
f7c79f30 4944 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
4945 goto out;
4946 }
b4ce94de 4947 btrfs_set_path_blocking(path);
3f157a2f 4948 cur = read_node_slot(root, cur, slot);
79787eaa 4949 BUG_ON(!cur); /* -ENOMEM */
3f157a2f 4950
bd681513 4951 btrfs_tree_read_lock(cur);
b4ce94de 4952
bd681513 4953 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 4954 path->nodes[level - 1] = cur;
f7c79f30 4955 unlock_up(path, level, 1, 0, NULL);
bd681513 4956 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
4957 }
4958out:
4959 if (ret == 0)
4960 memcpy(min_key, &found_key, sizeof(found_key));
b4ce94de 4961 btrfs_set_path_blocking(path);
3f157a2f
CM
4962 return ret;
4963}
4964
7069830a
AB
4965static void tree_move_down(struct btrfs_root *root,
4966 struct btrfs_path *path,
4967 int *level, int root_level)
4968{
74dd17fb 4969 BUG_ON(*level == 0);
7069830a
AB
4970 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4971 path->slots[*level]);
4972 path->slots[*level - 1] = 0;
4973 (*level)--;
4974}
4975
4976static int tree_move_next_or_upnext(struct btrfs_root *root,
4977 struct btrfs_path *path,
4978 int *level, int root_level)
4979{
4980 int ret = 0;
4981 int nritems;
4982 nritems = btrfs_header_nritems(path->nodes[*level]);
4983
4984 path->slots[*level]++;
4985
74dd17fb 4986 while (path->slots[*level] >= nritems) {
7069830a
AB
4987 if (*level == root_level)
4988 return -1;
4989
4990 /* move upnext */
4991 path->slots[*level] = 0;
4992 free_extent_buffer(path->nodes[*level]);
4993 path->nodes[*level] = NULL;
4994 (*level)++;
4995 path->slots[*level]++;
4996
4997 nritems = btrfs_header_nritems(path->nodes[*level]);
4998 ret = 1;
4999 }
5000 return ret;
5001}
5002
5003/*
5004 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5005 * or down.
5006 */
5007static int tree_advance(struct btrfs_root *root,
5008 struct btrfs_path *path,
5009 int *level, int root_level,
5010 int allow_down,
5011 struct btrfs_key *key)
5012{
5013 int ret;
5014
5015 if (*level == 0 || !allow_down) {
5016 ret = tree_move_next_or_upnext(root, path, level, root_level);
5017 } else {
5018 tree_move_down(root, path, level, root_level);
5019 ret = 0;
5020 }
5021 if (ret >= 0) {
5022 if (*level == 0)
5023 btrfs_item_key_to_cpu(path->nodes[*level], key,
5024 path->slots[*level]);
5025 else
5026 btrfs_node_key_to_cpu(path->nodes[*level], key,
5027 path->slots[*level]);
5028 }
5029 return ret;
5030}
5031
5032static int tree_compare_item(struct btrfs_root *left_root,
5033 struct btrfs_path *left_path,
5034 struct btrfs_path *right_path,
5035 char *tmp_buf)
5036{
5037 int cmp;
5038 int len1, len2;
5039 unsigned long off1, off2;
5040
5041 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5042 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5043 if (len1 != len2)
5044 return 1;
5045
5046 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5047 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5048 right_path->slots[0]);
5049
5050 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5051
5052 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5053 if (cmp)
5054 return 1;
5055 return 0;
5056}
5057
5058#define ADVANCE 1
5059#define ADVANCE_ONLY_NEXT -1
5060
5061/*
5062 * This function compares two trees and calls the provided callback for
5063 * every changed/new/deleted item it finds.
5064 * If shared tree blocks are encountered, whole subtrees are skipped, making
5065 * the compare pretty fast on snapshotted subvolumes.
5066 *
5067 * This currently works on commit roots only. As commit roots are read only,
5068 * we don't do any locking. The commit roots are protected with transactions.
5069 * Transactions are ended and rejoined when a commit is tried in between.
5070 *
5071 * This function checks for modifications done to the trees while comparing.
5072 * If it detects a change, it aborts immediately.
5073 */
5074int btrfs_compare_trees(struct btrfs_root *left_root,
5075 struct btrfs_root *right_root,
5076 btrfs_changed_cb_t changed_cb, void *ctx)
5077{
5078 int ret;
5079 int cmp;
5080 struct btrfs_trans_handle *trans = NULL;
5081 struct btrfs_path *left_path = NULL;
5082 struct btrfs_path *right_path = NULL;
5083 struct btrfs_key left_key;
5084 struct btrfs_key right_key;
5085 char *tmp_buf = NULL;
5086 int left_root_level;
5087 int right_root_level;
5088 int left_level;
5089 int right_level;
5090 int left_end_reached;
5091 int right_end_reached;
5092 int advance_left;
5093 int advance_right;
5094 u64 left_blockptr;
5095 u64 right_blockptr;
5096 u64 left_start_ctransid;
5097 u64 right_start_ctransid;
5098 u64 ctransid;
5099
5100 left_path = btrfs_alloc_path();
5101 if (!left_path) {
5102 ret = -ENOMEM;
5103 goto out;
5104 }
5105 right_path = btrfs_alloc_path();
5106 if (!right_path) {
5107 ret = -ENOMEM;
5108 goto out;
5109 }
5110
5111 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5112 if (!tmp_buf) {
5113 ret = -ENOMEM;
5114 goto out;
5115 }
5116
5117 left_path->search_commit_root = 1;
5118 left_path->skip_locking = 1;
5119 right_path->search_commit_root = 1;
5120 right_path->skip_locking = 1;
5121
5f3ab90a 5122 spin_lock(&left_root->root_item_lock);
7069830a 5123 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5f3ab90a 5124 spin_unlock(&left_root->root_item_lock);
7069830a 5125
5f3ab90a 5126 spin_lock(&right_root->root_item_lock);
7069830a 5127 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5f3ab90a 5128 spin_unlock(&right_root->root_item_lock);
7069830a
AB
5129
5130 trans = btrfs_join_transaction(left_root);
5131 if (IS_ERR(trans)) {
5132 ret = PTR_ERR(trans);
5133 trans = NULL;
5134 goto out;
5135 }
5136
5137 /*
5138 * Strategy: Go to the first items of both trees. Then do
5139 *
5140 * If both trees are at level 0
5141 * Compare keys of current items
5142 * If left < right treat left item as new, advance left tree
5143 * and repeat
5144 * If left > right treat right item as deleted, advance right tree
5145 * and repeat
5146 * If left == right do deep compare of items, treat as changed if
5147 * needed, advance both trees and repeat
5148 * If both trees are at the same level but not at level 0
5149 * Compare keys of current nodes/leafs
5150 * If left < right advance left tree and repeat
5151 * If left > right advance right tree and repeat
5152 * If left == right compare blockptrs of the next nodes/leafs
5153 * If they match advance both trees but stay at the same level
5154 * and repeat
5155 * If they don't match advance both trees while allowing to go
5156 * deeper and repeat
5157 * If tree levels are different
5158 * Advance the tree that needs it and repeat
5159 *
5160 * Advancing a tree means:
5161 * If we are at level 0, try to go to the next slot. If that's not
5162 * possible, go one level up and repeat. Stop when we found a level
5163 * where we could go to the next slot. We may at this point be on a
5164 * node or a leaf.
5165 *
5166 * If we are not at level 0 and not on shared tree blocks, go one
5167 * level deeper.
5168 *
5169 * If we are not at level 0 and on shared tree blocks, go one slot to
5170 * the right if possible or go up and right.
5171 */
5172
5173 left_level = btrfs_header_level(left_root->commit_root);
5174 left_root_level = left_level;
5175 left_path->nodes[left_level] = left_root->commit_root;
5176 extent_buffer_get(left_path->nodes[left_level]);
5177
5178 right_level = btrfs_header_level(right_root->commit_root);
5179 right_root_level = right_level;
5180 right_path->nodes[right_level] = right_root->commit_root;
5181 extent_buffer_get(right_path->nodes[right_level]);
5182
5183 if (left_level == 0)
5184 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5185 &left_key, left_path->slots[left_level]);
5186 else
5187 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5188 &left_key, left_path->slots[left_level]);
5189 if (right_level == 0)
5190 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5191 &right_key, right_path->slots[right_level]);
5192 else
5193 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5194 &right_key, right_path->slots[right_level]);
5195
5196 left_end_reached = right_end_reached = 0;
5197 advance_left = advance_right = 0;
5198
5199 while (1) {
5200 /*
5201 * We need to make sure the transaction does not get committed
5202 * while we do anything on commit roots. This means, we need to
5203 * join and leave transactions for every item that we process.
5204 */
5205 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5206 btrfs_release_path(left_path);
5207 btrfs_release_path(right_path);
5208
5209 ret = btrfs_end_transaction(trans, left_root);
5210 trans = NULL;
5211 if (ret < 0)
5212 goto out;
5213 }
5214 /* now rejoin the transaction */
5215 if (!trans) {
5216 trans = btrfs_join_transaction(left_root);
5217 if (IS_ERR(trans)) {
5218 ret = PTR_ERR(trans);
5219 trans = NULL;
5220 goto out;
5221 }
5222
5f3ab90a 5223 spin_lock(&left_root->root_item_lock);
7069830a 5224 ctransid = btrfs_root_ctransid(&left_root->root_item);
5f3ab90a 5225 spin_unlock(&left_root->root_item_lock);
7069830a
AB
5226 if (ctransid != left_start_ctransid)
5227 left_start_ctransid = 0;
5228
5f3ab90a 5229 spin_lock(&right_root->root_item_lock);
7069830a 5230 ctransid = btrfs_root_ctransid(&right_root->root_item);
5f3ab90a 5231 spin_unlock(&right_root->root_item_lock);
7069830a
AB
5232 if (ctransid != right_start_ctransid)
5233 right_start_ctransid = 0;
5234
5235 if (!left_start_ctransid || !right_start_ctransid) {
5236 WARN(1, KERN_WARNING
5237 "btrfs: btrfs_compare_tree detected "
5238 "a change in one of the trees while "
5239 "iterating. This is probably a "
5240 "bug.\n");
5241 ret = -EIO;
5242 goto out;
5243 }
5244
5245 /*
5246 * the commit root may have changed, so start again
5247 * where we stopped
5248 */
5249 left_path->lowest_level = left_level;
5250 right_path->lowest_level = right_level;
5251 ret = btrfs_search_slot(NULL, left_root,
5252 &left_key, left_path, 0, 0);
5253 if (ret < 0)
5254 goto out;
5255 ret = btrfs_search_slot(NULL, right_root,
5256 &right_key, right_path, 0, 0);
5257 if (ret < 0)
5258 goto out;
5259 }
5260
5261 if (advance_left && !left_end_reached) {
5262 ret = tree_advance(left_root, left_path, &left_level,
5263 left_root_level,
5264 advance_left != ADVANCE_ONLY_NEXT,
5265 &left_key);
5266 if (ret < 0)
5267 left_end_reached = ADVANCE;
5268 advance_left = 0;
5269 }
5270 if (advance_right && !right_end_reached) {
5271 ret = tree_advance(right_root, right_path, &right_level,
5272 right_root_level,
5273 advance_right != ADVANCE_ONLY_NEXT,
5274 &right_key);
5275 if (ret < 0)
5276 right_end_reached = ADVANCE;
5277 advance_right = 0;
5278 }
5279
5280 if (left_end_reached && right_end_reached) {
5281 ret = 0;
5282 goto out;
5283 } else if (left_end_reached) {
5284 if (right_level == 0) {
5285 ret = changed_cb(left_root, right_root,
5286 left_path, right_path,
5287 &right_key,
5288 BTRFS_COMPARE_TREE_DELETED,
5289 ctx);
5290 if (ret < 0)
5291 goto out;
5292 }
5293 advance_right = ADVANCE;
5294 continue;
5295 } else if (right_end_reached) {
5296 if (left_level == 0) {
5297 ret = changed_cb(left_root, right_root,
5298 left_path, right_path,
5299 &left_key,
5300 BTRFS_COMPARE_TREE_NEW,
5301 ctx);
5302 if (ret < 0)
5303 goto out;
5304 }
5305 advance_left = ADVANCE;
5306 continue;
5307 }
5308
5309 if (left_level == 0 && right_level == 0) {
5310 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5311 if (cmp < 0) {
5312 ret = changed_cb(left_root, right_root,
5313 left_path, right_path,
5314 &left_key,
5315 BTRFS_COMPARE_TREE_NEW,
5316 ctx);
5317 if (ret < 0)
5318 goto out;
5319 advance_left = ADVANCE;
5320 } else if (cmp > 0) {
5321 ret = changed_cb(left_root, right_root,
5322 left_path, right_path,
5323 &right_key,
5324 BTRFS_COMPARE_TREE_DELETED,
5325 ctx);
5326 if (ret < 0)
5327 goto out;
5328 advance_right = ADVANCE;
5329 } else {
ba5e8f2e
JB
5330 enum btrfs_compare_tree_result cmp;
5331
74dd17fb 5332 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7069830a
AB
5333 ret = tree_compare_item(left_root, left_path,
5334 right_path, tmp_buf);
ba5e8f2e
JB
5335 if (ret)
5336 cmp = BTRFS_COMPARE_TREE_CHANGED;
5337 else
5338 cmp = BTRFS_COMPARE_TREE_SAME;
5339 ret = changed_cb(left_root, right_root,
5340 left_path, right_path,
5341 &left_key, cmp, ctx);
5342 if (ret < 0)
5343 goto out;
7069830a
AB
5344 advance_left = ADVANCE;
5345 advance_right = ADVANCE;
5346 }
5347 } else if (left_level == right_level) {
5348 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5349 if (cmp < 0) {
5350 advance_left = ADVANCE;
5351 } else if (cmp > 0) {
5352 advance_right = ADVANCE;
5353 } else {
5354 left_blockptr = btrfs_node_blockptr(
5355 left_path->nodes[left_level],
5356 left_path->slots[left_level]);
5357 right_blockptr = btrfs_node_blockptr(
5358 right_path->nodes[right_level],
5359 right_path->slots[right_level]);
5360 if (left_blockptr == right_blockptr) {
5361 /*
5362 * As we're on a shared block, don't
5363 * allow to go deeper.
5364 */
5365 advance_left = ADVANCE_ONLY_NEXT;
5366 advance_right = ADVANCE_ONLY_NEXT;
5367 } else {
5368 advance_left = ADVANCE;
5369 advance_right = ADVANCE;
5370 }
5371 }
5372 } else if (left_level < right_level) {
5373 advance_right = ADVANCE;
5374 } else {
5375 advance_left = ADVANCE;
5376 }
5377 }
5378
5379out:
5380 btrfs_free_path(left_path);
5381 btrfs_free_path(right_path);
5382 kfree(tmp_buf);
5383
5384 if (trans) {
5385 if (!ret)
5386 ret = btrfs_end_transaction(trans, left_root);
5387 else
5388 btrfs_end_transaction(trans, left_root);
5389 }
5390
5391 return ret;
5392}
5393
3f157a2f
CM
5394/*
5395 * this is similar to btrfs_next_leaf, but does not try to preserve
5396 * and fixup the path. It looks for and returns the next key in the
de78b51a 5397 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5398 *
5399 * 0 is returned if another key is found, < 0 if there are any errors
5400 * and 1 is returned if there are no higher keys in the tree
5401 *
5402 * path->keep_locks should be set to 1 on the search made before
5403 * calling this function.
5404 */
e7a84565 5405int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5406 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5407{
e7a84565
CM
5408 int slot;
5409 struct extent_buffer *c;
5410
934d375b 5411 WARN_ON(!path->keep_locks);
d397712b 5412 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5413 if (!path->nodes[level])
5414 return 1;
5415
5416 slot = path->slots[level] + 1;
5417 c = path->nodes[level];
3f157a2f 5418next:
e7a84565 5419 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5420 int ret;
5421 int orig_lowest;
5422 struct btrfs_key cur_key;
5423 if (level + 1 >= BTRFS_MAX_LEVEL ||
5424 !path->nodes[level + 1])
e7a84565 5425 return 1;
33c66f43
YZ
5426
5427 if (path->locks[level + 1]) {
5428 level++;
5429 continue;
5430 }
5431
5432 slot = btrfs_header_nritems(c) - 1;
5433 if (level == 0)
5434 btrfs_item_key_to_cpu(c, &cur_key, slot);
5435 else
5436 btrfs_node_key_to_cpu(c, &cur_key, slot);
5437
5438 orig_lowest = path->lowest_level;
b3b4aa74 5439 btrfs_release_path(path);
33c66f43
YZ
5440 path->lowest_level = level;
5441 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5442 0, 0);
5443 path->lowest_level = orig_lowest;
5444 if (ret < 0)
5445 return ret;
5446
5447 c = path->nodes[level];
5448 slot = path->slots[level];
5449 if (ret == 0)
5450 slot++;
5451 goto next;
e7a84565 5452 }
33c66f43 5453
e7a84565
CM
5454 if (level == 0)
5455 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5456 else {
3f157a2f
CM
5457 u64 gen = btrfs_node_ptr_generation(c, slot);
5458
3f157a2f
CM
5459 if (gen < min_trans) {
5460 slot++;
5461 goto next;
5462 }
e7a84565 5463 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5464 }
e7a84565
CM
5465 return 0;
5466 }
5467 return 1;
5468}
5469
97571fd0 5470/*
925baedd 5471 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5472 * returns 0 if it found something or 1 if there are no greater leaves.
5473 * returns < 0 on io errors.
97571fd0 5474 */
234b63a0 5475int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5476{
5477 return btrfs_next_old_leaf(root, path, 0);
5478}
5479
5480int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5481 u64 time_seq)
d97e63b6
CM
5482{
5483 int slot;
8e73f275 5484 int level;
5f39d397 5485 struct extent_buffer *c;
8e73f275 5486 struct extent_buffer *next;
925baedd
CM
5487 struct btrfs_key key;
5488 u32 nritems;
5489 int ret;
8e73f275 5490 int old_spinning = path->leave_spinning;
bd681513 5491 int next_rw_lock = 0;
925baedd
CM
5492
5493 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5494 if (nritems == 0)
925baedd 5495 return 1;
925baedd 5496
8e73f275
CM
5497 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5498again:
5499 level = 1;
5500 next = NULL;
bd681513 5501 next_rw_lock = 0;
b3b4aa74 5502 btrfs_release_path(path);
8e73f275 5503
a2135011 5504 path->keep_locks = 1;
31533fb2 5505 path->leave_spinning = 1;
8e73f275 5506
3d7806ec
JS
5507 if (time_seq)
5508 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5509 else
5510 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5511 path->keep_locks = 0;
5512
5513 if (ret < 0)
5514 return ret;
5515
a2135011 5516 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5517 /*
5518 * by releasing the path above we dropped all our locks. A balance
5519 * could have added more items next to the key that used to be
5520 * at the very end of the block. So, check again here and
5521 * advance the path if there are now more items available.
5522 */
a2135011 5523 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5524 if (ret == 0)
5525 path->slots[0]++;
8e73f275 5526 ret = 0;
925baedd
CM
5527 goto done;
5528 }
d97e63b6 5529
d397712b 5530 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5531 if (!path->nodes[level]) {
5532 ret = 1;
5533 goto done;
5534 }
5f39d397 5535
d97e63b6
CM
5536 slot = path->slots[level] + 1;
5537 c = path->nodes[level];
5f39d397 5538 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5539 level++;
8e73f275
CM
5540 if (level == BTRFS_MAX_LEVEL) {
5541 ret = 1;
5542 goto done;
5543 }
d97e63b6
CM
5544 continue;
5545 }
5f39d397 5546
925baedd 5547 if (next) {
bd681513 5548 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5549 free_extent_buffer(next);
925baedd 5550 }
5f39d397 5551
8e73f275 5552 next = c;
bd681513 5553 next_rw_lock = path->locks[level];
8e73f275 5554 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5555 slot, &key, 0);
8e73f275
CM
5556 if (ret == -EAGAIN)
5557 goto again;
5f39d397 5558
76a05b35 5559 if (ret < 0) {
b3b4aa74 5560 btrfs_release_path(path);
76a05b35
CM
5561 goto done;
5562 }
5563
5cd57b2c 5564 if (!path->skip_locking) {
bd681513 5565 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5566 if (!ret && time_seq) {
5567 /*
5568 * If we don't get the lock, we may be racing
5569 * with push_leaf_left, holding that lock while
5570 * itself waiting for the leaf we've currently
5571 * locked. To solve this situation, we give up
5572 * on our lock and cycle.
5573 */
cf538830 5574 free_extent_buffer(next);
d42244a0
JS
5575 btrfs_release_path(path);
5576 cond_resched();
5577 goto again;
5578 }
8e73f275
CM
5579 if (!ret) {
5580 btrfs_set_path_blocking(path);
bd681513 5581 btrfs_tree_read_lock(next);
31533fb2 5582 btrfs_clear_path_blocking(path, next,
bd681513 5583 BTRFS_READ_LOCK);
8e73f275 5584 }
31533fb2 5585 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5586 }
d97e63b6
CM
5587 break;
5588 }
5589 path->slots[level] = slot;
d397712b 5590 while (1) {
d97e63b6
CM
5591 level--;
5592 c = path->nodes[level];
925baedd 5593 if (path->locks[level])
bd681513 5594 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5595
5f39d397 5596 free_extent_buffer(c);
d97e63b6
CM
5597 path->nodes[level] = next;
5598 path->slots[level] = 0;
a74a4b97 5599 if (!path->skip_locking)
bd681513 5600 path->locks[level] = next_rw_lock;
d97e63b6
CM
5601 if (!level)
5602 break;
b4ce94de 5603
8e73f275 5604 ret = read_block_for_search(NULL, root, path, &next, level,
5d9e75c4 5605 0, &key, 0);
8e73f275
CM
5606 if (ret == -EAGAIN)
5607 goto again;
5608
76a05b35 5609 if (ret < 0) {
b3b4aa74 5610 btrfs_release_path(path);
76a05b35
CM
5611 goto done;
5612 }
5613
5cd57b2c 5614 if (!path->skip_locking) {
bd681513 5615 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5616 if (!ret) {
5617 btrfs_set_path_blocking(path);
bd681513 5618 btrfs_tree_read_lock(next);
31533fb2 5619 btrfs_clear_path_blocking(path, next,
bd681513
CM
5620 BTRFS_READ_LOCK);
5621 }
31533fb2 5622 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5623 }
d97e63b6 5624 }
8e73f275 5625 ret = 0;
925baedd 5626done:
f7c79f30 5627 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5628 path->leave_spinning = old_spinning;
5629 if (!old_spinning)
5630 btrfs_set_path_blocking(path);
5631
5632 return ret;
d97e63b6 5633}
0b86a832 5634
3f157a2f
CM
5635/*
5636 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5637 * searching until it gets past min_objectid or finds an item of 'type'
5638 *
5639 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5640 */
0b86a832
CM
5641int btrfs_previous_item(struct btrfs_root *root,
5642 struct btrfs_path *path, u64 min_objectid,
5643 int type)
5644{
5645 struct btrfs_key found_key;
5646 struct extent_buffer *leaf;
e02119d5 5647 u32 nritems;
0b86a832
CM
5648 int ret;
5649
d397712b 5650 while (1) {
0b86a832 5651 if (path->slots[0] == 0) {
b4ce94de 5652 btrfs_set_path_blocking(path);
0b86a832
CM
5653 ret = btrfs_prev_leaf(root, path);
5654 if (ret != 0)
5655 return ret;
5656 } else {
5657 path->slots[0]--;
5658 }
5659 leaf = path->nodes[0];
e02119d5
CM
5660 nritems = btrfs_header_nritems(leaf);
5661 if (nritems == 0)
5662 return 1;
5663 if (path->slots[0] == nritems)
5664 path->slots[0]--;
5665
0b86a832 5666 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5667 if (found_key.objectid < min_objectid)
5668 break;
0a4eefbb
YZ
5669 if (found_key.type == type)
5670 return 0;
e02119d5
CM
5671 if (found_key.objectid == min_objectid &&
5672 found_key.type < type)
5673 break;
0b86a832
CM
5674 }
5675 return 1;
5676}