]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/disk-io.c
Merge tag 'for-5.4/io_uring-2019-09-27' of git://git.kernel.dk/linux-block
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
d397712b 10#include <linux/buffer_head.h>
ce9adaa5 11#include <linux/workqueue.h>
a74a4b97 12#include <linux/kthread.h>
5a0e3ad6 13#include <linux/slab.h>
784b4e29 14#include <linux/migrate.h>
7a36ddec 15#include <linux/ratelimit.h>
6463fe58 16#include <linux/uuid.h>
803b2f54 17#include <linux/semaphore.h>
540adea3 18#include <linux/error-injection.h>
9678c543 19#include <linux/crc32c.h>
b89f6d1f 20#include <linux/sched/mm.h>
7e75bf3f 21#include <asm/unaligned.h>
6d97c6e3 22#include <crypto/hash.h>
eb60ceac
CM
23#include "ctree.h"
24#include "disk-io.h"
e089f05c 25#include "transaction.h"
0f7d52f4 26#include "btrfs_inode.h"
0b86a832 27#include "volumes.h"
db94535d 28#include "print-tree.h"
925baedd 29#include "locking.h"
e02119d5 30#include "tree-log.h"
fa9c0d79 31#include "free-space-cache.h"
70f6d82e 32#include "free-space-tree.h"
581bb050 33#include "inode-map.h"
21adbd5c 34#include "check-integrity.h"
606686ee 35#include "rcu-string.h"
8dabb742 36#include "dev-replace.h"
53b381b3 37#include "raid56.h"
5ac1d209 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
ebb8765b 40#include "compression.h"
557ea5dd 41#include "tree-checker.h"
fd708b81 42#include "ref-verify.h"
aac0023c 43#include "block-group.h"
eb60ceac 44
319e4d06
QW
45#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
46 BTRFS_HEADER_FLAG_RELOC |\
47 BTRFS_SUPER_FLAG_ERROR |\
48 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
49 BTRFS_SUPER_FLAG_METADUMP |\
50 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 51
e8c9f186 52static const struct extent_io_ops btree_extent_io_ops;
8b712842 53static void end_workqueue_fn(struct btrfs_work *work);
143bede5 54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 56 struct btrfs_fs_info *fs_info);
143bede5 57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 59 struct extent_io_tree *dirty_pages,
60 int mark);
2ff7e61e 61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 62 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 65
d352ac68 66/*
97eb6b69
DS
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
97eb6b69 71struct btrfs_end_io_wq {
ce9adaa5
CM
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
4e4cbee9 76 blk_status_t status;
bfebd8b5 77 enum btrfs_wq_endio_type metadata;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
97eb6b69
DS
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
fba4b697 88 SLAB_MEM_SPREAD,
97eb6b69
DS
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
e67c718b 95void __cold btrfs_end_io_wq_exit(void)
97eb6b69 96{
5598e900 97 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
98}
99
d352ac68
CM
100/*
101 * async submit bios are used to offload expensive checksumming
102 * onto the worker threads. They checksum file and metadata bios
103 * just before they are sent down the IO stack.
104 */
44b8bd7e 105struct async_submit_bio {
c6100a4b 106 void *private_data;
44b8bd7e 107 struct bio *bio;
a758781d 108 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 109 int mirror_num;
eaf25d93
CM
110 /*
111 * bio_offset is optional, can be used if the pages in the bio
112 * can't tell us where in the file the bio should go
113 */
114 u64 bio_offset;
8b712842 115 struct btrfs_work work;
4e4cbee9 116 blk_status_t status;
44b8bd7e
CM
117};
118
85d4e461
CM
119/*
120 * Lockdep class keys for extent_buffer->lock's in this root. For a given
121 * eb, the lockdep key is determined by the btrfs_root it belongs to and
122 * the level the eb occupies in the tree.
123 *
124 * Different roots are used for different purposes and may nest inside each
125 * other and they require separate keysets. As lockdep keys should be
126 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
127 * by btrfs_root->root_key.objectid. This ensures that all special purpose
128 * roots have separate keysets.
4008c04a 129 *
85d4e461
CM
130 * Lock-nesting across peer nodes is always done with the immediate parent
131 * node locked thus preventing deadlock. As lockdep doesn't know this, use
132 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 133 *
85d4e461
CM
134 * The key is set by the readpage_end_io_hook after the buffer has passed
135 * csum validation but before the pages are unlocked. It is also set by
136 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 137 *
85d4e461
CM
138 * We also add a check to make sure the highest level of the tree is the
139 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
140 * needs update as well.
4008c04a
CM
141 */
142#ifdef CONFIG_DEBUG_LOCK_ALLOC
143# if BTRFS_MAX_LEVEL != 8
144# error
145# endif
85d4e461
CM
146
147static struct btrfs_lockdep_keyset {
148 u64 id; /* root objectid */
149 const char *name_stem; /* lock name stem */
150 char names[BTRFS_MAX_LEVEL + 1][20];
151 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
152} btrfs_lockdep_keysets[] = {
153 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
154 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
155 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
156 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
157 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
158 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 159 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
160 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
161 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
162 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 163 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 164 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 165 { .id = 0, .name_stem = "tree" },
4008c04a 166};
85d4e461
CM
167
168void __init btrfs_init_lockdep(void)
169{
170 int i, j;
171
172 /* initialize lockdep class names */
173 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177 snprintf(ks->names[j], sizeof(ks->names[j]),
178 "btrfs-%s-%02d", ks->name_stem, j);
179 }
180}
181
182void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183 int level)
184{
185 struct btrfs_lockdep_keyset *ks;
186
187 BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189 /* find the matching keyset, id 0 is the default entry */
190 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191 if (ks->id == objectid)
192 break;
193
194 lockdep_set_class_and_name(&eb->lock,
195 &ks->keys[level], ks->names[level]);
196}
197
4008c04a
CM
198#endif
199
d352ac68
CM
200/*
201 * extents on the btree inode are pretty simple, there's one extent
202 * that covers the entire device
203 */
6af49dbd 204struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 205 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 206 int create)
7eccb903 207{
3ffbd68c 208 struct btrfs_fs_info *fs_info = inode->root->fs_info;
fc4f21b1 209 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
210 struct extent_map *em;
211 int ret;
212
890871be 213 read_lock(&em_tree->lock);
d1310b2e 214 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 215 if (em) {
0b246afa 216 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 217 read_unlock(&em_tree->lock);
5f39d397 218 goto out;
a061fc8d 219 }
890871be 220 read_unlock(&em_tree->lock);
7b13b7b1 221
172ddd60 222 em = alloc_extent_map();
5f39d397
CM
223 if (!em) {
224 em = ERR_PTR(-ENOMEM);
225 goto out;
226 }
227 em->start = 0;
0afbaf8c 228 em->len = (u64)-1;
c8b97818 229 em->block_len = (u64)-1;
5f39d397 230 em->block_start = 0;
0b246afa 231 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 232
890871be 233 write_lock(&em_tree->lock);
09a2a8f9 234 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
235 if (ret == -EEXIST) {
236 free_extent_map(em);
7b13b7b1 237 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 238 if (!em)
0433f20d 239 em = ERR_PTR(-EIO);
5f39d397 240 } else if (ret) {
7b13b7b1 241 free_extent_map(em);
0433f20d 242 em = ERR_PTR(ret);
5f39d397 243 }
890871be 244 write_unlock(&em_tree->lock);
7b13b7b1 245
5f39d397
CM
246out:
247 return em;
7eccb903
CM
248}
249
d352ac68 250/*
2996e1f8
JT
251 * Compute the csum of a btree block and store the result to provided buffer.
252 *
253 * Returns error if the extent buffer cannot be mapped.
d352ac68 254 */
2996e1f8 255static int csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 256{
d5178578
JT
257 struct btrfs_fs_info *fs_info = buf->fs_info;
258 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc
CM
259 unsigned long len;
260 unsigned long cur_len;
261 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
262 char *kaddr;
263 unsigned long map_start;
264 unsigned long map_len;
265 int err;
d5178578
JT
266
267 shash->tfm = fs_info->csum_shash;
268 crypto_shash_init(shash);
19c00ddc
CM
269
270 len = buf->len - offset;
d5178578 271
d397712b 272 while (len > 0) {
d2e174d5
JT
273 /*
274 * Note: we don't need to check for the err == 1 case here, as
275 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276 * and 'min_len = 32' and the currently implemented mapping
277 * algorithm we cannot cross a page boundary.
278 */
19c00ddc 279 err = map_private_extent_buffer(buf, offset, 32,
a6591715 280 &kaddr, &map_start, &map_len);
c53839fc 281 if (WARN_ON(err))
8bd98f0e 282 return err;
19c00ddc 283 cur_len = min(len, map_len - (offset - map_start));
d5178578 284 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
19c00ddc
CM
285 len -= cur_len;
286 offset += cur_len;
19c00ddc 287 }
71a63551 288 memset(result, 0, BTRFS_CSUM_SIZE);
607d432d 289
d5178578 290 crypto_shash_final(shash, result);
19c00ddc 291
19c00ddc
CM
292 return 0;
293}
294
d352ac68
CM
295/*
296 * we can't consider a given block up to date unless the transid of the
297 * block matches the transid in the parent node's pointer. This is how we
298 * detect blocks that either didn't get written at all or got written
299 * in the wrong place.
300 */
1259ab75 301static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
302 struct extent_buffer *eb, u64 parent_transid,
303 int atomic)
1259ab75 304{
2ac55d41 305 struct extent_state *cached_state = NULL;
1259ab75 306 int ret;
2755a0de 307 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
308
309 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310 return 0;
311
b9fab919
CM
312 if (atomic)
313 return -EAGAIN;
314
a26e8c9f
JB
315 if (need_lock) {
316 btrfs_tree_read_lock(eb);
300aa896 317 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
318 }
319
2ac55d41 320 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 321 &cached_state);
0b32f4bb 322 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
323 btrfs_header_generation(eb) == parent_transid) {
324 ret = 0;
325 goto out;
326 }
94647322
DS
327 btrfs_err_rl(eb->fs_info,
328 "parent transid verify failed on %llu wanted %llu found %llu",
329 eb->start,
29549aec 330 parent_transid, btrfs_header_generation(eb));
1259ab75 331 ret = 1;
a26e8c9f
JB
332
333 /*
334 * Things reading via commit roots that don't have normal protection,
335 * like send, can have a really old block in cache that may point at a
01327610 336 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
337 * if we find an eb that is under IO (dirty/writeback) because we could
338 * end up reading in the stale data and then writing it back out and
339 * making everybody very sad.
340 */
341 if (!extent_buffer_under_io(eb))
342 clear_extent_buffer_uptodate(eb);
33958dc6 343out:
2ac55d41 344 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 345 &cached_state);
472b909f
JB
346 if (need_lock)
347 btrfs_tree_read_unlock_blocking(eb);
1259ab75 348 return ret;
1259ab75
CM
349}
350
e7e16f48
JT
351static bool btrfs_supported_super_csum(u16 csum_type)
352{
353 switch (csum_type) {
354 case BTRFS_CSUM_TYPE_CRC32:
355 return true;
356 default:
357 return false;
358 }
359}
360
1104a885
DS
361/*
362 * Return 0 if the superblock checksum type matches the checksum value of that
363 * algorithm. Pass the raw disk superblock data.
364 */
ab8d0fc4
JM
365static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366 char *raw_disk_sb)
1104a885
DS
367{
368 struct btrfs_super_block *disk_sb =
369 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 370 char result[BTRFS_CSUM_SIZE];
d5178578
JT
371 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
372
373 shash->tfm = fs_info->csum_shash;
374 crypto_shash_init(shash);
1104a885 375
51bce6c9
JT
376 /*
377 * The super_block structure does not span the whole
378 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379 * filled with zeros and is included in the checksum.
380 */
d5178578
JT
381 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383 crypto_shash_final(shash, result);
1104a885 384
51bce6c9
JT
385 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386 return 1;
1104a885 387
e7e16f48 388 return 0;
1104a885
DS
389}
390
e064d5e9 391int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 392 struct btrfs_key *first_key, u64 parent_transid)
581c1760 393{
e064d5e9 394 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
395 int found_level;
396 struct btrfs_key found_key;
397 int ret;
398
399 found_level = btrfs_header_level(eb);
400 if (found_level != level) {
63489055
QW
401 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
403 btrfs_err(fs_info,
404"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405 eb->start, level, found_level);
581c1760
QW
406 return -EIO;
407 }
408
409 if (!first_key)
410 return 0;
411
5d41be6f
QW
412 /*
413 * For live tree block (new tree blocks in current transaction),
414 * we need proper lock context to avoid race, which is impossible here.
415 * So we only checks tree blocks which is read from disk, whose
416 * generation <= fs_info->last_trans_committed.
417 */
418 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419 return 0;
62fdaa52
QW
420
421 /* We have @first_key, so this @eb must have at least one item */
422 if (btrfs_header_nritems(eb) == 0) {
423 btrfs_err(fs_info,
424 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425 eb->start);
426 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427 return -EUCLEAN;
428 }
429
581c1760
QW
430 if (found_level)
431 btrfs_node_key_to_cpu(eb, &found_key, 0);
432 else
433 btrfs_item_key_to_cpu(eb, &found_key, 0);
434 ret = btrfs_comp_cpu_keys(first_key, &found_key);
435
581c1760 436 if (ret) {
63489055
QW
437 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 439 btrfs_err(fs_info,
ff76a864
LB
440"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441 eb->start, parent_transid, first_key->objectid,
442 first_key->type, first_key->offset,
443 found_key.objectid, found_key.type,
444 found_key.offset);
581c1760 445 }
581c1760
QW
446 return ret;
447}
448
d352ac68
CM
449/*
450 * helper to read a given tree block, doing retries as required when
451 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
452 *
453 * @parent_transid: expected transid, skip check if 0
454 * @level: expected level, mandatory check
455 * @first_key: expected key of first slot, skip check if NULL
d352ac68 456 */
5ab12d1f 457static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
458 u64 parent_transid, int level,
459 struct btrfs_key *first_key)
f188591e 460{
5ab12d1f 461 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 462 struct extent_io_tree *io_tree;
ea466794 463 int failed = 0;
f188591e
CM
464 int ret;
465 int num_copies = 0;
466 int mirror_num = 0;
ea466794 467 int failed_mirror = 0;
f188591e 468
0b246afa 469 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 470 while (1) {
f8397d69 471 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 472 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 473 if (!ret) {
581c1760 474 if (verify_parent_transid(io_tree, eb,
b9fab919 475 parent_transid, 0))
256dd1bb 476 ret = -EIO;
e064d5e9 477 else if (btrfs_verify_level_key(eb, level,
448de471 478 first_key, parent_transid))
581c1760
QW
479 ret = -EUCLEAN;
480 else
481 break;
256dd1bb 482 }
d397712b 483
0b246afa 484 num_copies = btrfs_num_copies(fs_info,
f188591e 485 eb->start, eb->len);
4235298e 486 if (num_copies == 1)
ea466794 487 break;
4235298e 488
5cf1ab56
JB
489 if (!failed_mirror) {
490 failed = 1;
491 failed_mirror = eb->read_mirror;
492 }
493
f188591e 494 mirror_num++;
ea466794
JB
495 if (mirror_num == failed_mirror)
496 mirror_num++;
497
4235298e 498 if (mirror_num > num_copies)
ea466794 499 break;
f188591e 500 }
ea466794 501
c0901581 502 if (failed && !ret && failed_mirror)
20a1fbf9 503 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
504
505 return ret;
f188591e 506}
19c00ddc 507
d352ac68 508/*
d397712b
CM
509 * checksum a dirty tree block before IO. This has extra checks to make sure
510 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 511 */
d397712b 512
01d58472 513static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 514{
4eee4fa4 515 u64 start = page_offset(page);
19c00ddc 516 u64 found_start;
2996e1f8
JT
517 u8 result[BTRFS_CSUM_SIZE];
518 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 519 struct extent_buffer *eb;
8d47a0d8 520 int ret;
f188591e 521
4f2de97a
JB
522 eb = (struct extent_buffer *)page->private;
523 if (page != eb->pages[0])
524 return 0;
0f805531 525
19c00ddc 526 found_start = btrfs_header_bytenr(eb);
0f805531
AL
527 /*
528 * Please do not consolidate these warnings into a single if.
529 * It is useful to know what went wrong.
530 */
531 if (WARN_ON(found_start != start))
532 return -EUCLEAN;
533 if (WARN_ON(!PageUptodate(page)))
534 return -EUCLEAN;
535
de37aa51 536 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
0f805531
AL
537 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538
2996e1f8
JT
539 if (csum_tree_block(eb, result))
540 return -EINVAL;
541
8d47a0d8
QW
542 if (btrfs_header_level(eb))
543 ret = btrfs_check_node(eb);
544 else
545 ret = btrfs_check_leaf_full(eb);
546
547 if (ret < 0) {
548 btrfs_err(fs_info,
549 "block=%llu write time tree block corruption detected",
550 eb->start);
551 return ret;
552 }
2996e1f8 553 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 554
2996e1f8 555 return 0;
19c00ddc
CM
556}
557
b0c9b3b0 558static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 559{
b0c9b3b0 560 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 562 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
563 int ret = 1;
564
0a4e5586 565 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c 566 while (fs_devices) {
7239ff4b
NB
567 u8 *metadata_uuid;
568
569 /*
570 * Checking the incompat flag is only valid for the current
571 * fs. For seed devices it's forbidden to have their uuid
572 * changed so reading ->fsid in this case is fine
573 */
574 if (fs_devices == fs_info->fs_devices &&
575 btrfs_fs_incompat(fs_info, METADATA_UUID))
576 metadata_uuid = fs_devices->metadata_uuid;
577 else
578 metadata_uuid = fs_devices->fsid;
579
580 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
581 ret = 0;
582 break;
583 }
584 fs_devices = fs_devices->seed;
585 }
586 return ret;
587}
588
facc8a22
MX
589static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
590 u64 phy_offset, struct page *page,
591 u64 start, u64 end, int mirror)
ce9adaa5 592{
ce9adaa5
CM
593 u64 found_start;
594 int found_level;
ce9adaa5
CM
595 struct extent_buffer *eb;
596 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 597 struct btrfs_fs_info *fs_info = root->fs_info;
2996e1f8 598 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
f188591e 599 int ret = 0;
2996e1f8 600 u8 result[BTRFS_CSUM_SIZE];
727011e0 601 int reads_done;
ce9adaa5 602
ce9adaa5
CM
603 if (!page->private)
604 goto out;
d397712b 605
4f2de97a 606 eb = (struct extent_buffer *)page->private;
d397712b 607
0b32f4bb
JB
608 /* the pending IO might have been the only thing that kept this buffer
609 * in memory. Make sure we have a ref for all this other checks
610 */
611 extent_buffer_get(eb);
612
613 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
614 if (!reads_done)
615 goto err;
f188591e 616
5cf1ab56 617 eb->read_mirror = mirror;
656f30db 618 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
619 ret = -EIO;
620 goto err;
621 }
622
ce9adaa5 623 found_start = btrfs_header_bytenr(eb);
727011e0 624 if (found_start != eb->start) {
893bf4b1
SY
625 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
626 eb->start, found_start);
f188591e 627 ret = -EIO;
ce9adaa5
CM
628 goto err;
629 }
b0c9b3b0 630 if (check_tree_block_fsid(eb)) {
02873e43
ZL
631 btrfs_err_rl(fs_info, "bad fsid on block %llu",
632 eb->start);
1259ab75
CM
633 ret = -EIO;
634 goto err;
635 }
ce9adaa5 636 found_level = btrfs_header_level(eb);
1c24c3ce 637 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
638 btrfs_err(fs_info, "bad tree block level %d on %llu",
639 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
640 ret = -EIO;
641 goto err;
642 }
ce9adaa5 643
85d4e461
CM
644 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
645 eb, found_level);
4008c04a 646
2996e1f8 647 ret = csum_tree_block(eb, result);
8bd98f0e 648 if (ret)
a826d6dc 649 goto err;
a826d6dc 650
2996e1f8
JT
651 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
652 u32 val;
653 u32 found = 0;
654
655 memcpy(&found, result, csum_size);
656
657 read_extent_buffer(eb, &val, 0, csum_size);
658 btrfs_warn_rl(fs_info,
659 "%s checksum verify failed on %llu wanted %x found %x level %d",
660 fs_info->sb->s_id, eb->start,
661 val, found, btrfs_header_level(eb));
662 ret = -EUCLEAN;
663 goto err;
664 }
665
a826d6dc
JB
666 /*
667 * If this is a leaf block and it is corrupt, set the corrupt bit so
668 * that we don't try and read the other copies of this block, just
669 * return -EIO.
670 */
1c4360ee 671 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
672 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
673 ret = -EIO;
674 }
ce9adaa5 675
813fd1dc 676 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
677 ret = -EIO;
678
0b32f4bb
JB
679 if (!ret)
680 set_extent_buffer_uptodate(eb);
75391f0d
QW
681 else
682 btrfs_err(fs_info,
683 "block=%llu read time tree block corruption detected",
684 eb->start);
ce9adaa5 685err:
79fb65a1
JB
686 if (reads_done &&
687 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 688 btree_readahead_hook(eb, ret);
4bb31e92 689
53b381b3
DW
690 if (ret) {
691 /*
692 * our io error hook is going to dec the io pages
693 * again, we have to make sure it has something
694 * to decrement
695 */
696 atomic_inc(&eb->io_pages);
0b32f4bb 697 clear_extent_buffer_uptodate(eb);
53b381b3 698 }
0b32f4bb 699 free_extent_buffer(eb);
ce9adaa5 700out:
f188591e 701 return ret;
ce9adaa5
CM
702}
703
4246a0b6 704static void end_workqueue_bio(struct bio *bio)
ce9adaa5 705{
97eb6b69 706 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 707 struct btrfs_fs_info *fs_info;
9e0af237
LB
708 struct btrfs_workqueue *wq;
709 btrfs_work_func_t func;
ce9adaa5 710
ce9adaa5 711 fs_info = end_io_wq->info;
4e4cbee9 712 end_io_wq->status = bio->bi_status;
d20f7043 713
37226b21 714 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
715 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
716 wq = fs_info->endio_meta_write_workers;
717 func = btrfs_endio_meta_write_helper;
718 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
719 wq = fs_info->endio_freespace_worker;
720 func = btrfs_freespace_write_helper;
721 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
722 wq = fs_info->endio_raid56_workers;
723 func = btrfs_endio_raid56_helper;
724 } else {
725 wq = fs_info->endio_write_workers;
726 func = btrfs_endio_write_helper;
727 }
d20f7043 728 } else {
8b110e39
MX
729 if (unlikely(end_io_wq->metadata ==
730 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
731 wq = fs_info->endio_repair_workers;
732 func = btrfs_endio_repair_helper;
733 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
734 wq = fs_info->endio_raid56_workers;
735 func = btrfs_endio_raid56_helper;
736 } else if (end_io_wq->metadata) {
737 wq = fs_info->endio_meta_workers;
738 func = btrfs_endio_meta_helper;
739 } else {
740 wq = fs_info->endio_workers;
741 func = btrfs_endio_helper;
742 }
d20f7043 743 }
9e0af237
LB
744
745 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
746 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
747}
748
4e4cbee9 749blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 750 enum btrfs_wq_endio_type metadata)
0b86a832 751{
97eb6b69 752 struct btrfs_end_io_wq *end_io_wq;
8b110e39 753
97eb6b69 754 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 755 if (!end_io_wq)
4e4cbee9 756 return BLK_STS_RESOURCE;
ce9adaa5
CM
757
758 end_io_wq->private = bio->bi_private;
759 end_io_wq->end_io = bio->bi_end_io;
22c59948 760 end_io_wq->info = info;
4e4cbee9 761 end_io_wq->status = 0;
ce9adaa5 762 end_io_wq->bio = bio;
22c59948 763 end_io_wq->metadata = metadata;
ce9adaa5
CM
764
765 bio->bi_private = end_io_wq;
766 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
767 return 0;
768}
769
4a69a410
CM
770static void run_one_async_start(struct btrfs_work *work)
771{
4a69a410 772 struct async_submit_bio *async;
4e4cbee9 773 blk_status_t ret;
4a69a410
CM
774
775 async = container_of(work, struct async_submit_bio, work);
c6100a4b 776 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
777 async->bio_offset);
778 if (ret)
4e4cbee9 779 async->status = ret;
4a69a410
CM
780}
781
06ea01b1
DS
782/*
783 * In order to insert checksums into the metadata in large chunks, we wait
784 * until bio submission time. All the pages in the bio are checksummed and
785 * sums are attached onto the ordered extent record.
786 *
787 * At IO completion time the csums attached on the ordered extent record are
788 * inserted into the tree.
789 */
4a69a410 790static void run_one_async_done(struct btrfs_work *work)
8b712842 791{
8b712842 792 struct async_submit_bio *async;
06ea01b1
DS
793 struct inode *inode;
794 blk_status_t ret;
8b712842
CM
795
796 async = container_of(work, struct async_submit_bio, work);
06ea01b1 797 inode = async->private_data;
4854ddd0 798
bb7ab3b9 799 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
800 if (async->status) {
801 async->bio->bi_status = async->status;
4246a0b6 802 bio_endio(async->bio);
79787eaa
JM
803 return;
804 }
805
06ea01b1
DS
806 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
807 async->mirror_num, 1);
808 if (ret) {
809 async->bio->bi_status = ret;
810 bio_endio(async->bio);
811 }
4a69a410
CM
812}
813
814static void run_one_async_free(struct btrfs_work *work)
815{
816 struct async_submit_bio *async;
817
818 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
819 kfree(async);
820}
821
8c27cb35
LT
822blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
823 int mirror_num, unsigned long bio_flags,
824 u64 bio_offset, void *private_data,
e288c080 825 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
826{
827 struct async_submit_bio *async;
828
829 async = kmalloc(sizeof(*async), GFP_NOFS);
830 if (!async)
4e4cbee9 831 return BLK_STS_RESOURCE;
44b8bd7e 832
c6100a4b 833 async->private_data = private_data;
44b8bd7e
CM
834 async->bio = bio;
835 async->mirror_num = mirror_num;
4a69a410 836 async->submit_bio_start = submit_bio_start;
4a69a410 837
9e0af237 838 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 839 run_one_async_done, run_one_async_free);
4a69a410 840
eaf25d93 841 async->bio_offset = bio_offset;
8c8bee1d 842
4e4cbee9 843 async->status = 0;
79787eaa 844
67f055c7 845 if (op_is_sync(bio->bi_opf))
5cdc7ad3 846 btrfs_set_work_high_priority(&async->work);
d313d7a3 847
5cdc7ad3 848 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
849 return 0;
850}
851
4e4cbee9 852static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 853{
2c30c71b 854 struct bio_vec *bvec;
ce3ed71a 855 struct btrfs_root *root;
2b070cfe 856 int ret = 0;
6dc4f100 857 struct bvec_iter_all iter_all;
ce3ed71a 858
c09abff8 859 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 860 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 861 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 862 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
863 if (ret)
864 break;
ce3ed71a 865 }
2c30c71b 866
4e4cbee9 867 return errno_to_blk_status(ret);
ce3ed71a
CM
868}
869
d0ee3934 870static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 871 u64 bio_offset)
22c59948 872{
8b712842
CM
873 /*
874 * when we're called for a write, we're already in the async
5443be45 875 * submission context. Just jump into btrfs_map_bio
8b712842 876 */
79787eaa 877 return btree_csum_one_bio(bio);
4a69a410 878}
22c59948 879
9b4e675a
DS
880static int check_async_write(struct btrfs_fs_info *fs_info,
881 struct btrfs_inode *bi)
de0022b9 882{
6300463b
LB
883 if (atomic_read(&bi->sync_writers))
884 return 0;
9b4e675a 885 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 886 return 0;
de0022b9
JB
887 return 1;
888}
889
a56b1c7b 890static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
891 int mirror_num,
892 unsigned long bio_flags)
44b8bd7e 893{
0b246afa 894 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 895 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 896 blk_status_t ret;
cad321ad 897
37226b21 898 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
899 /*
900 * called for a read, do the setup so that checksum validation
901 * can happen in the async kernel threads
902 */
0b246afa
JM
903 ret = btrfs_bio_wq_end_io(fs_info, bio,
904 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 905 if (ret)
61891923 906 goto out_w_error;
2ff7e61e 907 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
908 } else if (!async) {
909 ret = btree_csum_one_bio(bio);
910 if (ret)
61891923 911 goto out_w_error;
2ff7e61e 912 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
913 } else {
914 /*
915 * kthread helpers are used to submit writes so that
916 * checksumming can happen in parallel across all CPUs
917 */
c6100a4b 918 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 919 0, inode, btree_submit_bio_start);
44b8bd7e 920 }
d313d7a3 921
4246a0b6
CH
922 if (ret)
923 goto out_w_error;
924 return 0;
925
61891923 926out_w_error:
4e4cbee9 927 bio->bi_status = ret;
4246a0b6 928 bio_endio(bio);
61891923 929 return ret;
44b8bd7e
CM
930}
931
3dd1462e 932#ifdef CONFIG_MIGRATION
784b4e29 933static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
934 struct page *newpage, struct page *page,
935 enum migrate_mode mode)
784b4e29
CM
936{
937 /*
938 * we can't safely write a btree page from here,
939 * we haven't done the locking hook
940 */
941 if (PageDirty(page))
942 return -EAGAIN;
943 /*
944 * Buffers may be managed in a filesystem specific way.
945 * We must have no buffers or drop them.
946 */
947 if (page_has_private(page) &&
948 !try_to_release_page(page, GFP_KERNEL))
949 return -EAGAIN;
a6bc32b8 950 return migrate_page(mapping, newpage, page, mode);
784b4e29 951}
3dd1462e 952#endif
784b4e29 953
0da5468f
CM
954
955static int btree_writepages(struct address_space *mapping,
956 struct writeback_control *wbc)
957{
e2d84521
MX
958 struct btrfs_fs_info *fs_info;
959 int ret;
960
d8d5f3e1 961 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
962
963 if (wbc->for_kupdate)
964 return 0;
965
e2d84521 966 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 967 /* this is a bit racy, but that's ok */
d814a491
EL
968 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
969 BTRFS_DIRTY_METADATA_THRESH,
970 fs_info->dirty_metadata_batch);
e2d84521 971 if (ret < 0)
793955bc 972 return 0;
793955bc 973 }
0b32f4bb 974 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
975}
976
b2950863 977static int btree_readpage(struct file *file, struct page *page)
5f39d397 978{
d1310b2e
CM
979 struct extent_io_tree *tree;
980 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 981 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 982}
22b0ebda 983
70dec807 984static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 985{
98509cfc 986 if (PageWriteback(page) || PageDirty(page))
d397712b 987 return 0;
0c4e538b 988
f7a52a40 989 return try_release_extent_buffer(page);
d98237b3
CM
990}
991
d47992f8
LC
992static void btree_invalidatepage(struct page *page, unsigned int offset,
993 unsigned int length)
d98237b3 994{
d1310b2e
CM
995 struct extent_io_tree *tree;
996 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
997 extent_invalidatepage(tree, page, offset);
998 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 999 if (PagePrivate(page)) {
efe120a0
FH
1000 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1001 "page private not zero on page %llu",
1002 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1003 ClearPagePrivate(page);
1004 set_page_private(page, 0);
09cbfeaf 1005 put_page(page);
9ad6b7bc 1006 }
d98237b3
CM
1007}
1008
0b32f4bb
JB
1009static int btree_set_page_dirty(struct page *page)
1010{
bb146eb2 1011#ifdef DEBUG
0b32f4bb
JB
1012 struct extent_buffer *eb;
1013
1014 BUG_ON(!PagePrivate(page));
1015 eb = (struct extent_buffer *)page->private;
1016 BUG_ON(!eb);
1017 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1018 BUG_ON(!atomic_read(&eb->refs));
1019 btrfs_assert_tree_locked(eb);
bb146eb2 1020#endif
0b32f4bb
JB
1021 return __set_page_dirty_nobuffers(page);
1022}
1023
7f09410b 1024static const struct address_space_operations btree_aops = {
d98237b3 1025 .readpage = btree_readpage,
0da5468f 1026 .writepages = btree_writepages,
5f39d397
CM
1027 .releasepage = btree_releasepage,
1028 .invalidatepage = btree_invalidatepage,
5a92bc88 1029#ifdef CONFIG_MIGRATION
784b4e29 1030 .migratepage = btree_migratepage,
5a92bc88 1031#endif
0b32f4bb 1032 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1033};
1034
2ff7e61e 1035void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1036{
5f39d397 1037 struct extent_buffer *buf = NULL;
537f38f0 1038 int ret;
090d1875 1039
2ff7e61e 1040 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1041 if (IS_ERR(buf))
6197d86e 1042 return;
537f38f0 1043
c2ccfbc6 1044 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1045 if (ret < 0)
1046 free_extent_buffer_stale(buf);
1047 else
1048 free_extent_buffer(buf);
090d1875
CM
1049}
1050
2ff7e61e
JM
1051struct extent_buffer *btrfs_find_create_tree_block(
1052 struct btrfs_fs_info *fs_info,
1053 u64 bytenr)
0999df54 1054{
0b246afa
JM
1055 if (btrfs_is_testing(fs_info))
1056 return alloc_test_extent_buffer(fs_info, bytenr);
1057 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1058}
1059
581c1760
QW
1060/*
1061 * Read tree block at logical address @bytenr and do variant basic but critical
1062 * verification.
1063 *
1064 * @parent_transid: expected transid of this tree block, skip check if 0
1065 * @level: expected level, mandatory check
1066 * @first_key: expected key in slot 0, skip check if NULL
1067 */
2ff7e61e 1068struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1069 u64 parent_transid, int level,
1070 struct btrfs_key *first_key)
0999df54
CM
1071{
1072 struct extent_buffer *buf = NULL;
0999df54
CM
1073 int ret;
1074
2ff7e61e 1075 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1076 if (IS_ERR(buf))
1077 return buf;
0999df54 1078
5ab12d1f 1079 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1080 level, first_key);
0f0fe8f7 1081 if (ret) {
537f38f0 1082 free_extent_buffer_stale(buf);
64c043de 1083 return ERR_PTR(ret);
0f0fe8f7 1084 }
5f39d397 1085 return buf;
ce9adaa5 1086
eb60ceac
CM
1087}
1088
6a884d7d 1089void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1090{
6a884d7d 1091 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1092 if (btrfs_header_generation(buf) ==
e2d84521 1093 fs_info->running_transaction->transid) {
b9447ef8 1094 btrfs_assert_tree_locked(buf);
b4ce94de 1095
b9473439 1096 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1097 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1098 -buf->len,
1099 fs_info->dirty_metadata_batch);
ed7b63eb 1100 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1101 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1102 clear_extent_buffer_dirty(buf);
1103 }
925baedd 1104 }
5f39d397
CM
1105}
1106
8257b2dc
MX
1107static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1108{
1109 struct btrfs_subvolume_writers *writers;
1110 int ret;
1111
1112 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1113 if (!writers)
1114 return ERR_PTR(-ENOMEM);
1115
8a5a916d 1116 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1117 if (ret < 0) {
1118 kfree(writers);
1119 return ERR_PTR(ret);
1120 }
1121
1122 init_waitqueue_head(&writers->wait);
1123 return writers;
1124}
1125
1126static void
1127btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1128{
1129 percpu_counter_destroy(&writers->counter);
1130 kfree(writers);
1131}
1132
da17066c 1133static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1134 u64 objectid)
d97e63b6 1135{
7c0260ee 1136 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1137 root->node = NULL;
a28ec197 1138 root->commit_root = NULL;
27cdeb70 1139 root->state = 0;
d68fc57b 1140 root->orphan_cleanup_state = 0;
0b86a832 1141
0f7d52f4 1142 root->last_trans = 0;
13a8a7c8 1143 root->highest_objectid = 0;
eb73c1b7 1144 root->nr_delalloc_inodes = 0;
199c2a9c 1145 root->nr_ordered_extents = 0;
6bef4d31 1146 root->inode_tree = RB_ROOT;
16cdcec7 1147 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1148 root->block_rsv = NULL;
0b86a832
CM
1149
1150 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1151 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1152 INIT_LIST_HEAD(&root->delalloc_inodes);
1153 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1154 INIT_LIST_HEAD(&root->ordered_extents);
1155 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1156 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1157 INIT_LIST_HEAD(&root->logged_list[0]);
1158 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1159 spin_lock_init(&root->inode_lock);
eb73c1b7 1160 spin_lock_init(&root->delalloc_lock);
199c2a9c 1161 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1162 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1163 spin_lock_init(&root->log_extents_lock[0]);
1164 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1165 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1166 mutex_init(&root->objectid_mutex);
e02119d5 1167 mutex_init(&root->log_mutex);
31f3d255 1168 mutex_init(&root->ordered_extent_mutex);
573bfb72 1169 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1170 init_waitqueue_head(&root->log_writer_wait);
1171 init_waitqueue_head(&root->log_commit_wait[0]);
1172 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1173 INIT_LIST_HEAD(&root->log_ctxs[0]);
1174 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1175 atomic_set(&root->log_commit[0], 0);
1176 atomic_set(&root->log_commit[1], 0);
1177 atomic_set(&root->log_writers, 0);
2ecb7923 1178 atomic_set(&root->log_batch, 0);
0700cea7 1179 refcount_set(&root->refs, 1);
ea14b57f 1180 atomic_set(&root->will_be_snapshotted, 0);
8ecebf4d 1181 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1182 atomic_set(&root->nr_swapfiles, 0);
7237f183 1183 root->log_transid = 0;
d1433deb 1184 root->log_transid_committed = -1;
257c62e1 1185 root->last_log_commit = 0;
7c0260ee 1186 if (!dummy)
43eb5f29
QW
1187 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1188 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
017e5369 1189
3768f368
CM
1190 memset(&root->root_key, 0, sizeof(root->root_key));
1191 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1192 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1193 if (!dummy)
06ea65a3
JB
1194 root->defrag_trans_start = fs_info->generation;
1195 else
1196 root->defrag_trans_start = 0;
4d775673 1197 root->root_key.objectid = objectid;
0ee5dc67 1198 root->anon_dev = 0;
8ea05e3a 1199
5f3ab90a 1200 spin_lock_init(&root->root_item_lock);
370a11b8 1201 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
3768f368
CM
1202}
1203
74e4d827
DS
1204static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1205 gfp_t flags)
6f07e42e 1206{
74e4d827 1207 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1208 if (root)
1209 root->fs_info = fs_info;
1210 return root;
1211}
1212
06ea65a3
JB
1213#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1214/* Should only be used by the testing infrastructure */
da17066c 1215struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1216{
1217 struct btrfs_root *root;
1218
7c0260ee
JM
1219 if (!fs_info)
1220 return ERR_PTR(-EINVAL);
1221
1222 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1223 if (!root)
1224 return ERR_PTR(-ENOMEM);
da17066c 1225
b9ef22de 1226 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1227 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1228 root->alloc_bytenr = 0;
06ea65a3
JB
1229
1230 return root;
1231}
1232#endif
1233
20897f5c 1234struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1235 u64 objectid)
1236{
9b7a2440 1237 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1238 struct extent_buffer *leaf;
1239 struct btrfs_root *tree_root = fs_info->tree_root;
1240 struct btrfs_root *root;
1241 struct btrfs_key key;
b89f6d1f 1242 unsigned int nofs_flag;
20897f5c 1243 int ret = 0;
33d85fda 1244 uuid_le uuid = NULL_UUID_LE;
20897f5c 1245
b89f6d1f
FM
1246 /*
1247 * We're holding a transaction handle, so use a NOFS memory allocation
1248 * context to avoid deadlock if reclaim happens.
1249 */
1250 nofs_flag = memalloc_nofs_save();
74e4d827 1251 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
b89f6d1f 1252 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1253 if (!root)
1254 return ERR_PTR(-ENOMEM);
1255
da17066c 1256 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1257 root->root_key.objectid = objectid;
1258 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1259 root->root_key.offset = 0;
1260
4d75f8a9 1261 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1262 if (IS_ERR(leaf)) {
1263 ret = PTR_ERR(leaf);
1dd05682 1264 leaf = NULL;
20897f5c
AJ
1265 goto fail;
1266 }
1267
20897f5c 1268 root->node = leaf;
20897f5c
AJ
1269 btrfs_mark_buffer_dirty(leaf);
1270
1271 root->commit_root = btrfs_root_node(root);
27cdeb70 1272 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1273
1274 root->root_item.flags = 0;
1275 root->root_item.byte_limit = 0;
1276 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1277 btrfs_set_root_generation(&root->root_item, trans->transid);
1278 btrfs_set_root_level(&root->root_item, 0);
1279 btrfs_set_root_refs(&root->root_item, 1);
1280 btrfs_set_root_used(&root->root_item, leaf->len);
1281 btrfs_set_root_last_snapshot(&root->root_item, 0);
1282 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda
QW
1283 if (is_fstree(objectid))
1284 uuid_le_gen(&uuid);
6463fe58 1285 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1286 root->root_item.drop_level = 0;
1287
1288 key.objectid = objectid;
1289 key.type = BTRFS_ROOT_ITEM_KEY;
1290 key.offset = 0;
1291 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292 if (ret)
1293 goto fail;
1294
1295 btrfs_tree_unlock(leaf);
1296
1dd05682
TI
1297 return root;
1298
20897f5c 1299fail:
1dd05682
TI
1300 if (leaf) {
1301 btrfs_tree_unlock(leaf);
59885b39 1302 free_extent_buffer(root->commit_root);
1dd05682
TI
1303 free_extent_buffer(leaf);
1304 }
1305 kfree(root);
20897f5c 1306
1dd05682 1307 return ERR_PTR(ret);
20897f5c
AJ
1308}
1309
7237f183
YZ
1310static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1311 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1312{
1313 struct btrfs_root *root;
7237f183 1314 struct extent_buffer *leaf;
e02119d5 1315
74e4d827 1316 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1317 if (!root)
7237f183 1318 return ERR_PTR(-ENOMEM);
e02119d5 1319
da17066c 1320 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1321
1322 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1323 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1324 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1325
7237f183 1326 /*
27cdeb70
MX
1327 * DON'T set REF_COWS for log trees
1328 *
7237f183
YZ
1329 * log trees do not get reference counted because they go away
1330 * before a real commit is actually done. They do store pointers
1331 * to file data extents, and those reference counts still get
1332 * updated (along with back refs to the log tree).
1333 */
e02119d5 1334
4d75f8a9
DS
1335 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1336 NULL, 0, 0, 0);
7237f183
YZ
1337 if (IS_ERR(leaf)) {
1338 kfree(root);
1339 return ERR_CAST(leaf);
1340 }
e02119d5 1341
7237f183 1342 root->node = leaf;
e02119d5 1343
e02119d5
CM
1344 btrfs_mark_buffer_dirty(root->node);
1345 btrfs_tree_unlock(root->node);
7237f183
YZ
1346 return root;
1347}
1348
1349int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1350 struct btrfs_fs_info *fs_info)
1351{
1352 struct btrfs_root *log_root;
1353
1354 log_root = alloc_log_tree(trans, fs_info);
1355 if (IS_ERR(log_root))
1356 return PTR_ERR(log_root);
1357 WARN_ON(fs_info->log_root_tree);
1358 fs_info->log_root_tree = log_root;
1359 return 0;
1360}
1361
1362int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root)
1364{
0b246afa 1365 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1366 struct btrfs_root *log_root;
1367 struct btrfs_inode_item *inode_item;
1368
0b246afa 1369 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1370 if (IS_ERR(log_root))
1371 return PTR_ERR(log_root);
1372
1373 log_root->last_trans = trans->transid;
1374 log_root->root_key.offset = root->root_key.objectid;
1375
1376 inode_item = &log_root->root_item.inode;
3cae210f
QW
1377 btrfs_set_stack_inode_generation(inode_item, 1);
1378 btrfs_set_stack_inode_size(inode_item, 3);
1379 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1380 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1381 fs_info->nodesize);
3cae210f 1382 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1383
5d4f98a2 1384 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1385
1386 WARN_ON(root->log_root);
1387 root->log_root = log_root;
1388 root->log_transid = 0;
d1433deb 1389 root->log_transid_committed = -1;
257c62e1 1390 root->last_log_commit = 0;
e02119d5
CM
1391 return 0;
1392}
1393
35a3621b
SB
1394static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1395 struct btrfs_key *key)
e02119d5
CM
1396{
1397 struct btrfs_root *root;
1398 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1399 struct btrfs_path *path;
84234f3a 1400 u64 generation;
cb517eab 1401 int ret;
581c1760 1402 int level;
0f7d52f4 1403
cb517eab
MX
1404 path = btrfs_alloc_path();
1405 if (!path)
0f7d52f4 1406 return ERR_PTR(-ENOMEM);
cb517eab 1407
74e4d827 1408 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1409 if (!root) {
1410 ret = -ENOMEM;
1411 goto alloc_fail;
0f7d52f4
CM
1412 }
1413
da17066c 1414 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1415
cb517eab
MX
1416 ret = btrfs_find_root(tree_root, key, path,
1417 &root->root_item, &root->root_key);
0f7d52f4 1418 if (ret) {
13a8a7c8
YZ
1419 if (ret > 0)
1420 ret = -ENOENT;
cb517eab 1421 goto find_fail;
0f7d52f4 1422 }
13a8a7c8 1423
84234f3a 1424 generation = btrfs_root_generation(&root->root_item);
581c1760 1425 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1426 root->node = read_tree_block(fs_info,
1427 btrfs_root_bytenr(&root->root_item),
581c1760 1428 generation, level, NULL);
64c043de
LB
1429 if (IS_ERR(root->node)) {
1430 ret = PTR_ERR(root->node);
cb517eab
MX
1431 goto find_fail;
1432 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1433 ret = -EIO;
64c043de
LB
1434 free_extent_buffer(root->node);
1435 goto find_fail;
416bc658 1436 }
5d4f98a2 1437 root->commit_root = btrfs_root_node(root);
13a8a7c8 1438out:
cb517eab
MX
1439 btrfs_free_path(path);
1440 return root;
1441
cb517eab
MX
1442find_fail:
1443 kfree(root);
1444alloc_fail:
1445 root = ERR_PTR(ret);
1446 goto out;
1447}
1448
1449struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1450 struct btrfs_key *location)
1451{
1452 struct btrfs_root *root;
1453
1454 root = btrfs_read_tree_root(tree_root, location);
1455 if (IS_ERR(root))
1456 return root;
1457
1458 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1459 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1460 btrfs_check_and_init_root_item(&root->root_item);
1461 }
13a8a7c8 1462
5eda7b5e
CM
1463 return root;
1464}
1465
cb517eab
MX
1466int btrfs_init_fs_root(struct btrfs_root *root)
1467{
1468 int ret;
8257b2dc 1469 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1470
1471 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1472 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1473 GFP_NOFS);
1474 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1475 ret = -ENOMEM;
1476 goto fail;
1477 }
1478
8257b2dc
MX
1479 writers = btrfs_alloc_subvolume_writers();
1480 if (IS_ERR(writers)) {
1481 ret = PTR_ERR(writers);
1482 goto fail;
1483 }
1484 root->subv_writers = writers;
1485
cb517eab 1486 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1487 spin_lock_init(&root->ino_cache_lock);
1488 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1489
1490 ret = get_anon_bdev(&root->anon_dev);
1491 if (ret)
876d2cf1 1492 goto fail;
f32e48e9
CR
1493
1494 mutex_lock(&root->objectid_mutex);
1495 ret = btrfs_find_highest_objectid(root,
1496 &root->highest_objectid);
1497 if (ret) {
1498 mutex_unlock(&root->objectid_mutex);
876d2cf1 1499 goto fail;
f32e48e9
CR
1500 }
1501
1502 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1503
1504 mutex_unlock(&root->objectid_mutex);
1505
cb517eab
MX
1506 return 0;
1507fail:
84db5ccf 1508 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1509 return ret;
1510}
1511
35bbb97f
JM
1512struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1513 u64 root_id)
cb517eab
MX
1514{
1515 struct btrfs_root *root;
1516
1517 spin_lock(&fs_info->fs_roots_radix_lock);
1518 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1519 (unsigned long)root_id);
1520 spin_unlock(&fs_info->fs_roots_radix_lock);
1521 return root;
1522}
1523
1524int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1525 struct btrfs_root *root)
1526{
1527 int ret;
1528
e1860a77 1529 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1530 if (ret)
1531 return ret;
1532
1533 spin_lock(&fs_info->fs_roots_radix_lock);
1534 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1535 (unsigned long)root->root_key.objectid,
1536 root);
1537 if (ret == 0)
27cdeb70 1538 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1539 spin_unlock(&fs_info->fs_roots_radix_lock);
1540 radix_tree_preload_end();
1541
1542 return ret;
1543}
1544
c00869f1
MX
1545struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1546 struct btrfs_key *location,
1547 bool check_ref)
5eda7b5e
CM
1548{
1549 struct btrfs_root *root;
381cf658 1550 struct btrfs_path *path;
1d4c08e0 1551 struct btrfs_key key;
5eda7b5e
CM
1552 int ret;
1553
edbd8d4e
CM
1554 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1555 return fs_info->tree_root;
1556 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1557 return fs_info->extent_root;
8f18cf13
CM
1558 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1559 return fs_info->chunk_root;
1560 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1561 return fs_info->dev_root;
0403e47e
YZ
1562 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1563 return fs_info->csum_root;
bcef60f2
AJ
1564 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1565 return fs_info->quota_root ? fs_info->quota_root :
1566 ERR_PTR(-ENOENT);
f7a81ea4
SB
1567 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1568 return fs_info->uuid_root ? fs_info->uuid_root :
1569 ERR_PTR(-ENOENT);
70f6d82e
OS
1570 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1571 return fs_info->free_space_root ? fs_info->free_space_root :
1572 ERR_PTR(-ENOENT);
4df27c4d 1573again:
cb517eab 1574 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1575 if (root) {
c00869f1 1576 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1577 return ERR_PTR(-ENOENT);
5eda7b5e 1578 return root;
48475471 1579 }
5eda7b5e 1580
cb517eab 1581 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1582 if (IS_ERR(root))
1583 return root;
3394e160 1584
c00869f1 1585 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1586 ret = -ENOENT;
581bb050 1587 goto fail;
35a30d7c 1588 }
581bb050 1589
cb517eab 1590 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1591 if (ret)
1592 goto fail;
3394e160 1593
381cf658
DS
1594 path = btrfs_alloc_path();
1595 if (!path) {
1596 ret = -ENOMEM;
1597 goto fail;
1598 }
1d4c08e0
DS
1599 key.objectid = BTRFS_ORPHAN_OBJECTID;
1600 key.type = BTRFS_ORPHAN_ITEM_KEY;
1601 key.offset = location->objectid;
1602
1603 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1604 btrfs_free_path(path);
d68fc57b
YZ
1605 if (ret < 0)
1606 goto fail;
1607 if (ret == 0)
27cdeb70 1608 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1609
cb517eab 1610 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1611 if (ret) {
4df27c4d 1612 if (ret == -EEXIST) {
84db5ccf 1613 btrfs_free_fs_root(root);
4df27c4d
YZ
1614 goto again;
1615 }
1616 goto fail;
0f7d52f4 1617 }
edbd8d4e 1618 return root;
4df27c4d 1619fail:
84db5ccf 1620 btrfs_free_fs_root(root);
4df27c4d 1621 return ERR_PTR(ret);
edbd8d4e
CM
1622}
1623
04160088
CM
1624static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1625{
1626 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627 int ret = 0;
04160088
CM
1628 struct btrfs_device *device;
1629 struct backing_dev_info *bdi;
b7967db7 1630
1f78160c
XG
1631 rcu_read_lock();
1632 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1633 if (!device->bdev)
1634 continue;
efa7c9f9 1635 bdi = device->bdev->bd_bdi;
ff9ea323 1636 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1637 ret = 1;
1638 break;
1639 }
1640 }
1f78160c 1641 rcu_read_unlock();
04160088
CM
1642 return ret;
1643}
1644
8b712842
CM
1645/*
1646 * called by the kthread helper functions to finally call the bio end_io
1647 * functions. This is where read checksum verification actually happens
1648 */
1649static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1650{
ce9adaa5 1651 struct bio *bio;
97eb6b69 1652 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1653
97eb6b69 1654 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1655 bio = end_io_wq->bio;
ce9adaa5 1656
4e4cbee9 1657 bio->bi_status = end_io_wq->status;
8b712842
CM
1658 bio->bi_private = end_io_wq->private;
1659 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1660 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1661 bio_endio(bio);
44b8bd7e
CM
1662}
1663
a74a4b97
CM
1664static int cleaner_kthread(void *arg)
1665{
1666 struct btrfs_root *root = arg;
0b246afa 1667 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1668 int again;
a74a4b97 1669
d6fd0ae2 1670 while (1) {
d0278245 1671 again = 0;
a74a4b97 1672
fd340d0f
JB
1673 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1674
d0278245 1675 /* Make the cleaner go to sleep early. */
2ff7e61e 1676 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1677 goto sleep;
1678
90c711ab
ZB
1679 /*
1680 * Do not do anything if we might cause open_ctree() to block
1681 * before we have finished mounting the filesystem.
1682 */
0b246afa 1683 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1684 goto sleep;
1685
0b246afa 1686 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1687 goto sleep;
1688
dc7f370c
MX
1689 /*
1690 * Avoid the problem that we change the status of the fs
1691 * during the above check and trylock.
1692 */
2ff7e61e 1693 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1694 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1695 goto sleep;
76dda93c 1696 }
a74a4b97 1697
2ff7e61e 1698 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1699
d0278245 1700 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1701 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1702
1703 /*
05323cd1
MX
1704 * The defragger has dealt with the R/O remount and umount,
1705 * needn't do anything special here.
d0278245 1706 */
0b246afa 1707 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1708
1709 /*
1710 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711 * with relocation (btrfs_relocate_chunk) and relocation
1712 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715 * unused block groups.
1716 */
0b246afa 1717 btrfs_delete_unused_bgs(fs_info);
d0278245 1718sleep:
fd340d0f 1719 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1720 if (kthread_should_park())
1721 kthread_parkme();
1722 if (kthread_should_stop())
1723 return 0;
838fe188 1724 if (!again) {
a74a4b97 1725 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1726 schedule();
a74a4b97
CM
1727 __set_current_state(TASK_RUNNING);
1728 }
da288d28 1729 }
a74a4b97
CM
1730}
1731
1732static int transaction_kthread(void *arg)
1733{
1734 struct btrfs_root *root = arg;
0b246afa 1735 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1736 struct btrfs_trans_handle *trans;
1737 struct btrfs_transaction *cur;
8929ecfa 1738 u64 transid;
a944442c 1739 time64_t now;
a74a4b97 1740 unsigned long delay;
914b2007 1741 bool cannot_commit;
a74a4b97
CM
1742
1743 do {
914b2007 1744 cannot_commit = false;
0b246afa
JM
1745 delay = HZ * fs_info->commit_interval;
1746 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1747
0b246afa
JM
1748 spin_lock(&fs_info->trans_lock);
1749 cur = fs_info->running_transaction;
a74a4b97 1750 if (!cur) {
0b246afa 1751 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1752 goto sleep;
1753 }
31153d81 1754
afd48513 1755 now = ktime_get_seconds();
4a9d8bde 1756 if (cur->state < TRANS_STATE_BLOCKED &&
a514d638 1757 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1758 (now < cur->start_time ||
0b246afa
JM
1759 now - cur->start_time < fs_info->commit_interval)) {
1760 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1761 delay = HZ * 5;
1762 goto sleep;
1763 }
8929ecfa 1764 transid = cur->transid;
0b246afa 1765 spin_unlock(&fs_info->trans_lock);
56bec294 1766
79787eaa 1767 /* If the file system is aborted, this will always fail. */
354aa0fb 1768 trans = btrfs_attach_transaction(root);
914b2007 1769 if (IS_ERR(trans)) {
354aa0fb
MX
1770 if (PTR_ERR(trans) != -ENOENT)
1771 cannot_commit = true;
79787eaa 1772 goto sleep;
914b2007 1773 }
8929ecfa 1774 if (transid == trans->transid) {
3a45bb20 1775 btrfs_commit_transaction(trans);
8929ecfa 1776 } else {
3a45bb20 1777 btrfs_end_transaction(trans);
8929ecfa 1778 }
a74a4b97 1779sleep:
0b246afa
JM
1780 wake_up_process(fs_info->cleaner_kthread);
1781 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1782
4e121c06 1783 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1784 &fs_info->fs_state)))
2ff7e61e 1785 btrfs_cleanup_transaction(fs_info);
ce63f891 1786 if (!kthread_should_stop() &&
0b246afa 1787 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1788 cannot_commit))
bc5511d0 1789 schedule_timeout_interruptible(delay);
a74a4b97
CM
1790 } while (!kthread_should_stop());
1791 return 0;
1792}
1793
af31f5e5
CM
1794/*
1795 * this will find the highest generation in the array of
1796 * root backups. The index of the highest array is returned,
1797 * or -1 if we can't find anything.
1798 *
1799 * We check to make sure the array is valid by comparing the
1800 * generation of the latest root in the array with the generation
1801 * in the super block. If they don't match we pitch it.
1802 */
1803static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804{
1805 u64 cur;
1806 int newest_index = -1;
1807 struct btrfs_root_backup *root_backup;
1808 int i;
1809
1810 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811 root_backup = info->super_copy->super_roots + i;
1812 cur = btrfs_backup_tree_root_gen(root_backup);
1813 if (cur == newest_gen)
1814 newest_index = i;
1815 }
1816
1817 /* check to see if we actually wrapped around */
1818 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819 root_backup = info->super_copy->super_roots;
1820 cur = btrfs_backup_tree_root_gen(root_backup);
1821 if (cur == newest_gen)
1822 newest_index = 0;
1823 }
1824 return newest_index;
1825}
1826
1827
1828/*
1829 * find the oldest backup so we know where to store new entries
1830 * in the backup array. This will set the backup_root_index
1831 * field in the fs_info struct
1832 */
1833static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834 u64 newest_gen)
1835{
1836 int newest_index = -1;
1837
1838 newest_index = find_newest_super_backup(info, newest_gen);
1839 /* if there was garbage in there, just move along */
1840 if (newest_index == -1) {
1841 info->backup_root_index = 0;
1842 } else {
1843 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844 }
1845}
1846
1847/*
1848 * copy all the root pointers into the super backup array.
1849 * this will bump the backup pointer by one when it is
1850 * done
1851 */
1852static void backup_super_roots(struct btrfs_fs_info *info)
1853{
1854 int next_backup;
1855 struct btrfs_root_backup *root_backup;
1856 int last_backup;
1857
1858 next_backup = info->backup_root_index;
1859 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860 BTRFS_NUM_BACKUP_ROOTS;
1861
1862 /*
1863 * just overwrite the last backup if we're at the same generation
1864 * this happens only at umount
1865 */
1866 root_backup = info->super_for_commit->super_roots + last_backup;
1867 if (btrfs_backup_tree_root_gen(root_backup) ==
1868 btrfs_header_generation(info->tree_root->node))
1869 next_backup = last_backup;
1870
1871 root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873 /*
1874 * make sure all of our padding and empty slots get zero filled
1875 * regardless of which ones we use today
1876 */
1877 memset(root_backup, 0, sizeof(*root_backup));
1878
1879 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882 btrfs_set_backup_tree_root_gen(root_backup,
1883 btrfs_header_generation(info->tree_root->node));
1884
1885 btrfs_set_backup_tree_root_level(root_backup,
1886 btrfs_header_level(info->tree_root->node));
1887
1888 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889 btrfs_set_backup_chunk_root_gen(root_backup,
1890 btrfs_header_generation(info->chunk_root->node));
1891 btrfs_set_backup_chunk_root_level(root_backup,
1892 btrfs_header_level(info->chunk_root->node));
1893
1894 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895 btrfs_set_backup_extent_root_gen(root_backup,
1896 btrfs_header_generation(info->extent_root->node));
1897 btrfs_set_backup_extent_root_level(root_backup,
1898 btrfs_header_level(info->extent_root->node));
1899
7c7e82a7
CM
1900 /*
1901 * we might commit during log recovery, which happens before we set
1902 * the fs_root. Make sure it is valid before we fill it in.
1903 */
1904 if (info->fs_root && info->fs_root->node) {
1905 btrfs_set_backup_fs_root(root_backup,
1906 info->fs_root->node->start);
1907 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1908 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1909 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1910 btrfs_header_level(info->fs_root->node));
7c7e82a7 1911 }
af31f5e5
CM
1912
1913 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914 btrfs_set_backup_dev_root_gen(root_backup,
1915 btrfs_header_generation(info->dev_root->node));
1916 btrfs_set_backup_dev_root_level(root_backup,
1917 btrfs_header_level(info->dev_root->node));
1918
1919 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920 btrfs_set_backup_csum_root_gen(root_backup,
1921 btrfs_header_generation(info->csum_root->node));
1922 btrfs_set_backup_csum_root_level(root_backup,
1923 btrfs_header_level(info->csum_root->node));
1924
1925 btrfs_set_backup_total_bytes(root_backup,
1926 btrfs_super_total_bytes(info->super_copy));
1927 btrfs_set_backup_bytes_used(root_backup,
1928 btrfs_super_bytes_used(info->super_copy));
1929 btrfs_set_backup_num_devices(root_backup,
1930 btrfs_super_num_devices(info->super_copy));
1931
1932 /*
1933 * if we don't copy this out to the super_copy, it won't get remembered
1934 * for the next commit
1935 */
1936 memcpy(&info->super_copy->super_roots,
1937 &info->super_for_commit->super_roots,
1938 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939}
1940
1941/*
1942 * this copies info out of the root backup array and back into
1943 * the in-memory super block. It is meant to help iterate through
1944 * the array, so you send it the number of backups you've already
1945 * tried and the last backup index you used.
1946 *
1947 * this returns -1 when it has tried all the backups
1948 */
1949static noinline int next_root_backup(struct btrfs_fs_info *info,
1950 struct btrfs_super_block *super,
1951 int *num_backups_tried, int *backup_index)
1952{
1953 struct btrfs_root_backup *root_backup;
1954 int newest = *backup_index;
1955
1956 if (*num_backups_tried == 0) {
1957 u64 gen = btrfs_super_generation(super);
1958
1959 newest = find_newest_super_backup(info, gen);
1960 if (newest == -1)
1961 return -1;
1962
1963 *backup_index = newest;
1964 *num_backups_tried = 1;
1965 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966 /* we've tried all the backups, all done */
1967 return -1;
1968 } else {
1969 /* jump to the next oldest backup */
1970 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971 BTRFS_NUM_BACKUP_ROOTS;
1972 *backup_index = newest;
1973 *num_backups_tried += 1;
1974 }
1975 root_backup = super->super_roots + newest;
1976
1977 btrfs_set_super_generation(super,
1978 btrfs_backup_tree_root_gen(root_backup));
1979 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980 btrfs_set_super_root_level(super,
1981 btrfs_backup_tree_root_level(root_backup));
1982 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984 /*
1985 * fixme: the total bytes and num_devices need to match or we should
1986 * need a fsck
1987 */
1988 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990 return 0;
1991}
1992
7abadb64
LB
1993/* helper to cleanup workers */
1994static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995{
dc6e3209 1996 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1997 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1998 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1999 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2000 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2001 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2002 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2003 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2004 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2005 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2006 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2007 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2008 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2009 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2010 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2011 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2012 /*
2013 * Now that all other work queues are destroyed, we can safely destroy
2014 * the queues used for metadata I/O, since tasks from those other work
2015 * queues can do metadata I/O operations.
2016 */
2017 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2018 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2019}
2020
2e9f5954
R
2021static void free_root_extent_buffers(struct btrfs_root *root)
2022{
2023 if (root) {
2024 free_extent_buffer(root->node);
2025 free_extent_buffer(root->commit_root);
2026 root->node = NULL;
2027 root->commit_root = NULL;
2028 }
2029}
2030
af31f5e5
CM
2031/* helper to cleanup tree roots */
2032static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2033{
2e9f5954 2034 free_root_extent_buffers(info->tree_root);
655b09fe 2035
2e9f5954
R
2036 free_root_extent_buffers(info->dev_root);
2037 free_root_extent_buffers(info->extent_root);
2038 free_root_extent_buffers(info->csum_root);
2039 free_root_extent_buffers(info->quota_root);
2040 free_root_extent_buffers(info->uuid_root);
2041 if (chunk_root)
2042 free_root_extent_buffers(info->chunk_root);
70f6d82e 2043 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2044}
2045
faa2dbf0 2046void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2047{
2048 int ret;
2049 struct btrfs_root *gang[8];
2050 int i;
2051
2052 while (!list_empty(&fs_info->dead_roots)) {
2053 gang[0] = list_entry(fs_info->dead_roots.next,
2054 struct btrfs_root, root_list);
2055 list_del(&gang[0]->root_list);
2056
27cdeb70 2057 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2058 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2059 } else {
2060 free_extent_buffer(gang[0]->node);
2061 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2062 btrfs_put_fs_root(gang[0]);
171f6537
JB
2063 }
2064 }
2065
2066 while (1) {
2067 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2068 (void **)gang, 0,
2069 ARRAY_SIZE(gang));
2070 if (!ret)
2071 break;
2072 for (i = 0; i < ret; i++)
cb517eab 2073 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2074 }
1a4319cc
LB
2075
2076 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2077 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2078 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2079 }
171f6537 2080}
af31f5e5 2081
638aa7ed
ES
2082static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2083{
2084 mutex_init(&fs_info->scrub_lock);
2085 atomic_set(&fs_info->scrubs_running, 0);
2086 atomic_set(&fs_info->scrub_pause_req, 0);
2087 atomic_set(&fs_info->scrubs_paused, 0);
2088 atomic_set(&fs_info->scrub_cancel_req, 0);
2089 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2090 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2091}
2092
779a65a4
ES
2093static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2094{
2095 spin_lock_init(&fs_info->balance_lock);
2096 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2097 atomic_set(&fs_info->balance_pause_req, 0);
2098 atomic_set(&fs_info->balance_cancel_req, 0);
2099 fs_info->balance_ctl = NULL;
2100 init_waitqueue_head(&fs_info->balance_wait_q);
2101}
2102
6bccf3ab 2103static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2104{
2ff7e61e
JM
2105 struct inode *inode = fs_info->btree_inode;
2106
2107 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2108 set_nlink(inode, 1);
f37938e0
ES
2109 /*
2110 * we set the i_size on the btree inode to the max possible int.
2111 * the real end of the address space is determined by all of
2112 * the devices in the system
2113 */
2ff7e61e
JM
2114 inode->i_size = OFFSET_MAX;
2115 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2116
2ff7e61e 2117 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2118 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2119 IO_TREE_INODE_IO, inode);
7b439738 2120 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2121 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2122
2ff7e61e 2123 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2124
2ff7e61e
JM
2125 BTRFS_I(inode)->root = fs_info->tree_root;
2126 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2127 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2128 btrfs_insert_inode_hash(inode);
f37938e0
ES
2129}
2130
ad618368
ES
2131static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2132{
ad618368 2133 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2134 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2135 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2136}
2137
f9e92e40
ES
2138static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2139{
2140 spin_lock_init(&fs_info->qgroup_lock);
2141 mutex_init(&fs_info->qgroup_ioctl_lock);
2142 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2143 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2144 fs_info->qgroup_seq = 1;
f9e92e40 2145 fs_info->qgroup_ulist = NULL;
d2c609b8 2146 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2147 mutex_init(&fs_info->qgroup_rescan_lock);
2148}
2149
2a458198
ES
2150static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2151 struct btrfs_fs_devices *fs_devices)
2152{
f7b885be 2153 u32 max_active = fs_info->thread_pool_size;
6f011058 2154 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2155
2156 fs_info->workers =
cb001095
JM
2157 btrfs_alloc_workqueue(fs_info, "worker",
2158 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2159
2160 fs_info->delalloc_workers =
cb001095
JM
2161 btrfs_alloc_workqueue(fs_info, "delalloc",
2162 flags, max_active, 2);
2a458198
ES
2163
2164 fs_info->flush_workers =
cb001095
JM
2165 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2166 flags, max_active, 0);
2a458198
ES
2167
2168 fs_info->caching_workers =
cb001095 2169 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2170
2171 /*
2172 * a higher idle thresh on the submit workers makes it much more
2173 * likely that bios will be send down in a sane order to the
2174 * devices
2175 */
2176 fs_info->submit_workers =
cb001095 2177 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2178 min_t(u64, fs_devices->num_devices,
2179 max_active), 64);
2180
2181 fs_info->fixup_workers =
cb001095 2182 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2183
2184 /*
2185 * endios are largely parallel and should have a very
2186 * low idle thresh
2187 */
2188 fs_info->endio_workers =
cb001095 2189 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2190 fs_info->endio_meta_workers =
cb001095
JM
2191 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2192 max_active, 4);
2a458198 2193 fs_info->endio_meta_write_workers =
cb001095
JM
2194 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2195 max_active, 2);
2a458198 2196 fs_info->endio_raid56_workers =
cb001095
JM
2197 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2198 max_active, 4);
2a458198 2199 fs_info->endio_repair_workers =
cb001095 2200 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2201 fs_info->rmw_workers =
cb001095 2202 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2203 fs_info->endio_write_workers =
cb001095
JM
2204 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2205 max_active, 2);
2a458198 2206 fs_info->endio_freespace_worker =
cb001095
JM
2207 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2208 max_active, 0);
2a458198 2209 fs_info->delayed_workers =
cb001095
JM
2210 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2211 max_active, 0);
2a458198 2212 fs_info->readahead_workers =
cb001095
JM
2213 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2214 max_active, 2);
2a458198 2215 fs_info->qgroup_rescan_workers =
cb001095 2216 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2217 fs_info->extent_workers =
cb001095 2218 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2219 min_t(u64, fs_devices->num_devices,
2220 max_active), 8);
2221
2222 if (!(fs_info->workers && fs_info->delalloc_workers &&
2223 fs_info->submit_workers && fs_info->flush_workers &&
2224 fs_info->endio_workers && fs_info->endio_meta_workers &&
2225 fs_info->endio_meta_write_workers &&
2226 fs_info->endio_repair_workers &&
2227 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2228 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2229 fs_info->caching_workers && fs_info->readahead_workers &&
2230 fs_info->fixup_workers && fs_info->delayed_workers &&
2231 fs_info->extent_workers &&
2232 fs_info->qgroup_rescan_workers)) {
2233 return -ENOMEM;
2234 }
2235
2236 return 0;
2237}
2238
6d97c6e3
JT
2239static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2240{
2241 struct crypto_shash *csum_shash;
2242 const char *csum_name = btrfs_super_csum_name(csum_type);
2243
2244 csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2245
2246 if (IS_ERR(csum_shash)) {
2247 btrfs_err(fs_info, "error allocating %s hash for checksum",
2248 csum_name);
2249 return PTR_ERR(csum_shash);
2250 }
2251
2252 fs_info->csum_shash = csum_shash;
2253
2254 return 0;
2255}
2256
2257static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2258{
2259 crypto_free_shash(fs_info->csum_shash);
2260}
2261
63443bf5
ES
2262static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2263 struct btrfs_fs_devices *fs_devices)
2264{
2265 int ret;
63443bf5
ES
2266 struct btrfs_root *log_tree_root;
2267 struct btrfs_super_block *disk_super = fs_info->super_copy;
2268 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2269 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2270
2271 if (fs_devices->rw_devices == 0) {
f14d104d 2272 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2273 return -EIO;
2274 }
2275
74e4d827 2276 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2277 if (!log_tree_root)
2278 return -ENOMEM;
2279
da17066c 2280 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2281
2ff7e61e 2282 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2283 fs_info->generation + 1,
2284 level, NULL);
64c043de 2285 if (IS_ERR(log_tree_root->node)) {
f14d104d 2286 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2287 ret = PTR_ERR(log_tree_root->node);
64c043de 2288 kfree(log_tree_root);
0eeff236 2289 return ret;
64c043de 2290 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2291 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2292 free_extent_buffer(log_tree_root->node);
2293 kfree(log_tree_root);
2294 return -EIO;
2295 }
2296 /* returns with log_tree_root freed on success */
2297 ret = btrfs_recover_log_trees(log_tree_root);
2298 if (ret) {
0b246afa
JM
2299 btrfs_handle_fs_error(fs_info, ret,
2300 "Failed to recover log tree");
63443bf5
ES
2301 free_extent_buffer(log_tree_root->node);
2302 kfree(log_tree_root);
2303 return ret;
2304 }
2305
bc98a42c 2306 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2307 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2308 if (ret)
2309 return ret;
2310 }
2311
2312 return 0;
2313}
2314
6bccf3ab 2315static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2316{
6bccf3ab 2317 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2318 struct btrfs_root *root;
4bbcaa64
ES
2319 struct btrfs_key location;
2320 int ret;
2321
6bccf3ab
JM
2322 BUG_ON(!fs_info->tree_root);
2323
4bbcaa64
ES
2324 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2325 location.type = BTRFS_ROOT_ITEM_KEY;
2326 location.offset = 0;
2327
a4f3d2c4 2328 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2329 if (IS_ERR(root)) {
2330 ret = PTR_ERR(root);
2331 goto out;
2332 }
a4f3d2c4
DS
2333 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2334 fs_info->extent_root = root;
4bbcaa64
ES
2335
2336 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2337 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2338 if (IS_ERR(root)) {
2339 ret = PTR_ERR(root);
2340 goto out;
2341 }
a4f3d2c4
DS
2342 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2343 fs_info->dev_root = root;
4bbcaa64
ES
2344 btrfs_init_devices_late(fs_info);
2345
2346 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2347 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2348 if (IS_ERR(root)) {
2349 ret = PTR_ERR(root);
2350 goto out;
2351 }
a4f3d2c4
DS
2352 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353 fs_info->csum_root = root;
4bbcaa64
ES
2354
2355 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2356 root = btrfs_read_tree_root(tree_root, &location);
2357 if (!IS_ERR(root)) {
2358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2359 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2360 fs_info->quota_root = root;
4bbcaa64
ES
2361 }
2362
2363 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2364 root = btrfs_read_tree_root(tree_root, &location);
2365 if (IS_ERR(root)) {
2366 ret = PTR_ERR(root);
4bbcaa64 2367 if (ret != -ENOENT)
f50f4353 2368 goto out;
4bbcaa64 2369 } else {
a4f3d2c4
DS
2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371 fs_info->uuid_root = root;
4bbcaa64
ES
2372 }
2373
70f6d82e
OS
2374 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2375 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2376 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2377 if (IS_ERR(root)) {
2378 ret = PTR_ERR(root);
2379 goto out;
2380 }
70f6d82e
OS
2381 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2382 fs_info->free_space_root = root;
2383 }
2384
4bbcaa64 2385 return 0;
f50f4353
LB
2386out:
2387 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2388 location.objectid, ret);
2389 return ret;
4bbcaa64
ES
2390}
2391
069ec957
QW
2392/*
2393 * Real super block validation
2394 * NOTE: super csum type and incompat features will not be checked here.
2395 *
2396 * @sb: super block to check
2397 * @mirror_num: the super block number to check its bytenr:
2398 * 0 the primary (1st) sb
2399 * 1, 2 2nd and 3rd backup copy
2400 * -1 skip bytenr check
2401 */
2402static int validate_super(struct btrfs_fs_info *fs_info,
2403 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2404{
21a852b0
QW
2405 u64 nodesize = btrfs_super_nodesize(sb);
2406 u64 sectorsize = btrfs_super_sectorsize(sb);
2407 int ret = 0;
2408
2409 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2410 btrfs_err(fs_info, "no valid FS found");
2411 ret = -EINVAL;
2412 }
2413 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2414 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2415 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2416 ret = -EINVAL;
2417 }
2418 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2419 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2420 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2421 ret = -EINVAL;
2422 }
2423 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2424 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2425 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2426 ret = -EINVAL;
2427 }
2428 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2430 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2431 ret = -EINVAL;
2432 }
2433
2434 /*
2435 * Check sectorsize and nodesize first, other check will need it.
2436 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2437 */
2438 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2439 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2440 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2441 ret = -EINVAL;
2442 }
2443 /* Only PAGE SIZE is supported yet */
2444 if (sectorsize != PAGE_SIZE) {
2445 btrfs_err(fs_info,
2446 "sectorsize %llu not supported yet, only support %lu",
2447 sectorsize, PAGE_SIZE);
2448 ret = -EINVAL;
2449 }
2450 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2451 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2452 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2453 ret = -EINVAL;
2454 }
2455 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2456 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2457 le32_to_cpu(sb->__unused_leafsize), nodesize);
2458 ret = -EINVAL;
2459 }
2460
2461 /* Root alignment check */
2462 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2463 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2464 btrfs_super_root(sb));
2465 ret = -EINVAL;
2466 }
2467 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2468 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2469 btrfs_super_chunk_root(sb));
2470 ret = -EINVAL;
2471 }
2472 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2473 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2474 btrfs_super_log_root(sb));
2475 ret = -EINVAL;
2476 }
2477
de37aa51 2478 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2479 BTRFS_FSID_SIZE) != 0) {
21a852b0 2480 btrfs_err(fs_info,
7239ff4b 2481 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2482 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2483 ret = -EINVAL;
2484 }
2485
2486 /*
2487 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2488 * done later
2489 */
2490 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2491 btrfs_err(fs_info, "bytes_used is too small %llu",
2492 btrfs_super_bytes_used(sb));
2493 ret = -EINVAL;
2494 }
2495 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2496 btrfs_err(fs_info, "invalid stripesize %u",
2497 btrfs_super_stripesize(sb));
2498 ret = -EINVAL;
2499 }
2500 if (btrfs_super_num_devices(sb) > (1UL << 31))
2501 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2502 btrfs_super_num_devices(sb));
2503 if (btrfs_super_num_devices(sb) == 0) {
2504 btrfs_err(fs_info, "number of devices is 0");
2505 ret = -EINVAL;
2506 }
2507
069ec957
QW
2508 if (mirror_num >= 0 &&
2509 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2510 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2511 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2512 ret = -EINVAL;
2513 }
2514
2515 /*
2516 * Obvious sys_chunk_array corruptions, it must hold at least one key
2517 * and one chunk
2518 */
2519 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2520 btrfs_err(fs_info, "system chunk array too big %u > %u",
2521 btrfs_super_sys_array_size(sb),
2522 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2523 ret = -EINVAL;
2524 }
2525 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2526 + sizeof(struct btrfs_chunk)) {
2527 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2528 btrfs_super_sys_array_size(sb),
2529 sizeof(struct btrfs_disk_key)
2530 + sizeof(struct btrfs_chunk));
2531 ret = -EINVAL;
2532 }
2533
2534 /*
2535 * The generation is a global counter, we'll trust it more than the others
2536 * but it's still possible that it's the one that's wrong.
2537 */
2538 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2539 btrfs_warn(fs_info,
2540 "suspicious: generation < chunk_root_generation: %llu < %llu",
2541 btrfs_super_generation(sb),
2542 btrfs_super_chunk_root_generation(sb));
2543 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2544 && btrfs_super_cache_generation(sb) != (u64)-1)
2545 btrfs_warn(fs_info,
2546 "suspicious: generation < cache_generation: %llu < %llu",
2547 btrfs_super_generation(sb),
2548 btrfs_super_cache_generation(sb));
2549
2550 return ret;
2551}
2552
069ec957
QW
2553/*
2554 * Validation of super block at mount time.
2555 * Some checks already done early at mount time, like csum type and incompat
2556 * flags will be skipped.
2557 */
2558static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2559{
2560 return validate_super(fs_info, fs_info->super_copy, 0);
2561}
2562
75cb857d
QW
2563/*
2564 * Validation of super block at write time.
2565 * Some checks like bytenr check will be skipped as their values will be
2566 * overwritten soon.
2567 * Extra checks like csum type and incompat flags will be done here.
2568 */
2569static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2570 struct btrfs_super_block *sb)
2571{
2572 int ret;
2573
2574 ret = validate_super(fs_info, sb, -1);
2575 if (ret < 0)
2576 goto out;
e7e16f48 2577 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2578 ret = -EUCLEAN;
2579 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2580 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2581 goto out;
2582 }
2583 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2584 ret = -EUCLEAN;
2585 btrfs_err(fs_info,
2586 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2587 btrfs_super_incompat_flags(sb),
2588 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2589 goto out;
2590 }
2591out:
2592 if (ret < 0)
2593 btrfs_err(fs_info,
2594 "super block corruption detected before writing it to disk");
2595 return ret;
2596}
2597
ad2b2c80
AV
2598int open_ctree(struct super_block *sb,
2599 struct btrfs_fs_devices *fs_devices,
2600 char *options)
2e635a27 2601{
db94535d
CM
2602 u32 sectorsize;
2603 u32 nodesize;
87ee04eb 2604 u32 stripesize;
84234f3a 2605 u64 generation;
f2b636e8 2606 u64 features;
51bce6c9 2607 u16 csum_type;
3de4586c 2608 struct btrfs_key location;
a061fc8d 2609 struct buffer_head *bh;
4d34b278 2610 struct btrfs_super_block *disk_super;
815745cf 2611 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2612 struct btrfs_root *tree_root;
4d34b278 2613 struct btrfs_root *chunk_root;
eb60ceac 2614 int ret;
e58ca020 2615 int err = -EINVAL;
af31f5e5
CM
2616 int num_backups_tried = 0;
2617 int backup_index = 0;
6675df31 2618 int clear_free_space_tree = 0;
581c1760 2619 int level;
4543df7e 2620
74e4d827
DS
2621 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2622 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2623 if (!tree_root || !chunk_root) {
39279cc3
CM
2624 err = -ENOMEM;
2625 goto fail;
2626 }
76dda93c
YZ
2627
2628 ret = init_srcu_struct(&fs_info->subvol_srcu);
2629 if (ret) {
2630 err = ret;
2631 goto fail;
2632 }
2633
4297ff84 2634 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
e2d84521
MX
2635 if (ret) {
2636 err = ret;
9e11ceee 2637 goto fail_srcu;
e2d84521 2638 }
4297ff84
JB
2639
2640 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2641 if (ret) {
2642 err = ret;
2643 goto fail_dio_bytes;
2644 }
09cbfeaf 2645 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2646 (1 + ilog2(nr_cpu_ids));
2647
908c7f19 2648 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2649 if (ret) {
2650 err = ret;
2651 goto fail_dirty_metadata_bytes;
2652 }
2653
7f8d236a
DS
2654 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2655 GFP_KERNEL);
c404e0dc
MX
2656 if (ret) {
2657 err = ret;
2658 goto fail_delalloc_bytes;
2659 }
2660
76dda93c 2661 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2662 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2663 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2664 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2665 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2666 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2667 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2668 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2669 spin_lock_init(&fs_info->trans_lock);
76dda93c 2670 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2671 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2672 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2673 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2674 spin_lock_init(&fs_info->super_lock);
f28491e0 2675 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2676 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2677 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2678 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2679 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2680 mutex_init(&fs_info->reloc_mutex);
573bfb72 2681 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2682 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2683
0b86a832 2684 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2685 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2686 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2687 INIT_LIST_HEAD(&fs_info->unused_bgs);
c8bf1b67 2688 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2689 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2690 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2691 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2692 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2693 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2694 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2695 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2696 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2697 BTRFS_BLOCK_RSV_DELREFS);
2698
771ed689 2699 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2700 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2701 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2702 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2703 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2704 fs_info->sb = sb;
95ac567a 2705 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2706 fs_info->metadata_ratio = 0;
4cb5300b 2707 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2708 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2709 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2710 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2711 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2712 /* readahead state */
d0164adc 2713 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2714 spin_lock_init(&fs_info->reada_lock);
fd708b81 2715 btrfs_init_ref_verify(fs_info);
c8b97818 2716
b34b086c
CM
2717 fs_info->thread_pool_size = min_t(unsigned long,
2718 num_online_cpus() + 2, 8);
0afbaf8c 2719
199c2a9c
MX
2720 INIT_LIST_HEAD(&fs_info->ordered_roots);
2721 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2722
2723 fs_info->btree_inode = new_inode(sb);
2724 if (!fs_info->btree_inode) {
2725 err = -ENOMEM;
2726 goto fail_bio_counter;
2727 }
2728 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2729
16cdcec7 2730 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2731 GFP_KERNEL);
16cdcec7
MX
2732 if (!fs_info->delayed_root) {
2733 err = -ENOMEM;
2734 goto fail_iput;
2735 }
2736 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2737
638aa7ed 2738 btrfs_init_scrub(fs_info);
21adbd5c
SB
2739#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2740 fs_info->check_integrity_print_mask = 0;
2741#endif
779a65a4 2742 btrfs_init_balance(fs_info);
21c7e756 2743 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2744
9f6d2510
DS
2745 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2746 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2747
6bccf3ab 2748 btrfs_init_btree_inode(fs_info);
76dda93c 2749
0f9dd46c 2750 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2751 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2752 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2753
43eb5f29
QW
2754 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2755 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2756 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2757 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
11833d66 2758 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2759 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2760
5a3f23d5 2761 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2762 mutex_init(&fs_info->tree_log_mutex);
925baedd 2763 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2764 mutex_init(&fs_info->transaction_kthread_mutex);
2765 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2766 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2767 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2768 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2769 init_rwsem(&fs_info->subvol_sem);
803b2f54 2770 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2771
ad618368 2772 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2773 btrfs_init_qgroup(fs_info);
416ac51d 2774
fa9c0d79
CM
2775 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2776 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2777
e6dcd2dc 2778 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2779 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2780 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2781 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2782 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2783
da17066c
JM
2784 /* Usable values until the real ones are cached from the superblock */
2785 fs_info->nodesize = 4096;
2786 fs_info->sectorsize = 4096;
2787 fs_info->stripesize = 4096;
2788
eede2bf3
OS
2789 spin_lock_init(&fs_info->swapfile_pins_lock);
2790 fs_info->swapfile_pins = RB_ROOT;
2791
9e967495
FM
2792 fs_info->send_in_progress = 0;
2793
53b381b3
DW
2794 ret = btrfs_alloc_stripe_hash_table(fs_info);
2795 if (ret) {
83c8266a 2796 err = ret;
53b381b3
DW
2797 goto fail_alloc;
2798 }
2799
da17066c 2800 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2801
3c4bb26b 2802 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2803
2804 /*
2805 * Read super block and check the signature bytes only
2806 */
a512bbf8 2807 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2808 if (IS_ERR(bh)) {
2809 err = PTR_ERR(bh);
16cdcec7 2810 goto fail_alloc;
20b45077 2811 }
39279cc3 2812
8dc3f22c
JT
2813 /*
2814 * Verify the type first, if that or the the checksum value are
2815 * corrupted, we'll find out
2816 */
51bce6c9
JT
2817 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2818 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2819 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2820 csum_type);
8dc3f22c
JT
2821 err = -EINVAL;
2822 brelse(bh);
2823 goto fail_alloc;
2824 }
2825
6d97c6e3
JT
2826 ret = btrfs_init_csum_hash(fs_info, csum_type);
2827 if (ret) {
2828 err = ret;
2829 goto fail_alloc;
2830 }
2831
1104a885
DS
2832 /*
2833 * We want to check superblock checksum, the type is stored inside.
2834 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2835 */
ab8d0fc4 2836 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2837 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2838 err = -EINVAL;
b2acdddf 2839 brelse(bh);
6d97c6e3 2840 goto fail_csum;
1104a885
DS
2841 }
2842
2843 /*
2844 * super_copy is zeroed at allocation time and we never touch the
2845 * following bytes up to INFO_SIZE, the checksum is calculated from
2846 * the whole block of INFO_SIZE
2847 */
6c41761f 2848 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
a061fc8d 2849 brelse(bh);
5f39d397 2850
fbc6feae
NB
2851 disk_super = fs_info->super_copy;
2852
de37aa51
NB
2853 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2854 BTRFS_FSID_SIZE));
2855
7239ff4b 2856 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2857 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2858 fs_info->super_copy->metadata_uuid,
2859 BTRFS_FSID_SIZE));
7239ff4b 2860 }
0b86a832 2861
fbc6feae
NB
2862 features = btrfs_super_flags(disk_super);
2863 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2864 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2865 btrfs_set_super_flags(disk_super, features);
2866 btrfs_info(fs_info,
2867 "found metadata UUID change in progress flag, clearing");
2868 }
2869
2870 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2871 sizeof(*fs_info->super_for_commit));
de37aa51 2872
069ec957 2873 ret = btrfs_validate_mount_super(fs_info);
1104a885 2874 if (ret) {
05135f59 2875 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2876 err = -EINVAL;
6d97c6e3 2877 goto fail_csum;
1104a885
DS
2878 }
2879
0f7d52f4 2880 if (!btrfs_super_root(disk_super))
6d97c6e3 2881 goto fail_csum;
0f7d52f4 2882
acce952b 2883 /* check FS state, whether FS is broken. */
87533c47
MX
2884 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2885 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2886
af31f5e5
CM
2887 /*
2888 * run through our array of backup supers and setup
2889 * our ring pointer to the oldest one
2890 */
2891 generation = btrfs_super_generation(disk_super);
2892 find_oldest_super_backup(fs_info, generation);
2893
75e7cb7f
LB
2894 /*
2895 * In the long term, we'll store the compression type in the super
2896 * block, and it'll be used for per file compression control.
2897 */
2898 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2899
2ff7e61e 2900 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2901 if (ret) {
2902 err = ret;
6d97c6e3 2903 goto fail_csum;
2b82032c 2904 }
dfe25020 2905
f2b636e8
JB
2906 features = btrfs_super_incompat_flags(disk_super) &
2907 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2908 if (features) {
05135f59
DS
2909 btrfs_err(fs_info,
2910 "cannot mount because of unsupported optional features (%llx)",
2911 features);
f2b636e8 2912 err = -EINVAL;
6d97c6e3 2913 goto fail_csum;
f2b636e8
JB
2914 }
2915
5d4f98a2 2916 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2917 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2918 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2919 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2920 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2921 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2922
3173a18f 2923 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2924 btrfs_info(fs_info, "has skinny extents");
3173a18f 2925
727011e0
CM
2926 /*
2927 * flag our filesystem as having big metadata blocks if
2928 * they are bigger than the page size
2929 */
09cbfeaf 2930 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2931 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2932 btrfs_info(fs_info,
2933 "flagging fs with big metadata feature");
727011e0
CM
2934 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2935 }
2936
bc3f116f 2937 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2938 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2939 stripesize = sectorsize;
707e8a07 2940 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2941 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2942
da17066c
JM
2943 /* Cache block sizes */
2944 fs_info->nodesize = nodesize;
2945 fs_info->sectorsize = sectorsize;
2946 fs_info->stripesize = stripesize;
2947
bc3f116f
CM
2948 /*
2949 * mixed block groups end up with duplicate but slightly offset
2950 * extent buffers for the same range. It leads to corruptions
2951 */
2952 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2953 (sectorsize != nodesize)) {
05135f59
DS
2954 btrfs_err(fs_info,
2955"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2956 nodesize, sectorsize);
6d97c6e3 2957 goto fail_csum;
bc3f116f
CM
2958 }
2959
ceda0864
MX
2960 /*
2961 * Needn't use the lock because there is no other task which will
2962 * update the flag.
2963 */
a6fa6fae 2964 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2965
f2b636e8
JB
2966 features = btrfs_super_compat_ro_flags(disk_super) &
2967 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2968 if (!sb_rdonly(sb) && features) {
05135f59
DS
2969 btrfs_err(fs_info,
2970 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2971 features);
f2b636e8 2972 err = -EINVAL;
6d97c6e3 2973 goto fail_csum;
f2b636e8 2974 }
61d92c32 2975
2a458198
ES
2976 ret = btrfs_init_workqueues(fs_info, fs_devices);
2977 if (ret) {
2978 err = ret;
0dc3b84a
JB
2979 goto fail_sb_buffer;
2980 }
4543df7e 2981
9e11ceee
JK
2982 sb->s_bdi->congested_fn = btrfs_congested_fn;
2983 sb->s_bdi->congested_data = fs_info;
2984 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 2985 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
2986 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2987 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2988
a061fc8d
CM
2989 sb->s_blocksize = sectorsize;
2990 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 2991 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 2992
925baedd 2993 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2994 ret = btrfs_read_sys_array(fs_info);
925baedd 2995 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2996 if (ret) {
05135f59 2997 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2998 goto fail_sb_buffer;
84eed90f 2999 }
0b86a832 3000
84234f3a 3001 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3002 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3003
da17066c 3004 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 3005
2ff7e61e 3006 chunk_root->node = read_tree_block(fs_info,
0b86a832 3007 btrfs_super_chunk_root(disk_super),
581c1760 3008 generation, level, NULL);
64c043de
LB
3009 if (IS_ERR(chunk_root->node) ||
3010 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3011 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3012 if (!IS_ERR(chunk_root->node))
3013 free_extent_buffer(chunk_root->node);
95ab1f64 3014 chunk_root->node = NULL;
af31f5e5 3015 goto fail_tree_roots;
83121942 3016 }
5d4f98a2
YZ
3017 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3018 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3019
e17cade2 3020 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 3021 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 3022
5b4aacef 3023 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3024 if (ret) {
05135f59 3025 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3026 goto fail_tree_roots;
2b82032c 3027 }
0b86a832 3028
8dabb742 3029 /*
9b99b115
AJ
3030 * Keep the devid that is marked to be the target device for the
3031 * device replace procedure
8dabb742 3032 */
9b99b115 3033 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3034
a6b0d5c8 3035 if (!fs_devices->latest_bdev) {
05135f59 3036 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3037 goto fail_tree_roots;
3038 }
3039
af31f5e5 3040retry_root_backup:
84234f3a 3041 generation = btrfs_super_generation(disk_super);
581c1760 3042 level = btrfs_super_root_level(disk_super);
0b86a832 3043
2ff7e61e 3044 tree_root->node = read_tree_block(fs_info,
db94535d 3045 btrfs_super_root(disk_super),
581c1760 3046 generation, level, NULL);
64c043de
LB
3047 if (IS_ERR(tree_root->node) ||
3048 !extent_buffer_uptodate(tree_root->node)) {
05135f59 3049 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 3050 if (!IS_ERR(tree_root->node))
3051 free_extent_buffer(tree_root->node);
95ab1f64 3052 tree_root->node = NULL;
af31f5e5 3053 goto recovery_tree_root;
83121942 3054 }
af31f5e5 3055
5d4f98a2
YZ
3056 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3057 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 3058 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 3059
f32e48e9
CR
3060 mutex_lock(&tree_root->objectid_mutex);
3061 ret = btrfs_find_highest_objectid(tree_root,
3062 &tree_root->highest_objectid);
3063 if (ret) {
3064 mutex_unlock(&tree_root->objectid_mutex);
3065 goto recovery_tree_root;
3066 }
3067
3068 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3069
3070 mutex_unlock(&tree_root->objectid_mutex);
3071
6bccf3ab 3072 ret = btrfs_read_roots(fs_info);
4bbcaa64 3073 if (ret)
af31f5e5 3074 goto recovery_tree_root;
f7a81ea4 3075
8929ecfa
YZ
3076 fs_info->generation = generation;
3077 fs_info->last_trans_committed = generation;
8929ecfa 3078
cf90d884
QW
3079 ret = btrfs_verify_dev_extents(fs_info);
3080 if (ret) {
3081 btrfs_err(fs_info,
3082 "failed to verify dev extents against chunks: %d",
3083 ret);
3084 goto fail_block_groups;
3085 }
68310a5e
ID
3086 ret = btrfs_recover_balance(fs_info);
3087 if (ret) {
05135f59 3088 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3089 goto fail_block_groups;
3090 }
3091
733f4fbb
SB
3092 ret = btrfs_init_dev_stats(fs_info);
3093 if (ret) {
05135f59 3094 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3095 goto fail_block_groups;
3096 }
3097
8dabb742
SB
3098 ret = btrfs_init_dev_replace(fs_info);
3099 if (ret) {
05135f59 3100 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3101 goto fail_block_groups;
3102 }
3103
9b99b115 3104 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3105
b7c35e81
AJ
3106 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3107 if (ret) {
05135f59
DS
3108 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3109 ret);
b7c35e81
AJ
3110 goto fail_block_groups;
3111 }
3112
3113 ret = btrfs_sysfs_add_device(fs_devices);
3114 if (ret) {
05135f59
DS
3115 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3116 ret);
b7c35e81
AJ
3117 goto fail_fsdev_sysfs;
3118 }
3119
96f3136e 3120 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3121 if (ret) {
05135f59 3122 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3123 goto fail_fsdev_sysfs;
c59021f8 3124 }
3125
c59021f8 3126 ret = btrfs_init_space_info(fs_info);
3127 if (ret) {
05135f59 3128 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3129 goto fail_sysfs;
c59021f8 3130 }
3131
5b4aacef 3132 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3133 if (ret) {
05135f59 3134 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3135 goto fail_sysfs;
1b1d1f66 3136 }
4330e183 3137
6528b99d 3138 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3139 btrfs_warn(fs_info,
52042d8e 3140 "writable mount is not allowed due to too many missing devices");
2365dd3c 3141 goto fail_sysfs;
292fd7fc 3142 }
9078a3e1 3143
a74a4b97
CM
3144 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3145 "btrfs-cleaner");
57506d50 3146 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3147 goto fail_sysfs;
a74a4b97
CM
3148
3149 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3150 tree_root,
3151 "btrfs-transaction");
57506d50 3152 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3153 goto fail_cleaner;
a74a4b97 3154
583b7231 3155 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3156 !fs_info->fs_devices->rotating) {
583b7231 3157 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3158 }
3159
572d9ab7 3160 /*
01327610 3161 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3162 * not have to wait for transaction commit
3163 */
3164 btrfs_apply_pending_changes(fs_info);
3818aea2 3165
21adbd5c 3166#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3167 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3168 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3169 btrfs_test_opt(fs_info,
21adbd5c
SB
3170 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3171 1 : 0,
3172 fs_info->check_integrity_print_mask);
3173 if (ret)
05135f59
DS
3174 btrfs_warn(fs_info,
3175 "failed to initialize integrity check module: %d",
3176 ret);
21adbd5c
SB
3177 }
3178#endif
bcef60f2
AJ
3179 ret = btrfs_read_qgroup_config(fs_info);
3180 if (ret)
3181 goto fail_trans_kthread;
21adbd5c 3182
fd708b81
JB
3183 if (btrfs_build_ref_tree(fs_info))
3184 btrfs_err(fs_info, "couldn't build ref tree");
3185
96da0919
QW
3186 /* do not make disk changes in broken FS or nologreplay is given */
3187 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3188 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 3189 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3190 if (ret) {
63443bf5 3191 err = ret;
28c16cbb 3192 goto fail_qgroup;
79787eaa 3193 }
e02119d5 3194 }
1a40e23b 3195
6bccf3ab 3196 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3197 if (ret)
28c16cbb 3198 goto fail_qgroup;
76dda93c 3199
bc98a42c 3200 if (!sb_rdonly(sb)) {
d68fc57b 3201 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3202 if (ret)
28c16cbb 3203 goto fail_qgroup;
90c711ab
ZB
3204
3205 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3206 ret = btrfs_recover_relocation(tree_root);
90c711ab 3207 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3208 if (ret < 0) {
05135f59
DS
3209 btrfs_warn(fs_info, "failed to recover relocation: %d",
3210 ret);
d7ce5843 3211 err = -EINVAL;
bcef60f2 3212 goto fail_qgroup;
d7ce5843 3213 }
7c2ca468 3214 }
1a40e23b 3215
3de4586c
CM
3216 location.objectid = BTRFS_FS_TREE_OBJECTID;
3217 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3218 location.offset = 0;
3de4586c 3219
3de4586c 3220 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3221 if (IS_ERR(fs_info->fs_root)) {
3222 err = PTR_ERR(fs_info->fs_root);
f50f4353 3223 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
bcef60f2 3224 goto fail_qgroup;
3140c9a3 3225 }
c289811c 3226
bc98a42c 3227 if (sb_rdonly(sb))
2b6ba629 3228 return 0;
59641015 3229
f8d468a1
OS
3230 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3231 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3232 clear_free_space_tree = 1;
3233 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3234 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3235 btrfs_warn(fs_info, "free space tree is invalid");
3236 clear_free_space_tree = 1;
3237 }
3238
3239 if (clear_free_space_tree) {
f8d468a1
OS
3240 btrfs_info(fs_info, "clearing free space tree");
3241 ret = btrfs_clear_free_space_tree(fs_info);
3242 if (ret) {
3243 btrfs_warn(fs_info,
3244 "failed to clear free space tree: %d", ret);
6bccf3ab 3245 close_ctree(fs_info);
f8d468a1
OS
3246 return ret;
3247 }
3248 }
3249
0b246afa 3250 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3251 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3252 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3253 ret = btrfs_create_free_space_tree(fs_info);
3254 if (ret) {
05135f59
DS
3255 btrfs_warn(fs_info,
3256 "failed to create free space tree: %d", ret);
6bccf3ab 3257 close_ctree(fs_info);
511711af
CM
3258 return ret;
3259 }
3260 }
3261
2b6ba629
ID
3262 down_read(&fs_info->cleanup_work_sem);
3263 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3264 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3265 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3266 close_ctree(fs_info);
2b6ba629
ID
3267 return ret;
3268 }
3269 up_read(&fs_info->cleanup_work_sem);
59641015 3270
2b6ba629
ID
3271 ret = btrfs_resume_balance_async(fs_info);
3272 if (ret) {
05135f59 3273 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3274 close_ctree(fs_info);
2b6ba629 3275 return ret;
e3acc2a6
JB
3276 }
3277
8dabb742
SB
3278 ret = btrfs_resume_dev_replace_async(fs_info);
3279 if (ret) {
05135f59 3280 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3281 close_ctree(fs_info);
8dabb742
SB
3282 return ret;
3283 }
3284
b382a324
JS
3285 btrfs_qgroup_rescan_resume(fs_info);
3286
4bbcaa64 3287 if (!fs_info->uuid_root) {
05135f59 3288 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3289 ret = btrfs_create_uuid_tree(fs_info);
3290 if (ret) {
05135f59
DS
3291 btrfs_warn(fs_info,
3292 "failed to create the UUID tree: %d", ret);
6bccf3ab 3293 close_ctree(fs_info);
f7a81ea4
SB
3294 return ret;
3295 }
0b246afa 3296 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3297 fs_info->generation !=
3298 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3299 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3300 ret = btrfs_check_uuid_tree(fs_info);
3301 if (ret) {
05135f59
DS
3302 btrfs_warn(fs_info,
3303 "failed to check the UUID tree: %d", ret);
6bccf3ab 3304 close_ctree(fs_info);
70f80175
SB
3305 return ret;
3306 }
3307 } else {
afcdd129 3308 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3309 }
afcdd129 3310 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3311
8dcddfa0
QW
3312 /*
3313 * backuproot only affect mount behavior, and if open_ctree succeeded,
3314 * no need to keep the flag
3315 */
3316 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3317
ad2b2c80 3318 return 0;
39279cc3 3319
bcef60f2
AJ
3320fail_qgroup:
3321 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3322fail_trans_kthread:
3323 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3324 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3325 btrfs_free_fs_roots(fs_info);
3f157a2f 3326fail_cleaner:
a74a4b97 3327 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3328
3329 /*
3330 * make sure we're done with the btree inode before we stop our
3331 * kthreads
3332 */
3333 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3334
2365dd3c 3335fail_sysfs:
6618a59b 3336 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3337
b7c35e81
AJ
3338fail_fsdev_sysfs:
3339 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3340
1b1d1f66 3341fail_block_groups:
54067ae9 3342 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3343
3344fail_tree_roots:
3345 free_root_pointers(fs_info, 1);
2b8195bb 3346 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3347
39279cc3 3348fail_sb_buffer:
7abadb64 3349 btrfs_stop_all_workers(fs_info);
5cdd7db6 3350 btrfs_free_block_groups(fs_info);
6d97c6e3
JT
3351fail_csum:
3352 btrfs_free_csum_hash(fs_info);
16cdcec7 3353fail_alloc:
4543df7e 3354fail_iput:
586e46e2
ID
3355 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3356
4543df7e 3357 iput(fs_info->btree_inode);
c404e0dc 3358fail_bio_counter:
7f8d236a 3359 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
963d678b
MX
3360fail_delalloc_bytes:
3361 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3362fail_dirty_metadata_bytes:
3363 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4297ff84
JB
3364fail_dio_bytes:
3365 percpu_counter_destroy(&fs_info->dio_bytes);
76dda93c
YZ
3366fail_srcu:
3367 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3368fail:
53b381b3 3369 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3370 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3371 return err;
af31f5e5
CM
3372
3373recovery_tree_root:
0b246afa 3374 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3375 goto fail_tree_roots;
3376
3377 free_root_pointers(fs_info, 0);
3378
3379 /* don't use the log in recovery mode, it won't be valid */
3380 btrfs_set_super_log_root(disk_super, 0);
3381
3382 /* we can't trust the free space cache either */
3383 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3384
3385 ret = next_root_backup(fs_info, fs_info->super_copy,
3386 &num_backups_tried, &backup_index);
3387 if (ret == -1)
3388 goto fail_block_groups;
3389 goto retry_root_backup;
eb60ceac 3390}
663faf9f 3391ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3392
f2984462
CM
3393static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3394{
f2984462
CM
3395 if (uptodate) {
3396 set_buffer_uptodate(bh);
3397 } else {
442a4f63
SB
3398 struct btrfs_device *device = (struct btrfs_device *)
3399 bh->b_private;
3400
fb456252 3401 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3402 "lost page write due to IO error on %s",
606686ee 3403 rcu_str_deref(device->name));
01327610 3404 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3405 * our own ways of dealing with the IO errors
3406 */
f2984462 3407 clear_buffer_uptodate(bh);
442a4f63 3408 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3409 }
3410 unlock_buffer(bh);
3411 put_bh(bh);
3412}
3413
29c36d72
AJ
3414int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3415 struct buffer_head **bh_ret)
3416{
3417 struct buffer_head *bh;
3418 struct btrfs_super_block *super;
3419 u64 bytenr;
3420
3421 bytenr = btrfs_sb_offset(copy_num);
3422 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3423 return -EINVAL;
3424
9f6d2510 3425 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3426 /*
3427 * If we fail to read from the underlying devices, as of now
3428 * the best option we have is to mark it EIO.
3429 */
3430 if (!bh)
3431 return -EIO;
3432
3433 super = (struct btrfs_super_block *)bh->b_data;
3434 if (btrfs_super_bytenr(super) != bytenr ||
3435 btrfs_super_magic(super) != BTRFS_MAGIC) {
3436 brelse(bh);
3437 return -EINVAL;
3438 }
3439
3440 *bh_ret = bh;
3441 return 0;
3442}
3443
3444
a512bbf8
YZ
3445struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3446{
3447 struct buffer_head *bh;
3448 struct buffer_head *latest = NULL;
3449 struct btrfs_super_block *super;
3450 int i;
3451 u64 transid = 0;
92fc03fb 3452 int ret = -EINVAL;
a512bbf8
YZ
3453
3454 /* we would like to check all the supers, but that would make
3455 * a btrfs mount succeed after a mkfs from a different FS.
3456 * So, we need to add a special mount option to scan for
3457 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3458 */
3459 for (i = 0; i < 1; i++) {
29c36d72
AJ
3460 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3461 if (ret)
a512bbf8
YZ
3462 continue;
3463
3464 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3465
3466 if (!latest || btrfs_super_generation(super) > transid) {
3467 brelse(latest);
3468 latest = bh;
3469 transid = btrfs_super_generation(super);
3470 } else {
3471 brelse(bh);
3472 }
3473 }
92fc03fb
AJ
3474
3475 if (!latest)
3476 return ERR_PTR(ret);
3477
a512bbf8
YZ
3478 return latest;
3479}
3480
4eedeb75 3481/*
abbb3b8e
DS
3482 * Write superblock @sb to the @device. Do not wait for completion, all the
3483 * buffer heads we write are pinned.
4eedeb75 3484 *
abbb3b8e
DS
3485 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3486 * the expected device size at commit time. Note that max_mirrors must be
3487 * same for write and wait phases.
4eedeb75 3488 *
abbb3b8e 3489 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3490 */
a512bbf8 3491static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3492 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3493{
d5178578
JT
3494 struct btrfs_fs_info *fs_info = device->fs_info;
3495 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8
YZ
3496 struct buffer_head *bh;
3497 int i;
3498 int ret;
3499 int errors = 0;
a512bbf8 3500 u64 bytenr;
1b9e619c 3501 int op_flags;
a512bbf8
YZ
3502
3503 if (max_mirrors == 0)
3504 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3505
d5178578
JT
3506 shash->tfm = fs_info->csum_shash;
3507
a512bbf8
YZ
3508 for (i = 0; i < max_mirrors; i++) {
3509 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3510 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3511 device->commit_total_bytes)
a512bbf8
YZ
3512 break;
3513
abbb3b8e 3514 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3515
d5178578
JT
3516 crypto_shash_init(shash);
3517 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3518 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3519 crypto_shash_final(shash, sb->csum);
4eedeb75 3520
abbb3b8e 3521 /* One reference for us, and we leave it for the caller */
9f6d2510 3522 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3523 BTRFS_SUPER_INFO_SIZE);
3524 if (!bh) {
3525 btrfs_err(device->fs_info,
3526 "couldn't get super buffer head for bytenr %llu",
3527 bytenr);
3528 errors++;
4eedeb75 3529 continue;
abbb3b8e 3530 }
634554dc 3531
abbb3b8e 3532 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3533
abbb3b8e
DS
3534 /* one reference for submit_bh */
3535 get_bh(bh);
4eedeb75 3536
abbb3b8e
DS
3537 set_buffer_uptodate(bh);
3538 lock_buffer(bh);
3539 bh->b_end_io = btrfs_end_buffer_write_sync;
3540 bh->b_private = device;
a512bbf8 3541
387125fc
CM
3542 /*
3543 * we fua the first super. The others we allow
3544 * to go down lazy.
3545 */
1b9e619c
OS
3546 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3547 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3548 op_flags |= REQ_FUA;
3549 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3550 if (ret)
a512bbf8 3551 errors++;
a512bbf8
YZ
3552 }
3553 return errors < i ? 0 : -1;
3554}
3555
abbb3b8e
DS
3556/*
3557 * Wait for write completion of superblocks done by write_dev_supers,
3558 * @max_mirrors same for write and wait phases.
3559 *
3560 * Return number of errors when buffer head is not found or not marked up to
3561 * date.
3562 */
3563static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3564{
3565 struct buffer_head *bh;
3566 int i;
3567 int errors = 0;
b6a535fa 3568 bool primary_failed = false;
abbb3b8e
DS
3569 u64 bytenr;
3570
3571 if (max_mirrors == 0)
3572 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3573
3574 for (i = 0; i < max_mirrors; i++) {
3575 bytenr = btrfs_sb_offset(i);
3576 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3577 device->commit_total_bytes)
3578 break;
3579
9f6d2510
DS
3580 bh = __find_get_block(device->bdev,
3581 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3582 BTRFS_SUPER_INFO_SIZE);
3583 if (!bh) {
3584 errors++;
b6a535fa
HM
3585 if (i == 0)
3586 primary_failed = true;
abbb3b8e
DS
3587 continue;
3588 }
3589 wait_on_buffer(bh);
b6a535fa 3590 if (!buffer_uptodate(bh)) {
abbb3b8e 3591 errors++;
b6a535fa
HM
3592 if (i == 0)
3593 primary_failed = true;
3594 }
abbb3b8e
DS
3595
3596 /* drop our reference */
3597 brelse(bh);
3598
3599 /* drop the reference from the writing run */
3600 brelse(bh);
3601 }
3602
b6a535fa
HM
3603 /* log error, force error return */
3604 if (primary_failed) {
3605 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3606 device->devid);
3607 return -1;
3608 }
3609
abbb3b8e
DS
3610 return errors < i ? 0 : -1;
3611}
3612
387125fc
CM
3613/*
3614 * endio for the write_dev_flush, this will wake anyone waiting
3615 * for the barrier when it is done
3616 */
4246a0b6 3617static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3618{
e0ae9994 3619 complete(bio->bi_private);
387125fc
CM
3620}
3621
3622/*
4fc6441a
AJ
3623 * Submit a flush request to the device if it supports it. Error handling is
3624 * done in the waiting counterpart.
387125fc 3625 */
4fc6441a 3626static void write_dev_flush(struct btrfs_device *device)
387125fc 3627{
c2a9c7ab 3628 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3629 struct bio *bio = device->flush_bio;
387125fc 3630
c2a9c7ab 3631 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3632 return;
387125fc 3633
e0ae9994 3634 bio_reset(bio);
387125fc 3635 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3636 bio_set_dev(bio, device->bdev);
8d910125 3637 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3638 init_completion(&device->flush_wait);
3639 bio->bi_private = &device->flush_wait;
387125fc 3640
43a01111 3641 btrfsic_submit_bio(bio);
1c3063b6 3642 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3643}
387125fc 3644
4fc6441a
AJ
3645/*
3646 * If the flush bio has been submitted by write_dev_flush, wait for it.
3647 */
8c27cb35 3648static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3649{
4fc6441a 3650 struct bio *bio = device->flush_bio;
387125fc 3651
1c3063b6 3652 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3653 return BLK_STS_OK;
387125fc 3654
1c3063b6 3655 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3656 wait_for_completion_io(&device->flush_wait);
387125fc 3657
8c27cb35 3658 return bio->bi_status;
387125fc 3659}
387125fc 3660
d10b82fe 3661static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3662{
6528b99d 3663 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3664 return -EIO;
387125fc
CM
3665 return 0;
3666}
3667
3668/*
3669 * send an empty flush down to each device in parallel,
3670 * then wait for them
3671 */
3672static int barrier_all_devices(struct btrfs_fs_info *info)
3673{
3674 struct list_head *head;
3675 struct btrfs_device *dev;
5af3e8cc 3676 int errors_wait = 0;
4e4cbee9 3677 blk_status_t ret;
387125fc 3678
1538e6c5 3679 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3680 /* send down all the barriers */
3681 head = &info->fs_devices->devices;
1538e6c5 3682 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3683 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3684 continue;
cea7c8bf 3685 if (!dev->bdev)
387125fc 3686 continue;
e12c9621 3687 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3688 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3689 continue;
3690
4fc6441a 3691 write_dev_flush(dev);
58efbc9f 3692 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3693 }
3694
3695 /* wait for all the barriers */
1538e6c5 3696 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3697 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3698 continue;
387125fc 3699 if (!dev->bdev) {
5af3e8cc 3700 errors_wait++;
387125fc
CM
3701 continue;
3702 }
e12c9621 3703 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3704 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3705 continue;
3706
4fc6441a 3707 ret = wait_dev_flush(dev);
401b41e5
AJ
3708 if (ret) {
3709 dev->last_flush_error = ret;
66b4993e
DS
3710 btrfs_dev_stat_inc_and_print(dev,
3711 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3712 errors_wait++;
401b41e5
AJ
3713 }
3714 }
3715
cea7c8bf 3716 if (errors_wait) {
401b41e5
AJ
3717 /*
3718 * At some point we need the status of all disks
3719 * to arrive at the volume status. So error checking
3720 * is being pushed to a separate loop.
3721 */
d10b82fe 3722 return check_barrier_error(info);
387125fc 3723 }
387125fc
CM
3724 return 0;
3725}
3726
943c6e99
ZL
3727int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3728{
8789f4fe
ZL
3729 int raid_type;
3730 int min_tolerated = INT_MAX;
943c6e99 3731
8789f4fe
ZL
3732 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3733 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3734 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3735 btrfs_raid_array[BTRFS_RAID_SINGLE].
3736 tolerated_failures);
943c6e99 3737
8789f4fe
ZL
3738 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3739 if (raid_type == BTRFS_RAID_SINGLE)
3740 continue;
41a6e891 3741 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3742 continue;
8c3e3582 3743 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3744 btrfs_raid_array[raid_type].
3745 tolerated_failures);
3746 }
943c6e99 3747
8789f4fe 3748 if (min_tolerated == INT_MAX) {
ab8d0fc4 3749 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3750 min_tolerated = 0;
3751 }
3752
3753 return min_tolerated;
943c6e99
ZL
3754}
3755
eece6a9c 3756int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3757{
e5e9a520 3758 struct list_head *head;
f2984462 3759 struct btrfs_device *dev;
a061fc8d 3760 struct btrfs_super_block *sb;
f2984462 3761 struct btrfs_dev_item *dev_item;
f2984462
CM
3762 int ret;
3763 int do_barriers;
a236aed1
CM
3764 int max_errors;
3765 int total_errors = 0;
a061fc8d 3766 u64 flags;
f2984462 3767
0b246afa 3768 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3769
3770 /*
3771 * max_mirrors == 0 indicates we're from commit_transaction,
3772 * not from fsync where the tree roots in fs_info have not
3773 * been consistent on disk.
3774 */
3775 if (max_mirrors == 0)
3776 backup_super_roots(fs_info);
f2984462 3777
0b246afa 3778 sb = fs_info->super_for_commit;
a061fc8d 3779 dev_item = &sb->dev_item;
e5e9a520 3780
0b246afa
JM
3781 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3782 head = &fs_info->fs_devices->devices;
3783 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3784
5af3e8cc 3785 if (do_barriers) {
0b246afa 3786 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3787 if (ret) {
3788 mutex_unlock(
0b246afa
JM
3789 &fs_info->fs_devices->device_list_mutex);
3790 btrfs_handle_fs_error(fs_info, ret,
3791 "errors while submitting device barriers.");
5af3e8cc
SB
3792 return ret;
3793 }
3794 }
387125fc 3795
1538e6c5 3796 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3797 if (!dev->bdev) {
3798 total_errors++;
3799 continue;
3800 }
e12c9621 3801 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3802 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3803 continue;
3804
2b82032c 3805 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3806 btrfs_set_stack_device_type(dev_item, dev->type);
3807 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3808 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3809 dev->commit_total_bytes);
ce7213c7
MX
3810 btrfs_set_stack_device_bytes_used(dev_item,
3811 dev->commit_bytes_used);
a061fc8d
CM
3812 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3813 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3814 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3815 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3816 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3817 BTRFS_FSID_SIZE);
a512bbf8 3818
a061fc8d
CM
3819 flags = btrfs_super_flags(sb);
3820 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3821
75cb857d
QW
3822 ret = btrfs_validate_write_super(fs_info, sb);
3823 if (ret < 0) {
3824 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3825 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3826 "unexpected superblock corruption detected");
3827 return -EUCLEAN;
3828 }
3829
abbb3b8e 3830 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3831 if (ret)
3832 total_errors++;
f2984462 3833 }
a236aed1 3834 if (total_errors > max_errors) {
0b246afa
JM
3835 btrfs_err(fs_info, "%d errors while writing supers",
3836 total_errors);
3837 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3838
9d565ba4 3839 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3840 btrfs_handle_fs_error(fs_info, -EIO,
3841 "%d errors while writing supers",
3842 total_errors);
9d565ba4 3843 return -EIO;
a236aed1 3844 }
f2984462 3845
a512bbf8 3846 total_errors = 0;
1538e6c5 3847 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3848 if (!dev->bdev)
3849 continue;
e12c9621 3850 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3851 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3852 continue;
3853
abbb3b8e 3854 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3855 if (ret)
3856 total_errors++;
f2984462 3857 }
0b246afa 3858 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3859 if (total_errors > max_errors) {
0b246afa
JM
3860 btrfs_handle_fs_error(fs_info, -EIO,
3861 "%d errors while writing supers",
3862 total_errors);
79787eaa 3863 return -EIO;
a236aed1 3864 }
f2984462
CM
3865 return 0;
3866}
3867
cb517eab
MX
3868/* Drop a fs root from the radix tree and free it. */
3869void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3870 struct btrfs_root *root)
2619ba1f 3871{
4df27c4d 3872 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3873 radix_tree_delete(&fs_info->fs_roots_radix,
3874 (unsigned long)root->root_key.objectid);
4df27c4d 3875 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3876
3877 if (btrfs_root_refs(&root->root_item) == 0)
3878 synchronize_srcu(&fs_info->subvol_srcu);
3879
1c1ea4f7 3880 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3881 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3882 if (root->reloc_root) {
3883 free_extent_buffer(root->reloc_root->node);
3884 free_extent_buffer(root->reloc_root->commit_root);
3885 btrfs_put_fs_root(root->reloc_root);
3886 root->reloc_root = NULL;
3887 }
3888 }
3321719e 3889
faa2dbf0
JB
3890 if (root->free_ino_pinned)
3891 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3892 if (root->free_ino_ctl)
3893 __btrfs_remove_free_space_cache(root->free_ino_ctl);
84db5ccf 3894 btrfs_free_fs_root(root);
4df27c4d
YZ
3895}
3896
84db5ccf 3897void btrfs_free_fs_root(struct btrfs_root *root)
4df27c4d 3898{
57cdc8db 3899 iput(root->ino_cache_inode);
4df27c4d 3900 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3901 if (root->anon_dev)
3902 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3903 if (root->subv_writers)
3904 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3905 free_extent_buffer(root->node);
3906 free_extent_buffer(root->commit_root);
581bb050
LZ
3907 kfree(root->free_ino_ctl);
3908 kfree(root->free_ino_pinned);
b0feb9d9 3909 btrfs_put_fs_root(root);
2619ba1f
CM
3910}
3911
c146afad 3912int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3913{
c146afad
YZ
3914 u64 root_objectid = 0;
3915 struct btrfs_root *gang[8];
65d33fd7
QW
3916 int i = 0;
3917 int err = 0;
3918 unsigned int ret = 0;
3919 int index;
e089f05c 3920
c146afad 3921 while (1) {
65d33fd7 3922 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3923 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3924 (void **)gang, root_objectid,
3925 ARRAY_SIZE(gang));
65d33fd7
QW
3926 if (!ret) {
3927 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3928 break;
65d33fd7 3929 }
5d4f98a2 3930 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3931
c146afad 3932 for (i = 0; i < ret; i++) {
65d33fd7
QW
3933 /* Avoid to grab roots in dead_roots */
3934 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3935 gang[i] = NULL;
3936 continue;
3937 }
3938 /* grab all the search result for later use */
3939 gang[i] = btrfs_grab_fs_root(gang[i]);
3940 }
3941 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3942
65d33fd7
QW
3943 for (i = 0; i < ret; i++) {
3944 if (!gang[i])
3945 continue;
c146afad 3946 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3947 err = btrfs_orphan_cleanup(gang[i]);
3948 if (err)
65d33fd7
QW
3949 break;
3950 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3951 }
3952 root_objectid++;
3953 }
65d33fd7
QW
3954
3955 /* release the uncleaned roots due to error */
3956 for (; i < ret; i++) {
3957 if (gang[i])
3958 btrfs_put_fs_root(gang[i]);
3959 }
3960 return err;
c146afad 3961}
a2135011 3962
6bccf3ab 3963int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3964{
6bccf3ab 3965 struct btrfs_root *root = fs_info->tree_root;
c146afad 3966 struct btrfs_trans_handle *trans;
a74a4b97 3967
0b246afa 3968 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3969 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3970 mutex_unlock(&fs_info->cleaner_mutex);
3971 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3972
3973 /* wait until ongoing cleanup work done */
0b246afa
JM
3974 down_write(&fs_info->cleanup_work_sem);
3975 up_write(&fs_info->cleanup_work_sem);
c71bf099 3976
7a7eaa40 3977 trans = btrfs_join_transaction(root);
3612b495
TI
3978 if (IS_ERR(trans))
3979 return PTR_ERR(trans);
3a45bb20 3980 return btrfs_commit_transaction(trans);
c146afad
YZ
3981}
3982
6bccf3ab 3983void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3984{
c146afad
YZ
3985 int ret;
3986
afcdd129 3987 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3988 /*
3989 * We don't want the cleaner to start new transactions, add more delayed
3990 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3991 * because that frees the task_struct, and the transaction kthread might
3992 * still try to wake up the cleaner.
3993 */
3994 kthread_park(fs_info->cleaner_kthread);
c146afad 3995
7343dd61 3996 /* wait for the qgroup rescan worker to stop */
d06f23d6 3997 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3998
803b2f54
SB
3999 /* wait for the uuid_scan task to finish */
4000 down(&fs_info->uuid_tree_rescan_sem);
4001 /* avoid complains from lockdep et al., set sem back to initial state */
4002 up(&fs_info->uuid_tree_rescan_sem);
4003
837d5b6e 4004 /* pause restriper - we want to resume on mount */
aa1b8cd4 4005 btrfs_pause_balance(fs_info);
837d5b6e 4006
8dabb742
SB
4007 btrfs_dev_replace_suspend_for_unmount(fs_info);
4008
aa1b8cd4 4009 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4010
4011 /* wait for any defraggers to finish */
4012 wait_event(fs_info->transaction_wait,
4013 (atomic_read(&fs_info->defrag_running) == 0));
4014
4015 /* clear out the rbtree of defraggable inodes */
26176e7c 4016 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4017
21c7e756
MX
4018 cancel_work_sync(&fs_info->async_reclaim_work);
4019
bc98a42c 4020 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4021 /*
d6fd0ae2
OS
4022 * The cleaner kthread is stopped, so do one final pass over
4023 * unused block groups.
e44163e1 4024 */
0b246afa 4025 btrfs_delete_unused_bgs(fs_info);
e44163e1 4026
6bccf3ab 4027 ret = btrfs_commit_super(fs_info);
acce952b 4028 if (ret)
04892340 4029 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4030 }
4031
af722733
LB
4032 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4033 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4034 btrfs_error_commit_super(fs_info);
0f7d52f4 4035
e3029d9f
AV
4036 kthread_stop(fs_info->transaction_kthread);
4037 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4038
e187831e 4039 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4040 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4041
04892340 4042 btrfs_free_qgroup_config(fs_info);
fe816d0f 4043 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4044
963d678b 4045 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4046 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4047 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4048 }
bcc63abb 4049
4297ff84
JB
4050 if (percpu_counter_sum(&fs_info->dio_bytes))
4051 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4052 percpu_counter_sum(&fs_info->dio_bytes));
4053
6618a59b 4054 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4055 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4056
faa2dbf0 4057 btrfs_free_fs_roots(fs_info);
d10c5f31 4058
1a4319cc
LB
4059 btrfs_put_block_group_cache(fs_info);
4060
de348ee0
WS
4061 /*
4062 * we must make sure there is not any read request to
4063 * submit after we stopping all workers.
4064 */
4065 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4066 btrfs_stop_all_workers(fs_info);
4067
5cdd7db6
FM
4068 btrfs_free_block_groups(fs_info);
4069
afcdd129 4070 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 4071 free_root_pointers(fs_info, 1);
9ad6b7bc 4072
13e6c37b 4073 iput(fs_info->btree_inode);
d6bfde87 4074
21adbd5c 4075#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4076 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4077 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4078#endif
4079
0b86a832 4080 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4081 btrfs_close_devices(fs_info->fs_devices);
b248a415 4082
e2d84521 4083 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 4084 percpu_counter_destroy(&fs_info->delalloc_bytes);
4297ff84 4085 percpu_counter_destroy(&fs_info->dio_bytes);
7f8d236a 4086 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
76dda93c 4087 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 4088
bfcea1c6 4089 btrfs_free_csum_hash(fs_info);
53b381b3 4090 btrfs_free_stripe_hash_table(fs_info);
fd708b81 4091 btrfs_free_ref_cache(fs_info);
eb60ceac
CM
4092}
4093
b9fab919
CM
4094int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4095 int atomic)
5f39d397 4096{
1259ab75 4097 int ret;
727011e0 4098 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4099
0b32f4bb 4100 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4101 if (!ret)
4102 return ret;
4103
4104 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4105 parent_transid, atomic);
4106 if (ret == -EAGAIN)
4107 return ret;
1259ab75 4108 return !ret;
5f39d397
CM
4109}
4110
5f39d397
CM
4111void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4112{
0b246afa 4113 struct btrfs_fs_info *fs_info;
06ea65a3 4114 struct btrfs_root *root;
5f39d397 4115 u64 transid = btrfs_header_generation(buf);
b9473439 4116 int was_dirty;
b4ce94de 4117
06ea65a3
JB
4118#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4119 /*
4120 * This is a fast path so only do this check if we have sanity tests
52042d8e 4121 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4122 * outside of the sanity tests.
4123 */
b0132a3b 4124 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4125 return;
4126#endif
4127 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4128 fs_info = root->fs_info;
b9447ef8 4129 btrfs_assert_tree_locked(buf);
0b246afa 4130 if (transid != fs_info->generation)
5d163e0e 4131 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4132 buf->start, transid, fs_info->generation);
0b32f4bb 4133 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4134 if (!was_dirty)
104b4e51
NB
4135 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4136 buf->len,
4137 fs_info->dirty_metadata_batch);
1f21ef0a 4138#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4139 /*
4140 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4141 * but item data not updated.
4142 * So here we should only check item pointers, not item data.
4143 */
4144 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4145 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4146 btrfs_print_leaf(buf);
1f21ef0a
FM
4147 ASSERT(0);
4148 }
4149#endif
eb60ceac
CM
4150}
4151
2ff7e61e 4152static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4153 int flush_delayed)
16cdcec7
MX
4154{
4155 /*
4156 * looks as though older kernels can get into trouble with
4157 * this code, they end up stuck in balance_dirty_pages forever
4158 */
e2d84521 4159 int ret;
16cdcec7
MX
4160
4161 if (current->flags & PF_MEMALLOC)
4162 return;
4163
b53d3f5d 4164 if (flush_delayed)
2ff7e61e 4165 btrfs_balance_delayed_items(fs_info);
16cdcec7 4166
d814a491
EL
4167 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4168 BTRFS_DIRTY_METADATA_THRESH,
4169 fs_info->dirty_metadata_batch);
e2d84521 4170 if (ret > 0) {
0b246afa 4171 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4172 }
16cdcec7
MX
4173}
4174
2ff7e61e 4175void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4176{
2ff7e61e 4177 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4178}
585ad2c3 4179
2ff7e61e 4180void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4181{
2ff7e61e 4182 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4183}
6b80053d 4184
581c1760
QW
4185int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4186 struct btrfs_key *first_key)
6b80053d 4187{
5ab12d1f 4188 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4189 level, first_key);
6b80053d 4190}
0da5468f 4191
2ff7e61e 4192static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4193{
fe816d0f
NB
4194 /* cleanup FS via transaction */
4195 btrfs_cleanup_transaction(fs_info);
4196
0b246afa 4197 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4198 btrfs_run_delayed_iputs(fs_info);
0b246afa 4199 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4200
0b246afa
JM
4201 down_write(&fs_info->cleanup_work_sem);
4202 up_write(&fs_info->cleanup_work_sem);
acce952b 4203}
4204
143bede5 4205static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4206{
acce952b 4207 struct btrfs_ordered_extent *ordered;
acce952b 4208
199c2a9c 4209 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4210 /*
4211 * This will just short circuit the ordered completion stuff which will
4212 * make sure the ordered extent gets properly cleaned up.
4213 */
199c2a9c 4214 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4215 root_extent_list)
4216 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4217 spin_unlock(&root->ordered_extent_lock);
4218}
4219
4220static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4221{
4222 struct btrfs_root *root;
4223 struct list_head splice;
4224
4225 INIT_LIST_HEAD(&splice);
4226
4227 spin_lock(&fs_info->ordered_root_lock);
4228 list_splice_init(&fs_info->ordered_roots, &splice);
4229 while (!list_empty(&splice)) {
4230 root = list_first_entry(&splice, struct btrfs_root,
4231 ordered_root);
1de2cfde
JB
4232 list_move_tail(&root->ordered_root,
4233 &fs_info->ordered_roots);
199c2a9c 4234
2a85d9ca 4235 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4236 btrfs_destroy_ordered_extents(root);
4237
2a85d9ca
LB
4238 cond_resched();
4239 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4240 }
4241 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4242
4243 /*
4244 * We need this here because if we've been flipped read-only we won't
4245 * get sync() from the umount, so we need to make sure any ordered
4246 * extents that haven't had their dirty pages IO start writeout yet
4247 * actually get run and error out properly.
4248 */
4249 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4250}
4251
35a3621b 4252static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4253 struct btrfs_fs_info *fs_info)
acce952b 4254{
4255 struct rb_node *node;
4256 struct btrfs_delayed_ref_root *delayed_refs;
4257 struct btrfs_delayed_ref_node *ref;
4258 int ret = 0;
4259
4260 delayed_refs = &trans->delayed_refs;
4261
4262 spin_lock(&delayed_refs->lock);
d7df2c79 4263 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4264 spin_unlock(&delayed_refs->lock);
0b246afa 4265 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4266 return ret;
4267 }
4268
5c9d028b 4269 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4270 struct btrfs_delayed_ref_head *head;
0e0adbcf 4271 struct rb_node *n;
e78417d1 4272 bool pin_bytes = false;
acce952b 4273
d7df2c79
JB
4274 head = rb_entry(node, struct btrfs_delayed_ref_head,
4275 href_node);
3069bd26 4276 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4277 continue;
3069bd26 4278
d7df2c79 4279 spin_lock(&head->lock);
e3d03965 4280 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4281 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4282 ref_node);
d7df2c79 4283 ref->in_tree = 0;
e3d03965 4284 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4285 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4286 if (!list_empty(&ref->add_list))
4287 list_del(&ref->add_list);
d7df2c79
JB
4288 atomic_dec(&delayed_refs->num_entries);
4289 btrfs_put_delayed_ref(ref);
e78417d1 4290 }
d7df2c79
JB
4291 if (head->must_insert_reserved)
4292 pin_bytes = true;
4293 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4294 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4295 spin_unlock(&head->lock);
4296 spin_unlock(&delayed_refs->lock);
4297 mutex_unlock(&head->mutex);
acce952b 4298
d7df2c79 4299 if (pin_bytes)
d278850e
JB
4300 btrfs_pin_extent(fs_info, head->bytenr,
4301 head->num_bytes, 1);
31890da0 4302 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4303 btrfs_put_delayed_ref_head(head);
acce952b 4304 cond_resched();
4305 spin_lock(&delayed_refs->lock);
4306 }
4307
4308 spin_unlock(&delayed_refs->lock);
4309
4310 return ret;
4311}
4312
143bede5 4313static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4314{
4315 struct btrfs_inode *btrfs_inode;
4316 struct list_head splice;
4317
4318 INIT_LIST_HEAD(&splice);
4319
eb73c1b7
MX
4320 spin_lock(&root->delalloc_lock);
4321 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4322
4323 while (!list_empty(&splice)) {
fe816d0f 4324 struct inode *inode = NULL;
eb73c1b7
MX
4325 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4326 delalloc_inodes);
fe816d0f 4327 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4328 spin_unlock(&root->delalloc_lock);
acce952b 4329
fe816d0f
NB
4330 /*
4331 * Make sure we get a live inode and that it'll not disappear
4332 * meanwhile.
4333 */
4334 inode = igrab(&btrfs_inode->vfs_inode);
4335 if (inode) {
4336 invalidate_inode_pages2(inode->i_mapping);
4337 iput(inode);
4338 }
eb73c1b7 4339 spin_lock(&root->delalloc_lock);
acce952b 4340 }
eb73c1b7
MX
4341 spin_unlock(&root->delalloc_lock);
4342}
4343
4344static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4345{
4346 struct btrfs_root *root;
4347 struct list_head splice;
4348
4349 INIT_LIST_HEAD(&splice);
4350
4351 spin_lock(&fs_info->delalloc_root_lock);
4352 list_splice_init(&fs_info->delalloc_roots, &splice);
4353 while (!list_empty(&splice)) {
4354 root = list_first_entry(&splice, struct btrfs_root,
4355 delalloc_root);
eb73c1b7
MX
4356 root = btrfs_grab_fs_root(root);
4357 BUG_ON(!root);
4358 spin_unlock(&fs_info->delalloc_root_lock);
4359
4360 btrfs_destroy_delalloc_inodes(root);
4361 btrfs_put_fs_root(root);
4362
4363 spin_lock(&fs_info->delalloc_root_lock);
4364 }
4365 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4366}
4367
2ff7e61e 4368static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4369 struct extent_io_tree *dirty_pages,
4370 int mark)
4371{
4372 int ret;
acce952b 4373 struct extent_buffer *eb;
4374 u64 start = 0;
4375 u64 end;
acce952b 4376
4377 while (1) {
4378 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4379 mark, NULL);
acce952b 4380 if (ret)
4381 break;
4382
91166212 4383 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4384 while (start <= end) {
0b246afa
JM
4385 eb = find_extent_buffer(fs_info, start);
4386 start += fs_info->nodesize;
fd8b2b61 4387 if (!eb)
acce952b 4388 continue;
fd8b2b61 4389 wait_on_extent_buffer_writeback(eb);
acce952b 4390
fd8b2b61
JB
4391 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4392 &eb->bflags))
4393 clear_extent_buffer_dirty(eb);
4394 free_extent_buffer_stale(eb);
acce952b 4395 }
4396 }
4397
4398 return ret;
4399}
4400
2ff7e61e 4401static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4402 struct extent_io_tree *pinned_extents)
4403{
4404 struct extent_io_tree *unpin;
4405 u64 start;
4406 u64 end;
4407 int ret;
ed0eaa14 4408 bool loop = true;
acce952b 4409
4410 unpin = pinned_extents;
ed0eaa14 4411again:
acce952b 4412 while (1) {
0e6ec385
FM
4413 struct extent_state *cached_state = NULL;
4414
fcd5e742
LF
4415 /*
4416 * The btrfs_finish_extent_commit() may get the same range as
4417 * ours between find_first_extent_bit and clear_extent_dirty.
4418 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4419 * the same extent range.
4420 */
4421 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4422 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4423 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4424 if (ret) {
4425 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4426 break;
fcd5e742 4427 }
acce952b 4428
0e6ec385
FM
4429 clear_extent_dirty(unpin, start, end, &cached_state);
4430 free_extent_state(cached_state);
2ff7e61e 4431 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4432 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4433 cond_resched();
4434 }
4435
ed0eaa14 4436 if (loop) {
0b246afa
JM
4437 if (unpin == &fs_info->freed_extents[0])
4438 unpin = &fs_info->freed_extents[1];
ed0eaa14 4439 else
0b246afa 4440 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4441 loop = false;
4442 goto again;
4443 }
4444
acce952b 4445 return 0;
4446}
4447
c79a1751
LB
4448static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4449{
4450 struct inode *inode;
4451
4452 inode = cache->io_ctl.inode;
4453 if (inode) {
4454 invalidate_inode_pages2(inode->i_mapping);
4455 BTRFS_I(inode)->generation = 0;
4456 cache->io_ctl.inode = NULL;
4457 iput(inode);
4458 }
4459 btrfs_put_block_group(cache);
4460}
4461
4462void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4463 struct btrfs_fs_info *fs_info)
c79a1751
LB
4464{
4465 struct btrfs_block_group_cache *cache;
4466
4467 spin_lock(&cur_trans->dirty_bgs_lock);
4468 while (!list_empty(&cur_trans->dirty_bgs)) {
4469 cache = list_first_entry(&cur_trans->dirty_bgs,
4470 struct btrfs_block_group_cache,
4471 dirty_list);
c79a1751
LB
4472
4473 if (!list_empty(&cache->io_list)) {
4474 spin_unlock(&cur_trans->dirty_bgs_lock);
4475 list_del_init(&cache->io_list);
4476 btrfs_cleanup_bg_io(cache);
4477 spin_lock(&cur_trans->dirty_bgs_lock);
4478 }
4479
4480 list_del_init(&cache->dirty_list);
4481 spin_lock(&cache->lock);
4482 cache->disk_cache_state = BTRFS_DC_ERROR;
4483 spin_unlock(&cache->lock);
4484
4485 spin_unlock(&cur_trans->dirty_bgs_lock);
4486 btrfs_put_block_group(cache);
ba2c4d4e 4487 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4488 spin_lock(&cur_trans->dirty_bgs_lock);
4489 }
4490 spin_unlock(&cur_trans->dirty_bgs_lock);
4491
45ae2c18
NB
4492 /*
4493 * Refer to the definition of io_bgs member for details why it's safe
4494 * to use it without any locking
4495 */
c79a1751
LB
4496 while (!list_empty(&cur_trans->io_bgs)) {
4497 cache = list_first_entry(&cur_trans->io_bgs,
4498 struct btrfs_block_group_cache,
4499 io_list);
c79a1751
LB
4500
4501 list_del_init(&cache->io_list);
4502 spin_lock(&cache->lock);
4503 cache->disk_cache_state = BTRFS_DC_ERROR;
4504 spin_unlock(&cache->lock);
4505 btrfs_cleanup_bg_io(cache);
4506 }
4507}
4508
49b25e05 4509void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4510 struct btrfs_fs_info *fs_info)
49b25e05 4511{
bbbf7243
NB
4512 struct btrfs_device *dev, *tmp;
4513
2ff7e61e 4514 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4515 ASSERT(list_empty(&cur_trans->dirty_bgs));
4516 ASSERT(list_empty(&cur_trans->io_bgs));
4517
bbbf7243
NB
4518 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4519 post_commit_list) {
4520 list_del_init(&dev->post_commit_list);
4521 }
4522
2ff7e61e 4523 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4524
4a9d8bde 4525 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4526 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4527
4a9d8bde 4528 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4529 wake_up(&fs_info->transaction_wait);
49b25e05 4530
ccdf9b30
JM
4531 btrfs_destroy_delayed_inodes(fs_info);
4532 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4533
2ff7e61e 4534 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4535 EXTENT_DIRTY);
2ff7e61e 4536 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4537 fs_info->pinned_extents);
49b25e05 4538
4a9d8bde
MX
4539 cur_trans->state =TRANS_STATE_COMPLETED;
4540 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4541}
4542
2ff7e61e 4543static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4544{
4545 struct btrfs_transaction *t;
acce952b 4546
0b246afa 4547 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4548
0b246afa
JM
4549 spin_lock(&fs_info->trans_lock);
4550 while (!list_empty(&fs_info->trans_list)) {
4551 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4552 struct btrfs_transaction, list);
4553 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4554 refcount_inc(&t->use_count);
0b246afa 4555 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4556 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4557 btrfs_put_transaction(t);
0b246afa 4558 spin_lock(&fs_info->trans_lock);
724e2315
JB
4559 continue;
4560 }
0b246afa 4561 if (t == fs_info->running_transaction) {
724e2315 4562 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4563 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4564 /*
4565 * We wait for 0 num_writers since we don't hold a trans
4566 * handle open currently for this transaction.
4567 */
4568 wait_event(t->writer_wait,
4569 atomic_read(&t->num_writers) == 0);
4570 } else {
0b246afa 4571 spin_unlock(&fs_info->trans_lock);
724e2315 4572 }
2ff7e61e 4573 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4574
0b246afa
JM
4575 spin_lock(&fs_info->trans_lock);
4576 if (t == fs_info->running_transaction)
4577 fs_info->running_transaction = NULL;
acce952b 4578 list_del_init(&t->list);
0b246afa 4579 spin_unlock(&fs_info->trans_lock);
acce952b 4580
724e2315 4581 btrfs_put_transaction(t);
2ff7e61e 4582 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4583 spin_lock(&fs_info->trans_lock);
724e2315 4584 }
0b246afa
JM
4585 spin_unlock(&fs_info->trans_lock);
4586 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4587 btrfs_destroy_delayed_inodes(fs_info);
4588 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4589 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4590 btrfs_destroy_all_delalloc_inodes(fs_info);
4591 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4592
4593 return 0;
4594}
4595
e8c9f186 4596static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4597 /* mandatory callbacks */
0b86a832 4598 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4599 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4600};