]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/disk-io.c
Merge tag 'dt2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
eb60ceac 48
d1310b2e 49static struct extent_io_ops btree_extent_io_ops;
8b712842 50static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 51static void free_fs_root(struct btrfs_root *root);
fcd1f065 52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 53 int read_only);
143bede5
JM
54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
143bede5
JM
58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
79787eaa 102 int error;
44b8bd7e
CM
103};
104
85d4e461
CM
105/*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
4008c04a 115 *
85d4e461
CM
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 119 *
85d4e461
CM
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 123 *
85d4e461
CM
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
4008c04a
CM
127 */
128#ifdef CONFIG_DEBUG_LOCK_ALLOC
129# if BTRFS_MAX_LEVEL != 8
130# error
131# endif
85d4e461
CM
132
133static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138} btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
4008c04a 150};
85d4e461
CM
151
152void __init btrfs_init_lockdep(void)
153{
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164}
165
166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168{
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180}
181
4008c04a
CM
182#endif
183
d352ac68
CM
184/*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
b2950863 188static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 189 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 190 int create)
7eccb903 191{
5f39d397
CM
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
890871be 196 read_lock(&em_tree->lock);
d1310b2e 197 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 201 read_unlock(&em_tree->lock);
5f39d397 202 goto out;
a061fc8d 203 }
890871be 204 read_unlock(&em_tree->lock);
7b13b7b1 205
172ddd60 206 em = alloc_extent_map();
5f39d397
CM
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
0afbaf8c 212 em->len = (u64)-1;
c8b97818 213 em->block_len = (u64)-1;
5f39d397 214 em->block_start = 0;
a061fc8d 215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 216
890871be 217 write_lock(&em_tree->lock);
5f39d397
CM
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
0afbaf8c
CM
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
5f39d397 223 free_extent_map(em);
7b13b7b1 224 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 225 if (em) {
7b13b7b1 226 ret = 0;
0afbaf8c
CM
227 } else {
228 em = lookup_extent_mapping(em_tree, failed_start,
229 failed_len);
7b13b7b1 230 ret = -EIO;
0afbaf8c 231 }
5f39d397 232 } else if (ret) {
7b13b7b1
CM
233 free_extent_map(em);
234 em = NULL;
5f39d397 235 }
890871be 236 write_unlock(&em_tree->lock);
7b13b7b1
CM
237
238 if (ret)
239 em = ERR_PTR(ret);
5f39d397
CM
240out:
241 return em;
7eccb903
CM
242}
243
19c00ddc
CM
244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245{
163e783e 246 return crc32c(seed, data, len);
19c00ddc
CM
247}
248
249void btrfs_csum_final(u32 crc, char *result)
250{
7e75bf3f 251 put_unaligned_le32(~crc, result);
19c00ddc
CM
252}
253
d352ac68
CM
254/*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
19c00ddc
CM
258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260{
6c41761f 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 262 char *result = NULL;
19c00ddc
CM
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
607d432d 271 unsigned long inline_result;
19c00ddc
CM
272
273 len = buf->len - offset;
d397712b 274 while (len > 0) {
19c00ddc 275 err = map_private_extent_buffer(buf, offset, 32,
a6591715 276 &kaddr, &map_start, &map_len);
d397712b 277 if (err)
19c00ddc 278 return 1;
19c00ddc
CM
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
19c00ddc 284 }
607d432d
JB
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
19c00ddc
CM
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
607d432d 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
297 u32 val;
298 u32 found = 0;
607d432d 299 memcpy(&found, result, csum_size);
e4204ded 300
607d432d 301 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75
CM
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
2ac55d41 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 340 0, &cached_state);
0b32f4bb 341 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
7a36ddec 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
1259ab75 351 ret = 1;
0b32f4bb 352 clear_extent_buffer_uptodate(eb);
33958dc6 353out:
2ac55d41
JB
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
1259ab75 356 return ret;
1259ab75
CM
357}
358
d352ac68
CM
359/*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
f188591e
CM
363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
ca7a79ad 365 u64 start, u64 parent_transid)
f188591e
CM
366{
367 struct extent_io_tree *io_tree;
ea466794 368 int failed = 0;
f188591e
CM
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
ea466794 372 int failed_mirror = 0;
f188591e 373
a826d6dc 374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
bb82ab88
AJ
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
f188591e 379 btree_get_extent, mirror_num);
b9fab919
CM
380 if (!ret && !verify_parent_transid(io_tree, eb,
381 parent_transid, 0))
ea466794 382 break;
d397712b 383
a826d6dc
JB
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
390 break;
391
f188591e
CM
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
4235298e 394 if (num_copies == 1)
ea466794 395 break;
4235298e 396
5cf1ab56
JB
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
f188591e 402 mirror_num++;
ea466794
JB
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
4235298e 406 if (mirror_num > num_copies)
ea466794 407 break;
f188591e 408 }
ea466794 409
c0901581 410 if (failed && !ret && failed_mirror)
ea466794
JB
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
f188591e 414}
19c00ddc 415
d352ac68 416/*
d397712b
CM
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 419 */
d397712b 420
b2950863 421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 422{
d1310b2e 423 struct extent_io_tree *tree;
35ebb934 424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 425 u64 found_start;
19c00ddc 426 struct extent_buffer *eb;
f188591e 427
d1310b2e 428 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 429
4f2de97a
JB
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
19c00ddc
CM
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
55c69072 435 WARN_ON(1);
4f2de97a 436 return 0;
55c69072 437 }
727011e0 438 if (eb->pages[0] != page) {
55c69072 439 WARN_ON(1);
4f2de97a 440 return 0;
55c69072
CM
441 }
442 if (!PageUptodate(page)) {
55c69072 443 WARN_ON(1);
4f2de97a 444 return 0;
19c00ddc 445 }
19c00ddc 446 csum_tree_block(root, eb, 0);
19c00ddc
CM
447 return 0;
448}
449
2b82032c
YZ
450static int check_tree_block_fsid(struct btrfs_root *root,
451 struct extent_buffer *eb)
452{
453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 u8 fsid[BTRFS_UUID_SIZE];
455 int ret = 1;
456
457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 BTRFS_FSID_SIZE);
459 while (fs_devices) {
460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 ret = 0;
462 break;
463 }
464 fs_devices = fs_devices->seed;
465 }
466 return ret;
467}
468
a826d6dc
JB
469#define CORRUPT(reason, eb, root, slot) \
470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471 "root=%llu, slot=%d\n", reason, \
472 (unsigned long long)btrfs_header_bytenr(eb), \
473 (unsigned long long)root->objectid, slot)
474
475static noinline int check_leaf(struct btrfs_root *root,
476 struct extent_buffer *leaf)
477{
478 struct btrfs_key key;
479 struct btrfs_key leaf_key;
480 u32 nritems = btrfs_header_nritems(leaf);
481 int slot;
482
483 if (nritems == 0)
484 return 0;
485
486 /* Check the 0 item */
487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("invalid item offset size pair", leaf, root, 0);
490 return -EIO;
491 }
492
493 /*
494 * Check to make sure each items keys are in the correct order and their
495 * offsets make sense. We only have to loop through nritems-1 because
496 * we check the current slot against the next slot, which verifies the
497 * next slot's offset+size makes sense and that the current's slot
498 * offset is correct.
499 */
500 for (slot = 0; slot < nritems - 1; slot++) {
501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504 /* Make sure the keys are in the right order */
505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 CORRUPT("bad key order", leaf, root, slot);
507 return -EIO;
508 }
509
510 /*
511 * Make sure the offset and ends are right, remember that the
512 * item data starts at the end of the leaf and grows towards the
513 * front.
514 */
515 if (btrfs_item_offset_nr(leaf, slot) !=
516 btrfs_item_end_nr(leaf, slot + 1)) {
517 CORRUPT("slot offset bad", leaf, root, slot);
518 return -EIO;
519 }
520
521 /*
522 * Check to make sure that we don't point outside of the leaf,
523 * just incase all the items are consistent to eachother, but
524 * all point outside of the leaf.
525 */
526 if (btrfs_item_end_nr(leaf, slot) >
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("slot end outside of leaf", leaf, root, slot);
529 return -EIO;
530 }
531 }
532
533 return 0;
534}
535
727011e0
CM
536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 struct page *page, int max_walk)
538{
539 struct extent_buffer *eb;
540 u64 start = page_offset(page);
541 u64 target = start;
542 u64 min_start;
543
544 if (start < max_walk)
545 min_start = 0;
546 else
547 min_start = start - max_walk;
548
549 while (start >= min_start) {
550 eb = find_extent_buffer(tree, start, 0);
551 if (eb) {
552 /*
553 * we found an extent buffer and it contains our page
554 * horray!
555 */
556 if (eb->start <= target &&
557 eb->start + eb->len > target)
558 return eb;
559
560 /* we found an extent buffer that wasn't for us */
561 free_extent_buffer(eb);
562 return NULL;
563 }
564 if (start == 0)
565 break;
566 start -= PAGE_CACHE_SIZE;
567 }
568 return NULL;
569}
570
b2950863 571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 572 struct extent_state *state, int mirror)
ce9adaa5
CM
573{
574 struct extent_io_tree *tree;
575 u64 found_start;
576 int found_level;
ce9adaa5
CM
577 struct extent_buffer *eb;
578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 579 int ret = 0;
727011e0 580 int reads_done;
ce9adaa5 581
ce9adaa5
CM
582 if (!page->private)
583 goto out;
d397712b 584
727011e0 585 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 586 eb = (struct extent_buffer *)page->private;
d397712b 587
0b32f4bb
JB
588 /* the pending IO might have been the only thing that kept this buffer
589 * in memory. Make sure we have a ref for all this other checks
590 */
591 extent_buffer_get(eb);
592
593 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
594 if (!reads_done)
595 goto err;
f188591e 596
5cf1ab56 597 eb->read_mirror = mirror;
ea466794
JB
598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 ret = -EIO;
600 goto err;
601 }
602
ce9adaa5 603 found_start = btrfs_header_bytenr(eb);
727011e0 604 if (found_start != eb->start) {
7a36ddec 605 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
606 "%llu %llu\n",
607 (unsigned long long)found_start,
608 (unsigned long long)eb->start);
f188591e 609 ret = -EIO;
ce9adaa5
CM
610 goto err;
611 }
2b82032c 612 if (check_tree_block_fsid(root, eb)) {
7a36ddec 613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 614 (unsigned long long)eb->start);
1259ab75
CM
615 ret = -EIO;
616 goto err;
617 }
ce9adaa5
CM
618 found_level = btrfs_header_level(eb);
619
85d4e461
CM
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
4008c04a 622
ce9adaa5 623 ret = csum_tree_block(root, eb, 1);
a826d6dc 624 if (ret) {
f188591e 625 ret = -EIO;
a826d6dc
JB
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
ce9adaa5 638
0b32f4bb
JB
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
ce9adaa5 641err:
4bb31e92
AJ
642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 btree_readahead_hook(root, eb, eb->start, ret);
645 }
646
0b32f4bb
JB
647 if (ret)
648 clear_extent_buffer_uptodate(eb);
649 free_extent_buffer(eb);
ce9adaa5 650out:
f188591e 651 return ret;
ce9adaa5
CM
652}
653
ea466794 654static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 655{
4bb31e92
AJ
656 struct extent_buffer *eb;
657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
4f2de97a 659 eb = (struct extent_buffer *)page->private;
ea466794 660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 661 eb->read_mirror = failed_mirror;
ea466794 662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 663 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
664 return -EIO; /* we fixed nothing */
665}
666
ce9adaa5 667static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
668{
669 struct end_io_wq *end_io_wq = bio->bi_private;
670 struct btrfs_fs_info *fs_info;
ce9adaa5 671
ce9adaa5 672 fs_info = end_io_wq->info;
ce9adaa5 673 end_io_wq->error = err;
8b712842
CM
674 end_io_wq->work.func = end_workqueue_fn;
675 end_io_wq->work.flags = 0;
d20f7043 676
7b6d91da 677 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 678 if (end_io_wq->metadata == 1)
cad321ad
CM
679 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 &end_io_wq->work);
0cb59c99
JB
681 else if (end_io_wq->metadata == 2)
682 btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 &end_io_wq->work);
cad321ad
CM
684 else
685 btrfs_queue_worker(&fs_info->endio_write_workers,
686 &end_io_wq->work);
d20f7043
CM
687 } else {
688 if (end_io_wq->metadata)
689 btrfs_queue_worker(&fs_info->endio_meta_workers,
690 &end_io_wq->work);
691 else
692 btrfs_queue_worker(&fs_info->endio_workers,
693 &end_io_wq->work);
694 }
ce9adaa5
CM
695}
696
0cb59c99
JB
697/*
698 * For the metadata arg you want
699 *
700 * 0 - if data
701 * 1 - if normal metadta
702 * 2 - if writing to the free space cache area
703 */
22c59948
CM
704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 int metadata)
0b86a832 706{
ce9adaa5 707 struct end_io_wq *end_io_wq;
ce9adaa5
CM
708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 if (!end_io_wq)
710 return -ENOMEM;
711
712 end_io_wq->private = bio->bi_private;
713 end_io_wq->end_io = bio->bi_end_io;
22c59948 714 end_io_wq->info = info;
ce9adaa5
CM
715 end_io_wq->error = 0;
716 end_io_wq->bio = bio;
22c59948 717 end_io_wq->metadata = metadata;
ce9adaa5
CM
718
719 bio->bi_private = end_io_wq;
720 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
721 return 0;
722}
723
b64a2851 724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 725{
4854ddd0
CM
726 unsigned long limit = min_t(unsigned long,
727 info->workers.max_workers,
728 info->fs_devices->open_devices);
729 return 256 * limit;
730}
0986fe9e 731
4a69a410
CM
732static void run_one_async_start(struct btrfs_work *work)
733{
4a69a410 734 struct async_submit_bio *async;
79787eaa 735 int ret;
4a69a410
CM
736
737 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
738 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 async->mirror_num, async->bio_flags,
740 async->bio_offset);
741 if (ret)
742 async->error = ret;
4a69a410
CM
743}
744
745static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
746{
747 struct btrfs_fs_info *fs_info;
748 struct async_submit_bio *async;
4854ddd0 749 int limit;
8b712842
CM
750
751 async = container_of(work, struct async_submit_bio, work);
752 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 753
b64a2851 754 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
755 limit = limit * 2 / 3;
756
8b712842 757 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 758
b64a2851
CM
759 if (atomic_read(&fs_info->nr_async_submits) < limit &&
760 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
761 wake_up(&fs_info->async_submit_wait);
762
79787eaa
JM
763 /* If an error occured we just want to clean up the bio and move on */
764 if (async->error) {
765 bio_endio(async->bio, async->error);
766 return;
767 }
768
4a69a410 769 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
4a69a410
CM
772}
773
774static void run_one_async_free(struct btrfs_work *work)
775{
776 struct async_submit_bio *async;
777
778 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
779 kfree(async);
780}
781
44b8bd7e
CM
782int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
783 int rw, struct bio *bio, int mirror_num,
c8b97818 784 unsigned long bio_flags,
eaf25d93 785 u64 bio_offset,
4a69a410
CM
786 extent_submit_bio_hook_t *submit_bio_start,
787 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
788{
789 struct async_submit_bio *async;
790
791 async = kmalloc(sizeof(*async), GFP_NOFS);
792 if (!async)
793 return -ENOMEM;
794
795 async->inode = inode;
796 async->rw = rw;
797 async->bio = bio;
798 async->mirror_num = mirror_num;
4a69a410
CM
799 async->submit_bio_start = submit_bio_start;
800 async->submit_bio_done = submit_bio_done;
801
802 async->work.func = run_one_async_start;
803 async->work.ordered_func = run_one_async_done;
804 async->work.ordered_free = run_one_async_free;
805
8b712842 806 async->work.flags = 0;
c8b97818 807 async->bio_flags = bio_flags;
eaf25d93 808 async->bio_offset = bio_offset;
8c8bee1d 809
79787eaa
JM
810 async->error = 0;
811
cb03c743 812 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 813
7b6d91da 814 if (rw & REQ_SYNC)
d313d7a3
CM
815 btrfs_set_work_high_prio(&async->work);
816
8b712842 817 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 818
d397712b 819 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
820 atomic_read(&fs_info->nr_async_submits)) {
821 wait_event(fs_info->async_submit_wait,
822 (atomic_read(&fs_info->nr_async_submits) == 0));
823 }
824
44b8bd7e
CM
825 return 0;
826}
827
ce3ed71a
CM
828static int btree_csum_one_bio(struct bio *bio)
829{
830 struct bio_vec *bvec = bio->bi_io_vec;
831 int bio_index = 0;
832 struct btrfs_root *root;
79787eaa 833 int ret = 0;
ce3ed71a
CM
834
835 WARN_ON(bio->bi_vcnt <= 0);
d397712b 836 while (bio_index < bio->bi_vcnt) {
ce3ed71a 837 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
838 ret = csum_dirty_buffer(root, bvec->bv_page);
839 if (ret)
840 break;
ce3ed71a
CM
841 bio_index++;
842 bvec++;
843 }
79787eaa 844 return ret;
ce3ed71a
CM
845}
846
4a69a410
CM
847static int __btree_submit_bio_start(struct inode *inode, int rw,
848 struct bio *bio, int mirror_num,
eaf25d93
CM
849 unsigned long bio_flags,
850 u64 bio_offset)
22c59948 851{
8b712842
CM
852 /*
853 * when we're called for a write, we're already in the async
5443be45 854 * submission context. Just jump into btrfs_map_bio
8b712842 855 */
79787eaa 856 return btree_csum_one_bio(bio);
4a69a410 857}
22c59948 858
4a69a410 859static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
860 int mirror_num, unsigned long bio_flags,
861 u64 bio_offset)
4a69a410 862{
8b712842 863 /*
4a69a410
CM
864 * when we're called for a write, we're already in the async
865 * submission context. Just jump into btrfs_map_bio
8b712842 866 */
8b712842 867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
868}
869
44b8bd7e 870static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
871 int mirror_num, unsigned long bio_flags,
872 u64 bio_offset)
44b8bd7e 873{
cad321ad
CM
874 int ret;
875
7b6d91da 876 if (!(rw & REQ_WRITE)) {
f3f266ab 877
4a69a410
CM
878 /*
879 * called for a read, do the setup so that checksum validation
880 * can happen in the async kernel threads
881 */
f3f266ab
CM
882 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
883 bio, 1);
1d4284bd
CM
884 if (ret)
885 return ret;
4a69a410 886 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 887 mirror_num, 0);
44b8bd7e 888 }
d313d7a3 889
cad321ad
CM
890 /*
891 * kthread helpers are used to submit writes so that checksumming
892 * can happen in parallel across all CPUs
893 */
44b8bd7e 894 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 895 inode, rw, bio, mirror_num, 0,
eaf25d93 896 bio_offset,
4a69a410
CM
897 __btree_submit_bio_start,
898 __btree_submit_bio_done);
44b8bd7e
CM
899}
900
3dd1462e 901#ifdef CONFIG_MIGRATION
784b4e29 902static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
903 struct page *newpage, struct page *page,
904 enum migrate_mode mode)
784b4e29
CM
905{
906 /*
907 * we can't safely write a btree page from here,
908 * we haven't done the locking hook
909 */
910 if (PageDirty(page))
911 return -EAGAIN;
912 /*
913 * Buffers may be managed in a filesystem specific way.
914 * We must have no buffers or drop them.
915 */
916 if (page_has_private(page) &&
917 !try_to_release_page(page, GFP_KERNEL))
918 return -EAGAIN;
a6bc32b8 919 return migrate_page(mapping, newpage, page, mode);
784b4e29 920}
3dd1462e 921#endif
784b4e29 922
0da5468f
CM
923
924static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
926{
d1310b2e
CM
927 struct extent_io_tree *tree;
928 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 929 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 930 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 931 u64 num_dirty;
24ab9cd8 932 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
933
934 if (wbc->for_kupdate)
935 return 0;
936
b9473439
CM
937 /* this is a bit racy, but that's ok */
938 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 939 if (num_dirty < thresh)
793955bc 940 return 0;
793955bc 941 }
0b32f4bb 942 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
943}
944
b2950863 945static int btree_readpage(struct file *file, struct page *page)
5f39d397 946{
d1310b2e
CM
947 struct extent_io_tree *tree;
948 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 949 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 950}
22b0ebda 951
70dec807 952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 953{
98509cfc 954 if (PageWriteback(page) || PageDirty(page))
d397712b 955 return 0;
0c4e538b
DS
956 /*
957 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
958 * slab allocation from alloc_extent_state down the callchain where
959 * it'd hit a BUG_ON as those flags are not allowed.
960 */
961 gfp_flags &= ~GFP_SLAB_BUG_MASK;
962
3083ee2e 963 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
964}
965
5f39d397 966static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 967{
d1310b2e
CM
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
970 extent_invalidatepage(tree, page, offset);
971 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 972 if (PagePrivate(page)) {
d397712b
CM
973 printk(KERN_WARNING "btrfs warning page private not zero "
974 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
975 ClearPagePrivate(page);
976 set_page_private(page, 0);
977 page_cache_release(page);
978 }
d98237b3
CM
979}
980
0b32f4bb
JB
981static int btree_set_page_dirty(struct page *page)
982{
983 struct extent_buffer *eb;
984
985 BUG_ON(!PagePrivate(page));
986 eb = (struct extent_buffer *)page->private;
987 BUG_ON(!eb);
988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 BUG_ON(!atomic_read(&eb->refs));
990 btrfs_assert_tree_locked(eb);
991 return __set_page_dirty_nobuffers(page);
992}
993
7f09410b 994static const struct address_space_operations btree_aops = {
d98237b3 995 .readpage = btree_readpage,
0da5468f 996 .writepages = btree_writepages,
5f39d397
CM
997 .releasepage = btree_releasepage,
998 .invalidatepage = btree_invalidatepage,
5a92bc88 999#ifdef CONFIG_MIGRATION
784b4e29 1000 .migratepage = btree_migratepage,
5a92bc88 1001#endif
0b32f4bb 1002 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1003};
1004
ca7a79ad
CM
1005int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006 u64 parent_transid)
090d1875 1007{
5f39d397
CM
1008 struct extent_buffer *buf = NULL;
1009 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1010 int ret = 0;
090d1875 1011
db94535d 1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1013 if (!buf)
090d1875 1014 return 0;
d1310b2e 1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1016 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1017 free_extent_buffer(buf);
de428b63 1018 return ret;
090d1875
CM
1019}
1020
ab0fff03
AJ
1021int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022 int mirror_num, struct extent_buffer **eb)
1023{
1024 struct extent_buffer *buf = NULL;
1025 struct inode *btree_inode = root->fs_info->btree_inode;
1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 int ret;
1028
1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030 if (!buf)
1031 return 0;
1032
1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036 btree_get_extent, mirror_num);
1037 if (ret) {
1038 free_extent_buffer(buf);
1039 return ret;
1040 }
1041
1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043 free_extent_buffer(buf);
1044 return -EIO;
0b32f4bb 1045 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1046 *eb = buf;
1047 } else {
1048 free_extent_buffer(buf);
1049 }
1050 return 0;
1051}
1052
0999df54
CM
1053struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054 u64 bytenr, u32 blocksize)
1055{
1056 struct inode *btree_inode = root->fs_info->btree_inode;
1057 struct extent_buffer *eb;
1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1059 bytenr, blocksize);
0999df54
CM
1060 return eb;
1061}
1062
1063struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064 u64 bytenr, u32 blocksize)
1065{
1066 struct inode *btree_inode = root->fs_info->btree_inode;
1067 struct extent_buffer *eb;
1068
1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1070 bytenr, blocksize);
0999df54
CM
1071 return eb;
1072}
1073
1074
e02119d5
CM
1075int btrfs_write_tree_block(struct extent_buffer *buf)
1076{
727011e0 1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1078 buf->start + buf->len - 1);
e02119d5
CM
1079}
1080
1081int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082{
727011e0 1083 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1084 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1085}
1086
0999df54 1087struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1088 u32 blocksize, u64 parent_transid)
0999df54
CM
1089{
1090 struct extent_buffer *buf = NULL;
0999df54
CM
1091 int ret;
1092
0999df54
CM
1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094 if (!buf)
1095 return NULL;
0999df54 1096
ca7a79ad 1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1098 return buf;
ce9adaa5 1099
eb60ceac
CM
1100}
1101
d5c13f92
JM
1102void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103 struct extent_buffer *buf)
ed2ff2cb 1104{
55c69072 1105 if (btrfs_header_generation(buf) ==
925baedd 1106 root->fs_info->running_transaction->transid) {
b9447ef8 1107 btrfs_assert_tree_locked(buf);
b4ce94de 1108
b9473439
CM
1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110 spin_lock(&root->fs_info->delalloc_lock);
1111 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1113 else {
1114 spin_unlock(&root->fs_info->delalloc_lock);
1115 btrfs_panic(root->fs_info, -EOVERFLOW,
1116 "Can't clear %lu bytes from "
533574c6 1117 " dirty_mdatadata_bytes (%llu)",
d5c13f92
JM
1118 buf->len,
1119 root->fs_info->dirty_metadata_bytes);
1120 }
b9473439
CM
1121 spin_unlock(&root->fs_info->delalloc_lock);
1122 }
b4ce94de 1123
b9473439
CM
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf);
0b32f4bb 1126 clear_extent_buffer_dirty(buf);
925baedd 1127 }
5f39d397
CM
1128}
1129
143bede5
JM
1130static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131 u32 stripesize, struct btrfs_root *root,
1132 struct btrfs_fs_info *fs_info,
1133 u64 objectid)
d97e63b6 1134{
cfaa7295 1135 root->node = NULL;
a28ec197 1136 root->commit_root = NULL;
db94535d
CM
1137 root->sectorsize = sectorsize;
1138 root->nodesize = nodesize;
1139 root->leafsize = leafsize;
87ee04eb 1140 root->stripesize = stripesize;
123abc88 1141 root->ref_cows = 0;
0b86a832 1142 root->track_dirty = 0;
c71bf099 1143 root->in_radix = 0;
d68fc57b
YZ
1144 root->orphan_item_inserted = 0;
1145 root->orphan_cleanup_state = 0;
0b86a832 1146
0f7d52f4
CM
1147 root->objectid = objectid;
1148 root->last_trans = 0;
13a8a7c8 1149 root->highest_objectid = 0;
58176a96 1150 root->name = NULL;
6bef4d31 1151 root->inode_tree = RB_ROOT;
16cdcec7 1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1153 root->block_rsv = NULL;
d68fc57b 1154 root->orphan_block_rsv = NULL;
0b86a832
CM
1155
1156 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1157 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1158 spin_lock_init(&root->orphan_lock);
5d4f98a2 1159 spin_lock_init(&root->inode_lock);
f0486c68 1160 spin_lock_init(&root->accounting_lock);
a2135011 1161 mutex_init(&root->objectid_mutex);
e02119d5 1162 mutex_init(&root->log_mutex);
7237f183
YZ
1163 init_waitqueue_head(&root->log_writer_wait);
1164 init_waitqueue_head(&root->log_commit_wait[0]);
1165 init_waitqueue_head(&root->log_commit_wait[1]);
1166 atomic_set(&root->log_commit[0], 0);
1167 atomic_set(&root->log_commit[1], 0);
1168 atomic_set(&root->log_writers, 0);
8a35d95f 1169 atomic_set(&root->orphan_inodes, 0);
7237f183
YZ
1170 root->log_batch = 0;
1171 root->log_transid = 0;
257c62e1 1172 root->last_log_commit = 0;
d0c803c4 1173 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1174 fs_info->btree_inode->i_mapping);
017e5369 1175
3768f368
CM
1176 memset(&root->root_key, 0, sizeof(root->root_key));
1177 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1180 root->defrag_trans_start = fs_info->generation;
58176a96 1181 init_completion(&root->kobj_unregister);
6702ed49 1182 root->defrag_running = 0;
4d775673 1183 root->root_key.objectid = objectid;
0ee5dc67 1184 root->anon_dev = 0;
8ea05e3a
AB
1185
1186 spin_lock_init(&root->root_times_lock);
3768f368
CM
1187}
1188
200a5c17
JM
1189static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1190 struct btrfs_fs_info *fs_info,
1191 u64 objectid,
1192 struct btrfs_root *root)
3768f368
CM
1193{
1194 int ret;
db94535d 1195 u32 blocksize;
84234f3a 1196 u64 generation;
3768f368 1197
db94535d 1198 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1199 tree_root->sectorsize, tree_root->stripesize,
1200 root, fs_info, objectid);
3768f368
CM
1201 ret = btrfs_find_last_root(tree_root, objectid,
1202 &root->root_item, &root->root_key);
4df27c4d
YZ
1203 if (ret > 0)
1204 return -ENOENT;
200a5c17
JM
1205 else if (ret < 0)
1206 return ret;
3768f368 1207
84234f3a 1208 generation = btrfs_root_generation(&root->root_item);
db94535d 1209 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1210 root->commit_root = NULL;
db94535d 1211 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1212 blocksize, generation);
b9fab919 1213 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1214 free_extent_buffer(root->node);
af31f5e5 1215 root->node = NULL;
68433b73
CM
1216 return -EIO;
1217 }
4df27c4d 1218 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1219 return 0;
1220}
1221
f84a8bd6 1222static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1223{
1224 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1225 if (root)
1226 root->fs_info = fs_info;
1227 return root;
1228}
1229
20897f5c
AJ
1230struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1231 struct btrfs_fs_info *fs_info,
1232 u64 objectid)
1233{
1234 struct extent_buffer *leaf;
1235 struct btrfs_root *tree_root = fs_info->tree_root;
1236 struct btrfs_root *root;
1237 struct btrfs_key key;
1238 int ret = 0;
1239 u64 bytenr;
1240
1241 root = btrfs_alloc_root(fs_info);
1242 if (!root)
1243 return ERR_PTR(-ENOMEM);
1244
1245 __setup_root(tree_root->nodesize, tree_root->leafsize,
1246 tree_root->sectorsize, tree_root->stripesize,
1247 root, fs_info, objectid);
1248 root->root_key.objectid = objectid;
1249 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1250 root->root_key.offset = 0;
1251
1252 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1253 0, objectid, NULL, 0, 0, 0);
1254 if (IS_ERR(leaf)) {
1255 ret = PTR_ERR(leaf);
1256 goto fail;
1257 }
1258
1259 bytenr = leaf->start;
1260 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1261 btrfs_set_header_bytenr(leaf, leaf->start);
1262 btrfs_set_header_generation(leaf, trans->transid);
1263 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1264 btrfs_set_header_owner(leaf, objectid);
1265 root->node = leaf;
1266
1267 write_extent_buffer(leaf, fs_info->fsid,
1268 (unsigned long)btrfs_header_fsid(leaf),
1269 BTRFS_FSID_SIZE);
1270 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1271 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1272 BTRFS_UUID_SIZE);
1273 btrfs_mark_buffer_dirty(leaf);
1274
1275 root->commit_root = btrfs_root_node(root);
1276 root->track_dirty = 1;
1277
1278
1279 root->root_item.flags = 0;
1280 root->root_item.byte_limit = 0;
1281 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1282 btrfs_set_root_generation(&root->root_item, trans->transid);
1283 btrfs_set_root_level(&root->root_item, 0);
1284 btrfs_set_root_refs(&root->root_item, 1);
1285 btrfs_set_root_used(&root->root_item, leaf->len);
1286 btrfs_set_root_last_snapshot(&root->root_item, 0);
1287 btrfs_set_root_dirid(&root->root_item, 0);
1288 root->root_item.drop_level = 0;
1289
1290 key.objectid = objectid;
1291 key.type = BTRFS_ROOT_ITEM_KEY;
1292 key.offset = 0;
1293 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1294 if (ret)
1295 goto fail;
1296
1297 btrfs_tree_unlock(leaf);
1298
1299fail:
1300 if (ret)
1301 return ERR_PTR(ret);
1302
1303 return root;
1304}
1305
7237f183
YZ
1306static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1307 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1308{
1309 struct btrfs_root *root;
1310 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1311 struct extent_buffer *leaf;
e02119d5 1312
6f07e42e 1313 root = btrfs_alloc_root(fs_info);
e02119d5 1314 if (!root)
7237f183 1315 return ERR_PTR(-ENOMEM);
e02119d5
CM
1316
1317 __setup_root(tree_root->nodesize, tree_root->leafsize,
1318 tree_root->sectorsize, tree_root->stripesize,
1319 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1320
1321 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1322 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1323 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1324 /*
1325 * log trees do not get reference counted because they go away
1326 * before a real commit is actually done. They do store pointers
1327 * to file data extents, and those reference counts still get
1328 * updated (along with back refs to the log tree).
1329 */
e02119d5
CM
1330 root->ref_cows = 0;
1331
5d4f98a2 1332 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1333 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1334 0, 0, 0);
7237f183
YZ
1335 if (IS_ERR(leaf)) {
1336 kfree(root);
1337 return ERR_CAST(leaf);
1338 }
e02119d5 1339
5d4f98a2
YZ
1340 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1341 btrfs_set_header_bytenr(leaf, leaf->start);
1342 btrfs_set_header_generation(leaf, trans->transid);
1343 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1344 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1345 root->node = leaf;
e02119d5
CM
1346
1347 write_extent_buffer(root->node, root->fs_info->fsid,
1348 (unsigned long)btrfs_header_fsid(root->node),
1349 BTRFS_FSID_SIZE);
1350 btrfs_mark_buffer_dirty(root->node);
1351 btrfs_tree_unlock(root->node);
7237f183
YZ
1352 return root;
1353}
1354
1355int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1356 struct btrfs_fs_info *fs_info)
1357{
1358 struct btrfs_root *log_root;
1359
1360 log_root = alloc_log_tree(trans, fs_info);
1361 if (IS_ERR(log_root))
1362 return PTR_ERR(log_root);
1363 WARN_ON(fs_info->log_root_tree);
1364 fs_info->log_root_tree = log_root;
1365 return 0;
1366}
1367
1368int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root)
1370{
1371 struct btrfs_root *log_root;
1372 struct btrfs_inode_item *inode_item;
1373
1374 log_root = alloc_log_tree(trans, root->fs_info);
1375 if (IS_ERR(log_root))
1376 return PTR_ERR(log_root);
1377
1378 log_root->last_trans = trans->transid;
1379 log_root->root_key.offset = root->root_key.objectid;
1380
1381 inode_item = &log_root->root_item.inode;
1382 inode_item->generation = cpu_to_le64(1);
1383 inode_item->size = cpu_to_le64(3);
1384 inode_item->nlink = cpu_to_le32(1);
1385 inode_item->nbytes = cpu_to_le64(root->leafsize);
1386 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1387
5d4f98a2 1388 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1389
1390 WARN_ON(root->log_root);
1391 root->log_root = log_root;
1392 root->log_transid = 0;
257c62e1 1393 root->last_log_commit = 0;
e02119d5
CM
1394 return 0;
1395}
1396
1397struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1398 struct btrfs_key *location)
1399{
1400 struct btrfs_root *root;
1401 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1402 struct btrfs_path *path;
5f39d397 1403 struct extent_buffer *l;
84234f3a 1404 u64 generation;
db94535d 1405 u32 blocksize;
0f7d52f4 1406 int ret = 0;
8ea05e3a 1407 int slot;
0f7d52f4 1408
6f07e42e 1409 root = btrfs_alloc_root(fs_info);
0cf6c620 1410 if (!root)
0f7d52f4 1411 return ERR_PTR(-ENOMEM);
0f7d52f4 1412 if (location->offset == (u64)-1) {
db94535d 1413 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1414 location->objectid, root);
1415 if (ret) {
0f7d52f4
CM
1416 kfree(root);
1417 return ERR_PTR(ret);
1418 }
13a8a7c8 1419 goto out;
0f7d52f4
CM
1420 }
1421
db94535d 1422 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1423 tree_root->sectorsize, tree_root->stripesize,
1424 root, fs_info, location->objectid);
0f7d52f4
CM
1425
1426 path = btrfs_alloc_path();
db5b493a
TI
1427 if (!path) {
1428 kfree(root);
1429 return ERR_PTR(-ENOMEM);
1430 }
0f7d52f4 1431 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1432 if (ret == 0) {
1433 l = path->nodes[0];
8ea05e3a
AB
1434 slot = path->slots[0];
1435 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
13a8a7c8 1436 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1437 }
0f7d52f4
CM
1438 btrfs_free_path(path);
1439 if (ret) {
5e540f77 1440 kfree(root);
13a8a7c8
YZ
1441 if (ret > 0)
1442 ret = -ENOENT;
0f7d52f4
CM
1443 return ERR_PTR(ret);
1444 }
13a8a7c8 1445
84234f3a 1446 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1447 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1448 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1449 blocksize, generation);
5d4f98a2 1450 root->commit_root = btrfs_root_node(root);
79787eaa 1451 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1452out:
08fe4db1 1453 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1454 root->ref_cows = 1;
08fe4db1
LZ
1455 btrfs_check_and_init_root_item(&root->root_item);
1456 }
13a8a7c8 1457
5eda7b5e
CM
1458 return root;
1459}
1460
edbd8d4e
CM
1461struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1462 struct btrfs_key *location)
5eda7b5e
CM
1463{
1464 struct btrfs_root *root;
1465 int ret;
1466
edbd8d4e
CM
1467 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1468 return fs_info->tree_root;
1469 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1470 return fs_info->extent_root;
8f18cf13
CM
1471 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1472 return fs_info->chunk_root;
1473 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1474 return fs_info->dev_root;
0403e47e
YZ
1475 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1476 return fs_info->csum_root;
bcef60f2
AJ
1477 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1478 return fs_info->quota_root ? fs_info->quota_root :
1479 ERR_PTR(-ENOENT);
4df27c4d
YZ
1480again:
1481 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1482 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1483 (unsigned long)location->objectid);
4df27c4d 1484 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1485 if (root)
1486 return root;
1487
e02119d5 1488 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1489 if (IS_ERR(root))
1490 return root;
3394e160 1491
581bb050 1492 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1493 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1494 GFP_NOFS);
35a30d7c
DS
1495 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1496 ret = -ENOMEM;
581bb050 1497 goto fail;
35a30d7c 1498 }
581bb050
LZ
1499
1500 btrfs_init_free_ino_ctl(root);
1501 mutex_init(&root->fs_commit_mutex);
1502 spin_lock_init(&root->cache_lock);
1503 init_waitqueue_head(&root->cache_wait);
1504
0ee5dc67 1505 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1506 if (ret)
1507 goto fail;
3394e160 1508
d68fc57b
YZ
1509 if (btrfs_root_refs(&root->root_item) == 0) {
1510 ret = -ENOENT;
1511 goto fail;
1512 }
1513
1514 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1515 if (ret < 0)
1516 goto fail;
1517 if (ret == 0)
1518 root->orphan_item_inserted = 1;
1519
4df27c4d
YZ
1520 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1521 if (ret)
1522 goto fail;
1523
1524 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1525 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1526 (unsigned long)root->root_key.objectid,
0f7d52f4 1527 root);
d68fc57b 1528 if (ret == 0)
4df27c4d 1529 root->in_radix = 1;
d68fc57b 1530
4df27c4d
YZ
1531 spin_unlock(&fs_info->fs_roots_radix_lock);
1532 radix_tree_preload_end();
0f7d52f4 1533 if (ret) {
4df27c4d
YZ
1534 if (ret == -EEXIST) {
1535 free_fs_root(root);
1536 goto again;
1537 }
1538 goto fail;
0f7d52f4 1539 }
4df27c4d
YZ
1540
1541 ret = btrfs_find_dead_roots(fs_info->tree_root,
1542 root->root_key.objectid);
1543 WARN_ON(ret);
edbd8d4e 1544 return root;
4df27c4d
YZ
1545fail:
1546 free_fs_root(root);
1547 return ERR_PTR(ret);
edbd8d4e
CM
1548}
1549
04160088
CM
1550static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1551{
1552 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1553 int ret = 0;
04160088
CM
1554 struct btrfs_device *device;
1555 struct backing_dev_info *bdi;
b7967db7 1556
1f78160c
XG
1557 rcu_read_lock();
1558 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1559 if (!device->bdev)
1560 continue;
04160088
CM
1561 bdi = blk_get_backing_dev_info(device->bdev);
1562 if (bdi && bdi_congested(bdi, bdi_bits)) {
1563 ret = 1;
1564 break;
1565 }
1566 }
1f78160c 1567 rcu_read_unlock();
04160088
CM
1568 return ret;
1569}
1570
ad081f14
JA
1571/*
1572 * If this fails, caller must call bdi_destroy() to get rid of the
1573 * bdi again.
1574 */
04160088
CM
1575static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1576{
ad081f14
JA
1577 int err;
1578
1579 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1580 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1581 if (err)
1582 return err;
1583
4575c9cc 1584 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1585 bdi->congested_fn = btrfs_congested_fn;
1586 bdi->congested_data = info;
1587 return 0;
1588}
1589
8b712842
CM
1590/*
1591 * called by the kthread helper functions to finally call the bio end_io
1592 * functions. This is where read checksum verification actually happens
1593 */
1594static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1595{
ce9adaa5 1596 struct bio *bio;
8b712842
CM
1597 struct end_io_wq *end_io_wq;
1598 struct btrfs_fs_info *fs_info;
ce9adaa5 1599 int error;
ce9adaa5 1600
8b712842
CM
1601 end_io_wq = container_of(work, struct end_io_wq, work);
1602 bio = end_io_wq->bio;
1603 fs_info = end_io_wq->info;
ce9adaa5 1604
8b712842
CM
1605 error = end_io_wq->error;
1606 bio->bi_private = end_io_wq->private;
1607 bio->bi_end_io = end_io_wq->end_io;
1608 kfree(end_io_wq);
8b712842 1609 bio_endio(bio, error);
44b8bd7e
CM
1610}
1611
a74a4b97
CM
1612static int cleaner_kthread(void *arg)
1613{
1614 struct btrfs_root *root = arg;
1615
1616 do {
76dda93c
YZ
1617 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1618 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1619 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1620 btrfs_clean_old_snapshots(root);
1621 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1622 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1623 }
a74a4b97 1624
a0acae0e 1625 if (!try_to_freeze()) {
a74a4b97 1626 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1627 if (!kthread_should_stop())
1628 schedule();
a74a4b97
CM
1629 __set_current_state(TASK_RUNNING);
1630 }
1631 } while (!kthread_should_stop());
1632 return 0;
1633}
1634
1635static int transaction_kthread(void *arg)
1636{
1637 struct btrfs_root *root = arg;
1638 struct btrfs_trans_handle *trans;
1639 struct btrfs_transaction *cur;
8929ecfa 1640 u64 transid;
a74a4b97
CM
1641 unsigned long now;
1642 unsigned long delay;
914b2007 1643 bool cannot_commit;
a74a4b97
CM
1644
1645 do {
914b2007 1646 cannot_commit = false;
a74a4b97 1647 delay = HZ * 30;
a74a4b97
CM
1648 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1649
a4abeea4 1650 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1651 cur = root->fs_info->running_transaction;
1652 if (!cur) {
a4abeea4 1653 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1654 goto sleep;
1655 }
31153d81 1656
a74a4b97 1657 now = get_seconds();
8929ecfa
YZ
1658 if (!cur->blocked &&
1659 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1660 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1661 delay = HZ * 5;
1662 goto sleep;
1663 }
8929ecfa 1664 transid = cur->transid;
a4abeea4 1665 spin_unlock(&root->fs_info->trans_lock);
56bec294 1666
79787eaa 1667 /* If the file system is aborted, this will always fail. */
7a7eaa40 1668 trans = btrfs_join_transaction(root);
914b2007
JK
1669 if (IS_ERR(trans)) {
1670 cannot_commit = true;
79787eaa 1671 goto sleep;
914b2007 1672 }
8929ecfa 1673 if (transid == trans->transid) {
79787eaa 1674 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1675 } else {
1676 btrfs_end_transaction(trans, root);
1677 }
a74a4b97
CM
1678sleep:
1679 wake_up_process(root->fs_info->cleaner_kthread);
1680 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1681
a0acae0e 1682 if (!try_to_freeze()) {
a74a4b97 1683 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1684 if (!kthread_should_stop() &&
914b2007
JK
1685 (!btrfs_transaction_blocked(root->fs_info) ||
1686 cannot_commit))
8929ecfa 1687 schedule_timeout(delay);
a74a4b97
CM
1688 __set_current_state(TASK_RUNNING);
1689 }
1690 } while (!kthread_should_stop());
1691 return 0;
1692}
1693
af31f5e5
CM
1694/*
1695 * this will find the highest generation in the array of
1696 * root backups. The index of the highest array is returned,
1697 * or -1 if we can't find anything.
1698 *
1699 * We check to make sure the array is valid by comparing the
1700 * generation of the latest root in the array with the generation
1701 * in the super block. If they don't match we pitch it.
1702 */
1703static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1704{
1705 u64 cur;
1706 int newest_index = -1;
1707 struct btrfs_root_backup *root_backup;
1708 int i;
1709
1710 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1711 root_backup = info->super_copy->super_roots + i;
1712 cur = btrfs_backup_tree_root_gen(root_backup);
1713 if (cur == newest_gen)
1714 newest_index = i;
1715 }
1716
1717 /* check to see if we actually wrapped around */
1718 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1719 root_backup = info->super_copy->super_roots;
1720 cur = btrfs_backup_tree_root_gen(root_backup);
1721 if (cur == newest_gen)
1722 newest_index = 0;
1723 }
1724 return newest_index;
1725}
1726
1727
1728/*
1729 * find the oldest backup so we know where to store new entries
1730 * in the backup array. This will set the backup_root_index
1731 * field in the fs_info struct
1732 */
1733static void find_oldest_super_backup(struct btrfs_fs_info *info,
1734 u64 newest_gen)
1735{
1736 int newest_index = -1;
1737
1738 newest_index = find_newest_super_backup(info, newest_gen);
1739 /* if there was garbage in there, just move along */
1740 if (newest_index == -1) {
1741 info->backup_root_index = 0;
1742 } else {
1743 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1744 }
1745}
1746
1747/*
1748 * copy all the root pointers into the super backup array.
1749 * this will bump the backup pointer by one when it is
1750 * done
1751 */
1752static void backup_super_roots(struct btrfs_fs_info *info)
1753{
1754 int next_backup;
1755 struct btrfs_root_backup *root_backup;
1756 int last_backup;
1757
1758 next_backup = info->backup_root_index;
1759 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1760 BTRFS_NUM_BACKUP_ROOTS;
1761
1762 /*
1763 * just overwrite the last backup if we're at the same generation
1764 * this happens only at umount
1765 */
1766 root_backup = info->super_for_commit->super_roots + last_backup;
1767 if (btrfs_backup_tree_root_gen(root_backup) ==
1768 btrfs_header_generation(info->tree_root->node))
1769 next_backup = last_backup;
1770
1771 root_backup = info->super_for_commit->super_roots + next_backup;
1772
1773 /*
1774 * make sure all of our padding and empty slots get zero filled
1775 * regardless of which ones we use today
1776 */
1777 memset(root_backup, 0, sizeof(*root_backup));
1778
1779 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1780
1781 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1782 btrfs_set_backup_tree_root_gen(root_backup,
1783 btrfs_header_generation(info->tree_root->node));
1784
1785 btrfs_set_backup_tree_root_level(root_backup,
1786 btrfs_header_level(info->tree_root->node));
1787
1788 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1789 btrfs_set_backup_chunk_root_gen(root_backup,
1790 btrfs_header_generation(info->chunk_root->node));
1791 btrfs_set_backup_chunk_root_level(root_backup,
1792 btrfs_header_level(info->chunk_root->node));
1793
1794 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1795 btrfs_set_backup_extent_root_gen(root_backup,
1796 btrfs_header_generation(info->extent_root->node));
1797 btrfs_set_backup_extent_root_level(root_backup,
1798 btrfs_header_level(info->extent_root->node));
1799
7c7e82a7
CM
1800 /*
1801 * we might commit during log recovery, which happens before we set
1802 * the fs_root. Make sure it is valid before we fill it in.
1803 */
1804 if (info->fs_root && info->fs_root->node) {
1805 btrfs_set_backup_fs_root(root_backup,
1806 info->fs_root->node->start);
1807 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1808 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1809 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1810 btrfs_header_level(info->fs_root->node));
7c7e82a7 1811 }
af31f5e5
CM
1812
1813 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1814 btrfs_set_backup_dev_root_gen(root_backup,
1815 btrfs_header_generation(info->dev_root->node));
1816 btrfs_set_backup_dev_root_level(root_backup,
1817 btrfs_header_level(info->dev_root->node));
1818
1819 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1820 btrfs_set_backup_csum_root_gen(root_backup,
1821 btrfs_header_generation(info->csum_root->node));
1822 btrfs_set_backup_csum_root_level(root_backup,
1823 btrfs_header_level(info->csum_root->node));
1824
1825 btrfs_set_backup_total_bytes(root_backup,
1826 btrfs_super_total_bytes(info->super_copy));
1827 btrfs_set_backup_bytes_used(root_backup,
1828 btrfs_super_bytes_used(info->super_copy));
1829 btrfs_set_backup_num_devices(root_backup,
1830 btrfs_super_num_devices(info->super_copy));
1831
1832 /*
1833 * if we don't copy this out to the super_copy, it won't get remembered
1834 * for the next commit
1835 */
1836 memcpy(&info->super_copy->super_roots,
1837 &info->super_for_commit->super_roots,
1838 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1839}
1840
1841/*
1842 * this copies info out of the root backup array and back into
1843 * the in-memory super block. It is meant to help iterate through
1844 * the array, so you send it the number of backups you've already
1845 * tried and the last backup index you used.
1846 *
1847 * this returns -1 when it has tried all the backups
1848 */
1849static noinline int next_root_backup(struct btrfs_fs_info *info,
1850 struct btrfs_super_block *super,
1851 int *num_backups_tried, int *backup_index)
1852{
1853 struct btrfs_root_backup *root_backup;
1854 int newest = *backup_index;
1855
1856 if (*num_backups_tried == 0) {
1857 u64 gen = btrfs_super_generation(super);
1858
1859 newest = find_newest_super_backup(info, gen);
1860 if (newest == -1)
1861 return -1;
1862
1863 *backup_index = newest;
1864 *num_backups_tried = 1;
1865 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1866 /* we've tried all the backups, all done */
1867 return -1;
1868 } else {
1869 /* jump to the next oldest backup */
1870 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1871 BTRFS_NUM_BACKUP_ROOTS;
1872 *backup_index = newest;
1873 *num_backups_tried += 1;
1874 }
1875 root_backup = super->super_roots + newest;
1876
1877 btrfs_set_super_generation(super,
1878 btrfs_backup_tree_root_gen(root_backup));
1879 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1880 btrfs_set_super_root_level(super,
1881 btrfs_backup_tree_root_level(root_backup));
1882 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1883
1884 /*
1885 * fixme: the total bytes and num_devices need to match or we should
1886 * need a fsck
1887 */
1888 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1889 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1890 return 0;
1891}
1892
1893/* helper to cleanup tree roots */
1894static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1895{
1896 free_extent_buffer(info->tree_root->node);
1897 free_extent_buffer(info->tree_root->commit_root);
1898 free_extent_buffer(info->dev_root->node);
1899 free_extent_buffer(info->dev_root->commit_root);
1900 free_extent_buffer(info->extent_root->node);
1901 free_extent_buffer(info->extent_root->commit_root);
1902 free_extent_buffer(info->csum_root->node);
1903 free_extent_buffer(info->csum_root->commit_root);
bcef60f2
AJ
1904 if (info->quota_root) {
1905 free_extent_buffer(info->quota_root->node);
1906 free_extent_buffer(info->quota_root->commit_root);
1907 }
af31f5e5
CM
1908
1909 info->tree_root->node = NULL;
1910 info->tree_root->commit_root = NULL;
1911 info->dev_root->node = NULL;
1912 info->dev_root->commit_root = NULL;
1913 info->extent_root->node = NULL;
1914 info->extent_root->commit_root = NULL;
1915 info->csum_root->node = NULL;
1916 info->csum_root->commit_root = NULL;
bcef60f2
AJ
1917 if (info->quota_root) {
1918 info->quota_root->node = NULL;
1919 info->quota_root->commit_root = NULL;
1920 }
af31f5e5
CM
1921
1922 if (chunk_root) {
1923 free_extent_buffer(info->chunk_root->node);
1924 free_extent_buffer(info->chunk_root->commit_root);
1925 info->chunk_root->node = NULL;
1926 info->chunk_root->commit_root = NULL;
1927 }
1928}
1929
1930
ad2b2c80
AV
1931int open_ctree(struct super_block *sb,
1932 struct btrfs_fs_devices *fs_devices,
1933 char *options)
2e635a27 1934{
db94535d
CM
1935 u32 sectorsize;
1936 u32 nodesize;
1937 u32 leafsize;
1938 u32 blocksize;
87ee04eb 1939 u32 stripesize;
84234f3a 1940 u64 generation;
f2b636e8 1941 u64 features;
3de4586c 1942 struct btrfs_key location;
a061fc8d 1943 struct buffer_head *bh;
4d34b278 1944 struct btrfs_super_block *disk_super;
815745cf 1945 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1946 struct btrfs_root *tree_root;
4d34b278
ID
1947 struct btrfs_root *extent_root;
1948 struct btrfs_root *csum_root;
1949 struct btrfs_root *chunk_root;
1950 struct btrfs_root *dev_root;
bcef60f2 1951 struct btrfs_root *quota_root;
e02119d5 1952 struct btrfs_root *log_tree_root;
eb60ceac 1953 int ret;
e58ca020 1954 int err = -EINVAL;
af31f5e5
CM
1955 int num_backups_tried = 0;
1956 int backup_index = 0;
4543df7e 1957
f84a8bd6 1958 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1959 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1960 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1961 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1962 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 1963 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 1964
f84a8bd6 1965 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 1966 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
1967 err = -ENOMEM;
1968 goto fail;
1969 }
76dda93c
YZ
1970
1971 ret = init_srcu_struct(&fs_info->subvol_srcu);
1972 if (ret) {
1973 err = ret;
1974 goto fail;
1975 }
1976
1977 ret = setup_bdi(fs_info, &fs_info->bdi);
1978 if (ret) {
1979 err = ret;
1980 goto fail_srcu;
1981 }
1982
1983 fs_info->btree_inode = new_inode(sb);
1984 if (!fs_info->btree_inode) {
1985 err = -ENOMEM;
1986 goto fail_bdi;
1987 }
1988
a6591715 1989 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1990
76dda93c 1991 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1992 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1993 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1994 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1995 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1996 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1997 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1998 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1999 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 2000 spin_lock_init(&fs_info->trans_lock);
31153d81 2001 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 2002 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2003 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2004 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2005 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
2006 spin_lock_init(&fs_info->tree_mod_seq_lock);
2007 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2008 mutex_init(&fs_info->reloc_mutex);
19c00ddc 2009
58176a96 2010 init_completion(&fs_info->kobj_unregister);
0b86a832 2011 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2012 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2013 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2014 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
2015 btrfs_init_block_rsv(&fs_info->global_block_rsv);
2016 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2017 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2018 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2019 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 2020 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 2021 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2022 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2023 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2024 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2025 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2026 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2027 fs_info->sb = sb;
6f568d35 2028 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2029 fs_info->metadata_ratio = 0;
4cb5300b 2030 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2031 fs_info->trans_no_join = 0;
2bf64758 2032 fs_info->free_chunk_space = 0;
f29021b2 2033 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2034
097b8a7c
JS
2035 init_waitqueue_head(&fs_info->tree_mod_seq_wait);
2036
90519d66
AJ
2037 /* readahead state */
2038 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2039 spin_lock_init(&fs_info->reada_lock);
c8b97818 2040
b34b086c
CM
2041 fs_info->thread_pool_size = min_t(unsigned long,
2042 num_online_cpus() + 2, 8);
0afbaf8c 2043
3eaa2885
CM
2044 INIT_LIST_HEAD(&fs_info->ordered_extents);
2045 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2046 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2047 GFP_NOFS);
2048 if (!fs_info->delayed_root) {
2049 err = -ENOMEM;
2050 goto fail_iput;
2051 }
2052 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2053
a2de733c
AJ
2054 mutex_init(&fs_info->scrub_lock);
2055 atomic_set(&fs_info->scrubs_running, 0);
2056 atomic_set(&fs_info->scrub_pause_req, 0);
2057 atomic_set(&fs_info->scrubs_paused, 0);
2058 atomic_set(&fs_info->scrub_cancel_req, 0);
2059 init_waitqueue_head(&fs_info->scrub_pause_wait);
2060 init_rwsem(&fs_info->scrub_super_lock);
2061 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2062#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2063 fs_info->check_integrity_print_mask = 0;
2064#endif
a2de733c 2065
c9e9f97b
ID
2066 spin_lock_init(&fs_info->balance_lock);
2067 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2068 atomic_set(&fs_info->balance_running, 0);
2069 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2070 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2071 fs_info->balance_ctl = NULL;
837d5b6e 2072 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2073
a061fc8d
CM
2074 sb->s_blocksize = 4096;
2075 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2076 sb->s_bdi = &fs_info->bdi;
a061fc8d 2077
76dda93c 2078 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2079 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2080 /*
2081 * we set the i_size on the btree inode to the max possible int.
2082 * the real end of the address space is determined by all of
2083 * the devices in the system
2084 */
2085 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2086 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2087 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2088
5d4f98a2 2089 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2090 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2091 fs_info->btree_inode->i_mapping);
0b32f4bb 2092 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2093 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2094
2095 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2096
76dda93c
YZ
2097 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2098 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2099 sizeof(struct btrfs_key));
72ac3c0d
JB
2100 set_bit(BTRFS_INODE_DUMMY,
2101 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2102 insert_inode_hash(fs_info->btree_inode);
76dda93c 2103
0f9dd46c 2104 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2105 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2106
11833d66 2107 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2108 fs_info->btree_inode->i_mapping);
11833d66 2109 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2110 fs_info->btree_inode->i_mapping);
11833d66 2111 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2112 fs_info->do_barriers = 1;
e18e4809 2113
39279cc3 2114
5a3f23d5 2115 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2116 mutex_init(&fs_info->tree_log_mutex);
925baedd 2117 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2118 mutex_init(&fs_info->transaction_kthread_mutex);
2119 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2120 mutex_init(&fs_info->volume_mutex);
276e680d 2121 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2122 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2123 init_rwsem(&fs_info->subvol_sem);
fa9c0d79 2124
416ac51d
AJ
2125 spin_lock_init(&fs_info->qgroup_lock);
2126 fs_info->qgroup_tree = RB_ROOT;
2127 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2128 fs_info->qgroup_seq = 1;
2129 fs_info->quota_enabled = 0;
2130 fs_info->pending_quota_state = 0;
2131
fa9c0d79
CM
2132 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2133 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2134
e6dcd2dc 2135 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2136 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2137 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2138 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2139
0b86a832 2140 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2141 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2142
3c4bb26b 2143 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2144 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2145 if (!bh) {
2146 err = -EINVAL;
16cdcec7 2147 goto fail_alloc;
20b45077 2148 }
39279cc3 2149
6c41761f
DS
2150 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2151 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2152 sizeof(*fs_info->super_for_commit));
a061fc8d 2153 brelse(bh);
5f39d397 2154
6c41761f 2155 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2156
6c41761f 2157 disk_super = fs_info->super_copy;
0f7d52f4 2158 if (!btrfs_super_root(disk_super))
16cdcec7 2159 goto fail_alloc;
0f7d52f4 2160
acce952b 2161 /* check FS state, whether FS is broken. */
2162 fs_info->fs_state |= btrfs_super_flags(disk_super);
2163
fcd1f065
DS
2164 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2165 if (ret) {
2166 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2167 err = ret;
2168 goto fail_alloc;
2169 }
acce952b 2170
af31f5e5
CM
2171 /*
2172 * run through our array of backup supers and setup
2173 * our ring pointer to the oldest one
2174 */
2175 generation = btrfs_super_generation(disk_super);
2176 find_oldest_super_backup(fs_info, generation);
2177
75e7cb7f
LB
2178 /*
2179 * In the long term, we'll store the compression type in the super
2180 * block, and it'll be used for per file compression control.
2181 */
2182 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2183
2b82032c
YZ
2184 ret = btrfs_parse_options(tree_root, options);
2185 if (ret) {
2186 err = ret;
16cdcec7 2187 goto fail_alloc;
2b82032c 2188 }
dfe25020 2189
f2b636e8
JB
2190 features = btrfs_super_incompat_flags(disk_super) &
2191 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2192 if (features) {
2193 printk(KERN_ERR "BTRFS: couldn't mount because of "
2194 "unsupported optional features (%Lx).\n",
21380931 2195 (unsigned long long)features);
f2b636e8 2196 err = -EINVAL;
16cdcec7 2197 goto fail_alloc;
f2b636e8
JB
2198 }
2199
727011e0
CM
2200 if (btrfs_super_leafsize(disk_super) !=
2201 btrfs_super_nodesize(disk_super)) {
2202 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2203 "blocksizes don't match. node %d leaf %d\n",
2204 btrfs_super_nodesize(disk_super),
2205 btrfs_super_leafsize(disk_super));
2206 err = -EINVAL;
2207 goto fail_alloc;
2208 }
2209 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2210 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2211 "blocksize (%d) was too large\n",
2212 btrfs_super_leafsize(disk_super));
2213 err = -EINVAL;
2214 goto fail_alloc;
2215 }
2216
5d4f98a2 2217 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2218 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2219 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2220 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2221
2222 /*
2223 * flag our filesystem as having big metadata blocks if
2224 * they are bigger than the page size
2225 */
2226 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2227 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2228 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2229 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2230 }
2231
bc3f116f
CM
2232 nodesize = btrfs_super_nodesize(disk_super);
2233 leafsize = btrfs_super_leafsize(disk_super);
2234 sectorsize = btrfs_super_sectorsize(disk_super);
2235 stripesize = btrfs_super_stripesize(disk_super);
2236
2237 /*
2238 * mixed block groups end up with duplicate but slightly offset
2239 * extent buffers for the same range. It leads to corruptions
2240 */
2241 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2242 (sectorsize != leafsize)) {
2243 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2244 "are not allowed for mixed block groups on %s\n",
2245 sb->s_id);
2246 goto fail_alloc;
2247 }
2248
a6fa6fae 2249 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2250
f2b636e8
JB
2251 features = btrfs_super_compat_ro_flags(disk_super) &
2252 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2253 if (!(sb->s_flags & MS_RDONLY) && features) {
2254 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2255 "unsupported option features (%Lx).\n",
21380931 2256 (unsigned long long)features);
f2b636e8 2257 err = -EINVAL;
16cdcec7 2258 goto fail_alloc;
f2b636e8 2259 }
61d92c32
CM
2260
2261 btrfs_init_workers(&fs_info->generic_worker,
2262 "genwork", 1, NULL);
2263
5443be45 2264 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2265 fs_info->thread_pool_size,
2266 &fs_info->generic_worker);
c8b97818 2267
771ed689 2268 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2269 fs_info->thread_pool_size,
2270 &fs_info->generic_worker);
771ed689 2271
5443be45 2272 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2273 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2274 fs_info->thread_pool_size),
2275 &fs_info->generic_worker);
61b49440 2276
bab39bf9
JB
2277 btrfs_init_workers(&fs_info->caching_workers, "cache",
2278 2, &fs_info->generic_worker);
2279
61b49440
CM
2280 /* a higher idle thresh on the submit workers makes it much more
2281 * likely that bios will be send down in a sane order to the
2282 * devices
2283 */
2284 fs_info->submit_workers.idle_thresh = 64;
53863232 2285
771ed689 2286 fs_info->workers.idle_thresh = 16;
4a69a410 2287 fs_info->workers.ordered = 1;
61b49440 2288
771ed689
CM
2289 fs_info->delalloc_workers.idle_thresh = 2;
2290 fs_info->delalloc_workers.ordered = 1;
2291
61d92c32
CM
2292 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2293 &fs_info->generic_worker);
5443be45 2294 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2295 fs_info->thread_pool_size,
2296 &fs_info->generic_worker);
d20f7043 2297 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2298 fs_info->thread_pool_size,
2299 &fs_info->generic_worker);
cad321ad 2300 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2301 "endio-meta-write", fs_info->thread_pool_size,
2302 &fs_info->generic_worker);
5443be45 2303 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2304 fs_info->thread_pool_size,
2305 &fs_info->generic_worker);
0cb59c99
JB
2306 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2307 1, &fs_info->generic_worker);
16cdcec7
MX
2308 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2309 fs_info->thread_pool_size,
2310 &fs_info->generic_worker);
90519d66
AJ
2311 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2312 fs_info->thread_pool_size,
2313 &fs_info->generic_worker);
61b49440
CM
2314
2315 /*
2316 * endios are largely parallel and should have a very
2317 * low idle thresh
2318 */
2319 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2320 fs_info->endio_meta_workers.idle_thresh = 4;
2321
9042846b
CM
2322 fs_info->endio_write_workers.idle_thresh = 2;
2323 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2324 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2325
0dc3b84a
JB
2326 /*
2327 * btrfs_start_workers can really only fail because of ENOMEM so just
2328 * return -ENOMEM if any of these fail.
2329 */
2330 ret = btrfs_start_workers(&fs_info->workers);
2331 ret |= btrfs_start_workers(&fs_info->generic_worker);
2332 ret |= btrfs_start_workers(&fs_info->submit_workers);
2333 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2334 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2335 ret |= btrfs_start_workers(&fs_info->endio_workers);
2336 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2337 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2338 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2339 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2340 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2341 ret |= btrfs_start_workers(&fs_info->caching_workers);
2342 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2343 if (ret) {
fed425c7 2344 err = -ENOMEM;
0dc3b84a
JB
2345 goto fail_sb_buffer;
2346 }
4543df7e 2347
4575c9cc 2348 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2349 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2350 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2351
db94535d
CM
2352 tree_root->nodesize = nodesize;
2353 tree_root->leafsize = leafsize;
2354 tree_root->sectorsize = sectorsize;
87ee04eb 2355 tree_root->stripesize = stripesize;
a061fc8d
CM
2356
2357 sb->s_blocksize = sectorsize;
2358 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2359
39279cc3
CM
2360 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2361 sizeof(disk_super->magic))) {
d397712b 2362 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2363 goto fail_sb_buffer;
2364 }
19c00ddc 2365
8d082fb7
LB
2366 if (sectorsize != PAGE_SIZE) {
2367 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2368 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2369 goto fail_sb_buffer;
2370 }
2371
925baedd 2372 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2373 ret = btrfs_read_sys_array(tree_root);
925baedd 2374 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2375 if (ret) {
d397712b
CM
2376 printk(KERN_WARNING "btrfs: failed to read the system "
2377 "array on %s\n", sb->s_id);
5d4f98a2 2378 goto fail_sb_buffer;
84eed90f 2379 }
0b86a832
CM
2380
2381 blocksize = btrfs_level_size(tree_root,
2382 btrfs_super_chunk_root_level(disk_super));
84234f3a 2383 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2384
2385 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2386 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2387
2388 chunk_root->node = read_tree_block(chunk_root,
2389 btrfs_super_chunk_root(disk_super),
84234f3a 2390 blocksize, generation);
79787eaa 2391 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2392 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2393 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2394 sb->s_id);
af31f5e5 2395 goto fail_tree_roots;
83121942 2396 }
5d4f98a2
YZ
2397 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2398 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2399
e17cade2 2400 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2401 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2402 BTRFS_UUID_SIZE);
e17cade2 2403
0b86a832 2404 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2405 if (ret) {
d397712b
CM
2406 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2407 sb->s_id);
af31f5e5 2408 goto fail_tree_roots;
2b82032c 2409 }
0b86a832 2410
dfe25020
CM
2411 btrfs_close_extra_devices(fs_devices);
2412
a6b0d5c8
CM
2413 if (!fs_devices->latest_bdev) {
2414 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2415 sb->s_id);
2416 goto fail_tree_roots;
2417 }
2418
af31f5e5 2419retry_root_backup:
db94535d
CM
2420 blocksize = btrfs_level_size(tree_root,
2421 btrfs_super_root_level(disk_super));
84234f3a 2422 generation = btrfs_super_generation(disk_super);
0b86a832 2423
e20d96d6 2424 tree_root->node = read_tree_block(tree_root,
db94535d 2425 btrfs_super_root(disk_super),
84234f3a 2426 blocksize, generation);
af31f5e5
CM
2427 if (!tree_root->node ||
2428 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2429 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2430 sb->s_id);
af31f5e5
CM
2431
2432 goto recovery_tree_root;
83121942 2433 }
af31f5e5 2434
5d4f98a2
YZ
2435 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2436 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2437
2438 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2439 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2440 if (ret)
af31f5e5 2441 goto recovery_tree_root;
0b86a832
CM
2442 extent_root->track_dirty = 1;
2443
2444 ret = find_and_setup_root(tree_root, fs_info,
2445 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2446 if (ret)
af31f5e5 2447 goto recovery_tree_root;
5d4f98a2 2448 dev_root->track_dirty = 1;
3768f368 2449
d20f7043
CM
2450 ret = find_and_setup_root(tree_root, fs_info,
2451 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2452 if (ret)
af31f5e5 2453 goto recovery_tree_root;
d20f7043
CM
2454 csum_root->track_dirty = 1;
2455
bcef60f2
AJ
2456 ret = find_and_setup_root(tree_root, fs_info,
2457 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2458 if (ret) {
2459 kfree(quota_root);
2460 quota_root = fs_info->quota_root = NULL;
2461 } else {
2462 quota_root->track_dirty = 1;
2463 fs_info->quota_enabled = 1;
2464 fs_info->pending_quota_state = 1;
2465 }
2466
8929ecfa
YZ
2467 fs_info->generation = generation;
2468 fs_info->last_trans_committed = generation;
8929ecfa 2469
68310a5e
ID
2470 ret = btrfs_recover_balance(fs_info);
2471 if (ret) {
2472 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2473 goto fail_block_groups;
2474 }
2475
733f4fbb
SB
2476 ret = btrfs_init_dev_stats(fs_info);
2477 if (ret) {
2478 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2479 ret);
2480 goto fail_block_groups;
2481 }
2482
c59021f8 2483 ret = btrfs_init_space_info(fs_info);
2484 if (ret) {
2485 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2486 goto fail_block_groups;
2487 }
2488
1b1d1f66
JB
2489 ret = btrfs_read_block_groups(extent_root);
2490 if (ret) {
2491 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2492 goto fail_block_groups;
2493 }
9078a3e1 2494
a74a4b97
CM
2495 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2496 "btrfs-cleaner");
57506d50 2497 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2498 goto fail_block_groups;
a74a4b97
CM
2499
2500 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2501 tree_root,
2502 "btrfs-transaction");
57506d50 2503 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2504 goto fail_cleaner;
a74a4b97 2505
c289811c
CM
2506 if (!btrfs_test_opt(tree_root, SSD) &&
2507 !btrfs_test_opt(tree_root, NOSSD) &&
2508 !fs_info->fs_devices->rotating) {
2509 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2510 "mode\n");
2511 btrfs_set_opt(fs_info->mount_opt, SSD);
2512 }
2513
21adbd5c
SB
2514#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2515 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2516 ret = btrfsic_mount(tree_root, fs_devices,
2517 btrfs_test_opt(tree_root,
2518 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2519 1 : 0,
2520 fs_info->check_integrity_print_mask);
2521 if (ret)
2522 printk(KERN_WARNING "btrfs: failed to initialize"
2523 " integrity check module %s\n", sb->s_id);
2524 }
2525#endif
bcef60f2
AJ
2526 ret = btrfs_read_qgroup_config(fs_info);
2527 if (ret)
2528 goto fail_trans_kthread;
21adbd5c 2529
acce952b 2530 /* do not make disk changes in broken FS */
2531 if (btrfs_super_log_root(disk_super) != 0 &&
2532 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2533 u64 bytenr = btrfs_super_log_root(disk_super);
2534
7c2ca468 2535 if (fs_devices->rw_devices == 0) {
d397712b
CM
2536 printk(KERN_WARNING "Btrfs log replay required "
2537 "on RO media\n");
7c2ca468 2538 err = -EIO;
bcef60f2 2539 goto fail_qgroup;
7c2ca468 2540 }
e02119d5
CM
2541 blocksize =
2542 btrfs_level_size(tree_root,
2543 btrfs_super_log_root_level(disk_super));
d18a2c44 2544
6f07e42e 2545 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2546 if (!log_tree_root) {
2547 err = -ENOMEM;
bcef60f2 2548 goto fail_qgroup;
676e4c86 2549 }
e02119d5
CM
2550
2551 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2552 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2553
2554 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2555 blocksize,
2556 generation + 1);
79787eaa 2557 /* returns with log_tree_root freed on success */
e02119d5 2558 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2559 if (ret) {
2560 btrfs_error(tree_root->fs_info, ret,
2561 "Failed to recover log tree");
2562 free_extent_buffer(log_tree_root->node);
2563 kfree(log_tree_root);
2564 goto fail_trans_kthread;
2565 }
e556ce2c
YZ
2566
2567 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2568 ret = btrfs_commit_super(tree_root);
2569 if (ret)
2570 goto fail_trans_kthread;
e556ce2c 2571 }
e02119d5 2572 }
1a40e23b 2573
76dda93c 2574 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2575 if (ret)
2576 goto fail_trans_kthread;
76dda93c 2577
7c2ca468 2578 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2579 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2580 if (ret)
2581 goto fail_trans_kthread;
d68fc57b 2582
5d4f98a2 2583 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2584 if (ret < 0) {
2585 printk(KERN_WARNING
2586 "btrfs: failed to recover relocation\n");
2587 err = -EINVAL;
bcef60f2 2588 goto fail_qgroup;
d7ce5843 2589 }
7c2ca468 2590 }
1a40e23b 2591
3de4586c
CM
2592 location.objectid = BTRFS_FS_TREE_OBJECTID;
2593 location.type = BTRFS_ROOT_ITEM_KEY;
2594 location.offset = (u64)-1;
2595
3de4586c
CM
2596 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2597 if (!fs_info->fs_root)
bcef60f2 2598 goto fail_qgroup;
3140c9a3
DC
2599 if (IS_ERR(fs_info->fs_root)) {
2600 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2601 goto fail_qgroup;
3140c9a3 2602 }
c289811c 2603
2b6ba629
ID
2604 if (sb->s_flags & MS_RDONLY)
2605 return 0;
59641015 2606
2b6ba629
ID
2607 down_read(&fs_info->cleanup_work_sem);
2608 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2609 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2610 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2611 close_ctree(tree_root);
2612 return ret;
2613 }
2614 up_read(&fs_info->cleanup_work_sem);
59641015 2615
2b6ba629
ID
2616 ret = btrfs_resume_balance_async(fs_info);
2617 if (ret) {
2618 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2619 close_ctree(tree_root);
2620 return ret;
e3acc2a6
JB
2621 }
2622
ad2b2c80 2623 return 0;
39279cc3 2624
bcef60f2
AJ
2625fail_qgroup:
2626 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2627fail_trans_kthread:
2628 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2629fail_cleaner:
a74a4b97 2630 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2631
2632 /*
2633 * make sure we're done with the btree inode before we stop our
2634 * kthreads
2635 */
2636 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2637 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2638
1b1d1f66
JB
2639fail_block_groups:
2640 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2641
2642fail_tree_roots:
2643 free_root_pointers(fs_info, 1);
2644
39279cc3 2645fail_sb_buffer:
61d92c32 2646 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2647 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2648 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2649 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2650 btrfs_stop_workers(&fs_info->workers);
2651 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2652 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2653 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2654 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2655 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2656 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2657 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2658 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2659fail_alloc:
4543df7e 2660fail_iput:
586e46e2
ID
2661 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2662
7c2ca468 2663 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2664 iput(fs_info->btree_inode);
ad081f14 2665fail_bdi:
7e662854 2666 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2667fail_srcu:
2668 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2669fail:
586e46e2 2670 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2671 return err;
af31f5e5
CM
2672
2673recovery_tree_root:
af31f5e5
CM
2674 if (!btrfs_test_opt(tree_root, RECOVERY))
2675 goto fail_tree_roots;
2676
2677 free_root_pointers(fs_info, 0);
2678
2679 /* don't use the log in recovery mode, it won't be valid */
2680 btrfs_set_super_log_root(disk_super, 0);
2681
2682 /* we can't trust the free space cache either */
2683 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2684
2685 ret = next_root_backup(fs_info, fs_info->super_copy,
2686 &num_backups_tried, &backup_index);
2687 if (ret == -1)
2688 goto fail_block_groups;
2689 goto retry_root_backup;
eb60ceac
CM
2690}
2691
f2984462
CM
2692static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2693{
f2984462
CM
2694 if (uptodate) {
2695 set_buffer_uptodate(bh);
2696 } else {
442a4f63
SB
2697 struct btrfs_device *device = (struct btrfs_device *)
2698 bh->b_private;
2699
606686ee
JB
2700 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2701 "I/O error on %s\n",
2702 rcu_str_deref(device->name));
1259ab75
CM
2703 /* note, we dont' set_buffer_write_io_error because we have
2704 * our own ways of dealing with the IO errors
2705 */
f2984462 2706 clear_buffer_uptodate(bh);
442a4f63 2707 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2708 }
2709 unlock_buffer(bh);
2710 put_bh(bh);
2711}
2712
a512bbf8
YZ
2713struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2714{
2715 struct buffer_head *bh;
2716 struct buffer_head *latest = NULL;
2717 struct btrfs_super_block *super;
2718 int i;
2719 u64 transid = 0;
2720 u64 bytenr;
2721
2722 /* we would like to check all the supers, but that would make
2723 * a btrfs mount succeed after a mkfs from a different FS.
2724 * So, we need to add a special mount option to scan for
2725 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2726 */
2727 for (i = 0; i < 1; i++) {
2728 bytenr = btrfs_sb_offset(i);
2729 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2730 break;
2731 bh = __bread(bdev, bytenr / 4096, 4096);
2732 if (!bh)
2733 continue;
2734
2735 super = (struct btrfs_super_block *)bh->b_data;
2736 if (btrfs_super_bytenr(super) != bytenr ||
2737 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2738 sizeof(super->magic))) {
2739 brelse(bh);
2740 continue;
2741 }
2742
2743 if (!latest || btrfs_super_generation(super) > transid) {
2744 brelse(latest);
2745 latest = bh;
2746 transid = btrfs_super_generation(super);
2747 } else {
2748 brelse(bh);
2749 }
2750 }
2751 return latest;
2752}
2753
4eedeb75
HH
2754/*
2755 * this should be called twice, once with wait == 0 and
2756 * once with wait == 1. When wait == 0 is done, all the buffer heads
2757 * we write are pinned.
2758 *
2759 * They are released when wait == 1 is done.
2760 * max_mirrors must be the same for both runs, and it indicates how
2761 * many supers on this one device should be written.
2762 *
2763 * max_mirrors == 0 means to write them all.
2764 */
a512bbf8
YZ
2765static int write_dev_supers(struct btrfs_device *device,
2766 struct btrfs_super_block *sb,
2767 int do_barriers, int wait, int max_mirrors)
2768{
2769 struct buffer_head *bh;
2770 int i;
2771 int ret;
2772 int errors = 0;
2773 u32 crc;
2774 u64 bytenr;
a512bbf8
YZ
2775
2776 if (max_mirrors == 0)
2777 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2778
a512bbf8
YZ
2779 for (i = 0; i < max_mirrors; i++) {
2780 bytenr = btrfs_sb_offset(i);
2781 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2782 break;
2783
2784 if (wait) {
2785 bh = __find_get_block(device->bdev, bytenr / 4096,
2786 BTRFS_SUPER_INFO_SIZE);
2787 BUG_ON(!bh);
a512bbf8 2788 wait_on_buffer(bh);
4eedeb75
HH
2789 if (!buffer_uptodate(bh))
2790 errors++;
2791
2792 /* drop our reference */
2793 brelse(bh);
2794
2795 /* drop the reference from the wait == 0 run */
2796 brelse(bh);
2797 continue;
a512bbf8
YZ
2798 } else {
2799 btrfs_set_super_bytenr(sb, bytenr);
2800
2801 crc = ~(u32)0;
2802 crc = btrfs_csum_data(NULL, (char *)sb +
2803 BTRFS_CSUM_SIZE, crc,
2804 BTRFS_SUPER_INFO_SIZE -
2805 BTRFS_CSUM_SIZE);
2806 btrfs_csum_final(crc, sb->csum);
2807
4eedeb75
HH
2808 /*
2809 * one reference for us, and we leave it for the
2810 * caller
2811 */
a512bbf8
YZ
2812 bh = __getblk(device->bdev, bytenr / 4096,
2813 BTRFS_SUPER_INFO_SIZE);
2814 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2815
4eedeb75 2816 /* one reference for submit_bh */
a512bbf8 2817 get_bh(bh);
4eedeb75
HH
2818
2819 set_buffer_uptodate(bh);
a512bbf8
YZ
2820 lock_buffer(bh);
2821 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2822 bh->b_private = device;
a512bbf8
YZ
2823 }
2824
387125fc
CM
2825 /*
2826 * we fua the first super. The others we allow
2827 * to go down lazy.
2828 */
21adbd5c 2829 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2830 if (ret)
a512bbf8 2831 errors++;
a512bbf8
YZ
2832 }
2833 return errors < i ? 0 : -1;
2834}
2835
387125fc
CM
2836/*
2837 * endio for the write_dev_flush, this will wake anyone waiting
2838 * for the barrier when it is done
2839 */
2840static void btrfs_end_empty_barrier(struct bio *bio, int err)
2841{
2842 if (err) {
2843 if (err == -EOPNOTSUPP)
2844 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2845 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2846 }
2847 if (bio->bi_private)
2848 complete(bio->bi_private);
2849 bio_put(bio);
2850}
2851
2852/*
2853 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2854 * sent down. With wait == 1, it waits for the previous flush.
2855 *
2856 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2857 * capable
2858 */
2859static int write_dev_flush(struct btrfs_device *device, int wait)
2860{
2861 struct bio *bio;
2862 int ret = 0;
2863
2864 if (device->nobarriers)
2865 return 0;
2866
2867 if (wait) {
2868 bio = device->flush_bio;
2869 if (!bio)
2870 return 0;
2871
2872 wait_for_completion(&device->flush_wait);
2873
2874 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2875 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2876 rcu_str_deref(device->name));
387125fc
CM
2877 device->nobarriers = 1;
2878 }
2879 if (!bio_flagged(bio, BIO_UPTODATE)) {
2880 ret = -EIO;
442a4f63
SB
2881 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2882 btrfs_dev_stat_inc_and_print(device,
2883 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
2884 }
2885
2886 /* drop the reference from the wait == 0 run */
2887 bio_put(bio);
2888 device->flush_bio = NULL;
2889
2890 return ret;
2891 }
2892
2893 /*
2894 * one reference for us, and we leave it for the
2895 * caller
2896 */
9c017abc 2897 device->flush_bio = NULL;
387125fc
CM
2898 bio = bio_alloc(GFP_NOFS, 0);
2899 if (!bio)
2900 return -ENOMEM;
2901
2902 bio->bi_end_io = btrfs_end_empty_barrier;
2903 bio->bi_bdev = device->bdev;
2904 init_completion(&device->flush_wait);
2905 bio->bi_private = &device->flush_wait;
2906 device->flush_bio = bio;
2907
2908 bio_get(bio);
21adbd5c 2909 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2910
2911 return 0;
2912}
2913
2914/*
2915 * send an empty flush down to each device in parallel,
2916 * then wait for them
2917 */
2918static int barrier_all_devices(struct btrfs_fs_info *info)
2919{
2920 struct list_head *head;
2921 struct btrfs_device *dev;
2922 int errors = 0;
2923 int ret;
2924
2925 /* send down all the barriers */
2926 head = &info->fs_devices->devices;
2927 list_for_each_entry_rcu(dev, head, dev_list) {
2928 if (!dev->bdev) {
2929 errors++;
2930 continue;
2931 }
2932 if (!dev->in_fs_metadata || !dev->writeable)
2933 continue;
2934
2935 ret = write_dev_flush(dev, 0);
2936 if (ret)
2937 errors++;
2938 }
2939
2940 /* wait for all the barriers */
2941 list_for_each_entry_rcu(dev, head, dev_list) {
2942 if (!dev->bdev) {
2943 errors++;
2944 continue;
2945 }
2946 if (!dev->in_fs_metadata || !dev->writeable)
2947 continue;
2948
2949 ret = write_dev_flush(dev, 1);
2950 if (ret)
2951 errors++;
2952 }
2953 if (errors)
2954 return -EIO;
2955 return 0;
2956}
2957
a512bbf8 2958int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2959{
e5e9a520 2960 struct list_head *head;
f2984462 2961 struct btrfs_device *dev;
a061fc8d 2962 struct btrfs_super_block *sb;
f2984462 2963 struct btrfs_dev_item *dev_item;
f2984462
CM
2964 int ret;
2965 int do_barriers;
a236aed1
CM
2966 int max_errors;
2967 int total_errors = 0;
a061fc8d 2968 u64 flags;
f2984462 2969
6c41761f 2970 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2971 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2972 backup_super_roots(root->fs_info);
f2984462 2973
6c41761f 2974 sb = root->fs_info->super_for_commit;
a061fc8d 2975 dev_item = &sb->dev_item;
e5e9a520 2976
174ba509 2977 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2978 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2979
2980 if (do_barriers)
2981 barrier_all_devices(root->fs_info);
2982
1f78160c 2983 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2984 if (!dev->bdev) {
2985 total_errors++;
2986 continue;
2987 }
2b82032c 2988 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2989 continue;
2990
2b82032c 2991 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2992 btrfs_set_stack_device_type(dev_item, dev->type);
2993 btrfs_set_stack_device_id(dev_item, dev->devid);
2994 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2995 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2996 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2997 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2998 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2999 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3000 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3001
a061fc8d
CM
3002 flags = btrfs_super_flags(sb);
3003 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3004
a512bbf8 3005 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3006 if (ret)
3007 total_errors++;
f2984462 3008 }
a236aed1 3009 if (total_errors > max_errors) {
d397712b
CM
3010 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3011 total_errors);
79787eaa
JM
3012
3013 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3014 BUG();
3015 }
f2984462 3016
a512bbf8 3017 total_errors = 0;
1f78160c 3018 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3019 if (!dev->bdev)
3020 continue;
2b82032c 3021 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3022 continue;
3023
a512bbf8
YZ
3024 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3025 if (ret)
3026 total_errors++;
f2984462 3027 }
174ba509 3028 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3029 if (total_errors > max_errors) {
79787eaa
JM
3030 btrfs_error(root->fs_info, -EIO,
3031 "%d errors while writing supers", total_errors);
3032 return -EIO;
a236aed1 3033 }
f2984462
CM
3034 return 0;
3035}
3036
a512bbf8
YZ
3037int write_ctree_super(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root, int max_mirrors)
eb60ceac 3039{
e66f709b 3040 int ret;
5f39d397 3041
a512bbf8 3042 ret = write_all_supers(root, max_mirrors);
5f39d397 3043 return ret;
cfaa7295
CM
3044}
3045
143bede5 3046void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3047{
4df27c4d 3048 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3049 radix_tree_delete(&fs_info->fs_roots_radix,
3050 (unsigned long)root->root_key.objectid);
4df27c4d 3051 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3052
3053 if (btrfs_root_refs(&root->root_item) == 0)
3054 synchronize_srcu(&fs_info->subvol_srcu);
3055
581bb050
LZ
3056 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3057 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3058 free_fs_root(root);
4df27c4d
YZ
3059}
3060
3061static void free_fs_root(struct btrfs_root *root)
3062{
82d5902d 3063 iput(root->cache_inode);
4df27c4d 3064 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3065 if (root->anon_dev)
3066 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3067 free_extent_buffer(root->node);
3068 free_extent_buffer(root->commit_root);
581bb050
LZ
3069 kfree(root->free_ino_ctl);
3070 kfree(root->free_ino_pinned);
d397712b 3071 kfree(root->name);
2619ba1f 3072 kfree(root);
2619ba1f
CM
3073}
3074
143bede5 3075static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
3076{
3077 int ret;
3078 struct btrfs_root *gang[8];
3079 int i;
3080
76dda93c
YZ
3081 while (!list_empty(&fs_info->dead_roots)) {
3082 gang[0] = list_entry(fs_info->dead_roots.next,
3083 struct btrfs_root, root_list);
3084 list_del(&gang[0]->root_list);
3085
3086 if (gang[0]->in_radix) {
3087 btrfs_free_fs_root(fs_info, gang[0]);
3088 } else {
3089 free_extent_buffer(gang[0]->node);
3090 free_extent_buffer(gang[0]->commit_root);
3091 kfree(gang[0]);
3092 }
3093 }
3094
d397712b 3095 while (1) {
0f7d52f4
CM
3096 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3097 (void **)gang, 0,
3098 ARRAY_SIZE(gang));
3099 if (!ret)
3100 break;
2619ba1f 3101 for (i = 0; i < ret; i++)
5eda7b5e 3102 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3103 }
0f7d52f4 3104}
b4100d64 3105
c146afad 3106int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3107{
c146afad
YZ
3108 u64 root_objectid = 0;
3109 struct btrfs_root *gang[8];
3110 int i;
3768f368 3111 int ret;
e089f05c 3112
c146afad
YZ
3113 while (1) {
3114 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3115 (void **)gang, root_objectid,
3116 ARRAY_SIZE(gang));
3117 if (!ret)
3118 break;
5d4f98a2
YZ
3119
3120 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3121 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3122 int err;
3123
c146afad 3124 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3125 err = btrfs_orphan_cleanup(gang[i]);
3126 if (err)
3127 return err;
c146afad
YZ
3128 }
3129 root_objectid++;
3130 }
3131 return 0;
3132}
a2135011 3133
c146afad
YZ
3134int btrfs_commit_super(struct btrfs_root *root)
3135{
3136 struct btrfs_trans_handle *trans;
3137 int ret;
a74a4b97 3138
c146afad 3139 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3140 btrfs_run_delayed_iputs(root);
a74a4b97 3141 btrfs_clean_old_snapshots(root);
c146afad 3142 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3143
3144 /* wait until ongoing cleanup work done */
3145 down_write(&root->fs_info->cleanup_work_sem);
3146 up_write(&root->fs_info->cleanup_work_sem);
3147
7a7eaa40 3148 trans = btrfs_join_transaction(root);
3612b495
TI
3149 if (IS_ERR(trans))
3150 return PTR_ERR(trans);
54aa1f4d 3151 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3152 if (ret)
3153 return ret;
c146afad 3154 /* run commit again to drop the original snapshot */
7a7eaa40 3155 trans = btrfs_join_transaction(root);
3612b495
TI
3156 if (IS_ERR(trans))
3157 return PTR_ERR(trans);
79787eaa
JM
3158 ret = btrfs_commit_transaction(trans, root);
3159 if (ret)
3160 return ret;
79154b1b 3161 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3162 if (ret) {
3163 btrfs_error(root->fs_info, ret,
3164 "Failed to sync btree inode to disk.");
3165 return ret;
3166 }
d6bfde87 3167
a512bbf8 3168 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3169 return ret;
3170}
3171
3172int close_ctree(struct btrfs_root *root)
3173{
3174 struct btrfs_fs_info *fs_info = root->fs_info;
3175 int ret;
3176
3177 fs_info->closing = 1;
3178 smp_mb();
3179
837d5b6e
ID
3180 /* pause restriper - we want to resume on mount */
3181 btrfs_pause_balance(root->fs_info);
3182
a2de733c 3183 btrfs_scrub_cancel(root);
4cb5300b
CM
3184
3185 /* wait for any defraggers to finish */
3186 wait_event(fs_info->transaction_wait,
3187 (atomic_read(&fs_info->defrag_running) == 0));
3188
3189 /* clear out the rbtree of defraggable inodes */
e3029d9f 3190 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3191
acce952b 3192 /*
3193 * Here come 2 situations when btrfs is broken to flip readonly:
3194 *
3195 * 1. when btrfs flips readonly somewhere else before
3196 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3197 * and btrfs will skip to write sb directly to keep
3198 * ERROR state on disk.
3199 *
3200 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 3201 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 3202 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3203 * btrfs will cleanup all FS resources first and write sb then.
3204 */
c146afad 3205 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3206 ret = btrfs_commit_super(root);
3207 if (ret)
3208 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3209 }
3210
3211 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3212 ret = btrfs_error_commit_super(root);
d397712b
CM
3213 if (ret)
3214 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 3215 }
0f7d52f4 3216
300e4f8a
JB
3217 btrfs_put_block_group_cache(fs_info);
3218
e3029d9f
AV
3219 kthread_stop(fs_info->transaction_kthread);
3220 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3221
f25784b3
YZ
3222 fs_info->closing = 2;
3223 smp_mb();
3224
bcef60f2
AJ
3225 btrfs_free_qgroup_config(root->fs_info);
3226
b0c68f8b 3227 if (fs_info->delalloc_bytes) {
d397712b 3228 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3229 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3230 }
31153d81 3231 if (fs_info->total_ref_cache_size) {
d397712b
CM
3232 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3233 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3234 }
bcc63abb 3235
5d4f98a2
YZ
3236 free_extent_buffer(fs_info->extent_root->node);
3237 free_extent_buffer(fs_info->extent_root->commit_root);
3238 free_extent_buffer(fs_info->tree_root->node);
3239 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3240 free_extent_buffer(fs_info->chunk_root->node);
3241 free_extent_buffer(fs_info->chunk_root->commit_root);
3242 free_extent_buffer(fs_info->dev_root->node);
3243 free_extent_buffer(fs_info->dev_root->commit_root);
3244 free_extent_buffer(fs_info->csum_root->node);
3245 free_extent_buffer(fs_info->csum_root->commit_root);
bcef60f2
AJ
3246 if (fs_info->quota_root) {
3247 free_extent_buffer(fs_info->quota_root->node);
3248 free_extent_buffer(fs_info->quota_root->commit_root);
3249 }
d20f7043 3250
e3029d9f 3251 btrfs_free_block_groups(fs_info);
d10c5f31 3252
c146afad 3253 del_fs_roots(fs_info);
d10c5f31 3254
c146afad 3255 iput(fs_info->btree_inode);
9ad6b7bc 3256
61d92c32 3257 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3258 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3259 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3260 btrfs_stop_workers(&fs_info->workers);
3261 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3262 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3263 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3264 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3265 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3266 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3267 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3268 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3269 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3270
21adbd5c
SB
3271#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3272 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3273 btrfsic_unmount(root, fs_info->fs_devices);
3274#endif
3275
dfe25020 3276 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3277 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3278
04160088 3279 bdi_destroy(&fs_info->bdi);
76dda93c 3280 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3281
eb60ceac
CM
3282 return 0;
3283}
3284
b9fab919
CM
3285int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3286 int atomic)
5f39d397 3287{
1259ab75 3288 int ret;
727011e0 3289 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3290
0b32f4bb 3291 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3292 if (!ret)
3293 return ret;
3294
3295 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3296 parent_transid, atomic);
3297 if (ret == -EAGAIN)
3298 return ret;
1259ab75 3299 return !ret;
5f39d397
CM
3300}
3301
3302int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3303{
0b32f4bb 3304 return set_extent_buffer_uptodate(buf);
5f39d397 3305}
6702ed49 3306
5f39d397
CM
3307void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3308{
727011e0 3309 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3310 u64 transid = btrfs_header_generation(buf);
b9473439 3311 int was_dirty;
b4ce94de 3312
b9447ef8 3313 btrfs_assert_tree_locked(buf);
ccd467d6 3314 if (transid != root->fs_info->generation) {
d397712b
CM
3315 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3316 "found %llu running %llu\n",
db94535d 3317 (unsigned long long)buf->start,
d397712b
CM
3318 (unsigned long long)transid,
3319 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3320 WARN_ON(1);
3321 }
0b32f4bb 3322 was_dirty = set_extent_buffer_dirty(buf);
b9473439
CM
3323 if (!was_dirty) {
3324 spin_lock(&root->fs_info->delalloc_lock);
3325 root->fs_info->dirty_metadata_bytes += buf->len;
3326 spin_unlock(&root->fs_info->delalloc_lock);
3327 }
eb60ceac
CM
3328}
3329
d3c2fdcf 3330void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3331{
3332 /*
3333 * looks as though older kernels can get into trouble with
3334 * this code, they end up stuck in balance_dirty_pages forever
3335 */
3336 u64 num_dirty;
3337 unsigned long thresh = 32 * 1024 * 1024;
3338
3339 if (current->flags & PF_MEMALLOC)
3340 return;
3341
3342 btrfs_balance_delayed_items(root);
3343
3344 num_dirty = root->fs_info->dirty_metadata_bytes;
3345
3346 if (num_dirty > thresh) {
3347 balance_dirty_pages_ratelimited_nr(
3348 root->fs_info->btree_inode->i_mapping, 1);
3349 }
3350 return;
3351}
3352
3353void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3354{
188de649
CM
3355 /*
3356 * looks as though older kernels can get into trouble with
3357 * this code, they end up stuck in balance_dirty_pages forever
3358 */
d6bfde87 3359 u64 num_dirty;
771ed689 3360 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3361
6933c02e 3362 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3363 return;
3364
585ad2c3
CM
3365 num_dirty = root->fs_info->dirty_metadata_bytes;
3366
d6bfde87
CM
3367 if (num_dirty > thresh) {
3368 balance_dirty_pages_ratelimited_nr(
d7fc640e 3369 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3370 }
188de649 3371 return;
35b7e476 3372}
6b80053d 3373
ca7a79ad 3374int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3375{
727011e0 3376 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3377 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3378}
0da5468f 3379
20897f5c 3380int btree_lock_page_hook(struct page *page, void *data,
01d658f2 3381 void (*flush_fn)(void *))
4bef0848
CM
3382{
3383 struct inode *inode = page->mapping->host;
b9473439 3384 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848 3385 struct extent_buffer *eb;
4bef0848 3386
4f2de97a
JB
3387 /*
3388 * We culled this eb but the page is still hanging out on the mapping,
3389 * carry on.
3390 */
3391 if (!PagePrivate(page))
4bef0848
CM
3392 goto out;
3393
4f2de97a
JB
3394 eb = (struct extent_buffer *)page->private;
3395 if (!eb) {
3396 WARN_ON(1);
3397 goto out;
3398 }
3399 if (page != eb->pages[0])
4bef0848
CM
3400 goto out;
3401
01d658f2
CM
3402 if (!btrfs_try_tree_write_lock(eb)) {
3403 flush_fn(data);
3404 btrfs_tree_lock(eb);
3405 }
4bef0848 3406 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3407
3408 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3409 spin_lock(&root->fs_info->delalloc_lock);
3410 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3411 root->fs_info->dirty_metadata_bytes -= eb->len;
3412 else
3413 WARN_ON(1);
3414 spin_unlock(&root->fs_info->delalloc_lock);
3415 }
3416
4bef0848 3417 btrfs_tree_unlock(eb);
4bef0848 3418out:
01d658f2
CM
3419 if (!trylock_page(page)) {
3420 flush_fn(data);
3421 lock_page(page);
3422 }
4bef0848
CM
3423 return 0;
3424}
3425
fcd1f065 3426static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3427 int read_only)
3428{
fcd1f065
DS
3429 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3430 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3431 return -EINVAL;
3432 }
3433
acce952b 3434 if (read_only)
fcd1f065 3435 return 0;
acce952b 3436
fcd1f065 3437 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
acce952b 3438 printk(KERN_WARNING "warning: mount fs with errors, "
3439 "running btrfsck is recommended\n");
fcd1f065
DS
3440 }
3441
3442 return 0;
acce952b 3443}
3444
3445int btrfs_error_commit_super(struct btrfs_root *root)
3446{
3447 int ret;
3448
3449 mutex_lock(&root->fs_info->cleaner_mutex);
3450 btrfs_run_delayed_iputs(root);
3451 mutex_unlock(&root->fs_info->cleaner_mutex);
3452
3453 down_write(&root->fs_info->cleanup_work_sem);
3454 up_write(&root->fs_info->cleanup_work_sem);
3455
3456 /* cleanup FS via transaction */
3457 btrfs_cleanup_transaction(root);
3458
3459 ret = write_ctree_super(NULL, root, 0);
3460
3461 return ret;
3462}
3463
143bede5 3464static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3465{
3466 struct btrfs_inode *btrfs_inode;
3467 struct list_head splice;
3468
3469 INIT_LIST_HEAD(&splice);
3470
3471 mutex_lock(&root->fs_info->ordered_operations_mutex);
3472 spin_lock(&root->fs_info->ordered_extent_lock);
3473
3474 list_splice_init(&root->fs_info->ordered_operations, &splice);
3475 while (!list_empty(&splice)) {
3476 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3477 ordered_operations);
3478
3479 list_del_init(&btrfs_inode->ordered_operations);
3480
3481 btrfs_invalidate_inodes(btrfs_inode->root);
3482 }
3483
3484 spin_unlock(&root->fs_info->ordered_extent_lock);
3485 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3486}
3487
143bede5 3488static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3489{
3490 struct list_head splice;
3491 struct btrfs_ordered_extent *ordered;
3492 struct inode *inode;
3493
3494 INIT_LIST_HEAD(&splice);
3495
3496 spin_lock(&root->fs_info->ordered_extent_lock);
3497
3498 list_splice_init(&root->fs_info->ordered_extents, &splice);
3499 while (!list_empty(&splice)) {
3500 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3501 root_extent_list);
3502
3503 list_del_init(&ordered->root_extent_list);
3504 atomic_inc(&ordered->refs);
3505
3506 /* the inode may be getting freed (in sys_unlink path). */
3507 inode = igrab(ordered->inode);
3508
3509 spin_unlock(&root->fs_info->ordered_extent_lock);
3510 if (inode)
3511 iput(inode);
3512
3513 atomic_set(&ordered->refs, 1);
3514 btrfs_put_ordered_extent(ordered);
3515
3516 spin_lock(&root->fs_info->ordered_extent_lock);
3517 }
3518
3519 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3520}
3521
79787eaa
JM
3522int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3523 struct btrfs_root *root)
acce952b 3524{
3525 struct rb_node *node;
3526 struct btrfs_delayed_ref_root *delayed_refs;
3527 struct btrfs_delayed_ref_node *ref;
3528 int ret = 0;
3529
3530 delayed_refs = &trans->delayed_refs;
3531
3532 spin_lock(&delayed_refs->lock);
3533 if (delayed_refs->num_entries == 0) {
cfece4db 3534 spin_unlock(&delayed_refs->lock);
acce952b 3535 printk(KERN_INFO "delayed_refs has NO entry\n");
3536 return ret;
3537 }
3538
b939d1ab 3539 while ((node = rb_first(&delayed_refs->root)) != NULL) {
acce952b 3540 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3541
3542 atomic_set(&ref->refs, 1);
3543 if (btrfs_delayed_ref_is_head(ref)) {
3544 struct btrfs_delayed_ref_head *head;
3545
3546 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3547 if (!mutex_trylock(&head->mutex)) {
3548 atomic_inc(&ref->refs);
3549 spin_unlock(&delayed_refs->lock);
3550
3551 /* Need to wait for the delayed ref to run */
3552 mutex_lock(&head->mutex);
3553 mutex_unlock(&head->mutex);
3554 btrfs_put_delayed_ref(ref);
3555
e18fca73 3556 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3557 continue;
3558 }
3559
acce952b 3560 kfree(head->extent_op);
3561 delayed_refs->num_heads--;
3562 if (list_empty(&head->cluster))
3563 delayed_refs->num_heads_ready--;
3564 list_del_init(&head->cluster);
acce952b 3565 }
b939d1ab
JB
3566 ref->in_tree = 0;
3567 rb_erase(&ref->rb_node, &delayed_refs->root);
3568 delayed_refs->num_entries--;
3569
acce952b 3570 spin_unlock(&delayed_refs->lock);
3571 btrfs_put_delayed_ref(ref);
3572
3573 cond_resched();
3574 spin_lock(&delayed_refs->lock);
3575 }
3576
3577 spin_unlock(&delayed_refs->lock);
3578
3579 return ret;
3580}
3581
143bede5 3582static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3583{
3584 struct btrfs_pending_snapshot *snapshot;
3585 struct list_head splice;
3586
3587 INIT_LIST_HEAD(&splice);
3588
3589 list_splice_init(&t->pending_snapshots, &splice);
3590
3591 while (!list_empty(&splice)) {
3592 snapshot = list_entry(splice.next,
3593 struct btrfs_pending_snapshot,
3594 list);
3595
3596 list_del_init(&snapshot->list);
3597
3598 kfree(snapshot);
3599 }
acce952b 3600}
3601
143bede5 3602static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3603{
3604 struct btrfs_inode *btrfs_inode;
3605 struct list_head splice;
3606
3607 INIT_LIST_HEAD(&splice);
3608
acce952b 3609 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3610 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3611
3612 while (!list_empty(&splice)) {
3613 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3614 delalloc_inodes);
3615
3616 list_del_init(&btrfs_inode->delalloc_inodes);
3617
3618 btrfs_invalidate_inodes(btrfs_inode->root);
3619 }
3620
3621 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3622}
3623
3624static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3625 struct extent_io_tree *dirty_pages,
3626 int mark)
3627{
3628 int ret;
3629 struct page *page;
3630 struct inode *btree_inode = root->fs_info->btree_inode;
3631 struct extent_buffer *eb;
3632 u64 start = 0;
3633 u64 end;
3634 u64 offset;
3635 unsigned long index;
3636
3637 while (1) {
3638 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3639 mark);
3640 if (ret)
3641 break;
3642
3643 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3644 while (start <= end) {
3645 index = start >> PAGE_CACHE_SHIFT;
3646 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3647 page = find_get_page(btree_inode->i_mapping, index);
3648 if (!page)
3649 continue;
3650 offset = page_offset(page);
3651
3652 spin_lock(&dirty_pages->buffer_lock);
3653 eb = radix_tree_lookup(
3654 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3655 offset >> PAGE_CACHE_SHIFT);
3656 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3657 if (eb)
acce952b 3658 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3659 &eb->bflags);
acce952b 3660 if (PageWriteback(page))
3661 end_page_writeback(page);
3662
3663 lock_page(page);
3664 if (PageDirty(page)) {
3665 clear_page_dirty_for_io(page);
3666 spin_lock_irq(&page->mapping->tree_lock);
3667 radix_tree_tag_clear(&page->mapping->page_tree,
3668 page_index(page),
3669 PAGECACHE_TAG_DIRTY);
3670 spin_unlock_irq(&page->mapping->tree_lock);
3671 }
3672
acce952b 3673 unlock_page(page);
ee670f0a 3674 page_cache_release(page);
acce952b 3675 }
3676 }
3677
3678 return ret;
3679}
3680
3681static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3682 struct extent_io_tree *pinned_extents)
3683{
3684 struct extent_io_tree *unpin;
3685 u64 start;
3686 u64 end;
3687 int ret;
ed0eaa14 3688 bool loop = true;
acce952b 3689
3690 unpin = pinned_extents;
ed0eaa14 3691again:
acce952b 3692 while (1) {
3693 ret = find_first_extent_bit(unpin, 0, &start, &end,
3694 EXTENT_DIRTY);
3695 if (ret)
3696 break;
3697
3698 /* opt_discard */
5378e607
LD
3699 if (btrfs_test_opt(root, DISCARD))
3700 ret = btrfs_error_discard_extent(root, start,
3701 end + 1 - start,
3702 NULL);
acce952b 3703
3704 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3705 btrfs_error_unpin_extent_range(root, start, end);
3706 cond_resched();
3707 }
3708
ed0eaa14
LB
3709 if (loop) {
3710 if (unpin == &root->fs_info->freed_extents[0])
3711 unpin = &root->fs_info->freed_extents[1];
3712 else
3713 unpin = &root->fs_info->freed_extents[0];
3714 loop = false;
3715 goto again;
3716 }
3717
acce952b 3718 return 0;
3719}
3720
49b25e05
JM
3721void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3722 struct btrfs_root *root)
3723{
3724 btrfs_destroy_delayed_refs(cur_trans, root);
3725 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3726 cur_trans->dirty_pages.dirty_bytes);
3727
3728 /* FIXME: cleanup wait for commit */
3729 cur_trans->in_commit = 1;
3730 cur_trans->blocked = 1;
d7096fc3 3731 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
3732
3733 cur_trans->blocked = 0;
d7096fc3 3734 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3735
3736 cur_trans->commit_done = 1;
d7096fc3 3737 wake_up(&cur_trans->commit_wait);
49b25e05 3738
67cde344
MX
3739 btrfs_destroy_delayed_inodes(root);
3740 btrfs_assert_delayed_root_empty(root);
49b25e05
JM
3741
3742 btrfs_destroy_pending_snapshots(cur_trans);
3743
3744 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3745 EXTENT_DIRTY);
6e841e32
LB
3746 btrfs_destroy_pinned_extent(root,
3747 root->fs_info->pinned_extents);
49b25e05
JM
3748
3749 /*
3750 memset(cur_trans, 0, sizeof(*cur_trans));
3751 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3752 */
3753}
3754
3755int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3756{
3757 struct btrfs_transaction *t;
3758 LIST_HEAD(list);
3759
acce952b 3760 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3761
a4abeea4 3762 spin_lock(&root->fs_info->trans_lock);
acce952b 3763 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3764 root->fs_info->trans_no_join = 1;
3765 spin_unlock(&root->fs_info->trans_lock);
3766
acce952b 3767 while (!list_empty(&list)) {
3768 t = list_entry(list.next, struct btrfs_transaction, list);
3769 if (!t)
3770 break;
3771
3772 btrfs_destroy_ordered_operations(root);
3773
3774 btrfs_destroy_ordered_extents(root);
3775
3776 btrfs_destroy_delayed_refs(t, root);
3777
3778 btrfs_block_rsv_release(root,
3779 &root->fs_info->trans_block_rsv,
3780 t->dirty_pages.dirty_bytes);
3781
3782 /* FIXME: cleanup wait for commit */
3783 t->in_commit = 1;
3784 t->blocked = 1;
3785 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3786 wake_up(&root->fs_info->transaction_blocked_wait);
3787
3788 t->blocked = 0;
3789 if (waitqueue_active(&root->fs_info->transaction_wait))
3790 wake_up(&root->fs_info->transaction_wait);
acce952b 3791
acce952b 3792 t->commit_done = 1;
3793 if (waitqueue_active(&t->commit_wait))
3794 wake_up(&t->commit_wait);
acce952b 3795
67cde344
MX
3796 btrfs_destroy_delayed_inodes(root);
3797 btrfs_assert_delayed_root_empty(root);
3798
acce952b 3799 btrfs_destroy_pending_snapshots(t);
3800
3801 btrfs_destroy_delalloc_inodes(root);
3802
a4abeea4 3803 spin_lock(&root->fs_info->trans_lock);
acce952b 3804 root->fs_info->running_transaction = NULL;
a4abeea4 3805 spin_unlock(&root->fs_info->trans_lock);
acce952b 3806
3807 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3808 EXTENT_DIRTY);
3809
3810 btrfs_destroy_pinned_extent(root,
3811 root->fs_info->pinned_extents);
3812
13c5a93e 3813 atomic_set(&t->use_count, 0);
acce952b 3814 list_del_init(&t->list);
3815 memset(t, 0, sizeof(*t));
3816 kmem_cache_free(btrfs_transaction_cachep, t);
3817 }
3818
a4abeea4
JB
3819 spin_lock(&root->fs_info->trans_lock);
3820 root->fs_info->trans_no_join = 0;
3821 spin_unlock(&root->fs_info->trans_lock);
acce952b 3822 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3823
3824 return 0;
3825}
3826
d1310b2e 3827static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3828 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3829 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3830 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3831 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3832 /* note we're sharing with inode.c for the merge bio hook */
3833 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3834};