]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/ctree.c
Btrfs: remove always true check in unlock_up
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / ctree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570 2/*
d352ac68 3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
a6b6e75e 6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
bd989ba3 8#include <linux/rbtree.h>
adf02123 9#include <linux/mm.h>
eb60ceac
CM
10#include "ctree.h"
11#include "disk-io.h"
7f5c1516 12#include "transaction.h"
5f39d397 13#include "print-tree.h"
925baedd 14#include "locking.h"
9a8dd150 15
e089f05c
CM
16static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
17 *root, struct btrfs_path *path, int level);
310712b2
OS
18static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
19 const struct btrfs_key *ins_key, struct btrfs_path *path,
20 int data_size, int extend);
5f39d397 21static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
22 struct btrfs_fs_info *fs_info,
23 struct extent_buffer *dst,
971a1f66 24 struct extent_buffer *src, int empty);
5f39d397 25static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 26 struct btrfs_fs_info *fs_info,
5f39d397
CM
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
afe5fea7
TI
29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 int level, int slot);
d97e63b6 31
df24a2b9 32struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 33{
e2c89907 34 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
35}
36
b4ce94de
CM
37/*
38 * set all locked nodes in the path to blocking locks. This should
39 * be done before scheduling
40 */
41noinline void btrfs_set_path_blocking(struct btrfs_path *p)
42{
43 int i;
44 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
45 if (!p->nodes[i] || !p->locks[i])
46 continue;
47 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
48 if (p->locks[i] == BTRFS_READ_LOCK)
49 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
50 else if (p->locks[i] == BTRFS_WRITE_LOCK)
51 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
b4ce94de
CM
52 }
53}
54
55/*
56 * reset all the locked nodes in the patch to spinning locks.
4008c04a
CM
57 *
58 * held is used to keep lockdep happy, when lockdep is enabled
59 * we set held to a blocking lock before we go around and
60 * retake all the spinlocks in the path. You can safely use NULL
61 * for held
b4ce94de 62 */
4008c04a 63noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
bd681513 64 struct extent_buffer *held, int held_rw)
b4ce94de
CM
65{
66 int i;
4008c04a 67
bd681513
CM
68 if (held) {
69 btrfs_set_lock_blocking_rw(held, held_rw);
70 if (held_rw == BTRFS_WRITE_LOCK)
71 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
72 else if (held_rw == BTRFS_READ_LOCK)
73 held_rw = BTRFS_READ_LOCK_BLOCKING;
74 }
4008c04a 75 btrfs_set_path_blocking(p);
4008c04a
CM
76
77 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
bd681513
CM
78 if (p->nodes[i] && p->locks[i]) {
79 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
80 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
81 p->locks[i] = BTRFS_WRITE_LOCK;
82 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
83 p->locks[i] = BTRFS_READ_LOCK;
84 }
b4ce94de 85 }
4008c04a 86
4008c04a 87 if (held)
bd681513 88 btrfs_clear_lock_blocking_rw(held, held_rw);
b4ce94de
CM
89}
90
d352ac68 91/* this also releases the path */
df24a2b9 92void btrfs_free_path(struct btrfs_path *p)
be0e5c09 93{
ff175d57
JJ
94 if (!p)
95 return;
b3b4aa74 96 btrfs_release_path(p);
df24a2b9 97 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
98}
99
d352ac68
CM
100/*
101 * path release drops references on the extent buffers in the path
102 * and it drops any locks held by this path
103 *
104 * It is safe to call this on paths that no locks or extent buffers held.
105 */
b3b4aa74 106noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
107{
108 int i;
a2135011 109
234b63a0 110 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 111 p->slots[i] = 0;
eb60ceac 112 if (!p->nodes[i])
925baedd
CM
113 continue;
114 if (p->locks[i]) {
bd681513 115 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
116 p->locks[i] = 0;
117 }
5f39d397 118 free_extent_buffer(p->nodes[i]);
3f157a2f 119 p->nodes[i] = NULL;
eb60ceac
CM
120 }
121}
122
d352ac68
CM
123/*
124 * safely gets a reference on the root node of a tree. A lock
125 * is not taken, so a concurrent writer may put a different node
126 * at the root of the tree. See btrfs_lock_root_node for the
127 * looping required.
128 *
129 * The extent buffer returned by this has a reference taken, so
130 * it won't disappear. It may stop being the root of the tree
131 * at any time because there are no locks held.
132 */
925baedd
CM
133struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
134{
135 struct extent_buffer *eb;
240f62c8 136
3083ee2e
JB
137 while (1) {
138 rcu_read_lock();
139 eb = rcu_dereference(root->node);
140
141 /*
142 * RCU really hurts here, we could free up the root node because
01327610 143 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
144 * the inc_not_zero dance and if it doesn't work then
145 * synchronize_rcu and try again.
146 */
147 if (atomic_inc_not_zero(&eb->refs)) {
148 rcu_read_unlock();
149 break;
150 }
151 rcu_read_unlock();
152 synchronize_rcu();
153 }
925baedd
CM
154 return eb;
155}
156
d352ac68
CM
157/* loop around taking references on and locking the root node of the
158 * tree until you end up with a lock on the root. A locked buffer
159 * is returned, with a reference held.
160 */
925baedd
CM
161struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
162{
163 struct extent_buffer *eb;
164
d397712b 165 while (1) {
925baedd
CM
166 eb = btrfs_root_node(root);
167 btrfs_tree_lock(eb);
240f62c8 168 if (eb == root->node)
925baedd 169 break;
925baedd
CM
170 btrfs_tree_unlock(eb);
171 free_extent_buffer(eb);
172 }
173 return eb;
174}
175
bd681513
CM
176/* loop around taking references on and locking the root node of the
177 * tree until you end up with a lock on the root. A locked buffer
178 * is returned, with a reference held.
179 */
84f7d8e6 180struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
181{
182 struct extent_buffer *eb;
183
184 while (1) {
185 eb = btrfs_root_node(root);
186 btrfs_tree_read_lock(eb);
187 if (eb == root->node)
188 break;
189 btrfs_tree_read_unlock(eb);
190 free_extent_buffer(eb);
191 }
192 return eb;
193}
194
d352ac68
CM
195/* cowonly root (everything not a reference counted cow subvolume), just get
196 * put onto a simple dirty list. transaction.c walks this to make sure they
197 * get properly updated on disk.
198 */
0b86a832
CM
199static void add_root_to_dirty_list(struct btrfs_root *root)
200{
0b246afa
JM
201 struct btrfs_fs_info *fs_info = root->fs_info;
202
e7070be1
JB
203 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
204 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
205 return;
206
0b246afa 207 spin_lock(&fs_info->trans_lock);
e7070be1
JB
208 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
209 /* Want the extent tree to be the last on the list */
210 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
211 list_move_tail(&root->dirty_list,
0b246afa 212 &fs_info->dirty_cowonly_roots);
e7070be1
JB
213 else
214 list_move(&root->dirty_list,
0b246afa 215 &fs_info->dirty_cowonly_roots);
0b86a832 216 }
0b246afa 217 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
218}
219
d352ac68
CM
220/*
221 * used by snapshot creation to make a copy of a root for a tree with
222 * a given objectid. The buffer with the new root node is returned in
223 * cow_ret, and this func returns zero on success or a negative error code.
224 */
be20aa9d
CM
225int btrfs_copy_root(struct btrfs_trans_handle *trans,
226 struct btrfs_root *root,
227 struct extent_buffer *buf,
228 struct extent_buffer **cow_ret, u64 new_root_objectid)
229{
0b246afa 230 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 231 struct extent_buffer *cow;
be20aa9d
CM
232 int ret = 0;
233 int level;
5d4f98a2 234 struct btrfs_disk_key disk_key;
be20aa9d 235
27cdeb70 236 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 237 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
238 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
239 trans->transid != root->last_trans);
be20aa9d
CM
240
241 level = btrfs_header_level(buf);
5d4f98a2
YZ
242 if (level == 0)
243 btrfs_item_key(buf, &disk_key, 0);
244 else
245 btrfs_node_key(buf, &disk_key, 0);
31840ae1 246
4d75f8a9
DS
247 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
248 &disk_key, level, buf->start, 0);
5d4f98a2 249 if (IS_ERR(cow))
be20aa9d
CM
250 return PTR_ERR(cow);
251
58e8012c 252 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
253 btrfs_set_header_bytenr(cow, cow->start);
254 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
255 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
256 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
257 BTRFS_HEADER_FLAG_RELOC);
258 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
259 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
260 else
261 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 262
0b246afa 263 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 264
be20aa9d 265 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 266 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 267 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 268 else
e339a6b0 269 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 270
be20aa9d
CM
271 if (ret)
272 return ret;
273
274 btrfs_mark_buffer_dirty(cow);
275 *cow_ret = cow;
276 return 0;
277}
278
bd989ba3
JS
279enum mod_log_op {
280 MOD_LOG_KEY_REPLACE,
281 MOD_LOG_KEY_ADD,
282 MOD_LOG_KEY_REMOVE,
283 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
284 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
285 MOD_LOG_MOVE_KEYS,
286 MOD_LOG_ROOT_REPLACE,
287};
288
bd989ba3
JS
289struct tree_mod_root {
290 u64 logical;
291 u8 level;
292};
293
294struct tree_mod_elem {
295 struct rb_node node;
298cfd36 296 u64 logical;
097b8a7c 297 u64 seq;
bd989ba3
JS
298 enum mod_log_op op;
299
300 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
301 int slot;
302
303 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
304 u64 generation;
305
306 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
307 struct btrfs_disk_key key;
308 u64 blockptr;
309
310 /* this is used for op == MOD_LOG_MOVE_KEYS */
b6dfa35b
DS
311 struct {
312 int dst_slot;
313 int nr_items;
314 } move;
bd989ba3
JS
315
316 /* this is used for op == MOD_LOG_ROOT_REPLACE */
317 struct tree_mod_root old_root;
318};
319
fc36ed7e 320/*
fcebe456 321 * Pull a new tree mod seq number for our operation.
fc36ed7e 322 */
fcebe456 323static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
324{
325 return atomic64_inc_return(&fs_info->tree_mod_seq);
326}
327
097b8a7c
JS
328/*
329 * This adds a new blocker to the tree mod log's blocker list if the @elem
330 * passed does not already have a sequence number set. So when a caller expects
331 * to record tree modifications, it should ensure to set elem->seq to zero
332 * before calling btrfs_get_tree_mod_seq.
333 * Returns a fresh, unused tree log modification sequence number, even if no new
334 * blocker was added.
335 */
336u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
337 struct seq_list *elem)
bd989ba3 338{
b1a09f1e 339 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3 340 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 341 if (!elem->seq) {
fcebe456 342 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
343 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
344 }
bd989ba3 345 spin_unlock(&fs_info->tree_mod_seq_lock);
b1a09f1e 346 write_unlock(&fs_info->tree_mod_log_lock);
097b8a7c 347
fcebe456 348 return elem->seq;
bd989ba3
JS
349}
350
351void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 struct seq_list *elem)
353{
354 struct rb_root *tm_root;
355 struct rb_node *node;
356 struct rb_node *next;
357 struct seq_list *cur_elem;
358 struct tree_mod_elem *tm;
359 u64 min_seq = (u64)-1;
360 u64 seq_putting = elem->seq;
361
362 if (!seq_putting)
363 return;
364
bd989ba3
JS
365 spin_lock(&fs_info->tree_mod_seq_lock);
366 list_del(&elem->list);
097b8a7c 367 elem->seq = 0;
bd989ba3
JS
368
369 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 370 if (cur_elem->seq < min_seq) {
bd989ba3
JS
371 if (seq_putting > cur_elem->seq) {
372 /*
373 * blocker with lower sequence number exists, we
374 * cannot remove anything from the log
375 */
097b8a7c
JS
376 spin_unlock(&fs_info->tree_mod_seq_lock);
377 return;
bd989ba3
JS
378 }
379 min_seq = cur_elem->seq;
380 }
381 }
097b8a7c
JS
382 spin_unlock(&fs_info->tree_mod_seq_lock);
383
bd989ba3
JS
384 /*
385 * anything that's lower than the lowest existing (read: blocked)
386 * sequence number can be removed from the tree.
387 */
b1a09f1e 388 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
389 tm_root = &fs_info->tree_mod_log;
390 for (node = rb_first(tm_root); node; node = next) {
391 next = rb_next(node);
6b4df8b6 392 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 393 if (tm->seq > min_seq)
bd989ba3
JS
394 continue;
395 rb_erase(node, tm_root);
bd989ba3
JS
396 kfree(tm);
397 }
b1a09f1e 398 write_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
399}
400
401/*
402 * key order of the log:
298cfd36 403 * node/leaf start address -> sequence
bd989ba3 404 *
298cfd36
CR
405 * The 'start address' is the logical address of the *new* root node
406 * for root replace operations, or the logical address of the affected
407 * block for all other operations.
5de865ee 408 *
b1a09f1e 409 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
bd989ba3
JS
410 */
411static noinline int
412__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
413{
414 struct rb_root *tm_root;
415 struct rb_node **new;
416 struct rb_node *parent = NULL;
417 struct tree_mod_elem *cur;
c8cc6341 418
fcebe456 419 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 420
bd989ba3
JS
421 tm_root = &fs_info->tree_mod_log;
422 new = &tm_root->rb_node;
423 while (*new) {
6b4df8b6 424 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 425 parent = *new;
298cfd36 426 if (cur->logical < tm->logical)
bd989ba3 427 new = &((*new)->rb_left);
298cfd36 428 else if (cur->logical > tm->logical)
bd989ba3 429 new = &((*new)->rb_right);
097b8a7c 430 else if (cur->seq < tm->seq)
bd989ba3 431 new = &((*new)->rb_left);
097b8a7c 432 else if (cur->seq > tm->seq)
bd989ba3 433 new = &((*new)->rb_right);
5de865ee
FDBM
434 else
435 return -EEXIST;
bd989ba3
JS
436 }
437
438 rb_link_node(&tm->node, parent, new);
439 rb_insert_color(&tm->node, tm_root);
5de865ee 440 return 0;
bd989ba3
JS
441}
442
097b8a7c
JS
443/*
444 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
445 * returns zero with the tree_mod_log_lock acquired. The caller must hold
446 * this until all tree mod log insertions are recorded in the rb tree and then
b1a09f1e 447 * write unlock fs_info::tree_mod_log_lock.
097b8a7c 448 */
e9b7fd4d
JS
449static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
450 struct extent_buffer *eb) {
451 smp_mb();
452 if (list_empty(&(fs_info)->tree_mod_seq_list))
453 return 1;
097b8a7c
JS
454 if (eb && btrfs_header_level(eb) == 0)
455 return 1;
5de865ee 456
b1a09f1e 457 write_lock(&fs_info->tree_mod_log_lock);
5de865ee 458 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
b1a09f1e 459 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
460 return 1;
461 }
462
e9b7fd4d
JS
463 return 0;
464}
465
5de865ee
FDBM
466/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
467static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
468 struct extent_buffer *eb)
469{
470 smp_mb();
471 if (list_empty(&(fs_info)->tree_mod_seq_list))
472 return 0;
473 if (eb && btrfs_header_level(eb) == 0)
474 return 0;
475
476 return 1;
477}
478
479static struct tree_mod_elem *
480alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
481 enum mod_log_op op, gfp_t flags)
bd989ba3 482{
097b8a7c 483 struct tree_mod_elem *tm;
bd989ba3 484
c8cc6341
JB
485 tm = kzalloc(sizeof(*tm), flags);
486 if (!tm)
5de865ee 487 return NULL;
bd989ba3 488
298cfd36 489 tm->logical = eb->start;
bd989ba3
JS
490 if (op != MOD_LOG_KEY_ADD) {
491 btrfs_node_key(eb, &tm->key, slot);
492 tm->blockptr = btrfs_node_blockptr(eb, slot);
493 }
494 tm->op = op;
495 tm->slot = slot;
496 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 497 RB_CLEAR_NODE(&tm->node);
bd989ba3 498
5de865ee 499 return tm;
097b8a7c
JS
500}
501
e09c2efe
DS
502static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
503 enum mod_log_op op, gfp_t flags)
097b8a7c 504{
5de865ee
FDBM
505 struct tree_mod_elem *tm;
506 int ret;
507
e09c2efe 508 if (!tree_mod_need_log(eb->fs_info, eb))
5de865ee
FDBM
509 return 0;
510
511 tm = alloc_tree_mod_elem(eb, slot, op, flags);
512 if (!tm)
513 return -ENOMEM;
514
e09c2efe 515 if (tree_mod_dont_log(eb->fs_info, eb)) {
5de865ee 516 kfree(tm);
097b8a7c 517 return 0;
5de865ee
FDBM
518 }
519
e09c2efe 520 ret = __tree_mod_log_insert(eb->fs_info, tm);
b1a09f1e 521 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
522 if (ret)
523 kfree(tm);
097b8a7c 524
5de865ee 525 return ret;
097b8a7c
JS
526}
527
6074d45f
DS
528static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
529 int dst_slot, int src_slot, int nr_items)
bd989ba3 530{
5de865ee
FDBM
531 struct tree_mod_elem *tm = NULL;
532 struct tree_mod_elem **tm_list = NULL;
533 int ret = 0;
bd989ba3 534 int i;
5de865ee 535 int locked = 0;
bd989ba3 536
6074d45f 537 if (!tree_mod_need_log(eb->fs_info, eb))
f395694c 538 return 0;
bd989ba3 539
176ef8f5 540 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
541 if (!tm_list)
542 return -ENOMEM;
543
176ef8f5 544 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
545 if (!tm) {
546 ret = -ENOMEM;
547 goto free_tms;
548 }
549
298cfd36 550 tm->logical = eb->start;
5de865ee
FDBM
551 tm->slot = src_slot;
552 tm->move.dst_slot = dst_slot;
553 tm->move.nr_items = nr_items;
554 tm->op = MOD_LOG_MOVE_KEYS;
555
556 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
557 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 558 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
559 if (!tm_list[i]) {
560 ret = -ENOMEM;
561 goto free_tms;
562 }
563 }
564
6074d45f 565 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
566 goto free_tms;
567 locked = 1;
568
01763a2e
JS
569 /*
570 * When we override something during the move, we log these removals.
571 * This can only happen when we move towards the beginning of the
572 * buffer, i.e. dst_slot < src_slot.
573 */
bd989ba3 574 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
6074d45f 575 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
5de865ee
FDBM
576 if (ret)
577 goto free_tms;
bd989ba3
JS
578 }
579
6074d45f 580 ret = __tree_mod_log_insert(eb->fs_info, tm);
5de865ee
FDBM
581 if (ret)
582 goto free_tms;
b1a09f1e 583 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee 584 kfree(tm_list);
f395694c 585
5de865ee
FDBM
586 return 0;
587free_tms:
588 for (i = 0; i < nr_items; i++) {
589 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
6074d45f 590 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
5de865ee
FDBM
591 kfree(tm_list[i]);
592 }
593 if (locked)
b1a09f1e 594 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
595 kfree(tm_list);
596 kfree(tm);
bd989ba3 597
5de865ee 598 return ret;
bd989ba3
JS
599}
600
5de865ee
FDBM
601static inline int
602__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
603 struct tree_mod_elem **tm_list,
604 int nritems)
097b8a7c 605{
5de865ee 606 int i, j;
097b8a7c
JS
607 int ret;
608
097b8a7c 609 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
610 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
611 if (ret) {
612 for (j = nritems - 1; j > i; j--)
613 rb_erase(&tm_list[j]->node,
614 &fs_info->tree_mod_log);
615 return ret;
616 }
097b8a7c 617 }
5de865ee
FDBM
618
619 return 0;
097b8a7c
JS
620}
621
95b757c1
DS
622static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
623 struct extent_buffer *new_root, int log_removal)
bd989ba3 624{
95b757c1 625 struct btrfs_fs_info *fs_info = old_root->fs_info;
5de865ee
FDBM
626 struct tree_mod_elem *tm = NULL;
627 struct tree_mod_elem **tm_list = NULL;
628 int nritems = 0;
629 int ret = 0;
630 int i;
bd989ba3 631
5de865ee 632 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
633 return 0;
634
5de865ee
FDBM
635 if (log_removal && btrfs_header_level(old_root) > 0) {
636 nritems = btrfs_header_nritems(old_root);
31e818fe 637 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 638 GFP_NOFS);
5de865ee
FDBM
639 if (!tm_list) {
640 ret = -ENOMEM;
641 goto free_tms;
642 }
643 for (i = 0; i < nritems; i++) {
644 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 645 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
646 if (!tm_list[i]) {
647 ret = -ENOMEM;
648 goto free_tms;
649 }
650 }
651 }
d9abbf1c 652
bcc8e07f 653 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
654 if (!tm) {
655 ret = -ENOMEM;
656 goto free_tms;
657 }
bd989ba3 658
298cfd36 659 tm->logical = new_root->start;
bd989ba3
JS
660 tm->old_root.logical = old_root->start;
661 tm->old_root.level = btrfs_header_level(old_root);
662 tm->generation = btrfs_header_generation(old_root);
663 tm->op = MOD_LOG_ROOT_REPLACE;
664
5de865ee
FDBM
665 if (tree_mod_dont_log(fs_info, NULL))
666 goto free_tms;
667
668 if (tm_list)
669 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
670 if (!ret)
671 ret = __tree_mod_log_insert(fs_info, tm);
672
b1a09f1e 673 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
674 if (ret)
675 goto free_tms;
676 kfree(tm_list);
677
678 return ret;
679
680free_tms:
681 if (tm_list) {
682 for (i = 0; i < nritems; i++)
683 kfree(tm_list[i]);
684 kfree(tm_list);
685 }
686 kfree(tm);
687
688 return ret;
bd989ba3
JS
689}
690
691static struct tree_mod_elem *
692__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
693 int smallest)
694{
695 struct rb_root *tm_root;
696 struct rb_node *node;
697 struct tree_mod_elem *cur = NULL;
698 struct tree_mod_elem *found = NULL;
bd989ba3 699
b1a09f1e 700 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
701 tm_root = &fs_info->tree_mod_log;
702 node = tm_root->rb_node;
703 while (node) {
6b4df8b6 704 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 705 if (cur->logical < start) {
bd989ba3 706 node = node->rb_left;
298cfd36 707 } else if (cur->logical > start) {
bd989ba3 708 node = node->rb_right;
097b8a7c 709 } else if (cur->seq < min_seq) {
bd989ba3
JS
710 node = node->rb_left;
711 } else if (!smallest) {
712 /* we want the node with the highest seq */
713 if (found)
097b8a7c 714 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
715 found = cur;
716 node = node->rb_left;
097b8a7c 717 } else if (cur->seq > min_seq) {
bd989ba3
JS
718 /* we want the node with the smallest seq */
719 if (found)
097b8a7c 720 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
721 found = cur;
722 node = node->rb_right;
723 } else {
724 found = cur;
725 break;
726 }
727 }
b1a09f1e 728 read_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
729
730 return found;
731}
732
733/*
734 * this returns the element from the log with the smallest time sequence
735 * value that's in the log (the oldest log item). any element with a time
736 * sequence lower than min_seq will be ignored.
737 */
738static struct tree_mod_elem *
739tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
740 u64 min_seq)
741{
742 return __tree_mod_log_search(fs_info, start, min_seq, 1);
743}
744
745/*
746 * this returns the element from the log with the largest time sequence
747 * value that's in the log (the most recent log item). any element with
748 * a time sequence lower than min_seq will be ignored.
749 */
750static struct tree_mod_elem *
751tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
752{
753 return __tree_mod_log_search(fs_info, start, min_seq, 0);
754}
755
5de865ee 756static noinline int
bd989ba3
JS
757tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
758 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 759 unsigned long src_offset, int nr_items)
bd989ba3 760{
5de865ee
FDBM
761 int ret = 0;
762 struct tree_mod_elem **tm_list = NULL;
763 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 764 int i;
5de865ee 765 int locked = 0;
bd989ba3 766
5de865ee
FDBM
767 if (!tree_mod_need_log(fs_info, NULL))
768 return 0;
bd989ba3 769
c8cc6341 770 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
771 return 0;
772
31e818fe 773 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
774 GFP_NOFS);
775 if (!tm_list)
776 return -ENOMEM;
bd989ba3 777
5de865ee
FDBM
778 tm_list_add = tm_list;
779 tm_list_rem = tm_list + nr_items;
bd989ba3 780 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
781 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
782 MOD_LOG_KEY_REMOVE, GFP_NOFS);
783 if (!tm_list_rem[i]) {
784 ret = -ENOMEM;
785 goto free_tms;
786 }
787
788 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
789 MOD_LOG_KEY_ADD, GFP_NOFS);
790 if (!tm_list_add[i]) {
791 ret = -ENOMEM;
792 goto free_tms;
793 }
794 }
795
796 if (tree_mod_dont_log(fs_info, NULL))
797 goto free_tms;
798 locked = 1;
799
800 for (i = 0; i < nr_items; i++) {
801 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
802 if (ret)
803 goto free_tms;
804 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
805 if (ret)
806 goto free_tms;
bd989ba3 807 }
5de865ee 808
b1a09f1e 809 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
810 kfree(tm_list);
811
812 return 0;
813
814free_tms:
815 for (i = 0; i < nr_items * 2; i++) {
816 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
817 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
818 kfree(tm_list[i]);
819 }
820 if (locked)
b1a09f1e 821 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
822 kfree(tm_list);
823
824 return ret;
bd989ba3
JS
825}
826
db7279a2 827static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
bd989ba3 828{
5de865ee
FDBM
829 struct tree_mod_elem **tm_list = NULL;
830 int nritems = 0;
831 int i;
832 int ret = 0;
833
834 if (btrfs_header_level(eb) == 0)
835 return 0;
836
db7279a2 837 if (!tree_mod_need_log(eb->fs_info, NULL))
5de865ee
FDBM
838 return 0;
839
840 nritems = btrfs_header_nritems(eb);
31e818fe 841 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
842 if (!tm_list)
843 return -ENOMEM;
844
845 for (i = 0; i < nritems; i++) {
846 tm_list[i] = alloc_tree_mod_elem(eb, i,
847 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
848 if (!tm_list[i]) {
849 ret = -ENOMEM;
850 goto free_tms;
851 }
852 }
853
db7279a2 854 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
855 goto free_tms;
856
db7279a2 857 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
b1a09f1e 858 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
859 if (ret)
860 goto free_tms;
861 kfree(tm_list);
862
863 return 0;
864
865free_tms:
866 for (i = 0; i < nritems; i++)
867 kfree(tm_list[i]);
868 kfree(tm_list);
869
870 return ret;
bd989ba3
JS
871}
872
5d4f98a2
YZ
873/*
874 * check if the tree block can be shared by multiple trees
875 */
876int btrfs_block_can_be_shared(struct btrfs_root *root,
877 struct extent_buffer *buf)
878{
879 /*
01327610 880 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
881 * are never shared. If a block was allocated after the last
882 * snapshot and the block was not allocated by tree relocation,
883 * we know the block is not shared.
884 */
27cdeb70 885 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
886 buf != root->node && buf != root->commit_root &&
887 (btrfs_header_generation(buf) <=
888 btrfs_root_last_snapshot(&root->root_item) ||
889 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
890 return 1;
891#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
27cdeb70 892 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
893 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
894 return 1;
895#endif
896 return 0;
897}
898
899static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
900 struct btrfs_root *root,
901 struct extent_buffer *buf,
f0486c68
YZ
902 struct extent_buffer *cow,
903 int *last_ref)
5d4f98a2 904{
0b246afa 905 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
906 u64 refs;
907 u64 owner;
908 u64 flags;
909 u64 new_flags = 0;
910 int ret;
911
912 /*
913 * Backrefs update rules:
914 *
915 * Always use full backrefs for extent pointers in tree block
916 * allocated by tree relocation.
917 *
918 * If a shared tree block is no longer referenced by its owner
919 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
920 * use full backrefs for extent pointers in tree block.
921 *
922 * If a tree block is been relocating
923 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
924 * use full backrefs for extent pointers in tree block.
925 * The reason for this is some operations (such as drop tree)
926 * are only allowed for blocks use full backrefs.
927 */
928
929 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 930 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
931 btrfs_header_level(buf), 1,
932 &refs, &flags);
be1a5564
MF
933 if (ret)
934 return ret;
e5df9573
MF
935 if (refs == 0) {
936 ret = -EROFS;
0b246afa 937 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
938 return ret;
939 }
5d4f98a2
YZ
940 } else {
941 refs = 1;
942 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
943 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
944 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
945 else
946 flags = 0;
947 }
948
949 owner = btrfs_header_owner(buf);
950 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
951 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
952
953 if (refs > 1) {
954 if ((owner == root->root_key.objectid ||
955 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
956 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 957 ret = btrfs_inc_ref(trans, root, buf, 1);
692826b2
JM
958 if (ret)
959 return ret;
5d4f98a2
YZ
960
961 if (root->root_key.objectid ==
962 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 963 ret = btrfs_dec_ref(trans, root, buf, 0);
692826b2
JM
964 if (ret)
965 return ret;
e339a6b0 966 ret = btrfs_inc_ref(trans, root, cow, 1);
692826b2
JM
967 if (ret)
968 return ret;
5d4f98a2
YZ
969 }
970 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
971 } else {
972
973 if (root->root_key.objectid ==
974 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 975 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 976 else
e339a6b0 977 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
978 if (ret)
979 return ret;
5d4f98a2
YZ
980 }
981 if (new_flags != 0) {
b1c79e09
JB
982 int level = btrfs_header_level(buf);
983
2ff7e61e 984 ret = btrfs_set_disk_extent_flags(trans, fs_info,
5d4f98a2
YZ
985 buf->start,
986 buf->len,
b1c79e09 987 new_flags, level, 0);
be1a5564
MF
988 if (ret)
989 return ret;
5d4f98a2
YZ
990 }
991 } else {
992 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
993 if (root->root_key.objectid ==
994 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 995 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 996 else
e339a6b0 997 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
998 if (ret)
999 return ret;
e339a6b0 1000 ret = btrfs_dec_ref(trans, root, buf, 1);
692826b2
JM
1001 if (ret)
1002 return ret;
5d4f98a2 1003 }
7c302b49 1004 clean_tree_block(fs_info, buf);
f0486c68 1005 *last_ref = 1;
5d4f98a2
YZ
1006 }
1007 return 0;
1008}
1009
d352ac68 1010/*
d397712b
CM
1011 * does the dirty work in cow of a single block. The parent block (if
1012 * supplied) is updated to point to the new cow copy. The new buffer is marked
1013 * dirty and returned locked. If you modify the block it needs to be marked
1014 * dirty again.
d352ac68
CM
1015 *
1016 * search_start -- an allocation hint for the new block
1017 *
d397712b
CM
1018 * empty_size -- a hint that you plan on doing more cow. This is the size in
1019 * bytes the allocator should try to find free next to the block it returns.
1020 * This is just a hint and may be ignored by the allocator.
d352ac68 1021 */
d397712b 1022static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1023 struct btrfs_root *root,
1024 struct extent_buffer *buf,
1025 struct extent_buffer *parent, int parent_slot,
1026 struct extent_buffer **cow_ret,
9fa8cfe7 1027 u64 search_start, u64 empty_size)
02217ed2 1028{
0b246afa 1029 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 1030 struct btrfs_disk_key disk_key;
5f39d397 1031 struct extent_buffer *cow;
be1a5564 1032 int level, ret;
f0486c68 1033 int last_ref = 0;
925baedd 1034 int unlock_orig = 0;
0f5053eb 1035 u64 parent_start = 0;
7bb86316 1036
925baedd
CM
1037 if (*cow_ret == buf)
1038 unlock_orig = 1;
1039
b9447ef8 1040 btrfs_assert_tree_locked(buf);
925baedd 1041
27cdeb70 1042 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1043 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1044 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1045 trans->transid != root->last_trans);
5f39d397 1046
7bb86316 1047 level = btrfs_header_level(buf);
31840ae1 1048
5d4f98a2
YZ
1049 if (level == 0)
1050 btrfs_item_key(buf, &disk_key, 0);
1051 else
1052 btrfs_node_key(buf, &disk_key, 0);
1053
0f5053eb
GR
1054 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1055 parent_start = parent->start;
5d4f98a2 1056
4d75f8a9
DS
1057 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1058 root->root_key.objectid, &disk_key, level,
1059 search_start, empty_size);
54aa1f4d
CM
1060 if (IS_ERR(cow))
1061 return PTR_ERR(cow);
6702ed49 1062
b4ce94de
CM
1063 /* cow is set to blocking by btrfs_init_new_buffer */
1064
58e8012c 1065 copy_extent_buffer_full(cow, buf);
db94535d 1066 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1067 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1068 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1069 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1070 BTRFS_HEADER_FLAG_RELOC);
1071 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1072 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1073 else
1074 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1075
0b246afa 1076 write_extent_buffer_fsid(cow, fs_info->fsid);
2b82032c 1077
be1a5564 1078 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1079 if (ret) {
66642832 1080 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1081 return ret;
1082 }
1a40e23b 1083
27cdeb70 1084 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1085 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1086 if (ret) {
66642832 1087 btrfs_abort_transaction(trans, ret);
83d4cfd4 1088 return ret;
93314e3b 1089 }
83d4cfd4 1090 }
3fd0a558 1091
02217ed2 1092 if (buf == root->node) {
925baedd 1093 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1094 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1095 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1096 parent_start = buf->start;
925baedd 1097
5f39d397 1098 extent_buffer_get(cow);
d9d19a01
DS
1099 ret = tree_mod_log_insert_root(root->node, cow, 1);
1100 BUG_ON(ret < 0);
240f62c8 1101 rcu_assign_pointer(root->node, cow);
925baedd 1102
f0486c68 1103 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1104 last_ref);
5f39d397 1105 free_extent_buffer(buf);
0b86a832 1106 add_root_to_dirty_list(root);
02217ed2 1107 } else {
5d4f98a2 1108 WARN_ON(trans->transid != btrfs_header_generation(parent));
e09c2efe 1109 tree_mod_log_insert_key(parent, parent_slot,
c8cc6341 1110 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1111 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1112 cow->start);
74493f7a
CM
1113 btrfs_set_node_ptr_generation(parent, parent_slot,
1114 trans->transid);
d6025579 1115 btrfs_mark_buffer_dirty(parent);
5de865ee 1116 if (last_ref) {
db7279a2 1117 ret = tree_mod_log_free_eb(buf);
5de865ee 1118 if (ret) {
66642832 1119 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1120 return ret;
1121 }
1122 }
f0486c68 1123 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1124 last_ref);
02217ed2 1125 }
925baedd
CM
1126 if (unlock_orig)
1127 btrfs_tree_unlock(buf);
3083ee2e 1128 free_extent_buffer_stale(buf);
ccd467d6 1129 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1130 *cow_ret = cow;
02217ed2
CM
1131 return 0;
1132}
1133
5d9e75c4
JS
1134/*
1135 * returns the logical address of the oldest predecessor of the given root.
1136 * entries older than time_seq are ignored.
1137 */
bcd24dab
DS
1138static struct tree_mod_elem *__tree_mod_log_oldest_root(
1139 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1140{
1141 struct tree_mod_elem *tm;
1142 struct tree_mod_elem *found = NULL;
30b0463a 1143 u64 root_logical = eb_root->start;
5d9e75c4
JS
1144 int looped = 0;
1145
1146 if (!time_seq)
35a3621b 1147 return NULL;
5d9e75c4
JS
1148
1149 /*
298cfd36
CR
1150 * the very last operation that's logged for a root is the
1151 * replacement operation (if it is replaced at all). this has
1152 * the logical address of the *new* root, making it the very
1153 * first operation that's logged for this root.
5d9e75c4
JS
1154 */
1155 while (1) {
bcd24dab 1156 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
5d9e75c4
JS
1157 time_seq);
1158 if (!looped && !tm)
35a3621b 1159 return NULL;
5d9e75c4 1160 /*
28da9fb4
JS
1161 * if there are no tree operation for the oldest root, we simply
1162 * return it. this should only happen if that (old) root is at
1163 * level 0.
5d9e75c4 1164 */
28da9fb4
JS
1165 if (!tm)
1166 break;
5d9e75c4 1167
28da9fb4
JS
1168 /*
1169 * if there's an operation that's not a root replacement, we
1170 * found the oldest version of our root. normally, we'll find a
1171 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1172 */
5d9e75c4
JS
1173 if (tm->op != MOD_LOG_ROOT_REPLACE)
1174 break;
1175
1176 found = tm;
1177 root_logical = tm->old_root.logical;
5d9e75c4
JS
1178 looped = 1;
1179 }
1180
a95236d9
JS
1181 /* if there's no old root to return, return what we found instead */
1182 if (!found)
1183 found = tm;
1184
5d9e75c4
JS
1185 return found;
1186}
1187
1188/*
1189 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1190 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1191 * time_seq).
1192 */
1193static void
f1ca7e98
JB
1194__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1195 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1196{
1197 u32 n;
1198 struct rb_node *next;
1199 struct tree_mod_elem *tm = first_tm;
1200 unsigned long o_dst;
1201 unsigned long o_src;
1202 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1203
1204 n = btrfs_header_nritems(eb);
b1a09f1e 1205 read_lock(&fs_info->tree_mod_log_lock);
097b8a7c 1206 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1207 /*
1208 * all the operations are recorded with the operator used for
1209 * the modification. as we're going backwards, we do the
1210 * opposite of each operation here.
1211 */
1212 switch (tm->op) {
1213 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1214 BUG_ON(tm->slot < n);
1c697d4a 1215 /* Fallthrough */
95c80bb1 1216 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1217 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1218 btrfs_set_node_key(eb, &tm->key, tm->slot);
1219 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1220 btrfs_set_node_ptr_generation(eb, tm->slot,
1221 tm->generation);
4c3e6969 1222 n++;
5d9e75c4
JS
1223 break;
1224 case MOD_LOG_KEY_REPLACE:
1225 BUG_ON(tm->slot >= n);
1226 btrfs_set_node_key(eb, &tm->key, tm->slot);
1227 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228 btrfs_set_node_ptr_generation(eb, tm->slot,
1229 tm->generation);
1230 break;
1231 case MOD_LOG_KEY_ADD:
19956c7e 1232 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1233 n--;
1234 break;
1235 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1236 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1237 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1238 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1239 tm->move.nr_items * p_size);
1240 break;
1241 case MOD_LOG_ROOT_REPLACE:
1242 /*
1243 * this operation is special. for roots, this must be
1244 * handled explicitly before rewinding.
1245 * for non-roots, this operation may exist if the node
1246 * was a root: root A -> child B; then A gets empty and
1247 * B is promoted to the new root. in the mod log, we'll
1248 * have a root-replace operation for B, a tree block
1249 * that is no root. we simply ignore that operation.
1250 */
1251 break;
1252 }
1253 next = rb_next(&tm->node);
1254 if (!next)
1255 break;
6b4df8b6 1256 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1257 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1258 break;
1259 }
b1a09f1e 1260 read_unlock(&fs_info->tree_mod_log_lock);
5d9e75c4
JS
1261 btrfs_set_header_nritems(eb, n);
1262}
1263
47fb091f 1264/*
01327610 1265 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1266 * is returned. If rewind operations happen, a fresh buffer is returned. The
1267 * returned buffer is always read-locked. If the returned buffer is not the
1268 * input buffer, the lock on the input buffer is released and the input buffer
1269 * is freed (its refcount is decremented).
1270 */
5d9e75c4 1271static struct extent_buffer *
9ec72677
JB
1272tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1273 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1274{
1275 struct extent_buffer *eb_rewin;
1276 struct tree_mod_elem *tm;
1277
1278 if (!time_seq)
1279 return eb;
1280
1281 if (btrfs_header_level(eb) == 0)
1282 return eb;
1283
1284 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1285 if (!tm)
1286 return eb;
1287
9ec72677
JB
1288 btrfs_set_path_blocking(path);
1289 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1290
5d9e75c4
JS
1291 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1292 BUG_ON(tm->slot != 0);
da17066c 1293 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1294 if (!eb_rewin) {
9ec72677 1295 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1296 free_extent_buffer(eb);
1297 return NULL;
1298 }
5d9e75c4
JS
1299 btrfs_set_header_bytenr(eb_rewin, eb->start);
1300 btrfs_set_header_backref_rev(eb_rewin,
1301 btrfs_header_backref_rev(eb));
1302 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1303 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1304 } else {
1305 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1306 if (!eb_rewin) {
9ec72677 1307 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1308 free_extent_buffer(eb);
1309 return NULL;
1310 }
5d9e75c4
JS
1311 }
1312
9ec72677
JB
1313 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1314 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1315 free_extent_buffer(eb);
1316
47fb091f
JS
1317 extent_buffer_get(eb_rewin);
1318 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1319 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1320 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1321 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1322
1323 return eb_rewin;
1324}
1325
8ba97a15
JS
1326/*
1327 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1328 * value. If there are no changes, the current root->root_node is returned. If
1329 * anything changed in between, there's a fresh buffer allocated on which the
1330 * rewind operations are done. In any case, the returned buffer is read locked.
1331 * Returns NULL on error (with no locks held).
1332 */
5d9e75c4
JS
1333static inline struct extent_buffer *
1334get_old_root(struct btrfs_root *root, u64 time_seq)
1335{
0b246afa 1336 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1337 struct tree_mod_elem *tm;
30b0463a
JS
1338 struct extent_buffer *eb = NULL;
1339 struct extent_buffer *eb_root;
7bfdcf7f 1340 struct extent_buffer *old;
a95236d9 1341 struct tree_mod_root *old_root = NULL;
4325edd0 1342 u64 old_generation = 0;
a95236d9 1343 u64 logical;
581c1760 1344 int level;
5d9e75c4 1345
30b0463a 1346 eb_root = btrfs_read_lock_root_node(root);
bcd24dab 1347 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5d9e75c4 1348 if (!tm)
30b0463a 1349 return eb_root;
5d9e75c4 1350
a95236d9
JS
1351 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1352 old_root = &tm->old_root;
1353 old_generation = tm->generation;
1354 logical = old_root->logical;
581c1760 1355 level = old_root->level;
a95236d9 1356 } else {
30b0463a 1357 logical = eb_root->start;
581c1760 1358 level = btrfs_header_level(eb_root);
a95236d9 1359 }
5d9e75c4 1360
0b246afa 1361 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1362 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1363 btrfs_tree_read_unlock(eb_root);
1364 free_extent_buffer(eb_root);
581c1760 1365 old = read_tree_block(fs_info, logical, 0, level, NULL);
64c043de
LB
1366 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1367 if (!IS_ERR(old))
1368 free_extent_buffer(old);
0b246afa
JM
1369 btrfs_warn(fs_info,
1370 "failed to read tree block %llu from get_old_root",
1371 logical);
834328a8 1372 } else {
7bfdcf7f
LB
1373 eb = btrfs_clone_extent_buffer(old);
1374 free_extent_buffer(old);
834328a8
JS
1375 }
1376 } else if (old_root) {
30b0463a
JS
1377 btrfs_tree_read_unlock(eb_root);
1378 free_extent_buffer(eb_root);
0b246afa 1379 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1380 } else {
9ec72677 1381 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
30b0463a 1382 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1383 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1384 free_extent_buffer(eb_root);
834328a8
JS
1385 }
1386
8ba97a15
JS
1387 if (!eb)
1388 return NULL;
d6381084 1389 extent_buffer_get(eb);
8ba97a15 1390 btrfs_tree_read_lock(eb);
a95236d9 1391 if (old_root) {
5d9e75c4
JS
1392 btrfs_set_header_bytenr(eb, eb->start);
1393 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
30b0463a 1394 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
a95236d9
JS
1395 btrfs_set_header_level(eb, old_root->level);
1396 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1397 }
28da9fb4 1398 if (tm)
0b246afa 1399 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1400 else
1401 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1402 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1403
1404 return eb;
1405}
1406
5b6602e7
JS
1407int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1408{
1409 struct tree_mod_elem *tm;
1410 int level;
30b0463a 1411 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1412
bcd24dab 1413 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5b6602e7
JS
1414 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1415 level = tm->old_root.level;
1416 } else {
30b0463a 1417 level = btrfs_header_level(eb_root);
5b6602e7 1418 }
30b0463a 1419 free_extent_buffer(eb_root);
5b6602e7
JS
1420
1421 return level;
1422}
1423
5d4f98a2
YZ
1424static inline int should_cow_block(struct btrfs_trans_handle *trans,
1425 struct btrfs_root *root,
1426 struct extent_buffer *buf)
1427{
f5ee5c9a 1428 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1429 return 0;
fccb84c9 1430
d1980131
DS
1431 /* Ensure we can see the FORCE_COW bit */
1432 smp_mb__before_atomic();
f1ebcc74
LB
1433
1434 /*
1435 * We do not need to cow a block if
1436 * 1) this block is not created or changed in this transaction;
1437 * 2) this block does not belong to TREE_RELOC tree;
1438 * 3) the root is not forced COW.
1439 *
1440 * What is forced COW:
01327610 1441 * when we create snapshot during committing the transaction,
f1ebcc74
LB
1442 * after we've finished coping src root, we must COW the shared
1443 * block to ensure the metadata consistency.
1444 */
5d4f98a2
YZ
1445 if (btrfs_header_generation(buf) == trans->transid &&
1446 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1447 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1448 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1449 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1450 return 0;
1451 return 1;
1452}
1453
d352ac68
CM
1454/*
1455 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1456 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1457 * once per transaction, as long as it hasn't been written yet
1458 */
d397712b 1459noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1460 struct btrfs_root *root, struct extent_buffer *buf,
1461 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1462 struct extent_buffer **cow_ret)
6702ed49 1463{
0b246afa 1464 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1465 u64 search_start;
f510cfec 1466 int ret;
dc17ff8f 1467
0b246afa 1468 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1469 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1470 trans->transid,
0b246afa 1471 fs_info->running_transaction->transid);
31b1a2bd 1472
0b246afa 1473 if (trans->transid != fs_info->generation)
31b1a2bd 1474 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1475 trans->transid, fs_info->generation);
dc17ff8f 1476
5d4f98a2 1477 if (!should_cow_block(trans, root, buf)) {
64c12921 1478 trans->dirty = true;
6702ed49
CM
1479 *cow_ret = buf;
1480 return 0;
1481 }
c487685d 1482
ee22184b 1483 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1484
1485 if (parent)
1486 btrfs_set_lock_blocking(parent);
1487 btrfs_set_lock_blocking(buf);
1488
f510cfec 1489 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1490 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1491
1492 trace_btrfs_cow_block(root, buf, *cow_ret);
1493
f510cfec 1494 return ret;
6702ed49
CM
1495}
1496
d352ac68
CM
1497/*
1498 * helper function for defrag to decide if two blocks pointed to by a
1499 * node are actually close by
1500 */
6b80053d 1501static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1502{
6b80053d 1503 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1504 return 1;
6b80053d 1505 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1506 return 1;
1507 return 0;
1508}
1509
081e9573
CM
1510/*
1511 * compare two keys in a memcmp fashion
1512 */
310712b2
OS
1513static int comp_keys(const struct btrfs_disk_key *disk,
1514 const struct btrfs_key *k2)
081e9573
CM
1515{
1516 struct btrfs_key k1;
1517
1518 btrfs_disk_key_to_cpu(&k1, disk);
1519
20736aba 1520 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1521}
1522
f3465ca4
JB
1523/*
1524 * same as comp_keys only with two btrfs_key's
1525 */
310712b2 1526int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1527{
1528 if (k1->objectid > k2->objectid)
1529 return 1;
1530 if (k1->objectid < k2->objectid)
1531 return -1;
1532 if (k1->type > k2->type)
1533 return 1;
1534 if (k1->type < k2->type)
1535 return -1;
1536 if (k1->offset > k2->offset)
1537 return 1;
1538 if (k1->offset < k2->offset)
1539 return -1;
1540 return 0;
1541}
081e9573 1542
d352ac68
CM
1543/*
1544 * this is used by the defrag code to go through all the
1545 * leaves pointed to by a node and reallocate them so that
1546 * disk order is close to key order
1547 */
6702ed49 1548int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1549 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1550 int start_slot, u64 *last_ret,
a6b6e75e 1551 struct btrfs_key *progress)
6702ed49 1552{
0b246afa 1553 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1554 struct extent_buffer *cur;
6702ed49 1555 u64 blocknr;
ca7a79ad 1556 u64 gen;
e9d0b13b
CM
1557 u64 search_start = *last_ret;
1558 u64 last_block = 0;
6702ed49
CM
1559 u64 other;
1560 u32 parent_nritems;
6702ed49
CM
1561 int end_slot;
1562 int i;
1563 int err = 0;
f2183bde 1564 int parent_level;
6b80053d
CM
1565 int uptodate;
1566 u32 blocksize;
081e9573
CM
1567 int progress_passed = 0;
1568 struct btrfs_disk_key disk_key;
6702ed49 1569
5708b959 1570 parent_level = btrfs_header_level(parent);
5708b959 1571
0b246afa
JM
1572 WARN_ON(trans->transaction != fs_info->running_transaction);
1573 WARN_ON(trans->transid != fs_info->generation);
86479a04 1574
6b80053d 1575 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1576 blocksize = fs_info->nodesize;
5dfe2be7 1577 end_slot = parent_nritems - 1;
6702ed49 1578
5dfe2be7 1579 if (parent_nritems <= 1)
6702ed49
CM
1580 return 0;
1581
b4ce94de
CM
1582 btrfs_set_lock_blocking(parent);
1583
5dfe2be7 1584 for (i = start_slot; i <= end_slot; i++) {
581c1760 1585 struct btrfs_key first_key;
6702ed49 1586 int close = 1;
a6b6e75e 1587
081e9573
CM
1588 btrfs_node_key(parent, &disk_key, i);
1589 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1590 continue;
1591
1592 progress_passed = 1;
6b80053d 1593 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1594 gen = btrfs_node_ptr_generation(parent, i);
581c1760 1595 btrfs_node_key_to_cpu(parent, &first_key, i);
e9d0b13b
CM
1596 if (last_block == 0)
1597 last_block = blocknr;
5708b959 1598
6702ed49 1599 if (i > 0) {
6b80053d
CM
1600 other = btrfs_node_blockptr(parent, i - 1);
1601 close = close_blocks(blocknr, other, blocksize);
6702ed49 1602 }
5dfe2be7 1603 if (!close && i < end_slot) {
6b80053d
CM
1604 other = btrfs_node_blockptr(parent, i + 1);
1605 close = close_blocks(blocknr, other, blocksize);
6702ed49 1606 }
e9d0b13b
CM
1607 if (close) {
1608 last_block = blocknr;
6702ed49 1609 continue;
e9d0b13b 1610 }
6702ed49 1611
0b246afa 1612 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1613 if (cur)
b9fab919 1614 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1615 else
1616 uptodate = 0;
5708b959 1617 if (!cur || !uptodate) {
6b80053d 1618 if (!cur) {
581c1760
QW
1619 cur = read_tree_block(fs_info, blocknr, gen,
1620 parent_level - 1,
1621 &first_key);
64c043de
LB
1622 if (IS_ERR(cur)) {
1623 return PTR_ERR(cur);
1624 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1625 free_extent_buffer(cur);
97d9a8a4 1626 return -EIO;
416bc658 1627 }
6b80053d 1628 } else if (!uptodate) {
581c1760
QW
1629 err = btrfs_read_buffer(cur, gen,
1630 parent_level - 1,&first_key);
018642a1
TI
1631 if (err) {
1632 free_extent_buffer(cur);
1633 return err;
1634 }
f2183bde 1635 }
6702ed49 1636 }
e9d0b13b 1637 if (search_start == 0)
6b80053d 1638 search_start = last_block;
e9d0b13b 1639
e7a84565 1640 btrfs_tree_lock(cur);
b4ce94de 1641 btrfs_set_lock_blocking(cur);
6b80053d 1642 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1643 &cur, search_start,
6b80053d 1644 min(16 * blocksize,
9fa8cfe7 1645 (end_slot - i) * blocksize));
252c38f0 1646 if (err) {
e7a84565 1647 btrfs_tree_unlock(cur);
6b80053d 1648 free_extent_buffer(cur);
6702ed49 1649 break;
252c38f0 1650 }
e7a84565
CM
1651 search_start = cur->start;
1652 last_block = cur->start;
f2183bde 1653 *last_ret = search_start;
e7a84565
CM
1654 btrfs_tree_unlock(cur);
1655 free_extent_buffer(cur);
6702ed49
CM
1656 }
1657 return err;
1658}
1659
74123bd7 1660/*
5f39d397
CM
1661 * search for key in the extent_buffer. The items start at offset p,
1662 * and they are item_size apart. There are 'max' items in p.
1663 *
74123bd7
CM
1664 * the slot in the array is returned via slot, and it points to
1665 * the place where you would insert key if it is not found in
1666 * the array.
1667 *
1668 * slot may point to max if the key is bigger than all of the keys
1669 */
e02119d5 1670static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1671 unsigned long p, int item_size,
1672 const struct btrfs_key *key,
e02119d5 1673 int max, int *slot)
be0e5c09
CM
1674{
1675 int low = 0;
1676 int high = max;
1677 int mid;
1678 int ret;
479965d6 1679 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1680 struct btrfs_disk_key unaligned;
1681 unsigned long offset;
5f39d397
CM
1682 char *kaddr = NULL;
1683 unsigned long map_start = 0;
1684 unsigned long map_len = 0;
479965d6 1685 int err;
be0e5c09 1686
5e24e9af
LB
1687 if (low > high) {
1688 btrfs_err(eb->fs_info,
1689 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1690 __func__, low, high, eb->start,
1691 btrfs_header_owner(eb), btrfs_header_level(eb));
1692 return -EINVAL;
1693 }
1694
d397712b 1695 while (low < high) {
be0e5c09 1696 mid = (low + high) / 2;
5f39d397
CM
1697 offset = p + mid * item_size;
1698
a6591715 1699 if (!kaddr || offset < map_start ||
5f39d397
CM
1700 (offset + sizeof(struct btrfs_disk_key)) >
1701 map_start + map_len) {
934d375b
CM
1702
1703 err = map_private_extent_buffer(eb, offset,
479965d6 1704 sizeof(struct btrfs_disk_key),
a6591715 1705 &kaddr, &map_start, &map_len);
479965d6
CM
1706
1707 if (!err) {
1708 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1709 map_start);
415b35a5 1710 } else if (err == 1) {
479965d6
CM
1711 read_extent_buffer(eb, &unaligned,
1712 offset, sizeof(unaligned));
1713 tmp = &unaligned;
415b35a5
LB
1714 } else {
1715 return err;
479965d6 1716 }
5f39d397 1717
5f39d397
CM
1718 } else {
1719 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1720 map_start);
1721 }
be0e5c09
CM
1722 ret = comp_keys(tmp, key);
1723
1724 if (ret < 0)
1725 low = mid + 1;
1726 else if (ret > 0)
1727 high = mid;
1728 else {
1729 *slot = mid;
1730 return 0;
1731 }
1732 }
1733 *slot = low;
1734 return 1;
1735}
1736
97571fd0
CM
1737/*
1738 * simple bin_search frontend that does the right thing for
1739 * leaves vs nodes
1740 */
a74b35ec
NB
1741int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1742 int level, int *slot)
be0e5c09 1743{
f775738f 1744 if (level == 0)
5f39d397
CM
1745 return generic_bin_search(eb,
1746 offsetof(struct btrfs_leaf, items),
0783fcfc 1747 sizeof(struct btrfs_item),
5f39d397 1748 key, btrfs_header_nritems(eb),
7518a238 1749 slot);
f775738f 1750 else
5f39d397
CM
1751 return generic_bin_search(eb,
1752 offsetof(struct btrfs_node, ptrs),
123abc88 1753 sizeof(struct btrfs_key_ptr),
5f39d397 1754 key, btrfs_header_nritems(eb),
7518a238 1755 slot);
be0e5c09
CM
1756}
1757
f0486c68
YZ
1758static void root_add_used(struct btrfs_root *root, u32 size)
1759{
1760 spin_lock(&root->accounting_lock);
1761 btrfs_set_root_used(&root->root_item,
1762 btrfs_root_used(&root->root_item) + size);
1763 spin_unlock(&root->accounting_lock);
1764}
1765
1766static void root_sub_used(struct btrfs_root *root, u32 size)
1767{
1768 spin_lock(&root->accounting_lock);
1769 btrfs_set_root_used(&root->root_item,
1770 btrfs_root_used(&root->root_item) - size);
1771 spin_unlock(&root->accounting_lock);
1772}
1773
d352ac68
CM
1774/* given a node and slot number, this reads the blocks it points to. The
1775 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1776 */
2ff7e61e
JM
1777static noinline struct extent_buffer *
1778read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1779 int slot)
bb803951 1780{
ca7a79ad 1781 int level = btrfs_header_level(parent);
416bc658 1782 struct extent_buffer *eb;
581c1760 1783 struct btrfs_key first_key;
416bc658 1784
fb770ae4
LB
1785 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1786 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1787
1788 BUG_ON(level == 0);
1789
581c1760 1790 btrfs_node_key_to_cpu(parent, &first_key, slot);
2ff7e61e 1791 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
581c1760
QW
1792 btrfs_node_ptr_generation(parent, slot),
1793 level - 1, &first_key);
fb770ae4
LB
1794 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1795 free_extent_buffer(eb);
1796 eb = ERR_PTR(-EIO);
416bc658
JB
1797 }
1798
1799 return eb;
bb803951
CM
1800}
1801
d352ac68
CM
1802/*
1803 * node level balancing, used to make sure nodes are in proper order for
1804 * item deletion. We balance from the top down, so we have to make sure
1805 * that a deletion won't leave an node completely empty later on.
1806 */
e02119d5 1807static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1808 struct btrfs_root *root,
1809 struct btrfs_path *path, int level)
bb803951 1810{
0b246afa 1811 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1812 struct extent_buffer *right = NULL;
1813 struct extent_buffer *mid;
1814 struct extent_buffer *left = NULL;
1815 struct extent_buffer *parent = NULL;
bb803951
CM
1816 int ret = 0;
1817 int wret;
1818 int pslot;
bb803951 1819 int orig_slot = path->slots[level];
79f95c82 1820 u64 orig_ptr;
bb803951
CM
1821
1822 if (level == 0)
1823 return 0;
1824
5f39d397 1825 mid = path->nodes[level];
b4ce94de 1826
bd681513
CM
1827 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1828 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1829 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1830
1d4f8a0c 1831 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1832
a05a9bb1 1833 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1834 parent = path->nodes[level + 1];
a05a9bb1
LZ
1835 pslot = path->slots[level + 1];
1836 }
bb803951 1837
40689478
CM
1838 /*
1839 * deal with the case where there is only one pointer in the root
1840 * by promoting the node below to a root
1841 */
5f39d397
CM
1842 if (!parent) {
1843 struct extent_buffer *child;
bb803951 1844
5f39d397 1845 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1846 return 0;
1847
1848 /* promote the child to a root */
2ff7e61e 1849 child = read_node_slot(fs_info, mid, 0);
fb770ae4
LB
1850 if (IS_ERR(child)) {
1851 ret = PTR_ERR(child);
0b246afa 1852 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1853 goto enospc;
1854 }
1855
925baedd 1856 btrfs_tree_lock(child);
b4ce94de 1857 btrfs_set_lock_blocking(child);
9fa8cfe7 1858 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1859 if (ret) {
1860 btrfs_tree_unlock(child);
1861 free_extent_buffer(child);
1862 goto enospc;
1863 }
2f375ab9 1864
d9d19a01
DS
1865 ret = tree_mod_log_insert_root(root->node, child, 1);
1866 BUG_ON(ret < 0);
240f62c8 1867 rcu_assign_pointer(root->node, child);
925baedd 1868
0b86a832 1869 add_root_to_dirty_list(root);
925baedd 1870 btrfs_tree_unlock(child);
b4ce94de 1871
925baedd 1872 path->locks[level] = 0;
bb803951 1873 path->nodes[level] = NULL;
7c302b49 1874 clean_tree_block(fs_info, mid);
925baedd 1875 btrfs_tree_unlock(mid);
bb803951 1876 /* once for the path */
5f39d397 1877 free_extent_buffer(mid);
f0486c68
YZ
1878
1879 root_sub_used(root, mid->len);
5581a51a 1880 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1881 /* once for the root ptr */
3083ee2e 1882 free_extent_buffer_stale(mid);
f0486c68 1883 return 0;
bb803951 1884 }
5f39d397 1885 if (btrfs_header_nritems(mid) >
0b246afa 1886 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1887 return 0;
1888
2ff7e61e 1889 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
1890 if (IS_ERR(left))
1891 left = NULL;
1892
5f39d397 1893 if (left) {
925baedd 1894 btrfs_tree_lock(left);
b4ce94de 1895 btrfs_set_lock_blocking(left);
5f39d397 1896 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1897 parent, pslot - 1, &left);
54aa1f4d
CM
1898 if (wret) {
1899 ret = wret;
1900 goto enospc;
1901 }
2cc58cf2 1902 }
fb770ae4 1903
2ff7e61e 1904 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
1905 if (IS_ERR(right))
1906 right = NULL;
1907
5f39d397 1908 if (right) {
925baedd 1909 btrfs_tree_lock(right);
b4ce94de 1910 btrfs_set_lock_blocking(right);
5f39d397 1911 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1912 parent, pslot + 1, &right);
2cc58cf2
CM
1913 if (wret) {
1914 ret = wret;
1915 goto enospc;
1916 }
1917 }
1918
1919 /* first, try to make some room in the middle buffer */
5f39d397
CM
1920 if (left) {
1921 orig_slot += btrfs_header_nritems(left);
2ff7e61e 1922 wret = push_node_left(trans, fs_info, left, mid, 1);
79f95c82
CM
1923 if (wret < 0)
1924 ret = wret;
bb803951 1925 }
79f95c82
CM
1926
1927 /*
1928 * then try to empty the right most buffer into the middle
1929 */
5f39d397 1930 if (right) {
2ff7e61e 1931 wret = push_node_left(trans, fs_info, mid, right, 1);
54aa1f4d 1932 if (wret < 0 && wret != -ENOSPC)
79f95c82 1933 ret = wret;
5f39d397 1934 if (btrfs_header_nritems(right) == 0) {
7c302b49 1935 clean_tree_block(fs_info, right);
925baedd 1936 btrfs_tree_unlock(right);
afe5fea7 1937 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 1938 root_sub_used(root, right->len);
5581a51a 1939 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1940 free_extent_buffer_stale(right);
f0486c68 1941 right = NULL;
bb803951 1942 } else {
5f39d397
CM
1943 struct btrfs_disk_key right_key;
1944 btrfs_node_key(right, &right_key, 0);
0e82bcfe
DS
1945 ret = tree_mod_log_insert_key(parent, pslot + 1,
1946 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1947 BUG_ON(ret < 0);
5f39d397
CM
1948 btrfs_set_node_key(parent, &right_key, pslot + 1);
1949 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1950 }
1951 }
5f39d397 1952 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1953 /*
1954 * we're not allowed to leave a node with one item in the
1955 * tree during a delete. A deletion from lower in the tree
1956 * could try to delete the only pointer in this node.
1957 * So, pull some keys from the left.
1958 * There has to be a left pointer at this point because
1959 * otherwise we would have pulled some pointers from the
1960 * right
1961 */
305a26af
MF
1962 if (!left) {
1963 ret = -EROFS;
0b246afa 1964 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1965 goto enospc;
1966 }
2ff7e61e 1967 wret = balance_node_right(trans, fs_info, mid, left);
54aa1f4d 1968 if (wret < 0) {
79f95c82 1969 ret = wret;
54aa1f4d
CM
1970 goto enospc;
1971 }
bce4eae9 1972 if (wret == 1) {
2ff7e61e 1973 wret = push_node_left(trans, fs_info, left, mid, 1);
bce4eae9
CM
1974 if (wret < 0)
1975 ret = wret;
1976 }
79f95c82
CM
1977 BUG_ON(wret == 1);
1978 }
5f39d397 1979 if (btrfs_header_nritems(mid) == 0) {
7c302b49 1980 clean_tree_block(fs_info, mid);
925baedd 1981 btrfs_tree_unlock(mid);
afe5fea7 1982 del_ptr(root, path, level + 1, pslot);
f0486c68 1983 root_sub_used(root, mid->len);
5581a51a 1984 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 1985 free_extent_buffer_stale(mid);
f0486c68 1986 mid = NULL;
79f95c82
CM
1987 } else {
1988 /* update the parent key to reflect our changes */
5f39d397
CM
1989 struct btrfs_disk_key mid_key;
1990 btrfs_node_key(mid, &mid_key, 0);
0e82bcfe
DS
1991 ret = tree_mod_log_insert_key(parent, pslot,
1992 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1993 BUG_ON(ret < 0);
5f39d397
CM
1994 btrfs_set_node_key(parent, &mid_key, pslot);
1995 btrfs_mark_buffer_dirty(parent);
79f95c82 1996 }
bb803951 1997
79f95c82 1998 /* update the path */
5f39d397
CM
1999 if (left) {
2000 if (btrfs_header_nritems(left) > orig_slot) {
2001 extent_buffer_get(left);
925baedd 2002 /* left was locked after cow */
5f39d397 2003 path->nodes[level] = left;
bb803951
CM
2004 path->slots[level + 1] -= 1;
2005 path->slots[level] = orig_slot;
925baedd
CM
2006 if (mid) {
2007 btrfs_tree_unlock(mid);
5f39d397 2008 free_extent_buffer(mid);
925baedd 2009 }
bb803951 2010 } else {
5f39d397 2011 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2012 path->slots[level] = orig_slot;
2013 }
2014 }
79f95c82 2015 /* double check we haven't messed things up */
e20d96d6 2016 if (orig_ptr !=
5f39d397 2017 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2018 BUG();
54aa1f4d 2019enospc:
925baedd
CM
2020 if (right) {
2021 btrfs_tree_unlock(right);
5f39d397 2022 free_extent_buffer(right);
925baedd
CM
2023 }
2024 if (left) {
2025 if (path->nodes[level] != left)
2026 btrfs_tree_unlock(left);
5f39d397 2027 free_extent_buffer(left);
925baedd 2028 }
bb803951
CM
2029 return ret;
2030}
2031
d352ac68
CM
2032/* Node balancing for insertion. Here we only split or push nodes around
2033 * when they are completely full. This is also done top down, so we
2034 * have to be pessimistic.
2035 */
d397712b 2036static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2037 struct btrfs_root *root,
2038 struct btrfs_path *path, int level)
e66f709b 2039{
0b246afa 2040 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2041 struct extent_buffer *right = NULL;
2042 struct extent_buffer *mid;
2043 struct extent_buffer *left = NULL;
2044 struct extent_buffer *parent = NULL;
e66f709b
CM
2045 int ret = 0;
2046 int wret;
2047 int pslot;
2048 int orig_slot = path->slots[level];
e66f709b
CM
2049
2050 if (level == 0)
2051 return 1;
2052
5f39d397 2053 mid = path->nodes[level];
7bb86316 2054 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2055
a05a9bb1 2056 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2057 parent = path->nodes[level + 1];
a05a9bb1
LZ
2058 pslot = path->slots[level + 1];
2059 }
e66f709b 2060
5f39d397 2061 if (!parent)
e66f709b 2062 return 1;
e66f709b 2063
2ff7e61e 2064 left = read_node_slot(fs_info, parent, pslot - 1);
fb770ae4
LB
2065 if (IS_ERR(left))
2066 left = NULL;
e66f709b
CM
2067
2068 /* first, try to make some room in the middle buffer */
5f39d397 2069 if (left) {
e66f709b 2070 u32 left_nr;
925baedd
CM
2071
2072 btrfs_tree_lock(left);
b4ce94de
CM
2073 btrfs_set_lock_blocking(left);
2074
5f39d397 2075 left_nr = btrfs_header_nritems(left);
0b246afa 2076 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2077 wret = 1;
2078 } else {
5f39d397 2079 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2080 pslot - 1, &left);
54aa1f4d
CM
2081 if (ret)
2082 wret = 1;
2083 else {
2ff7e61e 2084 wret = push_node_left(trans, fs_info,
971a1f66 2085 left, mid, 0);
54aa1f4d 2086 }
33ade1f8 2087 }
e66f709b
CM
2088 if (wret < 0)
2089 ret = wret;
2090 if (wret == 0) {
5f39d397 2091 struct btrfs_disk_key disk_key;
e66f709b 2092 orig_slot += left_nr;
5f39d397 2093 btrfs_node_key(mid, &disk_key, 0);
0e82bcfe
DS
2094 ret = tree_mod_log_insert_key(parent, pslot,
2095 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2096 BUG_ON(ret < 0);
5f39d397
CM
2097 btrfs_set_node_key(parent, &disk_key, pslot);
2098 btrfs_mark_buffer_dirty(parent);
2099 if (btrfs_header_nritems(left) > orig_slot) {
2100 path->nodes[level] = left;
e66f709b
CM
2101 path->slots[level + 1] -= 1;
2102 path->slots[level] = orig_slot;
925baedd 2103 btrfs_tree_unlock(mid);
5f39d397 2104 free_extent_buffer(mid);
e66f709b
CM
2105 } else {
2106 orig_slot -=
5f39d397 2107 btrfs_header_nritems(left);
e66f709b 2108 path->slots[level] = orig_slot;
925baedd 2109 btrfs_tree_unlock(left);
5f39d397 2110 free_extent_buffer(left);
e66f709b 2111 }
e66f709b
CM
2112 return 0;
2113 }
925baedd 2114 btrfs_tree_unlock(left);
5f39d397 2115 free_extent_buffer(left);
e66f709b 2116 }
2ff7e61e 2117 right = read_node_slot(fs_info, parent, pslot + 1);
fb770ae4
LB
2118 if (IS_ERR(right))
2119 right = NULL;
e66f709b
CM
2120
2121 /*
2122 * then try to empty the right most buffer into the middle
2123 */
5f39d397 2124 if (right) {
33ade1f8 2125 u32 right_nr;
b4ce94de 2126
925baedd 2127 btrfs_tree_lock(right);
b4ce94de
CM
2128 btrfs_set_lock_blocking(right);
2129
5f39d397 2130 right_nr = btrfs_header_nritems(right);
0b246afa 2131 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2132 wret = 1;
2133 } else {
5f39d397
CM
2134 ret = btrfs_cow_block(trans, root, right,
2135 parent, pslot + 1,
9fa8cfe7 2136 &right);
54aa1f4d
CM
2137 if (ret)
2138 wret = 1;
2139 else {
2ff7e61e 2140 wret = balance_node_right(trans, fs_info,
5f39d397 2141 right, mid);
54aa1f4d 2142 }
33ade1f8 2143 }
e66f709b
CM
2144 if (wret < 0)
2145 ret = wret;
2146 if (wret == 0) {
5f39d397
CM
2147 struct btrfs_disk_key disk_key;
2148
2149 btrfs_node_key(right, &disk_key, 0);
0e82bcfe
DS
2150 ret = tree_mod_log_insert_key(parent, pslot + 1,
2151 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2152 BUG_ON(ret < 0);
5f39d397
CM
2153 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2154 btrfs_mark_buffer_dirty(parent);
2155
2156 if (btrfs_header_nritems(mid) <= orig_slot) {
2157 path->nodes[level] = right;
e66f709b
CM
2158 path->slots[level + 1] += 1;
2159 path->slots[level] = orig_slot -
5f39d397 2160 btrfs_header_nritems(mid);
925baedd 2161 btrfs_tree_unlock(mid);
5f39d397 2162 free_extent_buffer(mid);
e66f709b 2163 } else {
925baedd 2164 btrfs_tree_unlock(right);
5f39d397 2165 free_extent_buffer(right);
e66f709b 2166 }
e66f709b
CM
2167 return 0;
2168 }
925baedd 2169 btrfs_tree_unlock(right);
5f39d397 2170 free_extent_buffer(right);
e66f709b 2171 }
e66f709b
CM
2172 return 1;
2173}
2174
3c69faec 2175/*
d352ac68
CM
2176 * readahead one full node of leaves, finding things that are close
2177 * to the block in 'slot', and triggering ra on them.
3c69faec 2178 */
2ff7e61e 2179static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2180 struct btrfs_path *path,
2181 int level, int slot, u64 objectid)
3c69faec 2182{
5f39d397 2183 struct extent_buffer *node;
01f46658 2184 struct btrfs_disk_key disk_key;
3c69faec 2185 u32 nritems;
3c69faec 2186 u64 search;
a7175319 2187 u64 target;
6b80053d 2188 u64 nread = 0;
5f39d397 2189 struct extent_buffer *eb;
6b80053d
CM
2190 u32 nr;
2191 u32 blocksize;
2192 u32 nscan = 0;
db94535d 2193
a6b6e75e 2194 if (level != 1)
6702ed49
CM
2195 return;
2196
2197 if (!path->nodes[level])
3c69faec
CM
2198 return;
2199
5f39d397 2200 node = path->nodes[level];
925baedd 2201
3c69faec 2202 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2203 blocksize = fs_info->nodesize;
2204 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2205 if (eb) {
2206 free_extent_buffer(eb);
3c69faec
CM
2207 return;
2208 }
2209
a7175319 2210 target = search;
6b80053d 2211
5f39d397 2212 nritems = btrfs_header_nritems(node);
6b80053d 2213 nr = slot;
25b8b936 2214
d397712b 2215 while (1) {
e4058b54 2216 if (path->reada == READA_BACK) {
6b80053d
CM
2217 if (nr == 0)
2218 break;
2219 nr--;
e4058b54 2220 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2221 nr++;
2222 if (nr >= nritems)
2223 break;
3c69faec 2224 }
e4058b54 2225 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2226 btrfs_node_key(node, &disk_key, nr);
2227 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2228 break;
2229 }
6b80053d 2230 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2231 if ((search <= target && target - search <= 65536) ||
2232 (search > target && search - target <= 65536)) {
2ff7e61e 2233 readahead_tree_block(fs_info, search);
6b80053d
CM
2234 nread += blocksize;
2235 }
2236 nscan++;
a7175319 2237 if ((nread > 65536 || nscan > 32))
6b80053d 2238 break;
3c69faec
CM
2239 }
2240}
925baedd 2241
2ff7e61e 2242static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2243 struct btrfs_path *path, int level)
b4ce94de
CM
2244{
2245 int slot;
2246 int nritems;
2247 struct extent_buffer *parent;
2248 struct extent_buffer *eb;
2249 u64 gen;
2250 u64 block1 = 0;
2251 u64 block2 = 0;
b4ce94de 2252
8c594ea8 2253 parent = path->nodes[level + 1];
b4ce94de 2254 if (!parent)
0b08851f 2255 return;
b4ce94de
CM
2256
2257 nritems = btrfs_header_nritems(parent);
8c594ea8 2258 slot = path->slots[level + 1];
b4ce94de
CM
2259
2260 if (slot > 0) {
2261 block1 = btrfs_node_blockptr(parent, slot - 1);
2262 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2263 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2264 /*
2265 * if we get -eagain from btrfs_buffer_uptodate, we
2266 * don't want to return eagain here. That will loop
2267 * forever
2268 */
2269 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2270 block1 = 0;
2271 free_extent_buffer(eb);
2272 }
8c594ea8 2273 if (slot + 1 < nritems) {
b4ce94de
CM
2274 block2 = btrfs_node_blockptr(parent, slot + 1);
2275 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2276 eb = find_extent_buffer(fs_info, block2);
b9fab919 2277 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2278 block2 = 0;
2279 free_extent_buffer(eb);
2280 }
8c594ea8 2281
0b08851f 2282 if (block1)
2ff7e61e 2283 readahead_tree_block(fs_info, block1);
0b08851f 2284 if (block2)
2ff7e61e 2285 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2286}
2287
2288
d352ac68 2289/*
d397712b
CM
2290 * when we walk down the tree, it is usually safe to unlock the higher layers
2291 * in the tree. The exceptions are when our path goes through slot 0, because
2292 * operations on the tree might require changing key pointers higher up in the
2293 * tree.
d352ac68 2294 *
d397712b
CM
2295 * callers might also have set path->keep_locks, which tells this code to keep
2296 * the lock if the path points to the last slot in the block. This is part of
2297 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2298 *
d397712b
CM
2299 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2300 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2301 */
e02119d5 2302static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2303 int lowest_unlock, int min_write_lock_level,
2304 int *write_lock_level)
925baedd
CM
2305{
2306 int i;
2307 int skip_level = level;
051e1b9f 2308 int no_skips = 0;
925baedd
CM
2309 struct extent_buffer *t;
2310
2311 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2312 if (!path->nodes[i])
2313 break;
2314 if (!path->locks[i])
2315 break;
051e1b9f 2316 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2317 skip_level = i + 1;
2318 continue;
2319 }
051e1b9f 2320 if (!no_skips && path->keep_locks) {
925baedd
CM
2321 u32 nritems;
2322 t = path->nodes[i];
2323 nritems = btrfs_header_nritems(t);
051e1b9f 2324 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2325 skip_level = i + 1;
2326 continue;
2327 }
2328 }
051e1b9f
CM
2329 if (skip_level < i && i >= lowest_unlock)
2330 no_skips = 1;
2331
925baedd 2332 t = path->nodes[i];
d80bb3f9 2333 if (i >= lowest_unlock && i > skip_level) {
bd681513 2334 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2335 path->locks[i] = 0;
f7c79f30
CM
2336 if (write_lock_level &&
2337 i > min_write_lock_level &&
2338 i <= *write_lock_level) {
2339 *write_lock_level = i - 1;
2340 }
925baedd
CM
2341 }
2342 }
2343}
2344
b4ce94de
CM
2345/*
2346 * This releases any locks held in the path starting at level and
2347 * going all the way up to the root.
2348 *
2349 * btrfs_search_slot will keep the lock held on higher nodes in a few
2350 * corner cases, such as COW of the block at slot zero in the node. This
2351 * ignores those rules, and it should only be called when there are no
2352 * more updates to be done higher up in the tree.
2353 */
2354noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2355{
2356 int i;
2357
09a2a8f9 2358 if (path->keep_locks)
b4ce94de
CM
2359 return;
2360
2361 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2362 if (!path->nodes[i])
12f4dacc 2363 continue;
b4ce94de 2364 if (!path->locks[i])
12f4dacc 2365 continue;
bd681513 2366 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2367 path->locks[i] = 0;
2368 }
2369}
2370
c8c42864
CM
2371/*
2372 * helper function for btrfs_search_slot. The goal is to find a block
2373 * in cache without setting the path to blocking. If we find the block
2374 * we return zero and the path is unchanged.
2375 *
2376 * If we can't find the block, we set the path blocking and do some
2377 * reada. -EAGAIN is returned and the search must be repeated.
2378 */
2379static int
d07b8528
LB
2380read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2381 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2382 const struct btrfs_key *key)
c8c42864 2383{
0b246afa 2384 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2385 u64 blocknr;
2386 u64 gen;
c8c42864
CM
2387 struct extent_buffer *b = *eb_ret;
2388 struct extent_buffer *tmp;
581c1760 2389 struct btrfs_key first_key;
76a05b35 2390 int ret;
581c1760 2391 int parent_level;
c8c42864
CM
2392
2393 blocknr = btrfs_node_blockptr(b, slot);
2394 gen = btrfs_node_ptr_generation(b, slot);
581c1760
QW
2395 parent_level = btrfs_header_level(b);
2396 btrfs_node_key_to_cpu(b, &first_key, slot);
c8c42864 2397
0b246afa 2398 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2399 if (tmp) {
b9fab919 2400 /* first we do an atomic uptodate check */
bdf7c00e
JB
2401 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2402 *eb_ret = tmp;
2403 return 0;
2404 }
2405
2406 /* the pages were up to date, but we failed
2407 * the generation number check. Do a full
2408 * read for the generation number that is correct.
2409 * We must do this without dropping locks so
2410 * we can trust our generation number
2411 */
2412 btrfs_set_path_blocking(p);
2413
2414 /* now we're allowed to do a blocking uptodate check */
581c1760 2415 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
bdf7c00e
JB
2416 if (!ret) {
2417 *eb_ret = tmp;
2418 return 0;
cb44921a 2419 }
bdf7c00e
JB
2420 free_extent_buffer(tmp);
2421 btrfs_release_path(p);
2422 return -EIO;
c8c42864
CM
2423 }
2424
2425 /*
2426 * reduce lock contention at high levels
2427 * of the btree by dropping locks before
76a05b35
CM
2428 * we read. Don't release the lock on the current
2429 * level because we need to walk this node to figure
2430 * out which blocks to read.
c8c42864 2431 */
8c594ea8
CM
2432 btrfs_unlock_up_safe(p, level + 1);
2433 btrfs_set_path_blocking(p);
2434
e4058b54 2435 if (p->reada != READA_NONE)
2ff7e61e 2436 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2437
76a05b35 2438 ret = -EAGAIN;
02a3307a 2439 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
581c1760 2440 &first_key);
64c043de 2441 if (!IS_ERR(tmp)) {
76a05b35
CM
2442 /*
2443 * If the read above didn't mark this buffer up to date,
2444 * it will never end up being up to date. Set ret to EIO now
2445 * and give up so that our caller doesn't loop forever
2446 * on our EAGAINs.
2447 */
e6a1d6fd 2448 if (!extent_buffer_uptodate(tmp))
76a05b35 2449 ret = -EIO;
c8c42864 2450 free_extent_buffer(tmp);
c871b0f2
LB
2451 } else {
2452 ret = PTR_ERR(tmp);
76a05b35 2453 }
02a3307a
LB
2454
2455 btrfs_release_path(p);
76a05b35 2456 return ret;
c8c42864
CM
2457}
2458
2459/*
2460 * helper function for btrfs_search_slot. This does all of the checks
2461 * for node-level blocks and does any balancing required based on
2462 * the ins_len.
2463 *
2464 * If no extra work was required, zero is returned. If we had to
2465 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2466 * start over
2467 */
2468static int
2469setup_nodes_for_search(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2471 struct extent_buffer *b, int level, int ins_len,
2472 int *write_lock_level)
c8c42864 2473{
0b246afa 2474 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2475 int ret;
0b246afa 2476
c8c42864 2477 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2478 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2479 int sret;
2480
bd681513
CM
2481 if (*write_lock_level < level + 1) {
2482 *write_lock_level = level + 1;
2483 btrfs_release_path(p);
2484 goto again;
2485 }
2486
c8c42864 2487 btrfs_set_path_blocking(p);
2ff7e61e 2488 reada_for_balance(fs_info, p, level);
c8c42864 2489 sret = split_node(trans, root, p, level);
bd681513 2490 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2491
2492 BUG_ON(sret > 0);
2493 if (sret) {
2494 ret = sret;
2495 goto done;
2496 }
2497 b = p->nodes[level];
2498 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2499 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2500 int sret;
2501
bd681513
CM
2502 if (*write_lock_level < level + 1) {
2503 *write_lock_level = level + 1;
2504 btrfs_release_path(p);
2505 goto again;
2506 }
2507
c8c42864 2508 btrfs_set_path_blocking(p);
2ff7e61e 2509 reada_for_balance(fs_info, p, level);
c8c42864 2510 sret = balance_level(trans, root, p, level);
bd681513 2511 btrfs_clear_path_blocking(p, NULL, 0);
c8c42864
CM
2512
2513 if (sret) {
2514 ret = sret;
2515 goto done;
2516 }
2517 b = p->nodes[level];
2518 if (!b) {
b3b4aa74 2519 btrfs_release_path(p);
c8c42864
CM
2520 goto again;
2521 }
2522 BUG_ON(btrfs_header_nritems(b) == 1);
2523 }
2524 return 0;
2525
2526again:
2527 ret = -EAGAIN;
2528done:
2529 return ret;
2530}
2531
d7396f07 2532static void key_search_validate(struct extent_buffer *b,
310712b2 2533 const struct btrfs_key *key,
d7396f07
FDBM
2534 int level)
2535{
2536#ifdef CONFIG_BTRFS_ASSERT
2537 struct btrfs_disk_key disk_key;
2538
2539 btrfs_cpu_key_to_disk(&disk_key, key);
2540
2541 if (level == 0)
2542 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2543 offsetof(struct btrfs_leaf, items[0].key),
2544 sizeof(disk_key)));
2545 else
2546 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2547 offsetof(struct btrfs_node, ptrs[0].key),
2548 sizeof(disk_key)));
2549#endif
2550}
2551
310712b2 2552static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2553 int level, int *prev_cmp, int *slot)
2554{
2555 if (*prev_cmp != 0) {
a74b35ec 2556 *prev_cmp = btrfs_bin_search(b, key, level, slot);
d7396f07
FDBM
2557 return *prev_cmp;
2558 }
2559
2560 key_search_validate(b, key, level);
2561 *slot = 0;
2562
2563 return 0;
2564}
2565
381cf658 2566int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2567 u64 iobjectid, u64 ioff, u8 key_type,
2568 struct btrfs_key *found_key)
2569{
2570 int ret;
2571 struct btrfs_key key;
2572 struct extent_buffer *eb;
381cf658
DS
2573
2574 ASSERT(path);
1d4c08e0 2575 ASSERT(found_key);
e33d5c3d
KN
2576
2577 key.type = key_type;
2578 key.objectid = iobjectid;
2579 key.offset = ioff;
2580
2581 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2582 if (ret < 0)
e33d5c3d
KN
2583 return ret;
2584
2585 eb = path->nodes[0];
2586 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2587 ret = btrfs_next_leaf(fs_root, path);
2588 if (ret)
2589 return ret;
2590 eb = path->nodes[0];
2591 }
2592
2593 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2594 if (found_key->type != key.type ||
2595 found_key->objectid != key.objectid)
2596 return 1;
2597
2598 return 0;
2599}
2600
1fc28d8e
LB
2601static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2602 struct btrfs_path *p,
2603 int write_lock_level)
2604{
2605 struct btrfs_fs_info *fs_info = root->fs_info;
2606 struct extent_buffer *b;
2607 int root_lock;
2608 int level = 0;
2609
2610 /* We try very hard to do read locks on the root */
2611 root_lock = BTRFS_READ_LOCK;
2612
2613 if (p->search_commit_root) {
2614 /* The commit roots are read only so we always do read locks */
2615 if (p->need_commit_sem)
2616 down_read(&fs_info->commit_root_sem);
2617 b = root->commit_root;
2618 extent_buffer_get(b);
2619 level = btrfs_header_level(b);
2620 if (p->need_commit_sem)
2621 up_read(&fs_info->commit_root_sem);
2622 if (!p->skip_locking)
2623 btrfs_tree_read_lock(b);
2624
2625 goto out;
2626 }
2627
2628 if (p->skip_locking) {
2629 b = btrfs_root_node(root);
2630 level = btrfs_header_level(b);
2631 goto out;
2632 }
2633
2634 /*
662c653b
LB
2635 * If the level is set to maximum, we can skip trying to get the read
2636 * lock.
1fc28d8e 2637 */
662c653b
LB
2638 if (write_lock_level < BTRFS_MAX_LEVEL) {
2639 /*
2640 * We don't know the level of the root node until we actually
2641 * have it read locked
2642 */
2643 b = btrfs_read_lock_root_node(root);
2644 level = btrfs_header_level(b);
2645 if (level > write_lock_level)
2646 goto out;
2647
2648 /* Whoops, must trade for write lock */
2649 btrfs_tree_read_unlock(b);
2650 free_extent_buffer(b);
2651 }
1fc28d8e 2652
1fc28d8e
LB
2653 b = btrfs_lock_root_node(root);
2654 root_lock = BTRFS_WRITE_LOCK;
2655
2656 /* The level might have changed, check again */
2657 level = btrfs_header_level(b);
2658
2659out:
2660 p->nodes[level] = b;
2661 if (!p->skip_locking)
2662 p->locks[level] = root_lock;
2663 /*
2664 * Callers are responsible for dropping b's references.
2665 */
2666 return b;
2667}
2668
2669
74123bd7 2670/*
4271ecea
NB
2671 * btrfs_search_slot - look for a key in a tree and perform necessary
2672 * modifications to preserve tree invariants.
74123bd7 2673 *
4271ecea
NB
2674 * @trans: Handle of transaction, used when modifying the tree
2675 * @p: Holds all btree nodes along the search path
2676 * @root: The root node of the tree
2677 * @key: The key we are looking for
2678 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2679 * deletions it's -1. 0 for plain searches
2680 * @cow: boolean should CoW operations be performed. Must always be 1
2681 * when modifying the tree.
97571fd0 2682 *
4271ecea
NB
2683 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2684 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2685 *
2686 * If @key is found, 0 is returned and you can find the item in the leaf level
2687 * of the path (level 0)
2688 *
2689 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2690 * points to the slot where it should be inserted
2691 *
2692 * If an error is encountered while searching the tree a negative error number
2693 * is returned
74123bd7 2694 */
310712b2
OS
2695int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2696 const struct btrfs_key *key, struct btrfs_path *p,
2697 int ins_len, int cow)
be0e5c09 2698{
0b246afa 2699 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 2700 struct extent_buffer *b;
be0e5c09
CM
2701 int slot;
2702 int ret;
33c66f43 2703 int err;
be0e5c09 2704 int level;
925baedd 2705 int lowest_unlock = 1;
bd681513
CM
2706 /* everything at write_lock_level or lower must be write locked */
2707 int write_lock_level = 0;
9f3a7427 2708 u8 lowest_level = 0;
f7c79f30 2709 int min_write_lock_level;
d7396f07 2710 int prev_cmp;
9f3a7427 2711
6702ed49 2712 lowest_level = p->lowest_level;
323ac95b 2713 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2714 WARN_ON(p->nodes[0] != NULL);
eb653de1 2715 BUG_ON(!cow && ins_len);
25179201 2716
bd681513 2717 if (ins_len < 0) {
925baedd 2718 lowest_unlock = 2;
65b51a00 2719
bd681513
CM
2720 /* when we are removing items, we might have to go up to level
2721 * two as we update tree pointers Make sure we keep write
2722 * for those levels as well
2723 */
2724 write_lock_level = 2;
2725 } else if (ins_len > 0) {
2726 /*
2727 * for inserting items, make sure we have a write lock on
2728 * level 1 so we can update keys
2729 */
2730 write_lock_level = 1;
2731 }
2732
2733 if (!cow)
2734 write_lock_level = -1;
2735
09a2a8f9 2736 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2737 write_lock_level = BTRFS_MAX_LEVEL;
2738
f7c79f30
CM
2739 min_write_lock_level = write_lock_level;
2740
bb803951 2741again:
d7396f07 2742 prev_cmp = -1;
1fc28d8e 2743 b = btrfs_search_slot_get_root(root, p, write_lock_level);
925baedd 2744
eb60ceac 2745 while (b) {
5f39d397 2746 level = btrfs_header_level(b);
65b51a00
CM
2747
2748 /*
2749 * setup the path here so we can release it under lock
2750 * contention with the cow code
2751 */
02217ed2 2752 if (cow) {
9ea2c7c9
NB
2753 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2754
c8c42864
CM
2755 /*
2756 * if we don't really need to cow this block
2757 * then we don't want to set the path blocking,
2758 * so we test it here
2759 */
64c12921
JM
2760 if (!should_cow_block(trans, root, b)) {
2761 trans->dirty = true;
65b51a00 2762 goto cow_done;
64c12921 2763 }
5d4f98a2 2764
bd681513
CM
2765 /*
2766 * must have write locks on this node and the
2767 * parent
2768 */
5124e00e
JB
2769 if (level > write_lock_level ||
2770 (level + 1 > write_lock_level &&
2771 level + 1 < BTRFS_MAX_LEVEL &&
2772 p->nodes[level + 1])) {
bd681513
CM
2773 write_lock_level = level + 1;
2774 btrfs_release_path(p);
2775 goto again;
2776 }
2777
160f4089 2778 btrfs_set_path_blocking(p);
9ea2c7c9
NB
2779 if (last_level)
2780 err = btrfs_cow_block(trans, root, b, NULL, 0,
2781 &b);
2782 else
2783 err = btrfs_cow_block(trans, root, b,
2784 p->nodes[level + 1],
2785 p->slots[level + 1], &b);
33c66f43 2786 if (err) {
33c66f43 2787 ret = err;
65b51a00 2788 goto done;
54aa1f4d 2789 }
02217ed2 2790 }
65b51a00 2791cow_done:
eb60ceac 2792 p->nodes[level] = b;
bd681513 2793 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de
CM
2794
2795 /*
2796 * we have a lock on b and as long as we aren't changing
2797 * the tree, there is no way to for the items in b to change.
2798 * It is safe to drop the lock on our parent before we
2799 * go through the expensive btree search on b.
2800 *
eb653de1
FDBM
2801 * If we're inserting or deleting (ins_len != 0), then we might
2802 * be changing slot zero, which may require changing the parent.
2803 * So, we can't drop the lock until after we know which slot
2804 * we're operating on.
b4ce94de 2805 */
eb653de1
FDBM
2806 if (!ins_len && !p->keep_locks) {
2807 int u = level + 1;
2808
2809 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2810 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2811 p->locks[u] = 0;
2812 }
2813 }
b4ce94de 2814
d7396f07 2815 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2816 if (ret < 0)
2817 goto done;
b4ce94de 2818
5f39d397 2819 if (level != 0) {
33c66f43
YZ
2820 int dec = 0;
2821 if (ret && slot > 0) {
2822 dec = 1;
be0e5c09 2823 slot -= 1;
33c66f43 2824 }
be0e5c09 2825 p->slots[level] = slot;
33c66f43 2826 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2827 ins_len, &write_lock_level);
33c66f43 2828 if (err == -EAGAIN)
c8c42864 2829 goto again;
33c66f43
YZ
2830 if (err) {
2831 ret = err;
c8c42864 2832 goto done;
33c66f43 2833 }
c8c42864
CM
2834 b = p->nodes[level];
2835 slot = p->slots[level];
b4ce94de 2836
bd681513
CM
2837 /*
2838 * slot 0 is special, if we change the key
2839 * we have to update the parent pointer
2840 * which means we must have a write lock
2841 * on the parent
2842 */
eb653de1 2843 if (slot == 0 && ins_len &&
bd681513
CM
2844 write_lock_level < level + 1) {
2845 write_lock_level = level + 1;
2846 btrfs_release_path(p);
2847 goto again;
2848 }
2849
f7c79f30
CM
2850 unlock_up(p, level, lowest_unlock,
2851 min_write_lock_level, &write_lock_level);
f9efa9c7 2852
925baedd 2853 if (level == lowest_level) {
33c66f43
YZ
2854 if (dec)
2855 p->slots[level]++;
5b21f2ed 2856 goto done;
925baedd 2857 }
ca7a79ad 2858
d07b8528 2859 err = read_block_for_search(root, p, &b, level,
cda79c54 2860 slot, key);
33c66f43 2861 if (err == -EAGAIN)
c8c42864 2862 goto again;
33c66f43
YZ
2863 if (err) {
2864 ret = err;
76a05b35 2865 goto done;
33c66f43 2866 }
76a05b35 2867
b4ce94de 2868 if (!p->skip_locking) {
bd681513
CM
2869 level = btrfs_header_level(b);
2870 if (level <= write_lock_level) {
2871 err = btrfs_try_tree_write_lock(b);
2872 if (!err) {
2873 btrfs_set_path_blocking(p);
2874 btrfs_tree_lock(b);
2875 btrfs_clear_path_blocking(p, b,
2876 BTRFS_WRITE_LOCK);
2877 }
2878 p->locks[level] = BTRFS_WRITE_LOCK;
2879 } else {
f82c458a 2880 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2881 if (!err) {
2882 btrfs_set_path_blocking(p);
2883 btrfs_tree_read_lock(b);
2884 btrfs_clear_path_blocking(p, b,
2885 BTRFS_READ_LOCK);
2886 }
2887 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2888 }
bd681513 2889 p->nodes[level] = b;
b4ce94de 2890 }
be0e5c09
CM
2891 } else {
2892 p->slots[level] = slot;
87b29b20 2893 if (ins_len > 0 &&
2ff7e61e 2894 btrfs_leaf_free_space(fs_info, b) < ins_len) {
bd681513
CM
2895 if (write_lock_level < 1) {
2896 write_lock_level = 1;
2897 btrfs_release_path(p);
2898 goto again;
2899 }
2900
b4ce94de 2901 btrfs_set_path_blocking(p);
33c66f43
YZ
2902 err = split_leaf(trans, root, key,
2903 p, ins_len, ret == 0);
bd681513 2904 btrfs_clear_path_blocking(p, NULL, 0);
b4ce94de 2905
33c66f43
YZ
2906 BUG_ON(err > 0);
2907 if (err) {
2908 ret = err;
65b51a00
CM
2909 goto done;
2910 }
5c680ed6 2911 }
459931ec 2912 if (!p->search_for_split)
f7c79f30
CM
2913 unlock_up(p, level, lowest_unlock,
2914 min_write_lock_level, &write_lock_level);
65b51a00 2915 goto done;
be0e5c09
CM
2916 }
2917 }
65b51a00
CM
2918 ret = 1;
2919done:
b4ce94de
CM
2920 /*
2921 * we don't really know what they plan on doing with the path
2922 * from here on, so for now just mark it as blocking
2923 */
b9473439
CM
2924 if (!p->leave_spinning)
2925 btrfs_set_path_blocking(p);
5f5bc6b1 2926 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2927 btrfs_release_path(p);
65b51a00 2928 return ret;
be0e5c09
CM
2929}
2930
5d9e75c4
JS
2931/*
2932 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2933 * current state of the tree together with the operations recorded in the tree
2934 * modification log to search for the key in a previous version of this tree, as
2935 * denoted by the time_seq parameter.
2936 *
2937 * Naturally, there is no support for insert, delete or cow operations.
2938 *
2939 * The resulting path and return value will be set up as if we called
2940 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2941 */
310712b2 2942int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2943 struct btrfs_path *p, u64 time_seq)
2944{
0b246afa 2945 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2946 struct extent_buffer *b;
2947 int slot;
2948 int ret;
2949 int err;
2950 int level;
2951 int lowest_unlock = 1;
2952 u8 lowest_level = 0;
d4b4087c 2953 int prev_cmp = -1;
5d9e75c4
JS
2954
2955 lowest_level = p->lowest_level;
2956 WARN_ON(p->nodes[0] != NULL);
2957
2958 if (p->search_commit_root) {
2959 BUG_ON(time_seq);
2960 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2961 }
2962
2963again:
5d9e75c4 2964 b = get_old_root(root, time_seq);
5d9e75c4 2965 level = btrfs_header_level(b);
5d9e75c4
JS
2966 p->locks[level] = BTRFS_READ_LOCK;
2967
2968 while (b) {
2969 level = btrfs_header_level(b);
2970 p->nodes[level] = b;
2971 btrfs_clear_path_blocking(p, NULL, 0);
2972
2973 /*
2974 * we have a lock on b and as long as we aren't changing
2975 * the tree, there is no way to for the items in b to change.
2976 * It is safe to drop the lock on our parent before we
2977 * go through the expensive btree search on b.
2978 */
2979 btrfs_unlock_up_safe(p, level + 1);
2980
d4b4087c 2981 /*
01327610 2982 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
2983 * time.
2984 */
2985 prev_cmp = -1;
d7396f07 2986 ret = key_search(b, key, level, &prev_cmp, &slot);
5d9e75c4
JS
2987
2988 if (level != 0) {
2989 int dec = 0;
2990 if (ret && slot > 0) {
2991 dec = 1;
2992 slot -= 1;
2993 }
2994 p->slots[level] = slot;
2995 unlock_up(p, level, lowest_unlock, 0, NULL);
2996
2997 if (level == lowest_level) {
2998 if (dec)
2999 p->slots[level]++;
3000 goto done;
3001 }
3002
d07b8528 3003 err = read_block_for_search(root, p, &b, level,
cda79c54 3004 slot, key);
5d9e75c4
JS
3005 if (err == -EAGAIN)
3006 goto again;
3007 if (err) {
3008 ret = err;
3009 goto done;
3010 }
3011
3012 level = btrfs_header_level(b);
f82c458a 3013 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3014 if (!err) {
3015 btrfs_set_path_blocking(p);
3016 btrfs_tree_read_lock(b);
3017 btrfs_clear_path_blocking(p, b,
3018 BTRFS_READ_LOCK);
3019 }
0b246afa 3020 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3021 if (!b) {
3022 ret = -ENOMEM;
3023 goto done;
3024 }
5d9e75c4
JS
3025 p->locks[level] = BTRFS_READ_LOCK;
3026 p->nodes[level] = b;
5d9e75c4
JS
3027 } else {
3028 p->slots[level] = slot;
3029 unlock_up(p, level, lowest_unlock, 0, NULL);
3030 goto done;
3031 }
3032 }
3033 ret = 1;
3034done:
3035 if (!p->leave_spinning)
3036 btrfs_set_path_blocking(p);
3037 if (ret < 0)
3038 btrfs_release_path(p);
3039
3040 return ret;
3041}
3042
2f38b3e1
AJ
3043/*
3044 * helper to use instead of search slot if no exact match is needed but
3045 * instead the next or previous item should be returned.
3046 * When find_higher is true, the next higher item is returned, the next lower
3047 * otherwise.
3048 * When return_any and find_higher are both true, and no higher item is found,
3049 * return the next lower instead.
3050 * When return_any is true and find_higher is false, and no lower item is found,
3051 * return the next higher instead.
3052 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3053 * < 0 on error
3054 */
3055int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3056 const struct btrfs_key *key,
3057 struct btrfs_path *p, int find_higher,
3058 int return_any)
2f38b3e1
AJ
3059{
3060 int ret;
3061 struct extent_buffer *leaf;
3062
3063again:
3064 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3065 if (ret <= 0)
3066 return ret;
3067 /*
3068 * a return value of 1 means the path is at the position where the
3069 * item should be inserted. Normally this is the next bigger item,
3070 * but in case the previous item is the last in a leaf, path points
3071 * to the first free slot in the previous leaf, i.e. at an invalid
3072 * item.
3073 */
3074 leaf = p->nodes[0];
3075
3076 if (find_higher) {
3077 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3078 ret = btrfs_next_leaf(root, p);
3079 if (ret <= 0)
3080 return ret;
3081 if (!return_any)
3082 return 1;
3083 /*
3084 * no higher item found, return the next
3085 * lower instead
3086 */
3087 return_any = 0;
3088 find_higher = 0;
3089 btrfs_release_path(p);
3090 goto again;
3091 }
3092 } else {
e6793769
AJ
3093 if (p->slots[0] == 0) {
3094 ret = btrfs_prev_leaf(root, p);
3095 if (ret < 0)
3096 return ret;
3097 if (!ret) {
23c6bf6a
FDBM
3098 leaf = p->nodes[0];
3099 if (p->slots[0] == btrfs_header_nritems(leaf))
3100 p->slots[0]--;
e6793769 3101 return 0;
2f38b3e1 3102 }
e6793769
AJ
3103 if (!return_any)
3104 return 1;
3105 /*
3106 * no lower item found, return the next
3107 * higher instead
3108 */
3109 return_any = 0;
3110 find_higher = 1;
3111 btrfs_release_path(p);
3112 goto again;
3113 } else {
2f38b3e1
AJ
3114 --p->slots[0];
3115 }
3116 }
3117 return 0;
3118}
3119
74123bd7
CM
3120/*
3121 * adjust the pointers going up the tree, starting at level
3122 * making sure the right key of each node is points to 'key'.
3123 * This is used after shifting pointers to the left, so it stops
3124 * fixing up pointers when a given leaf/node is not in slot 0 of the
3125 * higher levels
aa5d6bed 3126 *
74123bd7 3127 */
b7a0365e
DD
3128static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3129 struct btrfs_path *path,
143bede5 3130 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3131{
3132 int i;
5f39d397 3133 struct extent_buffer *t;
0e82bcfe 3134 int ret;
5f39d397 3135
234b63a0 3136 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3137 int tslot = path->slots[i];
0e82bcfe 3138
eb60ceac 3139 if (!path->nodes[i])
be0e5c09 3140 break;
5f39d397 3141 t = path->nodes[i];
0e82bcfe
DS
3142 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3143 GFP_ATOMIC);
3144 BUG_ON(ret < 0);
5f39d397 3145 btrfs_set_node_key(t, key, tslot);
d6025579 3146 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3147 if (tslot != 0)
3148 break;
3149 }
3150}
3151
31840ae1
ZY
3152/*
3153 * update item key.
3154 *
3155 * This function isn't completely safe. It's the caller's responsibility
3156 * that the new key won't break the order
3157 */
b7a0365e
DD
3158void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3159 struct btrfs_path *path,
310712b2 3160 const struct btrfs_key *new_key)
31840ae1
ZY
3161{
3162 struct btrfs_disk_key disk_key;
3163 struct extent_buffer *eb;
3164 int slot;
3165
3166 eb = path->nodes[0];
3167 slot = path->slots[0];
3168 if (slot > 0) {
3169 btrfs_item_key(eb, &disk_key, slot - 1);
143bede5 3170 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
31840ae1
ZY
3171 }
3172 if (slot < btrfs_header_nritems(eb) - 1) {
3173 btrfs_item_key(eb, &disk_key, slot + 1);
143bede5 3174 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
31840ae1
ZY
3175 }
3176
3177 btrfs_cpu_key_to_disk(&disk_key, new_key);
3178 btrfs_set_item_key(eb, &disk_key, slot);
3179 btrfs_mark_buffer_dirty(eb);
3180 if (slot == 0)
b7a0365e 3181 fixup_low_keys(fs_info, path, &disk_key, 1);
31840ae1
ZY
3182}
3183
74123bd7
CM
3184/*
3185 * try to push data from one node into the next node left in the
79f95c82 3186 * tree.
aa5d6bed
CM
3187 *
3188 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3189 * error, and > 0 if there was no room in the left hand block.
74123bd7 3190 */
98ed5174 3191static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e
JM
3192 struct btrfs_fs_info *fs_info,
3193 struct extent_buffer *dst,
971a1f66 3194 struct extent_buffer *src, int empty)
be0e5c09 3195{
be0e5c09 3196 int push_items = 0;
bb803951
CM
3197 int src_nritems;
3198 int dst_nritems;
aa5d6bed 3199 int ret = 0;
be0e5c09 3200
5f39d397
CM
3201 src_nritems = btrfs_header_nritems(src);
3202 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3203 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3204 WARN_ON(btrfs_header_generation(src) != trans->transid);
3205 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3206
bce4eae9 3207 if (!empty && src_nritems <= 8)
971a1f66
CM
3208 return 1;
3209
d397712b 3210 if (push_items <= 0)
be0e5c09
CM
3211 return 1;
3212
bce4eae9 3213 if (empty) {
971a1f66 3214 push_items = min(src_nritems, push_items);
bce4eae9
CM
3215 if (push_items < src_nritems) {
3216 /* leave at least 8 pointers in the node if
3217 * we aren't going to empty it
3218 */
3219 if (src_nritems - push_items < 8) {
3220 if (push_items <= 8)
3221 return 1;
3222 push_items -= 8;
3223 }
3224 }
3225 } else
3226 push_items = min(src_nritems - 8, push_items);
79f95c82 3227
0b246afa 3228 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
5de865ee
FDBM
3229 push_items);
3230 if (ret) {
66642832 3231 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3232 return ret;
3233 }
5f39d397
CM
3234 copy_extent_buffer(dst, src,
3235 btrfs_node_key_ptr_offset(dst_nritems),
3236 btrfs_node_key_ptr_offset(0),
d397712b 3237 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3238
bb803951 3239 if (push_items < src_nritems) {
57911b8b 3240 /*
bf1d3425
DS
3241 * Don't call tree_mod_log_insert_move here, key removal was
3242 * already fully logged by tree_mod_log_eb_copy above.
57911b8b 3243 */
5f39d397
CM
3244 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3245 btrfs_node_key_ptr_offset(push_items),
3246 (src_nritems - push_items) *
3247 sizeof(struct btrfs_key_ptr));
3248 }
3249 btrfs_set_header_nritems(src, src_nritems - push_items);
3250 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3251 btrfs_mark_buffer_dirty(src);
3252 btrfs_mark_buffer_dirty(dst);
31840ae1 3253
79f95c82
CM
3254 return ret;
3255}
3256
3257/*
3258 * try to push data from one node into the next node right in the
3259 * tree.
3260 *
3261 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3262 * error, and > 0 if there was no room in the right hand block.
3263 *
3264 * this will only push up to 1/2 the contents of the left node over
3265 */
5f39d397 3266static int balance_node_right(struct btrfs_trans_handle *trans,
2ff7e61e 3267 struct btrfs_fs_info *fs_info,
5f39d397
CM
3268 struct extent_buffer *dst,
3269 struct extent_buffer *src)
79f95c82 3270{
79f95c82
CM
3271 int push_items = 0;
3272 int max_push;
3273 int src_nritems;
3274 int dst_nritems;
3275 int ret = 0;
79f95c82 3276
7bb86316
CM
3277 WARN_ON(btrfs_header_generation(src) != trans->transid);
3278 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3279
5f39d397
CM
3280 src_nritems = btrfs_header_nritems(src);
3281 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3282 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3283 if (push_items <= 0)
79f95c82 3284 return 1;
bce4eae9 3285
d397712b 3286 if (src_nritems < 4)
bce4eae9 3287 return 1;
79f95c82
CM
3288
3289 max_push = src_nritems / 2 + 1;
3290 /* don't try to empty the node */
d397712b 3291 if (max_push >= src_nritems)
79f95c82 3292 return 1;
252c38f0 3293
79f95c82
CM
3294 if (max_push < push_items)
3295 push_items = max_push;
3296
bf1d3425
DS
3297 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3298 BUG_ON(ret < 0);
5f39d397
CM
3299 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3300 btrfs_node_key_ptr_offset(0),
3301 (dst_nritems) *
3302 sizeof(struct btrfs_key_ptr));
d6025579 3303
0b246afa 3304 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
5de865ee
FDBM
3305 src_nritems - push_items, push_items);
3306 if (ret) {
66642832 3307 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3308 return ret;
3309 }
5f39d397
CM
3310 copy_extent_buffer(dst, src,
3311 btrfs_node_key_ptr_offset(0),
3312 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3313 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3314
5f39d397
CM
3315 btrfs_set_header_nritems(src, src_nritems - push_items);
3316 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3317
5f39d397
CM
3318 btrfs_mark_buffer_dirty(src);
3319 btrfs_mark_buffer_dirty(dst);
31840ae1 3320
aa5d6bed 3321 return ret;
be0e5c09
CM
3322}
3323
97571fd0
CM
3324/*
3325 * helper function to insert a new root level in the tree.
3326 * A new node is allocated, and a single item is inserted to
3327 * point to the existing root
aa5d6bed
CM
3328 *
3329 * returns zero on success or < 0 on failure.
97571fd0 3330 */
d397712b 3331static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3332 struct btrfs_root *root,
fdd99c72 3333 struct btrfs_path *path, int level)
5c680ed6 3334{
0b246afa 3335 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3336 u64 lower_gen;
5f39d397
CM
3337 struct extent_buffer *lower;
3338 struct extent_buffer *c;
925baedd 3339 struct extent_buffer *old;
5f39d397 3340 struct btrfs_disk_key lower_key;
d9d19a01 3341 int ret;
5c680ed6
CM
3342
3343 BUG_ON(path->nodes[level]);
3344 BUG_ON(path->nodes[level-1] != root->node);
3345
7bb86316
CM
3346 lower = path->nodes[level-1];
3347 if (level == 1)
3348 btrfs_item_key(lower, &lower_key, 0);
3349 else
3350 btrfs_node_key(lower, &lower_key, 0);
3351
4d75f8a9
DS
3352 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3353 &lower_key, level, root->node->start, 0);
5f39d397
CM
3354 if (IS_ERR(c))
3355 return PTR_ERR(c);
925baedd 3356
0b246afa 3357 root_add_used(root, fs_info->nodesize);
f0486c68 3358
b159fa28 3359 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
5f39d397
CM
3360 btrfs_set_header_nritems(c, 1);
3361 btrfs_set_header_level(c, level);
db94535d 3362 btrfs_set_header_bytenr(c, c->start);
5f39d397 3363 btrfs_set_header_generation(c, trans->transid);
5d4f98a2 3364 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
5f39d397 3365 btrfs_set_header_owner(c, root->root_key.objectid);
5f39d397 3366
0b246afa
JM
3367 write_extent_buffer_fsid(c, fs_info->fsid);
3368 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
e17cade2 3369
5f39d397 3370 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3371 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3372 lower_gen = btrfs_header_generation(lower);
31840ae1 3373 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3374
3375 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3376
5f39d397 3377 btrfs_mark_buffer_dirty(c);
d5719762 3378
925baedd 3379 old = root->node;
d9d19a01
DS
3380 ret = tree_mod_log_insert_root(root->node, c, 0);
3381 BUG_ON(ret < 0);
240f62c8 3382 rcu_assign_pointer(root->node, c);
925baedd
CM
3383
3384 /* the super has an extra ref to root->node */
3385 free_extent_buffer(old);
3386
0b86a832 3387 add_root_to_dirty_list(root);
5f39d397
CM
3388 extent_buffer_get(c);
3389 path->nodes[level] = c;
95449a16 3390 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3391 path->slots[level] = 0;
3392 return 0;
3393}
3394
74123bd7
CM
3395/*
3396 * worker function to insert a single pointer in a node.
3397 * the node should have enough room for the pointer already
97571fd0 3398 *
74123bd7
CM
3399 * slot and level indicate where you want the key to go, and
3400 * blocknr is the block the key points to.
3401 */
143bede5 3402static void insert_ptr(struct btrfs_trans_handle *trans,
2ff7e61e 3403 struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 3404 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3405 int slot, int level)
74123bd7 3406{
5f39d397 3407 struct extent_buffer *lower;
74123bd7 3408 int nritems;
f3ea38da 3409 int ret;
5c680ed6
CM
3410
3411 BUG_ON(!path->nodes[level]);
f0486c68 3412 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3413 lower = path->nodes[level];
3414 nritems = btrfs_header_nritems(lower);
c293498b 3415 BUG_ON(slot > nritems);
0b246afa 3416 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
74123bd7 3417 if (slot != nritems) {
bf1d3425
DS
3418 if (level) {
3419 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
a446a979 3420 nritems - slot);
bf1d3425
DS
3421 BUG_ON(ret < 0);
3422 }
5f39d397
CM
3423 memmove_extent_buffer(lower,
3424 btrfs_node_key_ptr_offset(slot + 1),
3425 btrfs_node_key_ptr_offset(slot),
d6025579 3426 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3427 }
c3e06965 3428 if (level) {
e09c2efe
DS
3429 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3430 GFP_NOFS);
f3ea38da
JS
3431 BUG_ON(ret < 0);
3432 }
5f39d397 3433 btrfs_set_node_key(lower, key, slot);
db94535d 3434 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3435 WARN_ON(trans->transid == 0);
3436 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3437 btrfs_set_header_nritems(lower, nritems + 1);
3438 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3439}
3440
97571fd0
CM
3441/*
3442 * split the node at the specified level in path in two.
3443 * The path is corrected to point to the appropriate node after the split
3444 *
3445 * Before splitting this tries to make some room in the node by pushing
3446 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3447 *
3448 * returns 0 on success and < 0 on failure
97571fd0 3449 */
e02119d5
CM
3450static noinline int split_node(struct btrfs_trans_handle *trans,
3451 struct btrfs_root *root,
3452 struct btrfs_path *path, int level)
be0e5c09 3453{
0b246afa 3454 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3455 struct extent_buffer *c;
3456 struct extent_buffer *split;
3457 struct btrfs_disk_key disk_key;
be0e5c09 3458 int mid;
5c680ed6 3459 int ret;
7518a238 3460 u32 c_nritems;
eb60ceac 3461
5f39d397 3462 c = path->nodes[level];
7bb86316 3463 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3464 if (c == root->node) {
d9abbf1c 3465 /*
90f8d62e
JS
3466 * trying to split the root, lets make a new one
3467 *
fdd99c72 3468 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3469 * insert_new_root, because that root buffer will be kept as a
3470 * normal node. We are going to log removal of half of the
3471 * elements below with tree_mod_log_eb_copy. We're holding a
3472 * tree lock on the buffer, which is why we cannot race with
3473 * other tree_mod_log users.
d9abbf1c 3474 */
fdd99c72 3475 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3476 if (ret)
3477 return ret;
b3612421 3478 } else {
e66f709b 3479 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3480 c = path->nodes[level];
3481 if (!ret && btrfs_header_nritems(c) <
0b246afa 3482 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3483 return 0;
54aa1f4d
CM
3484 if (ret < 0)
3485 return ret;
be0e5c09 3486 }
e66f709b 3487
5f39d397 3488 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3489 mid = (c_nritems + 1) / 2;
3490 btrfs_node_key(c, &disk_key, mid);
7bb86316 3491
4d75f8a9
DS
3492 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3493 &disk_key, level, c->start, 0);
5f39d397
CM
3494 if (IS_ERR(split))
3495 return PTR_ERR(split);
3496
0b246afa 3497 root_add_used(root, fs_info->nodesize);
f0486c68 3498
b159fa28 3499 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
5f39d397 3500 btrfs_set_header_level(split, btrfs_header_level(c));
db94535d 3501 btrfs_set_header_bytenr(split, split->start);
5f39d397 3502 btrfs_set_header_generation(split, trans->transid);
5d4f98a2 3503 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
5f39d397 3504 btrfs_set_header_owner(split, root->root_key.objectid);
0b246afa
JM
3505 write_extent_buffer_fsid(split, fs_info->fsid);
3506 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
54aa1f4d 3507
0b246afa 3508 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
5de865ee 3509 if (ret) {
66642832 3510 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3511 return ret;
3512 }
5f39d397
CM
3513 copy_extent_buffer(split, c,
3514 btrfs_node_key_ptr_offset(0),
3515 btrfs_node_key_ptr_offset(mid),
3516 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3517 btrfs_set_header_nritems(split, c_nritems - mid);
3518 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3519 ret = 0;
3520
5f39d397
CM
3521 btrfs_mark_buffer_dirty(c);
3522 btrfs_mark_buffer_dirty(split);
3523
2ff7e61e 3524 insert_ptr(trans, fs_info, path, &disk_key, split->start,
c3e06965 3525 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3526
5de08d7d 3527 if (path->slots[level] >= mid) {
5c680ed6 3528 path->slots[level] -= mid;
925baedd 3529 btrfs_tree_unlock(c);
5f39d397
CM
3530 free_extent_buffer(c);
3531 path->nodes[level] = split;
5c680ed6
CM
3532 path->slots[level + 1] += 1;
3533 } else {
925baedd 3534 btrfs_tree_unlock(split);
5f39d397 3535 free_extent_buffer(split);
be0e5c09 3536 }
aa5d6bed 3537 return ret;
be0e5c09
CM
3538}
3539
74123bd7
CM
3540/*
3541 * how many bytes are required to store the items in a leaf. start
3542 * and nr indicate which items in the leaf to check. This totals up the
3543 * space used both by the item structs and the item data
3544 */
5f39d397 3545static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3546{
41be1f3b
JB
3547 struct btrfs_item *start_item;
3548 struct btrfs_item *end_item;
3549 struct btrfs_map_token token;
be0e5c09 3550 int data_len;
5f39d397 3551 int nritems = btrfs_header_nritems(l);
d4dbff95 3552 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3553
3554 if (!nr)
3555 return 0;
41be1f3b 3556 btrfs_init_map_token(&token);
dd3cc16b
RK
3557 start_item = btrfs_item_nr(start);
3558 end_item = btrfs_item_nr(end);
41be1f3b
JB
3559 data_len = btrfs_token_item_offset(l, start_item, &token) +
3560 btrfs_token_item_size(l, start_item, &token);
3561 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3562 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3563 WARN_ON(data_len < 0);
be0e5c09
CM
3564 return data_len;
3565}
3566
d4dbff95
CM
3567/*
3568 * The space between the end of the leaf items and
3569 * the start of the leaf data. IOW, how much room
3570 * the leaf has left for both items and data
3571 */
2ff7e61e 3572noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
e02119d5 3573 struct extent_buffer *leaf)
d4dbff95 3574{
5f39d397
CM
3575 int nritems = btrfs_header_nritems(leaf);
3576 int ret;
0b246afa
JM
3577
3578 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3579 if (ret < 0) {
0b246afa
JM
3580 btrfs_crit(fs_info,
3581 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3582 ret,
3583 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3584 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3585 }
3586 return ret;
d4dbff95
CM
3587}
3588
99d8f83c
CM
3589/*
3590 * min slot controls the lowest index we're willing to push to the
3591 * right. We'll push up to and including min_slot, but no lower
3592 */
1e47eef2 3593static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
44871b1b
CM
3594 struct btrfs_path *path,
3595 int data_size, int empty,
3596 struct extent_buffer *right,
99d8f83c
CM
3597 int free_space, u32 left_nritems,
3598 u32 min_slot)
00ec4c51 3599{
5f39d397 3600 struct extent_buffer *left = path->nodes[0];
44871b1b 3601 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3602 struct btrfs_map_token token;
5f39d397 3603 struct btrfs_disk_key disk_key;
00ec4c51 3604 int slot;
34a38218 3605 u32 i;
00ec4c51
CM
3606 int push_space = 0;
3607 int push_items = 0;
0783fcfc 3608 struct btrfs_item *item;
34a38218 3609 u32 nr;
7518a238 3610 u32 right_nritems;
5f39d397 3611 u32 data_end;
db94535d 3612 u32 this_item_size;
00ec4c51 3613
cfed81a0
CM
3614 btrfs_init_map_token(&token);
3615
34a38218
CM
3616 if (empty)
3617 nr = 0;
3618 else
99d8f83c 3619 nr = max_t(u32, 1, min_slot);
34a38218 3620
31840ae1 3621 if (path->slots[0] >= left_nritems)
87b29b20 3622 push_space += data_size;
31840ae1 3623
44871b1b 3624 slot = path->slots[1];
34a38218
CM
3625 i = left_nritems - 1;
3626 while (i >= nr) {
dd3cc16b 3627 item = btrfs_item_nr(i);
db94535d 3628
31840ae1
ZY
3629 if (!empty && push_items > 0) {
3630 if (path->slots[0] > i)
3631 break;
3632 if (path->slots[0] == i) {
2ff7e61e 3633 int space = btrfs_leaf_free_space(fs_info, left);
31840ae1
ZY
3634 if (space + push_space * 2 > free_space)
3635 break;
3636 }
3637 }
3638
00ec4c51 3639 if (path->slots[0] == i)
87b29b20 3640 push_space += data_size;
db94535d 3641
db94535d
CM
3642 this_item_size = btrfs_item_size(left, item);
3643 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3644 break;
31840ae1 3645
00ec4c51 3646 push_items++;
db94535d 3647 push_space += this_item_size + sizeof(*item);
34a38218
CM
3648 if (i == 0)
3649 break;
3650 i--;
db94535d 3651 }
5f39d397 3652
925baedd
CM
3653 if (push_items == 0)
3654 goto out_unlock;
5f39d397 3655
6c1500f2 3656 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3657
00ec4c51 3658 /* push left to right */
5f39d397 3659 right_nritems = btrfs_header_nritems(right);
34a38218 3660
5f39d397 3661 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2ff7e61e 3662 push_space -= leaf_data_end(fs_info, left);
5f39d397 3663
00ec4c51 3664 /* make room in the right data area */
2ff7e61e 3665 data_end = leaf_data_end(fs_info, right);
5f39d397 3666 memmove_extent_buffer(right,
3d9ec8c4
NB
3667 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3668 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3669 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3670
00ec4c51 3671 /* copy from the left data area */
3d9ec8c4 3672 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3673 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3674 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
d6025579 3675 push_space);
5f39d397
CM
3676
3677 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3678 btrfs_item_nr_offset(0),
3679 right_nritems * sizeof(struct btrfs_item));
3680
00ec4c51 3681 /* copy the items from left to right */
5f39d397
CM
3682 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3683 btrfs_item_nr_offset(left_nritems - push_items),
3684 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3685
3686 /* update the item pointers */
7518a238 3687 right_nritems += push_items;
5f39d397 3688 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3689 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3690 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3691 item = btrfs_item_nr(i);
cfed81a0
CM
3692 push_space -= btrfs_token_item_size(right, item, &token);
3693 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3694 }
3695
7518a238 3696 left_nritems -= push_items;
5f39d397 3697 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3698
34a38218
CM
3699 if (left_nritems)
3700 btrfs_mark_buffer_dirty(left);
f0486c68 3701 else
7c302b49 3702 clean_tree_block(fs_info, left);
f0486c68 3703
5f39d397 3704 btrfs_mark_buffer_dirty(right);
a429e513 3705
5f39d397
CM
3706 btrfs_item_key(right, &disk_key, 0);
3707 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3708 btrfs_mark_buffer_dirty(upper);
02217ed2 3709
00ec4c51 3710 /* then fixup the leaf pointer in the path */
7518a238
CM
3711 if (path->slots[0] >= left_nritems) {
3712 path->slots[0] -= left_nritems;
925baedd 3713 if (btrfs_header_nritems(path->nodes[0]) == 0)
7c302b49 3714 clean_tree_block(fs_info, path->nodes[0]);
925baedd 3715 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3716 free_extent_buffer(path->nodes[0]);
3717 path->nodes[0] = right;
00ec4c51
CM
3718 path->slots[1] += 1;
3719 } else {
925baedd 3720 btrfs_tree_unlock(right);
5f39d397 3721 free_extent_buffer(right);
00ec4c51
CM
3722 }
3723 return 0;
925baedd
CM
3724
3725out_unlock:
3726 btrfs_tree_unlock(right);
3727 free_extent_buffer(right);
3728 return 1;
00ec4c51 3729}
925baedd 3730
44871b1b
CM
3731/*
3732 * push some data in the path leaf to the right, trying to free up at
3733 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3734 *
3735 * returns 1 if the push failed because the other node didn't have enough
3736 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3737 *
3738 * this will push starting from min_slot to the end of the leaf. It won't
3739 * push any slot lower than min_slot
44871b1b
CM
3740 */
3741static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3742 *root, struct btrfs_path *path,
3743 int min_data_size, int data_size,
3744 int empty, u32 min_slot)
44871b1b 3745{
2ff7e61e 3746 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3747 struct extent_buffer *left = path->nodes[0];
3748 struct extent_buffer *right;
3749 struct extent_buffer *upper;
3750 int slot;
3751 int free_space;
3752 u32 left_nritems;
3753 int ret;
3754
3755 if (!path->nodes[1])
3756 return 1;
3757
3758 slot = path->slots[1];
3759 upper = path->nodes[1];
3760 if (slot >= btrfs_header_nritems(upper) - 1)
3761 return 1;
3762
3763 btrfs_assert_tree_locked(path->nodes[1]);
3764
2ff7e61e 3765 right = read_node_slot(fs_info, upper, slot + 1);
fb770ae4
LB
3766 /*
3767 * slot + 1 is not valid or we fail to read the right node,
3768 * no big deal, just return.
3769 */
3770 if (IS_ERR(right))
91ca338d
TI
3771 return 1;
3772
44871b1b
CM
3773 btrfs_tree_lock(right);
3774 btrfs_set_lock_blocking(right);
3775
2ff7e61e 3776 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3777 if (free_space < data_size)
3778 goto out_unlock;
3779
3780 /* cow and double check */
3781 ret = btrfs_cow_block(trans, root, right, upper,
3782 slot + 1, &right);
3783 if (ret)
3784 goto out_unlock;
3785
2ff7e61e 3786 free_space = btrfs_leaf_free_space(fs_info, right);
44871b1b
CM
3787 if (free_space < data_size)
3788 goto out_unlock;
3789
3790 left_nritems = btrfs_header_nritems(left);
3791 if (left_nritems == 0)
3792 goto out_unlock;
3793
2ef1fed2
FDBM
3794 if (path->slots[0] == left_nritems && !empty) {
3795 /* Key greater than all keys in the leaf, right neighbor has
3796 * enough room for it and we're not emptying our leaf to delete
3797 * it, therefore use right neighbor to insert the new item and
3798 * no need to touch/dirty our left leaft. */
3799 btrfs_tree_unlock(left);
3800 free_extent_buffer(left);
3801 path->nodes[0] = right;
3802 path->slots[0] = 0;
3803 path->slots[1]++;
3804 return 0;
3805 }
3806
1e47eef2 3807 return __push_leaf_right(fs_info, path, min_data_size, empty,
99d8f83c 3808 right, free_space, left_nritems, min_slot);
44871b1b
CM
3809out_unlock:
3810 btrfs_tree_unlock(right);
3811 free_extent_buffer(right);
3812 return 1;
3813}
3814
74123bd7
CM
3815/*
3816 * push some data in the path leaf to the left, trying to free up at
3817 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3818 *
3819 * max_slot can put a limit on how far into the leaf we'll push items. The
3820 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3821 * items
74123bd7 3822 */
66cb7ddb 3823static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
44871b1b
CM
3824 struct btrfs_path *path, int data_size,
3825 int empty, struct extent_buffer *left,
99d8f83c
CM
3826 int free_space, u32 right_nritems,
3827 u32 max_slot)
be0e5c09 3828{
5f39d397
CM
3829 struct btrfs_disk_key disk_key;
3830 struct extent_buffer *right = path->nodes[0];
be0e5c09 3831 int i;
be0e5c09
CM
3832 int push_space = 0;
3833 int push_items = 0;
0783fcfc 3834 struct btrfs_item *item;
7518a238 3835 u32 old_left_nritems;
34a38218 3836 u32 nr;
aa5d6bed 3837 int ret = 0;
db94535d
CM
3838 u32 this_item_size;
3839 u32 old_left_item_size;
cfed81a0
CM
3840 struct btrfs_map_token token;
3841
3842 btrfs_init_map_token(&token);
be0e5c09 3843
34a38218 3844 if (empty)
99d8f83c 3845 nr = min(right_nritems, max_slot);
34a38218 3846 else
99d8f83c 3847 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3848
3849 for (i = 0; i < nr; i++) {
dd3cc16b 3850 item = btrfs_item_nr(i);
db94535d 3851
31840ae1
ZY
3852 if (!empty && push_items > 0) {
3853 if (path->slots[0] < i)
3854 break;
3855 if (path->slots[0] == i) {
2ff7e61e 3856 int space = btrfs_leaf_free_space(fs_info, right);
31840ae1
ZY
3857 if (space + push_space * 2 > free_space)
3858 break;
3859 }
3860 }
3861
be0e5c09 3862 if (path->slots[0] == i)
87b29b20 3863 push_space += data_size;
db94535d
CM
3864
3865 this_item_size = btrfs_item_size(right, item);
3866 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3867 break;
db94535d 3868
be0e5c09 3869 push_items++;
db94535d
CM
3870 push_space += this_item_size + sizeof(*item);
3871 }
3872
be0e5c09 3873 if (push_items == 0) {
925baedd
CM
3874 ret = 1;
3875 goto out;
be0e5c09 3876 }
fae7f21c 3877 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3878
be0e5c09 3879 /* push data from right to left */
5f39d397
CM
3880 copy_extent_buffer(left, right,
3881 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3882 btrfs_item_nr_offset(0),
3883 push_items * sizeof(struct btrfs_item));
3884
0b246afa 3885 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3886 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3887
3d9ec8c4 3888 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3889 leaf_data_end(fs_info, left) - push_space,
3d9ec8c4 3890 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3891 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3892 push_space);
5f39d397 3893 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3894 BUG_ON(old_left_nritems <= 0);
eb60ceac 3895
db94535d 3896 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3897 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3898 u32 ioff;
db94535d 3899
dd3cc16b 3900 item = btrfs_item_nr(i);
db94535d 3901
cfed81a0
CM
3902 ioff = btrfs_token_item_offset(left, item, &token);
3903 btrfs_set_token_item_offset(left, item,
0b246afa 3904 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3905 &token);
be0e5c09 3906 }
5f39d397 3907 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3908
3909 /* fixup right node */
31b1a2bd
JL
3910 if (push_items > right_nritems)
3911 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3912 right_nritems);
34a38218
CM
3913
3914 if (push_items < right_nritems) {
3915 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2ff7e61e 3916 leaf_data_end(fs_info, right);
3d9ec8c4 3917 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3918 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3919 BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 3920 leaf_data_end(fs_info, right), push_space);
34a38218
CM
3921
3922 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3923 btrfs_item_nr_offset(push_items),
3924 (btrfs_header_nritems(right) - push_items) *
3925 sizeof(struct btrfs_item));
34a38218 3926 }
eef1c494
Y
3927 right_nritems -= push_items;
3928 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3929 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3930 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3931 item = btrfs_item_nr(i);
db94535d 3932
cfed81a0
CM
3933 push_space = push_space - btrfs_token_item_size(right,
3934 item, &token);
3935 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3936 }
eb60ceac 3937
5f39d397 3938 btrfs_mark_buffer_dirty(left);
34a38218
CM
3939 if (right_nritems)
3940 btrfs_mark_buffer_dirty(right);
f0486c68 3941 else
7c302b49 3942 clean_tree_block(fs_info, right);
098f59c2 3943
5f39d397 3944 btrfs_item_key(right, &disk_key, 0);
0b246afa 3945 fixup_low_keys(fs_info, path, &disk_key, 1);
be0e5c09
CM
3946
3947 /* then fixup the leaf pointer in the path */
3948 if (path->slots[0] < push_items) {
3949 path->slots[0] += old_left_nritems;
925baedd 3950 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3951 free_extent_buffer(path->nodes[0]);
3952 path->nodes[0] = left;
be0e5c09
CM
3953 path->slots[1] -= 1;
3954 } else {
925baedd 3955 btrfs_tree_unlock(left);
5f39d397 3956 free_extent_buffer(left);
be0e5c09
CM
3957 path->slots[0] -= push_items;
3958 }
eb60ceac 3959 BUG_ON(path->slots[0] < 0);
aa5d6bed 3960 return ret;
925baedd
CM
3961out:
3962 btrfs_tree_unlock(left);
3963 free_extent_buffer(left);
3964 return ret;
be0e5c09
CM
3965}
3966
44871b1b
CM
3967/*
3968 * push some data in the path leaf to the left, trying to free up at
3969 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3970 *
3971 * max_slot can put a limit on how far into the leaf we'll push items. The
3972 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3973 * items
44871b1b
CM
3974 */
3975static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3976 *root, struct btrfs_path *path, int min_data_size,
3977 int data_size, int empty, u32 max_slot)
44871b1b 3978{
2ff7e61e 3979 struct btrfs_fs_info *fs_info = root->fs_info;
44871b1b
CM
3980 struct extent_buffer *right = path->nodes[0];
3981 struct extent_buffer *left;
3982 int slot;
3983 int free_space;
3984 u32 right_nritems;
3985 int ret = 0;
3986
3987 slot = path->slots[1];
3988 if (slot == 0)
3989 return 1;
3990 if (!path->nodes[1])
3991 return 1;
3992
3993 right_nritems = btrfs_header_nritems(right);
3994 if (right_nritems == 0)
3995 return 1;
3996
3997 btrfs_assert_tree_locked(path->nodes[1]);
3998
2ff7e61e 3999 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
fb770ae4
LB
4000 /*
4001 * slot - 1 is not valid or we fail to read the left node,
4002 * no big deal, just return.
4003 */
4004 if (IS_ERR(left))
91ca338d
TI
4005 return 1;
4006
44871b1b
CM
4007 btrfs_tree_lock(left);
4008 btrfs_set_lock_blocking(left);
4009
2ff7e61e 4010 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4011 if (free_space < data_size) {
4012 ret = 1;
4013 goto out;
4014 }
4015
4016 /* cow and double check */
4017 ret = btrfs_cow_block(trans, root, left,
4018 path->nodes[1], slot - 1, &left);
4019 if (ret) {
4020 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4021 if (ret == -ENOSPC)
4022 ret = 1;
44871b1b
CM
4023 goto out;
4024 }
4025
2ff7e61e 4026 free_space = btrfs_leaf_free_space(fs_info, left);
44871b1b
CM
4027 if (free_space < data_size) {
4028 ret = 1;
4029 goto out;
4030 }
4031
66cb7ddb 4032 return __push_leaf_left(fs_info, path, min_data_size,
99d8f83c
CM
4033 empty, left, free_space, right_nritems,
4034 max_slot);
44871b1b
CM
4035out:
4036 btrfs_tree_unlock(left);
4037 free_extent_buffer(left);
4038 return ret;
4039}
4040
4041/*
4042 * split the path's leaf in two, making sure there is at least data_size
4043 * available for the resulting leaf level of the path.
44871b1b 4044 */
143bede5 4045static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2ff7e61e 4046 struct btrfs_fs_info *fs_info,
143bede5
JM
4047 struct btrfs_path *path,
4048 struct extent_buffer *l,
4049 struct extent_buffer *right,
4050 int slot, int mid, int nritems)
44871b1b
CM
4051{
4052 int data_copy_size;
4053 int rt_data_off;
4054 int i;
44871b1b 4055 struct btrfs_disk_key disk_key;
cfed81a0
CM
4056 struct btrfs_map_token token;
4057
4058 btrfs_init_map_token(&token);
44871b1b
CM
4059
4060 nritems = nritems - mid;
4061 btrfs_set_header_nritems(right, nritems);
2ff7e61e 4062 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
44871b1b
CM
4063
4064 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4065 btrfs_item_nr_offset(mid),
4066 nritems * sizeof(struct btrfs_item));
4067
4068 copy_extent_buffer(right, l,
3d9ec8c4
NB
4069 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4070 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
2ff7e61e 4071 leaf_data_end(fs_info, l), data_copy_size);
44871b1b 4072
0b246afa 4073 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b
CM
4074
4075 for (i = 0; i < nritems; i++) {
dd3cc16b 4076 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4077 u32 ioff;
4078
cfed81a0
CM
4079 ioff = btrfs_token_item_offset(right, item, &token);
4080 btrfs_set_token_item_offset(right, item,
4081 ioff + rt_data_off, &token);
44871b1b
CM
4082 }
4083
44871b1b 4084 btrfs_set_header_nritems(l, mid);
44871b1b 4085 btrfs_item_key(right, &disk_key, 0);
2ff7e61e 4086 insert_ptr(trans, fs_info, path, &disk_key, right->start,
c3e06965 4087 path->slots[1] + 1, 1);
44871b1b
CM
4088
4089 btrfs_mark_buffer_dirty(right);
4090 btrfs_mark_buffer_dirty(l);
4091 BUG_ON(path->slots[0] != slot);
4092
44871b1b
CM
4093 if (mid <= slot) {
4094 btrfs_tree_unlock(path->nodes[0]);
4095 free_extent_buffer(path->nodes[0]);
4096 path->nodes[0] = right;
4097 path->slots[0] -= mid;
4098 path->slots[1] += 1;
4099 } else {
4100 btrfs_tree_unlock(right);
4101 free_extent_buffer(right);
4102 }
4103
4104 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4105}
4106
99d8f83c
CM
4107/*
4108 * double splits happen when we need to insert a big item in the middle
4109 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4110 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4111 * A B C
4112 *
4113 * We avoid this by trying to push the items on either side of our target
4114 * into the adjacent leaves. If all goes well we can avoid the double split
4115 * completely.
4116 */
4117static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4118 struct btrfs_root *root,
4119 struct btrfs_path *path,
4120 int data_size)
4121{
2ff7e61e 4122 struct btrfs_fs_info *fs_info = root->fs_info;
99d8f83c
CM
4123 int ret;
4124 int progress = 0;
4125 int slot;
4126 u32 nritems;
5a4267ca 4127 int space_needed = data_size;
99d8f83c
CM
4128
4129 slot = path->slots[0];
5a4267ca 4130 if (slot < btrfs_header_nritems(path->nodes[0]))
2ff7e61e 4131 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
99d8f83c
CM
4132
4133 /*
4134 * try to push all the items after our slot into the
4135 * right leaf
4136 */
5a4267ca 4137 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4138 if (ret < 0)
4139 return ret;
4140
4141 if (ret == 0)
4142 progress++;
4143
4144 nritems = btrfs_header_nritems(path->nodes[0]);
4145 /*
4146 * our goal is to get our slot at the start or end of a leaf. If
4147 * we've done so we're done
4148 */
4149 if (path->slots[0] == 0 || path->slots[0] == nritems)
4150 return 0;
4151
2ff7e61e 4152 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4153 return 0;
4154
4155 /* try to push all the items before our slot into the next leaf */
4156 slot = path->slots[0];
263d3995
FM
4157 space_needed = data_size;
4158 if (slot > 0)
4159 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
5a4267ca 4160 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4161 if (ret < 0)
4162 return ret;
4163
4164 if (ret == 0)
4165 progress++;
4166
4167 if (progress)
4168 return 0;
4169 return 1;
4170}
4171
74123bd7
CM
4172/*
4173 * split the path's leaf in two, making sure there is at least data_size
4174 * available for the resulting leaf level of the path.
aa5d6bed
CM
4175 *
4176 * returns 0 if all went well and < 0 on failure.
74123bd7 4177 */
e02119d5
CM
4178static noinline int split_leaf(struct btrfs_trans_handle *trans,
4179 struct btrfs_root *root,
310712b2 4180 const struct btrfs_key *ins_key,
e02119d5
CM
4181 struct btrfs_path *path, int data_size,
4182 int extend)
be0e5c09 4183{
5d4f98a2 4184 struct btrfs_disk_key disk_key;
5f39d397 4185 struct extent_buffer *l;
7518a238 4186 u32 nritems;
eb60ceac
CM
4187 int mid;
4188 int slot;
5f39d397 4189 struct extent_buffer *right;
b7a0365e 4190 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4191 int ret = 0;
aa5d6bed 4192 int wret;
5d4f98a2 4193 int split;
cc0c5538 4194 int num_doubles = 0;
99d8f83c 4195 int tried_avoid_double = 0;
aa5d6bed 4196
a5719521
YZ
4197 l = path->nodes[0];
4198 slot = path->slots[0];
4199 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4200 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4201 return -EOVERFLOW;
4202
40689478 4203 /* first try to make some room by pushing left and right */
33157e05 4204 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4205 int space_needed = data_size;
4206
4207 if (slot < btrfs_header_nritems(l))
2ff7e61e 4208 space_needed -= btrfs_leaf_free_space(fs_info, l);
5a4267ca
FDBM
4209
4210 wret = push_leaf_right(trans, root, path, space_needed,
4211 space_needed, 0, 0);
d397712b 4212 if (wret < 0)
eaee50e8 4213 return wret;
3685f791 4214 if (wret) {
263d3995
FM
4215 space_needed = data_size;
4216 if (slot > 0)
4217 space_needed -= btrfs_leaf_free_space(fs_info,
4218 l);
5a4267ca
FDBM
4219 wret = push_leaf_left(trans, root, path, space_needed,
4220 space_needed, 0, (u32)-1);
3685f791
CM
4221 if (wret < 0)
4222 return wret;
4223 }
4224 l = path->nodes[0];
aa5d6bed 4225
3685f791 4226 /* did the pushes work? */
2ff7e61e 4227 if (btrfs_leaf_free_space(fs_info, l) >= data_size)
3685f791 4228 return 0;
3326d1b0 4229 }
aa5d6bed 4230
5c680ed6 4231 if (!path->nodes[1]) {
fdd99c72 4232 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4233 if (ret)
4234 return ret;
4235 }
cc0c5538 4236again:
5d4f98a2 4237 split = 1;
cc0c5538 4238 l = path->nodes[0];
eb60ceac 4239 slot = path->slots[0];
5f39d397 4240 nritems = btrfs_header_nritems(l);
d397712b 4241 mid = (nritems + 1) / 2;
54aa1f4d 4242
5d4f98a2
YZ
4243 if (mid <= slot) {
4244 if (nritems == 1 ||
4245 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4246 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4247 if (slot >= nritems) {
4248 split = 0;
4249 } else {
4250 mid = slot;
4251 if (mid != nritems &&
4252 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4253 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4254 if (data_size && !tried_avoid_double)
4255 goto push_for_double;
5d4f98a2
YZ
4256 split = 2;
4257 }
4258 }
4259 }
4260 } else {
4261 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4262 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4263 if (!extend && data_size && slot == 0) {
4264 split = 0;
4265 } else if ((extend || !data_size) && slot == 0) {
4266 mid = 1;
4267 } else {
4268 mid = slot;
4269 if (mid != nritems &&
4270 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4271 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4272 if (data_size && !tried_avoid_double)
4273 goto push_for_double;
67871254 4274 split = 2;
5d4f98a2
YZ
4275 }
4276 }
4277 }
4278 }
4279
4280 if (split == 0)
4281 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4282 else
4283 btrfs_item_key(l, &disk_key, mid);
4284
4d75f8a9
DS
4285 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4286 &disk_key, 0, l->start, 0);
f0486c68 4287 if (IS_ERR(right))
5f39d397 4288 return PTR_ERR(right);
f0486c68 4289
0b246afa 4290 root_add_used(root, fs_info->nodesize);
5f39d397 4291
b159fa28 4292 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
db94535d 4293 btrfs_set_header_bytenr(right, right->start);
5f39d397 4294 btrfs_set_header_generation(right, trans->transid);
5d4f98a2 4295 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
5f39d397
CM
4296 btrfs_set_header_owner(right, root->root_key.objectid);
4297 btrfs_set_header_level(right, 0);
d24ee97b
DS
4298 write_extent_buffer_fsid(right, fs_info->fsid);
4299 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
44871b1b 4300
5d4f98a2
YZ
4301 if (split == 0) {
4302 if (mid <= slot) {
4303 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4304 insert_ptr(trans, fs_info, path, &disk_key,
4305 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4306 btrfs_tree_unlock(path->nodes[0]);
4307 free_extent_buffer(path->nodes[0]);
4308 path->nodes[0] = right;
4309 path->slots[0] = 0;
4310 path->slots[1] += 1;
4311 } else {
4312 btrfs_set_header_nritems(right, 0);
2ff7e61e
JM
4313 insert_ptr(trans, fs_info, path, &disk_key,
4314 right->start, path->slots[1], 1);
5d4f98a2
YZ
4315 btrfs_tree_unlock(path->nodes[0]);
4316 free_extent_buffer(path->nodes[0]);
4317 path->nodes[0] = right;
4318 path->slots[0] = 0;
143bede5 4319 if (path->slots[1] == 0)
b7a0365e 4320 fixup_low_keys(fs_info, path, &disk_key, 1);
d4dbff95 4321 }
196e0249
LB
4322 /*
4323 * We create a new leaf 'right' for the required ins_len and
4324 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4325 * the content of ins_len to 'right'.
4326 */
5d4f98a2 4327 return ret;
d4dbff95 4328 }
74123bd7 4329
2ff7e61e 4330 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
31840ae1 4331
5d4f98a2 4332 if (split == 2) {
cc0c5538
CM
4333 BUG_ON(num_doubles != 0);
4334 num_doubles++;
4335 goto again;
a429e513 4336 }
44871b1b 4337
143bede5 4338 return 0;
99d8f83c
CM
4339
4340push_for_double:
4341 push_for_double_split(trans, root, path, data_size);
4342 tried_avoid_double = 1;
2ff7e61e 4343 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
99d8f83c
CM
4344 return 0;
4345 goto again;
be0e5c09
CM
4346}
4347
ad48fd75
YZ
4348static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4349 struct btrfs_root *root,
4350 struct btrfs_path *path, int ins_len)
459931ec 4351{
2ff7e61e 4352 struct btrfs_fs_info *fs_info = root->fs_info;
ad48fd75 4353 struct btrfs_key key;
459931ec 4354 struct extent_buffer *leaf;
ad48fd75
YZ
4355 struct btrfs_file_extent_item *fi;
4356 u64 extent_len = 0;
4357 u32 item_size;
4358 int ret;
459931ec
CM
4359
4360 leaf = path->nodes[0];
ad48fd75
YZ
4361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4362
4363 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4364 key.type != BTRFS_EXTENT_CSUM_KEY);
4365
2ff7e61e 4366 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
ad48fd75 4367 return 0;
459931ec
CM
4368
4369 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4370 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4371 fi = btrfs_item_ptr(leaf, path->slots[0],
4372 struct btrfs_file_extent_item);
4373 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4374 }
b3b4aa74 4375 btrfs_release_path(path);
459931ec 4376
459931ec 4377 path->keep_locks = 1;
ad48fd75
YZ
4378 path->search_for_split = 1;
4379 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4380 path->search_for_split = 0;
a8df6fe6
FM
4381 if (ret > 0)
4382 ret = -EAGAIN;
ad48fd75
YZ
4383 if (ret < 0)
4384 goto err;
459931ec 4385
ad48fd75
YZ
4386 ret = -EAGAIN;
4387 leaf = path->nodes[0];
a8df6fe6
FM
4388 /* if our item isn't there, return now */
4389 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4390 goto err;
4391
109f6aef 4392 /* the leaf has changed, it now has room. return now */
2ff7e61e 4393 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
109f6aef
CM
4394 goto err;
4395
ad48fd75
YZ
4396 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4397 fi = btrfs_item_ptr(leaf, path->slots[0],
4398 struct btrfs_file_extent_item);
4399 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4400 goto err;
459931ec
CM
4401 }
4402
b9473439 4403 btrfs_set_path_blocking(path);
ad48fd75 4404 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4405 if (ret)
4406 goto err;
459931ec 4407
ad48fd75 4408 path->keep_locks = 0;
b9473439 4409 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4410 return 0;
4411err:
4412 path->keep_locks = 0;
4413 return ret;
4414}
4415
4961e293 4416static noinline int split_item(struct btrfs_fs_info *fs_info,
ad48fd75 4417 struct btrfs_path *path,
310712b2 4418 const struct btrfs_key *new_key,
ad48fd75
YZ
4419 unsigned long split_offset)
4420{
4421 struct extent_buffer *leaf;
4422 struct btrfs_item *item;
4423 struct btrfs_item *new_item;
4424 int slot;
4425 char *buf;
4426 u32 nritems;
4427 u32 item_size;
4428 u32 orig_offset;
4429 struct btrfs_disk_key disk_key;
4430
b9473439 4431 leaf = path->nodes[0];
2ff7e61e 4432 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
b9473439 4433
b4ce94de
CM
4434 btrfs_set_path_blocking(path);
4435
dd3cc16b 4436 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4437 orig_offset = btrfs_item_offset(leaf, item);
4438 item_size = btrfs_item_size(leaf, item);
4439
459931ec 4440 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4441 if (!buf)
4442 return -ENOMEM;
4443
459931ec
CM
4444 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4445 path->slots[0]), item_size);
459931ec 4446
ad48fd75 4447 slot = path->slots[0] + 1;
459931ec 4448 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4449 if (slot != nritems) {
4450 /* shift the items */
4451 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4452 btrfs_item_nr_offset(slot),
4453 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4454 }
4455
4456 btrfs_cpu_key_to_disk(&disk_key, new_key);
4457 btrfs_set_item_key(leaf, &disk_key, slot);
4458
dd3cc16b 4459 new_item = btrfs_item_nr(slot);
459931ec
CM
4460
4461 btrfs_set_item_offset(leaf, new_item, orig_offset);
4462 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4463
4464 btrfs_set_item_offset(leaf, item,
4465 orig_offset + item_size - split_offset);
4466 btrfs_set_item_size(leaf, item, split_offset);
4467
4468 btrfs_set_header_nritems(leaf, nritems + 1);
4469
4470 /* write the data for the start of the original item */
4471 write_extent_buffer(leaf, buf,
4472 btrfs_item_ptr_offset(leaf, path->slots[0]),
4473 split_offset);
4474
4475 /* write the data for the new item */
4476 write_extent_buffer(leaf, buf + split_offset,
4477 btrfs_item_ptr_offset(leaf, slot),
4478 item_size - split_offset);
4479 btrfs_mark_buffer_dirty(leaf);
4480
2ff7e61e 4481 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
459931ec 4482 kfree(buf);
ad48fd75
YZ
4483 return 0;
4484}
4485
4486/*
4487 * This function splits a single item into two items,
4488 * giving 'new_key' to the new item and splitting the
4489 * old one at split_offset (from the start of the item).
4490 *
4491 * The path may be released by this operation. After
4492 * the split, the path is pointing to the old item. The
4493 * new item is going to be in the same node as the old one.
4494 *
4495 * Note, the item being split must be smaller enough to live alone on
4496 * a tree block with room for one extra struct btrfs_item
4497 *
4498 * This allows us to split the item in place, keeping a lock on the
4499 * leaf the entire time.
4500 */
4501int btrfs_split_item(struct btrfs_trans_handle *trans,
4502 struct btrfs_root *root,
4503 struct btrfs_path *path,
310712b2 4504 const struct btrfs_key *new_key,
ad48fd75
YZ
4505 unsigned long split_offset)
4506{
4507 int ret;
4508 ret = setup_leaf_for_split(trans, root, path,
4509 sizeof(struct btrfs_item));
4510 if (ret)
4511 return ret;
4512
4961e293 4513 ret = split_item(root->fs_info, path, new_key, split_offset);
459931ec
CM
4514 return ret;
4515}
4516
ad48fd75
YZ
4517/*
4518 * This function duplicate a item, giving 'new_key' to the new item.
4519 * It guarantees both items live in the same tree leaf and the new item
4520 * is contiguous with the original item.
4521 *
4522 * This allows us to split file extent in place, keeping a lock on the
4523 * leaf the entire time.
4524 */
4525int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4526 struct btrfs_root *root,
4527 struct btrfs_path *path,
310712b2 4528 const struct btrfs_key *new_key)
ad48fd75
YZ
4529{
4530 struct extent_buffer *leaf;
4531 int ret;
4532 u32 item_size;
4533
4534 leaf = path->nodes[0];
4535 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4536 ret = setup_leaf_for_split(trans, root, path,
4537 item_size + sizeof(struct btrfs_item));
4538 if (ret)
4539 return ret;
4540
4541 path->slots[0]++;
afe5fea7 4542 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4543 item_size, item_size +
4544 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4545 leaf = path->nodes[0];
4546 memcpy_extent_buffer(leaf,
4547 btrfs_item_ptr_offset(leaf, path->slots[0]),
4548 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4549 item_size);
4550 return 0;
4551}
4552
d352ac68
CM
4553/*
4554 * make the item pointed to by the path smaller. new_size indicates
4555 * how small to make it, and from_end tells us if we just chop bytes
4556 * off the end of the item or if we shift the item to chop bytes off
4557 * the front.
4558 */
2ff7e61e
JM
4559void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4560 struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4561{
b18c6685 4562 int slot;
5f39d397
CM
4563 struct extent_buffer *leaf;
4564 struct btrfs_item *item;
b18c6685
CM
4565 u32 nritems;
4566 unsigned int data_end;
4567 unsigned int old_data_start;
4568 unsigned int old_size;
4569 unsigned int size_diff;
4570 int i;
cfed81a0
CM
4571 struct btrfs_map_token token;
4572
4573 btrfs_init_map_token(&token);
b18c6685 4574
5f39d397 4575 leaf = path->nodes[0];
179e29e4
CM
4576 slot = path->slots[0];
4577
4578 old_size = btrfs_item_size_nr(leaf, slot);
4579 if (old_size == new_size)
143bede5 4580 return;
b18c6685 4581
5f39d397 4582 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4583 data_end = leaf_data_end(fs_info, leaf);
b18c6685 4584
5f39d397 4585 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4586
b18c6685
CM
4587 size_diff = old_size - new_size;
4588
4589 BUG_ON(slot < 0);
4590 BUG_ON(slot >= nritems);
4591
4592 /*
4593 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4594 */
4595 /* first correct the data pointers */
4596 for (i = slot; i < nritems; i++) {
5f39d397 4597 u32 ioff;
dd3cc16b 4598 item = btrfs_item_nr(i);
db94535d 4599
cfed81a0
CM
4600 ioff = btrfs_token_item_offset(leaf, item, &token);
4601 btrfs_set_token_item_offset(leaf, item,
4602 ioff + size_diff, &token);
b18c6685 4603 }
db94535d 4604
b18c6685 4605 /* shift the data */
179e29e4 4606 if (from_end) {
3d9ec8c4
NB
4607 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4608 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4609 data_end, old_data_start + new_size - data_end);
4610 } else {
4611 struct btrfs_disk_key disk_key;
4612 u64 offset;
4613
4614 btrfs_item_key(leaf, &disk_key, slot);
4615
4616 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4617 unsigned long ptr;
4618 struct btrfs_file_extent_item *fi;
4619
4620 fi = btrfs_item_ptr(leaf, slot,
4621 struct btrfs_file_extent_item);
4622 fi = (struct btrfs_file_extent_item *)(
4623 (unsigned long)fi - size_diff);
4624
4625 if (btrfs_file_extent_type(leaf, fi) ==
4626 BTRFS_FILE_EXTENT_INLINE) {
4627 ptr = btrfs_item_ptr_offset(leaf, slot);
4628 memmove_extent_buffer(leaf, ptr,
d397712b 4629 (unsigned long)fi,
7ec20afb 4630 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4631 }
4632 }
4633
3d9ec8c4
NB
4634 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4635 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4636 data_end, old_data_start - data_end);
4637
4638 offset = btrfs_disk_key_offset(&disk_key);
4639 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4640 btrfs_set_item_key(leaf, &disk_key, slot);
4641 if (slot == 0)
0b246afa 4642 fixup_low_keys(fs_info, path, &disk_key, 1);
179e29e4 4643 }
5f39d397 4644
dd3cc16b 4645 item = btrfs_item_nr(slot);
5f39d397
CM
4646 btrfs_set_item_size(leaf, item, new_size);
4647 btrfs_mark_buffer_dirty(leaf);
b18c6685 4648
2ff7e61e 4649 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4650 btrfs_print_leaf(leaf);
b18c6685 4651 BUG();
5f39d397 4652 }
b18c6685
CM
4653}
4654
d352ac68 4655/*
8f69dbd2 4656 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4657 */
2ff7e61e 4658void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
143bede5 4659 u32 data_size)
6567e837 4660{
6567e837 4661 int slot;
5f39d397
CM
4662 struct extent_buffer *leaf;
4663 struct btrfs_item *item;
6567e837
CM
4664 u32 nritems;
4665 unsigned int data_end;
4666 unsigned int old_data;
4667 unsigned int old_size;
4668 int i;
cfed81a0
CM
4669 struct btrfs_map_token token;
4670
4671 btrfs_init_map_token(&token);
6567e837 4672
5f39d397 4673 leaf = path->nodes[0];
6567e837 4674
5f39d397 4675 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4676 data_end = leaf_data_end(fs_info, leaf);
6567e837 4677
2ff7e61e 4678 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
a4f78750 4679 btrfs_print_leaf(leaf);
6567e837 4680 BUG();
5f39d397 4681 }
6567e837 4682 slot = path->slots[0];
5f39d397 4683 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4684
4685 BUG_ON(slot < 0);
3326d1b0 4686 if (slot >= nritems) {
a4f78750 4687 btrfs_print_leaf(leaf);
0b246afa
JM
4688 btrfs_crit(fs_info, "slot %d too large, nritems %d",
4689 slot, nritems);
3326d1b0
CM
4690 BUG_ON(1);
4691 }
6567e837
CM
4692
4693 /*
4694 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4695 */
4696 /* first correct the data pointers */
4697 for (i = slot; i < nritems; i++) {
5f39d397 4698 u32 ioff;
dd3cc16b 4699 item = btrfs_item_nr(i);
db94535d 4700
cfed81a0
CM
4701 ioff = btrfs_token_item_offset(leaf, item, &token);
4702 btrfs_set_token_item_offset(leaf, item,
4703 ioff - data_size, &token);
6567e837 4704 }
5f39d397 4705
6567e837 4706 /* shift the data */
3d9ec8c4
NB
4707 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4708 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4709 data_end, old_data - data_end);
5f39d397 4710
6567e837 4711 data_end = old_data;
5f39d397 4712 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4713 item = btrfs_item_nr(slot);
5f39d397
CM
4714 btrfs_set_item_size(leaf, item, old_size + data_size);
4715 btrfs_mark_buffer_dirty(leaf);
6567e837 4716
2ff7e61e 4717 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4718 btrfs_print_leaf(leaf);
6567e837 4719 BUG();
5f39d397 4720 }
6567e837
CM
4721}
4722
74123bd7 4723/*
44871b1b
CM
4724 * this is a helper for btrfs_insert_empty_items, the main goal here is
4725 * to save stack depth by doing the bulk of the work in a function
4726 * that doesn't call btrfs_search_slot
74123bd7 4727 */
afe5fea7 4728void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4729 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4730 u32 total_data, u32 total_size, int nr)
be0e5c09 4731{
0b246afa 4732 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4733 struct btrfs_item *item;
9c58309d 4734 int i;
7518a238 4735 u32 nritems;
be0e5c09 4736 unsigned int data_end;
e2fa7227 4737 struct btrfs_disk_key disk_key;
44871b1b
CM
4738 struct extent_buffer *leaf;
4739 int slot;
cfed81a0
CM
4740 struct btrfs_map_token token;
4741
24cdc847
FM
4742 if (path->slots[0] == 0) {
4743 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
0b246afa 4744 fixup_low_keys(fs_info, path, &disk_key, 1);
24cdc847
FM
4745 }
4746 btrfs_unlock_up_safe(path, 1);
4747
cfed81a0 4748 btrfs_init_map_token(&token);
e2fa7227 4749
5f39d397 4750 leaf = path->nodes[0];
44871b1b 4751 slot = path->slots[0];
74123bd7 4752
5f39d397 4753 nritems = btrfs_header_nritems(leaf);
2ff7e61e 4754 data_end = leaf_data_end(fs_info, leaf);
eb60ceac 4755
2ff7e61e 4756 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
a4f78750 4757 btrfs_print_leaf(leaf);
0b246afa 4758 btrfs_crit(fs_info, "not enough freespace need %u have %d",
2ff7e61e 4759 total_size, btrfs_leaf_free_space(fs_info, leaf));
be0e5c09 4760 BUG();
d4dbff95 4761 }
5f39d397 4762
be0e5c09 4763 if (slot != nritems) {
5f39d397 4764 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4765
5f39d397 4766 if (old_data < data_end) {
a4f78750 4767 btrfs_print_leaf(leaf);
0b246afa 4768 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4769 slot, old_data, data_end);
5f39d397
CM
4770 BUG_ON(1);
4771 }
be0e5c09
CM
4772 /*
4773 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4774 */
4775 /* first correct the data pointers */
0783fcfc 4776 for (i = slot; i < nritems; i++) {
5f39d397 4777 u32 ioff;
db94535d 4778
62e85577 4779 item = btrfs_item_nr(i);
cfed81a0
CM
4780 ioff = btrfs_token_item_offset(leaf, item, &token);
4781 btrfs_set_token_item_offset(leaf, item,
4782 ioff - total_data, &token);
0783fcfc 4783 }
be0e5c09 4784 /* shift the items */
9c58309d 4785 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4786 btrfs_item_nr_offset(slot),
d6025579 4787 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4788
4789 /* shift the data */
3d9ec8c4
NB
4790 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4791 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4792 data_end, old_data - data_end);
be0e5c09
CM
4793 data_end = old_data;
4794 }
5f39d397 4795
62e2749e 4796 /* setup the item for the new data */
9c58309d
CM
4797 for (i = 0; i < nr; i++) {
4798 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4799 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4800 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4801 btrfs_set_token_item_offset(leaf, item,
4802 data_end - data_size[i], &token);
9c58309d 4803 data_end -= data_size[i];
cfed81a0 4804 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4805 }
44871b1b 4806
9c58309d 4807 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4808 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4809
2ff7e61e 4810 if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
a4f78750 4811 btrfs_print_leaf(leaf);
be0e5c09 4812 BUG();
5f39d397 4813 }
44871b1b
CM
4814}
4815
4816/*
4817 * Given a key and some data, insert items into the tree.
4818 * This does all the path init required, making room in the tree if needed.
4819 */
4820int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4821 struct btrfs_root *root,
4822 struct btrfs_path *path,
310712b2 4823 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4824 int nr)
4825{
44871b1b
CM
4826 int ret = 0;
4827 int slot;
4828 int i;
4829 u32 total_size = 0;
4830 u32 total_data = 0;
4831
4832 for (i = 0; i < nr; i++)
4833 total_data += data_size[i];
4834
4835 total_size = total_data + (nr * sizeof(struct btrfs_item));
4836 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4837 if (ret == 0)
4838 return -EEXIST;
4839 if (ret < 0)
143bede5 4840 return ret;
44871b1b 4841
44871b1b
CM
4842 slot = path->slots[0];
4843 BUG_ON(slot < 0);
4844
afe5fea7 4845 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4846 total_data, total_size, nr);
143bede5 4847 return 0;
62e2749e
CM
4848}
4849
4850/*
4851 * Given a key and some data, insert an item into the tree.
4852 * This does all the path init required, making room in the tree if needed.
4853 */
310712b2
OS
4854int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4855 const struct btrfs_key *cpu_key, void *data,
4856 u32 data_size)
62e2749e
CM
4857{
4858 int ret = 0;
2c90e5d6 4859 struct btrfs_path *path;
5f39d397
CM
4860 struct extent_buffer *leaf;
4861 unsigned long ptr;
62e2749e 4862
2c90e5d6 4863 path = btrfs_alloc_path();
db5b493a
TI
4864 if (!path)
4865 return -ENOMEM;
2c90e5d6 4866 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4867 if (!ret) {
5f39d397
CM
4868 leaf = path->nodes[0];
4869 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4870 write_extent_buffer(leaf, data, ptr, data_size);
4871 btrfs_mark_buffer_dirty(leaf);
62e2749e 4872 }
2c90e5d6 4873 btrfs_free_path(path);
aa5d6bed 4874 return ret;
be0e5c09
CM
4875}
4876
74123bd7 4877/*
5de08d7d 4878 * delete the pointer from a given node.
74123bd7 4879 *
d352ac68
CM
4880 * the tree should have been previously balanced so the deletion does not
4881 * empty a node.
74123bd7 4882 */
afe5fea7
TI
4883static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4884 int level, int slot)
be0e5c09 4885{
0b246afa 4886 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4887 struct extent_buffer *parent = path->nodes[level];
7518a238 4888 u32 nritems;
f3ea38da 4889 int ret;
be0e5c09 4890
5f39d397 4891 nritems = btrfs_header_nritems(parent);
d397712b 4892 if (slot != nritems - 1) {
bf1d3425
DS
4893 if (level) {
4894 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
a446a979 4895 nritems - slot - 1);
bf1d3425
DS
4896 BUG_ON(ret < 0);
4897 }
5f39d397
CM
4898 memmove_extent_buffer(parent,
4899 btrfs_node_key_ptr_offset(slot),
4900 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4901 sizeof(struct btrfs_key_ptr) *
4902 (nritems - slot - 1));
57ba86c0 4903 } else if (level) {
e09c2efe
DS
4904 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4905 GFP_NOFS);
57ba86c0 4906 BUG_ON(ret < 0);
bb803951 4907 }
f3ea38da 4908
7518a238 4909 nritems--;
5f39d397 4910 btrfs_set_header_nritems(parent, nritems);
7518a238 4911 if (nritems == 0 && parent == root->node) {
5f39d397 4912 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4913 /* just turn the root into a leaf and break */
5f39d397 4914 btrfs_set_header_level(root->node, 0);
bb803951 4915 } else if (slot == 0) {
5f39d397
CM
4916 struct btrfs_disk_key disk_key;
4917
4918 btrfs_node_key(parent, &disk_key, 0);
0b246afa 4919 fixup_low_keys(fs_info, path, &disk_key, level + 1);
be0e5c09 4920 }
d6025579 4921 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4922}
4923
323ac95b
CM
4924/*
4925 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4926 * path->nodes[1].
323ac95b
CM
4927 *
4928 * This deletes the pointer in path->nodes[1] and frees the leaf
4929 * block extent. zero is returned if it all worked out, < 0 otherwise.
4930 *
4931 * The path must have already been setup for deleting the leaf, including
4932 * all the proper balancing. path->nodes[1] must be locked.
4933 */
143bede5
JM
4934static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4935 struct btrfs_root *root,
4936 struct btrfs_path *path,
4937 struct extent_buffer *leaf)
323ac95b 4938{
5d4f98a2 4939 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4940 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4941
4d081c41
CM
4942 /*
4943 * btrfs_free_extent is expensive, we want to make sure we
4944 * aren't holding any locks when we call it
4945 */
4946 btrfs_unlock_up_safe(path, 0);
4947
f0486c68
YZ
4948 root_sub_used(root, leaf->len);
4949
3083ee2e 4950 extent_buffer_get(leaf);
5581a51a 4951 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4952 free_extent_buffer_stale(leaf);
323ac95b 4953}
74123bd7
CM
4954/*
4955 * delete the item at the leaf level in path. If that empties
4956 * the leaf, remove it from the tree
4957 */
85e21bac
CM
4958int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4959 struct btrfs_path *path, int slot, int nr)
be0e5c09 4960{
0b246afa 4961 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4962 struct extent_buffer *leaf;
4963 struct btrfs_item *item;
ce0eac2a
AM
4964 u32 last_off;
4965 u32 dsize = 0;
aa5d6bed
CM
4966 int ret = 0;
4967 int wret;
85e21bac 4968 int i;
7518a238 4969 u32 nritems;
cfed81a0
CM
4970 struct btrfs_map_token token;
4971
4972 btrfs_init_map_token(&token);
be0e5c09 4973
5f39d397 4974 leaf = path->nodes[0];
85e21bac
CM
4975 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4976
4977 for (i = 0; i < nr; i++)
4978 dsize += btrfs_item_size_nr(leaf, slot + i);
4979
5f39d397 4980 nritems = btrfs_header_nritems(leaf);
be0e5c09 4981
85e21bac 4982 if (slot + nr != nritems) {
2ff7e61e 4983 int data_end = leaf_data_end(fs_info, leaf);
5f39d397 4984
3d9ec8c4 4985 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 4986 data_end + dsize,
3d9ec8c4 4987 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 4988 last_off - data_end);
5f39d397 4989
85e21bac 4990 for (i = slot + nr; i < nritems; i++) {
5f39d397 4991 u32 ioff;
db94535d 4992
dd3cc16b 4993 item = btrfs_item_nr(i);
cfed81a0
CM
4994 ioff = btrfs_token_item_offset(leaf, item, &token);
4995 btrfs_set_token_item_offset(leaf, item,
4996 ioff + dsize, &token);
0783fcfc 4997 }
db94535d 4998
5f39d397 4999 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 5000 btrfs_item_nr_offset(slot + nr),
d6025579 5001 sizeof(struct btrfs_item) *
85e21bac 5002 (nritems - slot - nr));
be0e5c09 5003 }
85e21bac
CM
5004 btrfs_set_header_nritems(leaf, nritems - nr);
5005 nritems -= nr;
5f39d397 5006
74123bd7 5007 /* delete the leaf if we've emptied it */
7518a238 5008 if (nritems == 0) {
5f39d397
CM
5009 if (leaf == root->node) {
5010 btrfs_set_header_level(leaf, 0);
9a8dd150 5011 } else {
f0486c68 5012 btrfs_set_path_blocking(path);
7c302b49 5013 clean_tree_block(fs_info, leaf);
143bede5 5014 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5015 }
be0e5c09 5016 } else {
7518a238 5017 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5018 if (slot == 0) {
5f39d397
CM
5019 struct btrfs_disk_key disk_key;
5020
5021 btrfs_item_key(leaf, &disk_key, 0);
0b246afa 5022 fixup_low_keys(fs_info, path, &disk_key, 1);
aa5d6bed 5023 }
aa5d6bed 5024
74123bd7 5025 /* delete the leaf if it is mostly empty */
0b246afa 5026 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
5027 /* push_leaf_left fixes the path.
5028 * make sure the path still points to our leaf
5029 * for possible call to del_ptr below
5030 */
4920c9ac 5031 slot = path->slots[1];
5f39d397
CM
5032 extent_buffer_get(leaf);
5033
b9473439 5034 btrfs_set_path_blocking(path);
99d8f83c
CM
5035 wret = push_leaf_left(trans, root, path, 1, 1,
5036 1, (u32)-1);
54aa1f4d 5037 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5038 ret = wret;
5f39d397
CM
5039
5040 if (path->nodes[0] == leaf &&
5041 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5042 wret = push_leaf_right(trans, root, path, 1,
5043 1, 1, 0);
54aa1f4d 5044 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5045 ret = wret;
5046 }
5f39d397
CM
5047
5048 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5049 path->slots[1] = slot;
143bede5 5050 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5051 free_extent_buffer(leaf);
143bede5 5052 ret = 0;
5de08d7d 5053 } else {
925baedd
CM
5054 /* if we're still in the path, make sure
5055 * we're dirty. Otherwise, one of the
5056 * push_leaf functions must have already
5057 * dirtied this buffer
5058 */
5059 if (path->nodes[0] == leaf)
5060 btrfs_mark_buffer_dirty(leaf);
5f39d397 5061 free_extent_buffer(leaf);
be0e5c09 5062 }
d5719762 5063 } else {
5f39d397 5064 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5065 }
5066 }
aa5d6bed 5067 return ret;
be0e5c09
CM
5068}
5069
7bb86316 5070/*
925baedd 5071 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5072 * returns 0 if it found something or 1 if there are no lesser leaves.
5073 * returns < 0 on io errors.
d352ac68
CM
5074 *
5075 * This may release the path, and so you may lose any locks held at the
5076 * time you call it.
7bb86316 5077 */
16e7549f 5078int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5079{
925baedd
CM
5080 struct btrfs_key key;
5081 struct btrfs_disk_key found_key;
5082 int ret;
7bb86316 5083
925baedd 5084 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5085
e8b0d724 5086 if (key.offset > 0) {
925baedd 5087 key.offset--;
e8b0d724 5088 } else if (key.type > 0) {
925baedd 5089 key.type--;
e8b0d724
FDBM
5090 key.offset = (u64)-1;
5091 } else if (key.objectid > 0) {
925baedd 5092 key.objectid--;
e8b0d724
FDBM
5093 key.type = (u8)-1;
5094 key.offset = (u64)-1;
5095 } else {
925baedd 5096 return 1;
e8b0d724 5097 }
7bb86316 5098
b3b4aa74 5099 btrfs_release_path(path);
925baedd
CM
5100 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5101 if (ret < 0)
5102 return ret;
5103 btrfs_item_key(path->nodes[0], &found_key, 0);
5104 ret = comp_keys(&found_key, &key);
337c6f68
FM
5105 /*
5106 * We might have had an item with the previous key in the tree right
5107 * before we released our path. And after we released our path, that
5108 * item might have been pushed to the first slot (0) of the leaf we
5109 * were holding due to a tree balance. Alternatively, an item with the
5110 * previous key can exist as the only element of a leaf (big fat item).
5111 * Therefore account for these 2 cases, so that our callers (like
5112 * btrfs_previous_item) don't miss an existing item with a key matching
5113 * the previous key we computed above.
5114 */
5115 if (ret <= 0)
925baedd
CM
5116 return 0;
5117 return 1;
7bb86316
CM
5118}
5119
3f157a2f
CM
5120/*
5121 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5122 * for nodes or leaves that are have a minimum transaction id.
5123 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5124 *
5125 * This does not cow, but it does stuff the starting key it finds back
5126 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5127 * key and get a writable path.
5128 *
3f157a2f
CM
5129 * This honors path->lowest_level to prevent descent past a given level
5130 * of the tree.
5131 *
d352ac68
CM
5132 * min_trans indicates the oldest transaction that you are interested
5133 * in walking through. Any nodes or leaves older than min_trans are
5134 * skipped over (without reading them).
5135 *
3f157a2f
CM
5136 * returns zero if something useful was found, < 0 on error and 1 if there
5137 * was nothing in the tree that matched the search criteria.
5138 */
5139int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5140 struct btrfs_path *path,
3f157a2f
CM
5141 u64 min_trans)
5142{
2ff7e61e 5143 struct btrfs_fs_info *fs_info = root->fs_info;
3f157a2f
CM
5144 struct extent_buffer *cur;
5145 struct btrfs_key found_key;
5146 int slot;
9652480b 5147 int sret;
3f157a2f
CM
5148 u32 nritems;
5149 int level;
5150 int ret = 1;
f98de9b9 5151 int keep_locks = path->keep_locks;
3f157a2f 5152
f98de9b9 5153 path->keep_locks = 1;
3f157a2f 5154again:
bd681513 5155 cur = btrfs_read_lock_root_node(root);
3f157a2f 5156 level = btrfs_header_level(cur);
e02119d5 5157 WARN_ON(path->nodes[level]);
3f157a2f 5158 path->nodes[level] = cur;
bd681513 5159 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5160
5161 if (btrfs_header_generation(cur) < min_trans) {
5162 ret = 1;
5163 goto out;
5164 }
d397712b 5165 while (1) {
3f157a2f
CM
5166 nritems = btrfs_header_nritems(cur);
5167 level = btrfs_header_level(cur);
a74b35ec 5168 sret = btrfs_bin_search(cur, min_key, level, &slot);
3f157a2f 5169
323ac95b
CM
5170 /* at the lowest level, we're done, setup the path and exit */
5171 if (level == path->lowest_level) {
e02119d5
CM
5172 if (slot >= nritems)
5173 goto find_next_key;
3f157a2f
CM
5174 ret = 0;
5175 path->slots[level] = slot;
5176 btrfs_item_key_to_cpu(cur, &found_key, slot);
5177 goto out;
5178 }
9652480b
Y
5179 if (sret && slot > 0)
5180 slot--;
3f157a2f 5181 /*
de78b51a
ES
5182 * check this node pointer against the min_trans parameters.
5183 * If it is too old, old, skip to the next one.
3f157a2f 5184 */
d397712b 5185 while (slot < nritems) {
3f157a2f 5186 u64 gen;
e02119d5 5187
3f157a2f
CM
5188 gen = btrfs_node_ptr_generation(cur, slot);
5189 if (gen < min_trans) {
5190 slot++;
5191 continue;
5192 }
de78b51a 5193 break;
3f157a2f 5194 }
e02119d5 5195find_next_key:
3f157a2f
CM
5196 /*
5197 * we didn't find a candidate key in this node, walk forward
5198 * and find another one
5199 */
5200 if (slot >= nritems) {
e02119d5 5201 path->slots[level] = slot;
b4ce94de 5202 btrfs_set_path_blocking(path);
e02119d5 5203 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5204 min_trans);
e02119d5 5205 if (sret == 0) {
b3b4aa74 5206 btrfs_release_path(path);
3f157a2f
CM
5207 goto again;
5208 } else {
5209 goto out;
5210 }
5211 }
5212 /* save our key for returning back */
5213 btrfs_node_key_to_cpu(cur, &found_key, slot);
5214 path->slots[level] = slot;
5215 if (level == path->lowest_level) {
5216 ret = 0;
3f157a2f
CM
5217 goto out;
5218 }
b4ce94de 5219 btrfs_set_path_blocking(path);
2ff7e61e 5220 cur = read_node_slot(fs_info, cur, slot);
fb770ae4
LB
5221 if (IS_ERR(cur)) {
5222 ret = PTR_ERR(cur);
5223 goto out;
5224 }
3f157a2f 5225
bd681513 5226 btrfs_tree_read_lock(cur);
b4ce94de 5227
bd681513 5228 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5229 path->nodes[level - 1] = cur;
f7c79f30 5230 unlock_up(path, level, 1, 0, NULL);
bd681513 5231 btrfs_clear_path_blocking(path, NULL, 0);
3f157a2f
CM
5232 }
5233out:
f98de9b9
FM
5234 path->keep_locks = keep_locks;
5235 if (ret == 0) {
5236 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5237 btrfs_set_path_blocking(path);
3f157a2f 5238 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5239 }
3f157a2f
CM
5240 return ret;
5241}
5242
2ff7e61e 5243static int tree_move_down(struct btrfs_fs_info *fs_info,
7069830a 5244 struct btrfs_path *path,
ab6a43e1 5245 int *level)
7069830a 5246{
fb770ae4
LB
5247 struct extent_buffer *eb;
5248
74dd17fb 5249 BUG_ON(*level == 0);
2ff7e61e 5250 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
fb770ae4
LB
5251 if (IS_ERR(eb))
5252 return PTR_ERR(eb);
5253
5254 path->nodes[*level - 1] = eb;
7069830a
AB
5255 path->slots[*level - 1] = 0;
5256 (*level)--;
fb770ae4 5257 return 0;
7069830a
AB
5258}
5259
f1e30261 5260static int tree_move_next_or_upnext(struct btrfs_path *path,
7069830a
AB
5261 int *level, int root_level)
5262{
5263 int ret = 0;
5264 int nritems;
5265 nritems = btrfs_header_nritems(path->nodes[*level]);
5266
5267 path->slots[*level]++;
5268
74dd17fb 5269 while (path->slots[*level] >= nritems) {
7069830a
AB
5270 if (*level == root_level)
5271 return -1;
5272
5273 /* move upnext */
5274 path->slots[*level] = 0;
5275 free_extent_buffer(path->nodes[*level]);
5276 path->nodes[*level] = NULL;
5277 (*level)++;
5278 path->slots[*level]++;
5279
5280 nritems = btrfs_header_nritems(path->nodes[*level]);
5281 ret = 1;
5282 }
5283 return ret;
5284}
5285
5286/*
5287 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5288 * or down.
5289 */
2ff7e61e 5290static int tree_advance(struct btrfs_fs_info *fs_info,
7069830a
AB
5291 struct btrfs_path *path,
5292 int *level, int root_level,
5293 int allow_down,
5294 struct btrfs_key *key)
5295{
5296 int ret;
5297
5298 if (*level == 0 || !allow_down) {
f1e30261 5299 ret = tree_move_next_or_upnext(path, level, root_level);
7069830a 5300 } else {
ab6a43e1 5301 ret = tree_move_down(fs_info, path, level);
7069830a
AB
5302 }
5303 if (ret >= 0) {
5304 if (*level == 0)
5305 btrfs_item_key_to_cpu(path->nodes[*level], key,
5306 path->slots[*level]);
5307 else
5308 btrfs_node_key_to_cpu(path->nodes[*level], key,
5309 path->slots[*level]);
5310 }
5311 return ret;
5312}
5313
2ff7e61e 5314static int tree_compare_item(struct btrfs_path *left_path,
7069830a
AB
5315 struct btrfs_path *right_path,
5316 char *tmp_buf)
5317{
5318 int cmp;
5319 int len1, len2;
5320 unsigned long off1, off2;
5321
5322 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5323 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5324 if (len1 != len2)
5325 return 1;
5326
5327 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5328 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5329 right_path->slots[0]);
5330
5331 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5332
5333 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5334 if (cmp)
5335 return 1;
5336 return 0;
5337}
5338
5339#define ADVANCE 1
5340#define ADVANCE_ONLY_NEXT -1
5341
5342/*
5343 * This function compares two trees and calls the provided callback for
5344 * every changed/new/deleted item it finds.
5345 * If shared tree blocks are encountered, whole subtrees are skipped, making
5346 * the compare pretty fast on snapshotted subvolumes.
5347 *
5348 * This currently works on commit roots only. As commit roots are read only,
5349 * we don't do any locking. The commit roots are protected with transactions.
5350 * Transactions are ended and rejoined when a commit is tried in between.
5351 *
5352 * This function checks for modifications done to the trees while comparing.
5353 * If it detects a change, it aborts immediately.
5354 */
5355int btrfs_compare_trees(struct btrfs_root *left_root,
5356 struct btrfs_root *right_root,
5357 btrfs_changed_cb_t changed_cb, void *ctx)
5358{
0b246afa 5359 struct btrfs_fs_info *fs_info = left_root->fs_info;
7069830a
AB
5360 int ret;
5361 int cmp;
7069830a
AB
5362 struct btrfs_path *left_path = NULL;
5363 struct btrfs_path *right_path = NULL;
5364 struct btrfs_key left_key;
5365 struct btrfs_key right_key;
5366 char *tmp_buf = NULL;
5367 int left_root_level;
5368 int right_root_level;
5369 int left_level;
5370 int right_level;
5371 int left_end_reached;
5372 int right_end_reached;
5373 int advance_left;
5374 int advance_right;
5375 u64 left_blockptr;
5376 u64 right_blockptr;
6baa4293
FM
5377 u64 left_gen;
5378 u64 right_gen;
7069830a
AB
5379
5380 left_path = btrfs_alloc_path();
5381 if (!left_path) {
5382 ret = -ENOMEM;
5383 goto out;
5384 }
5385 right_path = btrfs_alloc_path();
5386 if (!right_path) {
5387 ret = -ENOMEM;
5388 goto out;
5389 }
5390
752ade68 5391 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7069830a 5392 if (!tmp_buf) {
752ade68
MH
5393 ret = -ENOMEM;
5394 goto out;
7069830a
AB
5395 }
5396
5397 left_path->search_commit_root = 1;
5398 left_path->skip_locking = 1;
5399 right_path->search_commit_root = 1;
5400 right_path->skip_locking = 1;
5401
7069830a
AB
5402 /*
5403 * Strategy: Go to the first items of both trees. Then do
5404 *
5405 * If both trees are at level 0
5406 * Compare keys of current items
5407 * If left < right treat left item as new, advance left tree
5408 * and repeat
5409 * If left > right treat right item as deleted, advance right tree
5410 * and repeat
5411 * If left == right do deep compare of items, treat as changed if
5412 * needed, advance both trees and repeat
5413 * If both trees are at the same level but not at level 0
5414 * Compare keys of current nodes/leafs
5415 * If left < right advance left tree and repeat
5416 * If left > right advance right tree and repeat
5417 * If left == right compare blockptrs of the next nodes/leafs
5418 * If they match advance both trees but stay at the same level
5419 * and repeat
5420 * If they don't match advance both trees while allowing to go
5421 * deeper and repeat
5422 * If tree levels are different
5423 * Advance the tree that needs it and repeat
5424 *
5425 * Advancing a tree means:
5426 * If we are at level 0, try to go to the next slot. If that's not
5427 * possible, go one level up and repeat. Stop when we found a level
5428 * where we could go to the next slot. We may at this point be on a
5429 * node or a leaf.
5430 *
5431 * If we are not at level 0 and not on shared tree blocks, go one
5432 * level deeper.
5433 *
5434 * If we are not at level 0 and on shared tree blocks, go one slot to
5435 * the right if possible or go up and right.
5436 */
5437
0b246afa 5438 down_read(&fs_info->commit_root_sem);
7069830a
AB
5439 left_level = btrfs_header_level(left_root->commit_root);
5440 left_root_level = left_level;
6f2f0b39
RK
5441 left_path->nodes[left_level] =
5442 btrfs_clone_extent_buffer(left_root->commit_root);
5443 if (!left_path->nodes[left_level]) {
5444 up_read(&fs_info->commit_root_sem);
5445 ret = -ENOMEM;
5446 goto out;
5447 }
7069830a
AB
5448 extent_buffer_get(left_path->nodes[left_level]);
5449
5450 right_level = btrfs_header_level(right_root->commit_root);
5451 right_root_level = right_level;
6f2f0b39
RK
5452 right_path->nodes[right_level] =
5453 btrfs_clone_extent_buffer(right_root->commit_root);
5454 if (!right_path->nodes[right_level]) {
5455 up_read(&fs_info->commit_root_sem);
5456 ret = -ENOMEM;
5457 goto out;
5458 }
7069830a 5459 extent_buffer_get(right_path->nodes[right_level]);
0b246afa 5460 up_read(&fs_info->commit_root_sem);
7069830a
AB
5461
5462 if (left_level == 0)
5463 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5464 &left_key, left_path->slots[left_level]);
5465 else
5466 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5467 &left_key, left_path->slots[left_level]);
5468 if (right_level == 0)
5469 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5470 &right_key, right_path->slots[right_level]);
5471 else
5472 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5473 &right_key, right_path->slots[right_level]);
5474
5475 left_end_reached = right_end_reached = 0;
5476 advance_left = advance_right = 0;
5477
5478 while (1) {
7069830a 5479 if (advance_left && !left_end_reached) {
2ff7e61e 5480 ret = tree_advance(fs_info, left_path, &left_level,
7069830a
AB
5481 left_root_level,
5482 advance_left != ADVANCE_ONLY_NEXT,
5483 &left_key);
fb770ae4 5484 if (ret == -1)
7069830a 5485 left_end_reached = ADVANCE;
fb770ae4
LB
5486 else if (ret < 0)
5487 goto out;
7069830a
AB
5488 advance_left = 0;
5489 }
5490 if (advance_right && !right_end_reached) {
2ff7e61e 5491 ret = tree_advance(fs_info, right_path, &right_level,
7069830a
AB
5492 right_root_level,
5493 advance_right != ADVANCE_ONLY_NEXT,
5494 &right_key);
fb770ae4 5495 if (ret == -1)
7069830a 5496 right_end_reached = ADVANCE;
fb770ae4
LB
5497 else if (ret < 0)
5498 goto out;
7069830a
AB
5499 advance_right = 0;
5500 }
5501
5502 if (left_end_reached && right_end_reached) {
5503 ret = 0;
5504 goto out;
5505 } else if (left_end_reached) {
5506 if (right_level == 0) {
ee8c494f 5507 ret = changed_cb(left_path, right_path,
7069830a
AB
5508 &right_key,
5509 BTRFS_COMPARE_TREE_DELETED,
5510 ctx);
5511 if (ret < 0)
5512 goto out;
5513 }
5514 advance_right = ADVANCE;
5515 continue;
5516 } else if (right_end_reached) {
5517 if (left_level == 0) {
ee8c494f 5518 ret = changed_cb(left_path, right_path,
7069830a
AB
5519 &left_key,
5520 BTRFS_COMPARE_TREE_NEW,
5521 ctx);
5522 if (ret < 0)
5523 goto out;
5524 }
5525 advance_left = ADVANCE;
5526 continue;
5527 }
5528
5529 if (left_level == 0 && right_level == 0) {
5530 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5531 if (cmp < 0) {
ee8c494f 5532 ret = changed_cb(left_path, right_path,
7069830a
AB
5533 &left_key,
5534 BTRFS_COMPARE_TREE_NEW,
5535 ctx);
5536 if (ret < 0)
5537 goto out;
5538 advance_left = ADVANCE;
5539 } else if (cmp > 0) {
ee8c494f 5540 ret = changed_cb(left_path, right_path,
7069830a
AB
5541 &right_key,
5542 BTRFS_COMPARE_TREE_DELETED,
5543 ctx);
5544 if (ret < 0)
5545 goto out;
5546 advance_right = ADVANCE;
5547 } else {
b99d9a6a 5548 enum btrfs_compare_tree_result result;
ba5e8f2e 5549
74dd17fb 5550 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
2ff7e61e
JM
5551 ret = tree_compare_item(left_path, right_path,
5552 tmp_buf);
ba5e8f2e 5553 if (ret)
b99d9a6a 5554 result = BTRFS_COMPARE_TREE_CHANGED;
ba5e8f2e 5555 else
b99d9a6a 5556 result = BTRFS_COMPARE_TREE_SAME;
ee8c494f 5557 ret = changed_cb(left_path, right_path,
b99d9a6a 5558 &left_key, result, ctx);
ba5e8f2e
JB
5559 if (ret < 0)
5560 goto out;
7069830a
AB
5561 advance_left = ADVANCE;
5562 advance_right = ADVANCE;
5563 }
5564 } else if (left_level == right_level) {
5565 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5566 if (cmp < 0) {
5567 advance_left = ADVANCE;
5568 } else if (cmp > 0) {
5569 advance_right = ADVANCE;
5570 } else {
5571 left_blockptr = btrfs_node_blockptr(
5572 left_path->nodes[left_level],
5573 left_path->slots[left_level]);
5574 right_blockptr = btrfs_node_blockptr(
5575 right_path->nodes[right_level],
5576 right_path->slots[right_level]);
6baa4293
FM
5577 left_gen = btrfs_node_ptr_generation(
5578 left_path->nodes[left_level],
5579 left_path->slots[left_level]);
5580 right_gen = btrfs_node_ptr_generation(
5581 right_path->nodes[right_level],
5582 right_path->slots[right_level]);
5583 if (left_blockptr == right_blockptr &&
5584 left_gen == right_gen) {
7069830a
AB
5585 /*
5586 * As we're on a shared block, don't
5587 * allow to go deeper.
5588 */
5589 advance_left = ADVANCE_ONLY_NEXT;
5590 advance_right = ADVANCE_ONLY_NEXT;
5591 } else {
5592 advance_left = ADVANCE;
5593 advance_right = ADVANCE;
5594 }
5595 }
5596 } else if (left_level < right_level) {
5597 advance_right = ADVANCE;
5598 } else {
5599 advance_left = ADVANCE;
5600 }
5601 }
5602
5603out:
5604 btrfs_free_path(left_path);
5605 btrfs_free_path(right_path);
8f282f71 5606 kvfree(tmp_buf);
7069830a
AB
5607 return ret;
5608}
5609
3f157a2f
CM
5610/*
5611 * this is similar to btrfs_next_leaf, but does not try to preserve
5612 * and fixup the path. It looks for and returns the next key in the
de78b51a 5613 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5614 *
5615 * 0 is returned if another key is found, < 0 if there are any errors
5616 * and 1 is returned if there are no higher keys in the tree
5617 *
5618 * path->keep_locks should be set to 1 on the search made before
5619 * calling this function.
5620 */
e7a84565 5621int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5622 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5623{
e7a84565
CM
5624 int slot;
5625 struct extent_buffer *c;
5626
934d375b 5627 WARN_ON(!path->keep_locks);
d397712b 5628 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5629 if (!path->nodes[level])
5630 return 1;
5631
5632 slot = path->slots[level] + 1;
5633 c = path->nodes[level];
3f157a2f 5634next:
e7a84565 5635 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5636 int ret;
5637 int orig_lowest;
5638 struct btrfs_key cur_key;
5639 if (level + 1 >= BTRFS_MAX_LEVEL ||
5640 !path->nodes[level + 1])
e7a84565 5641 return 1;
33c66f43
YZ
5642
5643 if (path->locks[level + 1]) {
5644 level++;
5645 continue;
5646 }
5647
5648 slot = btrfs_header_nritems(c) - 1;
5649 if (level == 0)
5650 btrfs_item_key_to_cpu(c, &cur_key, slot);
5651 else
5652 btrfs_node_key_to_cpu(c, &cur_key, slot);
5653
5654 orig_lowest = path->lowest_level;
b3b4aa74 5655 btrfs_release_path(path);
33c66f43
YZ
5656 path->lowest_level = level;
5657 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5658 0, 0);
5659 path->lowest_level = orig_lowest;
5660 if (ret < 0)
5661 return ret;
5662
5663 c = path->nodes[level];
5664 slot = path->slots[level];
5665 if (ret == 0)
5666 slot++;
5667 goto next;
e7a84565 5668 }
33c66f43 5669
e7a84565
CM
5670 if (level == 0)
5671 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5672 else {
3f157a2f
CM
5673 u64 gen = btrfs_node_ptr_generation(c, slot);
5674
3f157a2f
CM
5675 if (gen < min_trans) {
5676 slot++;
5677 goto next;
5678 }
e7a84565 5679 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5680 }
e7a84565
CM
5681 return 0;
5682 }
5683 return 1;
5684}
5685
97571fd0 5686/*
925baedd 5687 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5688 * returns 0 if it found something or 1 if there are no greater leaves.
5689 * returns < 0 on io errors.
97571fd0 5690 */
234b63a0 5691int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5692{
5693 return btrfs_next_old_leaf(root, path, 0);
5694}
5695
5696int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5697 u64 time_seq)
d97e63b6
CM
5698{
5699 int slot;
8e73f275 5700 int level;
5f39d397 5701 struct extent_buffer *c;
8e73f275 5702 struct extent_buffer *next;
925baedd
CM
5703 struct btrfs_key key;
5704 u32 nritems;
5705 int ret;
8e73f275 5706 int old_spinning = path->leave_spinning;
bd681513 5707 int next_rw_lock = 0;
925baedd
CM
5708
5709 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5710 if (nritems == 0)
925baedd 5711 return 1;
925baedd 5712
8e73f275
CM
5713 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5714again:
5715 level = 1;
5716 next = NULL;
bd681513 5717 next_rw_lock = 0;
b3b4aa74 5718 btrfs_release_path(path);
8e73f275 5719
a2135011 5720 path->keep_locks = 1;
31533fb2 5721 path->leave_spinning = 1;
8e73f275 5722
3d7806ec
JS
5723 if (time_seq)
5724 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5725 else
5726 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5727 path->keep_locks = 0;
5728
5729 if (ret < 0)
5730 return ret;
5731
a2135011 5732 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5733 /*
5734 * by releasing the path above we dropped all our locks. A balance
5735 * could have added more items next to the key that used to be
5736 * at the very end of the block. So, check again here and
5737 * advance the path if there are now more items available.
5738 */
a2135011 5739 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5740 if (ret == 0)
5741 path->slots[0]++;
8e73f275 5742 ret = 0;
925baedd
CM
5743 goto done;
5744 }
0b43e04f
LB
5745 /*
5746 * So the above check misses one case:
5747 * - after releasing the path above, someone has removed the item that
5748 * used to be at the very end of the block, and balance between leafs
5749 * gets another one with bigger key.offset to replace it.
5750 *
5751 * This one should be returned as well, or we can get leaf corruption
5752 * later(esp. in __btrfs_drop_extents()).
5753 *
5754 * And a bit more explanation about this check,
5755 * with ret > 0, the key isn't found, the path points to the slot
5756 * where it should be inserted, so the path->slots[0] item must be the
5757 * bigger one.
5758 */
5759 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5760 ret = 0;
5761 goto done;
5762 }
d97e63b6 5763
d397712b 5764 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5765 if (!path->nodes[level]) {
5766 ret = 1;
5767 goto done;
5768 }
5f39d397 5769
d97e63b6
CM
5770 slot = path->slots[level] + 1;
5771 c = path->nodes[level];
5f39d397 5772 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5773 level++;
8e73f275
CM
5774 if (level == BTRFS_MAX_LEVEL) {
5775 ret = 1;
5776 goto done;
5777 }
d97e63b6
CM
5778 continue;
5779 }
5f39d397 5780
925baedd 5781 if (next) {
bd681513 5782 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5783 free_extent_buffer(next);
925baedd 5784 }
5f39d397 5785
8e73f275 5786 next = c;
bd681513 5787 next_rw_lock = path->locks[level];
d07b8528 5788 ret = read_block_for_search(root, path, &next, level,
cda79c54 5789 slot, &key);
8e73f275
CM
5790 if (ret == -EAGAIN)
5791 goto again;
5f39d397 5792
76a05b35 5793 if (ret < 0) {
b3b4aa74 5794 btrfs_release_path(path);
76a05b35
CM
5795 goto done;
5796 }
5797
5cd57b2c 5798 if (!path->skip_locking) {
bd681513 5799 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5800 if (!ret && time_seq) {
5801 /*
5802 * If we don't get the lock, we may be racing
5803 * with push_leaf_left, holding that lock while
5804 * itself waiting for the leaf we've currently
5805 * locked. To solve this situation, we give up
5806 * on our lock and cycle.
5807 */
cf538830 5808 free_extent_buffer(next);
d42244a0
JS
5809 btrfs_release_path(path);
5810 cond_resched();
5811 goto again;
5812 }
8e73f275
CM
5813 if (!ret) {
5814 btrfs_set_path_blocking(path);
bd681513 5815 btrfs_tree_read_lock(next);
31533fb2 5816 btrfs_clear_path_blocking(path, next,
bd681513 5817 BTRFS_READ_LOCK);
8e73f275 5818 }
31533fb2 5819 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5820 }
d97e63b6
CM
5821 break;
5822 }
5823 path->slots[level] = slot;
d397712b 5824 while (1) {
d97e63b6
CM
5825 level--;
5826 c = path->nodes[level];
925baedd 5827 if (path->locks[level])
bd681513 5828 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5829
5f39d397 5830 free_extent_buffer(c);
d97e63b6
CM
5831 path->nodes[level] = next;
5832 path->slots[level] = 0;
a74a4b97 5833 if (!path->skip_locking)
bd681513 5834 path->locks[level] = next_rw_lock;
d97e63b6
CM
5835 if (!level)
5836 break;
b4ce94de 5837
d07b8528 5838 ret = read_block_for_search(root, path, &next, level,
cda79c54 5839 0, &key);
8e73f275
CM
5840 if (ret == -EAGAIN)
5841 goto again;
5842
76a05b35 5843 if (ret < 0) {
b3b4aa74 5844 btrfs_release_path(path);
76a05b35
CM
5845 goto done;
5846 }
5847
5cd57b2c 5848 if (!path->skip_locking) {
bd681513 5849 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5850 if (!ret) {
5851 btrfs_set_path_blocking(path);
bd681513 5852 btrfs_tree_read_lock(next);
31533fb2 5853 btrfs_clear_path_blocking(path, next,
bd681513
CM
5854 BTRFS_READ_LOCK);
5855 }
31533fb2 5856 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5857 }
d97e63b6 5858 }
8e73f275 5859 ret = 0;
925baedd 5860done:
f7c79f30 5861 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5862 path->leave_spinning = old_spinning;
5863 if (!old_spinning)
5864 btrfs_set_path_blocking(path);
5865
5866 return ret;
d97e63b6 5867}
0b86a832 5868
3f157a2f
CM
5869/*
5870 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5871 * searching until it gets past min_objectid or finds an item of 'type'
5872 *
5873 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5874 */
0b86a832
CM
5875int btrfs_previous_item(struct btrfs_root *root,
5876 struct btrfs_path *path, u64 min_objectid,
5877 int type)
5878{
5879 struct btrfs_key found_key;
5880 struct extent_buffer *leaf;
e02119d5 5881 u32 nritems;
0b86a832
CM
5882 int ret;
5883
d397712b 5884 while (1) {
0b86a832 5885 if (path->slots[0] == 0) {
b4ce94de 5886 btrfs_set_path_blocking(path);
0b86a832
CM
5887 ret = btrfs_prev_leaf(root, path);
5888 if (ret != 0)
5889 return ret;
5890 } else {
5891 path->slots[0]--;
5892 }
5893 leaf = path->nodes[0];
e02119d5
CM
5894 nritems = btrfs_header_nritems(leaf);
5895 if (nritems == 0)
5896 return 1;
5897 if (path->slots[0] == nritems)
5898 path->slots[0]--;
5899
0b86a832 5900 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5901 if (found_key.objectid < min_objectid)
5902 break;
0a4eefbb
YZ
5903 if (found_key.type == type)
5904 return 0;
e02119d5
CM
5905 if (found_key.objectid == min_objectid &&
5906 found_key.type < type)
5907 break;
0b86a832
CM
5908 }
5909 return 1;
5910}
ade2e0b3
WS
5911
5912/*
5913 * search in extent tree to find a previous Metadata/Data extent item with
5914 * min objecitd.
5915 *
5916 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5917 */
5918int btrfs_previous_extent_item(struct btrfs_root *root,
5919 struct btrfs_path *path, u64 min_objectid)
5920{
5921 struct btrfs_key found_key;
5922 struct extent_buffer *leaf;
5923 u32 nritems;
5924 int ret;
5925
5926 while (1) {
5927 if (path->slots[0] == 0) {
5928 btrfs_set_path_blocking(path);
5929 ret = btrfs_prev_leaf(root, path);
5930 if (ret != 0)
5931 return ret;
5932 } else {
5933 path->slots[0]--;
5934 }
5935 leaf = path->nodes[0];
5936 nritems = btrfs_header_nritems(leaf);
5937 if (nritems == 0)
5938 return 1;
5939 if (path->slots[0] == nritems)
5940 path->slots[0]--;
5941
5942 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5943 if (found_key.objectid < min_objectid)
5944 break;
5945 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5946 found_key.type == BTRFS_METADATA_ITEM_KEY)
5947 return 0;
5948 if (found_key.objectid == min_objectid &&
5949 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5950 break;
5951 }
5952 return 1;
5953}