]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/ctree.c
btrfs: turn checksum type define into an enum
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / ctree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570 2/*
d352ac68 3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
a6b6e75e 6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
bd989ba3 8#include <linux/rbtree.h>
adf02123 9#include <linux/mm.h>
eb60ceac
CM
10#include "ctree.h"
11#include "disk-io.h"
7f5c1516 12#include "transaction.h"
5f39d397 13#include "print-tree.h"
925baedd 14#include "locking.h"
de37aa51 15#include "volumes.h"
f616f5cd 16#include "qgroup.h"
9a8dd150 17
e089f05c
CM
18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 *root, struct btrfs_path *path, int level);
310712b2
OS
20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 const struct btrfs_key *ins_key, struct btrfs_path *path,
22 int data_size, int extend);
5f39d397 23static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e 24 struct extent_buffer *dst,
971a1f66 25 struct extent_buffer *src, int empty);
5f39d397 26static int balance_node_right(struct btrfs_trans_handle *trans,
5f39d397
CM
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
afe5fea7
TI
29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 int level, int slot);
d97e63b6 31
df24a2b9 32struct btrfs_path *btrfs_alloc_path(void)
2c90e5d6 33{
e2c89907 34 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
2c90e5d6
CM
35}
36
b4ce94de
CM
37/*
38 * set all locked nodes in the path to blocking locks. This should
39 * be done before scheduling
40 */
41noinline void btrfs_set_path_blocking(struct btrfs_path *p)
42{
43 int i;
44 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
bd681513
CM
45 if (!p->nodes[i] || !p->locks[i])
46 continue;
766ece54
DS
47 /*
48 * If we currently have a spinning reader or writer lock this
49 * will bump the count of blocking holders and drop the
50 * spinlock.
51 */
52 if (p->locks[i] == BTRFS_READ_LOCK) {
53 btrfs_set_lock_blocking_read(p->nodes[i]);
bd681513 54 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
766ece54
DS
55 } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
56 btrfs_set_lock_blocking_write(p->nodes[i]);
bd681513 57 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
766ece54 58 }
b4ce94de
CM
59 }
60}
61
d352ac68 62/* this also releases the path */
df24a2b9 63void btrfs_free_path(struct btrfs_path *p)
be0e5c09 64{
ff175d57
JJ
65 if (!p)
66 return;
b3b4aa74 67 btrfs_release_path(p);
df24a2b9 68 kmem_cache_free(btrfs_path_cachep, p);
be0e5c09
CM
69}
70
d352ac68
CM
71/*
72 * path release drops references on the extent buffers in the path
73 * and it drops any locks held by this path
74 *
75 * It is safe to call this on paths that no locks or extent buffers held.
76 */
b3b4aa74 77noinline void btrfs_release_path(struct btrfs_path *p)
eb60ceac
CM
78{
79 int i;
a2135011 80
234b63a0 81 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
3f157a2f 82 p->slots[i] = 0;
eb60ceac 83 if (!p->nodes[i])
925baedd
CM
84 continue;
85 if (p->locks[i]) {
bd681513 86 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
925baedd
CM
87 p->locks[i] = 0;
88 }
5f39d397 89 free_extent_buffer(p->nodes[i]);
3f157a2f 90 p->nodes[i] = NULL;
eb60ceac
CM
91 }
92}
93
d352ac68
CM
94/*
95 * safely gets a reference on the root node of a tree. A lock
96 * is not taken, so a concurrent writer may put a different node
97 * at the root of the tree. See btrfs_lock_root_node for the
98 * looping required.
99 *
100 * The extent buffer returned by this has a reference taken, so
101 * it won't disappear. It may stop being the root of the tree
102 * at any time because there are no locks held.
103 */
925baedd
CM
104struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
105{
106 struct extent_buffer *eb;
240f62c8 107
3083ee2e
JB
108 while (1) {
109 rcu_read_lock();
110 eb = rcu_dereference(root->node);
111
112 /*
113 * RCU really hurts here, we could free up the root node because
01327610 114 * it was COWed but we may not get the new root node yet so do
3083ee2e
JB
115 * the inc_not_zero dance and if it doesn't work then
116 * synchronize_rcu and try again.
117 */
118 if (atomic_inc_not_zero(&eb->refs)) {
119 rcu_read_unlock();
120 break;
121 }
122 rcu_read_unlock();
123 synchronize_rcu();
124 }
925baedd
CM
125 return eb;
126}
127
d352ac68
CM
128/* loop around taking references on and locking the root node of the
129 * tree until you end up with a lock on the root. A locked buffer
130 * is returned, with a reference held.
131 */
925baedd
CM
132struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
133{
134 struct extent_buffer *eb;
135
d397712b 136 while (1) {
925baedd
CM
137 eb = btrfs_root_node(root);
138 btrfs_tree_lock(eb);
240f62c8 139 if (eb == root->node)
925baedd 140 break;
925baedd
CM
141 btrfs_tree_unlock(eb);
142 free_extent_buffer(eb);
143 }
144 return eb;
145}
146
bd681513
CM
147/* loop around taking references on and locking the root node of the
148 * tree until you end up with a lock on the root. A locked buffer
149 * is returned, with a reference held.
150 */
84f7d8e6 151struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
bd681513
CM
152{
153 struct extent_buffer *eb;
154
155 while (1) {
156 eb = btrfs_root_node(root);
157 btrfs_tree_read_lock(eb);
158 if (eb == root->node)
159 break;
160 btrfs_tree_read_unlock(eb);
161 free_extent_buffer(eb);
162 }
163 return eb;
164}
165
d352ac68
CM
166/* cowonly root (everything not a reference counted cow subvolume), just get
167 * put onto a simple dirty list. transaction.c walks this to make sure they
168 * get properly updated on disk.
169 */
0b86a832
CM
170static void add_root_to_dirty_list(struct btrfs_root *root)
171{
0b246afa
JM
172 struct btrfs_fs_info *fs_info = root->fs_info;
173
e7070be1
JB
174 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
175 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
176 return;
177
0b246afa 178 spin_lock(&fs_info->trans_lock);
e7070be1
JB
179 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
180 /* Want the extent tree to be the last on the list */
4fd786e6 181 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
e7070be1 182 list_move_tail(&root->dirty_list,
0b246afa 183 &fs_info->dirty_cowonly_roots);
e7070be1
JB
184 else
185 list_move(&root->dirty_list,
0b246afa 186 &fs_info->dirty_cowonly_roots);
0b86a832 187 }
0b246afa 188 spin_unlock(&fs_info->trans_lock);
0b86a832
CM
189}
190
d352ac68
CM
191/*
192 * used by snapshot creation to make a copy of a root for a tree with
193 * a given objectid. The buffer with the new root node is returned in
194 * cow_ret, and this func returns zero on success or a negative error code.
195 */
be20aa9d
CM
196int btrfs_copy_root(struct btrfs_trans_handle *trans,
197 struct btrfs_root *root,
198 struct extent_buffer *buf,
199 struct extent_buffer **cow_ret, u64 new_root_objectid)
200{
0b246afa 201 struct btrfs_fs_info *fs_info = root->fs_info;
be20aa9d 202 struct extent_buffer *cow;
be20aa9d
CM
203 int ret = 0;
204 int level;
5d4f98a2 205 struct btrfs_disk_key disk_key;
be20aa9d 206
27cdeb70 207 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 208 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
209 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
210 trans->transid != root->last_trans);
be20aa9d
CM
211
212 level = btrfs_header_level(buf);
5d4f98a2
YZ
213 if (level == 0)
214 btrfs_item_key(buf, &disk_key, 0);
215 else
216 btrfs_node_key(buf, &disk_key, 0);
31840ae1 217
4d75f8a9
DS
218 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
219 &disk_key, level, buf->start, 0);
5d4f98a2 220 if (IS_ERR(cow))
be20aa9d
CM
221 return PTR_ERR(cow);
222
58e8012c 223 copy_extent_buffer_full(cow, buf);
be20aa9d
CM
224 btrfs_set_header_bytenr(cow, cow->start);
225 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
226 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
227 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
228 BTRFS_HEADER_FLAG_RELOC);
229 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
230 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
231 else
232 btrfs_set_header_owner(cow, new_root_objectid);
be20aa9d 233
de37aa51 234 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
2b82032c 235
be20aa9d 236 WARN_ON(btrfs_header_generation(buf) > trans->transid);
5d4f98a2 237 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 238 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 239 else
e339a6b0 240 ret = btrfs_inc_ref(trans, root, cow, 0);
4aec2b52 241
be20aa9d
CM
242 if (ret)
243 return ret;
244
245 btrfs_mark_buffer_dirty(cow);
246 *cow_ret = cow;
247 return 0;
248}
249
bd989ba3
JS
250enum mod_log_op {
251 MOD_LOG_KEY_REPLACE,
252 MOD_LOG_KEY_ADD,
253 MOD_LOG_KEY_REMOVE,
254 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
255 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
256 MOD_LOG_MOVE_KEYS,
257 MOD_LOG_ROOT_REPLACE,
258};
259
bd989ba3
JS
260struct tree_mod_root {
261 u64 logical;
262 u8 level;
263};
264
265struct tree_mod_elem {
266 struct rb_node node;
298cfd36 267 u64 logical;
097b8a7c 268 u64 seq;
bd989ba3
JS
269 enum mod_log_op op;
270
271 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
272 int slot;
273
274 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
275 u64 generation;
276
277 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
278 struct btrfs_disk_key key;
279 u64 blockptr;
280
281 /* this is used for op == MOD_LOG_MOVE_KEYS */
b6dfa35b
DS
282 struct {
283 int dst_slot;
284 int nr_items;
285 } move;
bd989ba3
JS
286
287 /* this is used for op == MOD_LOG_ROOT_REPLACE */
288 struct tree_mod_root old_root;
289};
290
fc36ed7e 291/*
fcebe456 292 * Pull a new tree mod seq number for our operation.
fc36ed7e 293 */
fcebe456 294static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
fc36ed7e
JS
295{
296 return atomic64_inc_return(&fs_info->tree_mod_seq);
297}
298
097b8a7c
JS
299/*
300 * This adds a new blocker to the tree mod log's blocker list if the @elem
301 * passed does not already have a sequence number set. So when a caller expects
302 * to record tree modifications, it should ensure to set elem->seq to zero
303 * before calling btrfs_get_tree_mod_seq.
304 * Returns a fresh, unused tree log modification sequence number, even if no new
305 * blocker was added.
306 */
307u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
308 struct seq_list *elem)
bd989ba3 309{
b1a09f1e 310 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3 311 spin_lock(&fs_info->tree_mod_seq_lock);
097b8a7c 312 if (!elem->seq) {
fcebe456 313 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
097b8a7c
JS
314 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
315 }
bd989ba3 316 spin_unlock(&fs_info->tree_mod_seq_lock);
b1a09f1e 317 write_unlock(&fs_info->tree_mod_log_lock);
097b8a7c 318
fcebe456 319 return elem->seq;
bd989ba3
JS
320}
321
322void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
323 struct seq_list *elem)
324{
325 struct rb_root *tm_root;
326 struct rb_node *node;
327 struct rb_node *next;
328 struct seq_list *cur_elem;
329 struct tree_mod_elem *tm;
330 u64 min_seq = (u64)-1;
331 u64 seq_putting = elem->seq;
332
333 if (!seq_putting)
334 return;
335
bd989ba3
JS
336 spin_lock(&fs_info->tree_mod_seq_lock);
337 list_del(&elem->list);
097b8a7c 338 elem->seq = 0;
bd989ba3
JS
339
340 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
097b8a7c 341 if (cur_elem->seq < min_seq) {
bd989ba3
JS
342 if (seq_putting > cur_elem->seq) {
343 /*
344 * blocker with lower sequence number exists, we
345 * cannot remove anything from the log
346 */
097b8a7c
JS
347 spin_unlock(&fs_info->tree_mod_seq_lock);
348 return;
bd989ba3
JS
349 }
350 min_seq = cur_elem->seq;
351 }
352 }
097b8a7c
JS
353 spin_unlock(&fs_info->tree_mod_seq_lock);
354
bd989ba3
JS
355 /*
356 * anything that's lower than the lowest existing (read: blocked)
357 * sequence number can be removed from the tree.
358 */
b1a09f1e 359 write_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
360 tm_root = &fs_info->tree_mod_log;
361 for (node = rb_first(tm_root); node; node = next) {
362 next = rb_next(node);
6b4df8b6 363 tm = rb_entry(node, struct tree_mod_elem, node);
097b8a7c 364 if (tm->seq > min_seq)
bd989ba3
JS
365 continue;
366 rb_erase(node, tm_root);
bd989ba3
JS
367 kfree(tm);
368 }
b1a09f1e 369 write_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
370}
371
372/*
373 * key order of the log:
298cfd36 374 * node/leaf start address -> sequence
bd989ba3 375 *
298cfd36
CR
376 * The 'start address' is the logical address of the *new* root node
377 * for root replace operations, or the logical address of the affected
378 * block for all other operations.
bd989ba3
JS
379 */
380static noinline int
381__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
382{
383 struct rb_root *tm_root;
384 struct rb_node **new;
385 struct rb_node *parent = NULL;
386 struct tree_mod_elem *cur;
c8cc6341 387
73e82fe4
DS
388 lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
389
fcebe456 390 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
bd989ba3 391
bd989ba3
JS
392 tm_root = &fs_info->tree_mod_log;
393 new = &tm_root->rb_node;
394 while (*new) {
6b4df8b6 395 cur = rb_entry(*new, struct tree_mod_elem, node);
bd989ba3 396 parent = *new;
298cfd36 397 if (cur->logical < tm->logical)
bd989ba3 398 new = &((*new)->rb_left);
298cfd36 399 else if (cur->logical > tm->logical)
bd989ba3 400 new = &((*new)->rb_right);
097b8a7c 401 else if (cur->seq < tm->seq)
bd989ba3 402 new = &((*new)->rb_left);
097b8a7c 403 else if (cur->seq > tm->seq)
bd989ba3 404 new = &((*new)->rb_right);
5de865ee
FDBM
405 else
406 return -EEXIST;
bd989ba3
JS
407 }
408
409 rb_link_node(&tm->node, parent, new);
410 rb_insert_color(&tm->node, tm_root);
5de865ee 411 return 0;
bd989ba3
JS
412}
413
097b8a7c
JS
414/*
415 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
416 * returns zero with the tree_mod_log_lock acquired. The caller must hold
417 * this until all tree mod log insertions are recorded in the rb tree and then
b1a09f1e 418 * write unlock fs_info::tree_mod_log_lock.
097b8a7c 419 */
e9b7fd4d
JS
420static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
421 struct extent_buffer *eb) {
422 smp_mb();
423 if (list_empty(&(fs_info)->tree_mod_seq_list))
424 return 1;
097b8a7c
JS
425 if (eb && btrfs_header_level(eb) == 0)
426 return 1;
5de865ee 427
b1a09f1e 428 write_lock(&fs_info->tree_mod_log_lock);
5de865ee 429 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
b1a09f1e 430 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
431 return 1;
432 }
433
e9b7fd4d
JS
434 return 0;
435}
436
5de865ee
FDBM
437/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
438static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
439 struct extent_buffer *eb)
440{
441 smp_mb();
442 if (list_empty(&(fs_info)->tree_mod_seq_list))
443 return 0;
444 if (eb && btrfs_header_level(eb) == 0)
445 return 0;
446
447 return 1;
448}
449
450static struct tree_mod_elem *
451alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
452 enum mod_log_op op, gfp_t flags)
bd989ba3 453{
097b8a7c 454 struct tree_mod_elem *tm;
bd989ba3 455
c8cc6341
JB
456 tm = kzalloc(sizeof(*tm), flags);
457 if (!tm)
5de865ee 458 return NULL;
bd989ba3 459
298cfd36 460 tm->logical = eb->start;
bd989ba3
JS
461 if (op != MOD_LOG_KEY_ADD) {
462 btrfs_node_key(eb, &tm->key, slot);
463 tm->blockptr = btrfs_node_blockptr(eb, slot);
464 }
465 tm->op = op;
466 tm->slot = slot;
467 tm->generation = btrfs_node_ptr_generation(eb, slot);
5de865ee 468 RB_CLEAR_NODE(&tm->node);
bd989ba3 469
5de865ee 470 return tm;
097b8a7c
JS
471}
472
e09c2efe
DS
473static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
474 enum mod_log_op op, gfp_t flags)
097b8a7c 475{
5de865ee
FDBM
476 struct tree_mod_elem *tm;
477 int ret;
478
e09c2efe 479 if (!tree_mod_need_log(eb->fs_info, eb))
5de865ee
FDBM
480 return 0;
481
482 tm = alloc_tree_mod_elem(eb, slot, op, flags);
483 if (!tm)
484 return -ENOMEM;
485
e09c2efe 486 if (tree_mod_dont_log(eb->fs_info, eb)) {
5de865ee 487 kfree(tm);
097b8a7c 488 return 0;
5de865ee
FDBM
489 }
490
e09c2efe 491 ret = __tree_mod_log_insert(eb->fs_info, tm);
b1a09f1e 492 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
493 if (ret)
494 kfree(tm);
097b8a7c 495
5de865ee 496 return ret;
097b8a7c
JS
497}
498
6074d45f
DS
499static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
500 int dst_slot, int src_slot, int nr_items)
bd989ba3 501{
5de865ee
FDBM
502 struct tree_mod_elem *tm = NULL;
503 struct tree_mod_elem **tm_list = NULL;
504 int ret = 0;
bd989ba3 505 int i;
5de865ee 506 int locked = 0;
bd989ba3 507
6074d45f 508 if (!tree_mod_need_log(eb->fs_info, eb))
f395694c 509 return 0;
bd989ba3 510
176ef8f5 511 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
512 if (!tm_list)
513 return -ENOMEM;
514
176ef8f5 515 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
516 if (!tm) {
517 ret = -ENOMEM;
518 goto free_tms;
519 }
520
298cfd36 521 tm->logical = eb->start;
5de865ee
FDBM
522 tm->slot = src_slot;
523 tm->move.dst_slot = dst_slot;
524 tm->move.nr_items = nr_items;
525 tm->op = MOD_LOG_MOVE_KEYS;
526
527 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
528 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
176ef8f5 529 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
5de865ee
FDBM
530 if (!tm_list[i]) {
531 ret = -ENOMEM;
532 goto free_tms;
533 }
534 }
535
6074d45f 536 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
537 goto free_tms;
538 locked = 1;
539
01763a2e
JS
540 /*
541 * When we override something during the move, we log these removals.
542 * This can only happen when we move towards the beginning of the
543 * buffer, i.e. dst_slot < src_slot.
544 */
bd989ba3 545 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
6074d45f 546 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
5de865ee
FDBM
547 if (ret)
548 goto free_tms;
bd989ba3
JS
549 }
550
6074d45f 551 ret = __tree_mod_log_insert(eb->fs_info, tm);
5de865ee
FDBM
552 if (ret)
553 goto free_tms;
b1a09f1e 554 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee 555 kfree(tm_list);
f395694c 556
5de865ee
FDBM
557 return 0;
558free_tms:
559 for (i = 0; i < nr_items; i++) {
560 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
6074d45f 561 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
5de865ee
FDBM
562 kfree(tm_list[i]);
563 }
564 if (locked)
b1a09f1e 565 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
566 kfree(tm_list);
567 kfree(tm);
bd989ba3 568
5de865ee 569 return ret;
bd989ba3
JS
570}
571
5de865ee
FDBM
572static inline int
573__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
574 struct tree_mod_elem **tm_list,
575 int nritems)
097b8a7c 576{
5de865ee 577 int i, j;
097b8a7c
JS
578 int ret;
579
097b8a7c 580 for (i = nritems - 1; i >= 0; i--) {
5de865ee
FDBM
581 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
582 if (ret) {
583 for (j = nritems - 1; j > i; j--)
584 rb_erase(&tm_list[j]->node,
585 &fs_info->tree_mod_log);
586 return ret;
587 }
097b8a7c 588 }
5de865ee
FDBM
589
590 return 0;
097b8a7c
JS
591}
592
95b757c1
DS
593static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
594 struct extent_buffer *new_root, int log_removal)
bd989ba3 595{
95b757c1 596 struct btrfs_fs_info *fs_info = old_root->fs_info;
5de865ee
FDBM
597 struct tree_mod_elem *tm = NULL;
598 struct tree_mod_elem **tm_list = NULL;
599 int nritems = 0;
600 int ret = 0;
601 int i;
bd989ba3 602
5de865ee 603 if (!tree_mod_need_log(fs_info, NULL))
097b8a7c
JS
604 return 0;
605
5de865ee
FDBM
606 if (log_removal && btrfs_header_level(old_root) > 0) {
607 nritems = btrfs_header_nritems(old_root);
31e818fe 608 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
bcc8e07f 609 GFP_NOFS);
5de865ee
FDBM
610 if (!tm_list) {
611 ret = -ENOMEM;
612 goto free_tms;
613 }
614 for (i = 0; i < nritems; i++) {
615 tm_list[i] = alloc_tree_mod_elem(old_root, i,
bcc8e07f 616 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
5de865ee
FDBM
617 if (!tm_list[i]) {
618 ret = -ENOMEM;
619 goto free_tms;
620 }
621 }
622 }
d9abbf1c 623
bcc8e07f 624 tm = kzalloc(sizeof(*tm), GFP_NOFS);
5de865ee
FDBM
625 if (!tm) {
626 ret = -ENOMEM;
627 goto free_tms;
628 }
bd989ba3 629
298cfd36 630 tm->logical = new_root->start;
bd989ba3
JS
631 tm->old_root.logical = old_root->start;
632 tm->old_root.level = btrfs_header_level(old_root);
633 tm->generation = btrfs_header_generation(old_root);
634 tm->op = MOD_LOG_ROOT_REPLACE;
635
5de865ee
FDBM
636 if (tree_mod_dont_log(fs_info, NULL))
637 goto free_tms;
638
639 if (tm_list)
640 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
641 if (!ret)
642 ret = __tree_mod_log_insert(fs_info, tm);
643
b1a09f1e 644 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
645 if (ret)
646 goto free_tms;
647 kfree(tm_list);
648
649 return ret;
650
651free_tms:
652 if (tm_list) {
653 for (i = 0; i < nritems; i++)
654 kfree(tm_list[i]);
655 kfree(tm_list);
656 }
657 kfree(tm);
658
659 return ret;
bd989ba3
JS
660}
661
662static struct tree_mod_elem *
663__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
664 int smallest)
665{
666 struct rb_root *tm_root;
667 struct rb_node *node;
668 struct tree_mod_elem *cur = NULL;
669 struct tree_mod_elem *found = NULL;
bd989ba3 670
b1a09f1e 671 read_lock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
672 tm_root = &fs_info->tree_mod_log;
673 node = tm_root->rb_node;
674 while (node) {
6b4df8b6 675 cur = rb_entry(node, struct tree_mod_elem, node);
298cfd36 676 if (cur->logical < start) {
bd989ba3 677 node = node->rb_left;
298cfd36 678 } else if (cur->logical > start) {
bd989ba3 679 node = node->rb_right;
097b8a7c 680 } else if (cur->seq < min_seq) {
bd989ba3
JS
681 node = node->rb_left;
682 } else if (!smallest) {
683 /* we want the node with the highest seq */
684 if (found)
097b8a7c 685 BUG_ON(found->seq > cur->seq);
bd989ba3
JS
686 found = cur;
687 node = node->rb_left;
097b8a7c 688 } else if (cur->seq > min_seq) {
bd989ba3
JS
689 /* we want the node with the smallest seq */
690 if (found)
097b8a7c 691 BUG_ON(found->seq < cur->seq);
bd989ba3
JS
692 found = cur;
693 node = node->rb_right;
694 } else {
695 found = cur;
696 break;
697 }
698 }
b1a09f1e 699 read_unlock(&fs_info->tree_mod_log_lock);
bd989ba3
JS
700
701 return found;
702}
703
704/*
705 * this returns the element from the log with the smallest time sequence
706 * value that's in the log (the oldest log item). any element with a time
707 * sequence lower than min_seq will be ignored.
708 */
709static struct tree_mod_elem *
710tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
711 u64 min_seq)
712{
713 return __tree_mod_log_search(fs_info, start, min_seq, 1);
714}
715
716/*
717 * this returns the element from the log with the largest time sequence
718 * value that's in the log (the most recent log item). any element with
719 * a time sequence lower than min_seq will be ignored.
720 */
721static struct tree_mod_elem *
722tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
723{
724 return __tree_mod_log_search(fs_info, start, min_seq, 0);
725}
726
ed874f0d 727static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
bd989ba3 728 struct extent_buffer *src, unsigned long dst_offset,
90f8d62e 729 unsigned long src_offset, int nr_items)
bd989ba3 730{
ed874f0d 731 struct btrfs_fs_info *fs_info = dst->fs_info;
5de865ee
FDBM
732 int ret = 0;
733 struct tree_mod_elem **tm_list = NULL;
734 struct tree_mod_elem **tm_list_add, **tm_list_rem;
bd989ba3 735 int i;
5de865ee 736 int locked = 0;
bd989ba3 737
5de865ee
FDBM
738 if (!tree_mod_need_log(fs_info, NULL))
739 return 0;
bd989ba3 740
c8cc6341 741 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
5de865ee
FDBM
742 return 0;
743
31e818fe 744 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
5de865ee
FDBM
745 GFP_NOFS);
746 if (!tm_list)
747 return -ENOMEM;
bd989ba3 748
5de865ee
FDBM
749 tm_list_add = tm_list;
750 tm_list_rem = tm_list + nr_items;
bd989ba3 751 for (i = 0; i < nr_items; i++) {
5de865ee
FDBM
752 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
753 MOD_LOG_KEY_REMOVE, GFP_NOFS);
754 if (!tm_list_rem[i]) {
755 ret = -ENOMEM;
756 goto free_tms;
757 }
758
759 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
760 MOD_LOG_KEY_ADD, GFP_NOFS);
761 if (!tm_list_add[i]) {
762 ret = -ENOMEM;
763 goto free_tms;
764 }
765 }
766
767 if (tree_mod_dont_log(fs_info, NULL))
768 goto free_tms;
769 locked = 1;
770
771 for (i = 0; i < nr_items; i++) {
772 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
773 if (ret)
774 goto free_tms;
775 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
776 if (ret)
777 goto free_tms;
bd989ba3 778 }
5de865ee 779
b1a09f1e 780 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
781 kfree(tm_list);
782
783 return 0;
784
785free_tms:
786 for (i = 0; i < nr_items * 2; i++) {
787 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
788 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
789 kfree(tm_list[i]);
790 }
791 if (locked)
b1a09f1e 792 write_unlock(&fs_info->tree_mod_log_lock);
5de865ee
FDBM
793 kfree(tm_list);
794
795 return ret;
bd989ba3
JS
796}
797
db7279a2 798static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
bd989ba3 799{
5de865ee
FDBM
800 struct tree_mod_elem **tm_list = NULL;
801 int nritems = 0;
802 int i;
803 int ret = 0;
804
805 if (btrfs_header_level(eb) == 0)
806 return 0;
807
db7279a2 808 if (!tree_mod_need_log(eb->fs_info, NULL))
5de865ee
FDBM
809 return 0;
810
811 nritems = btrfs_header_nritems(eb);
31e818fe 812 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
5de865ee
FDBM
813 if (!tm_list)
814 return -ENOMEM;
815
816 for (i = 0; i < nritems; i++) {
817 tm_list[i] = alloc_tree_mod_elem(eb, i,
818 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
819 if (!tm_list[i]) {
820 ret = -ENOMEM;
821 goto free_tms;
822 }
823 }
824
db7279a2 825 if (tree_mod_dont_log(eb->fs_info, eb))
5de865ee
FDBM
826 goto free_tms;
827
db7279a2 828 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
b1a09f1e 829 write_unlock(&eb->fs_info->tree_mod_log_lock);
5de865ee
FDBM
830 if (ret)
831 goto free_tms;
832 kfree(tm_list);
833
834 return 0;
835
836free_tms:
837 for (i = 0; i < nritems; i++)
838 kfree(tm_list[i]);
839 kfree(tm_list);
840
841 return ret;
bd989ba3
JS
842}
843
5d4f98a2
YZ
844/*
845 * check if the tree block can be shared by multiple trees
846 */
847int btrfs_block_can_be_shared(struct btrfs_root *root,
848 struct extent_buffer *buf)
849{
850 /*
01327610 851 * Tree blocks not in reference counted trees and tree roots
5d4f98a2
YZ
852 * are never shared. If a block was allocated after the last
853 * snapshot and the block was not allocated by tree relocation,
854 * we know the block is not shared.
855 */
27cdeb70 856 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
5d4f98a2
YZ
857 buf != root->node && buf != root->commit_root &&
858 (btrfs_header_generation(buf) <=
859 btrfs_root_last_snapshot(&root->root_item) ||
860 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
861 return 1;
a79865c6 862
5d4f98a2
YZ
863 return 0;
864}
865
866static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
867 struct btrfs_root *root,
868 struct extent_buffer *buf,
f0486c68
YZ
869 struct extent_buffer *cow,
870 int *last_ref)
5d4f98a2 871{
0b246afa 872 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
873 u64 refs;
874 u64 owner;
875 u64 flags;
876 u64 new_flags = 0;
877 int ret;
878
879 /*
880 * Backrefs update rules:
881 *
882 * Always use full backrefs for extent pointers in tree block
883 * allocated by tree relocation.
884 *
885 * If a shared tree block is no longer referenced by its owner
886 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
887 * use full backrefs for extent pointers in tree block.
888 *
889 * If a tree block is been relocating
890 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
891 * use full backrefs for extent pointers in tree block.
892 * The reason for this is some operations (such as drop tree)
893 * are only allowed for blocks use full backrefs.
894 */
895
896 if (btrfs_block_can_be_shared(root, buf)) {
2ff7e61e 897 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
3173a18f
JB
898 btrfs_header_level(buf), 1,
899 &refs, &flags);
be1a5564
MF
900 if (ret)
901 return ret;
e5df9573
MF
902 if (refs == 0) {
903 ret = -EROFS;
0b246afa 904 btrfs_handle_fs_error(fs_info, ret, NULL);
e5df9573
MF
905 return ret;
906 }
5d4f98a2
YZ
907 } else {
908 refs = 1;
909 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
910 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
911 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
912 else
913 flags = 0;
914 }
915
916 owner = btrfs_header_owner(buf);
917 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
918 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
919
920 if (refs > 1) {
921 if ((owner == root->root_key.objectid ||
922 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
923 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
e339a6b0 924 ret = btrfs_inc_ref(trans, root, buf, 1);
692826b2
JM
925 if (ret)
926 return ret;
5d4f98a2
YZ
927
928 if (root->root_key.objectid ==
929 BTRFS_TREE_RELOC_OBJECTID) {
e339a6b0 930 ret = btrfs_dec_ref(trans, root, buf, 0);
692826b2
JM
931 if (ret)
932 return ret;
e339a6b0 933 ret = btrfs_inc_ref(trans, root, cow, 1);
692826b2
JM
934 if (ret)
935 return ret;
5d4f98a2
YZ
936 }
937 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
938 } else {
939
940 if (root->root_key.objectid ==
941 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 942 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 943 else
e339a6b0 944 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
945 if (ret)
946 return ret;
5d4f98a2
YZ
947 }
948 if (new_flags != 0) {
b1c79e09
JB
949 int level = btrfs_header_level(buf);
950
f5c8daa5 951 ret = btrfs_set_disk_extent_flags(trans,
5d4f98a2
YZ
952 buf->start,
953 buf->len,
b1c79e09 954 new_flags, level, 0);
be1a5564
MF
955 if (ret)
956 return ret;
5d4f98a2
YZ
957 }
958 } else {
959 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
960 if (root->root_key.objectid ==
961 BTRFS_TREE_RELOC_OBJECTID)
e339a6b0 962 ret = btrfs_inc_ref(trans, root, cow, 1);
5d4f98a2 963 else
e339a6b0 964 ret = btrfs_inc_ref(trans, root, cow, 0);
692826b2
JM
965 if (ret)
966 return ret;
e339a6b0 967 ret = btrfs_dec_ref(trans, root, buf, 1);
692826b2
JM
968 if (ret)
969 return ret;
5d4f98a2 970 }
6a884d7d 971 btrfs_clean_tree_block(buf);
f0486c68 972 *last_ref = 1;
5d4f98a2
YZ
973 }
974 return 0;
975}
976
a6279470
FM
977static struct extent_buffer *alloc_tree_block_no_bg_flush(
978 struct btrfs_trans_handle *trans,
979 struct btrfs_root *root,
980 u64 parent_start,
981 const struct btrfs_disk_key *disk_key,
982 int level,
983 u64 hint,
984 u64 empty_size)
985{
986 struct btrfs_fs_info *fs_info = root->fs_info;
987 struct extent_buffer *ret;
988
989 /*
990 * If we are COWing a node/leaf from the extent, chunk, device or free
991 * space trees, make sure that we do not finish block group creation of
992 * pending block groups. We do this to avoid a deadlock.
993 * COWing can result in allocation of a new chunk, and flushing pending
994 * block groups (btrfs_create_pending_block_groups()) can be triggered
995 * when finishing allocation of a new chunk. Creation of a pending block
996 * group modifies the extent, chunk, device and free space trees,
997 * therefore we could deadlock with ourselves since we are holding a
998 * lock on an extent buffer that btrfs_create_pending_block_groups() may
999 * try to COW later.
1000 * For similar reasons, we also need to delay flushing pending block
1001 * groups when splitting a leaf or node, from one of those trees, since
1002 * we are holding a write lock on it and its parent or when inserting a
1003 * new root node for one of those trees.
1004 */
1005 if (root == fs_info->extent_root ||
1006 root == fs_info->chunk_root ||
1007 root == fs_info->dev_root ||
1008 root == fs_info->free_space_root)
1009 trans->can_flush_pending_bgs = false;
1010
1011 ret = btrfs_alloc_tree_block(trans, root, parent_start,
1012 root->root_key.objectid, disk_key, level,
1013 hint, empty_size);
1014 trans->can_flush_pending_bgs = true;
1015
1016 return ret;
1017}
1018
d352ac68 1019/*
d397712b
CM
1020 * does the dirty work in cow of a single block. The parent block (if
1021 * supplied) is updated to point to the new cow copy. The new buffer is marked
1022 * dirty and returned locked. If you modify the block it needs to be marked
1023 * dirty again.
d352ac68
CM
1024 *
1025 * search_start -- an allocation hint for the new block
1026 *
d397712b
CM
1027 * empty_size -- a hint that you plan on doing more cow. This is the size in
1028 * bytes the allocator should try to find free next to the block it returns.
1029 * This is just a hint and may be ignored by the allocator.
d352ac68 1030 */
d397712b 1031static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1032 struct btrfs_root *root,
1033 struct extent_buffer *buf,
1034 struct extent_buffer *parent, int parent_slot,
1035 struct extent_buffer **cow_ret,
9fa8cfe7 1036 u64 search_start, u64 empty_size)
02217ed2 1037{
0b246afa 1038 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2 1039 struct btrfs_disk_key disk_key;
5f39d397 1040 struct extent_buffer *cow;
be1a5564 1041 int level, ret;
f0486c68 1042 int last_ref = 0;
925baedd 1043 int unlock_orig = 0;
0f5053eb 1044 u64 parent_start = 0;
7bb86316 1045
925baedd
CM
1046 if (*cow_ret == buf)
1047 unlock_orig = 1;
1048
b9447ef8 1049 btrfs_assert_tree_locked(buf);
925baedd 1050
27cdeb70 1051 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
0b246afa 1052 trans->transid != fs_info->running_transaction->transid);
27cdeb70
MX
1053 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1054 trans->transid != root->last_trans);
5f39d397 1055
7bb86316 1056 level = btrfs_header_level(buf);
31840ae1 1057
5d4f98a2
YZ
1058 if (level == 0)
1059 btrfs_item_key(buf, &disk_key, 0);
1060 else
1061 btrfs_node_key(buf, &disk_key, 0);
1062
0f5053eb
GR
1063 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1064 parent_start = parent->start;
5d4f98a2 1065
a6279470
FM
1066 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1067 level, search_start, empty_size);
54aa1f4d
CM
1068 if (IS_ERR(cow))
1069 return PTR_ERR(cow);
6702ed49 1070
b4ce94de
CM
1071 /* cow is set to blocking by btrfs_init_new_buffer */
1072
58e8012c 1073 copy_extent_buffer_full(cow, buf);
db94535d 1074 btrfs_set_header_bytenr(cow, cow->start);
5f39d397 1075 btrfs_set_header_generation(cow, trans->transid);
5d4f98a2
YZ
1076 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1077 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1078 BTRFS_HEADER_FLAG_RELOC);
1079 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1081 else
1082 btrfs_set_header_owner(cow, root->root_key.objectid);
6702ed49 1083
de37aa51 1084 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
2b82032c 1085
be1a5564 1086 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
b68dc2a9 1087 if (ret) {
66642832 1088 btrfs_abort_transaction(trans, ret);
b68dc2a9
MF
1089 return ret;
1090 }
1a40e23b 1091
27cdeb70 1092 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
83d4cfd4 1093 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
93314e3b 1094 if (ret) {
66642832 1095 btrfs_abort_transaction(trans, ret);
83d4cfd4 1096 return ret;
93314e3b 1097 }
83d4cfd4 1098 }
3fd0a558 1099
02217ed2 1100 if (buf == root->node) {
925baedd 1101 WARN_ON(parent && parent != buf);
5d4f98a2
YZ
1102 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1103 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1104 parent_start = buf->start;
925baedd 1105
5f39d397 1106 extent_buffer_get(cow);
d9d19a01
DS
1107 ret = tree_mod_log_insert_root(root->node, cow, 1);
1108 BUG_ON(ret < 0);
240f62c8 1109 rcu_assign_pointer(root->node, cow);
925baedd 1110
f0486c68 1111 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1112 last_ref);
5f39d397 1113 free_extent_buffer(buf);
0b86a832 1114 add_root_to_dirty_list(root);
02217ed2 1115 } else {
5d4f98a2 1116 WARN_ON(trans->transid != btrfs_header_generation(parent));
e09c2efe 1117 tree_mod_log_insert_key(parent, parent_slot,
c8cc6341 1118 MOD_LOG_KEY_REPLACE, GFP_NOFS);
5f39d397 1119 btrfs_set_node_blockptr(parent, parent_slot,
db94535d 1120 cow->start);
74493f7a
CM
1121 btrfs_set_node_ptr_generation(parent, parent_slot,
1122 trans->transid);
d6025579 1123 btrfs_mark_buffer_dirty(parent);
5de865ee 1124 if (last_ref) {
db7279a2 1125 ret = tree_mod_log_free_eb(buf);
5de865ee 1126 if (ret) {
66642832 1127 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
1128 return ret;
1129 }
1130 }
f0486c68 1131 btrfs_free_tree_block(trans, root, buf, parent_start,
5581a51a 1132 last_ref);
02217ed2 1133 }
925baedd
CM
1134 if (unlock_orig)
1135 btrfs_tree_unlock(buf);
3083ee2e 1136 free_extent_buffer_stale(buf);
ccd467d6 1137 btrfs_mark_buffer_dirty(cow);
2c90e5d6 1138 *cow_ret = cow;
02217ed2
CM
1139 return 0;
1140}
1141
5d9e75c4
JS
1142/*
1143 * returns the logical address of the oldest predecessor of the given root.
1144 * entries older than time_seq are ignored.
1145 */
bcd24dab
DS
1146static struct tree_mod_elem *__tree_mod_log_oldest_root(
1147 struct extent_buffer *eb_root, u64 time_seq)
5d9e75c4
JS
1148{
1149 struct tree_mod_elem *tm;
1150 struct tree_mod_elem *found = NULL;
30b0463a 1151 u64 root_logical = eb_root->start;
5d9e75c4
JS
1152 int looped = 0;
1153
1154 if (!time_seq)
35a3621b 1155 return NULL;
5d9e75c4
JS
1156
1157 /*
298cfd36
CR
1158 * the very last operation that's logged for a root is the
1159 * replacement operation (if it is replaced at all). this has
1160 * the logical address of the *new* root, making it the very
1161 * first operation that's logged for this root.
5d9e75c4
JS
1162 */
1163 while (1) {
bcd24dab 1164 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
5d9e75c4
JS
1165 time_seq);
1166 if (!looped && !tm)
35a3621b 1167 return NULL;
5d9e75c4 1168 /*
28da9fb4
JS
1169 * if there are no tree operation for the oldest root, we simply
1170 * return it. this should only happen if that (old) root is at
1171 * level 0.
5d9e75c4 1172 */
28da9fb4
JS
1173 if (!tm)
1174 break;
5d9e75c4 1175
28da9fb4
JS
1176 /*
1177 * if there's an operation that's not a root replacement, we
1178 * found the oldest version of our root. normally, we'll find a
1179 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1180 */
5d9e75c4
JS
1181 if (tm->op != MOD_LOG_ROOT_REPLACE)
1182 break;
1183
1184 found = tm;
1185 root_logical = tm->old_root.logical;
5d9e75c4
JS
1186 looped = 1;
1187 }
1188
a95236d9
JS
1189 /* if there's no old root to return, return what we found instead */
1190 if (!found)
1191 found = tm;
1192
5d9e75c4
JS
1193 return found;
1194}
1195
1196/*
1197 * tm is a pointer to the first operation to rewind within eb. then, all
01327610 1198 * previous operations will be rewound (until we reach something older than
5d9e75c4
JS
1199 * time_seq).
1200 */
1201static void
f1ca7e98
JB
1202__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1203 u64 time_seq, struct tree_mod_elem *first_tm)
5d9e75c4
JS
1204{
1205 u32 n;
1206 struct rb_node *next;
1207 struct tree_mod_elem *tm = first_tm;
1208 unsigned long o_dst;
1209 unsigned long o_src;
1210 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1211
1212 n = btrfs_header_nritems(eb);
b1a09f1e 1213 read_lock(&fs_info->tree_mod_log_lock);
097b8a7c 1214 while (tm && tm->seq >= time_seq) {
5d9e75c4
JS
1215 /*
1216 * all the operations are recorded with the operator used for
1217 * the modification. as we're going backwards, we do the
1218 * opposite of each operation here.
1219 */
1220 switch (tm->op) {
1221 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1222 BUG_ON(tm->slot < n);
1c697d4a 1223 /* Fallthrough */
95c80bb1 1224 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
4c3e6969 1225 case MOD_LOG_KEY_REMOVE:
5d9e75c4
JS
1226 btrfs_set_node_key(eb, &tm->key, tm->slot);
1227 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228 btrfs_set_node_ptr_generation(eb, tm->slot,
1229 tm->generation);
4c3e6969 1230 n++;
5d9e75c4
JS
1231 break;
1232 case MOD_LOG_KEY_REPLACE:
1233 BUG_ON(tm->slot >= n);
1234 btrfs_set_node_key(eb, &tm->key, tm->slot);
1235 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1236 btrfs_set_node_ptr_generation(eb, tm->slot,
1237 tm->generation);
1238 break;
1239 case MOD_LOG_KEY_ADD:
19956c7e 1240 /* if a move operation is needed it's in the log */
5d9e75c4
JS
1241 n--;
1242 break;
1243 case MOD_LOG_MOVE_KEYS:
c3193108
JS
1244 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1245 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1246 memmove_extent_buffer(eb, o_dst, o_src,
5d9e75c4
JS
1247 tm->move.nr_items * p_size);
1248 break;
1249 case MOD_LOG_ROOT_REPLACE:
1250 /*
1251 * this operation is special. for roots, this must be
1252 * handled explicitly before rewinding.
1253 * for non-roots, this operation may exist if the node
1254 * was a root: root A -> child B; then A gets empty and
1255 * B is promoted to the new root. in the mod log, we'll
1256 * have a root-replace operation for B, a tree block
1257 * that is no root. we simply ignore that operation.
1258 */
1259 break;
1260 }
1261 next = rb_next(&tm->node);
1262 if (!next)
1263 break;
6b4df8b6 1264 tm = rb_entry(next, struct tree_mod_elem, node);
298cfd36 1265 if (tm->logical != first_tm->logical)
5d9e75c4
JS
1266 break;
1267 }
b1a09f1e 1268 read_unlock(&fs_info->tree_mod_log_lock);
5d9e75c4
JS
1269 btrfs_set_header_nritems(eb, n);
1270}
1271
47fb091f 1272/*
01327610 1273 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
47fb091f
JS
1274 * is returned. If rewind operations happen, a fresh buffer is returned. The
1275 * returned buffer is always read-locked. If the returned buffer is not the
1276 * input buffer, the lock on the input buffer is released and the input buffer
1277 * is freed (its refcount is decremented).
1278 */
5d9e75c4 1279static struct extent_buffer *
9ec72677
JB
1280tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1281 struct extent_buffer *eb, u64 time_seq)
5d9e75c4
JS
1282{
1283 struct extent_buffer *eb_rewin;
1284 struct tree_mod_elem *tm;
1285
1286 if (!time_seq)
1287 return eb;
1288
1289 if (btrfs_header_level(eb) == 0)
1290 return eb;
1291
1292 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1293 if (!tm)
1294 return eb;
1295
9ec72677 1296 btrfs_set_path_blocking(path);
300aa896 1297 btrfs_set_lock_blocking_read(eb);
9ec72677 1298
5d9e75c4
JS
1299 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1300 BUG_ON(tm->slot != 0);
da17066c 1301 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
db7f3436 1302 if (!eb_rewin) {
9ec72677 1303 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1304 free_extent_buffer(eb);
1305 return NULL;
1306 }
5d9e75c4
JS
1307 btrfs_set_header_bytenr(eb_rewin, eb->start);
1308 btrfs_set_header_backref_rev(eb_rewin,
1309 btrfs_header_backref_rev(eb));
1310 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
c3193108 1311 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
5d9e75c4
JS
1312 } else {
1313 eb_rewin = btrfs_clone_extent_buffer(eb);
db7f3436 1314 if (!eb_rewin) {
9ec72677 1315 btrfs_tree_read_unlock_blocking(eb);
db7f3436
JB
1316 free_extent_buffer(eb);
1317 return NULL;
1318 }
5d9e75c4
JS
1319 }
1320
9ec72677 1321 btrfs_tree_read_unlock_blocking(eb);
5d9e75c4
JS
1322 free_extent_buffer(eb);
1323
47fb091f 1324 btrfs_tree_read_lock(eb_rewin);
f1ca7e98 1325 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
57911b8b 1326 WARN_ON(btrfs_header_nritems(eb_rewin) >
da17066c 1327 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1328
1329 return eb_rewin;
1330}
1331
8ba97a15
JS
1332/*
1333 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1334 * value. If there are no changes, the current root->root_node is returned. If
1335 * anything changed in between, there's a fresh buffer allocated on which the
1336 * rewind operations are done. In any case, the returned buffer is read locked.
1337 * Returns NULL on error (with no locks held).
1338 */
5d9e75c4
JS
1339static inline struct extent_buffer *
1340get_old_root(struct btrfs_root *root, u64 time_seq)
1341{
0b246afa 1342 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4 1343 struct tree_mod_elem *tm;
30b0463a
JS
1344 struct extent_buffer *eb = NULL;
1345 struct extent_buffer *eb_root;
efad8a85 1346 u64 eb_root_owner = 0;
7bfdcf7f 1347 struct extent_buffer *old;
a95236d9 1348 struct tree_mod_root *old_root = NULL;
4325edd0 1349 u64 old_generation = 0;
a95236d9 1350 u64 logical;
581c1760 1351 int level;
5d9e75c4 1352
30b0463a 1353 eb_root = btrfs_read_lock_root_node(root);
bcd24dab 1354 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5d9e75c4 1355 if (!tm)
30b0463a 1356 return eb_root;
5d9e75c4 1357
a95236d9
JS
1358 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1359 old_root = &tm->old_root;
1360 old_generation = tm->generation;
1361 logical = old_root->logical;
581c1760 1362 level = old_root->level;
a95236d9 1363 } else {
30b0463a 1364 logical = eb_root->start;
581c1760 1365 level = btrfs_header_level(eb_root);
a95236d9 1366 }
5d9e75c4 1367
0b246afa 1368 tm = tree_mod_log_search(fs_info, logical, time_seq);
834328a8 1369 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
30b0463a
JS
1370 btrfs_tree_read_unlock(eb_root);
1371 free_extent_buffer(eb_root);
581c1760 1372 old = read_tree_block(fs_info, logical, 0, level, NULL);
64c043de
LB
1373 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1374 if (!IS_ERR(old))
1375 free_extent_buffer(old);
0b246afa
JM
1376 btrfs_warn(fs_info,
1377 "failed to read tree block %llu from get_old_root",
1378 logical);
834328a8 1379 } else {
7bfdcf7f
LB
1380 eb = btrfs_clone_extent_buffer(old);
1381 free_extent_buffer(old);
834328a8
JS
1382 }
1383 } else if (old_root) {
efad8a85 1384 eb_root_owner = btrfs_header_owner(eb_root);
30b0463a
JS
1385 btrfs_tree_read_unlock(eb_root);
1386 free_extent_buffer(eb_root);
0b246afa 1387 eb = alloc_dummy_extent_buffer(fs_info, logical);
834328a8 1388 } else {
300aa896 1389 btrfs_set_lock_blocking_read(eb_root);
30b0463a 1390 eb = btrfs_clone_extent_buffer(eb_root);
9ec72677 1391 btrfs_tree_read_unlock_blocking(eb_root);
30b0463a 1392 free_extent_buffer(eb_root);
834328a8
JS
1393 }
1394
8ba97a15
JS
1395 if (!eb)
1396 return NULL;
1397 btrfs_tree_read_lock(eb);
a95236d9 1398 if (old_root) {
5d9e75c4
JS
1399 btrfs_set_header_bytenr(eb, eb->start);
1400 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
efad8a85 1401 btrfs_set_header_owner(eb, eb_root_owner);
a95236d9
JS
1402 btrfs_set_header_level(eb, old_root->level);
1403 btrfs_set_header_generation(eb, old_generation);
5d9e75c4 1404 }
28da9fb4 1405 if (tm)
0b246afa 1406 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
28da9fb4
JS
1407 else
1408 WARN_ON(btrfs_header_level(eb) != 0);
0b246afa 1409 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5d9e75c4
JS
1410
1411 return eb;
1412}
1413
5b6602e7
JS
1414int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1415{
1416 struct tree_mod_elem *tm;
1417 int level;
30b0463a 1418 struct extent_buffer *eb_root = btrfs_root_node(root);
5b6602e7 1419
bcd24dab 1420 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
5b6602e7
JS
1421 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1422 level = tm->old_root.level;
1423 } else {
30b0463a 1424 level = btrfs_header_level(eb_root);
5b6602e7 1425 }
30b0463a 1426 free_extent_buffer(eb_root);
5b6602e7
JS
1427
1428 return level;
1429}
1430
5d4f98a2
YZ
1431static inline int should_cow_block(struct btrfs_trans_handle *trans,
1432 struct btrfs_root *root,
1433 struct extent_buffer *buf)
1434{
f5ee5c9a 1435 if (btrfs_is_testing(root->fs_info))
faa2dbf0 1436 return 0;
fccb84c9 1437
d1980131
DS
1438 /* Ensure we can see the FORCE_COW bit */
1439 smp_mb__before_atomic();
f1ebcc74
LB
1440
1441 /*
1442 * We do not need to cow a block if
1443 * 1) this block is not created or changed in this transaction;
1444 * 2) this block does not belong to TREE_RELOC tree;
1445 * 3) the root is not forced COW.
1446 *
1447 * What is forced COW:
01327610 1448 * when we create snapshot during committing the transaction,
52042d8e 1449 * after we've finished copying src root, we must COW the shared
f1ebcc74
LB
1450 * block to ensure the metadata consistency.
1451 */
5d4f98a2
YZ
1452 if (btrfs_header_generation(buf) == trans->transid &&
1453 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1454 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
f1ebcc74 1455 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
27cdeb70 1456 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
5d4f98a2
YZ
1457 return 0;
1458 return 1;
1459}
1460
d352ac68
CM
1461/*
1462 * cows a single block, see __btrfs_cow_block for the real work.
01327610 1463 * This version of it has extra checks so that a block isn't COWed more than
d352ac68
CM
1464 * once per transaction, as long as it hasn't been written yet
1465 */
d397712b 1466noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
5f39d397
CM
1467 struct btrfs_root *root, struct extent_buffer *buf,
1468 struct extent_buffer *parent, int parent_slot,
9fa8cfe7 1469 struct extent_buffer **cow_ret)
6702ed49 1470{
0b246afa 1471 struct btrfs_fs_info *fs_info = root->fs_info;
6702ed49 1472 u64 search_start;
f510cfec 1473 int ret;
dc17ff8f 1474
83354f07
JB
1475 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1476 btrfs_err(fs_info,
1477 "COW'ing blocks on a fs root that's being dropped");
1478
0b246afa 1479 if (trans->transaction != fs_info->running_transaction)
31b1a2bd 1480 WARN(1, KERN_CRIT "trans %llu running %llu\n",
c1c9ff7c 1481 trans->transid,
0b246afa 1482 fs_info->running_transaction->transid);
31b1a2bd 1483
0b246afa 1484 if (trans->transid != fs_info->generation)
31b1a2bd 1485 WARN(1, KERN_CRIT "trans %llu running %llu\n",
0b246afa 1486 trans->transid, fs_info->generation);
dc17ff8f 1487
5d4f98a2 1488 if (!should_cow_block(trans, root, buf)) {
64c12921 1489 trans->dirty = true;
6702ed49
CM
1490 *cow_ret = buf;
1491 return 0;
1492 }
c487685d 1493
ee22184b 1494 search_start = buf->start & ~((u64)SZ_1G - 1);
b4ce94de
CM
1495
1496 if (parent)
8bead258
DS
1497 btrfs_set_lock_blocking_write(parent);
1498 btrfs_set_lock_blocking_write(buf);
b4ce94de 1499
f616f5cd
QW
1500 /*
1501 * Before CoWing this block for later modification, check if it's
1502 * the subtree root and do the delayed subtree trace if needed.
1503 *
1504 * Also We don't care about the error, as it's handled internally.
1505 */
1506 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
f510cfec 1507 ret = __btrfs_cow_block(trans, root, buf, parent,
9fa8cfe7 1508 parent_slot, cow_ret, search_start, 0);
1abe9b8a 1509
1510 trace_btrfs_cow_block(root, buf, *cow_ret);
1511
f510cfec 1512 return ret;
6702ed49
CM
1513}
1514
d352ac68
CM
1515/*
1516 * helper function for defrag to decide if two blocks pointed to by a
1517 * node are actually close by
1518 */
6b80053d 1519static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
6702ed49 1520{
6b80053d 1521 if (blocknr < other && other - (blocknr + blocksize) < 32768)
6702ed49 1522 return 1;
6b80053d 1523 if (blocknr > other && blocknr - (other + blocksize) < 32768)
6702ed49
CM
1524 return 1;
1525 return 0;
1526}
1527
081e9573
CM
1528/*
1529 * compare two keys in a memcmp fashion
1530 */
310712b2
OS
1531static int comp_keys(const struct btrfs_disk_key *disk,
1532 const struct btrfs_key *k2)
081e9573
CM
1533{
1534 struct btrfs_key k1;
1535
1536 btrfs_disk_key_to_cpu(&k1, disk);
1537
20736aba 1538 return btrfs_comp_cpu_keys(&k1, k2);
081e9573
CM
1539}
1540
f3465ca4
JB
1541/*
1542 * same as comp_keys only with two btrfs_key's
1543 */
310712b2 1544int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
f3465ca4
JB
1545{
1546 if (k1->objectid > k2->objectid)
1547 return 1;
1548 if (k1->objectid < k2->objectid)
1549 return -1;
1550 if (k1->type > k2->type)
1551 return 1;
1552 if (k1->type < k2->type)
1553 return -1;
1554 if (k1->offset > k2->offset)
1555 return 1;
1556 if (k1->offset < k2->offset)
1557 return -1;
1558 return 0;
1559}
081e9573 1560
d352ac68
CM
1561/*
1562 * this is used by the defrag code to go through all the
1563 * leaves pointed to by a node and reallocate them so that
1564 * disk order is close to key order
1565 */
6702ed49 1566int btrfs_realloc_node(struct btrfs_trans_handle *trans,
5f39d397 1567 struct btrfs_root *root, struct extent_buffer *parent,
de78b51a 1568 int start_slot, u64 *last_ret,
a6b6e75e 1569 struct btrfs_key *progress)
6702ed49 1570{
0b246afa 1571 struct btrfs_fs_info *fs_info = root->fs_info;
6b80053d 1572 struct extent_buffer *cur;
6702ed49 1573 u64 blocknr;
ca7a79ad 1574 u64 gen;
e9d0b13b
CM
1575 u64 search_start = *last_ret;
1576 u64 last_block = 0;
6702ed49
CM
1577 u64 other;
1578 u32 parent_nritems;
6702ed49
CM
1579 int end_slot;
1580 int i;
1581 int err = 0;
f2183bde 1582 int parent_level;
6b80053d
CM
1583 int uptodate;
1584 u32 blocksize;
081e9573
CM
1585 int progress_passed = 0;
1586 struct btrfs_disk_key disk_key;
6702ed49 1587
5708b959 1588 parent_level = btrfs_header_level(parent);
5708b959 1589
0b246afa
JM
1590 WARN_ON(trans->transaction != fs_info->running_transaction);
1591 WARN_ON(trans->transid != fs_info->generation);
86479a04 1592
6b80053d 1593 parent_nritems = btrfs_header_nritems(parent);
0b246afa 1594 blocksize = fs_info->nodesize;
5dfe2be7 1595 end_slot = parent_nritems - 1;
6702ed49 1596
5dfe2be7 1597 if (parent_nritems <= 1)
6702ed49
CM
1598 return 0;
1599
8bead258 1600 btrfs_set_lock_blocking_write(parent);
b4ce94de 1601
5dfe2be7 1602 for (i = start_slot; i <= end_slot; i++) {
581c1760 1603 struct btrfs_key first_key;
6702ed49 1604 int close = 1;
a6b6e75e 1605
081e9573
CM
1606 btrfs_node_key(parent, &disk_key, i);
1607 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1608 continue;
1609
1610 progress_passed = 1;
6b80053d 1611 blocknr = btrfs_node_blockptr(parent, i);
ca7a79ad 1612 gen = btrfs_node_ptr_generation(parent, i);
581c1760 1613 btrfs_node_key_to_cpu(parent, &first_key, i);
e9d0b13b
CM
1614 if (last_block == 0)
1615 last_block = blocknr;
5708b959 1616
6702ed49 1617 if (i > 0) {
6b80053d
CM
1618 other = btrfs_node_blockptr(parent, i - 1);
1619 close = close_blocks(blocknr, other, blocksize);
6702ed49 1620 }
5dfe2be7 1621 if (!close && i < end_slot) {
6b80053d
CM
1622 other = btrfs_node_blockptr(parent, i + 1);
1623 close = close_blocks(blocknr, other, blocksize);
6702ed49 1624 }
e9d0b13b
CM
1625 if (close) {
1626 last_block = blocknr;
6702ed49 1627 continue;
e9d0b13b 1628 }
6702ed49 1629
0b246afa 1630 cur = find_extent_buffer(fs_info, blocknr);
6b80053d 1631 if (cur)
b9fab919 1632 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
6b80053d
CM
1633 else
1634 uptodate = 0;
5708b959 1635 if (!cur || !uptodate) {
6b80053d 1636 if (!cur) {
581c1760
QW
1637 cur = read_tree_block(fs_info, blocknr, gen,
1638 parent_level - 1,
1639 &first_key);
64c043de
LB
1640 if (IS_ERR(cur)) {
1641 return PTR_ERR(cur);
1642 } else if (!extent_buffer_uptodate(cur)) {
416bc658 1643 free_extent_buffer(cur);
97d9a8a4 1644 return -EIO;
416bc658 1645 }
6b80053d 1646 } else if (!uptodate) {
581c1760
QW
1647 err = btrfs_read_buffer(cur, gen,
1648 parent_level - 1,&first_key);
018642a1
TI
1649 if (err) {
1650 free_extent_buffer(cur);
1651 return err;
1652 }
f2183bde 1653 }
6702ed49 1654 }
e9d0b13b 1655 if (search_start == 0)
6b80053d 1656 search_start = last_block;
e9d0b13b 1657
e7a84565 1658 btrfs_tree_lock(cur);
8bead258 1659 btrfs_set_lock_blocking_write(cur);
6b80053d 1660 err = __btrfs_cow_block(trans, root, cur, parent, i,
e7a84565 1661 &cur, search_start,
6b80053d 1662 min(16 * blocksize,
9fa8cfe7 1663 (end_slot - i) * blocksize));
252c38f0 1664 if (err) {
e7a84565 1665 btrfs_tree_unlock(cur);
6b80053d 1666 free_extent_buffer(cur);
6702ed49 1667 break;
252c38f0 1668 }
e7a84565
CM
1669 search_start = cur->start;
1670 last_block = cur->start;
f2183bde 1671 *last_ret = search_start;
e7a84565
CM
1672 btrfs_tree_unlock(cur);
1673 free_extent_buffer(cur);
6702ed49
CM
1674 }
1675 return err;
1676}
1677
74123bd7 1678/*
5f39d397
CM
1679 * search for key in the extent_buffer. The items start at offset p,
1680 * and they are item_size apart. There are 'max' items in p.
1681 *
74123bd7
CM
1682 * the slot in the array is returned via slot, and it points to
1683 * the place where you would insert key if it is not found in
1684 * the array.
1685 *
1686 * slot may point to max if the key is bigger than all of the keys
1687 */
e02119d5 1688static noinline int generic_bin_search(struct extent_buffer *eb,
310712b2
OS
1689 unsigned long p, int item_size,
1690 const struct btrfs_key *key,
e02119d5 1691 int max, int *slot)
be0e5c09
CM
1692{
1693 int low = 0;
1694 int high = max;
1695 int mid;
1696 int ret;
479965d6 1697 struct btrfs_disk_key *tmp = NULL;
5f39d397
CM
1698 struct btrfs_disk_key unaligned;
1699 unsigned long offset;
5f39d397
CM
1700 char *kaddr = NULL;
1701 unsigned long map_start = 0;
1702 unsigned long map_len = 0;
479965d6 1703 int err;
be0e5c09 1704
5e24e9af
LB
1705 if (low > high) {
1706 btrfs_err(eb->fs_info,
1707 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1708 __func__, low, high, eb->start,
1709 btrfs_header_owner(eb), btrfs_header_level(eb));
1710 return -EINVAL;
1711 }
1712
d397712b 1713 while (low < high) {
be0e5c09 1714 mid = (low + high) / 2;
5f39d397
CM
1715 offset = p + mid * item_size;
1716
a6591715 1717 if (!kaddr || offset < map_start ||
5f39d397
CM
1718 (offset + sizeof(struct btrfs_disk_key)) >
1719 map_start + map_len) {
934d375b
CM
1720
1721 err = map_private_extent_buffer(eb, offset,
479965d6 1722 sizeof(struct btrfs_disk_key),
a6591715 1723 &kaddr, &map_start, &map_len);
479965d6
CM
1724
1725 if (!err) {
1726 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1727 map_start);
415b35a5 1728 } else if (err == 1) {
479965d6
CM
1729 read_extent_buffer(eb, &unaligned,
1730 offset, sizeof(unaligned));
1731 tmp = &unaligned;
415b35a5
LB
1732 } else {
1733 return err;
479965d6 1734 }
5f39d397 1735
5f39d397
CM
1736 } else {
1737 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1738 map_start);
1739 }
be0e5c09
CM
1740 ret = comp_keys(tmp, key);
1741
1742 if (ret < 0)
1743 low = mid + 1;
1744 else if (ret > 0)
1745 high = mid;
1746 else {
1747 *slot = mid;
1748 return 0;
1749 }
1750 }
1751 *slot = low;
1752 return 1;
1753}
1754
97571fd0
CM
1755/*
1756 * simple bin_search frontend that does the right thing for
1757 * leaves vs nodes
1758 */
a74b35ec
NB
1759int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1760 int level, int *slot)
be0e5c09 1761{
f775738f 1762 if (level == 0)
5f39d397
CM
1763 return generic_bin_search(eb,
1764 offsetof(struct btrfs_leaf, items),
0783fcfc 1765 sizeof(struct btrfs_item),
5f39d397 1766 key, btrfs_header_nritems(eb),
7518a238 1767 slot);
f775738f 1768 else
5f39d397
CM
1769 return generic_bin_search(eb,
1770 offsetof(struct btrfs_node, ptrs),
123abc88 1771 sizeof(struct btrfs_key_ptr),
5f39d397 1772 key, btrfs_header_nritems(eb),
7518a238 1773 slot);
be0e5c09
CM
1774}
1775
f0486c68
YZ
1776static void root_add_used(struct btrfs_root *root, u32 size)
1777{
1778 spin_lock(&root->accounting_lock);
1779 btrfs_set_root_used(&root->root_item,
1780 btrfs_root_used(&root->root_item) + size);
1781 spin_unlock(&root->accounting_lock);
1782}
1783
1784static void root_sub_used(struct btrfs_root *root, u32 size)
1785{
1786 spin_lock(&root->accounting_lock);
1787 btrfs_set_root_used(&root->root_item,
1788 btrfs_root_used(&root->root_item) - size);
1789 spin_unlock(&root->accounting_lock);
1790}
1791
d352ac68
CM
1792/* given a node and slot number, this reads the blocks it points to. The
1793 * extent buffer is returned with a reference taken (but unlocked).
d352ac68 1794 */
4b231ae4
DS
1795struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1796 int slot)
bb803951 1797{
ca7a79ad 1798 int level = btrfs_header_level(parent);
416bc658 1799 struct extent_buffer *eb;
581c1760 1800 struct btrfs_key first_key;
416bc658 1801
fb770ae4
LB
1802 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1803 return ERR_PTR(-ENOENT);
ca7a79ad
CM
1804
1805 BUG_ON(level == 0);
1806
581c1760 1807 btrfs_node_key_to_cpu(parent, &first_key, slot);
d0d20b0f 1808 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
581c1760
QW
1809 btrfs_node_ptr_generation(parent, slot),
1810 level - 1, &first_key);
fb770ae4
LB
1811 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1812 free_extent_buffer(eb);
1813 eb = ERR_PTR(-EIO);
416bc658
JB
1814 }
1815
1816 return eb;
bb803951
CM
1817}
1818
d352ac68
CM
1819/*
1820 * node level balancing, used to make sure nodes are in proper order for
1821 * item deletion. We balance from the top down, so we have to make sure
1822 * that a deletion won't leave an node completely empty later on.
1823 */
e02119d5 1824static noinline int balance_level(struct btrfs_trans_handle *trans,
98ed5174
CM
1825 struct btrfs_root *root,
1826 struct btrfs_path *path, int level)
bb803951 1827{
0b246afa 1828 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
1829 struct extent_buffer *right = NULL;
1830 struct extent_buffer *mid;
1831 struct extent_buffer *left = NULL;
1832 struct extent_buffer *parent = NULL;
bb803951
CM
1833 int ret = 0;
1834 int wret;
1835 int pslot;
bb803951 1836 int orig_slot = path->slots[level];
79f95c82 1837 u64 orig_ptr;
bb803951 1838
98e6b1eb 1839 ASSERT(level > 0);
bb803951 1840
5f39d397 1841 mid = path->nodes[level];
b4ce94de 1842
bd681513
CM
1843 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1844 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
7bb86316
CM
1845 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1846
1d4f8a0c 1847 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
79f95c82 1848
a05a9bb1 1849 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 1850 parent = path->nodes[level + 1];
a05a9bb1
LZ
1851 pslot = path->slots[level + 1];
1852 }
bb803951 1853
40689478
CM
1854 /*
1855 * deal with the case where there is only one pointer in the root
1856 * by promoting the node below to a root
1857 */
5f39d397
CM
1858 if (!parent) {
1859 struct extent_buffer *child;
bb803951 1860
5f39d397 1861 if (btrfs_header_nritems(mid) != 1)
bb803951
CM
1862 return 0;
1863
1864 /* promote the child to a root */
4b231ae4 1865 child = btrfs_read_node_slot(mid, 0);
fb770ae4
LB
1866 if (IS_ERR(child)) {
1867 ret = PTR_ERR(child);
0b246afa 1868 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1869 goto enospc;
1870 }
1871
925baedd 1872 btrfs_tree_lock(child);
8bead258 1873 btrfs_set_lock_blocking_write(child);
9fa8cfe7 1874 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
f0486c68
YZ
1875 if (ret) {
1876 btrfs_tree_unlock(child);
1877 free_extent_buffer(child);
1878 goto enospc;
1879 }
2f375ab9 1880
d9d19a01
DS
1881 ret = tree_mod_log_insert_root(root->node, child, 1);
1882 BUG_ON(ret < 0);
240f62c8 1883 rcu_assign_pointer(root->node, child);
925baedd 1884
0b86a832 1885 add_root_to_dirty_list(root);
925baedd 1886 btrfs_tree_unlock(child);
b4ce94de 1887
925baedd 1888 path->locks[level] = 0;
bb803951 1889 path->nodes[level] = NULL;
6a884d7d 1890 btrfs_clean_tree_block(mid);
925baedd 1891 btrfs_tree_unlock(mid);
bb803951 1892 /* once for the path */
5f39d397 1893 free_extent_buffer(mid);
f0486c68
YZ
1894
1895 root_sub_used(root, mid->len);
5581a51a 1896 btrfs_free_tree_block(trans, root, mid, 0, 1);
bb803951 1897 /* once for the root ptr */
3083ee2e 1898 free_extent_buffer_stale(mid);
f0486c68 1899 return 0;
bb803951 1900 }
5f39d397 1901 if (btrfs_header_nritems(mid) >
0b246afa 1902 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
bb803951
CM
1903 return 0;
1904
4b231ae4 1905 left = btrfs_read_node_slot(parent, pslot - 1);
fb770ae4
LB
1906 if (IS_ERR(left))
1907 left = NULL;
1908
5f39d397 1909 if (left) {
925baedd 1910 btrfs_tree_lock(left);
8bead258 1911 btrfs_set_lock_blocking_write(left);
5f39d397 1912 wret = btrfs_cow_block(trans, root, left,
9fa8cfe7 1913 parent, pslot - 1, &left);
54aa1f4d
CM
1914 if (wret) {
1915 ret = wret;
1916 goto enospc;
1917 }
2cc58cf2 1918 }
fb770ae4 1919
4b231ae4 1920 right = btrfs_read_node_slot(parent, pslot + 1);
fb770ae4
LB
1921 if (IS_ERR(right))
1922 right = NULL;
1923
5f39d397 1924 if (right) {
925baedd 1925 btrfs_tree_lock(right);
8bead258 1926 btrfs_set_lock_blocking_write(right);
5f39d397 1927 wret = btrfs_cow_block(trans, root, right,
9fa8cfe7 1928 parent, pslot + 1, &right);
2cc58cf2
CM
1929 if (wret) {
1930 ret = wret;
1931 goto enospc;
1932 }
1933 }
1934
1935 /* first, try to make some room in the middle buffer */
5f39d397
CM
1936 if (left) {
1937 orig_slot += btrfs_header_nritems(left);
d30a668f 1938 wret = push_node_left(trans, left, mid, 1);
79f95c82
CM
1939 if (wret < 0)
1940 ret = wret;
bb803951 1941 }
79f95c82
CM
1942
1943 /*
1944 * then try to empty the right most buffer into the middle
1945 */
5f39d397 1946 if (right) {
d30a668f 1947 wret = push_node_left(trans, mid, right, 1);
54aa1f4d 1948 if (wret < 0 && wret != -ENOSPC)
79f95c82 1949 ret = wret;
5f39d397 1950 if (btrfs_header_nritems(right) == 0) {
6a884d7d 1951 btrfs_clean_tree_block(right);
925baedd 1952 btrfs_tree_unlock(right);
afe5fea7 1953 del_ptr(root, path, level + 1, pslot + 1);
f0486c68 1954 root_sub_used(root, right->len);
5581a51a 1955 btrfs_free_tree_block(trans, root, right, 0, 1);
3083ee2e 1956 free_extent_buffer_stale(right);
f0486c68 1957 right = NULL;
bb803951 1958 } else {
5f39d397
CM
1959 struct btrfs_disk_key right_key;
1960 btrfs_node_key(right, &right_key, 0);
0e82bcfe
DS
1961 ret = tree_mod_log_insert_key(parent, pslot + 1,
1962 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1963 BUG_ON(ret < 0);
5f39d397
CM
1964 btrfs_set_node_key(parent, &right_key, pslot + 1);
1965 btrfs_mark_buffer_dirty(parent);
bb803951
CM
1966 }
1967 }
5f39d397 1968 if (btrfs_header_nritems(mid) == 1) {
79f95c82
CM
1969 /*
1970 * we're not allowed to leave a node with one item in the
1971 * tree during a delete. A deletion from lower in the tree
1972 * could try to delete the only pointer in this node.
1973 * So, pull some keys from the left.
1974 * There has to be a left pointer at this point because
1975 * otherwise we would have pulled some pointers from the
1976 * right
1977 */
305a26af
MF
1978 if (!left) {
1979 ret = -EROFS;
0b246afa 1980 btrfs_handle_fs_error(fs_info, ret, NULL);
305a26af
MF
1981 goto enospc;
1982 }
55d32ed8 1983 wret = balance_node_right(trans, mid, left);
54aa1f4d 1984 if (wret < 0) {
79f95c82 1985 ret = wret;
54aa1f4d
CM
1986 goto enospc;
1987 }
bce4eae9 1988 if (wret == 1) {
d30a668f 1989 wret = push_node_left(trans, left, mid, 1);
bce4eae9
CM
1990 if (wret < 0)
1991 ret = wret;
1992 }
79f95c82
CM
1993 BUG_ON(wret == 1);
1994 }
5f39d397 1995 if (btrfs_header_nritems(mid) == 0) {
6a884d7d 1996 btrfs_clean_tree_block(mid);
925baedd 1997 btrfs_tree_unlock(mid);
afe5fea7 1998 del_ptr(root, path, level + 1, pslot);
f0486c68 1999 root_sub_used(root, mid->len);
5581a51a 2000 btrfs_free_tree_block(trans, root, mid, 0, 1);
3083ee2e 2001 free_extent_buffer_stale(mid);
f0486c68 2002 mid = NULL;
79f95c82
CM
2003 } else {
2004 /* update the parent key to reflect our changes */
5f39d397
CM
2005 struct btrfs_disk_key mid_key;
2006 btrfs_node_key(mid, &mid_key, 0);
0e82bcfe
DS
2007 ret = tree_mod_log_insert_key(parent, pslot,
2008 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2009 BUG_ON(ret < 0);
5f39d397
CM
2010 btrfs_set_node_key(parent, &mid_key, pslot);
2011 btrfs_mark_buffer_dirty(parent);
79f95c82 2012 }
bb803951 2013
79f95c82 2014 /* update the path */
5f39d397
CM
2015 if (left) {
2016 if (btrfs_header_nritems(left) > orig_slot) {
2017 extent_buffer_get(left);
925baedd 2018 /* left was locked after cow */
5f39d397 2019 path->nodes[level] = left;
bb803951
CM
2020 path->slots[level + 1] -= 1;
2021 path->slots[level] = orig_slot;
925baedd
CM
2022 if (mid) {
2023 btrfs_tree_unlock(mid);
5f39d397 2024 free_extent_buffer(mid);
925baedd 2025 }
bb803951 2026 } else {
5f39d397 2027 orig_slot -= btrfs_header_nritems(left);
bb803951
CM
2028 path->slots[level] = orig_slot;
2029 }
2030 }
79f95c82 2031 /* double check we haven't messed things up */
e20d96d6 2032 if (orig_ptr !=
5f39d397 2033 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
79f95c82 2034 BUG();
54aa1f4d 2035enospc:
925baedd
CM
2036 if (right) {
2037 btrfs_tree_unlock(right);
5f39d397 2038 free_extent_buffer(right);
925baedd
CM
2039 }
2040 if (left) {
2041 if (path->nodes[level] != left)
2042 btrfs_tree_unlock(left);
5f39d397 2043 free_extent_buffer(left);
925baedd 2044 }
bb803951
CM
2045 return ret;
2046}
2047
d352ac68
CM
2048/* Node balancing for insertion. Here we only split or push nodes around
2049 * when they are completely full. This is also done top down, so we
2050 * have to be pessimistic.
2051 */
d397712b 2052static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
98ed5174
CM
2053 struct btrfs_root *root,
2054 struct btrfs_path *path, int level)
e66f709b 2055{
0b246afa 2056 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
2057 struct extent_buffer *right = NULL;
2058 struct extent_buffer *mid;
2059 struct extent_buffer *left = NULL;
2060 struct extent_buffer *parent = NULL;
e66f709b
CM
2061 int ret = 0;
2062 int wret;
2063 int pslot;
2064 int orig_slot = path->slots[level];
e66f709b
CM
2065
2066 if (level == 0)
2067 return 1;
2068
5f39d397 2069 mid = path->nodes[level];
7bb86316 2070 WARN_ON(btrfs_header_generation(mid) != trans->transid);
e66f709b 2071
a05a9bb1 2072 if (level < BTRFS_MAX_LEVEL - 1) {
5f39d397 2073 parent = path->nodes[level + 1];
a05a9bb1
LZ
2074 pslot = path->slots[level + 1];
2075 }
e66f709b 2076
5f39d397 2077 if (!parent)
e66f709b 2078 return 1;
e66f709b 2079
4b231ae4 2080 left = btrfs_read_node_slot(parent, pslot - 1);
fb770ae4
LB
2081 if (IS_ERR(left))
2082 left = NULL;
e66f709b
CM
2083
2084 /* first, try to make some room in the middle buffer */
5f39d397 2085 if (left) {
e66f709b 2086 u32 left_nr;
925baedd
CM
2087
2088 btrfs_tree_lock(left);
8bead258 2089 btrfs_set_lock_blocking_write(left);
b4ce94de 2090
5f39d397 2091 left_nr = btrfs_header_nritems(left);
0b246afa 2092 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2093 wret = 1;
2094 } else {
5f39d397 2095 ret = btrfs_cow_block(trans, root, left, parent,
9fa8cfe7 2096 pslot - 1, &left);
54aa1f4d
CM
2097 if (ret)
2098 wret = 1;
2099 else {
d30a668f 2100 wret = push_node_left(trans, left, mid, 0);
54aa1f4d 2101 }
33ade1f8 2102 }
e66f709b
CM
2103 if (wret < 0)
2104 ret = wret;
2105 if (wret == 0) {
5f39d397 2106 struct btrfs_disk_key disk_key;
e66f709b 2107 orig_slot += left_nr;
5f39d397 2108 btrfs_node_key(mid, &disk_key, 0);
0e82bcfe
DS
2109 ret = tree_mod_log_insert_key(parent, pslot,
2110 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2111 BUG_ON(ret < 0);
5f39d397
CM
2112 btrfs_set_node_key(parent, &disk_key, pslot);
2113 btrfs_mark_buffer_dirty(parent);
2114 if (btrfs_header_nritems(left) > orig_slot) {
2115 path->nodes[level] = left;
e66f709b
CM
2116 path->slots[level + 1] -= 1;
2117 path->slots[level] = orig_slot;
925baedd 2118 btrfs_tree_unlock(mid);
5f39d397 2119 free_extent_buffer(mid);
e66f709b
CM
2120 } else {
2121 orig_slot -=
5f39d397 2122 btrfs_header_nritems(left);
e66f709b 2123 path->slots[level] = orig_slot;
925baedd 2124 btrfs_tree_unlock(left);
5f39d397 2125 free_extent_buffer(left);
e66f709b 2126 }
e66f709b
CM
2127 return 0;
2128 }
925baedd 2129 btrfs_tree_unlock(left);
5f39d397 2130 free_extent_buffer(left);
e66f709b 2131 }
4b231ae4 2132 right = btrfs_read_node_slot(parent, pslot + 1);
fb770ae4
LB
2133 if (IS_ERR(right))
2134 right = NULL;
e66f709b
CM
2135
2136 /*
2137 * then try to empty the right most buffer into the middle
2138 */
5f39d397 2139 if (right) {
33ade1f8 2140 u32 right_nr;
b4ce94de 2141
925baedd 2142 btrfs_tree_lock(right);
8bead258 2143 btrfs_set_lock_blocking_write(right);
b4ce94de 2144
5f39d397 2145 right_nr = btrfs_header_nritems(right);
0b246afa 2146 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
33ade1f8
CM
2147 wret = 1;
2148 } else {
5f39d397
CM
2149 ret = btrfs_cow_block(trans, root, right,
2150 parent, pslot + 1,
9fa8cfe7 2151 &right);
54aa1f4d
CM
2152 if (ret)
2153 wret = 1;
2154 else {
55d32ed8 2155 wret = balance_node_right(trans, right, mid);
54aa1f4d 2156 }
33ade1f8 2157 }
e66f709b
CM
2158 if (wret < 0)
2159 ret = wret;
2160 if (wret == 0) {
5f39d397
CM
2161 struct btrfs_disk_key disk_key;
2162
2163 btrfs_node_key(right, &disk_key, 0);
0e82bcfe
DS
2164 ret = tree_mod_log_insert_key(parent, pslot + 1,
2165 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2166 BUG_ON(ret < 0);
5f39d397
CM
2167 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2168 btrfs_mark_buffer_dirty(parent);
2169
2170 if (btrfs_header_nritems(mid) <= orig_slot) {
2171 path->nodes[level] = right;
e66f709b
CM
2172 path->slots[level + 1] += 1;
2173 path->slots[level] = orig_slot -
5f39d397 2174 btrfs_header_nritems(mid);
925baedd 2175 btrfs_tree_unlock(mid);
5f39d397 2176 free_extent_buffer(mid);
e66f709b 2177 } else {
925baedd 2178 btrfs_tree_unlock(right);
5f39d397 2179 free_extent_buffer(right);
e66f709b 2180 }
e66f709b
CM
2181 return 0;
2182 }
925baedd 2183 btrfs_tree_unlock(right);
5f39d397 2184 free_extent_buffer(right);
e66f709b 2185 }
e66f709b
CM
2186 return 1;
2187}
2188
3c69faec 2189/*
d352ac68
CM
2190 * readahead one full node of leaves, finding things that are close
2191 * to the block in 'slot', and triggering ra on them.
3c69faec 2192 */
2ff7e61e 2193static void reada_for_search(struct btrfs_fs_info *fs_info,
c8c42864
CM
2194 struct btrfs_path *path,
2195 int level, int slot, u64 objectid)
3c69faec 2196{
5f39d397 2197 struct extent_buffer *node;
01f46658 2198 struct btrfs_disk_key disk_key;
3c69faec 2199 u32 nritems;
3c69faec 2200 u64 search;
a7175319 2201 u64 target;
6b80053d 2202 u64 nread = 0;
5f39d397 2203 struct extent_buffer *eb;
6b80053d
CM
2204 u32 nr;
2205 u32 blocksize;
2206 u32 nscan = 0;
db94535d 2207
a6b6e75e 2208 if (level != 1)
6702ed49
CM
2209 return;
2210
2211 if (!path->nodes[level])
3c69faec
CM
2212 return;
2213
5f39d397 2214 node = path->nodes[level];
925baedd 2215
3c69faec 2216 search = btrfs_node_blockptr(node, slot);
0b246afa
JM
2217 blocksize = fs_info->nodesize;
2218 eb = find_extent_buffer(fs_info, search);
5f39d397
CM
2219 if (eb) {
2220 free_extent_buffer(eb);
3c69faec
CM
2221 return;
2222 }
2223
a7175319 2224 target = search;
6b80053d 2225
5f39d397 2226 nritems = btrfs_header_nritems(node);
6b80053d 2227 nr = slot;
25b8b936 2228
d397712b 2229 while (1) {
e4058b54 2230 if (path->reada == READA_BACK) {
6b80053d
CM
2231 if (nr == 0)
2232 break;
2233 nr--;
e4058b54 2234 } else if (path->reada == READA_FORWARD) {
6b80053d
CM
2235 nr++;
2236 if (nr >= nritems)
2237 break;
3c69faec 2238 }
e4058b54 2239 if (path->reada == READA_BACK && objectid) {
01f46658
CM
2240 btrfs_node_key(node, &disk_key, nr);
2241 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2242 break;
2243 }
6b80053d 2244 search = btrfs_node_blockptr(node, nr);
a7175319
CM
2245 if ((search <= target && target - search <= 65536) ||
2246 (search > target && search - target <= 65536)) {
2ff7e61e 2247 readahead_tree_block(fs_info, search);
6b80053d
CM
2248 nread += blocksize;
2249 }
2250 nscan++;
a7175319 2251 if ((nread > 65536 || nscan > 32))
6b80053d 2252 break;
3c69faec
CM
2253 }
2254}
925baedd 2255
2ff7e61e 2256static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
0b08851f 2257 struct btrfs_path *path, int level)
b4ce94de
CM
2258{
2259 int slot;
2260 int nritems;
2261 struct extent_buffer *parent;
2262 struct extent_buffer *eb;
2263 u64 gen;
2264 u64 block1 = 0;
2265 u64 block2 = 0;
b4ce94de 2266
8c594ea8 2267 parent = path->nodes[level + 1];
b4ce94de 2268 if (!parent)
0b08851f 2269 return;
b4ce94de
CM
2270
2271 nritems = btrfs_header_nritems(parent);
8c594ea8 2272 slot = path->slots[level + 1];
b4ce94de
CM
2273
2274 if (slot > 0) {
2275 block1 = btrfs_node_blockptr(parent, slot - 1);
2276 gen = btrfs_node_ptr_generation(parent, slot - 1);
0b246afa 2277 eb = find_extent_buffer(fs_info, block1);
b9fab919
CM
2278 /*
2279 * if we get -eagain from btrfs_buffer_uptodate, we
2280 * don't want to return eagain here. That will loop
2281 * forever
2282 */
2283 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2284 block1 = 0;
2285 free_extent_buffer(eb);
2286 }
8c594ea8 2287 if (slot + 1 < nritems) {
b4ce94de
CM
2288 block2 = btrfs_node_blockptr(parent, slot + 1);
2289 gen = btrfs_node_ptr_generation(parent, slot + 1);
0b246afa 2290 eb = find_extent_buffer(fs_info, block2);
b9fab919 2291 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
b4ce94de
CM
2292 block2 = 0;
2293 free_extent_buffer(eb);
2294 }
8c594ea8 2295
0b08851f 2296 if (block1)
2ff7e61e 2297 readahead_tree_block(fs_info, block1);
0b08851f 2298 if (block2)
2ff7e61e 2299 readahead_tree_block(fs_info, block2);
b4ce94de
CM
2300}
2301
2302
d352ac68 2303/*
d397712b
CM
2304 * when we walk down the tree, it is usually safe to unlock the higher layers
2305 * in the tree. The exceptions are when our path goes through slot 0, because
2306 * operations on the tree might require changing key pointers higher up in the
2307 * tree.
d352ac68 2308 *
d397712b
CM
2309 * callers might also have set path->keep_locks, which tells this code to keep
2310 * the lock if the path points to the last slot in the block. This is part of
2311 * walking through the tree, and selecting the next slot in the higher block.
d352ac68 2312 *
d397712b
CM
2313 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2314 * if lowest_unlock is 1, level 0 won't be unlocked
d352ac68 2315 */
e02119d5 2316static noinline void unlock_up(struct btrfs_path *path, int level,
f7c79f30
CM
2317 int lowest_unlock, int min_write_lock_level,
2318 int *write_lock_level)
925baedd
CM
2319{
2320 int i;
2321 int skip_level = level;
051e1b9f 2322 int no_skips = 0;
925baedd
CM
2323 struct extent_buffer *t;
2324
2325 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2326 if (!path->nodes[i])
2327 break;
2328 if (!path->locks[i])
2329 break;
051e1b9f 2330 if (!no_skips && path->slots[i] == 0) {
925baedd
CM
2331 skip_level = i + 1;
2332 continue;
2333 }
051e1b9f 2334 if (!no_skips && path->keep_locks) {
925baedd
CM
2335 u32 nritems;
2336 t = path->nodes[i];
2337 nritems = btrfs_header_nritems(t);
051e1b9f 2338 if (nritems < 1 || path->slots[i] >= nritems - 1) {
925baedd
CM
2339 skip_level = i + 1;
2340 continue;
2341 }
2342 }
051e1b9f
CM
2343 if (skip_level < i && i >= lowest_unlock)
2344 no_skips = 1;
2345
925baedd 2346 t = path->nodes[i];
d80bb3f9 2347 if (i >= lowest_unlock && i > skip_level) {
bd681513 2348 btrfs_tree_unlock_rw(t, path->locks[i]);
925baedd 2349 path->locks[i] = 0;
f7c79f30
CM
2350 if (write_lock_level &&
2351 i > min_write_lock_level &&
2352 i <= *write_lock_level) {
2353 *write_lock_level = i - 1;
2354 }
925baedd
CM
2355 }
2356 }
2357}
2358
b4ce94de
CM
2359/*
2360 * This releases any locks held in the path starting at level and
2361 * going all the way up to the root.
2362 *
2363 * btrfs_search_slot will keep the lock held on higher nodes in a few
2364 * corner cases, such as COW of the block at slot zero in the node. This
2365 * ignores those rules, and it should only be called when there are no
2366 * more updates to be done higher up in the tree.
2367 */
2368noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2369{
2370 int i;
2371
09a2a8f9 2372 if (path->keep_locks)
b4ce94de
CM
2373 return;
2374
2375 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2376 if (!path->nodes[i])
12f4dacc 2377 continue;
b4ce94de 2378 if (!path->locks[i])
12f4dacc 2379 continue;
bd681513 2380 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
b4ce94de
CM
2381 path->locks[i] = 0;
2382 }
2383}
2384
c8c42864
CM
2385/*
2386 * helper function for btrfs_search_slot. The goal is to find a block
2387 * in cache without setting the path to blocking. If we find the block
2388 * we return zero and the path is unchanged.
2389 *
2390 * If we can't find the block, we set the path blocking and do some
2391 * reada. -EAGAIN is returned and the search must be repeated.
2392 */
2393static int
d07b8528
LB
2394read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2395 struct extent_buffer **eb_ret, int level, int slot,
cda79c54 2396 const struct btrfs_key *key)
c8c42864 2397{
0b246afa 2398 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864
CM
2399 u64 blocknr;
2400 u64 gen;
c8c42864
CM
2401 struct extent_buffer *b = *eb_ret;
2402 struct extent_buffer *tmp;
581c1760 2403 struct btrfs_key first_key;
76a05b35 2404 int ret;
581c1760 2405 int parent_level;
c8c42864
CM
2406
2407 blocknr = btrfs_node_blockptr(b, slot);
2408 gen = btrfs_node_ptr_generation(b, slot);
581c1760
QW
2409 parent_level = btrfs_header_level(b);
2410 btrfs_node_key_to_cpu(b, &first_key, slot);
c8c42864 2411
0b246afa 2412 tmp = find_extent_buffer(fs_info, blocknr);
cb44921a 2413 if (tmp) {
b9fab919 2414 /* first we do an atomic uptodate check */
bdf7c00e 2415 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
448de471
QW
2416 /*
2417 * Do extra check for first_key, eb can be stale due to
2418 * being cached, read from scrub, or have multiple
2419 * parents (shared tree blocks).
2420 */
e064d5e9 2421 if (btrfs_verify_level_key(tmp,
448de471
QW
2422 parent_level - 1, &first_key, gen)) {
2423 free_extent_buffer(tmp);
2424 return -EUCLEAN;
2425 }
bdf7c00e
JB
2426 *eb_ret = tmp;
2427 return 0;
2428 }
2429
2430 /* the pages were up to date, but we failed
2431 * the generation number check. Do a full
2432 * read for the generation number that is correct.
2433 * We must do this without dropping locks so
2434 * we can trust our generation number
2435 */
2436 btrfs_set_path_blocking(p);
2437
2438 /* now we're allowed to do a blocking uptodate check */
581c1760 2439 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
bdf7c00e
JB
2440 if (!ret) {
2441 *eb_ret = tmp;
2442 return 0;
cb44921a 2443 }
bdf7c00e
JB
2444 free_extent_buffer(tmp);
2445 btrfs_release_path(p);
2446 return -EIO;
c8c42864
CM
2447 }
2448
2449 /*
2450 * reduce lock contention at high levels
2451 * of the btree by dropping locks before
76a05b35
CM
2452 * we read. Don't release the lock on the current
2453 * level because we need to walk this node to figure
2454 * out which blocks to read.
c8c42864 2455 */
8c594ea8
CM
2456 btrfs_unlock_up_safe(p, level + 1);
2457 btrfs_set_path_blocking(p);
2458
e4058b54 2459 if (p->reada != READA_NONE)
2ff7e61e 2460 reada_for_search(fs_info, p, level, slot, key->objectid);
c8c42864 2461
76a05b35 2462 ret = -EAGAIN;
02a3307a 2463 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
581c1760 2464 &first_key);
64c043de 2465 if (!IS_ERR(tmp)) {
76a05b35
CM
2466 /*
2467 * If the read above didn't mark this buffer up to date,
2468 * it will never end up being up to date. Set ret to EIO now
2469 * and give up so that our caller doesn't loop forever
2470 * on our EAGAINs.
2471 */
e6a1d6fd 2472 if (!extent_buffer_uptodate(tmp))
76a05b35 2473 ret = -EIO;
c8c42864 2474 free_extent_buffer(tmp);
c871b0f2
LB
2475 } else {
2476 ret = PTR_ERR(tmp);
76a05b35 2477 }
02a3307a
LB
2478
2479 btrfs_release_path(p);
76a05b35 2480 return ret;
c8c42864
CM
2481}
2482
2483/*
2484 * helper function for btrfs_search_slot. This does all of the checks
2485 * for node-level blocks and does any balancing required based on
2486 * the ins_len.
2487 *
2488 * If no extra work was required, zero is returned. If we had to
2489 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2490 * start over
2491 */
2492static int
2493setup_nodes_for_search(struct btrfs_trans_handle *trans,
2494 struct btrfs_root *root, struct btrfs_path *p,
bd681513
CM
2495 struct extent_buffer *b, int level, int ins_len,
2496 int *write_lock_level)
c8c42864 2497{
0b246afa 2498 struct btrfs_fs_info *fs_info = root->fs_info;
c8c42864 2499 int ret;
0b246afa 2500
c8c42864 2501 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
0b246afa 2502 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
c8c42864
CM
2503 int sret;
2504
bd681513
CM
2505 if (*write_lock_level < level + 1) {
2506 *write_lock_level = level + 1;
2507 btrfs_release_path(p);
2508 goto again;
2509 }
2510
c8c42864 2511 btrfs_set_path_blocking(p);
2ff7e61e 2512 reada_for_balance(fs_info, p, level);
c8c42864 2513 sret = split_node(trans, root, p, level);
c8c42864
CM
2514
2515 BUG_ON(sret > 0);
2516 if (sret) {
2517 ret = sret;
2518 goto done;
2519 }
2520 b = p->nodes[level];
2521 } else if (ins_len < 0 && btrfs_header_nritems(b) <
0b246afa 2522 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
c8c42864
CM
2523 int sret;
2524
bd681513
CM
2525 if (*write_lock_level < level + 1) {
2526 *write_lock_level = level + 1;
2527 btrfs_release_path(p);
2528 goto again;
2529 }
2530
c8c42864 2531 btrfs_set_path_blocking(p);
2ff7e61e 2532 reada_for_balance(fs_info, p, level);
c8c42864 2533 sret = balance_level(trans, root, p, level);
c8c42864
CM
2534
2535 if (sret) {
2536 ret = sret;
2537 goto done;
2538 }
2539 b = p->nodes[level];
2540 if (!b) {
b3b4aa74 2541 btrfs_release_path(p);
c8c42864
CM
2542 goto again;
2543 }
2544 BUG_ON(btrfs_header_nritems(b) == 1);
2545 }
2546 return 0;
2547
2548again:
2549 ret = -EAGAIN;
2550done:
2551 return ret;
2552}
2553
310712b2 2554static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
d7396f07
FDBM
2555 int level, int *prev_cmp, int *slot)
2556{
2557 if (*prev_cmp != 0) {
a74b35ec 2558 *prev_cmp = btrfs_bin_search(b, key, level, slot);
d7396f07
FDBM
2559 return *prev_cmp;
2560 }
2561
d7396f07
FDBM
2562 *slot = 0;
2563
2564 return 0;
2565}
2566
381cf658 2567int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
e33d5c3d
KN
2568 u64 iobjectid, u64 ioff, u8 key_type,
2569 struct btrfs_key *found_key)
2570{
2571 int ret;
2572 struct btrfs_key key;
2573 struct extent_buffer *eb;
381cf658
DS
2574
2575 ASSERT(path);
1d4c08e0 2576 ASSERT(found_key);
e33d5c3d
KN
2577
2578 key.type = key_type;
2579 key.objectid = iobjectid;
2580 key.offset = ioff;
2581
2582 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1d4c08e0 2583 if (ret < 0)
e33d5c3d
KN
2584 return ret;
2585
2586 eb = path->nodes[0];
2587 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2588 ret = btrfs_next_leaf(fs_root, path);
2589 if (ret)
2590 return ret;
2591 eb = path->nodes[0];
2592 }
2593
2594 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2595 if (found_key->type != key.type ||
2596 found_key->objectid != key.objectid)
2597 return 1;
2598
2599 return 0;
2600}
2601
1fc28d8e
LB
2602static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2603 struct btrfs_path *p,
2604 int write_lock_level)
2605{
2606 struct btrfs_fs_info *fs_info = root->fs_info;
2607 struct extent_buffer *b;
2608 int root_lock;
2609 int level = 0;
2610
2611 /* We try very hard to do read locks on the root */
2612 root_lock = BTRFS_READ_LOCK;
2613
2614 if (p->search_commit_root) {
be6821f8
FM
2615 /*
2616 * The commit roots are read only so we always do read locks,
2617 * and we always must hold the commit_root_sem when doing
2618 * searches on them, the only exception is send where we don't
2619 * want to block transaction commits for a long time, so
2620 * we need to clone the commit root in order to avoid races
2621 * with transaction commits that create a snapshot of one of
2622 * the roots used by a send operation.
2623 */
2624 if (p->need_commit_sem) {
1fc28d8e 2625 down_read(&fs_info->commit_root_sem);
be6821f8 2626 b = btrfs_clone_extent_buffer(root->commit_root);
1fc28d8e 2627 up_read(&fs_info->commit_root_sem);
be6821f8
FM
2628 if (!b)
2629 return ERR_PTR(-ENOMEM);
2630
2631 } else {
2632 b = root->commit_root;
2633 extent_buffer_get(b);
2634 }
2635 level = btrfs_header_level(b);
f9ddfd05
LB
2636 /*
2637 * Ensure that all callers have set skip_locking when
2638 * p->search_commit_root = 1.
2639 */
2640 ASSERT(p->skip_locking == 1);
1fc28d8e
LB
2641
2642 goto out;
2643 }
2644
2645 if (p->skip_locking) {
2646 b = btrfs_root_node(root);
2647 level = btrfs_header_level(b);
2648 goto out;
2649 }
2650
2651 /*
662c653b
LB
2652 * If the level is set to maximum, we can skip trying to get the read
2653 * lock.
1fc28d8e 2654 */
662c653b
LB
2655 if (write_lock_level < BTRFS_MAX_LEVEL) {
2656 /*
2657 * We don't know the level of the root node until we actually
2658 * have it read locked
2659 */
2660 b = btrfs_read_lock_root_node(root);
2661 level = btrfs_header_level(b);
2662 if (level > write_lock_level)
2663 goto out;
2664
2665 /* Whoops, must trade for write lock */
2666 btrfs_tree_read_unlock(b);
2667 free_extent_buffer(b);
2668 }
1fc28d8e 2669
1fc28d8e
LB
2670 b = btrfs_lock_root_node(root);
2671 root_lock = BTRFS_WRITE_LOCK;
2672
2673 /* The level might have changed, check again */
2674 level = btrfs_header_level(b);
2675
2676out:
2677 p->nodes[level] = b;
2678 if (!p->skip_locking)
2679 p->locks[level] = root_lock;
2680 /*
2681 * Callers are responsible for dropping b's references.
2682 */
2683 return b;
2684}
2685
2686
74123bd7 2687/*
4271ecea
NB
2688 * btrfs_search_slot - look for a key in a tree and perform necessary
2689 * modifications to preserve tree invariants.
74123bd7 2690 *
4271ecea
NB
2691 * @trans: Handle of transaction, used when modifying the tree
2692 * @p: Holds all btree nodes along the search path
2693 * @root: The root node of the tree
2694 * @key: The key we are looking for
2695 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2696 * deletions it's -1. 0 for plain searches
2697 * @cow: boolean should CoW operations be performed. Must always be 1
2698 * when modifying the tree.
97571fd0 2699 *
4271ecea
NB
2700 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2701 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2702 *
2703 * If @key is found, 0 is returned and you can find the item in the leaf level
2704 * of the path (level 0)
2705 *
2706 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2707 * points to the slot where it should be inserted
2708 *
2709 * If an error is encountered while searching the tree a negative error number
2710 * is returned
74123bd7 2711 */
310712b2
OS
2712int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2713 const struct btrfs_key *key, struct btrfs_path *p,
2714 int ins_len, int cow)
be0e5c09 2715{
5f39d397 2716 struct extent_buffer *b;
be0e5c09
CM
2717 int slot;
2718 int ret;
33c66f43 2719 int err;
be0e5c09 2720 int level;
925baedd 2721 int lowest_unlock = 1;
bd681513
CM
2722 /* everything at write_lock_level or lower must be write locked */
2723 int write_lock_level = 0;
9f3a7427 2724 u8 lowest_level = 0;
f7c79f30 2725 int min_write_lock_level;
d7396f07 2726 int prev_cmp;
9f3a7427 2727
6702ed49 2728 lowest_level = p->lowest_level;
323ac95b 2729 WARN_ON(lowest_level && ins_len > 0);
22b0ebda 2730 WARN_ON(p->nodes[0] != NULL);
eb653de1 2731 BUG_ON(!cow && ins_len);
25179201 2732
bd681513 2733 if (ins_len < 0) {
925baedd 2734 lowest_unlock = 2;
65b51a00 2735
bd681513
CM
2736 /* when we are removing items, we might have to go up to level
2737 * two as we update tree pointers Make sure we keep write
2738 * for those levels as well
2739 */
2740 write_lock_level = 2;
2741 } else if (ins_len > 0) {
2742 /*
2743 * for inserting items, make sure we have a write lock on
2744 * level 1 so we can update keys
2745 */
2746 write_lock_level = 1;
2747 }
2748
2749 if (!cow)
2750 write_lock_level = -1;
2751
09a2a8f9 2752 if (cow && (p->keep_locks || p->lowest_level))
bd681513
CM
2753 write_lock_level = BTRFS_MAX_LEVEL;
2754
f7c79f30
CM
2755 min_write_lock_level = write_lock_level;
2756
bb803951 2757again:
d7396f07 2758 prev_cmp = -1;
1fc28d8e 2759 b = btrfs_search_slot_get_root(root, p, write_lock_level);
be6821f8
FM
2760 if (IS_ERR(b)) {
2761 ret = PTR_ERR(b);
2762 goto done;
2763 }
925baedd 2764
eb60ceac 2765 while (b) {
5f39d397 2766 level = btrfs_header_level(b);
65b51a00
CM
2767
2768 /*
2769 * setup the path here so we can release it under lock
2770 * contention with the cow code
2771 */
02217ed2 2772 if (cow) {
9ea2c7c9
NB
2773 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2774
c8c42864
CM
2775 /*
2776 * if we don't really need to cow this block
2777 * then we don't want to set the path blocking,
2778 * so we test it here
2779 */
64c12921
JM
2780 if (!should_cow_block(trans, root, b)) {
2781 trans->dirty = true;
65b51a00 2782 goto cow_done;
64c12921 2783 }
5d4f98a2 2784
bd681513
CM
2785 /*
2786 * must have write locks on this node and the
2787 * parent
2788 */
5124e00e
JB
2789 if (level > write_lock_level ||
2790 (level + 1 > write_lock_level &&
2791 level + 1 < BTRFS_MAX_LEVEL &&
2792 p->nodes[level + 1])) {
bd681513
CM
2793 write_lock_level = level + 1;
2794 btrfs_release_path(p);
2795 goto again;
2796 }
2797
160f4089 2798 btrfs_set_path_blocking(p);
9ea2c7c9
NB
2799 if (last_level)
2800 err = btrfs_cow_block(trans, root, b, NULL, 0,
2801 &b);
2802 else
2803 err = btrfs_cow_block(trans, root, b,
2804 p->nodes[level + 1],
2805 p->slots[level + 1], &b);
33c66f43 2806 if (err) {
33c66f43 2807 ret = err;
65b51a00 2808 goto done;
54aa1f4d 2809 }
02217ed2 2810 }
65b51a00 2811cow_done:
eb60ceac 2812 p->nodes[level] = b;
52398340
LB
2813 /*
2814 * Leave path with blocking locks to avoid massive
2815 * lock context switch, this is made on purpose.
2816 */
b4ce94de
CM
2817
2818 /*
2819 * we have a lock on b and as long as we aren't changing
2820 * the tree, there is no way to for the items in b to change.
2821 * It is safe to drop the lock on our parent before we
2822 * go through the expensive btree search on b.
2823 *
eb653de1
FDBM
2824 * If we're inserting or deleting (ins_len != 0), then we might
2825 * be changing slot zero, which may require changing the parent.
2826 * So, we can't drop the lock until after we know which slot
2827 * we're operating on.
b4ce94de 2828 */
eb653de1
FDBM
2829 if (!ins_len && !p->keep_locks) {
2830 int u = level + 1;
2831
2832 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2833 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2834 p->locks[u] = 0;
2835 }
2836 }
b4ce94de 2837
d7396f07 2838 ret = key_search(b, key, level, &prev_cmp, &slot);
415b35a5
LB
2839 if (ret < 0)
2840 goto done;
b4ce94de 2841
5f39d397 2842 if (level != 0) {
33c66f43
YZ
2843 int dec = 0;
2844 if (ret && slot > 0) {
2845 dec = 1;
be0e5c09 2846 slot -= 1;
33c66f43 2847 }
be0e5c09 2848 p->slots[level] = slot;
33c66f43 2849 err = setup_nodes_for_search(trans, root, p, b, level,
bd681513 2850 ins_len, &write_lock_level);
33c66f43 2851 if (err == -EAGAIN)
c8c42864 2852 goto again;
33c66f43
YZ
2853 if (err) {
2854 ret = err;
c8c42864 2855 goto done;
33c66f43 2856 }
c8c42864
CM
2857 b = p->nodes[level];
2858 slot = p->slots[level];
b4ce94de 2859
bd681513
CM
2860 /*
2861 * slot 0 is special, if we change the key
2862 * we have to update the parent pointer
2863 * which means we must have a write lock
2864 * on the parent
2865 */
eb653de1 2866 if (slot == 0 && ins_len &&
bd681513
CM
2867 write_lock_level < level + 1) {
2868 write_lock_level = level + 1;
2869 btrfs_release_path(p);
2870 goto again;
2871 }
2872
f7c79f30
CM
2873 unlock_up(p, level, lowest_unlock,
2874 min_write_lock_level, &write_lock_level);
f9efa9c7 2875
925baedd 2876 if (level == lowest_level) {
33c66f43
YZ
2877 if (dec)
2878 p->slots[level]++;
5b21f2ed 2879 goto done;
925baedd 2880 }
ca7a79ad 2881
d07b8528 2882 err = read_block_for_search(root, p, &b, level,
cda79c54 2883 slot, key);
33c66f43 2884 if (err == -EAGAIN)
c8c42864 2885 goto again;
33c66f43
YZ
2886 if (err) {
2887 ret = err;
76a05b35 2888 goto done;
33c66f43 2889 }
76a05b35 2890
b4ce94de 2891 if (!p->skip_locking) {
bd681513
CM
2892 level = btrfs_header_level(b);
2893 if (level <= write_lock_level) {
2894 err = btrfs_try_tree_write_lock(b);
2895 if (!err) {
2896 btrfs_set_path_blocking(p);
2897 btrfs_tree_lock(b);
bd681513
CM
2898 }
2899 p->locks[level] = BTRFS_WRITE_LOCK;
2900 } else {
f82c458a 2901 err = btrfs_tree_read_lock_atomic(b);
bd681513
CM
2902 if (!err) {
2903 btrfs_set_path_blocking(p);
2904 btrfs_tree_read_lock(b);
bd681513
CM
2905 }
2906 p->locks[level] = BTRFS_READ_LOCK;
b4ce94de 2907 }
bd681513 2908 p->nodes[level] = b;
b4ce94de 2909 }
be0e5c09
CM
2910 } else {
2911 p->slots[level] = slot;
87b29b20 2912 if (ins_len > 0 &&
e902baac 2913 btrfs_leaf_free_space(b) < ins_len) {
bd681513
CM
2914 if (write_lock_level < 1) {
2915 write_lock_level = 1;
2916 btrfs_release_path(p);
2917 goto again;
2918 }
2919
b4ce94de 2920 btrfs_set_path_blocking(p);
33c66f43
YZ
2921 err = split_leaf(trans, root, key,
2922 p, ins_len, ret == 0);
b4ce94de 2923
33c66f43
YZ
2924 BUG_ON(err > 0);
2925 if (err) {
2926 ret = err;
65b51a00
CM
2927 goto done;
2928 }
5c680ed6 2929 }
459931ec 2930 if (!p->search_for_split)
f7c79f30 2931 unlock_up(p, level, lowest_unlock,
4b6f8e96 2932 min_write_lock_level, NULL);
65b51a00 2933 goto done;
be0e5c09
CM
2934 }
2935 }
65b51a00
CM
2936 ret = 1;
2937done:
b4ce94de
CM
2938 /*
2939 * we don't really know what they plan on doing with the path
2940 * from here on, so for now just mark it as blocking
2941 */
b9473439
CM
2942 if (!p->leave_spinning)
2943 btrfs_set_path_blocking(p);
5f5bc6b1 2944 if (ret < 0 && !p->skip_release_on_error)
b3b4aa74 2945 btrfs_release_path(p);
65b51a00 2946 return ret;
be0e5c09
CM
2947}
2948
5d9e75c4
JS
2949/*
2950 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2951 * current state of the tree together with the operations recorded in the tree
2952 * modification log to search for the key in a previous version of this tree, as
2953 * denoted by the time_seq parameter.
2954 *
2955 * Naturally, there is no support for insert, delete or cow operations.
2956 *
2957 * The resulting path and return value will be set up as if we called
2958 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2959 */
310712b2 2960int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
5d9e75c4
JS
2961 struct btrfs_path *p, u64 time_seq)
2962{
0b246afa 2963 struct btrfs_fs_info *fs_info = root->fs_info;
5d9e75c4
JS
2964 struct extent_buffer *b;
2965 int slot;
2966 int ret;
2967 int err;
2968 int level;
2969 int lowest_unlock = 1;
2970 u8 lowest_level = 0;
d4b4087c 2971 int prev_cmp = -1;
5d9e75c4
JS
2972
2973 lowest_level = p->lowest_level;
2974 WARN_ON(p->nodes[0] != NULL);
2975
2976 if (p->search_commit_root) {
2977 BUG_ON(time_seq);
2978 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2979 }
2980
2981again:
5d9e75c4 2982 b = get_old_root(root, time_seq);
315bed43
NB
2983 if (!b) {
2984 ret = -EIO;
2985 goto done;
2986 }
5d9e75c4 2987 level = btrfs_header_level(b);
5d9e75c4
JS
2988 p->locks[level] = BTRFS_READ_LOCK;
2989
2990 while (b) {
2991 level = btrfs_header_level(b);
2992 p->nodes[level] = b;
5d9e75c4
JS
2993
2994 /*
2995 * we have a lock on b and as long as we aren't changing
2996 * the tree, there is no way to for the items in b to change.
2997 * It is safe to drop the lock on our parent before we
2998 * go through the expensive btree search on b.
2999 */
3000 btrfs_unlock_up_safe(p, level + 1);
3001
d4b4087c 3002 /*
01327610 3003 * Since we can unwind ebs we want to do a real search every
d4b4087c
JB
3004 * time.
3005 */
3006 prev_cmp = -1;
d7396f07 3007 ret = key_search(b, key, level, &prev_cmp, &slot);
cbca7d59
FM
3008 if (ret < 0)
3009 goto done;
5d9e75c4
JS
3010
3011 if (level != 0) {
3012 int dec = 0;
3013 if (ret && slot > 0) {
3014 dec = 1;
3015 slot -= 1;
3016 }
3017 p->slots[level] = slot;
3018 unlock_up(p, level, lowest_unlock, 0, NULL);
3019
3020 if (level == lowest_level) {
3021 if (dec)
3022 p->slots[level]++;
3023 goto done;
3024 }
3025
d07b8528 3026 err = read_block_for_search(root, p, &b, level,
cda79c54 3027 slot, key);
5d9e75c4
JS
3028 if (err == -EAGAIN)
3029 goto again;
3030 if (err) {
3031 ret = err;
3032 goto done;
3033 }
3034
3035 level = btrfs_header_level(b);
f82c458a 3036 err = btrfs_tree_read_lock_atomic(b);
5d9e75c4
JS
3037 if (!err) {
3038 btrfs_set_path_blocking(p);
3039 btrfs_tree_read_lock(b);
5d9e75c4 3040 }
0b246afa 3041 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
db7f3436
JB
3042 if (!b) {
3043 ret = -ENOMEM;
3044 goto done;
3045 }
5d9e75c4
JS
3046 p->locks[level] = BTRFS_READ_LOCK;
3047 p->nodes[level] = b;
5d9e75c4
JS
3048 } else {
3049 p->slots[level] = slot;
3050 unlock_up(p, level, lowest_unlock, 0, NULL);
3051 goto done;
3052 }
3053 }
3054 ret = 1;
3055done:
3056 if (!p->leave_spinning)
3057 btrfs_set_path_blocking(p);
3058 if (ret < 0)
3059 btrfs_release_path(p);
3060
3061 return ret;
3062}
3063
2f38b3e1
AJ
3064/*
3065 * helper to use instead of search slot if no exact match is needed but
3066 * instead the next or previous item should be returned.
3067 * When find_higher is true, the next higher item is returned, the next lower
3068 * otherwise.
3069 * When return_any and find_higher are both true, and no higher item is found,
3070 * return the next lower instead.
3071 * When return_any is true and find_higher is false, and no lower item is found,
3072 * return the next higher instead.
3073 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3074 * < 0 on error
3075 */
3076int btrfs_search_slot_for_read(struct btrfs_root *root,
310712b2
OS
3077 const struct btrfs_key *key,
3078 struct btrfs_path *p, int find_higher,
3079 int return_any)
2f38b3e1
AJ
3080{
3081 int ret;
3082 struct extent_buffer *leaf;
3083
3084again:
3085 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3086 if (ret <= 0)
3087 return ret;
3088 /*
3089 * a return value of 1 means the path is at the position where the
3090 * item should be inserted. Normally this is the next bigger item,
3091 * but in case the previous item is the last in a leaf, path points
3092 * to the first free slot in the previous leaf, i.e. at an invalid
3093 * item.
3094 */
3095 leaf = p->nodes[0];
3096
3097 if (find_higher) {
3098 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3099 ret = btrfs_next_leaf(root, p);
3100 if (ret <= 0)
3101 return ret;
3102 if (!return_any)
3103 return 1;
3104 /*
3105 * no higher item found, return the next
3106 * lower instead
3107 */
3108 return_any = 0;
3109 find_higher = 0;
3110 btrfs_release_path(p);
3111 goto again;
3112 }
3113 } else {
e6793769
AJ
3114 if (p->slots[0] == 0) {
3115 ret = btrfs_prev_leaf(root, p);
3116 if (ret < 0)
3117 return ret;
3118 if (!ret) {
23c6bf6a
FDBM
3119 leaf = p->nodes[0];
3120 if (p->slots[0] == btrfs_header_nritems(leaf))
3121 p->slots[0]--;
e6793769 3122 return 0;
2f38b3e1 3123 }
e6793769
AJ
3124 if (!return_any)
3125 return 1;
3126 /*
3127 * no lower item found, return the next
3128 * higher instead
3129 */
3130 return_any = 0;
3131 find_higher = 1;
3132 btrfs_release_path(p);
3133 goto again;
3134 } else {
2f38b3e1
AJ
3135 --p->slots[0];
3136 }
3137 }
3138 return 0;
3139}
3140
74123bd7
CM
3141/*
3142 * adjust the pointers going up the tree, starting at level
3143 * making sure the right key of each node is points to 'key'.
3144 * This is used after shifting pointers to the left, so it stops
3145 * fixing up pointers when a given leaf/node is not in slot 0 of the
3146 * higher levels
aa5d6bed 3147 *
74123bd7 3148 */
b167fa91 3149static void fixup_low_keys(struct btrfs_path *path,
143bede5 3150 struct btrfs_disk_key *key, int level)
be0e5c09
CM
3151{
3152 int i;
5f39d397 3153 struct extent_buffer *t;
0e82bcfe 3154 int ret;
5f39d397 3155
234b63a0 3156 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
be0e5c09 3157 int tslot = path->slots[i];
0e82bcfe 3158
eb60ceac 3159 if (!path->nodes[i])
be0e5c09 3160 break;
5f39d397 3161 t = path->nodes[i];
0e82bcfe
DS
3162 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3163 GFP_ATOMIC);
3164 BUG_ON(ret < 0);
5f39d397 3165 btrfs_set_node_key(t, key, tslot);
d6025579 3166 btrfs_mark_buffer_dirty(path->nodes[i]);
be0e5c09
CM
3167 if (tslot != 0)
3168 break;
3169 }
3170}
3171
31840ae1
ZY
3172/*
3173 * update item key.
3174 *
3175 * This function isn't completely safe. It's the caller's responsibility
3176 * that the new key won't break the order
3177 */
b7a0365e
DD
3178void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3179 struct btrfs_path *path,
310712b2 3180 const struct btrfs_key *new_key)
31840ae1
ZY
3181{
3182 struct btrfs_disk_key disk_key;
3183 struct extent_buffer *eb;
3184 int slot;
3185
3186 eb = path->nodes[0];
3187 slot = path->slots[0];
3188 if (slot > 0) {
3189 btrfs_item_key(eb, &disk_key, slot - 1);
7c15d410
QW
3190 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3191 btrfs_crit(fs_info,
3192 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3193 slot, btrfs_disk_key_objectid(&disk_key),
3194 btrfs_disk_key_type(&disk_key),
3195 btrfs_disk_key_offset(&disk_key),
3196 new_key->objectid, new_key->type,
3197 new_key->offset);
3198 btrfs_print_leaf(eb);
3199 BUG();
3200 }
31840ae1
ZY
3201 }
3202 if (slot < btrfs_header_nritems(eb) - 1) {
3203 btrfs_item_key(eb, &disk_key, slot + 1);
7c15d410
QW
3204 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3205 btrfs_crit(fs_info,
3206 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3207 slot, btrfs_disk_key_objectid(&disk_key),
3208 btrfs_disk_key_type(&disk_key),
3209 btrfs_disk_key_offset(&disk_key),
3210 new_key->objectid, new_key->type,
3211 new_key->offset);
3212 btrfs_print_leaf(eb);
3213 BUG();
3214 }
31840ae1
ZY
3215 }
3216
3217 btrfs_cpu_key_to_disk(&disk_key, new_key);
3218 btrfs_set_item_key(eb, &disk_key, slot);
3219 btrfs_mark_buffer_dirty(eb);
3220 if (slot == 0)
b167fa91 3221 fixup_low_keys(path, &disk_key, 1);
31840ae1
ZY
3222}
3223
74123bd7
CM
3224/*
3225 * try to push data from one node into the next node left in the
79f95c82 3226 * tree.
aa5d6bed
CM
3227 *
3228 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3229 * error, and > 0 if there was no room in the left hand block.
74123bd7 3230 */
98ed5174 3231static int push_node_left(struct btrfs_trans_handle *trans,
2ff7e61e 3232 struct extent_buffer *dst,
971a1f66 3233 struct extent_buffer *src, int empty)
be0e5c09 3234{
d30a668f 3235 struct btrfs_fs_info *fs_info = trans->fs_info;
be0e5c09 3236 int push_items = 0;
bb803951
CM
3237 int src_nritems;
3238 int dst_nritems;
aa5d6bed 3239 int ret = 0;
be0e5c09 3240
5f39d397
CM
3241 src_nritems = btrfs_header_nritems(src);
3242 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3243 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
7bb86316
CM
3244 WARN_ON(btrfs_header_generation(src) != trans->transid);
3245 WARN_ON(btrfs_header_generation(dst) != trans->transid);
54aa1f4d 3246
bce4eae9 3247 if (!empty && src_nritems <= 8)
971a1f66
CM
3248 return 1;
3249
d397712b 3250 if (push_items <= 0)
be0e5c09
CM
3251 return 1;
3252
bce4eae9 3253 if (empty) {
971a1f66 3254 push_items = min(src_nritems, push_items);
bce4eae9
CM
3255 if (push_items < src_nritems) {
3256 /* leave at least 8 pointers in the node if
3257 * we aren't going to empty it
3258 */
3259 if (src_nritems - push_items < 8) {
3260 if (push_items <= 8)
3261 return 1;
3262 push_items -= 8;
3263 }
3264 }
3265 } else
3266 push_items = min(src_nritems - 8, push_items);
79f95c82 3267
ed874f0d 3268 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
5de865ee 3269 if (ret) {
66642832 3270 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3271 return ret;
3272 }
5f39d397
CM
3273 copy_extent_buffer(dst, src,
3274 btrfs_node_key_ptr_offset(dst_nritems),
3275 btrfs_node_key_ptr_offset(0),
d397712b 3276 push_items * sizeof(struct btrfs_key_ptr));
5f39d397 3277
bb803951 3278 if (push_items < src_nritems) {
57911b8b 3279 /*
bf1d3425
DS
3280 * Don't call tree_mod_log_insert_move here, key removal was
3281 * already fully logged by tree_mod_log_eb_copy above.
57911b8b 3282 */
5f39d397
CM
3283 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3284 btrfs_node_key_ptr_offset(push_items),
3285 (src_nritems - push_items) *
3286 sizeof(struct btrfs_key_ptr));
3287 }
3288 btrfs_set_header_nritems(src, src_nritems - push_items);
3289 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3290 btrfs_mark_buffer_dirty(src);
3291 btrfs_mark_buffer_dirty(dst);
31840ae1 3292
79f95c82
CM
3293 return ret;
3294}
3295
3296/*
3297 * try to push data from one node into the next node right in the
3298 * tree.
3299 *
3300 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3301 * error, and > 0 if there was no room in the right hand block.
3302 *
3303 * this will only push up to 1/2 the contents of the left node over
3304 */
5f39d397 3305static int balance_node_right(struct btrfs_trans_handle *trans,
5f39d397
CM
3306 struct extent_buffer *dst,
3307 struct extent_buffer *src)
79f95c82 3308{
55d32ed8 3309 struct btrfs_fs_info *fs_info = trans->fs_info;
79f95c82
CM
3310 int push_items = 0;
3311 int max_push;
3312 int src_nritems;
3313 int dst_nritems;
3314 int ret = 0;
79f95c82 3315
7bb86316
CM
3316 WARN_ON(btrfs_header_generation(src) != trans->transid);
3317 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3318
5f39d397
CM
3319 src_nritems = btrfs_header_nritems(src);
3320 dst_nritems = btrfs_header_nritems(dst);
0b246afa 3321 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
d397712b 3322 if (push_items <= 0)
79f95c82 3323 return 1;
bce4eae9 3324
d397712b 3325 if (src_nritems < 4)
bce4eae9 3326 return 1;
79f95c82
CM
3327
3328 max_push = src_nritems / 2 + 1;
3329 /* don't try to empty the node */
d397712b 3330 if (max_push >= src_nritems)
79f95c82 3331 return 1;
252c38f0 3332
79f95c82
CM
3333 if (max_push < push_items)
3334 push_items = max_push;
3335
bf1d3425
DS
3336 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3337 BUG_ON(ret < 0);
5f39d397
CM
3338 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3339 btrfs_node_key_ptr_offset(0),
3340 (dst_nritems) *
3341 sizeof(struct btrfs_key_ptr));
d6025579 3342
ed874f0d
DS
3343 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3344 push_items);
5de865ee 3345 if (ret) {
66642832 3346 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3347 return ret;
3348 }
5f39d397
CM
3349 copy_extent_buffer(dst, src,
3350 btrfs_node_key_ptr_offset(0),
3351 btrfs_node_key_ptr_offset(src_nritems - push_items),
d397712b 3352 push_items * sizeof(struct btrfs_key_ptr));
79f95c82 3353
5f39d397
CM
3354 btrfs_set_header_nritems(src, src_nritems - push_items);
3355 btrfs_set_header_nritems(dst, dst_nritems + push_items);
79f95c82 3356
5f39d397
CM
3357 btrfs_mark_buffer_dirty(src);
3358 btrfs_mark_buffer_dirty(dst);
31840ae1 3359
aa5d6bed 3360 return ret;
be0e5c09
CM
3361}
3362
97571fd0
CM
3363/*
3364 * helper function to insert a new root level in the tree.
3365 * A new node is allocated, and a single item is inserted to
3366 * point to the existing root
aa5d6bed
CM
3367 *
3368 * returns zero on success or < 0 on failure.
97571fd0 3369 */
d397712b 3370static noinline int insert_new_root(struct btrfs_trans_handle *trans,
5f39d397 3371 struct btrfs_root *root,
fdd99c72 3372 struct btrfs_path *path, int level)
5c680ed6 3373{
0b246afa 3374 struct btrfs_fs_info *fs_info = root->fs_info;
7bb86316 3375 u64 lower_gen;
5f39d397
CM
3376 struct extent_buffer *lower;
3377 struct extent_buffer *c;
925baedd 3378 struct extent_buffer *old;
5f39d397 3379 struct btrfs_disk_key lower_key;
d9d19a01 3380 int ret;
5c680ed6
CM
3381
3382 BUG_ON(path->nodes[level]);
3383 BUG_ON(path->nodes[level-1] != root->node);
3384
7bb86316
CM
3385 lower = path->nodes[level-1];
3386 if (level == 1)
3387 btrfs_item_key(lower, &lower_key, 0);
3388 else
3389 btrfs_node_key(lower, &lower_key, 0);
3390
a6279470
FM
3391 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3392 root->node->start, 0);
5f39d397
CM
3393 if (IS_ERR(c))
3394 return PTR_ERR(c);
925baedd 3395
0b246afa 3396 root_add_used(root, fs_info->nodesize);
f0486c68 3397
5f39d397 3398 btrfs_set_header_nritems(c, 1);
5f39d397 3399 btrfs_set_node_key(c, &lower_key, 0);
db94535d 3400 btrfs_set_node_blockptr(c, 0, lower->start);
7bb86316 3401 lower_gen = btrfs_header_generation(lower);
31840ae1 3402 WARN_ON(lower_gen != trans->transid);
7bb86316
CM
3403
3404 btrfs_set_node_ptr_generation(c, 0, lower_gen);
d5719762 3405
5f39d397 3406 btrfs_mark_buffer_dirty(c);
d5719762 3407
925baedd 3408 old = root->node;
d9d19a01
DS
3409 ret = tree_mod_log_insert_root(root->node, c, 0);
3410 BUG_ON(ret < 0);
240f62c8 3411 rcu_assign_pointer(root->node, c);
925baedd
CM
3412
3413 /* the super has an extra ref to root->node */
3414 free_extent_buffer(old);
3415
0b86a832 3416 add_root_to_dirty_list(root);
5f39d397
CM
3417 extent_buffer_get(c);
3418 path->nodes[level] = c;
95449a16 3419 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5c680ed6
CM
3420 path->slots[level] = 0;
3421 return 0;
3422}
3423
74123bd7
CM
3424/*
3425 * worker function to insert a single pointer in a node.
3426 * the node should have enough room for the pointer already
97571fd0 3427 *
74123bd7
CM
3428 * slot and level indicate where you want the key to go, and
3429 * blocknr is the block the key points to.
3430 */
143bede5 3431static void insert_ptr(struct btrfs_trans_handle *trans,
6ad3cf6d 3432 struct btrfs_path *path,
143bede5 3433 struct btrfs_disk_key *key, u64 bytenr,
c3e06965 3434 int slot, int level)
74123bd7 3435{
5f39d397 3436 struct extent_buffer *lower;
74123bd7 3437 int nritems;
f3ea38da 3438 int ret;
5c680ed6
CM
3439
3440 BUG_ON(!path->nodes[level]);
f0486c68 3441 btrfs_assert_tree_locked(path->nodes[level]);
5f39d397
CM
3442 lower = path->nodes[level];
3443 nritems = btrfs_header_nritems(lower);
c293498b 3444 BUG_ON(slot > nritems);
6ad3cf6d 3445 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
74123bd7 3446 if (slot != nritems) {
bf1d3425
DS
3447 if (level) {
3448 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
a446a979 3449 nritems - slot);
bf1d3425
DS
3450 BUG_ON(ret < 0);
3451 }
5f39d397
CM
3452 memmove_extent_buffer(lower,
3453 btrfs_node_key_ptr_offset(slot + 1),
3454 btrfs_node_key_ptr_offset(slot),
d6025579 3455 (nritems - slot) * sizeof(struct btrfs_key_ptr));
74123bd7 3456 }
c3e06965 3457 if (level) {
e09c2efe
DS
3458 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3459 GFP_NOFS);
f3ea38da
JS
3460 BUG_ON(ret < 0);
3461 }
5f39d397 3462 btrfs_set_node_key(lower, key, slot);
db94535d 3463 btrfs_set_node_blockptr(lower, slot, bytenr);
74493f7a
CM
3464 WARN_ON(trans->transid == 0);
3465 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
5f39d397
CM
3466 btrfs_set_header_nritems(lower, nritems + 1);
3467 btrfs_mark_buffer_dirty(lower);
74123bd7
CM
3468}
3469
97571fd0
CM
3470/*
3471 * split the node at the specified level in path in two.
3472 * The path is corrected to point to the appropriate node after the split
3473 *
3474 * Before splitting this tries to make some room in the node by pushing
3475 * left and right, if either one works, it returns right away.
aa5d6bed
CM
3476 *
3477 * returns 0 on success and < 0 on failure
97571fd0 3478 */
e02119d5
CM
3479static noinline int split_node(struct btrfs_trans_handle *trans,
3480 struct btrfs_root *root,
3481 struct btrfs_path *path, int level)
be0e5c09 3482{
0b246afa 3483 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
3484 struct extent_buffer *c;
3485 struct extent_buffer *split;
3486 struct btrfs_disk_key disk_key;
be0e5c09 3487 int mid;
5c680ed6 3488 int ret;
7518a238 3489 u32 c_nritems;
eb60ceac 3490
5f39d397 3491 c = path->nodes[level];
7bb86316 3492 WARN_ON(btrfs_header_generation(c) != trans->transid);
5f39d397 3493 if (c == root->node) {
d9abbf1c 3494 /*
90f8d62e
JS
3495 * trying to split the root, lets make a new one
3496 *
fdd99c72 3497 * tree mod log: We don't log_removal old root in
90f8d62e
JS
3498 * insert_new_root, because that root buffer will be kept as a
3499 * normal node. We are going to log removal of half of the
3500 * elements below with tree_mod_log_eb_copy. We're holding a
3501 * tree lock on the buffer, which is why we cannot race with
3502 * other tree_mod_log users.
d9abbf1c 3503 */
fdd99c72 3504 ret = insert_new_root(trans, root, path, level + 1);
5c680ed6
CM
3505 if (ret)
3506 return ret;
b3612421 3507 } else {
e66f709b 3508 ret = push_nodes_for_insert(trans, root, path, level);
5f39d397
CM
3509 c = path->nodes[level];
3510 if (!ret && btrfs_header_nritems(c) <
0b246afa 3511 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
e66f709b 3512 return 0;
54aa1f4d
CM
3513 if (ret < 0)
3514 return ret;
be0e5c09 3515 }
e66f709b 3516
5f39d397 3517 c_nritems = btrfs_header_nritems(c);
5d4f98a2
YZ
3518 mid = (c_nritems + 1) / 2;
3519 btrfs_node_key(c, &disk_key, mid);
7bb86316 3520
a6279470
FM
3521 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3522 c->start, 0);
5f39d397
CM
3523 if (IS_ERR(split))
3524 return PTR_ERR(split);
3525
0b246afa 3526 root_add_used(root, fs_info->nodesize);
bc877d28 3527 ASSERT(btrfs_header_level(c) == level);
54aa1f4d 3528
ed874f0d 3529 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
5de865ee 3530 if (ret) {
66642832 3531 btrfs_abort_transaction(trans, ret);
5de865ee
FDBM
3532 return ret;
3533 }
5f39d397
CM
3534 copy_extent_buffer(split, c,
3535 btrfs_node_key_ptr_offset(0),
3536 btrfs_node_key_ptr_offset(mid),
3537 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3538 btrfs_set_header_nritems(split, c_nritems - mid);
3539 btrfs_set_header_nritems(c, mid);
aa5d6bed
CM
3540 ret = 0;
3541
5f39d397
CM
3542 btrfs_mark_buffer_dirty(c);
3543 btrfs_mark_buffer_dirty(split);
3544
6ad3cf6d 3545 insert_ptr(trans, path, &disk_key, split->start,
c3e06965 3546 path->slots[level + 1] + 1, level + 1);
aa5d6bed 3547
5de08d7d 3548 if (path->slots[level] >= mid) {
5c680ed6 3549 path->slots[level] -= mid;
925baedd 3550 btrfs_tree_unlock(c);
5f39d397
CM
3551 free_extent_buffer(c);
3552 path->nodes[level] = split;
5c680ed6
CM
3553 path->slots[level + 1] += 1;
3554 } else {
925baedd 3555 btrfs_tree_unlock(split);
5f39d397 3556 free_extent_buffer(split);
be0e5c09 3557 }
aa5d6bed 3558 return ret;
be0e5c09
CM
3559}
3560
74123bd7
CM
3561/*
3562 * how many bytes are required to store the items in a leaf. start
3563 * and nr indicate which items in the leaf to check. This totals up the
3564 * space used both by the item structs and the item data
3565 */
5f39d397 3566static int leaf_space_used(struct extent_buffer *l, int start, int nr)
be0e5c09 3567{
41be1f3b
JB
3568 struct btrfs_item *start_item;
3569 struct btrfs_item *end_item;
3570 struct btrfs_map_token token;
be0e5c09 3571 int data_len;
5f39d397 3572 int nritems = btrfs_header_nritems(l);
d4dbff95 3573 int end = min(nritems, start + nr) - 1;
be0e5c09
CM
3574
3575 if (!nr)
3576 return 0;
c82f823c 3577 btrfs_init_map_token(&token, l);
dd3cc16b
RK
3578 start_item = btrfs_item_nr(start);
3579 end_item = btrfs_item_nr(end);
41be1f3b
JB
3580 data_len = btrfs_token_item_offset(l, start_item, &token) +
3581 btrfs_token_item_size(l, start_item, &token);
3582 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
0783fcfc 3583 data_len += sizeof(struct btrfs_item) * nr;
d4dbff95 3584 WARN_ON(data_len < 0);
be0e5c09
CM
3585 return data_len;
3586}
3587
d4dbff95
CM
3588/*
3589 * The space between the end of the leaf items and
3590 * the start of the leaf data. IOW, how much room
3591 * the leaf has left for both items and data
3592 */
e902baac 3593noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
d4dbff95 3594{
e902baac 3595 struct btrfs_fs_info *fs_info = leaf->fs_info;
5f39d397
CM
3596 int nritems = btrfs_header_nritems(leaf);
3597 int ret;
0b246afa
JM
3598
3599 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
5f39d397 3600 if (ret < 0) {
0b246afa
JM
3601 btrfs_crit(fs_info,
3602 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3603 ret,
3604 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3605 leaf_space_used(leaf, 0, nritems), nritems);
5f39d397
CM
3606 }
3607 return ret;
d4dbff95
CM
3608}
3609
99d8f83c
CM
3610/*
3611 * min slot controls the lowest index we're willing to push to the
3612 * right. We'll push up to and including min_slot, but no lower
3613 */
f72f0010 3614static noinline int __push_leaf_right(struct btrfs_path *path,
44871b1b
CM
3615 int data_size, int empty,
3616 struct extent_buffer *right,
99d8f83c
CM
3617 int free_space, u32 left_nritems,
3618 u32 min_slot)
00ec4c51 3619{
f72f0010 3620 struct btrfs_fs_info *fs_info = right->fs_info;
5f39d397 3621 struct extent_buffer *left = path->nodes[0];
44871b1b 3622 struct extent_buffer *upper = path->nodes[1];
cfed81a0 3623 struct btrfs_map_token token;
5f39d397 3624 struct btrfs_disk_key disk_key;
00ec4c51 3625 int slot;
34a38218 3626 u32 i;
00ec4c51
CM
3627 int push_space = 0;
3628 int push_items = 0;
0783fcfc 3629 struct btrfs_item *item;
34a38218 3630 u32 nr;
7518a238 3631 u32 right_nritems;
5f39d397 3632 u32 data_end;
db94535d 3633 u32 this_item_size;
00ec4c51 3634
34a38218
CM
3635 if (empty)
3636 nr = 0;
3637 else
99d8f83c 3638 nr = max_t(u32, 1, min_slot);
34a38218 3639
31840ae1 3640 if (path->slots[0] >= left_nritems)
87b29b20 3641 push_space += data_size;
31840ae1 3642
44871b1b 3643 slot = path->slots[1];
34a38218
CM
3644 i = left_nritems - 1;
3645 while (i >= nr) {
dd3cc16b 3646 item = btrfs_item_nr(i);
db94535d 3647
31840ae1
ZY
3648 if (!empty && push_items > 0) {
3649 if (path->slots[0] > i)
3650 break;
3651 if (path->slots[0] == i) {
e902baac
DS
3652 int space = btrfs_leaf_free_space(left);
3653
31840ae1
ZY
3654 if (space + push_space * 2 > free_space)
3655 break;
3656 }
3657 }
3658
00ec4c51 3659 if (path->slots[0] == i)
87b29b20 3660 push_space += data_size;
db94535d 3661
db94535d
CM
3662 this_item_size = btrfs_item_size(left, item);
3663 if (this_item_size + sizeof(*item) + push_space > free_space)
00ec4c51 3664 break;
31840ae1 3665
00ec4c51 3666 push_items++;
db94535d 3667 push_space += this_item_size + sizeof(*item);
34a38218
CM
3668 if (i == 0)
3669 break;
3670 i--;
db94535d 3671 }
5f39d397 3672
925baedd
CM
3673 if (push_items == 0)
3674 goto out_unlock;
5f39d397 3675
6c1500f2 3676 WARN_ON(!empty && push_items == left_nritems);
5f39d397 3677
00ec4c51 3678 /* push left to right */
5f39d397 3679 right_nritems = btrfs_header_nritems(right);
34a38218 3680
5f39d397 3681 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
8f881e8c 3682 push_space -= leaf_data_end(left);
5f39d397 3683
00ec4c51 3684 /* make room in the right data area */
8f881e8c 3685 data_end = leaf_data_end(right);
5f39d397 3686 memmove_extent_buffer(right,
3d9ec8c4
NB
3687 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3688 BTRFS_LEAF_DATA_OFFSET + data_end,
0b246afa 3689 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
5f39d397 3690
00ec4c51 3691 /* copy from the left data area */
3d9ec8c4 3692 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3693 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
8f881e8c 3694 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
d6025579 3695 push_space);
5f39d397
CM
3696
3697 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3698 btrfs_item_nr_offset(0),
3699 right_nritems * sizeof(struct btrfs_item));
3700
00ec4c51 3701 /* copy the items from left to right */
5f39d397
CM
3702 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3703 btrfs_item_nr_offset(left_nritems - push_items),
3704 push_items * sizeof(struct btrfs_item));
00ec4c51
CM
3705
3706 /* update the item pointers */
c82f823c 3707 btrfs_init_map_token(&token, right);
7518a238 3708 right_nritems += push_items;
5f39d397 3709 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3710 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
7518a238 3711 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3712 item = btrfs_item_nr(i);
cfed81a0
CM
3713 push_space -= btrfs_token_item_size(right, item, &token);
3714 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d
CM
3715 }
3716
7518a238 3717 left_nritems -= push_items;
5f39d397 3718 btrfs_set_header_nritems(left, left_nritems);
00ec4c51 3719
34a38218
CM
3720 if (left_nritems)
3721 btrfs_mark_buffer_dirty(left);
f0486c68 3722 else
6a884d7d 3723 btrfs_clean_tree_block(left);
f0486c68 3724
5f39d397 3725 btrfs_mark_buffer_dirty(right);
a429e513 3726
5f39d397
CM
3727 btrfs_item_key(right, &disk_key, 0);
3728 btrfs_set_node_key(upper, &disk_key, slot + 1);
d6025579 3729 btrfs_mark_buffer_dirty(upper);
02217ed2 3730
00ec4c51 3731 /* then fixup the leaf pointer in the path */
7518a238
CM
3732 if (path->slots[0] >= left_nritems) {
3733 path->slots[0] -= left_nritems;
925baedd 3734 if (btrfs_header_nritems(path->nodes[0]) == 0)
6a884d7d 3735 btrfs_clean_tree_block(path->nodes[0]);
925baedd 3736 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3737 free_extent_buffer(path->nodes[0]);
3738 path->nodes[0] = right;
00ec4c51
CM
3739 path->slots[1] += 1;
3740 } else {
925baedd 3741 btrfs_tree_unlock(right);
5f39d397 3742 free_extent_buffer(right);
00ec4c51
CM
3743 }
3744 return 0;
925baedd
CM
3745
3746out_unlock:
3747 btrfs_tree_unlock(right);
3748 free_extent_buffer(right);
3749 return 1;
00ec4c51 3750}
925baedd 3751
44871b1b
CM
3752/*
3753 * push some data in the path leaf to the right, trying to free up at
3754 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3755 *
3756 * returns 1 if the push failed because the other node didn't have enough
3757 * room, 0 if everything worked out and < 0 if there were major errors.
99d8f83c
CM
3758 *
3759 * this will push starting from min_slot to the end of the leaf. It won't
3760 * push any slot lower than min_slot
44871b1b
CM
3761 */
3762static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3763 *root, struct btrfs_path *path,
3764 int min_data_size, int data_size,
3765 int empty, u32 min_slot)
44871b1b
CM
3766{
3767 struct extent_buffer *left = path->nodes[0];
3768 struct extent_buffer *right;
3769 struct extent_buffer *upper;
3770 int slot;
3771 int free_space;
3772 u32 left_nritems;
3773 int ret;
3774
3775 if (!path->nodes[1])
3776 return 1;
3777
3778 slot = path->slots[1];
3779 upper = path->nodes[1];
3780 if (slot >= btrfs_header_nritems(upper) - 1)
3781 return 1;
3782
3783 btrfs_assert_tree_locked(path->nodes[1]);
3784
4b231ae4 3785 right = btrfs_read_node_slot(upper, slot + 1);
fb770ae4
LB
3786 /*
3787 * slot + 1 is not valid or we fail to read the right node,
3788 * no big deal, just return.
3789 */
3790 if (IS_ERR(right))
91ca338d
TI
3791 return 1;
3792
44871b1b 3793 btrfs_tree_lock(right);
8bead258 3794 btrfs_set_lock_blocking_write(right);
44871b1b 3795
e902baac 3796 free_space = btrfs_leaf_free_space(right);
44871b1b
CM
3797 if (free_space < data_size)
3798 goto out_unlock;
3799
3800 /* cow and double check */
3801 ret = btrfs_cow_block(trans, root, right, upper,
3802 slot + 1, &right);
3803 if (ret)
3804 goto out_unlock;
3805
e902baac 3806 free_space = btrfs_leaf_free_space(right);
44871b1b
CM
3807 if (free_space < data_size)
3808 goto out_unlock;
3809
3810 left_nritems = btrfs_header_nritems(left);
3811 if (left_nritems == 0)
3812 goto out_unlock;
3813
2ef1fed2
FDBM
3814 if (path->slots[0] == left_nritems && !empty) {
3815 /* Key greater than all keys in the leaf, right neighbor has
3816 * enough room for it and we're not emptying our leaf to delete
3817 * it, therefore use right neighbor to insert the new item and
52042d8e 3818 * no need to touch/dirty our left leaf. */
2ef1fed2
FDBM
3819 btrfs_tree_unlock(left);
3820 free_extent_buffer(left);
3821 path->nodes[0] = right;
3822 path->slots[0] = 0;
3823 path->slots[1]++;
3824 return 0;
3825 }
3826
f72f0010 3827 return __push_leaf_right(path, min_data_size, empty,
99d8f83c 3828 right, free_space, left_nritems, min_slot);
44871b1b
CM
3829out_unlock:
3830 btrfs_tree_unlock(right);
3831 free_extent_buffer(right);
3832 return 1;
3833}
3834
74123bd7
CM
3835/*
3836 * push some data in the path leaf to the left, trying to free up at
3837 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3838 *
3839 * max_slot can put a limit on how far into the leaf we'll push items. The
3840 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3841 * items
74123bd7 3842 */
8087c193 3843static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
44871b1b 3844 int empty, struct extent_buffer *left,
99d8f83c
CM
3845 int free_space, u32 right_nritems,
3846 u32 max_slot)
be0e5c09 3847{
8087c193 3848 struct btrfs_fs_info *fs_info = left->fs_info;
5f39d397
CM
3849 struct btrfs_disk_key disk_key;
3850 struct extent_buffer *right = path->nodes[0];
be0e5c09 3851 int i;
be0e5c09
CM
3852 int push_space = 0;
3853 int push_items = 0;
0783fcfc 3854 struct btrfs_item *item;
7518a238 3855 u32 old_left_nritems;
34a38218 3856 u32 nr;
aa5d6bed 3857 int ret = 0;
db94535d
CM
3858 u32 this_item_size;
3859 u32 old_left_item_size;
cfed81a0
CM
3860 struct btrfs_map_token token;
3861
34a38218 3862 if (empty)
99d8f83c 3863 nr = min(right_nritems, max_slot);
34a38218 3864 else
99d8f83c 3865 nr = min(right_nritems - 1, max_slot);
34a38218
CM
3866
3867 for (i = 0; i < nr; i++) {
dd3cc16b 3868 item = btrfs_item_nr(i);
db94535d 3869
31840ae1
ZY
3870 if (!empty && push_items > 0) {
3871 if (path->slots[0] < i)
3872 break;
3873 if (path->slots[0] == i) {
e902baac
DS
3874 int space = btrfs_leaf_free_space(right);
3875
31840ae1
ZY
3876 if (space + push_space * 2 > free_space)
3877 break;
3878 }
3879 }
3880
be0e5c09 3881 if (path->slots[0] == i)
87b29b20 3882 push_space += data_size;
db94535d
CM
3883
3884 this_item_size = btrfs_item_size(right, item);
3885 if (this_item_size + sizeof(*item) + push_space > free_space)
be0e5c09 3886 break;
db94535d 3887
be0e5c09 3888 push_items++;
db94535d
CM
3889 push_space += this_item_size + sizeof(*item);
3890 }
3891
be0e5c09 3892 if (push_items == 0) {
925baedd
CM
3893 ret = 1;
3894 goto out;
be0e5c09 3895 }
fae7f21c 3896 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
5f39d397 3897
be0e5c09 3898 /* push data from right to left */
5f39d397
CM
3899 copy_extent_buffer(left, right,
3900 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3901 btrfs_item_nr_offset(0),
3902 push_items * sizeof(struct btrfs_item));
3903
0b246afa 3904 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
d397712b 3905 btrfs_item_offset_nr(right, push_items - 1);
5f39d397 3906
3d9ec8c4 3907 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
8f881e8c 3908 leaf_data_end(left) - push_space,
3d9ec8c4 3909 BTRFS_LEAF_DATA_OFFSET +
5f39d397 3910 btrfs_item_offset_nr(right, push_items - 1),
d6025579 3911 push_space);
5f39d397 3912 old_left_nritems = btrfs_header_nritems(left);
87b29b20 3913 BUG_ON(old_left_nritems <= 0);
eb60ceac 3914
c82f823c 3915 btrfs_init_map_token(&token, left);
db94535d 3916 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
0783fcfc 3917 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
5f39d397 3918 u32 ioff;
db94535d 3919
dd3cc16b 3920 item = btrfs_item_nr(i);
db94535d 3921
cfed81a0
CM
3922 ioff = btrfs_token_item_offset(left, item, &token);
3923 btrfs_set_token_item_offset(left, item,
0b246afa 3924 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
cfed81a0 3925 &token);
be0e5c09 3926 }
5f39d397 3927 btrfs_set_header_nritems(left, old_left_nritems + push_items);
be0e5c09
CM
3928
3929 /* fixup right node */
31b1a2bd
JL
3930 if (push_items > right_nritems)
3931 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
d397712b 3932 right_nritems);
34a38218
CM
3933
3934 if (push_items < right_nritems) {
3935 push_space = btrfs_item_offset_nr(right, push_items - 1) -
8f881e8c 3936 leaf_data_end(right);
3d9ec8c4 3937 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
0b246afa 3938 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3d9ec8c4 3939 BTRFS_LEAF_DATA_OFFSET +
8f881e8c 3940 leaf_data_end(right), push_space);
34a38218
CM
3941
3942 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
5f39d397
CM
3943 btrfs_item_nr_offset(push_items),
3944 (btrfs_header_nritems(right) - push_items) *
3945 sizeof(struct btrfs_item));
34a38218 3946 }
c82f823c
DS
3947
3948 btrfs_init_map_token(&token, right);
eef1c494
Y
3949 right_nritems -= push_items;
3950 btrfs_set_header_nritems(right, right_nritems);
0b246afa 3951 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
5f39d397 3952 for (i = 0; i < right_nritems; i++) {
dd3cc16b 3953 item = btrfs_item_nr(i);
db94535d 3954
cfed81a0
CM
3955 push_space = push_space - btrfs_token_item_size(right,
3956 item, &token);
3957 btrfs_set_token_item_offset(right, item, push_space, &token);
db94535d 3958 }
eb60ceac 3959
5f39d397 3960 btrfs_mark_buffer_dirty(left);
34a38218
CM
3961 if (right_nritems)
3962 btrfs_mark_buffer_dirty(right);
f0486c68 3963 else
6a884d7d 3964 btrfs_clean_tree_block(right);
098f59c2 3965
5f39d397 3966 btrfs_item_key(right, &disk_key, 0);
b167fa91 3967 fixup_low_keys(path, &disk_key, 1);
be0e5c09
CM
3968
3969 /* then fixup the leaf pointer in the path */
3970 if (path->slots[0] < push_items) {
3971 path->slots[0] += old_left_nritems;
925baedd 3972 btrfs_tree_unlock(path->nodes[0]);
5f39d397
CM
3973 free_extent_buffer(path->nodes[0]);
3974 path->nodes[0] = left;
be0e5c09
CM
3975 path->slots[1] -= 1;
3976 } else {
925baedd 3977 btrfs_tree_unlock(left);
5f39d397 3978 free_extent_buffer(left);
be0e5c09
CM
3979 path->slots[0] -= push_items;
3980 }
eb60ceac 3981 BUG_ON(path->slots[0] < 0);
aa5d6bed 3982 return ret;
925baedd
CM
3983out:
3984 btrfs_tree_unlock(left);
3985 free_extent_buffer(left);
3986 return ret;
be0e5c09
CM
3987}
3988
44871b1b
CM
3989/*
3990 * push some data in the path leaf to the left, trying to free up at
3991 * least data_size bytes. returns zero if the push worked, nonzero otherwise
99d8f83c
CM
3992 *
3993 * max_slot can put a limit on how far into the leaf we'll push items. The
3994 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3995 * items
44871b1b
CM
3996 */
3997static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
99d8f83c
CM
3998 *root, struct btrfs_path *path, int min_data_size,
3999 int data_size, int empty, u32 max_slot)
44871b1b
CM
4000{
4001 struct extent_buffer *right = path->nodes[0];
4002 struct extent_buffer *left;
4003 int slot;
4004 int free_space;
4005 u32 right_nritems;
4006 int ret = 0;
4007
4008 slot = path->slots[1];
4009 if (slot == 0)
4010 return 1;
4011 if (!path->nodes[1])
4012 return 1;
4013
4014 right_nritems = btrfs_header_nritems(right);
4015 if (right_nritems == 0)
4016 return 1;
4017
4018 btrfs_assert_tree_locked(path->nodes[1]);
4019
4b231ae4 4020 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
fb770ae4
LB
4021 /*
4022 * slot - 1 is not valid or we fail to read the left node,
4023 * no big deal, just return.
4024 */
4025 if (IS_ERR(left))
91ca338d
TI
4026 return 1;
4027
44871b1b 4028 btrfs_tree_lock(left);
8bead258 4029 btrfs_set_lock_blocking_write(left);
44871b1b 4030
e902baac 4031 free_space = btrfs_leaf_free_space(left);
44871b1b
CM
4032 if (free_space < data_size) {
4033 ret = 1;
4034 goto out;
4035 }
4036
4037 /* cow and double check */
4038 ret = btrfs_cow_block(trans, root, left,
4039 path->nodes[1], slot - 1, &left);
4040 if (ret) {
4041 /* we hit -ENOSPC, but it isn't fatal here */
79787eaa
JM
4042 if (ret == -ENOSPC)
4043 ret = 1;
44871b1b
CM
4044 goto out;
4045 }
4046
e902baac 4047 free_space = btrfs_leaf_free_space(left);
44871b1b
CM
4048 if (free_space < data_size) {
4049 ret = 1;
4050 goto out;
4051 }
4052
8087c193 4053 return __push_leaf_left(path, min_data_size,
99d8f83c
CM
4054 empty, left, free_space, right_nritems,
4055 max_slot);
44871b1b
CM
4056out:
4057 btrfs_tree_unlock(left);
4058 free_extent_buffer(left);
4059 return ret;
4060}
4061
4062/*
4063 * split the path's leaf in two, making sure there is at least data_size
4064 * available for the resulting leaf level of the path.
44871b1b 4065 */
143bede5 4066static noinline void copy_for_split(struct btrfs_trans_handle *trans,
143bede5
JM
4067 struct btrfs_path *path,
4068 struct extent_buffer *l,
4069 struct extent_buffer *right,
4070 int slot, int mid, int nritems)
44871b1b 4071{
94f94ad9 4072 struct btrfs_fs_info *fs_info = trans->fs_info;
44871b1b
CM
4073 int data_copy_size;
4074 int rt_data_off;
4075 int i;
44871b1b 4076 struct btrfs_disk_key disk_key;
cfed81a0
CM
4077 struct btrfs_map_token token;
4078
44871b1b
CM
4079 nritems = nritems - mid;
4080 btrfs_set_header_nritems(right, nritems);
8f881e8c 4081 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
44871b1b
CM
4082
4083 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4084 btrfs_item_nr_offset(mid),
4085 nritems * sizeof(struct btrfs_item));
4086
4087 copy_extent_buffer(right, l,
3d9ec8c4
NB
4088 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4089 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
8f881e8c 4090 leaf_data_end(l), data_copy_size);
44871b1b 4091
0b246afa 4092 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
44871b1b 4093
c82f823c 4094 btrfs_init_map_token(&token, right);
44871b1b 4095 for (i = 0; i < nritems; i++) {
dd3cc16b 4096 struct btrfs_item *item = btrfs_item_nr(i);
44871b1b
CM
4097 u32 ioff;
4098
cfed81a0
CM
4099 ioff = btrfs_token_item_offset(right, item, &token);
4100 btrfs_set_token_item_offset(right, item,
4101 ioff + rt_data_off, &token);
44871b1b
CM
4102 }
4103
44871b1b 4104 btrfs_set_header_nritems(l, mid);
44871b1b 4105 btrfs_item_key(right, &disk_key, 0);
6ad3cf6d 4106 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
44871b1b
CM
4107
4108 btrfs_mark_buffer_dirty(right);
4109 btrfs_mark_buffer_dirty(l);
4110 BUG_ON(path->slots[0] != slot);
4111
44871b1b
CM
4112 if (mid <= slot) {
4113 btrfs_tree_unlock(path->nodes[0]);
4114 free_extent_buffer(path->nodes[0]);
4115 path->nodes[0] = right;
4116 path->slots[0] -= mid;
4117 path->slots[1] += 1;
4118 } else {
4119 btrfs_tree_unlock(right);
4120 free_extent_buffer(right);
4121 }
4122
4123 BUG_ON(path->slots[0] < 0);
44871b1b
CM
4124}
4125
99d8f83c
CM
4126/*
4127 * double splits happen when we need to insert a big item in the middle
4128 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4129 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4130 * A B C
4131 *
4132 * We avoid this by trying to push the items on either side of our target
4133 * into the adjacent leaves. If all goes well we can avoid the double split
4134 * completely.
4135 */
4136static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4137 struct btrfs_root *root,
4138 struct btrfs_path *path,
4139 int data_size)
4140{
4141 int ret;
4142 int progress = 0;
4143 int slot;
4144 u32 nritems;
5a4267ca 4145 int space_needed = data_size;
99d8f83c
CM
4146
4147 slot = path->slots[0];
5a4267ca 4148 if (slot < btrfs_header_nritems(path->nodes[0]))
e902baac 4149 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
99d8f83c
CM
4150
4151 /*
4152 * try to push all the items after our slot into the
4153 * right leaf
4154 */
5a4267ca 4155 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4156 if (ret < 0)
4157 return ret;
4158
4159 if (ret == 0)
4160 progress++;
4161
4162 nritems = btrfs_header_nritems(path->nodes[0]);
4163 /*
4164 * our goal is to get our slot at the start or end of a leaf. If
4165 * we've done so we're done
4166 */
4167 if (path->slots[0] == 0 || path->slots[0] == nritems)
4168 return 0;
4169
e902baac 4170 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
99d8f83c
CM
4171 return 0;
4172
4173 /* try to push all the items before our slot into the next leaf */
4174 slot = path->slots[0];
263d3995
FM
4175 space_needed = data_size;
4176 if (slot > 0)
e902baac 4177 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
5a4267ca 4178 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
99d8f83c
CM
4179 if (ret < 0)
4180 return ret;
4181
4182 if (ret == 0)
4183 progress++;
4184
4185 if (progress)
4186 return 0;
4187 return 1;
4188}
4189
74123bd7
CM
4190/*
4191 * split the path's leaf in two, making sure there is at least data_size
4192 * available for the resulting leaf level of the path.
aa5d6bed
CM
4193 *
4194 * returns 0 if all went well and < 0 on failure.
74123bd7 4195 */
e02119d5
CM
4196static noinline int split_leaf(struct btrfs_trans_handle *trans,
4197 struct btrfs_root *root,
310712b2 4198 const struct btrfs_key *ins_key,
e02119d5
CM
4199 struct btrfs_path *path, int data_size,
4200 int extend)
be0e5c09 4201{
5d4f98a2 4202 struct btrfs_disk_key disk_key;
5f39d397 4203 struct extent_buffer *l;
7518a238 4204 u32 nritems;
eb60ceac
CM
4205 int mid;
4206 int slot;
5f39d397 4207 struct extent_buffer *right;
b7a0365e 4208 struct btrfs_fs_info *fs_info = root->fs_info;
d4dbff95 4209 int ret = 0;
aa5d6bed 4210 int wret;
5d4f98a2 4211 int split;
cc0c5538 4212 int num_doubles = 0;
99d8f83c 4213 int tried_avoid_double = 0;
aa5d6bed 4214
a5719521
YZ
4215 l = path->nodes[0];
4216 slot = path->slots[0];
4217 if (extend && data_size + btrfs_item_size_nr(l, slot) +
0b246afa 4218 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
a5719521
YZ
4219 return -EOVERFLOW;
4220
40689478 4221 /* first try to make some room by pushing left and right */
33157e05 4222 if (data_size && path->nodes[1]) {
5a4267ca
FDBM
4223 int space_needed = data_size;
4224
4225 if (slot < btrfs_header_nritems(l))
e902baac 4226 space_needed -= btrfs_leaf_free_space(l);
5a4267ca
FDBM
4227
4228 wret = push_leaf_right(trans, root, path, space_needed,
4229 space_needed, 0, 0);
d397712b 4230 if (wret < 0)
eaee50e8 4231 return wret;
3685f791 4232 if (wret) {
263d3995
FM
4233 space_needed = data_size;
4234 if (slot > 0)
e902baac 4235 space_needed -= btrfs_leaf_free_space(l);
5a4267ca
FDBM
4236 wret = push_leaf_left(trans, root, path, space_needed,
4237 space_needed, 0, (u32)-1);
3685f791
CM
4238 if (wret < 0)
4239 return wret;
4240 }
4241 l = path->nodes[0];
aa5d6bed 4242
3685f791 4243 /* did the pushes work? */
e902baac 4244 if (btrfs_leaf_free_space(l) >= data_size)
3685f791 4245 return 0;
3326d1b0 4246 }
aa5d6bed 4247
5c680ed6 4248 if (!path->nodes[1]) {
fdd99c72 4249 ret = insert_new_root(trans, root, path, 1);
5c680ed6
CM
4250 if (ret)
4251 return ret;
4252 }
cc0c5538 4253again:
5d4f98a2 4254 split = 1;
cc0c5538 4255 l = path->nodes[0];
eb60ceac 4256 slot = path->slots[0];
5f39d397 4257 nritems = btrfs_header_nritems(l);
d397712b 4258 mid = (nritems + 1) / 2;
54aa1f4d 4259
5d4f98a2
YZ
4260 if (mid <= slot) {
4261 if (nritems == 1 ||
4262 leaf_space_used(l, mid, nritems - mid) + data_size >
0b246afa 4263 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4264 if (slot >= nritems) {
4265 split = 0;
4266 } else {
4267 mid = slot;
4268 if (mid != nritems &&
4269 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4270 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4271 if (data_size && !tried_avoid_double)
4272 goto push_for_double;
5d4f98a2
YZ
4273 split = 2;
4274 }
4275 }
4276 }
4277 } else {
4278 if (leaf_space_used(l, 0, mid) + data_size >
0b246afa 4279 BTRFS_LEAF_DATA_SIZE(fs_info)) {
5d4f98a2
YZ
4280 if (!extend && data_size && slot == 0) {
4281 split = 0;
4282 } else if ((extend || !data_size) && slot == 0) {
4283 mid = 1;
4284 } else {
4285 mid = slot;
4286 if (mid != nritems &&
4287 leaf_space_used(l, mid, nritems - mid) +
0b246afa 4288 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
99d8f83c
CM
4289 if (data_size && !tried_avoid_double)
4290 goto push_for_double;
67871254 4291 split = 2;
5d4f98a2
YZ
4292 }
4293 }
4294 }
4295 }
4296
4297 if (split == 0)
4298 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4299 else
4300 btrfs_item_key(l, &disk_key, mid);
4301
a6279470
FM
4302 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4303 l->start, 0);
f0486c68 4304 if (IS_ERR(right))
5f39d397 4305 return PTR_ERR(right);
f0486c68 4306
0b246afa 4307 root_add_used(root, fs_info->nodesize);
5f39d397 4308
5d4f98a2
YZ
4309 if (split == 0) {
4310 if (mid <= slot) {
4311 btrfs_set_header_nritems(right, 0);
6ad3cf6d 4312 insert_ptr(trans, path, &disk_key,
2ff7e61e 4313 right->start, path->slots[1] + 1, 1);
5d4f98a2
YZ
4314 btrfs_tree_unlock(path->nodes[0]);
4315 free_extent_buffer(path->nodes[0]);
4316 path->nodes[0] = right;
4317 path->slots[0] = 0;
4318 path->slots[1] += 1;
4319 } else {
4320 btrfs_set_header_nritems(right, 0);
6ad3cf6d 4321 insert_ptr(trans, path, &disk_key,
2ff7e61e 4322 right->start, path->slots[1], 1);
5d4f98a2
YZ
4323 btrfs_tree_unlock(path->nodes[0]);
4324 free_extent_buffer(path->nodes[0]);
4325 path->nodes[0] = right;
4326 path->slots[0] = 0;
143bede5 4327 if (path->slots[1] == 0)
b167fa91 4328 fixup_low_keys(path, &disk_key, 1);
d4dbff95 4329 }
196e0249
LB
4330 /*
4331 * We create a new leaf 'right' for the required ins_len and
4332 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4333 * the content of ins_len to 'right'.
4334 */
5d4f98a2 4335 return ret;
d4dbff95 4336 }
74123bd7 4337
94f94ad9 4338 copy_for_split(trans, path, l, right, slot, mid, nritems);
31840ae1 4339
5d4f98a2 4340 if (split == 2) {
cc0c5538
CM
4341 BUG_ON(num_doubles != 0);
4342 num_doubles++;
4343 goto again;
a429e513 4344 }
44871b1b 4345
143bede5 4346 return 0;
99d8f83c
CM
4347
4348push_for_double:
4349 push_for_double_split(trans, root, path, data_size);
4350 tried_avoid_double = 1;
e902baac 4351 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
99d8f83c
CM
4352 return 0;
4353 goto again;
be0e5c09
CM
4354}
4355
ad48fd75
YZ
4356static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4357 struct btrfs_root *root,
4358 struct btrfs_path *path, int ins_len)
459931ec 4359{
ad48fd75 4360 struct btrfs_key key;
459931ec 4361 struct extent_buffer *leaf;
ad48fd75
YZ
4362 struct btrfs_file_extent_item *fi;
4363 u64 extent_len = 0;
4364 u32 item_size;
4365 int ret;
459931ec
CM
4366
4367 leaf = path->nodes[0];
ad48fd75
YZ
4368 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4369
4370 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4371 key.type != BTRFS_EXTENT_CSUM_KEY);
4372
e902baac 4373 if (btrfs_leaf_free_space(leaf) >= ins_len)
ad48fd75 4374 return 0;
459931ec
CM
4375
4376 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ad48fd75
YZ
4377 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4378 fi = btrfs_item_ptr(leaf, path->slots[0],
4379 struct btrfs_file_extent_item);
4380 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4381 }
b3b4aa74 4382 btrfs_release_path(path);
459931ec 4383
459931ec 4384 path->keep_locks = 1;
ad48fd75
YZ
4385 path->search_for_split = 1;
4386 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
459931ec 4387 path->search_for_split = 0;
a8df6fe6
FM
4388 if (ret > 0)
4389 ret = -EAGAIN;
ad48fd75
YZ
4390 if (ret < 0)
4391 goto err;
459931ec 4392
ad48fd75
YZ
4393 ret = -EAGAIN;
4394 leaf = path->nodes[0];
a8df6fe6
FM
4395 /* if our item isn't there, return now */
4396 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
ad48fd75
YZ
4397 goto err;
4398
109f6aef 4399 /* the leaf has changed, it now has room. return now */
e902baac 4400 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
109f6aef
CM
4401 goto err;
4402
ad48fd75
YZ
4403 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4404 fi = btrfs_item_ptr(leaf, path->slots[0],
4405 struct btrfs_file_extent_item);
4406 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4407 goto err;
459931ec
CM
4408 }
4409
b9473439 4410 btrfs_set_path_blocking(path);
ad48fd75 4411 ret = split_leaf(trans, root, &key, path, ins_len, 1);
f0486c68
YZ
4412 if (ret)
4413 goto err;
459931ec 4414
ad48fd75 4415 path->keep_locks = 0;
b9473439 4416 btrfs_unlock_up_safe(path, 1);
ad48fd75
YZ
4417 return 0;
4418err:
4419 path->keep_locks = 0;
4420 return ret;
4421}
4422
25263cd7 4423static noinline int split_item(struct btrfs_path *path,
310712b2 4424 const struct btrfs_key *new_key,
ad48fd75
YZ
4425 unsigned long split_offset)
4426{
4427 struct extent_buffer *leaf;
4428 struct btrfs_item *item;
4429 struct btrfs_item *new_item;
4430 int slot;
4431 char *buf;
4432 u32 nritems;
4433 u32 item_size;
4434 u32 orig_offset;
4435 struct btrfs_disk_key disk_key;
4436
b9473439 4437 leaf = path->nodes[0];
e902baac 4438 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
b9473439 4439
b4ce94de
CM
4440 btrfs_set_path_blocking(path);
4441
dd3cc16b 4442 item = btrfs_item_nr(path->slots[0]);
459931ec
CM
4443 orig_offset = btrfs_item_offset(leaf, item);
4444 item_size = btrfs_item_size(leaf, item);
4445
459931ec 4446 buf = kmalloc(item_size, GFP_NOFS);
ad48fd75
YZ
4447 if (!buf)
4448 return -ENOMEM;
4449
459931ec
CM
4450 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4451 path->slots[0]), item_size);
459931ec 4452
ad48fd75 4453 slot = path->slots[0] + 1;
459931ec 4454 nritems = btrfs_header_nritems(leaf);
459931ec
CM
4455 if (slot != nritems) {
4456 /* shift the items */
4457 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
ad48fd75
YZ
4458 btrfs_item_nr_offset(slot),
4459 (nritems - slot) * sizeof(struct btrfs_item));
459931ec
CM
4460 }
4461
4462 btrfs_cpu_key_to_disk(&disk_key, new_key);
4463 btrfs_set_item_key(leaf, &disk_key, slot);
4464
dd3cc16b 4465 new_item = btrfs_item_nr(slot);
459931ec
CM
4466
4467 btrfs_set_item_offset(leaf, new_item, orig_offset);
4468 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4469
4470 btrfs_set_item_offset(leaf, item,
4471 orig_offset + item_size - split_offset);
4472 btrfs_set_item_size(leaf, item, split_offset);
4473
4474 btrfs_set_header_nritems(leaf, nritems + 1);
4475
4476 /* write the data for the start of the original item */
4477 write_extent_buffer(leaf, buf,
4478 btrfs_item_ptr_offset(leaf, path->slots[0]),
4479 split_offset);
4480
4481 /* write the data for the new item */
4482 write_extent_buffer(leaf, buf + split_offset,
4483 btrfs_item_ptr_offset(leaf, slot),
4484 item_size - split_offset);
4485 btrfs_mark_buffer_dirty(leaf);
4486
e902baac 4487 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
459931ec 4488 kfree(buf);
ad48fd75
YZ
4489 return 0;
4490}
4491
4492/*
4493 * This function splits a single item into two items,
4494 * giving 'new_key' to the new item and splitting the
4495 * old one at split_offset (from the start of the item).
4496 *
4497 * The path may be released by this operation. After
4498 * the split, the path is pointing to the old item. The
4499 * new item is going to be in the same node as the old one.
4500 *
4501 * Note, the item being split must be smaller enough to live alone on
4502 * a tree block with room for one extra struct btrfs_item
4503 *
4504 * This allows us to split the item in place, keeping a lock on the
4505 * leaf the entire time.
4506 */
4507int btrfs_split_item(struct btrfs_trans_handle *trans,
4508 struct btrfs_root *root,
4509 struct btrfs_path *path,
310712b2 4510 const struct btrfs_key *new_key,
ad48fd75
YZ
4511 unsigned long split_offset)
4512{
4513 int ret;
4514 ret = setup_leaf_for_split(trans, root, path,
4515 sizeof(struct btrfs_item));
4516 if (ret)
4517 return ret;
4518
25263cd7 4519 ret = split_item(path, new_key, split_offset);
459931ec
CM
4520 return ret;
4521}
4522
ad48fd75
YZ
4523/*
4524 * This function duplicate a item, giving 'new_key' to the new item.
4525 * It guarantees both items live in the same tree leaf and the new item
4526 * is contiguous with the original item.
4527 *
4528 * This allows us to split file extent in place, keeping a lock on the
4529 * leaf the entire time.
4530 */
4531int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4532 struct btrfs_root *root,
4533 struct btrfs_path *path,
310712b2 4534 const struct btrfs_key *new_key)
ad48fd75
YZ
4535{
4536 struct extent_buffer *leaf;
4537 int ret;
4538 u32 item_size;
4539
4540 leaf = path->nodes[0];
4541 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4542 ret = setup_leaf_for_split(trans, root, path,
4543 item_size + sizeof(struct btrfs_item));
4544 if (ret)
4545 return ret;
4546
4547 path->slots[0]++;
afe5fea7 4548 setup_items_for_insert(root, path, new_key, &item_size,
143bede5
JM
4549 item_size, item_size +
4550 sizeof(struct btrfs_item), 1);
ad48fd75
YZ
4551 leaf = path->nodes[0];
4552 memcpy_extent_buffer(leaf,
4553 btrfs_item_ptr_offset(leaf, path->slots[0]),
4554 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4555 item_size);
4556 return 0;
4557}
4558
d352ac68
CM
4559/*
4560 * make the item pointed to by the path smaller. new_size indicates
4561 * how small to make it, and from_end tells us if we just chop bytes
4562 * off the end of the item or if we shift the item to chop bytes off
4563 * the front.
4564 */
78ac4f9e 4565void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
b18c6685 4566{
b18c6685 4567 int slot;
5f39d397
CM
4568 struct extent_buffer *leaf;
4569 struct btrfs_item *item;
b18c6685
CM
4570 u32 nritems;
4571 unsigned int data_end;
4572 unsigned int old_data_start;
4573 unsigned int old_size;
4574 unsigned int size_diff;
4575 int i;
cfed81a0
CM
4576 struct btrfs_map_token token;
4577
5f39d397 4578 leaf = path->nodes[0];
179e29e4
CM
4579 slot = path->slots[0];
4580
4581 old_size = btrfs_item_size_nr(leaf, slot);
4582 if (old_size == new_size)
143bede5 4583 return;
b18c6685 4584
5f39d397 4585 nritems = btrfs_header_nritems(leaf);
8f881e8c 4586 data_end = leaf_data_end(leaf);
b18c6685 4587
5f39d397 4588 old_data_start = btrfs_item_offset_nr(leaf, slot);
179e29e4 4589
b18c6685
CM
4590 size_diff = old_size - new_size;
4591
4592 BUG_ON(slot < 0);
4593 BUG_ON(slot >= nritems);
4594
4595 /*
4596 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4597 */
4598 /* first correct the data pointers */
c82f823c 4599 btrfs_init_map_token(&token, leaf);
b18c6685 4600 for (i = slot; i < nritems; i++) {
5f39d397 4601 u32 ioff;
dd3cc16b 4602 item = btrfs_item_nr(i);
db94535d 4603
cfed81a0
CM
4604 ioff = btrfs_token_item_offset(leaf, item, &token);
4605 btrfs_set_token_item_offset(leaf, item,
4606 ioff + size_diff, &token);
b18c6685 4607 }
db94535d 4608
b18c6685 4609 /* shift the data */
179e29e4 4610 if (from_end) {
3d9ec8c4
NB
4611 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4612 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4613 data_end, old_data_start + new_size - data_end);
4614 } else {
4615 struct btrfs_disk_key disk_key;
4616 u64 offset;
4617
4618 btrfs_item_key(leaf, &disk_key, slot);
4619
4620 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4621 unsigned long ptr;
4622 struct btrfs_file_extent_item *fi;
4623
4624 fi = btrfs_item_ptr(leaf, slot,
4625 struct btrfs_file_extent_item);
4626 fi = (struct btrfs_file_extent_item *)(
4627 (unsigned long)fi - size_diff);
4628
4629 if (btrfs_file_extent_type(leaf, fi) ==
4630 BTRFS_FILE_EXTENT_INLINE) {
4631 ptr = btrfs_item_ptr_offset(leaf, slot);
4632 memmove_extent_buffer(leaf, ptr,
d397712b 4633 (unsigned long)fi,
7ec20afb 4634 BTRFS_FILE_EXTENT_INLINE_DATA_START);
179e29e4
CM
4635 }
4636 }
4637
3d9ec8c4
NB
4638 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4639 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
179e29e4
CM
4640 data_end, old_data_start - data_end);
4641
4642 offset = btrfs_disk_key_offset(&disk_key);
4643 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4644 btrfs_set_item_key(leaf, &disk_key, slot);
4645 if (slot == 0)
b167fa91 4646 fixup_low_keys(path, &disk_key, 1);
179e29e4 4647 }
5f39d397 4648
dd3cc16b 4649 item = btrfs_item_nr(slot);
5f39d397
CM
4650 btrfs_set_item_size(leaf, item, new_size);
4651 btrfs_mark_buffer_dirty(leaf);
b18c6685 4652
e902baac 4653 if (btrfs_leaf_free_space(leaf) < 0) {
a4f78750 4654 btrfs_print_leaf(leaf);
b18c6685 4655 BUG();
5f39d397 4656 }
b18c6685
CM
4657}
4658
d352ac68 4659/*
8f69dbd2 4660 * make the item pointed to by the path bigger, data_size is the added size.
d352ac68 4661 */
c71dd880 4662void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
6567e837 4663{
6567e837 4664 int slot;
5f39d397
CM
4665 struct extent_buffer *leaf;
4666 struct btrfs_item *item;
6567e837
CM
4667 u32 nritems;
4668 unsigned int data_end;
4669 unsigned int old_data;
4670 unsigned int old_size;
4671 int i;
cfed81a0
CM
4672 struct btrfs_map_token token;
4673
5f39d397 4674 leaf = path->nodes[0];
6567e837 4675
5f39d397 4676 nritems = btrfs_header_nritems(leaf);
8f881e8c 4677 data_end = leaf_data_end(leaf);
6567e837 4678
e902baac 4679 if (btrfs_leaf_free_space(leaf) < data_size) {
a4f78750 4680 btrfs_print_leaf(leaf);
6567e837 4681 BUG();
5f39d397 4682 }
6567e837 4683 slot = path->slots[0];
5f39d397 4684 old_data = btrfs_item_end_nr(leaf, slot);
6567e837
CM
4685
4686 BUG_ON(slot < 0);
3326d1b0 4687 if (slot >= nritems) {
a4f78750 4688 btrfs_print_leaf(leaf);
c71dd880 4689 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
0b246afa 4690 slot, nritems);
290342f6 4691 BUG();
3326d1b0 4692 }
6567e837
CM
4693
4694 /*
4695 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4696 */
4697 /* first correct the data pointers */
c82f823c 4698 btrfs_init_map_token(&token, leaf);
6567e837 4699 for (i = slot; i < nritems; i++) {
5f39d397 4700 u32 ioff;
dd3cc16b 4701 item = btrfs_item_nr(i);
db94535d 4702
cfed81a0
CM
4703 ioff = btrfs_token_item_offset(leaf, item, &token);
4704 btrfs_set_token_item_offset(leaf, item,
4705 ioff - data_size, &token);
6567e837 4706 }
5f39d397 4707
6567e837 4708 /* shift the data */
3d9ec8c4
NB
4709 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4710 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
6567e837 4711 data_end, old_data - data_end);
5f39d397 4712
6567e837 4713 data_end = old_data;
5f39d397 4714 old_size = btrfs_item_size_nr(leaf, slot);
dd3cc16b 4715 item = btrfs_item_nr(slot);
5f39d397
CM
4716 btrfs_set_item_size(leaf, item, old_size + data_size);
4717 btrfs_mark_buffer_dirty(leaf);
6567e837 4718
e902baac 4719 if (btrfs_leaf_free_space(leaf) < 0) {
a4f78750 4720 btrfs_print_leaf(leaf);
6567e837 4721 BUG();
5f39d397 4722 }
6567e837
CM
4723}
4724
74123bd7 4725/*
44871b1b
CM
4726 * this is a helper for btrfs_insert_empty_items, the main goal here is
4727 * to save stack depth by doing the bulk of the work in a function
4728 * that doesn't call btrfs_search_slot
74123bd7 4729 */
afe5fea7 4730void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
310712b2 4731 const struct btrfs_key *cpu_key, u32 *data_size,
143bede5 4732 u32 total_data, u32 total_size, int nr)
be0e5c09 4733{
0b246afa 4734 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 4735 struct btrfs_item *item;
9c58309d 4736 int i;
7518a238 4737 u32 nritems;
be0e5c09 4738 unsigned int data_end;
e2fa7227 4739 struct btrfs_disk_key disk_key;
44871b1b
CM
4740 struct extent_buffer *leaf;
4741 int slot;
cfed81a0
CM
4742 struct btrfs_map_token token;
4743
24cdc847
FM
4744 if (path->slots[0] == 0) {
4745 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
b167fa91 4746 fixup_low_keys(path, &disk_key, 1);
24cdc847
FM
4747 }
4748 btrfs_unlock_up_safe(path, 1);
4749
5f39d397 4750 leaf = path->nodes[0];
44871b1b 4751 slot = path->slots[0];
74123bd7 4752
5f39d397 4753 nritems = btrfs_header_nritems(leaf);
8f881e8c 4754 data_end = leaf_data_end(leaf);
eb60ceac 4755
e902baac 4756 if (btrfs_leaf_free_space(leaf) < total_size) {
a4f78750 4757 btrfs_print_leaf(leaf);
0b246afa 4758 btrfs_crit(fs_info, "not enough freespace need %u have %d",
e902baac 4759 total_size, btrfs_leaf_free_space(leaf));
be0e5c09 4760 BUG();
d4dbff95 4761 }
5f39d397 4762
c82f823c 4763 btrfs_init_map_token(&token, leaf);
be0e5c09 4764 if (slot != nritems) {
5f39d397 4765 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
be0e5c09 4766
5f39d397 4767 if (old_data < data_end) {
a4f78750 4768 btrfs_print_leaf(leaf);
0b246afa 4769 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
5d163e0e 4770 slot, old_data, data_end);
290342f6 4771 BUG();
5f39d397 4772 }
be0e5c09
CM
4773 /*
4774 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4775 */
4776 /* first correct the data pointers */
0783fcfc 4777 for (i = slot; i < nritems; i++) {
5f39d397 4778 u32 ioff;
db94535d 4779
62e85577 4780 item = btrfs_item_nr(i);
cfed81a0
CM
4781 ioff = btrfs_token_item_offset(leaf, item, &token);
4782 btrfs_set_token_item_offset(leaf, item,
4783 ioff - total_data, &token);
0783fcfc 4784 }
be0e5c09 4785 /* shift the items */
9c58309d 4786 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
5f39d397 4787 btrfs_item_nr_offset(slot),
d6025579 4788 (nritems - slot) * sizeof(struct btrfs_item));
be0e5c09
CM
4789
4790 /* shift the data */
3d9ec8c4
NB
4791 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4792 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
d6025579 4793 data_end, old_data - data_end);
be0e5c09
CM
4794 data_end = old_data;
4795 }
5f39d397 4796
62e2749e 4797 /* setup the item for the new data */
9c58309d
CM
4798 for (i = 0; i < nr; i++) {
4799 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4800 btrfs_set_item_key(leaf, &disk_key, slot + i);
dd3cc16b 4801 item = btrfs_item_nr(slot + i);
cfed81a0
CM
4802 btrfs_set_token_item_offset(leaf, item,
4803 data_end - data_size[i], &token);
9c58309d 4804 data_end -= data_size[i];
cfed81a0 4805 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
9c58309d 4806 }
44871b1b 4807
9c58309d 4808 btrfs_set_header_nritems(leaf, nritems + nr);
b9473439 4809 btrfs_mark_buffer_dirty(leaf);
aa5d6bed 4810
e902baac 4811 if (btrfs_leaf_free_space(leaf) < 0) {
a4f78750 4812 btrfs_print_leaf(leaf);
be0e5c09 4813 BUG();
5f39d397 4814 }
44871b1b
CM
4815}
4816
4817/*
4818 * Given a key and some data, insert items into the tree.
4819 * This does all the path init required, making room in the tree if needed.
4820 */
4821int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4822 struct btrfs_root *root,
4823 struct btrfs_path *path,
310712b2 4824 const struct btrfs_key *cpu_key, u32 *data_size,
44871b1b
CM
4825 int nr)
4826{
44871b1b
CM
4827 int ret = 0;
4828 int slot;
4829 int i;
4830 u32 total_size = 0;
4831 u32 total_data = 0;
4832
4833 for (i = 0; i < nr; i++)
4834 total_data += data_size[i];
4835
4836 total_size = total_data + (nr * sizeof(struct btrfs_item));
4837 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4838 if (ret == 0)
4839 return -EEXIST;
4840 if (ret < 0)
143bede5 4841 return ret;
44871b1b 4842
44871b1b
CM
4843 slot = path->slots[0];
4844 BUG_ON(slot < 0);
4845
afe5fea7 4846 setup_items_for_insert(root, path, cpu_key, data_size,
44871b1b 4847 total_data, total_size, nr);
143bede5 4848 return 0;
62e2749e
CM
4849}
4850
4851/*
4852 * Given a key and some data, insert an item into the tree.
4853 * This does all the path init required, making room in the tree if needed.
4854 */
310712b2
OS
4855int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4856 const struct btrfs_key *cpu_key, void *data,
4857 u32 data_size)
62e2749e
CM
4858{
4859 int ret = 0;
2c90e5d6 4860 struct btrfs_path *path;
5f39d397
CM
4861 struct extent_buffer *leaf;
4862 unsigned long ptr;
62e2749e 4863
2c90e5d6 4864 path = btrfs_alloc_path();
db5b493a
TI
4865 if (!path)
4866 return -ENOMEM;
2c90e5d6 4867 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
62e2749e 4868 if (!ret) {
5f39d397
CM
4869 leaf = path->nodes[0];
4870 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4871 write_extent_buffer(leaf, data, ptr, data_size);
4872 btrfs_mark_buffer_dirty(leaf);
62e2749e 4873 }
2c90e5d6 4874 btrfs_free_path(path);
aa5d6bed 4875 return ret;
be0e5c09
CM
4876}
4877
74123bd7 4878/*
5de08d7d 4879 * delete the pointer from a given node.
74123bd7 4880 *
d352ac68
CM
4881 * the tree should have been previously balanced so the deletion does not
4882 * empty a node.
74123bd7 4883 */
afe5fea7
TI
4884static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4885 int level, int slot)
be0e5c09 4886{
5f39d397 4887 struct extent_buffer *parent = path->nodes[level];
7518a238 4888 u32 nritems;
f3ea38da 4889 int ret;
be0e5c09 4890
5f39d397 4891 nritems = btrfs_header_nritems(parent);
d397712b 4892 if (slot != nritems - 1) {
bf1d3425
DS
4893 if (level) {
4894 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
a446a979 4895 nritems - slot - 1);
bf1d3425
DS
4896 BUG_ON(ret < 0);
4897 }
5f39d397
CM
4898 memmove_extent_buffer(parent,
4899 btrfs_node_key_ptr_offset(slot),
4900 btrfs_node_key_ptr_offset(slot + 1),
d6025579
CM
4901 sizeof(struct btrfs_key_ptr) *
4902 (nritems - slot - 1));
57ba86c0 4903 } else if (level) {
e09c2efe
DS
4904 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4905 GFP_NOFS);
57ba86c0 4906 BUG_ON(ret < 0);
bb803951 4907 }
f3ea38da 4908
7518a238 4909 nritems--;
5f39d397 4910 btrfs_set_header_nritems(parent, nritems);
7518a238 4911 if (nritems == 0 && parent == root->node) {
5f39d397 4912 BUG_ON(btrfs_header_level(root->node) != 1);
bb803951 4913 /* just turn the root into a leaf and break */
5f39d397 4914 btrfs_set_header_level(root->node, 0);
bb803951 4915 } else if (slot == 0) {
5f39d397
CM
4916 struct btrfs_disk_key disk_key;
4917
4918 btrfs_node_key(parent, &disk_key, 0);
b167fa91 4919 fixup_low_keys(path, &disk_key, level + 1);
be0e5c09 4920 }
d6025579 4921 btrfs_mark_buffer_dirty(parent);
be0e5c09
CM
4922}
4923
323ac95b
CM
4924/*
4925 * a helper function to delete the leaf pointed to by path->slots[1] and
5d4f98a2 4926 * path->nodes[1].
323ac95b
CM
4927 *
4928 * This deletes the pointer in path->nodes[1] and frees the leaf
4929 * block extent. zero is returned if it all worked out, < 0 otherwise.
4930 *
4931 * The path must have already been setup for deleting the leaf, including
4932 * all the proper balancing. path->nodes[1] must be locked.
4933 */
143bede5
JM
4934static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4935 struct btrfs_root *root,
4936 struct btrfs_path *path,
4937 struct extent_buffer *leaf)
323ac95b 4938{
5d4f98a2 4939 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
afe5fea7 4940 del_ptr(root, path, 1, path->slots[1]);
323ac95b 4941
4d081c41
CM
4942 /*
4943 * btrfs_free_extent is expensive, we want to make sure we
4944 * aren't holding any locks when we call it
4945 */
4946 btrfs_unlock_up_safe(path, 0);
4947
f0486c68
YZ
4948 root_sub_used(root, leaf->len);
4949
3083ee2e 4950 extent_buffer_get(leaf);
5581a51a 4951 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3083ee2e 4952 free_extent_buffer_stale(leaf);
323ac95b 4953}
74123bd7
CM
4954/*
4955 * delete the item at the leaf level in path. If that empties
4956 * the leaf, remove it from the tree
4957 */
85e21bac
CM
4958int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4959 struct btrfs_path *path, int slot, int nr)
be0e5c09 4960{
0b246afa 4961 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397
CM
4962 struct extent_buffer *leaf;
4963 struct btrfs_item *item;
ce0eac2a
AM
4964 u32 last_off;
4965 u32 dsize = 0;
aa5d6bed
CM
4966 int ret = 0;
4967 int wret;
85e21bac 4968 int i;
7518a238 4969 u32 nritems;
be0e5c09 4970
5f39d397 4971 leaf = path->nodes[0];
85e21bac
CM
4972 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4973
4974 for (i = 0; i < nr; i++)
4975 dsize += btrfs_item_size_nr(leaf, slot + i);
4976
5f39d397 4977 nritems = btrfs_header_nritems(leaf);
be0e5c09 4978
85e21bac 4979 if (slot + nr != nritems) {
8f881e8c 4980 int data_end = leaf_data_end(leaf);
c82f823c 4981 struct btrfs_map_token token;
5f39d397 4982
3d9ec8c4 4983 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
d6025579 4984 data_end + dsize,
3d9ec8c4 4985 BTRFS_LEAF_DATA_OFFSET + data_end,
85e21bac 4986 last_off - data_end);
5f39d397 4987
c82f823c 4988 btrfs_init_map_token(&token, leaf);
85e21bac 4989 for (i = slot + nr; i < nritems; i++) {
5f39d397 4990 u32 ioff;
db94535d 4991
dd3cc16b 4992 item = btrfs_item_nr(i);
cfed81a0
CM
4993 ioff = btrfs_token_item_offset(leaf, item, &token);
4994 btrfs_set_token_item_offset(leaf, item,
4995 ioff + dsize, &token);
0783fcfc 4996 }
db94535d 4997
5f39d397 4998 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
85e21bac 4999 btrfs_item_nr_offset(slot + nr),
d6025579 5000 sizeof(struct btrfs_item) *
85e21bac 5001 (nritems - slot - nr));
be0e5c09 5002 }
85e21bac
CM
5003 btrfs_set_header_nritems(leaf, nritems - nr);
5004 nritems -= nr;
5f39d397 5005
74123bd7 5006 /* delete the leaf if we've emptied it */
7518a238 5007 if (nritems == 0) {
5f39d397
CM
5008 if (leaf == root->node) {
5009 btrfs_set_header_level(leaf, 0);
9a8dd150 5010 } else {
f0486c68 5011 btrfs_set_path_blocking(path);
6a884d7d 5012 btrfs_clean_tree_block(leaf);
143bede5 5013 btrfs_del_leaf(trans, root, path, leaf);
9a8dd150 5014 }
be0e5c09 5015 } else {
7518a238 5016 int used = leaf_space_used(leaf, 0, nritems);
aa5d6bed 5017 if (slot == 0) {
5f39d397
CM
5018 struct btrfs_disk_key disk_key;
5019
5020 btrfs_item_key(leaf, &disk_key, 0);
b167fa91 5021 fixup_low_keys(path, &disk_key, 1);
aa5d6bed 5022 }
aa5d6bed 5023
74123bd7 5024 /* delete the leaf if it is mostly empty */
0b246afa 5025 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
be0e5c09
CM
5026 /* push_leaf_left fixes the path.
5027 * make sure the path still points to our leaf
5028 * for possible call to del_ptr below
5029 */
4920c9ac 5030 slot = path->slots[1];
5f39d397
CM
5031 extent_buffer_get(leaf);
5032
b9473439 5033 btrfs_set_path_blocking(path);
99d8f83c
CM
5034 wret = push_leaf_left(trans, root, path, 1, 1,
5035 1, (u32)-1);
54aa1f4d 5036 if (wret < 0 && wret != -ENOSPC)
aa5d6bed 5037 ret = wret;
5f39d397
CM
5038
5039 if (path->nodes[0] == leaf &&
5040 btrfs_header_nritems(leaf)) {
99d8f83c
CM
5041 wret = push_leaf_right(trans, root, path, 1,
5042 1, 1, 0);
54aa1f4d 5043 if (wret < 0 && wret != -ENOSPC)
aa5d6bed
CM
5044 ret = wret;
5045 }
5f39d397
CM
5046
5047 if (btrfs_header_nritems(leaf) == 0) {
323ac95b 5048 path->slots[1] = slot;
143bede5 5049 btrfs_del_leaf(trans, root, path, leaf);
5f39d397 5050 free_extent_buffer(leaf);
143bede5 5051 ret = 0;
5de08d7d 5052 } else {
925baedd
CM
5053 /* if we're still in the path, make sure
5054 * we're dirty. Otherwise, one of the
5055 * push_leaf functions must have already
5056 * dirtied this buffer
5057 */
5058 if (path->nodes[0] == leaf)
5059 btrfs_mark_buffer_dirty(leaf);
5f39d397 5060 free_extent_buffer(leaf);
be0e5c09 5061 }
d5719762 5062 } else {
5f39d397 5063 btrfs_mark_buffer_dirty(leaf);
be0e5c09
CM
5064 }
5065 }
aa5d6bed 5066 return ret;
be0e5c09
CM
5067}
5068
7bb86316 5069/*
925baedd 5070 * search the tree again to find a leaf with lesser keys
7bb86316
CM
5071 * returns 0 if it found something or 1 if there are no lesser leaves.
5072 * returns < 0 on io errors.
d352ac68
CM
5073 *
5074 * This may release the path, and so you may lose any locks held at the
5075 * time you call it.
7bb86316 5076 */
16e7549f 5077int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
7bb86316 5078{
925baedd
CM
5079 struct btrfs_key key;
5080 struct btrfs_disk_key found_key;
5081 int ret;
7bb86316 5082
925baedd 5083 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
7bb86316 5084
e8b0d724 5085 if (key.offset > 0) {
925baedd 5086 key.offset--;
e8b0d724 5087 } else if (key.type > 0) {
925baedd 5088 key.type--;
e8b0d724
FDBM
5089 key.offset = (u64)-1;
5090 } else if (key.objectid > 0) {
925baedd 5091 key.objectid--;
e8b0d724
FDBM
5092 key.type = (u8)-1;
5093 key.offset = (u64)-1;
5094 } else {
925baedd 5095 return 1;
e8b0d724 5096 }
7bb86316 5097
b3b4aa74 5098 btrfs_release_path(path);
925baedd
CM
5099 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5100 if (ret < 0)
5101 return ret;
5102 btrfs_item_key(path->nodes[0], &found_key, 0);
5103 ret = comp_keys(&found_key, &key);
337c6f68
FM
5104 /*
5105 * We might have had an item with the previous key in the tree right
5106 * before we released our path. And after we released our path, that
5107 * item might have been pushed to the first slot (0) of the leaf we
5108 * were holding due to a tree balance. Alternatively, an item with the
5109 * previous key can exist as the only element of a leaf (big fat item).
5110 * Therefore account for these 2 cases, so that our callers (like
5111 * btrfs_previous_item) don't miss an existing item with a key matching
5112 * the previous key we computed above.
5113 */
5114 if (ret <= 0)
925baedd
CM
5115 return 0;
5116 return 1;
7bb86316
CM
5117}
5118
3f157a2f
CM
5119/*
5120 * A helper function to walk down the tree starting at min_key, and looking
de78b51a
ES
5121 * for nodes or leaves that are have a minimum transaction id.
5122 * This is used by the btree defrag code, and tree logging
3f157a2f
CM
5123 *
5124 * This does not cow, but it does stuff the starting key it finds back
5125 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5126 * key and get a writable path.
5127 *
3f157a2f
CM
5128 * This honors path->lowest_level to prevent descent past a given level
5129 * of the tree.
5130 *
d352ac68
CM
5131 * min_trans indicates the oldest transaction that you are interested
5132 * in walking through. Any nodes or leaves older than min_trans are
5133 * skipped over (without reading them).
5134 *
3f157a2f
CM
5135 * returns zero if something useful was found, < 0 on error and 1 if there
5136 * was nothing in the tree that matched the search criteria.
5137 */
5138int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
de78b51a 5139 struct btrfs_path *path,
3f157a2f
CM
5140 u64 min_trans)
5141{
5142 struct extent_buffer *cur;
5143 struct btrfs_key found_key;
5144 int slot;
9652480b 5145 int sret;
3f157a2f
CM
5146 u32 nritems;
5147 int level;
5148 int ret = 1;
f98de9b9 5149 int keep_locks = path->keep_locks;
3f157a2f 5150
f98de9b9 5151 path->keep_locks = 1;
3f157a2f 5152again:
bd681513 5153 cur = btrfs_read_lock_root_node(root);
3f157a2f 5154 level = btrfs_header_level(cur);
e02119d5 5155 WARN_ON(path->nodes[level]);
3f157a2f 5156 path->nodes[level] = cur;
bd681513 5157 path->locks[level] = BTRFS_READ_LOCK;
3f157a2f
CM
5158
5159 if (btrfs_header_generation(cur) < min_trans) {
5160 ret = 1;
5161 goto out;
5162 }
d397712b 5163 while (1) {
3f157a2f
CM
5164 nritems = btrfs_header_nritems(cur);
5165 level = btrfs_header_level(cur);
a74b35ec 5166 sret = btrfs_bin_search(cur, min_key, level, &slot);
cbca7d59
FM
5167 if (sret < 0) {
5168 ret = sret;
5169 goto out;
5170 }
3f157a2f 5171
323ac95b
CM
5172 /* at the lowest level, we're done, setup the path and exit */
5173 if (level == path->lowest_level) {
e02119d5
CM
5174 if (slot >= nritems)
5175 goto find_next_key;
3f157a2f
CM
5176 ret = 0;
5177 path->slots[level] = slot;
5178 btrfs_item_key_to_cpu(cur, &found_key, slot);
5179 goto out;
5180 }
9652480b
Y
5181 if (sret && slot > 0)
5182 slot--;
3f157a2f 5183 /*
de78b51a
ES
5184 * check this node pointer against the min_trans parameters.
5185 * If it is too old, old, skip to the next one.
3f157a2f 5186 */
d397712b 5187 while (slot < nritems) {
3f157a2f 5188 u64 gen;
e02119d5 5189
3f157a2f
CM
5190 gen = btrfs_node_ptr_generation(cur, slot);
5191 if (gen < min_trans) {
5192 slot++;
5193 continue;
5194 }
de78b51a 5195 break;
3f157a2f 5196 }
e02119d5 5197find_next_key:
3f157a2f
CM
5198 /*
5199 * we didn't find a candidate key in this node, walk forward
5200 * and find another one
5201 */
5202 if (slot >= nritems) {
e02119d5 5203 path->slots[level] = slot;
b4ce94de 5204 btrfs_set_path_blocking(path);
e02119d5 5205 sret = btrfs_find_next_key(root, path, min_key, level,
de78b51a 5206 min_trans);
e02119d5 5207 if (sret == 0) {
b3b4aa74 5208 btrfs_release_path(path);
3f157a2f
CM
5209 goto again;
5210 } else {
5211 goto out;
5212 }
5213 }
5214 /* save our key for returning back */
5215 btrfs_node_key_to_cpu(cur, &found_key, slot);
5216 path->slots[level] = slot;
5217 if (level == path->lowest_level) {
5218 ret = 0;
3f157a2f
CM
5219 goto out;
5220 }
b4ce94de 5221 btrfs_set_path_blocking(path);
4b231ae4 5222 cur = btrfs_read_node_slot(cur, slot);
fb770ae4
LB
5223 if (IS_ERR(cur)) {
5224 ret = PTR_ERR(cur);
5225 goto out;
5226 }
3f157a2f 5227
bd681513 5228 btrfs_tree_read_lock(cur);
b4ce94de 5229
bd681513 5230 path->locks[level - 1] = BTRFS_READ_LOCK;
3f157a2f 5231 path->nodes[level - 1] = cur;
f7c79f30 5232 unlock_up(path, level, 1, 0, NULL);
3f157a2f
CM
5233 }
5234out:
f98de9b9
FM
5235 path->keep_locks = keep_locks;
5236 if (ret == 0) {
5237 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5238 btrfs_set_path_blocking(path);
3f157a2f 5239 memcpy(min_key, &found_key, sizeof(found_key));
f98de9b9 5240 }
3f157a2f
CM
5241 return ret;
5242}
5243
5244/*
5245 * this is similar to btrfs_next_leaf, but does not try to preserve
5246 * and fixup the path. It looks for and returns the next key in the
de78b51a 5247 * tree based on the current path and the min_trans parameters.
3f157a2f
CM
5248 *
5249 * 0 is returned if another key is found, < 0 if there are any errors
5250 * and 1 is returned if there are no higher keys in the tree
5251 *
5252 * path->keep_locks should be set to 1 on the search made before
5253 * calling this function.
5254 */
e7a84565 5255int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
de78b51a 5256 struct btrfs_key *key, int level, u64 min_trans)
e7a84565 5257{
e7a84565
CM
5258 int slot;
5259 struct extent_buffer *c;
5260
6a9fb468 5261 WARN_ON(!path->keep_locks && !path->skip_locking);
d397712b 5262 while (level < BTRFS_MAX_LEVEL) {
e7a84565
CM
5263 if (!path->nodes[level])
5264 return 1;
5265
5266 slot = path->slots[level] + 1;
5267 c = path->nodes[level];
3f157a2f 5268next:
e7a84565 5269 if (slot >= btrfs_header_nritems(c)) {
33c66f43
YZ
5270 int ret;
5271 int orig_lowest;
5272 struct btrfs_key cur_key;
5273 if (level + 1 >= BTRFS_MAX_LEVEL ||
5274 !path->nodes[level + 1])
e7a84565 5275 return 1;
33c66f43 5276
6a9fb468 5277 if (path->locks[level + 1] || path->skip_locking) {
33c66f43
YZ
5278 level++;
5279 continue;
5280 }
5281
5282 slot = btrfs_header_nritems(c) - 1;
5283 if (level == 0)
5284 btrfs_item_key_to_cpu(c, &cur_key, slot);
5285 else
5286 btrfs_node_key_to_cpu(c, &cur_key, slot);
5287
5288 orig_lowest = path->lowest_level;
b3b4aa74 5289 btrfs_release_path(path);
33c66f43
YZ
5290 path->lowest_level = level;
5291 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5292 0, 0);
5293 path->lowest_level = orig_lowest;
5294 if (ret < 0)
5295 return ret;
5296
5297 c = path->nodes[level];
5298 slot = path->slots[level];
5299 if (ret == 0)
5300 slot++;
5301 goto next;
e7a84565 5302 }
33c66f43 5303
e7a84565
CM
5304 if (level == 0)
5305 btrfs_item_key_to_cpu(c, key, slot);
3f157a2f 5306 else {
3f157a2f
CM
5307 u64 gen = btrfs_node_ptr_generation(c, slot);
5308
3f157a2f
CM
5309 if (gen < min_trans) {
5310 slot++;
5311 goto next;
5312 }
e7a84565 5313 btrfs_node_key_to_cpu(c, key, slot);
3f157a2f 5314 }
e7a84565
CM
5315 return 0;
5316 }
5317 return 1;
5318}
5319
97571fd0 5320/*
925baedd 5321 * search the tree again to find a leaf with greater keys
0f70abe2
CM
5322 * returns 0 if it found something or 1 if there are no greater leaves.
5323 * returns < 0 on io errors.
97571fd0 5324 */
234b63a0 5325int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3d7806ec
JS
5326{
5327 return btrfs_next_old_leaf(root, path, 0);
5328}
5329
5330int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5331 u64 time_seq)
d97e63b6
CM
5332{
5333 int slot;
8e73f275 5334 int level;
5f39d397 5335 struct extent_buffer *c;
8e73f275 5336 struct extent_buffer *next;
925baedd
CM
5337 struct btrfs_key key;
5338 u32 nritems;
5339 int ret;
8e73f275 5340 int old_spinning = path->leave_spinning;
bd681513 5341 int next_rw_lock = 0;
925baedd
CM
5342
5343 nritems = btrfs_header_nritems(path->nodes[0]);
d397712b 5344 if (nritems == 0)
925baedd 5345 return 1;
925baedd 5346
8e73f275
CM
5347 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5348again:
5349 level = 1;
5350 next = NULL;
bd681513 5351 next_rw_lock = 0;
b3b4aa74 5352 btrfs_release_path(path);
8e73f275 5353
a2135011 5354 path->keep_locks = 1;
31533fb2 5355 path->leave_spinning = 1;
8e73f275 5356
3d7806ec
JS
5357 if (time_seq)
5358 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5359 else
5360 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
925baedd
CM
5361 path->keep_locks = 0;
5362
5363 if (ret < 0)
5364 return ret;
5365
a2135011 5366 nritems = btrfs_header_nritems(path->nodes[0]);
168fd7d2
CM
5367 /*
5368 * by releasing the path above we dropped all our locks. A balance
5369 * could have added more items next to the key that used to be
5370 * at the very end of the block. So, check again here and
5371 * advance the path if there are now more items available.
5372 */
a2135011 5373 if (nritems > 0 && path->slots[0] < nritems - 1) {
e457afec
YZ
5374 if (ret == 0)
5375 path->slots[0]++;
8e73f275 5376 ret = 0;
925baedd
CM
5377 goto done;
5378 }
0b43e04f
LB
5379 /*
5380 * So the above check misses one case:
5381 * - after releasing the path above, someone has removed the item that
5382 * used to be at the very end of the block, and balance between leafs
5383 * gets another one with bigger key.offset to replace it.
5384 *
5385 * This one should be returned as well, or we can get leaf corruption
5386 * later(esp. in __btrfs_drop_extents()).
5387 *
5388 * And a bit more explanation about this check,
5389 * with ret > 0, the key isn't found, the path points to the slot
5390 * where it should be inserted, so the path->slots[0] item must be the
5391 * bigger one.
5392 */
5393 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5394 ret = 0;
5395 goto done;
5396 }
d97e63b6 5397
d397712b 5398 while (level < BTRFS_MAX_LEVEL) {
8e73f275
CM
5399 if (!path->nodes[level]) {
5400 ret = 1;
5401 goto done;
5402 }
5f39d397 5403
d97e63b6
CM
5404 slot = path->slots[level] + 1;
5405 c = path->nodes[level];
5f39d397 5406 if (slot >= btrfs_header_nritems(c)) {
d97e63b6 5407 level++;
8e73f275
CM
5408 if (level == BTRFS_MAX_LEVEL) {
5409 ret = 1;
5410 goto done;
5411 }
d97e63b6
CM
5412 continue;
5413 }
5f39d397 5414
925baedd 5415 if (next) {
bd681513 5416 btrfs_tree_unlock_rw(next, next_rw_lock);
5f39d397 5417 free_extent_buffer(next);
925baedd 5418 }
5f39d397 5419
8e73f275 5420 next = c;
bd681513 5421 next_rw_lock = path->locks[level];
d07b8528 5422 ret = read_block_for_search(root, path, &next, level,
cda79c54 5423 slot, &key);
8e73f275
CM
5424 if (ret == -EAGAIN)
5425 goto again;
5f39d397 5426
76a05b35 5427 if (ret < 0) {
b3b4aa74 5428 btrfs_release_path(path);
76a05b35
CM
5429 goto done;
5430 }
5431
5cd57b2c 5432 if (!path->skip_locking) {
bd681513 5433 ret = btrfs_try_tree_read_lock(next);
d42244a0
JS
5434 if (!ret && time_seq) {
5435 /*
5436 * If we don't get the lock, we may be racing
5437 * with push_leaf_left, holding that lock while
5438 * itself waiting for the leaf we've currently
5439 * locked. To solve this situation, we give up
5440 * on our lock and cycle.
5441 */
cf538830 5442 free_extent_buffer(next);
d42244a0
JS
5443 btrfs_release_path(path);
5444 cond_resched();
5445 goto again;
5446 }
8e73f275
CM
5447 if (!ret) {
5448 btrfs_set_path_blocking(path);
bd681513 5449 btrfs_tree_read_lock(next);
8e73f275 5450 }
31533fb2 5451 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5452 }
d97e63b6
CM
5453 break;
5454 }
5455 path->slots[level] = slot;
d397712b 5456 while (1) {
d97e63b6
CM
5457 level--;
5458 c = path->nodes[level];
925baedd 5459 if (path->locks[level])
bd681513 5460 btrfs_tree_unlock_rw(c, path->locks[level]);
8e73f275 5461
5f39d397 5462 free_extent_buffer(c);
d97e63b6
CM
5463 path->nodes[level] = next;
5464 path->slots[level] = 0;
a74a4b97 5465 if (!path->skip_locking)
bd681513 5466 path->locks[level] = next_rw_lock;
d97e63b6
CM
5467 if (!level)
5468 break;
b4ce94de 5469
d07b8528 5470 ret = read_block_for_search(root, path, &next, level,
cda79c54 5471 0, &key);
8e73f275
CM
5472 if (ret == -EAGAIN)
5473 goto again;
5474
76a05b35 5475 if (ret < 0) {
b3b4aa74 5476 btrfs_release_path(path);
76a05b35
CM
5477 goto done;
5478 }
5479
5cd57b2c 5480 if (!path->skip_locking) {
bd681513 5481 ret = btrfs_try_tree_read_lock(next);
8e73f275
CM
5482 if (!ret) {
5483 btrfs_set_path_blocking(path);
bd681513 5484 btrfs_tree_read_lock(next);
bd681513 5485 }
31533fb2 5486 next_rw_lock = BTRFS_READ_LOCK;
5cd57b2c 5487 }
d97e63b6 5488 }
8e73f275 5489 ret = 0;
925baedd 5490done:
f7c79f30 5491 unlock_up(path, 0, 1, 0, NULL);
8e73f275
CM
5492 path->leave_spinning = old_spinning;
5493 if (!old_spinning)
5494 btrfs_set_path_blocking(path);
5495
5496 return ret;
d97e63b6 5497}
0b86a832 5498
3f157a2f
CM
5499/*
5500 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5501 * searching until it gets past min_objectid or finds an item of 'type'
5502 *
5503 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5504 */
0b86a832
CM
5505int btrfs_previous_item(struct btrfs_root *root,
5506 struct btrfs_path *path, u64 min_objectid,
5507 int type)
5508{
5509 struct btrfs_key found_key;
5510 struct extent_buffer *leaf;
e02119d5 5511 u32 nritems;
0b86a832
CM
5512 int ret;
5513
d397712b 5514 while (1) {
0b86a832 5515 if (path->slots[0] == 0) {
b4ce94de 5516 btrfs_set_path_blocking(path);
0b86a832
CM
5517 ret = btrfs_prev_leaf(root, path);
5518 if (ret != 0)
5519 return ret;
5520 } else {
5521 path->slots[0]--;
5522 }
5523 leaf = path->nodes[0];
e02119d5
CM
5524 nritems = btrfs_header_nritems(leaf);
5525 if (nritems == 0)
5526 return 1;
5527 if (path->slots[0] == nritems)
5528 path->slots[0]--;
5529
0b86a832 5530 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
e02119d5
CM
5531 if (found_key.objectid < min_objectid)
5532 break;
0a4eefbb
YZ
5533 if (found_key.type == type)
5534 return 0;
e02119d5
CM
5535 if (found_key.objectid == min_objectid &&
5536 found_key.type < type)
5537 break;
0b86a832
CM
5538 }
5539 return 1;
5540}
ade2e0b3
WS
5541
5542/*
5543 * search in extent tree to find a previous Metadata/Data extent item with
5544 * min objecitd.
5545 *
5546 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5547 */
5548int btrfs_previous_extent_item(struct btrfs_root *root,
5549 struct btrfs_path *path, u64 min_objectid)
5550{
5551 struct btrfs_key found_key;
5552 struct extent_buffer *leaf;
5553 u32 nritems;
5554 int ret;
5555
5556 while (1) {
5557 if (path->slots[0] == 0) {
5558 btrfs_set_path_blocking(path);
5559 ret = btrfs_prev_leaf(root, path);
5560 if (ret != 0)
5561 return ret;
5562 } else {
5563 path->slots[0]--;
5564 }
5565 leaf = path->nodes[0];
5566 nritems = btrfs_header_nritems(leaf);
5567 if (nritems == 0)
5568 return 1;
5569 if (path->slots[0] == nritems)
5570 path->slots[0]--;
5571
5572 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5573 if (found_key.objectid < min_objectid)
5574 break;
5575 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5576 found_key.type == BTRFS_METADATA_ITEM_KEY)
5577 return 0;
5578 if (found_key.objectid == min_objectid &&
5579 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5580 break;
5581 }
5582 return 1;
5583}