]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/disk-io.c
Btrfs: fix missing hole after hole punching and fsync when using NO_HOLES
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
5a0e3ad6 28#include <linux/slab.h>
784b4e29 29#include <linux/migrate.h>
7a36ddec 30#include <linux/ratelimit.h>
6463fe58 31#include <linux/uuid.h>
803b2f54 32#include <linux/semaphore.h>
7e75bf3f 33#include <asm/unaligned.h>
eb60ceac
CM
34#include "ctree.h"
35#include "disk-io.h"
0b947aff 36#include "hash.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
925baedd 41#include "locking.h"
e02119d5 42#include "tree-log.h"
fa9c0d79 43#include "free-space-cache.h"
70f6d82e 44#include "free-space-tree.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
ebb8765b 52#include "compression.h"
557ea5dd 53#include "tree-checker.h"
fd708b81 54#include "ref-verify.h"
eb60ceac 55
de0022b9
JB
56#ifdef CONFIG_X86
57#include <asm/cpufeature.h>
58#endif
59
319e4d06
QW
60#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
61 BTRFS_HEADER_FLAG_RELOC |\
62 BTRFS_SUPER_FLAG_ERROR |\
63 BTRFS_SUPER_FLAG_SEEDING |\
63cd3bb8
AJ
64 BTRFS_SUPER_FLAG_METADUMP |\
65 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 66
e8c9f186 67static const struct extent_io_ops btree_extent_io_ops;
8b712842 68static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 69static void free_fs_root(struct btrfs_root *root);
3d3a126a 70static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
143bede5 71static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 72static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 73 struct btrfs_fs_info *fs_info);
143bede5 74static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 75static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 76 struct extent_io_tree *dirty_pages,
77 int mark);
2ff7e61e 78static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 79 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
80static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
81static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 82
d352ac68 83/*
97eb6b69
DS
84 * btrfs_end_io_wq structs are used to do processing in task context when an IO
85 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
86 * by writes to insert metadata for new file extents after IO is complete.
87 */
97eb6b69 88struct btrfs_end_io_wq {
ce9adaa5
CM
89 struct bio *bio;
90 bio_end_io_t *end_io;
91 void *private;
92 struct btrfs_fs_info *info;
4e4cbee9 93 blk_status_t status;
bfebd8b5 94 enum btrfs_wq_endio_type metadata;
8b712842 95 struct btrfs_work work;
ce9adaa5 96};
0da5468f 97
97eb6b69
DS
98static struct kmem_cache *btrfs_end_io_wq_cache;
99
100int __init btrfs_end_io_wq_init(void)
101{
102 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
103 sizeof(struct btrfs_end_io_wq),
104 0,
fba4b697 105 SLAB_MEM_SPREAD,
97eb6b69
DS
106 NULL);
107 if (!btrfs_end_io_wq_cache)
108 return -ENOMEM;
109 return 0;
110}
111
112void btrfs_end_io_wq_exit(void)
113{
5598e900 114 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
115}
116
d352ac68
CM
117/*
118 * async submit bios are used to offload expensive checksumming
119 * onto the worker threads. They checksum file and metadata bios
120 * just before they are sent down the IO stack.
121 */
44b8bd7e 122struct async_submit_bio {
c6100a4b
JB
123 void *private_data;
124 struct btrfs_fs_info *fs_info;
44b8bd7e 125 struct bio *bio;
4a69a410
CM
126 extent_submit_bio_hook_t *submit_bio_start;
127 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e 128 int mirror_num;
c8b97818 129 unsigned long bio_flags;
eaf25d93
CM
130 /*
131 * bio_offset is optional, can be used if the pages in the bio
132 * can't tell us where in the file the bio should go
133 */
134 u64 bio_offset;
8b712842 135 struct btrfs_work work;
4e4cbee9 136 blk_status_t status;
44b8bd7e
CM
137};
138
85d4e461
CM
139/*
140 * Lockdep class keys for extent_buffer->lock's in this root. For a given
141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
142 * the level the eb occupies in the tree.
143 *
144 * Different roots are used for different purposes and may nest inside each
145 * other and they require separate keysets. As lockdep keys should be
146 * static, assign keysets according to the purpose of the root as indicated
147 * by btrfs_root->objectid. This ensures that all special purpose roots
148 * have separate keysets.
4008c04a 149 *
85d4e461
CM
150 * Lock-nesting across peer nodes is always done with the immediate parent
151 * node locked thus preventing deadlock. As lockdep doesn't know this, use
152 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 153 *
85d4e461
CM
154 * The key is set by the readpage_end_io_hook after the buffer has passed
155 * csum validation but before the pages are unlocked. It is also set by
156 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 157 *
85d4e461
CM
158 * We also add a check to make sure the highest level of the tree is the
159 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
160 * needs update as well.
4008c04a
CM
161 */
162#ifdef CONFIG_DEBUG_LOCK_ALLOC
163# if BTRFS_MAX_LEVEL != 8
164# error
165# endif
85d4e461
CM
166
167static struct btrfs_lockdep_keyset {
168 u64 id; /* root objectid */
169 const char *name_stem; /* lock name stem */
170 char names[BTRFS_MAX_LEVEL + 1][20];
171 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
172} btrfs_lockdep_keysets[] = {
173 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
174 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
175 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
176 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
177 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
178 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 179 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
180 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
181 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
182 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 183 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 184 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 185 { .id = 0, .name_stem = "tree" },
4008c04a 186};
85d4e461
CM
187
188void __init btrfs_init_lockdep(void)
189{
190 int i, j;
191
192 /* initialize lockdep class names */
193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 snprintf(ks->names[j], sizeof(ks->names[j]),
198 "btrfs-%s-%02d", ks->name_stem, j);
199 }
200}
201
202void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 int level)
204{
205 struct btrfs_lockdep_keyset *ks;
206
207 BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209 /* find the matching keyset, id 0 is the default entry */
210 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 if (ks->id == objectid)
212 break;
213
214 lockdep_set_class_and_name(&eb->lock,
215 &ks->keys[level], ks->names[level]);
216}
217
4008c04a
CM
218#endif
219
d352ac68
CM
220/*
221 * extents on the btree inode are pretty simple, there's one extent
222 * that covers the entire device
223 */
fc4f21b1 224static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
306e16ce 225 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 226 int create)
7eccb903 227{
fc4f21b1
NB
228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
229 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
230 struct extent_map *em;
231 int ret;
232
890871be 233 read_lock(&em_tree->lock);
d1310b2e 234 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 235 if (em) {
0b246afa 236 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 237 read_unlock(&em_tree->lock);
5f39d397 238 goto out;
a061fc8d 239 }
890871be 240 read_unlock(&em_tree->lock);
7b13b7b1 241
172ddd60 242 em = alloc_extent_map();
5f39d397
CM
243 if (!em) {
244 em = ERR_PTR(-ENOMEM);
245 goto out;
246 }
247 em->start = 0;
0afbaf8c 248 em->len = (u64)-1;
c8b97818 249 em->block_len = (u64)-1;
5f39d397 250 em->block_start = 0;
0b246afa 251 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 252
890871be 253 write_lock(&em_tree->lock);
09a2a8f9 254 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
255 if (ret == -EEXIST) {
256 free_extent_map(em);
7b13b7b1 257 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 258 if (!em)
0433f20d 259 em = ERR_PTR(-EIO);
5f39d397 260 } else if (ret) {
7b13b7b1 261 free_extent_map(em);
0433f20d 262 em = ERR_PTR(ret);
5f39d397 263 }
890871be 264 write_unlock(&em_tree->lock);
7b13b7b1 265
5f39d397
CM
266out:
267 return em;
7eccb903
CM
268}
269
9ed57367 270u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
19c00ddc 271{
0b947aff 272 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
273}
274
0b5e3daf 275void btrfs_csum_final(u32 crc, u8 *result)
19c00ddc 276{
7e75bf3f 277 put_unaligned_le32(~crc, result);
19c00ddc
CM
278}
279
d352ac68
CM
280/*
281 * compute the csum for a btree block, and either verify it or write it
282 * into the csum field of the block.
283 */
01d58472
DD
284static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 struct extent_buffer *buf,
19c00ddc
CM
286 int verify)
287{
01d58472 288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 289 char *result = NULL;
19c00ddc
CM
290 unsigned long len;
291 unsigned long cur_len;
292 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
293 char *kaddr;
294 unsigned long map_start;
295 unsigned long map_len;
296 int err;
297 u32 crc = ~(u32)0;
607d432d 298 unsigned long inline_result;
19c00ddc
CM
299
300 len = buf->len - offset;
d397712b 301 while (len > 0) {
19c00ddc 302 err = map_private_extent_buffer(buf, offset, 32,
a6591715 303 &kaddr, &map_start, &map_len);
d397712b 304 if (err)
8bd98f0e 305 return err;
19c00ddc 306 cur_len = min(len, map_len - (offset - map_start));
b0496686 307 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
308 crc, cur_len);
309 len -= cur_len;
310 offset += cur_len;
19c00ddc 311 }
607d432d 312 if (csum_size > sizeof(inline_result)) {
31e818fe 313 result = kzalloc(csum_size, GFP_NOFS);
607d432d 314 if (!result)
8bd98f0e 315 return -ENOMEM;
607d432d
JB
316 } else {
317 result = (char *)&inline_result;
318 }
319
19c00ddc
CM
320 btrfs_csum_final(crc, result);
321
322 if (verify) {
607d432d 323 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
324 u32 val;
325 u32 found = 0;
607d432d 326 memcpy(&found, result, csum_size);
e4204ded 327
607d432d 328 read_extent_buffer(buf, &val, 0, csum_size);
94647322 329 btrfs_warn_rl(fs_info,
5d163e0e 330 "%s checksum verify failed on %llu wanted %X found %X level %d",
01d58472 331 fs_info->sb->s_id, buf->start,
efe120a0 332 val, found, btrfs_header_level(buf));
607d432d
JB
333 if (result != (char *)&inline_result)
334 kfree(result);
8bd98f0e 335 return -EUCLEAN;
19c00ddc
CM
336 }
337 } else {
607d432d 338 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 339 }
607d432d
JB
340 if (result != (char *)&inline_result)
341 kfree(result);
19c00ddc
CM
342 return 0;
343}
344
d352ac68
CM
345/*
346 * we can't consider a given block up to date unless the transid of the
347 * block matches the transid in the parent node's pointer. This is how we
348 * detect blocks that either didn't get written at all or got written
349 * in the wrong place.
350 */
1259ab75 351static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
352 struct extent_buffer *eb, u64 parent_transid,
353 int atomic)
1259ab75 354{
2ac55d41 355 struct extent_state *cached_state = NULL;
1259ab75 356 int ret;
2755a0de 357 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
358
359 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
360 return 0;
361
b9fab919
CM
362 if (atomic)
363 return -EAGAIN;
364
a26e8c9f
JB
365 if (need_lock) {
366 btrfs_tree_read_lock(eb);
367 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368 }
369
2ac55d41 370 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 371 &cached_state);
0b32f4bb 372 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
373 btrfs_header_generation(eb) == parent_transid) {
374 ret = 0;
375 goto out;
376 }
94647322
DS
377 btrfs_err_rl(eb->fs_info,
378 "parent transid verify failed on %llu wanted %llu found %llu",
379 eb->start,
29549aec 380 parent_transid, btrfs_header_generation(eb));
1259ab75 381 ret = 1;
a26e8c9f
JB
382
383 /*
384 * Things reading via commit roots that don't have normal protection,
385 * like send, can have a really old block in cache that may point at a
01327610 386 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
387 * if we find an eb that is under IO (dirty/writeback) because we could
388 * end up reading in the stale data and then writing it back out and
389 * making everybody very sad.
390 */
391 if (!extent_buffer_under_io(eb))
392 clear_extent_buffer_uptodate(eb);
33958dc6 393out:
2ac55d41
JB
394 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
395 &cached_state, GFP_NOFS);
472b909f
JB
396 if (need_lock)
397 btrfs_tree_read_unlock_blocking(eb);
1259ab75 398 return ret;
1259ab75
CM
399}
400
1104a885
DS
401/*
402 * Return 0 if the superblock checksum type matches the checksum value of that
403 * algorithm. Pass the raw disk superblock data.
404 */
ab8d0fc4
JM
405static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
406 char *raw_disk_sb)
1104a885
DS
407{
408 struct btrfs_super_block *disk_sb =
409 (struct btrfs_super_block *)raw_disk_sb;
410 u16 csum_type = btrfs_super_csum_type(disk_sb);
411 int ret = 0;
412
413 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 u32 crc = ~(u32)0;
415 const int csum_size = sizeof(crc);
416 char result[csum_size];
417
418 /*
419 * The super_block structure does not span the whole
420 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
01327610 421 * is filled with zeros and is included in the checksum.
1104a885
DS
422 */
423 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425 btrfs_csum_final(crc, result);
426
427 if (memcmp(raw_disk_sb, result, csum_size))
428 ret = 1;
429 }
430
431 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
ab8d0fc4 432 btrfs_err(fs_info, "unsupported checksum algorithm %u",
1104a885
DS
433 csum_type);
434 ret = 1;
435 }
436
437 return ret;
438}
439
d352ac68
CM
440/*
441 * helper to read a given tree block, doing retries as required when
442 * the checksums don't match and we have alternate mirrors to try.
443 */
2ff7e61e 444static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
f188591e 445 struct extent_buffer *eb,
8436ea91 446 u64 parent_transid)
f188591e
CM
447{
448 struct extent_io_tree *io_tree;
ea466794 449 int failed = 0;
f188591e
CM
450 int ret;
451 int num_copies = 0;
452 int mirror_num = 0;
ea466794 453 int failed_mirror = 0;
f188591e 454
0b246afa 455 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 456 while (1) {
03e1b5c9 457 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
8436ea91 458 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
f188591e 459 btree_get_extent, mirror_num);
256dd1bb
SB
460 if (!ret) {
461 if (!verify_parent_transid(io_tree, eb,
b9fab919 462 parent_transid, 0))
256dd1bb
SB
463 break;
464 else
465 ret = -EIO;
466 }
d397712b 467
0b246afa 468 num_copies = btrfs_num_copies(fs_info,
f188591e 469 eb->start, eb->len);
4235298e 470 if (num_copies == 1)
ea466794 471 break;
4235298e 472
5cf1ab56
JB
473 if (!failed_mirror) {
474 failed = 1;
475 failed_mirror = eb->read_mirror;
476 }
477
f188591e 478 mirror_num++;
ea466794
JB
479 if (mirror_num == failed_mirror)
480 mirror_num++;
481
4235298e 482 if (mirror_num > num_copies)
ea466794 483 break;
f188591e 484 }
ea466794 485
c0901581 486 if (failed && !ret && failed_mirror)
2ff7e61e 487 repair_eb_io_failure(fs_info, eb, failed_mirror);
ea466794
JB
488
489 return ret;
f188591e 490}
19c00ddc 491
d352ac68 492/*
d397712b
CM
493 * checksum a dirty tree block before IO. This has extra checks to make sure
494 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 495 */
d397712b 496
01d58472 497static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 498{
4eee4fa4 499 u64 start = page_offset(page);
19c00ddc 500 u64 found_start;
19c00ddc 501 struct extent_buffer *eb;
f188591e 502
4f2de97a
JB
503 eb = (struct extent_buffer *)page->private;
504 if (page != eb->pages[0])
505 return 0;
0f805531 506
19c00ddc 507 found_start = btrfs_header_bytenr(eb);
0f805531
AL
508 /*
509 * Please do not consolidate these warnings into a single if.
510 * It is useful to know what went wrong.
511 */
512 if (WARN_ON(found_start != start))
513 return -EUCLEAN;
514 if (WARN_ON(!PageUptodate(page)))
515 return -EUCLEAN;
516
517 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
518 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
519
8bd98f0e 520 return csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
521}
522
01d58472 523static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
524 struct extent_buffer *eb)
525{
01d58472 526 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 527 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
528 int ret = 1;
529
0a4e5586 530 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
531 while (fs_devices) {
532 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
533 ret = 0;
534 break;
535 }
536 fs_devices = fs_devices->seed;
537 }
538 return ret;
539}
540
facc8a22
MX
541static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
542 u64 phy_offset, struct page *page,
543 u64 start, u64 end, int mirror)
ce9adaa5 544{
ce9adaa5
CM
545 u64 found_start;
546 int found_level;
ce9adaa5
CM
547 struct extent_buffer *eb;
548 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
02873e43 549 struct btrfs_fs_info *fs_info = root->fs_info;
f188591e 550 int ret = 0;
727011e0 551 int reads_done;
ce9adaa5 552
ce9adaa5
CM
553 if (!page->private)
554 goto out;
d397712b 555
4f2de97a 556 eb = (struct extent_buffer *)page->private;
d397712b 557
0b32f4bb
JB
558 /* the pending IO might have been the only thing that kept this buffer
559 * in memory. Make sure we have a ref for all this other checks
560 */
561 extent_buffer_get(eb);
562
563 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
564 if (!reads_done)
565 goto err;
f188591e 566
5cf1ab56 567 eb->read_mirror = mirror;
656f30db 568 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
569 ret = -EIO;
570 goto err;
571 }
572
ce9adaa5 573 found_start = btrfs_header_bytenr(eb);
727011e0 574 if (found_start != eb->start) {
02873e43
ZL
575 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
576 found_start, eb->start);
f188591e 577 ret = -EIO;
ce9adaa5
CM
578 goto err;
579 }
02873e43
ZL
580 if (check_tree_block_fsid(fs_info, eb)) {
581 btrfs_err_rl(fs_info, "bad fsid on block %llu",
582 eb->start);
1259ab75
CM
583 ret = -EIO;
584 goto err;
585 }
ce9adaa5 586 found_level = btrfs_header_level(eb);
1c24c3ce 587 if (found_level >= BTRFS_MAX_LEVEL) {
02873e43
ZL
588 btrfs_err(fs_info, "bad tree block level %d",
589 (int)btrfs_header_level(eb));
1c24c3ce
JB
590 ret = -EIO;
591 goto err;
592 }
ce9adaa5 593
85d4e461
CM
594 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
595 eb, found_level);
4008c04a 596
02873e43 597 ret = csum_tree_block(fs_info, eb, 1);
8bd98f0e 598 if (ret)
a826d6dc 599 goto err;
a826d6dc
JB
600
601 /*
602 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 * that we don't try and read the other copies of this block, just
604 * return -EIO.
605 */
69fc6cbb 606 if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
a826d6dc
JB
607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608 ret = -EIO;
609 }
ce9adaa5 610
557ea5dd 611 if (found_level > 0 && btrfs_check_node(root, eb))
053ab70f
LB
612 ret = -EIO;
613
0b32f4bb
JB
614 if (!ret)
615 set_extent_buffer_uptodate(eb);
ce9adaa5 616err:
79fb65a1
JB
617 if (reads_done &&
618 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 619 btree_readahead_hook(eb, ret);
4bb31e92 620
53b381b3
DW
621 if (ret) {
622 /*
623 * our io error hook is going to dec the io pages
624 * again, we have to make sure it has something
625 * to decrement
626 */
627 atomic_inc(&eb->io_pages);
0b32f4bb 628 clear_extent_buffer_uptodate(eb);
53b381b3 629 }
0b32f4bb 630 free_extent_buffer(eb);
ce9adaa5 631out:
f188591e 632 return ret;
ce9adaa5
CM
633}
634
ea466794 635static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 636{
4bb31e92 637 struct extent_buffer *eb;
4bb31e92 638
4f2de97a 639 eb = (struct extent_buffer *)page->private;
656f30db 640 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 641 eb->read_mirror = failed_mirror;
53b381b3 642 atomic_dec(&eb->io_pages);
ea466794 643 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 644 btree_readahead_hook(eb, -EIO);
4bb31e92
AJ
645 return -EIO; /* we fixed nothing */
646}
647
4246a0b6 648static void end_workqueue_bio(struct bio *bio)
ce9adaa5 649{
97eb6b69 650 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 651 struct btrfs_fs_info *fs_info;
9e0af237
LB
652 struct btrfs_workqueue *wq;
653 btrfs_work_func_t func;
ce9adaa5 654
ce9adaa5 655 fs_info = end_io_wq->info;
4e4cbee9 656 end_io_wq->status = bio->bi_status;
d20f7043 657
37226b21 658 if (bio_op(bio) == REQ_OP_WRITE) {
9e0af237
LB
659 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
660 wq = fs_info->endio_meta_write_workers;
661 func = btrfs_endio_meta_write_helper;
662 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
663 wq = fs_info->endio_freespace_worker;
664 func = btrfs_freespace_write_helper;
665 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
666 wq = fs_info->endio_raid56_workers;
667 func = btrfs_endio_raid56_helper;
668 } else {
669 wq = fs_info->endio_write_workers;
670 func = btrfs_endio_write_helper;
671 }
d20f7043 672 } else {
8b110e39
MX
673 if (unlikely(end_io_wq->metadata ==
674 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
675 wq = fs_info->endio_repair_workers;
676 func = btrfs_endio_repair_helper;
677 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
678 wq = fs_info->endio_raid56_workers;
679 func = btrfs_endio_raid56_helper;
680 } else if (end_io_wq->metadata) {
681 wq = fs_info->endio_meta_workers;
682 func = btrfs_endio_meta_helper;
683 } else {
684 wq = fs_info->endio_workers;
685 func = btrfs_endio_helper;
686 }
d20f7043 687 }
9e0af237
LB
688
689 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
690 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
691}
692
4e4cbee9 693blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 694 enum btrfs_wq_endio_type metadata)
0b86a832 695{
97eb6b69 696 struct btrfs_end_io_wq *end_io_wq;
8b110e39 697
97eb6b69 698 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 699 if (!end_io_wq)
4e4cbee9 700 return BLK_STS_RESOURCE;
ce9adaa5
CM
701
702 end_io_wq->private = bio->bi_private;
703 end_io_wq->end_io = bio->bi_end_io;
22c59948 704 end_io_wq->info = info;
4e4cbee9 705 end_io_wq->status = 0;
ce9adaa5 706 end_io_wq->bio = bio;
22c59948 707 end_io_wq->metadata = metadata;
ce9adaa5
CM
708
709 bio->bi_private = end_io_wq;
710 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
711 return 0;
712}
713
b64a2851 714unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 715{
4854ddd0 716 unsigned long limit = min_t(unsigned long,
5cdc7ad3 717 info->thread_pool_size,
4854ddd0
CM
718 info->fs_devices->open_devices);
719 return 256 * limit;
720}
0986fe9e 721
4a69a410
CM
722static void run_one_async_start(struct btrfs_work *work)
723{
4a69a410 724 struct async_submit_bio *async;
4e4cbee9 725 blk_status_t ret;
4a69a410
CM
726
727 async = container_of(work, struct async_submit_bio, work);
c6100a4b 728 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
729 async->mirror_num, async->bio_flags,
730 async->bio_offset);
731 if (ret)
4e4cbee9 732 async->status = ret;
4a69a410
CM
733}
734
735static void run_one_async_done(struct btrfs_work *work)
8b712842 736{
8b712842
CM
737 struct async_submit_bio *async;
738
739 async = container_of(work, struct async_submit_bio, work);
4854ddd0 740
bb7ab3b9 741 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
742 if (async->status) {
743 async->bio->bi_status = async->status;
4246a0b6 744 bio_endio(async->bio);
79787eaa
JM
745 return;
746 }
747
c6100a4b 748 async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
81a75f67 749 async->bio_flags, async->bio_offset);
4a69a410
CM
750}
751
752static void run_one_async_free(struct btrfs_work *work)
753{
754 struct async_submit_bio *async;
755
756 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
757 kfree(async);
758}
759
8c27cb35
LT
760blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
761 int mirror_num, unsigned long bio_flags,
762 u64 bio_offset, void *private_data,
763 extent_submit_bio_hook_t *submit_bio_start,
764 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
765{
766 struct async_submit_bio *async;
767
768 async = kmalloc(sizeof(*async), GFP_NOFS);
769 if (!async)
4e4cbee9 770 return BLK_STS_RESOURCE;
44b8bd7e 771
c6100a4b
JB
772 async->private_data = private_data;
773 async->fs_info = fs_info;
44b8bd7e
CM
774 async->bio = bio;
775 async->mirror_num = mirror_num;
4a69a410
CM
776 async->submit_bio_start = submit_bio_start;
777 async->submit_bio_done = submit_bio_done;
778
9e0af237 779 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 780 run_one_async_done, run_one_async_free);
4a69a410 781
c8b97818 782 async->bio_flags = bio_flags;
eaf25d93 783 async->bio_offset = bio_offset;
8c8bee1d 784
4e4cbee9 785 async->status = 0;
79787eaa 786
67f055c7 787 if (op_is_sync(bio->bi_opf))
5cdc7ad3 788 btrfs_set_work_high_priority(&async->work);
d313d7a3 789
5cdc7ad3 790 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
791 return 0;
792}
793
4e4cbee9 794static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 795{
2c30c71b 796 struct bio_vec *bvec;
ce3ed71a 797 struct btrfs_root *root;
2c30c71b 798 int i, ret = 0;
ce3ed71a 799
c09abff8 800 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 801 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 802 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 803 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
804 if (ret)
805 break;
ce3ed71a 806 }
2c30c71b 807
4e4cbee9 808 return errno_to_blk_status(ret);
ce3ed71a
CM
809}
810
8c27cb35
LT
811static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
812 int mirror_num, unsigned long bio_flags,
813 u64 bio_offset)
22c59948 814{
8b712842
CM
815 /*
816 * when we're called for a write, we're already in the async
5443be45 817 * submission context. Just jump into btrfs_map_bio
8b712842 818 */
79787eaa 819 return btree_csum_one_bio(bio);
4a69a410 820}
22c59948 821
8c27cb35
LT
822static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
823 int mirror_num, unsigned long bio_flags,
824 u64 bio_offset)
4a69a410 825{
c6100a4b 826 struct inode *inode = private_data;
4e4cbee9 827 blk_status_t ret;
61891923 828
8b712842 829 /*
4a69a410
CM
830 * when we're called for a write, we're already in the async
831 * submission context. Just jump into btrfs_map_bio
8b712842 832 */
2ff7e61e 833 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
4246a0b6 834 if (ret) {
4e4cbee9 835 bio->bi_status = ret;
4246a0b6
CH
836 bio_endio(bio);
837 }
61891923 838 return ret;
0b86a832
CM
839}
840
18fdc679 841static int check_async_write(struct btrfs_inode *bi)
de0022b9 842{
6300463b
LB
843 if (atomic_read(&bi->sync_writers))
844 return 0;
de0022b9 845#ifdef CONFIG_X86
bc696ca0 846 if (static_cpu_has(X86_FEATURE_XMM4_2))
de0022b9
JB
847 return 0;
848#endif
849 return 1;
850}
851
8c27cb35
LT
852static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
853 int mirror_num, unsigned long bio_flags,
854 u64 bio_offset)
44b8bd7e 855{
c6100a4b 856 struct inode *inode = private_data;
0b246afa 857 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
18fdc679 858 int async = check_async_write(BTRFS_I(inode));
4e4cbee9 859 blk_status_t ret;
cad321ad 860
37226b21 861 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
862 /*
863 * called for a read, do the setup so that checksum validation
864 * can happen in the async kernel threads
865 */
0b246afa
JM
866 ret = btrfs_bio_wq_end_io(fs_info, bio,
867 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 868 if (ret)
61891923 869 goto out_w_error;
2ff7e61e 870 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
de0022b9
JB
871 } else if (!async) {
872 ret = btree_csum_one_bio(bio);
873 if (ret)
61891923 874 goto out_w_error;
2ff7e61e 875 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
876 } else {
877 /*
878 * kthread helpers are used to submit writes so that
879 * checksumming can happen in parallel across all CPUs
880 */
c6100a4b
JB
881 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
882 bio_offset, private_data,
61891923
SB
883 __btree_submit_bio_start,
884 __btree_submit_bio_done);
44b8bd7e 885 }
d313d7a3 886
4246a0b6
CH
887 if (ret)
888 goto out_w_error;
889 return 0;
890
61891923 891out_w_error:
4e4cbee9 892 bio->bi_status = ret;
4246a0b6 893 bio_endio(bio);
61891923 894 return ret;
44b8bd7e
CM
895}
896
3dd1462e 897#ifdef CONFIG_MIGRATION
784b4e29 898static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
899 struct page *newpage, struct page *page,
900 enum migrate_mode mode)
784b4e29
CM
901{
902 /*
903 * we can't safely write a btree page from here,
904 * we haven't done the locking hook
905 */
906 if (PageDirty(page))
907 return -EAGAIN;
908 /*
909 * Buffers may be managed in a filesystem specific way.
910 * We must have no buffers or drop them.
911 */
912 if (page_has_private(page) &&
913 !try_to_release_page(page, GFP_KERNEL))
914 return -EAGAIN;
a6bc32b8 915 return migrate_page(mapping, newpage, page, mode);
784b4e29 916}
3dd1462e 917#endif
784b4e29 918
0da5468f
CM
919
920static int btree_writepages(struct address_space *mapping,
921 struct writeback_control *wbc)
922{
e2d84521
MX
923 struct btrfs_fs_info *fs_info;
924 int ret;
925
d8d5f3e1 926 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
927
928 if (wbc->for_kupdate)
929 return 0;
930
e2d84521 931 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 932 /* this is a bit racy, but that's ok */
20d19687
EL
933 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
934 BTRFS_DIRTY_METADATA_THRESH,
935 fs_info->dirty_metadata_batch);
e2d84521 936 if (ret < 0)
793955bc 937 return 0;
793955bc 938 }
0b32f4bb 939 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
940}
941
b2950863 942static int btree_readpage(struct file *file, struct page *page)
5f39d397 943{
d1310b2e
CM
944 struct extent_io_tree *tree;
945 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 946 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 947}
22b0ebda 948
70dec807 949static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 950{
98509cfc 951 if (PageWriteback(page) || PageDirty(page))
d397712b 952 return 0;
0c4e538b 953
f7a52a40 954 return try_release_extent_buffer(page);
d98237b3
CM
955}
956
d47992f8
LC
957static void btree_invalidatepage(struct page *page, unsigned int offset,
958 unsigned int length)
d98237b3 959{
d1310b2e
CM
960 struct extent_io_tree *tree;
961 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
962 extent_invalidatepage(tree, page, offset);
963 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 964 if (PagePrivate(page)) {
efe120a0
FH
965 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
966 "page private not zero on page %llu",
967 (unsigned long long)page_offset(page));
9ad6b7bc
CM
968 ClearPagePrivate(page);
969 set_page_private(page, 0);
09cbfeaf 970 put_page(page);
9ad6b7bc 971 }
d98237b3
CM
972}
973
0b32f4bb
JB
974static int btree_set_page_dirty(struct page *page)
975{
bb146eb2 976#ifdef DEBUG
0b32f4bb
JB
977 struct extent_buffer *eb;
978
979 BUG_ON(!PagePrivate(page));
980 eb = (struct extent_buffer *)page->private;
981 BUG_ON(!eb);
982 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
983 BUG_ON(!atomic_read(&eb->refs));
984 btrfs_assert_tree_locked(eb);
bb146eb2 985#endif
0b32f4bb
JB
986 return __set_page_dirty_nobuffers(page);
987}
988
7f09410b 989static const struct address_space_operations btree_aops = {
d98237b3 990 .readpage = btree_readpage,
0da5468f 991 .writepages = btree_writepages,
5f39d397
CM
992 .releasepage = btree_releasepage,
993 .invalidatepage = btree_invalidatepage,
5a92bc88 994#ifdef CONFIG_MIGRATION
784b4e29 995 .migratepage = btree_migratepage,
5a92bc88 996#endif
0b32f4bb 997 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
998};
999
2ff7e61e 1000void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1001{
5f39d397 1002 struct extent_buffer *buf = NULL;
2ff7e61e 1003 struct inode *btree_inode = fs_info->btree_inode;
b1afeef6 1004 int ret;
090d1875 1005
2ff7e61e 1006 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1007 if (IS_ERR(buf))
6197d86e 1008 return;
b1afeef6
NB
1009
1010 ret = read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf,
1011 WAIT_NONE, btree_get_extent, 0);
1012 if (ret < 0)
1013 free_extent_buffer_stale(buf);
1014 else
1015 free_extent_buffer(buf);
090d1875
CM
1016}
1017
2ff7e61e 1018int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
ab0fff03
AJ
1019 int mirror_num, struct extent_buffer **eb)
1020{
1021 struct extent_buffer *buf = NULL;
2ff7e61e 1022 struct inode *btree_inode = fs_info->btree_inode;
ab0fff03
AJ
1023 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1024 int ret;
1025
2ff7e61e 1026 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1027 if (IS_ERR(buf))
ab0fff03
AJ
1028 return 0;
1029
1030 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1031
8436ea91 1032 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
ab0fff03
AJ
1033 btree_get_extent, mirror_num);
1034 if (ret) {
b1afeef6 1035 free_extent_buffer_stale(buf);
ab0fff03
AJ
1036 return ret;
1037 }
1038
1039 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
b1afeef6 1040 free_extent_buffer_stale(buf);
ab0fff03 1041 return -EIO;
0b32f4bb 1042 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1043 *eb = buf;
1044 } else {
1045 free_extent_buffer(buf);
1046 }
1047 return 0;
1048}
1049
2ff7e61e
JM
1050struct extent_buffer *btrfs_find_create_tree_block(
1051 struct btrfs_fs_info *fs_info,
1052 u64 bytenr)
0999df54 1053{
0b246afa
JM
1054 if (btrfs_is_testing(fs_info))
1055 return alloc_test_extent_buffer(fs_info, bytenr);
1056 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1057}
1058
1059
e02119d5
CM
1060int btrfs_write_tree_block(struct extent_buffer *buf)
1061{
727011e0 1062 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1063 buf->start + buf->len - 1);
e02119d5
CM
1064}
1065
3189ff77 1066void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
e02119d5 1067{
3189ff77
JL
1068 filemap_fdatawait_range(buf->pages[0]->mapping,
1069 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1070}
1071
2ff7e61e 1072struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
ce86cd59 1073 u64 parent_transid)
0999df54
CM
1074{
1075 struct extent_buffer *buf = NULL;
0999df54
CM
1076 int ret;
1077
2ff7e61e 1078 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1079 if (IS_ERR(buf))
1080 return buf;
0999df54 1081
2ff7e61e 1082 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
0f0fe8f7 1083 if (ret) {
b1afeef6 1084 free_extent_buffer_stale(buf);
64c043de 1085 return ERR_PTR(ret);
0f0fe8f7 1086 }
5f39d397 1087 return buf;
ce9adaa5 1088
eb60ceac
CM
1089}
1090
7c302b49 1091void clean_tree_block(struct btrfs_fs_info *fs_info,
d5c13f92 1092 struct extent_buffer *buf)
ed2ff2cb 1093{
55c69072 1094 if (btrfs_header_generation(buf) ==
e2d84521 1095 fs_info->running_transaction->transid) {
b9447ef8 1096 btrfs_assert_tree_locked(buf);
b4ce94de 1097
b9473439 1098 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1099 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1100 -buf->len,
1101 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1102 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1103 btrfs_set_lock_blocking(buf);
1104 clear_extent_buffer_dirty(buf);
1105 }
925baedd 1106 }
5f39d397
CM
1107}
1108
8257b2dc
MX
1109static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1110{
1111 struct btrfs_subvolume_writers *writers;
1112 int ret;
1113
1114 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1115 if (!writers)
1116 return ERR_PTR(-ENOMEM);
1117
1617fd64 1118 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
8257b2dc
MX
1119 if (ret < 0) {
1120 kfree(writers);
1121 return ERR_PTR(ret);
1122 }
1123
1124 init_waitqueue_head(&writers->wait);
1125 return writers;
1126}
1127
1128static void
1129btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1130{
1131 percpu_counter_destroy(&writers->counter);
1132 kfree(writers);
1133}
1134
da17066c 1135static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1136 u64 objectid)
d97e63b6 1137{
7c0260ee 1138 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
cfaa7295 1139 root->node = NULL;
a28ec197 1140 root->commit_root = NULL;
27cdeb70 1141 root->state = 0;
d68fc57b 1142 root->orphan_cleanup_state = 0;
0b86a832 1143
0f7d52f4
CM
1144 root->objectid = objectid;
1145 root->last_trans = 0;
13a8a7c8 1146 root->highest_objectid = 0;
eb73c1b7 1147 root->nr_delalloc_inodes = 0;
199c2a9c 1148 root->nr_ordered_extents = 0;
58176a96 1149 root->name = NULL;
6bef4d31 1150 root->inode_tree = RB_ROOT;
16cdcec7 1151 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1152 root->block_rsv = NULL;
d68fc57b 1153 root->orphan_block_rsv = NULL;
0b86a832
CM
1154
1155 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1156 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1157 INIT_LIST_HEAD(&root->delalloc_inodes);
1158 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1159 INIT_LIST_HEAD(&root->ordered_extents);
1160 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1161 INIT_LIST_HEAD(&root->logged_list[0]);
1162 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1163 spin_lock_init(&root->orphan_lock);
5d4f98a2 1164 spin_lock_init(&root->inode_lock);
eb73c1b7 1165 spin_lock_init(&root->delalloc_lock);
199c2a9c 1166 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1167 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1168 spin_lock_init(&root->log_extents_lock[0]);
1169 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1170 mutex_init(&root->objectid_mutex);
e02119d5 1171 mutex_init(&root->log_mutex);
31f3d255 1172 mutex_init(&root->ordered_extent_mutex);
573bfb72 1173 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1174 init_waitqueue_head(&root->log_writer_wait);
1175 init_waitqueue_head(&root->log_commit_wait[0]);
1176 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1177 INIT_LIST_HEAD(&root->log_ctxs[0]);
1178 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1179 atomic_set(&root->log_commit[0], 0);
1180 atomic_set(&root->log_commit[1], 0);
1181 atomic_set(&root->log_writers, 0);
2ecb7923 1182 atomic_set(&root->log_batch, 0);
8a35d95f 1183 atomic_set(&root->orphan_inodes, 0);
0700cea7 1184 refcount_set(&root->refs, 1);
ea14b57f 1185 atomic_set(&root->will_be_snapshotted, 0);
1e2998eb 1186 atomic_set(&root->snapshot_force_cow, 0);
ce0dcee6 1187 atomic64_set(&root->qgroup_meta_rsv, 0);
7237f183 1188 root->log_transid = 0;
d1433deb 1189 root->log_transid_committed = -1;
257c62e1 1190 root->last_log_commit = 0;
7c0260ee 1191 if (!dummy)
c6100a4b 1192 extent_io_tree_init(&root->dirty_log_pages, NULL);
017e5369 1193
3768f368
CM
1194 memset(&root->root_key, 0, sizeof(root->root_key));
1195 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1196 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
7c0260ee 1197 if (!dummy)
06ea65a3
JB
1198 root->defrag_trans_start = fs_info->generation;
1199 else
1200 root->defrag_trans_start = 0;
4d775673 1201 root->root_key.objectid = objectid;
0ee5dc67 1202 root->anon_dev = 0;
8ea05e3a 1203
5f3ab90a 1204 spin_lock_init(&root->root_item_lock);
3768f368
CM
1205}
1206
74e4d827
DS
1207static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1208 gfp_t flags)
6f07e42e 1209{
74e4d827 1210 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e
AV
1211 if (root)
1212 root->fs_info = fs_info;
1213 return root;
1214}
1215
06ea65a3
JB
1216#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1217/* Should only be used by the testing infrastructure */
da17066c 1218struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1219{
1220 struct btrfs_root *root;
1221
7c0260ee
JM
1222 if (!fs_info)
1223 return ERR_PTR(-EINVAL);
1224
1225 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
06ea65a3
JB
1226 if (!root)
1227 return ERR_PTR(-ENOMEM);
da17066c 1228
b9ef22de 1229 /* We don't use the stripesize in selftest, set it as sectorsize */
da17066c 1230 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
faa2dbf0 1231 root->alloc_bytenr = 0;
06ea65a3
JB
1232
1233 return root;
1234}
1235#endif
1236
20897f5c
AJ
1237struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1238 struct btrfs_fs_info *fs_info,
1239 u64 objectid)
1240{
1241 struct extent_buffer *leaf;
1242 struct btrfs_root *tree_root = fs_info->tree_root;
1243 struct btrfs_root *root;
1244 struct btrfs_key key;
1245 int ret = 0;
6463fe58 1246 uuid_le uuid;
20897f5c 1247
74e4d827 1248 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
20897f5c
AJ
1249 if (!root)
1250 return ERR_PTR(-ENOMEM);
1251
da17066c 1252 __setup_root(root, fs_info, objectid);
20897f5c
AJ
1253 root->root_key.objectid = objectid;
1254 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1255 root->root_key.offset = 0;
1256
4d75f8a9 1257 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1258 if (IS_ERR(leaf)) {
1259 ret = PTR_ERR(leaf);
1dd05682 1260 leaf = NULL;
20897f5c
AJ
1261 goto fail;
1262 }
1263
b159fa28 1264 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
20897f5c
AJ
1265 btrfs_set_header_bytenr(leaf, leaf->start);
1266 btrfs_set_header_generation(leaf, trans->transid);
1267 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1268 btrfs_set_header_owner(leaf, objectid);
1269 root->node = leaf;
1270
d24ee97b
DS
1271 write_extent_buffer_fsid(leaf, fs_info->fsid);
1272 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
20897f5c
AJ
1273 btrfs_mark_buffer_dirty(leaf);
1274
1275 root->commit_root = btrfs_root_node(root);
27cdeb70 1276 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1277
1278 root->root_item.flags = 0;
1279 root->root_item.byte_limit = 0;
1280 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1281 btrfs_set_root_generation(&root->root_item, trans->transid);
1282 btrfs_set_root_level(&root->root_item, 0);
1283 btrfs_set_root_refs(&root->root_item, 1);
1284 btrfs_set_root_used(&root->root_item, leaf->len);
1285 btrfs_set_root_last_snapshot(&root->root_item, 0);
1286 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1287 uuid_le_gen(&uuid);
1288 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1289 root->root_item.drop_level = 0;
1290
1291 key.objectid = objectid;
1292 key.type = BTRFS_ROOT_ITEM_KEY;
1293 key.offset = 0;
1294 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1295 if (ret)
1296 goto fail;
1297
1298 btrfs_tree_unlock(leaf);
1299
1dd05682
TI
1300 return root;
1301
20897f5c 1302fail:
1dd05682
TI
1303 if (leaf) {
1304 btrfs_tree_unlock(leaf);
59885b39 1305 free_extent_buffer(root->commit_root);
1dd05682
TI
1306 free_extent_buffer(leaf);
1307 }
1308 kfree(root);
20897f5c 1309
1dd05682 1310 return ERR_PTR(ret);
20897f5c
AJ
1311}
1312
7237f183
YZ
1313static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1314 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1315{
1316 struct btrfs_root *root;
7237f183 1317 struct extent_buffer *leaf;
e02119d5 1318
74e4d827 1319 root = btrfs_alloc_root(fs_info, GFP_NOFS);
e02119d5 1320 if (!root)
7237f183 1321 return ERR_PTR(-ENOMEM);
e02119d5 1322
da17066c 1323 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1324
1325 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1326 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1327 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1328
7237f183 1329 /*
27cdeb70
MX
1330 * DON'T set REF_COWS for log trees
1331 *
7237f183
YZ
1332 * log trees do not get reference counted because they go away
1333 * before a real commit is actually done. They do store pointers
1334 * to file data extents, and those reference counts still get
1335 * updated (along with back refs to the log tree).
1336 */
e02119d5 1337
4d75f8a9
DS
1338 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1339 NULL, 0, 0, 0);
7237f183
YZ
1340 if (IS_ERR(leaf)) {
1341 kfree(root);
1342 return ERR_CAST(leaf);
1343 }
e02119d5 1344
b159fa28 1345 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
5d4f98a2
YZ
1346 btrfs_set_header_bytenr(leaf, leaf->start);
1347 btrfs_set_header_generation(leaf, trans->transid);
1348 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1349 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1350 root->node = leaf;
e02119d5 1351
0b246afa 1352 write_extent_buffer_fsid(root->node, fs_info->fsid);
e02119d5
CM
1353 btrfs_mark_buffer_dirty(root->node);
1354 btrfs_tree_unlock(root->node);
7237f183
YZ
1355 return root;
1356}
1357
1358int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1359 struct btrfs_fs_info *fs_info)
1360{
1361 struct btrfs_root *log_root;
1362
1363 log_root = alloc_log_tree(trans, fs_info);
1364 if (IS_ERR(log_root))
1365 return PTR_ERR(log_root);
1366 WARN_ON(fs_info->log_root_tree);
1367 fs_info->log_root_tree = log_root;
1368 return 0;
1369}
1370
1371int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1372 struct btrfs_root *root)
1373{
0b246afa 1374 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1375 struct btrfs_root *log_root;
1376 struct btrfs_inode_item *inode_item;
1377
0b246afa 1378 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1379 if (IS_ERR(log_root))
1380 return PTR_ERR(log_root);
1381
1382 log_root->last_trans = trans->transid;
1383 log_root->root_key.offset = root->root_key.objectid;
1384
1385 inode_item = &log_root->root_item.inode;
3cae210f
QW
1386 btrfs_set_stack_inode_generation(inode_item, 1);
1387 btrfs_set_stack_inode_size(inode_item, 3);
1388 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1389 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1390 fs_info->nodesize);
3cae210f 1391 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1392
5d4f98a2 1393 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1394
1395 WARN_ON(root->log_root);
1396 root->log_root = log_root;
1397 root->log_transid = 0;
d1433deb 1398 root->log_transid_committed = -1;
257c62e1 1399 root->last_log_commit = 0;
e02119d5
CM
1400 return 0;
1401}
1402
35a3621b
SB
1403static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1404 struct btrfs_key *key)
e02119d5
CM
1405{
1406 struct btrfs_root *root;
1407 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1408 struct btrfs_path *path;
84234f3a 1409 u64 generation;
cb517eab 1410 int ret;
0f7d52f4 1411
cb517eab
MX
1412 path = btrfs_alloc_path();
1413 if (!path)
0f7d52f4 1414 return ERR_PTR(-ENOMEM);
cb517eab 1415
74e4d827 1416 root = btrfs_alloc_root(fs_info, GFP_NOFS);
cb517eab
MX
1417 if (!root) {
1418 ret = -ENOMEM;
1419 goto alloc_fail;
0f7d52f4
CM
1420 }
1421
da17066c 1422 __setup_root(root, fs_info, key->objectid);
0f7d52f4 1423
cb517eab
MX
1424 ret = btrfs_find_root(tree_root, key, path,
1425 &root->root_item, &root->root_key);
0f7d52f4 1426 if (ret) {
13a8a7c8
YZ
1427 if (ret > 0)
1428 ret = -ENOENT;
cb517eab 1429 goto find_fail;
0f7d52f4 1430 }
13a8a7c8 1431
84234f3a 1432 generation = btrfs_root_generation(&root->root_item);
2ff7e61e
JM
1433 root->node = read_tree_block(fs_info,
1434 btrfs_root_bytenr(&root->root_item),
ce86cd59 1435 generation);
64c043de
LB
1436 if (IS_ERR(root->node)) {
1437 ret = PTR_ERR(root->node);
cb517eab
MX
1438 goto find_fail;
1439 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1440 ret = -EIO;
64c043de
LB
1441 free_extent_buffer(root->node);
1442 goto find_fail;
416bc658 1443 }
5d4f98a2 1444 root->commit_root = btrfs_root_node(root);
13a8a7c8 1445out:
cb517eab
MX
1446 btrfs_free_path(path);
1447 return root;
1448
cb517eab
MX
1449find_fail:
1450 kfree(root);
1451alloc_fail:
1452 root = ERR_PTR(ret);
1453 goto out;
1454}
1455
1456struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1457 struct btrfs_key *location)
1458{
1459 struct btrfs_root *root;
1460
1461 root = btrfs_read_tree_root(tree_root, location);
1462 if (IS_ERR(root))
1463 return root;
1464
1465 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1466 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1467 btrfs_check_and_init_root_item(&root->root_item);
1468 }
13a8a7c8 1469
5eda7b5e
CM
1470 return root;
1471}
1472
cb517eab
MX
1473int btrfs_init_fs_root(struct btrfs_root *root)
1474{
1475 int ret;
8257b2dc 1476 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1477
1478 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1479 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1480 GFP_NOFS);
1481 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1482 ret = -ENOMEM;
1483 goto fail;
1484 }
1485
8257b2dc
MX
1486 writers = btrfs_alloc_subvolume_writers();
1487 if (IS_ERR(writers)) {
1488 ret = PTR_ERR(writers);
1489 goto fail;
1490 }
1491 root->subv_writers = writers;
1492
cb517eab 1493 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1494 spin_lock_init(&root->ino_cache_lock);
1495 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1496
1497 ret = get_anon_bdev(&root->anon_dev);
1498 if (ret)
876d2cf1 1499 goto fail;
f32e48e9
CR
1500
1501 mutex_lock(&root->objectid_mutex);
1502 ret = btrfs_find_highest_objectid(root,
1503 &root->highest_objectid);
1504 if (ret) {
1505 mutex_unlock(&root->objectid_mutex);
876d2cf1 1506 goto fail;
f32e48e9
CR
1507 }
1508
1509 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1510
1511 mutex_unlock(&root->objectid_mutex);
1512
cb517eab
MX
1513 return 0;
1514fail:
876d2cf1 1515 /* the caller is responsible to call free_fs_root */
cb517eab
MX
1516 return ret;
1517}
1518
35bbb97f
JM
1519struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1520 u64 root_id)
cb517eab
MX
1521{
1522 struct btrfs_root *root;
1523
1524 spin_lock(&fs_info->fs_roots_radix_lock);
1525 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1526 (unsigned long)root_id);
1527 spin_unlock(&fs_info->fs_roots_radix_lock);
1528 return root;
1529}
1530
1531int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1532 struct btrfs_root *root)
1533{
1534 int ret;
1535
e1860a77 1536 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1537 if (ret)
1538 return ret;
1539
1540 spin_lock(&fs_info->fs_roots_radix_lock);
1541 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1542 (unsigned long)root->root_key.objectid,
1543 root);
1544 if (ret == 0)
27cdeb70 1545 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1546 spin_unlock(&fs_info->fs_roots_radix_lock);
1547 radix_tree_preload_end();
1548
1549 return ret;
1550}
1551
c00869f1
MX
1552struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1553 struct btrfs_key *location,
1554 bool check_ref)
5eda7b5e
CM
1555{
1556 struct btrfs_root *root;
381cf658 1557 struct btrfs_path *path;
1d4c08e0 1558 struct btrfs_key key;
5eda7b5e
CM
1559 int ret;
1560
edbd8d4e
CM
1561 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1562 return fs_info->tree_root;
1563 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1564 return fs_info->extent_root;
8f18cf13
CM
1565 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1566 return fs_info->chunk_root;
1567 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1568 return fs_info->dev_root;
0403e47e
YZ
1569 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1570 return fs_info->csum_root;
bcef60f2
AJ
1571 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1572 return fs_info->quota_root ? fs_info->quota_root :
1573 ERR_PTR(-ENOENT);
f7a81ea4
SB
1574 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1575 return fs_info->uuid_root ? fs_info->uuid_root :
1576 ERR_PTR(-ENOENT);
70f6d82e
OS
1577 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1578 return fs_info->free_space_root ? fs_info->free_space_root :
1579 ERR_PTR(-ENOENT);
4df27c4d 1580again:
cb517eab 1581 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1582 if (root) {
c00869f1 1583 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1584 return ERR_PTR(-ENOENT);
5eda7b5e 1585 return root;
48475471 1586 }
5eda7b5e 1587
cb517eab 1588 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1589 if (IS_ERR(root))
1590 return root;
3394e160 1591
c00869f1 1592 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1593 ret = -ENOENT;
581bb050 1594 goto fail;
35a30d7c 1595 }
581bb050 1596
cb517eab 1597 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1598 if (ret)
1599 goto fail;
3394e160 1600
381cf658
DS
1601 path = btrfs_alloc_path();
1602 if (!path) {
1603 ret = -ENOMEM;
1604 goto fail;
1605 }
1d4c08e0
DS
1606 key.objectid = BTRFS_ORPHAN_OBJECTID;
1607 key.type = BTRFS_ORPHAN_ITEM_KEY;
1608 key.offset = location->objectid;
1609
1610 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1611 btrfs_free_path(path);
d68fc57b
YZ
1612 if (ret < 0)
1613 goto fail;
1614 if (ret == 0)
27cdeb70 1615 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1616
cb517eab 1617 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1618 if (ret) {
4df27c4d
YZ
1619 if (ret == -EEXIST) {
1620 free_fs_root(root);
1621 goto again;
1622 }
1623 goto fail;
0f7d52f4 1624 }
edbd8d4e 1625 return root;
4df27c4d
YZ
1626fail:
1627 free_fs_root(root);
1628 return ERR_PTR(ret);
edbd8d4e
CM
1629}
1630
04160088
CM
1631static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1632{
1633 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1634 int ret = 0;
04160088
CM
1635 struct btrfs_device *device;
1636 struct backing_dev_info *bdi;
b7967db7 1637
1f78160c
XG
1638 rcu_read_lock();
1639 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1640 if (!device->bdev)
1641 continue;
efa7c9f9 1642 bdi = device->bdev->bd_bdi;
ff9ea323 1643 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1644 ret = 1;
1645 break;
1646 }
1647 }
1f78160c 1648 rcu_read_unlock();
04160088
CM
1649 return ret;
1650}
1651
8b712842
CM
1652/*
1653 * called by the kthread helper functions to finally call the bio end_io
1654 * functions. This is where read checksum verification actually happens
1655 */
1656static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1657{
ce9adaa5 1658 struct bio *bio;
97eb6b69 1659 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1660
97eb6b69 1661 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1662 bio = end_io_wq->bio;
ce9adaa5 1663
4e4cbee9 1664 bio->bi_status = end_io_wq->status;
8b712842
CM
1665 bio->bi_private = end_io_wq->private;
1666 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1667 bio_endio(bio);
437a0587 1668 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1669}
1670
a74a4b97
CM
1671static int cleaner_kthread(void *arg)
1672{
1673 struct btrfs_root *root = arg;
0b246afa 1674 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1675 int again;
a74a4b97 1676
8232f431 1677 while (1) {
d0278245 1678 again = 0;
a74a4b97 1679
d0278245 1680 /* Make the cleaner go to sleep early. */
2ff7e61e 1681 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1682 goto sleep;
1683
90c711ab
ZB
1684 /*
1685 * Do not do anything if we might cause open_ctree() to block
1686 * before we have finished mounting the filesystem.
1687 */
0b246afa 1688 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1689 goto sleep;
1690
0b246afa 1691 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1692 goto sleep;
1693
dc7f370c
MX
1694 /*
1695 * Avoid the problem that we change the status of the fs
1696 * during the above check and trylock.
1697 */
2ff7e61e 1698 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1699 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1700 goto sleep;
76dda93c 1701 }
a74a4b97 1702
0b246afa 1703 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
2ff7e61e 1704 btrfs_run_delayed_iputs(fs_info);
0b246afa 1705 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
c2d6cb16 1706
d0278245 1707 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1708 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1709
1710 /*
05323cd1
MX
1711 * The defragger has dealt with the R/O remount and umount,
1712 * needn't do anything special here.
d0278245 1713 */
0b246afa 1714 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1715
1716 /*
1717 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1718 * with relocation (btrfs_relocate_chunk) and relocation
1719 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1720 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1721 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1722 * unused block groups.
1723 */
0b246afa 1724 btrfs_delete_unused_bgs(fs_info);
d0278245 1725sleep:
8232f431
OS
1726 if (kthread_should_park())
1727 kthread_parkme();
1728 if (kthread_should_stop())
1729 return 0;
838fe188 1730 if (!again) {
a74a4b97 1731 set_current_state(TASK_INTERRUPTIBLE);
8232f431 1732 schedule();
a74a4b97
CM
1733 __set_current_state(TASK_RUNNING);
1734 }
da288d28 1735 }
a74a4b97
CM
1736}
1737
1738static int transaction_kthread(void *arg)
1739{
1740 struct btrfs_root *root = arg;
0b246afa 1741 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1742 struct btrfs_trans_handle *trans;
1743 struct btrfs_transaction *cur;
8929ecfa 1744 u64 transid;
a74a4b97
CM
1745 unsigned long now;
1746 unsigned long delay;
914b2007 1747 bool cannot_commit;
a74a4b97
CM
1748
1749 do {
914b2007 1750 cannot_commit = false;
0b246afa
JM
1751 delay = HZ * fs_info->commit_interval;
1752 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1753
0b246afa
JM
1754 spin_lock(&fs_info->trans_lock);
1755 cur = fs_info->running_transaction;
a74a4b97 1756 if (!cur) {
0b246afa 1757 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1758 goto sleep;
1759 }
31153d81 1760
a74a4b97 1761 now = get_seconds();
4a9d8bde 1762 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17 1763 (now < cur->start_time ||
0b246afa
JM
1764 now - cur->start_time < fs_info->commit_interval)) {
1765 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1766 delay = HZ * 5;
1767 goto sleep;
1768 }
8929ecfa 1769 transid = cur->transid;
0b246afa 1770 spin_unlock(&fs_info->trans_lock);
56bec294 1771
79787eaa 1772 /* If the file system is aborted, this will always fail. */
354aa0fb 1773 trans = btrfs_attach_transaction(root);
914b2007 1774 if (IS_ERR(trans)) {
354aa0fb
MX
1775 if (PTR_ERR(trans) != -ENOENT)
1776 cannot_commit = true;
79787eaa 1777 goto sleep;
914b2007 1778 }
8929ecfa 1779 if (transid == trans->transid) {
3a45bb20 1780 btrfs_commit_transaction(trans);
8929ecfa 1781 } else {
3a45bb20 1782 btrfs_end_transaction(trans);
8929ecfa 1783 }
a74a4b97 1784sleep:
0b246afa
JM
1785 wake_up_process(fs_info->cleaner_kthread);
1786 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1787
4e121c06 1788 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1789 &fs_info->fs_state)))
2ff7e61e 1790 btrfs_cleanup_transaction(fs_info);
ce63f891
JK
1791 set_current_state(TASK_INTERRUPTIBLE);
1792 if (!kthread_should_stop() &&
0b246afa 1793 (!btrfs_transaction_blocked(fs_info) ||
ce63f891
JK
1794 cannot_commit))
1795 schedule_timeout(delay);
1796 __set_current_state(TASK_RUNNING);
a74a4b97
CM
1797 } while (!kthread_should_stop());
1798 return 0;
1799}
1800
af31f5e5
CM
1801/*
1802 * this will find the highest generation in the array of
1803 * root backups. The index of the highest array is returned,
1804 * or -1 if we can't find anything.
1805 *
1806 * We check to make sure the array is valid by comparing the
1807 * generation of the latest root in the array with the generation
1808 * in the super block. If they don't match we pitch it.
1809 */
1810static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1811{
1812 u64 cur;
1813 int newest_index = -1;
1814 struct btrfs_root_backup *root_backup;
1815 int i;
1816
1817 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1818 root_backup = info->super_copy->super_roots + i;
1819 cur = btrfs_backup_tree_root_gen(root_backup);
1820 if (cur == newest_gen)
1821 newest_index = i;
1822 }
1823
1824 /* check to see if we actually wrapped around */
1825 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1826 root_backup = info->super_copy->super_roots;
1827 cur = btrfs_backup_tree_root_gen(root_backup);
1828 if (cur == newest_gen)
1829 newest_index = 0;
1830 }
1831 return newest_index;
1832}
1833
1834
1835/*
1836 * find the oldest backup so we know where to store new entries
1837 * in the backup array. This will set the backup_root_index
1838 * field in the fs_info struct
1839 */
1840static void find_oldest_super_backup(struct btrfs_fs_info *info,
1841 u64 newest_gen)
1842{
1843 int newest_index = -1;
1844
1845 newest_index = find_newest_super_backup(info, newest_gen);
1846 /* if there was garbage in there, just move along */
1847 if (newest_index == -1) {
1848 info->backup_root_index = 0;
1849 } else {
1850 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1851 }
1852}
1853
1854/*
1855 * copy all the root pointers into the super backup array.
1856 * this will bump the backup pointer by one when it is
1857 * done
1858 */
1859static void backup_super_roots(struct btrfs_fs_info *info)
1860{
1861 int next_backup;
1862 struct btrfs_root_backup *root_backup;
1863 int last_backup;
1864
1865 next_backup = info->backup_root_index;
1866 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1867 BTRFS_NUM_BACKUP_ROOTS;
1868
1869 /*
1870 * just overwrite the last backup if we're at the same generation
1871 * this happens only at umount
1872 */
1873 root_backup = info->super_for_commit->super_roots + last_backup;
1874 if (btrfs_backup_tree_root_gen(root_backup) ==
1875 btrfs_header_generation(info->tree_root->node))
1876 next_backup = last_backup;
1877
1878 root_backup = info->super_for_commit->super_roots + next_backup;
1879
1880 /*
1881 * make sure all of our padding and empty slots get zero filled
1882 * regardless of which ones we use today
1883 */
1884 memset(root_backup, 0, sizeof(*root_backup));
1885
1886 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1887
1888 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1889 btrfs_set_backup_tree_root_gen(root_backup,
1890 btrfs_header_generation(info->tree_root->node));
1891
1892 btrfs_set_backup_tree_root_level(root_backup,
1893 btrfs_header_level(info->tree_root->node));
1894
1895 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1896 btrfs_set_backup_chunk_root_gen(root_backup,
1897 btrfs_header_generation(info->chunk_root->node));
1898 btrfs_set_backup_chunk_root_level(root_backup,
1899 btrfs_header_level(info->chunk_root->node));
1900
1901 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1902 btrfs_set_backup_extent_root_gen(root_backup,
1903 btrfs_header_generation(info->extent_root->node));
1904 btrfs_set_backup_extent_root_level(root_backup,
1905 btrfs_header_level(info->extent_root->node));
1906
7c7e82a7
CM
1907 /*
1908 * we might commit during log recovery, which happens before we set
1909 * the fs_root. Make sure it is valid before we fill it in.
1910 */
1911 if (info->fs_root && info->fs_root->node) {
1912 btrfs_set_backup_fs_root(root_backup,
1913 info->fs_root->node->start);
1914 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1915 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1916 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1917 btrfs_header_level(info->fs_root->node));
7c7e82a7 1918 }
af31f5e5
CM
1919
1920 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1921 btrfs_set_backup_dev_root_gen(root_backup,
1922 btrfs_header_generation(info->dev_root->node));
1923 btrfs_set_backup_dev_root_level(root_backup,
1924 btrfs_header_level(info->dev_root->node));
1925
1926 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1927 btrfs_set_backup_csum_root_gen(root_backup,
1928 btrfs_header_generation(info->csum_root->node));
1929 btrfs_set_backup_csum_root_level(root_backup,
1930 btrfs_header_level(info->csum_root->node));
1931
1932 btrfs_set_backup_total_bytes(root_backup,
1933 btrfs_super_total_bytes(info->super_copy));
1934 btrfs_set_backup_bytes_used(root_backup,
1935 btrfs_super_bytes_used(info->super_copy));
1936 btrfs_set_backup_num_devices(root_backup,
1937 btrfs_super_num_devices(info->super_copy));
1938
1939 /*
1940 * if we don't copy this out to the super_copy, it won't get remembered
1941 * for the next commit
1942 */
1943 memcpy(&info->super_copy->super_roots,
1944 &info->super_for_commit->super_roots,
1945 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1946}
1947
1948/*
1949 * this copies info out of the root backup array and back into
1950 * the in-memory super block. It is meant to help iterate through
1951 * the array, so you send it the number of backups you've already
1952 * tried and the last backup index you used.
1953 *
1954 * this returns -1 when it has tried all the backups
1955 */
1956static noinline int next_root_backup(struct btrfs_fs_info *info,
1957 struct btrfs_super_block *super,
1958 int *num_backups_tried, int *backup_index)
1959{
1960 struct btrfs_root_backup *root_backup;
1961 int newest = *backup_index;
1962
1963 if (*num_backups_tried == 0) {
1964 u64 gen = btrfs_super_generation(super);
1965
1966 newest = find_newest_super_backup(info, gen);
1967 if (newest == -1)
1968 return -1;
1969
1970 *backup_index = newest;
1971 *num_backups_tried = 1;
1972 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1973 /* we've tried all the backups, all done */
1974 return -1;
1975 } else {
1976 /* jump to the next oldest backup */
1977 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1978 BTRFS_NUM_BACKUP_ROOTS;
1979 *backup_index = newest;
1980 *num_backups_tried += 1;
1981 }
1982 root_backup = super->super_roots + newest;
1983
1984 btrfs_set_super_generation(super,
1985 btrfs_backup_tree_root_gen(root_backup));
1986 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1987 btrfs_set_super_root_level(super,
1988 btrfs_backup_tree_root_level(root_backup));
1989 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1990
1991 /*
1992 * fixme: the total bytes and num_devices need to match or we should
1993 * need a fsck
1994 */
1995 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1996 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1997 return 0;
1998}
1999
7abadb64
LB
2000/* helper to cleanup workers */
2001static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2002{
dc6e3209 2003 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2004 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2005 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 2006 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 2007 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2008 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2009 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2010 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2011 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2012 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2013 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2014 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2015 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2016 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2017 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2018 btrfs_destroy_workqueue(fs_info->extent_workers);
a9b9477d
FM
2019 /*
2020 * Now that all other work queues are destroyed, we can safely destroy
2021 * the queues used for metadata I/O, since tasks from those other work
2022 * queues can do metadata I/O operations.
2023 */
2024 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2025 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
2026}
2027
2e9f5954
R
2028static void free_root_extent_buffers(struct btrfs_root *root)
2029{
2030 if (root) {
2031 free_extent_buffer(root->node);
2032 free_extent_buffer(root->commit_root);
2033 root->node = NULL;
2034 root->commit_root = NULL;
2035 }
2036}
2037
af31f5e5
CM
2038/* helper to cleanup tree roots */
2039static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2040{
2e9f5954 2041 free_root_extent_buffers(info->tree_root);
655b09fe 2042
2e9f5954
R
2043 free_root_extent_buffers(info->dev_root);
2044 free_root_extent_buffers(info->extent_root);
2045 free_root_extent_buffers(info->csum_root);
2046 free_root_extent_buffers(info->quota_root);
2047 free_root_extent_buffers(info->uuid_root);
2048 if (chunk_root)
2049 free_root_extent_buffers(info->chunk_root);
70f6d82e 2050 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2051}
2052
faa2dbf0 2053void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2054{
2055 int ret;
2056 struct btrfs_root *gang[8];
2057 int i;
2058
2059 while (!list_empty(&fs_info->dead_roots)) {
2060 gang[0] = list_entry(fs_info->dead_roots.next,
2061 struct btrfs_root, root_list);
2062 list_del(&gang[0]->root_list);
2063
27cdeb70 2064 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2065 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2066 } else {
2067 free_extent_buffer(gang[0]->node);
2068 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2069 btrfs_put_fs_root(gang[0]);
171f6537
JB
2070 }
2071 }
2072
2073 while (1) {
2074 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2075 (void **)gang, 0,
2076 ARRAY_SIZE(gang));
2077 if (!ret)
2078 break;
2079 for (i = 0; i < ret; i++)
cb517eab 2080 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2081 }
1a4319cc
LB
2082
2083 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2084 btrfs_free_log_root_tree(NULL, fs_info);
2ff7e61e 2085 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
1a4319cc 2086 }
171f6537 2087}
af31f5e5 2088
638aa7ed
ES
2089static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2090{
2091 mutex_init(&fs_info->scrub_lock);
2092 atomic_set(&fs_info->scrubs_running, 0);
2093 atomic_set(&fs_info->scrub_pause_req, 0);
2094 atomic_set(&fs_info->scrubs_paused, 0);
2095 atomic_set(&fs_info->scrub_cancel_req, 0);
2096 init_waitqueue_head(&fs_info->scrub_pause_wait);
2097 fs_info->scrub_workers_refcnt = 0;
2098}
2099
779a65a4
ES
2100static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2101{
2102 spin_lock_init(&fs_info->balance_lock);
2103 mutex_init(&fs_info->balance_mutex);
2104 atomic_set(&fs_info->balance_running, 0);
2105 atomic_set(&fs_info->balance_pause_req, 0);
2106 atomic_set(&fs_info->balance_cancel_req, 0);
2107 fs_info->balance_ctl = NULL;
2108 init_waitqueue_head(&fs_info->balance_wait_q);
2109}
2110
6bccf3ab 2111static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2112{
2ff7e61e
JM
2113 struct inode *inode = fs_info->btree_inode;
2114
2115 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2116 set_nlink(inode, 1);
f37938e0
ES
2117 /*
2118 * we set the i_size on the btree inode to the max possible int.
2119 * the real end of the address space is determined by all of
2120 * the devices in the system
2121 */
2ff7e61e
JM
2122 inode->i_size = OFFSET_MAX;
2123 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2124
2ff7e61e 2125 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
c6100a4b 2126 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2ff7e61e
JM
2127 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2128 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2129
2ff7e61e 2130 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2131
2ff7e61e
JM
2132 BTRFS_I(inode)->root = fs_info->tree_root;
2133 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2134 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2135 btrfs_insert_inode_hash(inode);
f37938e0
ES
2136}
2137
ad618368
ES
2138static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2139{
2140 fs_info->dev_replace.lock_owner = 0;
2141 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2142 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
73beece9
LB
2143 rwlock_init(&fs_info->dev_replace.lock);
2144 atomic_set(&fs_info->dev_replace.read_locks, 0);
2145 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
ad618368 2146 init_waitqueue_head(&fs_info->replace_wait);
73beece9 2147 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
ad618368
ES
2148}
2149
f9e92e40
ES
2150static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2151{
2152 spin_lock_init(&fs_info->qgroup_lock);
2153 mutex_init(&fs_info->qgroup_ioctl_lock);
2154 fs_info->qgroup_tree = RB_ROOT;
2155 fs_info->qgroup_op_tree = RB_ROOT;
2156 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2157 fs_info->qgroup_seq = 1;
f9e92e40 2158 fs_info->qgroup_ulist = NULL;
d2c609b8 2159 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2160 mutex_init(&fs_info->qgroup_rescan_lock);
2161}
2162
2a458198
ES
2163static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2164 struct btrfs_fs_devices *fs_devices)
2165{
2166 int max_active = fs_info->thread_pool_size;
6f011058 2167 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2168
2169 fs_info->workers =
cb001095
JM
2170 btrfs_alloc_workqueue(fs_info, "worker",
2171 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2172
2173 fs_info->delalloc_workers =
cb001095
JM
2174 btrfs_alloc_workqueue(fs_info, "delalloc",
2175 flags, max_active, 2);
2a458198
ES
2176
2177 fs_info->flush_workers =
cb001095
JM
2178 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2179 flags, max_active, 0);
2a458198
ES
2180
2181 fs_info->caching_workers =
cb001095 2182 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198
ES
2183
2184 /*
2185 * a higher idle thresh on the submit workers makes it much more
2186 * likely that bios will be send down in a sane order to the
2187 * devices
2188 */
2189 fs_info->submit_workers =
cb001095 2190 btrfs_alloc_workqueue(fs_info, "submit", flags,
2a458198
ES
2191 min_t(u64, fs_devices->num_devices,
2192 max_active), 64);
2193
2194 fs_info->fixup_workers =
cb001095 2195 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2196
2197 /*
2198 * endios are largely parallel and should have a very
2199 * low idle thresh
2200 */
2201 fs_info->endio_workers =
cb001095 2202 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2203 fs_info->endio_meta_workers =
cb001095
JM
2204 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2205 max_active, 4);
2a458198 2206 fs_info->endio_meta_write_workers =
cb001095
JM
2207 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2208 max_active, 2);
2a458198 2209 fs_info->endio_raid56_workers =
cb001095
JM
2210 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2211 max_active, 4);
2a458198 2212 fs_info->endio_repair_workers =
cb001095 2213 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2a458198 2214 fs_info->rmw_workers =
cb001095 2215 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2216 fs_info->endio_write_workers =
cb001095
JM
2217 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2218 max_active, 2);
2a458198 2219 fs_info->endio_freespace_worker =
cb001095
JM
2220 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2221 max_active, 0);
2a458198 2222 fs_info->delayed_workers =
cb001095
JM
2223 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2224 max_active, 0);
2a458198 2225 fs_info->readahead_workers =
cb001095
JM
2226 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2227 max_active, 2);
2a458198 2228 fs_info->qgroup_rescan_workers =
cb001095 2229 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2a458198 2230 fs_info->extent_workers =
cb001095 2231 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2a458198
ES
2232 min_t(u64, fs_devices->num_devices,
2233 max_active), 8);
2234
2235 if (!(fs_info->workers && fs_info->delalloc_workers &&
2236 fs_info->submit_workers && fs_info->flush_workers &&
2237 fs_info->endio_workers && fs_info->endio_meta_workers &&
2238 fs_info->endio_meta_write_workers &&
2239 fs_info->endio_repair_workers &&
2240 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2241 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2242 fs_info->caching_workers && fs_info->readahead_workers &&
2243 fs_info->fixup_workers && fs_info->delayed_workers &&
2244 fs_info->extent_workers &&
2245 fs_info->qgroup_rescan_workers)) {
2246 return -ENOMEM;
2247 }
2248
2249 return 0;
2250}
2251
63443bf5
ES
2252static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2253 struct btrfs_fs_devices *fs_devices)
2254{
2255 int ret;
63443bf5
ES
2256 struct btrfs_root *log_tree_root;
2257 struct btrfs_super_block *disk_super = fs_info->super_copy;
2258 u64 bytenr = btrfs_super_log_root(disk_super);
2259
2260 if (fs_devices->rw_devices == 0) {
f14d104d 2261 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2262 return -EIO;
2263 }
2264
74e4d827 2265 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
63443bf5
ES
2266 if (!log_tree_root)
2267 return -ENOMEM;
2268
da17066c 2269 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
63443bf5 2270
2ff7e61e
JM
2271 log_tree_root->node = read_tree_block(fs_info, bytenr,
2272 fs_info->generation + 1);
64c043de 2273 if (IS_ERR(log_tree_root->node)) {
f14d104d 2274 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2275 ret = PTR_ERR(log_tree_root->node);
64c043de 2276 kfree(log_tree_root);
0eeff236 2277 return ret;
64c043de 2278 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2279 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2280 free_extent_buffer(log_tree_root->node);
2281 kfree(log_tree_root);
2282 return -EIO;
2283 }
2284 /* returns with log_tree_root freed on success */
2285 ret = btrfs_recover_log_trees(log_tree_root);
2286 if (ret) {
0b246afa
JM
2287 btrfs_handle_fs_error(fs_info, ret,
2288 "Failed to recover log tree");
63443bf5
ES
2289 free_extent_buffer(log_tree_root->node);
2290 kfree(log_tree_root);
2291 return ret;
2292 }
2293
bc98a42c 2294 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2295 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2296 if (ret)
2297 return ret;
2298 }
2299
2300 return 0;
2301}
2302
6bccf3ab 2303static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2304{
6bccf3ab 2305 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2306 struct btrfs_root *root;
4bbcaa64
ES
2307 struct btrfs_key location;
2308 int ret;
2309
6bccf3ab
JM
2310 BUG_ON(!fs_info->tree_root);
2311
4bbcaa64
ES
2312 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2313 location.type = BTRFS_ROOT_ITEM_KEY;
2314 location.offset = 0;
2315
a4f3d2c4
DS
2316 root = btrfs_read_tree_root(tree_root, &location);
2317 if (IS_ERR(root))
2318 return PTR_ERR(root);
2319 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320 fs_info->extent_root = root;
4bbcaa64
ES
2321
2322 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2323 root = btrfs_read_tree_root(tree_root, &location);
2324 if (IS_ERR(root))
2325 return PTR_ERR(root);
2326 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2327 fs_info->dev_root = root;
4bbcaa64
ES
2328 btrfs_init_devices_late(fs_info);
2329
2330 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2331 root = btrfs_read_tree_root(tree_root, &location);
2332 if (IS_ERR(root))
2333 return PTR_ERR(root);
2334 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335 fs_info->csum_root = root;
4bbcaa64
ES
2336
2337 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2338 root = btrfs_read_tree_root(tree_root, &location);
2339 if (!IS_ERR(root)) {
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2341 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2342 fs_info->quota_root = root;
4bbcaa64
ES
2343 }
2344
2345 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2346 root = btrfs_read_tree_root(tree_root, &location);
2347 if (IS_ERR(root)) {
2348 ret = PTR_ERR(root);
4bbcaa64
ES
2349 if (ret != -ENOENT)
2350 return ret;
2351 } else {
a4f3d2c4
DS
2352 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353 fs_info->uuid_root = root;
4bbcaa64
ES
2354 }
2355
70f6d82e
OS
2356 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2357 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2358 root = btrfs_read_tree_root(tree_root, &location);
2359 if (IS_ERR(root))
2360 return PTR_ERR(root);
2361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362 fs_info->free_space_root = root;
2363 }
2364
4bbcaa64
ES
2365 return 0;
2366}
2367
ad2b2c80
AV
2368int open_ctree(struct super_block *sb,
2369 struct btrfs_fs_devices *fs_devices,
2370 char *options)
2e635a27 2371{
db94535d
CM
2372 u32 sectorsize;
2373 u32 nodesize;
87ee04eb 2374 u32 stripesize;
84234f3a 2375 u64 generation;
f2b636e8 2376 u64 features;
3de4586c 2377 struct btrfs_key location;
a061fc8d 2378 struct buffer_head *bh;
4d34b278 2379 struct btrfs_super_block *disk_super;
815745cf 2380 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2381 struct btrfs_root *tree_root;
4d34b278 2382 struct btrfs_root *chunk_root;
eb60ceac 2383 int ret;
e58ca020 2384 int err = -EINVAL;
af31f5e5
CM
2385 int num_backups_tried = 0;
2386 int backup_index = 0;
5cdc7ad3 2387 int max_active;
6675df31 2388 int clear_free_space_tree = 0;
4543df7e 2389
74e4d827
DS
2390 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2391 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
cb517eab 2392 if (!tree_root || !chunk_root) {
39279cc3
CM
2393 err = -ENOMEM;
2394 goto fail;
2395 }
76dda93c
YZ
2396
2397 ret = init_srcu_struct(&fs_info->subvol_srcu);
2398 if (ret) {
2399 err = ret;
2400 goto fail;
2401 }
2402
908c7f19 2403 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2404 if (ret) {
2405 err = ret;
9e11ceee 2406 goto fail_srcu;
e2d84521 2407 }
09cbfeaf 2408 fs_info->dirty_metadata_batch = PAGE_SIZE *
e2d84521
MX
2409 (1 + ilog2(nr_cpu_ids));
2410
908c7f19 2411 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2412 if (ret) {
2413 err = ret;
2414 goto fail_dirty_metadata_bytes;
2415 }
2416
908c7f19 2417 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2418 if (ret) {
2419 err = ret;
2420 goto fail_delalloc_bytes;
2421 }
2422
76dda93c 2423 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2424 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2425 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2426 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2427 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2428 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2429 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2430 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2431 spin_lock_init(&fs_info->trans_lock);
76dda93c 2432 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2433 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2434 spin_lock_init(&fs_info->defrag_inodes_lock);
f29021b2 2435 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2436 spin_lock_init(&fs_info->super_lock);
fcebe456 2437 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2438 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2439 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2440 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2441 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2442 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2443 mutex_init(&fs_info->reloc_mutex);
573bfb72 2444 mutex_init(&fs_info->delalloc_root_mutex);
c2d6cb16 2445 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
de98ced9 2446 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2447
0b86a832 2448 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2449 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2450 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2451 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2452 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2453 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2454 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2455 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2456 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2457 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2458 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2459 BTRFS_BLOCK_RSV_DELOPS);
771ed689 2460 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2461 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2462 atomic_set(&fs_info->qgroup_op_seq, 0);
2fefd558 2463 atomic_set(&fs_info->reada_works_cnt, 0);
fc36ed7e 2464 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2465 fs_info->sb = sb;
95ac567a 2466 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2467 fs_info->metadata_ratio = 0;
4cb5300b 2468 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2469 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2470 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2471 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2472 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2473 /* readahead state */
d0164adc 2474 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2475 spin_lock_init(&fs_info->reada_lock);
fd708b81 2476 btrfs_init_ref_verify(fs_info);
c8b97818 2477
b34b086c
CM
2478 fs_info->thread_pool_size = min_t(unsigned long,
2479 num_online_cpus() + 2, 8);
0afbaf8c 2480
199c2a9c
MX
2481 INIT_LIST_HEAD(&fs_info->ordered_roots);
2482 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75
JB
2483
2484 fs_info->btree_inode = new_inode(sb);
2485 if (!fs_info->btree_inode) {
2486 err = -ENOMEM;
2487 goto fail_bio_counter;
2488 }
2489 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2490
16cdcec7 2491 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
74e4d827 2492 GFP_KERNEL);
16cdcec7
MX
2493 if (!fs_info->delayed_root) {
2494 err = -ENOMEM;
2495 goto fail_iput;
2496 }
2497 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2498
638aa7ed 2499 btrfs_init_scrub(fs_info);
21adbd5c
SB
2500#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2501 fs_info->check_integrity_print_mask = 0;
2502#endif
779a65a4 2503 btrfs_init_balance(fs_info);
21c7e756 2504 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2505
9f6d2510
DS
2506 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2507 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
a061fc8d 2508
6bccf3ab 2509 btrfs_init_btree_inode(fs_info);
76dda93c 2510
0f9dd46c 2511 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2512 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2513 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2514
c6100a4b
JB
2515 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2516 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
11833d66 2517 fs_info->pinned_extents = &fs_info->freed_extents[0];
afcdd129 2518 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2519
5a3f23d5 2520 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2521 mutex_init(&fs_info->tree_log_mutex);
925baedd 2522 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2523 mutex_init(&fs_info->transaction_kthread_mutex);
2524 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2525 mutex_init(&fs_info->volume_mutex);
1bbc621e 2526 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2527 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2528 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2529 init_rwsem(&fs_info->subvol_sem);
803b2f54 2530 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2531
ad618368 2532 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2533 btrfs_init_qgroup(fs_info);
416ac51d 2534
fa9c0d79
CM
2535 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2536 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2537
e6dcd2dc 2538 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2539 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2540 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2541 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2542
04216820
FM
2543 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2544
da17066c
JM
2545 /* Usable values until the real ones are cached from the superblock */
2546 fs_info->nodesize = 4096;
2547 fs_info->sectorsize = 4096;
2548 fs_info->stripesize = 4096;
2549
53b381b3
DW
2550 ret = btrfs_alloc_stripe_hash_table(fs_info);
2551 if (ret) {
83c8266a 2552 err = ret;
53b381b3
DW
2553 goto fail_alloc;
2554 }
2555
da17066c 2556 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2557
3c4bb26b 2558 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2559
2560 /*
2561 * Read super block and check the signature bytes only
2562 */
a512bbf8 2563 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2564 if (IS_ERR(bh)) {
2565 err = PTR_ERR(bh);
16cdcec7 2566 goto fail_alloc;
20b45077 2567 }
39279cc3 2568
1104a885
DS
2569 /*
2570 * We want to check superblock checksum, the type is stored inside.
2571 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2572 */
ab8d0fc4 2573 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
05135f59 2574 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2575 err = -EINVAL;
b2acdddf 2576 brelse(bh);
1104a885
DS
2577 goto fail_alloc;
2578 }
2579
2580 /*
2581 * super_copy is zeroed at allocation time and we never touch the
2582 * following bytes up to INFO_SIZE, the checksum is calculated from
2583 * the whole block of INFO_SIZE
2584 */
6c41761f
DS
2585 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2586 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2587 sizeof(*fs_info->super_for_commit));
a061fc8d 2588 brelse(bh);
5f39d397 2589
6c41761f 2590 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2591
3d3a126a 2592 ret = btrfs_check_super_valid(fs_info);
1104a885 2593 if (ret) {
05135f59 2594 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885
DS
2595 err = -EINVAL;
2596 goto fail_alloc;
2597 }
2598
6c41761f 2599 disk_super = fs_info->super_copy;
0f7d52f4 2600 if (!btrfs_super_root(disk_super))
16cdcec7 2601 goto fail_alloc;
0f7d52f4 2602
acce952b 2603 /* check FS state, whether FS is broken. */
87533c47
MX
2604 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2605 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2606
af31f5e5
CM
2607 /*
2608 * run through our array of backup supers and setup
2609 * our ring pointer to the oldest one
2610 */
2611 generation = btrfs_super_generation(disk_super);
2612 find_oldest_super_backup(fs_info, generation);
2613
75e7cb7f
LB
2614 /*
2615 * In the long term, we'll store the compression type in the super
2616 * block, and it'll be used for per file compression control.
2617 */
2618 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2619
2ff7e61e 2620 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2621 if (ret) {
2622 err = ret;
16cdcec7 2623 goto fail_alloc;
2b82032c 2624 }
dfe25020 2625
f2b636e8
JB
2626 features = btrfs_super_incompat_flags(disk_super) &
2627 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2628 if (features) {
05135f59
DS
2629 btrfs_err(fs_info,
2630 "cannot mount because of unsupported optional features (%llx)",
2631 features);
f2b636e8 2632 err = -EINVAL;
16cdcec7 2633 goto fail_alloc;
f2b636e8
JB
2634 }
2635
5d4f98a2 2636 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2637 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2638 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2639 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2640 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2641 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2642
3173a18f 2643 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 2644 btrfs_info(fs_info, "has skinny extents");
3173a18f 2645
727011e0
CM
2646 /*
2647 * flag our filesystem as having big metadata blocks if
2648 * they are bigger than the page size
2649 */
09cbfeaf 2650 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 2651 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
2652 btrfs_info(fs_info,
2653 "flagging fs with big metadata feature");
727011e0
CM
2654 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2655 }
2656
bc3f116f 2657 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 2658 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 2659 stripesize = sectorsize;
707e8a07 2660 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2661 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 2662
da17066c
JM
2663 /* Cache block sizes */
2664 fs_info->nodesize = nodesize;
2665 fs_info->sectorsize = sectorsize;
2666 fs_info->stripesize = stripesize;
2667
bc3f116f
CM
2668 /*
2669 * mixed block groups end up with duplicate but slightly offset
2670 * extent buffers for the same range. It leads to corruptions
2671 */
2672 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2673 (sectorsize != nodesize)) {
05135f59
DS
2674 btrfs_err(fs_info,
2675"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2676 nodesize, sectorsize);
bc3f116f
CM
2677 goto fail_alloc;
2678 }
2679
ceda0864
MX
2680 /*
2681 * Needn't use the lock because there is no other task which will
2682 * update the flag.
2683 */
a6fa6fae 2684 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2685
f2b636e8
JB
2686 features = btrfs_super_compat_ro_flags(disk_super) &
2687 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 2688 if (!sb_rdonly(sb) && features) {
05135f59
DS
2689 btrfs_err(fs_info,
2690 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 2691 features);
f2b636e8 2692 err = -EINVAL;
16cdcec7 2693 goto fail_alloc;
f2b636e8 2694 }
61d92c32 2695
5cdc7ad3 2696 max_active = fs_info->thread_pool_size;
61d92c32 2697
2a458198
ES
2698 ret = btrfs_init_workqueues(fs_info, fs_devices);
2699 if (ret) {
2700 err = ret;
0dc3b84a
JB
2701 goto fail_sb_buffer;
2702 }
4543df7e 2703
9e11ceee
JK
2704 sb->s_bdi->congested_fn = btrfs_congested_fn;
2705 sb->s_bdi->congested_data = fs_info;
2706 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
d4417e22 2707 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
9e11ceee
JK
2708 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2709 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 2710
a061fc8d
CM
2711 sb->s_blocksize = sectorsize;
2712 sb->s_blocksize_bits = blksize_bits(sectorsize);
ee87cf5e 2713 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
db94535d 2714
925baedd 2715 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 2716 ret = btrfs_read_sys_array(fs_info);
925baedd 2717 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2718 if (ret) {
05135f59 2719 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 2720 goto fail_sb_buffer;
84eed90f 2721 }
0b86a832 2722
84234f3a 2723 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2724
da17066c 2725 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832 2726
2ff7e61e 2727 chunk_root->node = read_tree_block(fs_info,
0b86a832 2728 btrfs_super_chunk_root(disk_super),
ce86cd59 2729 generation);
64c043de
LB
2730 if (IS_ERR(chunk_root->node) ||
2731 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 2732 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 2733 if (!IS_ERR(chunk_root->node))
2734 free_extent_buffer(chunk_root->node);
95ab1f64 2735 chunk_root->node = NULL;
af31f5e5 2736 goto fail_tree_roots;
83121942 2737 }
5d4f98a2
YZ
2738 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2739 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2740
e17cade2 2741 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2742 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2743
5b4aacef 2744 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 2745 if (ret) {
05135f59 2746 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 2747 goto fail_tree_roots;
2b82032c 2748 }
0b86a832 2749
8dabb742
SB
2750 /*
2751 * keep the device that is marked to be the target device for the
2752 * dev_replace procedure
2753 */
9eaed21e 2754 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2755
a6b0d5c8 2756 if (!fs_devices->latest_bdev) {
05135f59 2757 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
2758 goto fail_tree_roots;
2759 }
2760
af31f5e5 2761retry_root_backup:
84234f3a 2762 generation = btrfs_super_generation(disk_super);
0b86a832 2763
2ff7e61e 2764 tree_root->node = read_tree_block(fs_info,
db94535d 2765 btrfs_super_root(disk_super),
ce86cd59 2766 generation);
64c043de
LB
2767 if (IS_ERR(tree_root->node) ||
2768 !extent_buffer_uptodate(tree_root->node)) {
05135f59 2769 btrfs_warn(fs_info, "failed to read tree root");
e5fffbac 2770 if (!IS_ERR(tree_root->node))
2771 free_extent_buffer(tree_root->node);
95ab1f64 2772 tree_root->node = NULL;
af31f5e5 2773 goto recovery_tree_root;
83121942 2774 }
af31f5e5 2775
5d4f98a2
YZ
2776 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2777 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2778 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2779
f32e48e9
CR
2780 mutex_lock(&tree_root->objectid_mutex);
2781 ret = btrfs_find_highest_objectid(tree_root,
2782 &tree_root->highest_objectid);
2783 if (ret) {
2784 mutex_unlock(&tree_root->objectid_mutex);
2785 goto recovery_tree_root;
2786 }
2787
2788 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2789
2790 mutex_unlock(&tree_root->objectid_mutex);
2791
6bccf3ab 2792 ret = btrfs_read_roots(fs_info);
4bbcaa64 2793 if (ret)
af31f5e5 2794 goto recovery_tree_root;
f7a81ea4 2795
8929ecfa
YZ
2796 fs_info->generation = generation;
2797 fs_info->last_trans_committed = generation;
8929ecfa 2798
68310a5e
ID
2799 ret = btrfs_recover_balance(fs_info);
2800 if (ret) {
05135f59 2801 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
2802 goto fail_block_groups;
2803 }
2804
733f4fbb
SB
2805 ret = btrfs_init_dev_stats(fs_info);
2806 if (ret) {
05135f59 2807 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
2808 goto fail_block_groups;
2809 }
2810
8dabb742
SB
2811 ret = btrfs_init_dev_replace(fs_info);
2812 if (ret) {
05135f59 2813 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
2814 goto fail_block_groups;
2815 }
2816
9eaed21e 2817 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2818
b7c35e81
AJ
2819 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2820 if (ret) {
05135f59
DS
2821 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2822 ret);
b7c35e81
AJ
2823 goto fail_block_groups;
2824 }
2825
2826 ret = btrfs_sysfs_add_device(fs_devices);
2827 if (ret) {
05135f59
DS
2828 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2829 ret);
b7c35e81
AJ
2830 goto fail_fsdev_sysfs;
2831 }
2832
96f3136e 2833 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 2834 if (ret) {
05135f59 2835 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 2836 goto fail_fsdev_sysfs;
c59021f8 2837 }
2838
c59021f8 2839 ret = btrfs_init_space_info(fs_info);
2840 if (ret) {
05135f59 2841 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 2842 goto fail_sysfs;
c59021f8 2843 }
2844
5b4aacef 2845 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 2846 if (ret) {
05135f59 2847 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 2848 goto fail_sysfs;
1b1d1f66 2849 }
4330e183 2850
0f0d1272 2851 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
05135f59 2852 btrfs_warn(fs_info,
4330e183 2853 "writeable mount is not allowed due to too many missing devices");
2365dd3c 2854 goto fail_sysfs;
292fd7fc 2855 }
9078a3e1 2856
a74a4b97
CM
2857 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2858 "btrfs-cleaner");
57506d50 2859 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2860 goto fail_sysfs;
a74a4b97
CM
2861
2862 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2863 tree_root,
2864 "btrfs-transaction");
57506d50 2865 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2866 goto fail_cleaner;
a74a4b97 2867
583b7231 2868 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 2869 !fs_info->fs_devices->rotating) {
583b7231 2870 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
2871 }
2872
572d9ab7 2873 /*
01327610 2874 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
2875 * not have to wait for transaction commit
2876 */
2877 btrfs_apply_pending_changes(fs_info);
3818aea2 2878
21adbd5c 2879#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 2880 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 2881 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 2882 btrfs_test_opt(fs_info,
21adbd5c
SB
2883 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2884 1 : 0,
2885 fs_info->check_integrity_print_mask);
2886 if (ret)
05135f59
DS
2887 btrfs_warn(fs_info,
2888 "failed to initialize integrity check module: %d",
2889 ret);
21adbd5c
SB
2890 }
2891#endif
bcef60f2
AJ
2892 ret = btrfs_read_qgroup_config(fs_info);
2893 if (ret)
2894 goto fail_trans_kthread;
21adbd5c 2895
fd708b81
JB
2896 if (btrfs_build_ref_tree(fs_info))
2897 btrfs_err(fs_info, "couldn't build ref tree");
2898
96da0919
QW
2899 /* do not make disk changes in broken FS or nologreplay is given */
2900 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 2901 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
63443bf5 2902 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 2903 if (ret) {
63443bf5 2904 err = ret;
28c16cbb 2905 goto fail_qgroup;
79787eaa 2906 }
e02119d5 2907 }
1a40e23b 2908
6bccf3ab 2909 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 2910 if (ret)
28c16cbb 2911 goto fail_qgroup;
76dda93c 2912
bc98a42c 2913 if (!sb_rdonly(sb)) {
d68fc57b 2914 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2915 if (ret)
28c16cbb 2916 goto fail_qgroup;
90c711ab
ZB
2917
2918 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2919 ret = btrfs_recover_relocation(tree_root);
90c711ab 2920 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 2921 if (ret < 0) {
05135f59
DS
2922 btrfs_warn(fs_info, "failed to recover relocation: %d",
2923 ret);
d7ce5843 2924 err = -EINVAL;
bcef60f2 2925 goto fail_qgroup;
d7ce5843 2926 }
7c2ca468 2927 }
1a40e23b 2928
3de4586c
CM
2929 location.objectid = BTRFS_FS_TREE_OBJECTID;
2930 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2931 location.offset = 0;
3de4586c 2932
3de4586c 2933 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2934 if (IS_ERR(fs_info->fs_root)) {
2935 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2936 goto fail_qgroup;
3140c9a3 2937 }
c289811c 2938
bc98a42c 2939 if (sb_rdonly(sb))
2b6ba629 2940 return 0;
59641015 2941
f8d468a1
OS
2942 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2943 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
2944 clear_free_space_tree = 1;
2945 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2946 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2947 btrfs_warn(fs_info, "free space tree is invalid");
2948 clear_free_space_tree = 1;
2949 }
2950
2951 if (clear_free_space_tree) {
f8d468a1
OS
2952 btrfs_info(fs_info, "clearing free space tree");
2953 ret = btrfs_clear_free_space_tree(fs_info);
2954 if (ret) {
2955 btrfs_warn(fs_info,
2956 "failed to clear free space tree: %d", ret);
6bccf3ab 2957 close_ctree(fs_info);
f8d468a1
OS
2958 return ret;
2959 }
2960 }
2961
0b246afa 2962 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 2963 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 2964 btrfs_info(fs_info, "creating free space tree");
511711af
CM
2965 ret = btrfs_create_free_space_tree(fs_info);
2966 if (ret) {
05135f59
DS
2967 btrfs_warn(fs_info,
2968 "failed to create free space tree: %d", ret);
6bccf3ab 2969 close_ctree(fs_info);
511711af
CM
2970 return ret;
2971 }
2972 }
2973
2b6ba629
ID
2974 down_read(&fs_info->cleanup_work_sem);
2975 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2976 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2977 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 2978 close_ctree(fs_info);
2b6ba629
ID
2979 return ret;
2980 }
2981 up_read(&fs_info->cleanup_work_sem);
59641015 2982
2b6ba629
ID
2983 ret = btrfs_resume_balance_async(fs_info);
2984 if (ret) {
05135f59 2985 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 2986 close_ctree(fs_info);
2b6ba629 2987 return ret;
e3acc2a6
JB
2988 }
2989
8dabb742
SB
2990 ret = btrfs_resume_dev_replace_async(fs_info);
2991 if (ret) {
05135f59 2992 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 2993 close_ctree(fs_info);
8dabb742
SB
2994 return ret;
2995 }
2996
b382a324
JS
2997 btrfs_qgroup_rescan_resume(fs_info);
2998
4bbcaa64 2999 if (!fs_info->uuid_root) {
05135f59 3000 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3001 ret = btrfs_create_uuid_tree(fs_info);
3002 if (ret) {
05135f59
DS
3003 btrfs_warn(fs_info,
3004 "failed to create the UUID tree: %d", ret);
6bccf3ab 3005 close_ctree(fs_info);
f7a81ea4
SB
3006 return ret;
3007 }
0b246afa 3008 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3009 fs_info->generation !=
3010 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3011 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3012 ret = btrfs_check_uuid_tree(fs_info);
3013 if (ret) {
05135f59
DS
3014 btrfs_warn(fs_info,
3015 "failed to check the UUID tree: %d", ret);
6bccf3ab 3016 close_ctree(fs_info);
70f80175
SB
3017 return ret;
3018 }
3019 } else {
afcdd129 3020 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
f7a81ea4 3021 }
afcdd129 3022 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3023
8dcddfa0
QW
3024 /*
3025 * backuproot only affect mount behavior, and if open_ctree succeeded,
3026 * no need to keep the flag
3027 */
3028 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3029
ad2b2c80 3030 return 0;
39279cc3 3031
bcef60f2
AJ
3032fail_qgroup:
3033 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3034fail_trans_kthread:
3035 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3036 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3037 btrfs_free_fs_roots(fs_info);
3f157a2f 3038fail_cleaner:
a74a4b97 3039 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3040
3041 /*
3042 * make sure we're done with the btree inode before we stop our
3043 * kthreads
3044 */
3045 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3046
2365dd3c 3047fail_sysfs:
6618a59b 3048 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3049
b7c35e81
AJ
3050fail_fsdev_sysfs:
3051 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3052
1b1d1f66 3053fail_block_groups:
54067ae9 3054 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3055
3056fail_tree_roots:
3057 free_root_pointers(fs_info, 1);
2b8195bb 3058 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3059
39279cc3 3060fail_sb_buffer:
7abadb64 3061 btrfs_stop_all_workers(fs_info);
5cdd7db6 3062 btrfs_free_block_groups(fs_info);
16cdcec7 3063fail_alloc:
4543df7e 3064fail_iput:
586e46e2
ID
3065 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3066
4543df7e 3067 iput(fs_info->btree_inode);
c404e0dc
MX
3068fail_bio_counter:
3069 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3070fail_delalloc_bytes:
3071 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3072fail_dirty_metadata_bytes:
3073 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
76dda93c
YZ
3074fail_srcu:
3075 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3076fail:
53b381b3 3077 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3078 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3079 return err;
af31f5e5
CM
3080
3081recovery_tree_root:
0b246afa 3082 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
af31f5e5
CM
3083 goto fail_tree_roots;
3084
3085 free_root_pointers(fs_info, 0);
3086
3087 /* don't use the log in recovery mode, it won't be valid */
3088 btrfs_set_super_log_root(disk_super, 0);
3089
3090 /* we can't trust the free space cache either */
3091 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3092
3093 ret = next_root_backup(fs_info, fs_info->super_copy,
3094 &num_backups_tried, &backup_index);
3095 if (ret == -1)
3096 goto fail_block_groups;
3097 goto retry_root_backup;
eb60ceac
CM
3098}
3099
f2984462
CM
3100static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3101{
f2984462
CM
3102 if (uptodate) {
3103 set_buffer_uptodate(bh);
3104 } else {
442a4f63
SB
3105 struct btrfs_device *device = (struct btrfs_device *)
3106 bh->b_private;
3107
fb456252 3108 btrfs_warn_rl_in_rcu(device->fs_info,
b14af3b4 3109 "lost page write due to IO error on %s",
606686ee 3110 rcu_str_deref(device->name));
01327610 3111 /* note, we don't set_buffer_write_io_error because we have
1259ab75
CM
3112 * our own ways of dealing with the IO errors
3113 */
f2984462 3114 clear_buffer_uptodate(bh);
442a4f63 3115 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3116 }
3117 unlock_buffer(bh);
3118 put_bh(bh);
3119}
3120
29c36d72
AJ
3121int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3122 struct buffer_head **bh_ret)
3123{
3124 struct buffer_head *bh;
3125 struct btrfs_super_block *super;
3126 u64 bytenr;
3127
3128 bytenr = btrfs_sb_offset(copy_num);
3129 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3130 return -EINVAL;
3131
9f6d2510 3132 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
29c36d72
AJ
3133 /*
3134 * If we fail to read from the underlying devices, as of now
3135 * the best option we have is to mark it EIO.
3136 */
3137 if (!bh)
3138 return -EIO;
3139
3140 super = (struct btrfs_super_block *)bh->b_data;
3141 if (btrfs_super_bytenr(super) != bytenr ||
3142 btrfs_super_magic(super) != BTRFS_MAGIC) {
3143 brelse(bh);
3144 return -EINVAL;
3145 }
3146
3147 *bh_ret = bh;
3148 return 0;
3149}
3150
3151
a512bbf8
YZ
3152struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3153{
3154 struct buffer_head *bh;
3155 struct buffer_head *latest = NULL;
3156 struct btrfs_super_block *super;
3157 int i;
3158 u64 transid = 0;
92fc03fb 3159 int ret = -EINVAL;
a512bbf8
YZ
3160
3161 /* we would like to check all the supers, but that would make
3162 * a btrfs mount succeed after a mkfs from a different FS.
3163 * So, we need to add a special mount option to scan for
3164 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3165 */
3166 for (i = 0; i < 1; i++) {
29c36d72
AJ
3167 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3168 if (ret)
a512bbf8
YZ
3169 continue;
3170
3171 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3172
3173 if (!latest || btrfs_super_generation(super) > transid) {
3174 brelse(latest);
3175 latest = bh;
3176 transid = btrfs_super_generation(super);
3177 } else {
3178 brelse(bh);
3179 }
3180 }
92fc03fb
AJ
3181
3182 if (!latest)
3183 return ERR_PTR(ret);
3184
a512bbf8
YZ
3185 return latest;
3186}
3187
4eedeb75 3188/*
abbb3b8e
DS
3189 * Write superblock @sb to the @device. Do not wait for completion, all the
3190 * buffer heads we write are pinned.
4eedeb75 3191 *
abbb3b8e
DS
3192 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3193 * the expected device size at commit time. Note that max_mirrors must be
3194 * same for write and wait phases.
4eedeb75 3195 *
abbb3b8e 3196 * Return number of errors when buffer head is not found or submission fails.
4eedeb75 3197 */
a512bbf8 3198static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3199 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8
YZ
3200{
3201 struct buffer_head *bh;
3202 int i;
3203 int ret;
3204 int errors = 0;
3205 u32 crc;
3206 u64 bytenr;
1b9e619c 3207 int op_flags;
a512bbf8
YZ
3208
3209 if (max_mirrors == 0)
3210 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3211
a512bbf8
YZ
3212 for (i = 0; i < max_mirrors; i++) {
3213 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3214 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3215 device->commit_total_bytes)
a512bbf8
YZ
3216 break;
3217
abbb3b8e 3218 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3219
abbb3b8e
DS
3220 crc = ~(u32)0;
3221 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3222 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3223 btrfs_csum_final(crc, sb->csum);
4eedeb75 3224
abbb3b8e 3225 /* One reference for us, and we leave it for the caller */
9f6d2510 3226 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3227 BTRFS_SUPER_INFO_SIZE);
3228 if (!bh) {
3229 btrfs_err(device->fs_info,
3230 "couldn't get super buffer head for bytenr %llu",
3231 bytenr);
3232 errors++;
4eedeb75 3233 continue;
abbb3b8e 3234 }
634554dc 3235
abbb3b8e 3236 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
a512bbf8 3237
abbb3b8e
DS
3238 /* one reference for submit_bh */
3239 get_bh(bh);
4eedeb75 3240
abbb3b8e
DS
3241 set_buffer_uptodate(bh);
3242 lock_buffer(bh);
3243 bh->b_end_io = btrfs_end_buffer_write_sync;
3244 bh->b_private = device;
a512bbf8 3245
387125fc
CM
3246 /*
3247 * we fua the first super. The others we allow
3248 * to go down lazy.
3249 */
1b9e619c
OS
3250 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3251 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3252 op_flags |= REQ_FUA;
3253 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
4eedeb75 3254 if (ret)
a512bbf8 3255 errors++;
a512bbf8
YZ
3256 }
3257 return errors < i ? 0 : -1;
3258}
3259
abbb3b8e
DS
3260/*
3261 * Wait for write completion of superblocks done by write_dev_supers,
3262 * @max_mirrors same for write and wait phases.
3263 *
3264 * Return number of errors when buffer head is not found or not marked up to
3265 * date.
3266 */
3267static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3268{
3269 struct buffer_head *bh;
3270 int i;
3271 int errors = 0;
3272 u64 bytenr;
3273
3274 if (max_mirrors == 0)
3275 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3276
3277 for (i = 0; i < max_mirrors; i++) {
3278 bytenr = btrfs_sb_offset(i);
3279 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3280 device->commit_total_bytes)
3281 break;
3282
9f6d2510
DS
3283 bh = __find_get_block(device->bdev,
3284 bytenr / BTRFS_BDEV_BLOCKSIZE,
abbb3b8e
DS
3285 BTRFS_SUPER_INFO_SIZE);
3286 if (!bh) {
3287 errors++;
3288 continue;
3289 }
3290 wait_on_buffer(bh);
3291 if (!buffer_uptodate(bh))
3292 errors++;
3293
3294 /* drop our reference */
3295 brelse(bh);
3296
3297 /* drop the reference from the writing run */
3298 brelse(bh);
3299 }
3300
3301 return errors < i ? 0 : -1;
3302}
3303
387125fc
CM
3304/*
3305 * endio for the write_dev_flush, this will wake anyone waiting
3306 * for the barrier when it is done
3307 */
4246a0b6 3308static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3309{
e0ae9994 3310 complete(bio->bi_private);
387125fc
CM
3311}
3312
3313/*
4fc6441a
AJ
3314 * Submit a flush request to the device if it supports it. Error handling is
3315 * done in the waiting counterpart.
387125fc 3316 */
4fc6441a 3317static void write_dev_flush(struct btrfs_device *device)
387125fc 3318{
c2a9c7ab 3319 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3320 struct bio *bio = device->flush_bio;
387125fc 3321
c2a9c7ab 3322 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3323 return;
387125fc 3324
e0ae9994 3325 bio_reset(bio);
387125fc 3326 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3327 bio_set_dev(bio, device->bdev);
8d910125 3328 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3329 init_completion(&device->flush_wait);
3330 bio->bi_private = &device->flush_wait;
387125fc 3331
43a01111 3332 btrfsic_submit_bio(bio);
e0ae9994 3333 device->flush_bio_sent = 1;
4fc6441a 3334}
387125fc 3335
4fc6441a
AJ
3336/*
3337 * If the flush bio has been submitted by write_dev_flush, wait for it.
3338 */
8c27cb35 3339static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3340{
4fc6441a 3341 struct bio *bio = device->flush_bio;
387125fc 3342
e0ae9994 3343 if (!device->flush_bio_sent)
58efbc9f 3344 return BLK_STS_OK;
387125fc 3345
e0ae9994 3346 device->flush_bio_sent = 0;
2980d574 3347 wait_for_completion_io(&device->flush_wait);
387125fc 3348
8c27cb35 3349 return bio->bi_status;
387125fc 3350}
387125fc 3351
d10b82fe 3352static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3353{
d10b82fe 3354 if (!btrfs_check_rw_degradable(fs_info))
401b41e5 3355 return -EIO;
387125fc
CM
3356 return 0;
3357}
3358
3359/*
3360 * send an empty flush down to each device in parallel,
3361 * then wait for them
3362 */
3363static int barrier_all_devices(struct btrfs_fs_info *info)
3364{
3365 struct list_head *head;
3366 struct btrfs_device *dev;
5af3e8cc 3367 int errors_wait = 0;
4e4cbee9 3368 blk_status_t ret;
387125fc
CM
3369
3370 /* send down all the barriers */
3371 head = &info->fs_devices->devices;
3372 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3373 if (dev->missing)
3374 continue;
cea7c8bf 3375 if (!dev->bdev)
387125fc 3376 continue;
387125fc
CM
3377 if (!dev->in_fs_metadata || !dev->writeable)
3378 continue;
3379
4fc6441a 3380 write_dev_flush(dev);
58efbc9f 3381 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3382 }
3383
3384 /* wait for all the barriers */
3385 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3386 if (dev->missing)
3387 continue;
387125fc 3388 if (!dev->bdev) {
5af3e8cc 3389 errors_wait++;
387125fc
CM
3390 continue;
3391 }
3392 if (!dev->in_fs_metadata || !dev->writeable)
3393 continue;
3394
4fc6441a 3395 ret = wait_dev_flush(dev);
401b41e5
AJ
3396 if (ret) {
3397 dev->last_flush_error = ret;
66b4993e
DS
3398 btrfs_dev_stat_inc_and_print(dev,
3399 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3400 errors_wait++;
401b41e5
AJ
3401 }
3402 }
3403
cea7c8bf 3404 if (errors_wait) {
401b41e5
AJ
3405 /*
3406 * At some point we need the status of all disks
3407 * to arrive at the volume status. So error checking
3408 * is being pushed to a separate loop.
3409 */
d10b82fe 3410 return check_barrier_error(info);
387125fc 3411 }
387125fc
CM
3412 return 0;
3413}
3414
943c6e99
ZL
3415int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3416{
8789f4fe
ZL
3417 int raid_type;
3418 int min_tolerated = INT_MAX;
943c6e99 3419
8789f4fe
ZL
3420 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3421 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3422 min_tolerated = min(min_tolerated,
3423 btrfs_raid_array[BTRFS_RAID_SINGLE].
3424 tolerated_failures);
943c6e99 3425
8789f4fe
ZL
3426 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3427 if (raid_type == BTRFS_RAID_SINGLE)
3428 continue;
3429 if (!(flags & btrfs_raid_group[raid_type]))
3430 continue;
3431 min_tolerated = min(min_tolerated,
3432 btrfs_raid_array[raid_type].
3433 tolerated_failures);
3434 }
943c6e99 3435
8789f4fe 3436 if (min_tolerated == INT_MAX) {
ab8d0fc4 3437 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3438 min_tolerated = 0;
3439 }
3440
3441 return min_tolerated;
943c6e99
ZL
3442}
3443
eece6a9c 3444int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3445{
e5e9a520 3446 struct list_head *head;
f2984462 3447 struct btrfs_device *dev;
a061fc8d 3448 struct btrfs_super_block *sb;
f2984462 3449 struct btrfs_dev_item *dev_item;
f2984462
CM
3450 int ret;
3451 int do_barriers;
a236aed1
CM
3452 int max_errors;
3453 int total_errors = 0;
a061fc8d 3454 u64 flags;
f2984462 3455
0b246afa 3456 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3457
3458 /*
3459 * max_mirrors == 0 indicates we're from commit_transaction,
3460 * not from fsync where the tree roots in fs_info have not
3461 * been consistent on disk.
3462 */
3463 if (max_mirrors == 0)
3464 backup_super_roots(fs_info);
f2984462 3465
0b246afa 3466 sb = fs_info->super_for_commit;
a061fc8d 3467 dev_item = &sb->dev_item;
e5e9a520 3468
0b246afa
JM
3469 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3470 head = &fs_info->fs_devices->devices;
3471 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3472
5af3e8cc 3473 if (do_barriers) {
0b246afa 3474 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3475 if (ret) {
3476 mutex_unlock(
0b246afa
JM
3477 &fs_info->fs_devices->device_list_mutex);
3478 btrfs_handle_fs_error(fs_info, ret,
3479 "errors while submitting device barriers.");
5af3e8cc
SB
3480 return ret;
3481 }
3482 }
387125fc 3483
1f78160c 3484 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3485 if (!dev->bdev) {
3486 total_errors++;
3487 continue;
3488 }
2b82032c 3489 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3490 continue;
3491
2b82032c 3492 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3493 btrfs_set_stack_device_type(dev_item, dev->type);
3494 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3495 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3496 dev->commit_total_bytes);
ce7213c7
MX
3497 btrfs_set_stack_device_bytes_used(dev_item,
3498 dev->commit_bytes_used);
a061fc8d
CM
3499 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3500 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3501 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3502 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
44880fdc 3503 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
a512bbf8 3504
a061fc8d
CM
3505 flags = btrfs_super_flags(sb);
3506 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3507
abbb3b8e 3508 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3509 if (ret)
3510 total_errors++;
f2984462 3511 }
a236aed1 3512 if (total_errors > max_errors) {
0b246afa
JM
3513 btrfs_err(fs_info, "%d errors while writing supers",
3514 total_errors);
3515 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3516
9d565ba4 3517 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3518 btrfs_handle_fs_error(fs_info, -EIO,
3519 "%d errors while writing supers",
3520 total_errors);
9d565ba4 3521 return -EIO;
a236aed1 3522 }
f2984462 3523
a512bbf8 3524 total_errors = 0;
1f78160c 3525 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3526 if (!dev->bdev)
3527 continue;
2b82032c 3528 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3529 continue;
3530
abbb3b8e 3531 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3532 if (ret)
3533 total_errors++;
f2984462 3534 }
0b246afa 3535 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3536 if (total_errors > max_errors) {
0b246afa
JM
3537 btrfs_handle_fs_error(fs_info, -EIO,
3538 "%d errors while writing supers",
3539 total_errors);
79787eaa 3540 return -EIO;
a236aed1 3541 }
f2984462
CM
3542 return 0;
3543}
3544
cb517eab
MX
3545/* Drop a fs root from the radix tree and free it. */
3546void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3547 struct btrfs_root *root)
2619ba1f 3548{
4df27c4d 3549 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3550 radix_tree_delete(&fs_info->fs_roots_radix,
3551 (unsigned long)root->root_key.objectid);
4df27c4d 3552 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3553
3554 if (btrfs_root_refs(&root->root_item) == 0)
3555 synchronize_srcu(&fs_info->subvol_srcu);
3556
1c1ea4f7 3557 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e 3558 btrfs_free_log(NULL, root);
1c1ea4f7
LB
3559 if (root->reloc_root) {
3560 free_extent_buffer(root->reloc_root->node);
3561 free_extent_buffer(root->reloc_root->commit_root);
3562 btrfs_put_fs_root(root->reloc_root);
3563 root->reloc_root = NULL;
3564 }
3565 }
3321719e 3566
faa2dbf0
JB
3567 if (root->free_ino_pinned)
3568 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3569 if (root->free_ino_ctl)
3570 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3571 free_fs_root(root);
4df27c4d
YZ
3572}
3573
3574static void free_fs_root(struct btrfs_root *root)
3575{
57cdc8db 3576 iput(root->ino_cache_inode);
4df27c4d 3577 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2ff7e61e 3578 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
1cb048f5 3579 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3580 if (root->anon_dev)
3581 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3582 if (root->subv_writers)
3583 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3584 free_extent_buffer(root->node);
3585 free_extent_buffer(root->commit_root);
581bb050
LZ
3586 kfree(root->free_ino_ctl);
3587 kfree(root->free_ino_pinned);
d397712b 3588 kfree(root->name);
b0feb9d9 3589 btrfs_put_fs_root(root);
2619ba1f
CM
3590}
3591
cb517eab
MX
3592void btrfs_free_fs_root(struct btrfs_root *root)
3593{
3594 free_fs_root(root);
2619ba1f
CM
3595}
3596
c146afad 3597int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3598{
c146afad
YZ
3599 u64 root_objectid = 0;
3600 struct btrfs_root *gang[8];
65d33fd7
QW
3601 int i = 0;
3602 int err = 0;
3603 unsigned int ret = 0;
3604 int index;
e089f05c 3605
c146afad 3606 while (1) {
65d33fd7 3607 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3608 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3609 (void **)gang, root_objectid,
3610 ARRAY_SIZE(gang));
65d33fd7
QW
3611 if (!ret) {
3612 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3613 break;
65d33fd7 3614 }
5d4f98a2 3615 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3616
c146afad 3617 for (i = 0; i < ret; i++) {
65d33fd7
QW
3618 /* Avoid to grab roots in dead_roots */
3619 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3620 gang[i] = NULL;
3621 continue;
3622 }
3623 /* grab all the search result for later use */
3624 gang[i] = btrfs_grab_fs_root(gang[i]);
3625 }
3626 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3627
65d33fd7
QW
3628 for (i = 0; i < ret; i++) {
3629 if (!gang[i])
3630 continue;
c146afad 3631 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3632 err = btrfs_orphan_cleanup(gang[i]);
3633 if (err)
65d33fd7
QW
3634 break;
3635 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3636 }
3637 root_objectid++;
3638 }
65d33fd7
QW
3639
3640 /* release the uncleaned roots due to error */
3641 for (; i < ret; i++) {
3642 if (gang[i])
3643 btrfs_put_fs_root(gang[i]);
3644 }
3645 return err;
c146afad 3646}
a2135011 3647
6bccf3ab 3648int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3649{
6bccf3ab 3650 struct btrfs_root *root = fs_info->tree_root;
c146afad 3651 struct btrfs_trans_handle *trans;
a74a4b97 3652
0b246afa 3653 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3654 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3655 mutex_unlock(&fs_info->cleaner_mutex);
3656 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3657
3658 /* wait until ongoing cleanup work done */
0b246afa
JM
3659 down_write(&fs_info->cleanup_work_sem);
3660 up_write(&fs_info->cleanup_work_sem);
c71bf099 3661
7a7eaa40 3662 trans = btrfs_join_transaction(root);
3612b495
TI
3663 if (IS_ERR(trans))
3664 return PTR_ERR(trans);
3a45bb20 3665 return btrfs_commit_transaction(trans);
c146afad
YZ
3666}
3667
6bccf3ab 3668void close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3669{
6bccf3ab 3670 struct btrfs_root *root = fs_info->tree_root;
c146afad
YZ
3671 int ret;
3672
afcdd129 3673 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
8232f431
OS
3674 /*
3675 * We don't want the cleaner to start new transactions, add more delayed
3676 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3677 * because that frees the task_struct, and the transaction kthread might
3678 * still try to wake up the cleaner.
3679 */
3680 kthread_park(fs_info->cleaner_kthread);
c146afad 3681
7343dd61 3682 /* wait for the qgroup rescan worker to stop */
d06f23d6 3683 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 3684
803b2f54
SB
3685 /* wait for the uuid_scan task to finish */
3686 down(&fs_info->uuid_tree_rescan_sem);
3687 /* avoid complains from lockdep et al., set sem back to initial state */
3688 up(&fs_info->uuid_tree_rescan_sem);
3689
837d5b6e 3690 /* pause restriper - we want to resume on mount */
aa1b8cd4 3691 btrfs_pause_balance(fs_info);
837d5b6e 3692
8dabb742
SB
3693 btrfs_dev_replace_suspend_for_unmount(fs_info);
3694
aa1b8cd4 3695 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3696
3697 /* wait for any defraggers to finish */
3698 wait_event(fs_info->transaction_wait,
3699 (atomic_read(&fs_info->defrag_running) == 0));
3700
3701 /* clear out the rbtree of defraggable inodes */
26176e7c 3702 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3703
21c7e756
MX
3704 cancel_work_sync(&fs_info->async_reclaim_work);
3705
bc98a42c 3706 if (!sb_rdonly(fs_info->sb)) {
e44163e1 3707 /*
8232f431
OS
3708 * The cleaner kthread is stopped, so do one final pass over
3709 * unused block groups.
e44163e1 3710 */
0b246afa 3711 btrfs_delete_unused_bgs(fs_info);
e44163e1 3712
6bccf3ab 3713 ret = btrfs_commit_super(fs_info);
acce952b 3714 if (ret)
04892340 3715 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3716 }
3717
28bb7eea
LB
3718 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3719 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 3720 btrfs_error_commit_super(fs_info);
0f7d52f4 3721
e3029d9f
AV
3722 kthread_stop(fs_info->transaction_kthread);
3723 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3724
afcdd129 3725 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 3726
04892340 3727 btrfs_free_qgroup_config(fs_info);
e709278a 3728 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 3729
963d678b 3730 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3731 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3732 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3733 }
bcc63abb 3734
6618a59b 3735 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3736 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3737
faa2dbf0 3738 btrfs_free_fs_roots(fs_info);
d10c5f31 3739
1a4319cc
LB
3740 btrfs_put_block_group_cache(fs_info);
3741
de348ee0
WS
3742 /*
3743 * we must make sure there is not any read request to
3744 * submit after we stopping all workers.
3745 */
3746 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3747 btrfs_stop_all_workers(fs_info);
3748
5cdd7db6
FM
3749 btrfs_free_block_groups(fs_info);
3750
afcdd129 3751 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
13e6c37b 3752 free_root_pointers(fs_info, 1);
9ad6b7bc 3753
13e6c37b 3754 iput(fs_info->btree_inode);
d6bfde87 3755
21adbd5c 3756#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3757 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 3758 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
3759#endif
3760
dfe25020 3761 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3762 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3763
e2d84521 3764 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3765 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3766 percpu_counter_destroy(&fs_info->bio_counter);
76dda93c 3767 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3768
53b381b3 3769 btrfs_free_stripe_hash_table(fs_info);
fd708b81 3770 btrfs_free_ref_cache(fs_info);
53b381b3 3771
cdfb080e 3772 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3773 root->orphan_block_rsv = NULL;
04216820 3774
04216820
FM
3775 while (!list_empty(&fs_info->pinned_chunks)) {
3776 struct extent_map *em;
3777
3778 em = list_first_entry(&fs_info->pinned_chunks,
3779 struct extent_map, list);
3780 list_del_init(&em->list);
3781 free_extent_map(em);
3782 }
eb60ceac
CM
3783}
3784
b9fab919
CM
3785int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3786 int atomic)
5f39d397 3787{
1259ab75 3788 int ret;
727011e0 3789 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3790
0b32f4bb 3791 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3792 if (!ret)
3793 return ret;
3794
3795 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3796 parent_transid, atomic);
3797 if (ret == -EAGAIN)
3798 return ret;
1259ab75 3799 return !ret;
5f39d397
CM
3800}
3801
5f39d397
CM
3802void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3803{
0b246afa 3804 struct btrfs_fs_info *fs_info;
06ea65a3 3805 struct btrfs_root *root;
5f39d397 3806 u64 transid = btrfs_header_generation(buf);
b9473439 3807 int was_dirty;
b4ce94de 3808
06ea65a3
JB
3809#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3810 /*
3811 * This is a fast path so only do this check if we have sanity tests
3812 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3813 * outside of the sanity tests.
3814 */
3815 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3816 return;
3817#endif
3818 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 3819 fs_info = root->fs_info;
b9447ef8 3820 btrfs_assert_tree_locked(buf);
0b246afa 3821 if (transid != fs_info->generation)
5d163e0e 3822 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 3823 buf->start, transid, fs_info->generation);
0b32f4bb 3824 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 3825 if (!was_dirty)
104b4e51
NB
3826 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3827 buf->len,
3828 fs_info->dirty_metadata_batch);
1f21ef0a 3829#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
3830 /*
3831 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3832 * but item data not updated.
3833 * So here we should only check item pointers, not item data.
3834 */
3835 if (btrfs_header_level(buf) == 0 &&
3836 btrfs_check_leaf_relaxed(root, buf)) {
a4f78750 3837 btrfs_print_leaf(buf);
1f21ef0a
FM
3838 ASSERT(0);
3839 }
3840#endif
eb60ceac
CM
3841}
3842
2ff7e61e 3843static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 3844 int flush_delayed)
16cdcec7
MX
3845{
3846 /*
3847 * looks as though older kernels can get into trouble with
3848 * this code, they end up stuck in balance_dirty_pages forever
3849 */
e2d84521 3850 int ret;
16cdcec7
MX
3851
3852 if (current->flags & PF_MEMALLOC)
3853 return;
3854
b53d3f5d 3855 if (flush_delayed)
2ff7e61e 3856 btrfs_balance_delayed_items(fs_info);
16cdcec7 3857
20d19687
EL
3858 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3859 BTRFS_DIRTY_METADATA_THRESH,
3860 fs_info->dirty_metadata_batch);
e2d84521 3861 if (ret > 0) {
0b246afa 3862 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 3863 }
16cdcec7
MX
3864}
3865
2ff7e61e 3866void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 3867{
2ff7e61e 3868 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 3869}
585ad2c3 3870
2ff7e61e 3871void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 3872{
2ff7e61e 3873 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 3874}
6b80053d 3875
ca7a79ad 3876int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3877{
727011e0 3878 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
2ff7e61e
JM
3879 struct btrfs_fs_info *fs_info = root->fs_info;
3880
3881 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
6b80053d 3882}
0da5468f 3883
3d3a126a 3884static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
acce952b 3885{
c926093e 3886 struct btrfs_super_block *sb = fs_info->super_copy;
319e4d06
QW
3887 u64 nodesize = btrfs_super_nodesize(sb);
3888 u64 sectorsize = btrfs_super_sectorsize(sb);
c926093e
DS
3889 int ret = 0;
3890
319e4d06 3891 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
ab8d0fc4 3892 btrfs_err(fs_info, "no valid FS found");
319e4d06
QW
3893 ret = -EINVAL;
3894 }
96f7773f
AJ
3895 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3896 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
319e4d06 3897 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
96f7773f
AJ
3898 ret = -EINVAL;
3899 }
21e7626b 3900 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 3901 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
21e7626b 3902 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3903 ret = -EINVAL;
3904 }
21e7626b 3905 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 3906 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
21e7626b 3907 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3908 ret = -EINVAL;
3909 }
21e7626b 3910 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
ab8d0fc4 3911 btrfs_err(fs_info, "log_root level too big: %d >= %d",
21e7626b 3912 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3913 ret = -EINVAL;
3914 }
3915
1104a885 3916 /*
319e4d06
QW
3917 * Check sectorsize and nodesize first, other check will need it.
3918 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
1104a885 3919 */
319e4d06
QW
3920 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3921 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 3922 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
319e4d06
QW
3923 ret = -EINVAL;
3924 }
3925 /* Only PAGE SIZE is supported yet */
09cbfeaf 3926 if (sectorsize != PAGE_SIZE) {
ab8d0fc4
JM
3927 btrfs_err(fs_info,
3928 "sectorsize %llu not supported yet, only support %lu",
3929 sectorsize, PAGE_SIZE);
319e4d06
QW
3930 ret = -EINVAL;
3931 }
3932 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3933 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
ab8d0fc4 3934 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
319e4d06
QW
3935 ret = -EINVAL;
3936 }
3937 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
ab8d0fc4
JM
3938 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3939 le32_to_cpu(sb->__unused_leafsize), nodesize);
319e4d06
QW
3940 ret = -EINVAL;
3941 }
3942
3943 /* Root alignment check */
3944 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
ab8d0fc4
JM
3945 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3946 btrfs_super_root(sb));
319e4d06
QW
3947 ret = -EINVAL;
3948 }
3949 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
ab8d0fc4
JM
3950 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3951 btrfs_super_chunk_root(sb));
75d6ad38
DS
3952 ret = -EINVAL;
3953 }
319e4d06 3954 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
ab8d0fc4
JM
3955 btrfs_warn(fs_info, "log_root block unaligned: %llu",
3956 btrfs_super_log_root(sb));
75d6ad38
DS
3957 ret = -EINVAL;
3958 }
3959
44880fdc 3960 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
ab8d0fc4
JM
3961 btrfs_err(fs_info,
3962 "dev_item UUID does not match fsid: %pU != %pU",
3963 fs_info->fsid, sb->dev_item.fsid);
c926093e
DS
3964 ret = -EINVAL;
3965 }
3966
3967 /*
3968 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3969 * done later
3970 */
99e3ecfc
LB
3971 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
3972 btrfs_err(fs_info, "bytes_used is too small %llu",
ab8d0fc4 3973 btrfs_super_bytes_used(sb));
99e3ecfc
LB
3974 ret = -EINVAL;
3975 }
b7f67055 3976 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
99e3ecfc 3977 btrfs_err(fs_info, "invalid stripesize %u",
ab8d0fc4 3978 btrfs_super_stripesize(sb));
99e3ecfc
LB
3979 ret = -EINVAL;
3980 }
21e7626b 3981 if (btrfs_super_num_devices(sb) > (1UL << 31))
ab8d0fc4
JM
3982 btrfs_warn(fs_info, "suspicious number of devices: %llu",
3983 btrfs_super_num_devices(sb));
75d6ad38 3984 if (btrfs_super_num_devices(sb) == 0) {
ab8d0fc4 3985 btrfs_err(fs_info, "number of devices is 0");
75d6ad38
DS
3986 ret = -EINVAL;
3987 }
c926093e 3988
21e7626b 3989 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
ab8d0fc4
JM
3990 btrfs_err(fs_info, "super offset mismatch %llu != %u",
3991 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
3992 ret = -EINVAL;
3993 }
3994
ce7fca5f
DS
3995 /*
3996 * Obvious sys_chunk_array corruptions, it must hold at least one key
3997 * and one chunk
3998 */
3999 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
ab8d0fc4
JM
4000 btrfs_err(fs_info, "system chunk array too big %u > %u",
4001 btrfs_super_sys_array_size(sb),
4002 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ce7fca5f
DS
4003 ret = -EINVAL;
4004 }
4005 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4006 + sizeof(struct btrfs_chunk)) {
ab8d0fc4
JM
4007 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4008 btrfs_super_sys_array_size(sb),
4009 sizeof(struct btrfs_disk_key)
4010 + sizeof(struct btrfs_chunk));
ce7fca5f
DS
4011 ret = -EINVAL;
4012 }
4013
c926093e
DS
4014 /*
4015 * The generation is a global counter, we'll trust it more than the others
4016 * but it's still possible that it's the one that's wrong.
4017 */
21e7626b 4018 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
ab8d0fc4
JM
4019 btrfs_warn(fs_info,
4020 "suspicious: generation < chunk_root_generation: %llu < %llu",
4021 btrfs_super_generation(sb),
4022 btrfs_super_chunk_root_generation(sb));
21e7626b
DS
4023 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4024 && btrfs_super_cache_generation(sb) != (u64)-1)
ab8d0fc4
JM
4025 btrfs_warn(fs_info,
4026 "suspicious: generation < cache_generation: %llu < %llu",
4027 btrfs_super_generation(sb),
4028 btrfs_super_cache_generation(sb));
c926093e
DS
4029
4030 return ret;
acce952b 4031}
4032
2ff7e61e 4033static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4034{
e709278a
NB
4035 /* cleanup FS via transaction */
4036 btrfs_cleanup_transaction(fs_info);
4037
0b246afa 4038 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4039 btrfs_run_delayed_iputs(fs_info);
0b246afa 4040 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4041
0b246afa
JM
4042 down_write(&fs_info->cleanup_work_sem);
4043 up_write(&fs_info->cleanup_work_sem);
acce952b 4044}
4045
143bede5 4046static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4047{
acce952b 4048 struct btrfs_ordered_extent *ordered;
acce952b 4049
199c2a9c 4050 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4051 /*
4052 * This will just short circuit the ordered completion stuff which will
4053 * make sure the ordered extent gets properly cleaned up.
4054 */
199c2a9c 4055 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4056 root_extent_list)
4057 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4058 spin_unlock(&root->ordered_extent_lock);
4059}
4060
4061static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4062{
4063 struct btrfs_root *root;
4064 struct list_head splice;
4065
4066 INIT_LIST_HEAD(&splice);
4067
4068 spin_lock(&fs_info->ordered_root_lock);
4069 list_splice_init(&fs_info->ordered_roots, &splice);
4070 while (!list_empty(&splice)) {
4071 root = list_first_entry(&splice, struct btrfs_root,
4072 ordered_root);
1de2cfde
JB
4073 list_move_tail(&root->ordered_root,
4074 &fs_info->ordered_roots);
199c2a9c 4075
2a85d9ca 4076 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4077 btrfs_destroy_ordered_extents(root);
4078
2a85d9ca
LB
4079 cond_resched();
4080 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4081 }
4082 spin_unlock(&fs_info->ordered_root_lock);
4beb3c93
JB
4083
4084 /*
4085 * We need this here because if we've been flipped read-only we won't
4086 * get sync() from the umount, so we need to make sure any ordered
4087 * extents that haven't had their dirty pages IO start writeout yet
4088 * actually get run and error out properly.
4089 */
4090 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4091}
4092
35a3621b 4093static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4094 struct btrfs_fs_info *fs_info)
acce952b 4095{
4096 struct rb_node *node;
4097 struct btrfs_delayed_ref_root *delayed_refs;
4098 struct btrfs_delayed_ref_node *ref;
4099 int ret = 0;
4100
4101 delayed_refs = &trans->delayed_refs;
4102
4103 spin_lock(&delayed_refs->lock);
d7df2c79 4104 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4105 spin_unlock(&delayed_refs->lock);
0b246afa 4106 btrfs_info(fs_info, "delayed_refs has NO entry");
acce952b 4107 return ret;
4108 }
4109
d7df2c79
JB
4110 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4111 struct btrfs_delayed_ref_head *head;
0e0adbcf 4112 struct rb_node *n;
e78417d1 4113 bool pin_bytes = false;
acce952b 4114
d7df2c79
JB
4115 head = rb_entry(node, struct btrfs_delayed_ref_head,
4116 href_node);
4117 if (!mutex_trylock(&head->mutex)) {
d278850e 4118 refcount_inc(&head->refs);
d7df2c79 4119 spin_unlock(&delayed_refs->lock);
eb12db69 4120
d7df2c79 4121 mutex_lock(&head->mutex);
e78417d1 4122 mutex_unlock(&head->mutex);
d278850e 4123 btrfs_put_delayed_ref_head(head);
d7df2c79
JB
4124 spin_lock(&delayed_refs->lock);
4125 continue;
4126 }
4127 spin_lock(&head->lock);
0e0adbcf
JB
4128 while ((n = rb_first(&head->ref_tree)) != NULL) {
4129 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4130 ref_node);
d7df2c79 4131 ref->in_tree = 0;
0e0adbcf
JB
4132 rb_erase(&ref->ref_node, &head->ref_tree);
4133 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4134 if (!list_empty(&ref->add_list))
4135 list_del(&ref->add_list);
d7df2c79
JB
4136 atomic_dec(&delayed_refs->num_entries);
4137 btrfs_put_delayed_ref(ref);
e78417d1 4138 }
d7df2c79
JB
4139 if (head->must_insert_reserved)
4140 pin_bytes = true;
4141 btrfs_free_delayed_extent_op(head->extent_op);
4142 delayed_refs->num_heads--;
4143 if (head->processing == 0)
4144 delayed_refs->num_heads_ready--;
4145 atomic_dec(&delayed_refs->num_entries);
d7df2c79 4146 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 4147 RB_CLEAR_NODE(&head->href_node);
d7df2c79
JB
4148 spin_unlock(&head->lock);
4149 spin_unlock(&delayed_refs->lock);
4150 mutex_unlock(&head->mutex);
acce952b 4151
d7df2c79 4152 if (pin_bytes)
d278850e
JB
4153 btrfs_pin_extent(fs_info, head->bytenr,
4154 head->num_bytes, 1);
4155 btrfs_put_delayed_ref_head(head);
acce952b 4156 cond_resched();
4157 spin_lock(&delayed_refs->lock);
4158 }
4159
4160 spin_unlock(&delayed_refs->lock);
4161
4162 return ret;
4163}
4164
143bede5 4165static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4166{
4167 struct btrfs_inode *btrfs_inode;
4168 struct list_head splice;
4169
4170 INIT_LIST_HEAD(&splice);
4171
eb73c1b7
MX
4172 spin_lock(&root->delalloc_lock);
4173 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4174
4175 while (!list_empty(&splice)) {
e709278a 4176 struct inode *inode = NULL;
eb73c1b7
MX
4177 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4178 delalloc_inodes);
e709278a 4179 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4180 spin_unlock(&root->delalloc_lock);
acce952b 4181
e709278a
NB
4182 /*
4183 * Make sure we get a live inode and that it'll not disappear
4184 * meanwhile.
4185 */
4186 inode = igrab(&btrfs_inode->vfs_inode);
4187 if (inode) {
4188 invalidate_inode_pages2(inode->i_mapping);
4189 iput(inode);
4190 }
eb73c1b7 4191 spin_lock(&root->delalloc_lock);
acce952b 4192 }
eb73c1b7
MX
4193 spin_unlock(&root->delalloc_lock);
4194}
4195
4196static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4197{
4198 struct btrfs_root *root;
4199 struct list_head splice;
4200
4201 INIT_LIST_HEAD(&splice);
4202
4203 spin_lock(&fs_info->delalloc_root_lock);
4204 list_splice_init(&fs_info->delalloc_roots, &splice);
4205 while (!list_empty(&splice)) {
4206 root = list_first_entry(&splice, struct btrfs_root,
4207 delalloc_root);
eb73c1b7
MX
4208 root = btrfs_grab_fs_root(root);
4209 BUG_ON(!root);
4210 spin_unlock(&fs_info->delalloc_root_lock);
4211
4212 btrfs_destroy_delalloc_inodes(root);
4213 btrfs_put_fs_root(root);
4214
4215 spin_lock(&fs_info->delalloc_root_lock);
4216 }
4217 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4218}
4219
2ff7e61e 4220static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4221 struct extent_io_tree *dirty_pages,
4222 int mark)
4223{
4224 int ret;
acce952b 4225 struct extent_buffer *eb;
4226 u64 start = 0;
4227 u64 end;
acce952b 4228
4229 while (1) {
4230 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4231 mark, NULL);
acce952b 4232 if (ret)
4233 break;
4234
91166212 4235 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4236 while (start <= end) {
0b246afa
JM
4237 eb = find_extent_buffer(fs_info, start);
4238 start += fs_info->nodesize;
fd8b2b61 4239 if (!eb)
acce952b 4240 continue;
fd8b2b61 4241 wait_on_extent_buffer_writeback(eb);
acce952b 4242
fd8b2b61
JB
4243 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4244 &eb->bflags))
4245 clear_extent_buffer_dirty(eb);
4246 free_extent_buffer_stale(eb);
acce952b 4247 }
4248 }
4249
4250 return ret;
4251}
4252
2ff7e61e 4253static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 4254 struct extent_io_tree *pinned_extents)
4255{
4256 struct extent_io_tree *unpin;
4257 u64 start;
4258 u64 end;
4259 int ret;
ed0eaa14 4260 bool loop = true;
acce952b 4261
4262 unpin = pinned_extents;
ed0eaa14 4263again:
acce952b 4264 while (1) {
82e8777b
FM
4265 struct extent_state *cached_state = NULL;
4266
3e7d2caf
LF
4267 /*
4268 * The btrfs_finish_extent_commit() may get the same range as
4269 * ours between find_first_extent_bit and clear_extent_dirty.
4270 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4271 * the same extent range.
4272 */
4273 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4274 ret = find_first_extent_bit(unpin, 0, &start, &end,
82e8777b 4275 EXTENT_DIRTY, &cached_state);
3e7d2caf
LF
4276 if (ret) {
4277 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4278 break;
3e7d2caf 4279 }
acce952b 4280
82e8777b
FM
4281 clear_extent_dirty(unpin, start, end, &cached_state);
4282 free_extent_state(cached_state);
2ff7e61e 4283 btrfs_error_unpin_extent_range(fs_info, start, end);
3e7d2caf 4284 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4285 cond_resched();
4286 }
4287
ed0eaa14 4288 if (loop) {
0b246afa
JM
4289 if (unpin == &fs_info->freed_extents[0])
4290 unpin = &fs_info->freed_extents[1];
ed0eaa14 4291 else
0b246afa 4292 unpin = &fs_info->freed_extents[0];
ed0eaa14
LB
4293 loop = false;
4294 goto again;
4295 }
4296
acce952b 4297 return 0;
4298}
4299
c79a1751
LB
4300static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4301{
4302 struct inode *inode;
4303
4304 inode = cache->io_ctl.inode;
4305 if (inode) {
4306 invalidate_inode_pages2(inode->i_mapping);
4307 BTRFS_I(inode)->generation = 0;
4308 cache->io_ctl.inode = NULL;
4309 iput(inode);
4310 }
4311 btrfs_put_block_group(cache);
4312}
4313
4314void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4315 struct btrfs_fs_info *fs_info)
c79a1751
LB
4316{
4317 struct btrfs_block_group_cache *cache;
4318
4319 spin_lock(&cur_trans->dirty_bgs_lock);
4320 while (!list_empty(&cur_trans->dirty_bgs)) {
4321 cache = list_first_entry(&cur_trans->dirty_bgs,
4322 struct btrfs_block_group_cache,
4323 dirty_list);
4324 if (!cache) {
0b246afa 4325 btrfs_err(fs_info, "orphan block group dirty_bgs list");
c79a1751
LB
4326 spin_unlock(&cur_trans->dirty_bgs_lock);
4327 return;
4328 }
4329
4330 if (!list_empty(&cache->io_list)) {
4331 spin_unlock(&cur_trans->dirty_bgs_lock);
4332 list_del_init(&cache->io_list);
4333 btrfs_cleanup_bg_io(cache);
4334 spin_lock(&cur_trans->dirty_bgs_lock);
4335 }
4336
4337 list_del_init(&cache->dirty_list);
4338 spin_lock(&cache->lock);
4339 cache->disk_cache_state = BTRFS_DC_ERROR;
4340 spin_unlock(&cache->lock);
4341
4342 spin_unlock(&cur_trans->dirty_bgs_lock);
4343 btrfs_put_block_group(cache);
4344 spin_lock(&cur_trans->dirty_bgs_lock);
4345 }
4346 spin_unlock(&cur_trans->dirty_bgs_lock);
4347
4348 while (!list_empty(&cur_trans->io_bgs)) {
4349 cache = list_first_entry(&cur_trans->io_bgs,
4350 struct btrfs_block_group_cache,
4351 io_list);
4352 if (!cache) {
0b246afa 4353 btrfs_err(fs_info, "orphan block group on io_bgs list");
c79a1751
LB
4354 return;
4355 }
4356
4357 list_del_init(&cache->io_list);
4358 spin_lock(&cache->lock);
4359 cache->disk_cache_state = BTRFS_DC_ERROR;
4360 spin_unlock(&cache->lock);
4361 btrfs_cleanup_bg_io(cache);
4362 }
4363}
4364
49b25e05 4365void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4366 struct btrfs_fs_info *fs_info)
49b25e05 4367{
2ff7e61e 4368 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4369 ASSERT(list_empty(&cur_trans->dirty_bgs));
4370 ASSERT(list_empty(&cur_trans->io_bgs));
4371
2ff7e61e 4372 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4373
4a9d8bde 4374 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4375 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4376
4a9d8bde 4377 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4378 wake_up(&fs_info->transaction_wait);
49b25e05 4379
ccdf9b30
JM
4380 btrfs_destroy_delayed_inodes(fs_info);
4381 btrfs_assert_delayed_root_empty(fs_info);
49b25e05 4382
2ff7e61e 4383 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4384 EXTENT_DIRTY);
2ff7e61e 4385 btrfs_destroy_pinned_extent(fs_info,
0b246afa 4386 fs_info->pinned_extents);
49b25e05 4387
4a9d8bde
MX
4388 cur_trans->state =TRANS_STATE_COMPLETED;
4389 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4390}
4391
2ff7e61e 4392static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4393{
4394 struct btrfs_transaction *t;
acce952b 4395
0b246afa 4396 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4397
0b246afa
JM
4398 spin_lock(&fs_info->trans_lock);
4399 while (!list_empty(&fs_info->trans_list)) {
4400 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4401 struct btrfs_transaction, list);
4402 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4403 refcount_inc(&t->use_count);
0b246afa 4404 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4405 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4406 btrfs_put_transaction(t);
0b246afa 4407 spin_lock(&fs_info->trans_lock);
724e2315
JB
4408 continue;
4409 }
0b246afa 4410 if (t == fs_info->running_transaction) {
724e2315 4411 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4412 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4413 /*
4414 * We wait for 0 num_writers since we don't hold a trans
4415 * handle open currently for this transaction.
4416 */
4417 wait_event(t->writer_wait,
4418 atomic_read(&t->num_writers) == 0);
4419 } else {
0b246afa 4420 spin_unlock(&fs_info->trans_lock);
724e2315 4421 }
2ff7e61e 4422 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4423
0b246afa
JM
4424 spin_lock(&fs_info->trans_lock);
4425 if (t == fs_info->running_transaction)
4426 fs_info->running_transaction = NULL;
acce952b 4427 list_del_init(&t->list);
0b246afa 4428 spin_unlock(&fs_info->trans_lock);
acce952b 4429
724e2315 4430 btrfs_put_transaction(t);
2ff7e61e 4431 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4432 spin_lock(&fs_info->trans_lock);
724e2315 4433 }
0b246afa
JM
4434 spin_unlock(&fs_info->trans_lock);
4435 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4436 btrfs_destroy_delayed_inodes(fs_info);
4437 btrfs_assert_delayed_root_empty(fs_info);
2ff7e61e 4438 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
0b246afa
JM
4439 btrfs_destroy_all_delalloc_inodes(fs_info);
4440 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4441
4442 return 0;
4443}
4444
c6100a4b
JB
4445static struct btrfs_fs_info *btree_fs_info(void *private_data)
4446{
4447 struct inode *inode = private_data;
4448 return btrfs_sb(inode->i_sb);
4449}
4450
e8c9f186 4451static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4452 /* mandatory callbacks */
0b86a832 4453 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4454 .readpage_end_io_hook = btree_readpage_end_io_hook,
239b14b3
CM
4455 /* note we're sharing with inode.c for the merge bio hook */
4456 .merge_bio_hook = btrfs_merge_bio_hook,
20a7db8a 4457 .readpage_io_failed_hook = btree_io_failed_hook,
c6100a4b
JB
4458 .set_range_writeback = btrfs_set_range_writeback,
4459 .tree_fs_info = btree_fs_info,
4d53dddb
DS
4460
4461 /* optional callbacks */
0da5468f 4462};