]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/disk-io.c
btrfs: free anon block device right after subvolume deletion
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
0f7d52f4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
0b86a832 26#include "volumes.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
581bb050 32#include "inode-map.h"
21adbd5c 33#include "check-integrity.h"
606686ee 34#include "rcu-string.h"
8dabb742 35#include "dev-replace.h"
53b381b3 36#include "raid56.h"
5ac1d209 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
ebb8765b 39#include "compression.h"
557ea5dd 40#include "tree-checker.h"
fd708b81 41#include "ref-verify.h"
aac0023c 42#include "block-group.h"
b0643e59 43#include "discard.h"
f603bb94 44#include "space-info.h"
eb60ceac 45
319e4d06
QW
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 52
e8c9f186 53static const struct extent_io_ops btree_extent_io_ops;
8b712842 54static void end_workqueue_fn(struct btrfs_work *work);
143bede5 55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 57 struct btrfs_fs_info *fs_info);
143bede5 58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
2ff7e61e 59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 60 struct extent_io_tree *dirty_pages,
61 int mark);
2ff7e61e 62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
acce952b 63 struct extent_io_tree *pinned_extents);
2ff7e61e
JM
64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 66
d352ac68 67/*
97eb6b69
DS
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
97eb6b69 72struct btrfs_end_io_wq {
ce9adaa5
CM
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
4e4cbee9 77 blk_status_t status;
bfebd8b5 78 enum btrfs_wq_endio_type metadata;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
97eb6b69
DS
82static struct kmem_cache *btrfs_end_io_wq_cache;
83
84int __init btrfs_end_io_wq_init(void)
85{
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
fba4b697 89 SLAB_MEM_SPREAD,
97eb6b69
DS
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94}
95
e67c718b 96void __cold btrfs_end_io_wq_exit(void)
97eb6b69 97{
5598e900 98 kmem_cache_destroy(btrfs_end_io_wq_cache);
97eb6b69
DS
99}
100
141386e1
JB
101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102{
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105}
106
d352ac68
CM
107/*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
44b8bd7e 112struct async_submit_bio {
c6100a4b 113 void *private_data;
44b8bd7e 114 struct bio *bio;
a758781d 115 extent_submit_bio_start_t *submit_bio_start;
44b8bd7e 116 int mirror_num;
eaf25d93
CM
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
8b712842 122 struct btrfs_work work;
4e4cbee9 123 blk_status_t status;
44b8bd7e
CM
124};
125
85d4e461
CM
126/*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
4fd786e6
MT
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
4008c04a 136 *
85d4e461
CM
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 140 *
85d4e461
CM
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 144 *
85d4e461
CM
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
4008c04a
CM
148 */
149#ifdef CONFIG_DEBUG_LOCK_ALLOC
150# if BTRFS_MAX_LEVEL != 8
151# error
152# endif
85d4e461
CM
153
154static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159} btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
6b20e0ad 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
85d4e461 172 { .id = 0, .name_stem = "tree" },
4008c04a 173};
85d4e461
CM
174
175void __init btrfs_init_lockdep(void)
176{
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187}
188
189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191{
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203}
204
4008c04a
CM
205#endif
206
d352ac68
CM
207/*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
6af49dbd 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
7eccb903 214{
fc4f21b1 215 struct extent_map_tree *em_tree = &inode->extent_tree;
5f39d397
CM
216 struct extent_map *em;
217 int ret;
218
890871be 219 read_lock(&em_tree->lock);
d1310b2e 220 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 221 if (em) {
890871be 222 read_unlock(&em_tree->lock);
5f39d397 223 goto out;
a061fc8d 224 }
890871be 225 read_unlock(&em_tree->lock);
7b13b7b1 226
172ddd60 227 em = alloc_extent_map();
5f39d397
CM
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
0afbaf8c 233 em->len = (u64)-1;
c8b97818 234 em->block_len = (u64)-1;
5f39d397 235 em->block_start = 0;
d1310b2e 236
890871be 237 write_lock(&em_tree->lock);
09a2a8f9 238 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
239 if (ret == -EEXIST) {
240 free_extent_map(em);
7b13b7b1 241 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 242 if (!em)
0433f20d 243 em = ERR_PTR(-EIO);
5f39d397 244 } else if (ret) {
7b13b7b1 245 free_extent_map(em);
0433f20d 246 em = ERR_PTR(ret);
5f39d397 247 }
890871be 248 write_unlock(&em_tree->lock);
7b13b7b1 249
5f39d397
CM
250out:
251 return em;
7eccb903
CM
252}
253
d352ac68 254/*
2996e1f8 255 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 256 */
c67b3892 257static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 258{
d5178578 259 struct btrfs_fs_info *fs_info = buf->fs_info;
e9be5a30 260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
d5178578 261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 262 char *kaddr;
e9be5a30 263 int i;
d5178578
JT
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
e9be5a30
DS
267 kaddr = page_address(buf->pages[0]);
268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 PAGE_SIZE - BTRFS_CSUM_SIZE);
19c00ddc 270
e9be5a30
DS
271 for (i = 1; i < num_pages; i++) {
272 kaddr = page_address(buf->pages[i]);
273 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 274 }
71a63551 275 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 276 crypto_shash_final(shash, result);
19c00ddc
CM
277}
278
d352ac68
CM
279/*
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
284 */
1259ab75 285static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
286 struct extent_buffer *eb, u64 parent_transid,
287 int atomic)
1259ab75 288{
2ac55d41 289 struct extent_state *cached_state = NULL;
1259ab75 290 int ret;
2755a0de 291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
292
293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 return 0;
295
b9fab919
CM
296 if (atomic)
297 return -EAGAIN;
298
a26e8c9f
JB
299 if (need_lock) {
300 btrfs_tree_read_lock(eb);
300aa896 301 btrfs_set_lock_blocking_read(eb);
a26e8c9f
JB
302 }
303
2ac55d41 304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 305 &cached_state);
0b32f4bb 306 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
307 btrfs_header_generation(eb) == parent_transid) {
308 ret = 0;
309 goto out;
310 }
94647322
DS
311 btrfs_err_rl(eb->fs_info,
312 "parent transid verify failed on %llu wanted %llu found %llu",
313 eb->start,
29549aec 314 parent_transid, btrfs_header_generation(eb));
1259ab75 315 ret = 1;
a26e8c9f
JB
316
317 /*
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
01327610 320 * block that has been freed and re-allocated. So don't clear uptodate
a26e8c9f
JB
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
324 */
325 if (!extent_buffer_under_io(eb))
326 clear_extent_buffer_uptodate(eb);
33958dc6 327out:
2ac55d41 328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
e43bbe5e 329 &cached_state);
472b909f
JB
330 if (need_lock)
331 btrfs_tree_read_unlock_blocking(eb);
1259ab75 332 return ret;
1259ab75
CM
333}
334
e7e16f48
JT
335static bool btrfs_supported_super_csum(u16 csum_type)
336{
337 switch (csum_type) {
338 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 339 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 340 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 341 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
342 return true;
343 default:
344 return false;
345 }
346}
347
1104a885
DS
348/*
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
351 */
ab8d0fc4
JM
352static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 char *raw_disk_sb)
1104a885
DS
354{
355 struct btrfs_super_block *disk_sb =
356 (struct btrfs_super_block *)raw_disk_sb;
51bce6c9 357 char result[BTRFS_CSUM_SIZE];
d5178578
JT
358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360 shash->tfm = fs_info->csum_shash;
1104a885 361
51bce6c9
JT
362 /*
363 * The super_block structure does not span the whole
364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 * filled with zeros and is included in the checksum.
366 */
fd08001f
EB
367 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 369
51bce6c9
JT
370 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371 return 1;
1104a885 372
e7e16f48 373 return 0;
1104a885
DS
374}
375
e064d5e9 376int btrfs_verify_level_key(struct extent_buffer *eb, int level,
448de471 377 struct btrfs_key *first_key, u64 parent_transid)
581c1760 378{
e064d5e9 379 struct btrfs_fs_info *fs_info = eb->fs_info;
581c1760
QW
380 int found_level;
381 struct btrfs_key found_key;
382 int ret;
383
384 found_level = btrfs_header_level(eb);
385 if (found_level != level) {
63489055
QW
386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387 KERN_ERR "BTRFS: tree level check failed\n");
581c1760
QW
388 btrfs_err(fs_info,
389"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 eb->start, level, found_level);
581c1760
QW
391 return -EIO;
392 }
393
394 if (!first_key)
395 return 0;
396
5d41be6f
QW
397 /*
398 * For live tree block (new tree blocks in current transaction),
399 * we need proper lock context to avoid race, which is impossible here.
400 * So we only checks tree blocks which is read from disk, whose
401 * generation <= fs_info->last_trans_committed.
402 */
403 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404 return 0;
62fdaa52
QW
405
406 /* We have @first_key, so this @eb must have at least one item */
407 if (btrfs_header_nritems(eb) == 0) {
408 btrfs_err(fs_info,
409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410 eb->start);
411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412 return -EUCLEAN;
413 }
414
581c1760
QW
415 if (found_level)
416 btrfs_node_key_to_cpu(eb, &found_key, 0);
417 else
418 btrfs_item_key_to_cpu(eb, &found_key, 0);
419 ret = btrfs_comp_cpu_keys(first_key, &found_key);
420
581c1760 421 if (ret) {
63489055
QW
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: tree first key check failed\n");
581c1760 424 btrfs_err(fs_info,
ff76a864
LB
425"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 eb->start, parent_transid, first_key->objectid,
427 first_key->type, first_key->offset,
428 found_key.objectid, found_key.type,
429 found_key.offset);
581c1760 430 }
581c1760
QW
431 return ret;
432}
433
d352ac68
CM
434/*
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
581c1760
QW
437 *
438 * @parent_transid: expected transid, skip check if 0
439 * @level: expected level, mandatory check
440 * @first_key: expected key of first slot, skip check if NULL
d352ac68 441 */
5ab12d1f 442static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
581c1760
QW
443 u64 parent_transid, int level,
444 struct btrfs_key *first_key)
f188591e 445{
5ab12d1f 446 struct btrfs_fs_info *fs_info = eb->fs_info;
f188591e 447 struct extent_io_tree *io_tree;
ea466794 448 int failed = 0;
f188591e
CM
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
ea466794 452 int failed_mirror = 0;
f188591e 453
0b246afa 454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
f188591e 455 while (1) {
f8397d69 456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
c2ccfbc6 457 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
256dd1bb 458 if (!ret) {
581c1760 459 if (verify_parent_transid(io_tree, eb,
b9fab919 460 parent_transid, 0))
256dd1bb 461 ret = -EIO;
e064d5e9 462 else if (btrfs_verify_level_key(eb, level,
448de471 463 first_key, parent_transid))
581c1760
QW
464 ret = -EUCLEAN;
465 else
466 break;
256dd1bb 467 }
d397712b 468
0b246afa 469 num_copies = btrfs_num_copies(fs_info,
f188591e 470 eb->start, eb->len);
4235298e 471 if (num_copies == 1)
ea466794 472 break;
4235298e 473
5cf1ab56
JB
474 if (!failed_mirror) {
475 failed = 1;
476 failed_mirror = eb->read_mirror;
477 }
478
f188591e 479 mirror_num++;
ea466794
JB
480 if (mirror_num == failed_mirror)
481 mirror_num++;
482
4235298e 483 if (mirror_num > num_copies)
ea466794 484 break;
f188591e 485 }
ea466794 486
c0901581 487 if (failed && !ret && failed_mirror)
20a1fbf9 488 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
489
490 return ret;
f188591e 491}
19c00ddc 492
d352ac68 493/*
d397712b
CM
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 496 */
d397712b 497
01d58472 498static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 499{
4eee4fa4 500 u64 start = page_offset(page);
19c00ddc 501 u64 found_start;
2996e1f8
JT
502 u8 result[BTRFS_CSUM_SIZE];
503 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
19c00ddc 504 struct extent_buffer *eb;
8d47a0d8 505 int ret;
f188591e 506
4f2de97a
JB
507 eb = (struct extent_buffer *)page->private;
508 if (page != eb->pages[0])
509 return 0;
0f805531 510
19c00ddc 511 found_start = btrfs_header_bytenr(eb);
0f805531
AL
512 /*
513 * Please do not consolidate these warnings into a single if.
514 * It is useful to know what went wrong.
515 */
516 if (WARN_ON(found_start != start))
517 return -EUCLEAN;
518 if (WARN_ON(!PageUptodate(page)))
519 return -EUCLEAN;
520
de37aa51 521 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
9a8658e3
DS
522 offsetof(struct btrfs_header, fsid),
523 BTRFS_FSID_SIZE) == 0);
0f805531 524
c67b3892 525 csum_tree_block(eb, result);
2996e1f8 526
8d47a0d8
QW
527 if (btrfs_header_level(eb))
528 ret = btrfs_check_node(eb);
529 else
530 ret = btrfs_check_leaf_full(eb);
531
532 if (ret < 0) {
c06631b0 533 btrfs_print_tree(eb, 0);
8d47a0d8
QW
534 btrfs_err(fs_info,
535 "block=%llu write time tree block corruption detected",
536 eb->start);
c06631b0 537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
8d47a0d8
QW
538 return ret;
539 }
2996e1f8 540 write_extent_buffer(eb, result, 0, csum_size);
8d47a0d8 541
2996e1f8 542 return 0;
19c00ddc
CM
543}
544
b0c9b3b0 545static int check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 546{
b0c9b3b0 547 struct btrfs_fs_info *fs_info = eb->fs_info;
01d58472 548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
44880fdc 549 u8 fsid[BTRFS_FSID_SIZE];
2b82032c
YZ
550 int ret = 1;
551
9a8658e3
DS
552 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553 BTRFS_FSID_SIZE);
2b82032c 554 while (fs_devices) {
7239ff4b
NB
555 u8 *metadata_uuid;
556
557 /*
558 * Checking the incompat flag is only valid for the current
559 * fs. For seed devices it's forbidden to have their uuid
560 * changed so reading ->fsid in this case is fine
561 */
562 if (fs_devices == fs_info->fs_devices &&
563 btrfs_fs_incompat(fs_info, METADATA_UUID))
564 metadata_uuid = fs_devices->metadata_uuid;
565 else
566 metadata_uuid = fs_devices->fsid;
567
568 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
2b82032c
YZ
569 ret = 0;
570 break;
571 }
572 fs_devices = fs_devices->seed;
573 }
574 return ret;
575}
576
facc8a22
MX
577static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578 u64 phy_offset, struct page *page,
579 u64 start, u64 end, int mirror)
ce9adaa5 580{
ce9adaa5
CM
581 u64 found_start;
582 int found_level;
ce9adaa5 583 struct extent_buffer *eb;
15b6e8a8
DS
584 struct btrfs_fs_info *fs_info;
585 u16 csum_size;
f188591e 586 int ret = 0;
2996e1f8 587 u8 result[BTRFS_CSUM_SIZE];
727011e0 588 int reads_done;
ce9adaa5 589
ce9adaa5
CM
590 if (!page->private)
591 goto out;
d397712b 592
4f2de97a 593 eb = (struct extent_buffer *)page->private;
15b6e8a8
DS
594 fs_info = eb->fs_info;
595 csum_size = btrfs_super_csum_size(fs_info->super_copy);
d397712b 596
0b32f4bb
JB
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
67439dad 600 atomic_inc(&eb->refs);
0b32f4bb
JB
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
603 if (!reads_done)
604 goto err;
f188591e 605
5cf1ab56 606 eb->read_mirror = mirror;
656f30db 607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
608 ret = -EIO;
609 goto err;
610 }
611
ce9adaa5 612 found_start = btrfs_header_bytenr(eb);
727011e0 613 if (found_start != eb->start) {
893bf4b1
SY
614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 eb->start, found_start);
f188591e 616 ret = -EIO;
ce9adaa5
CM
617 goto err;
618 }
b0c9b3b0 619 if (check_tree_block_fsid(eb)) {
02873e43
ZL
620 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 eb->start);
1259ab75
CM
622 ret = -EIO;
623 goto err;
624 }
ce9adaa5 625 found_level = btrfs_header_level(eb);
1c24c3ce 626 if (found_level >= BTRFS_MAX_LEVEL) {
893bf4b1
SY
627 btrfs_err(fs_info, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb), eb->start);
1c24c3ce
JB
629 ret = -EIO;
630 goto err;
631 }
ce9adaa5 632
85d4e461
CM
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 eb, found_level);
4008c04a 635
c67b3892 636 csum_tree_block(eb, result);
a826d6dc 637
2996e1f8
JT
638 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639 u32 val;
640 u32 found = 0;
641
642 memcpy(&found, result, csum_size);
643
644 read_extent_buffer(eb, &val, 0, csum_size);
645 btrfs_warn_rl(fs_info,
646 "%s checksum verify failed on %llu wanted %x found %x level %d",
647 fs_info->sb->s_id, eb->start,
648 val, found, btrfs_header_level(eb));
649 ret = -EUCLEAN;
650 goto err;
651 }
652
a826d6dc
JB
653 /*
654 * If this is a leaf block and it is corrupt, set the corrupt bit so
655 * that we don't try and read the other copies of this block, just
656 * return -EIO.
657 */
1c4360ee 658 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
a826d6dc
JB
659 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
660 ret = -EIO;
661 }
ce9adaa5 662
813fd1dc 663 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
664 ret = -EIO;
665
0b32f4bb
JB
666 if (!ret)
667 set_extent_buffer_uptodate(eb);
75391f0d
QW
668 else
669 btrfs_err(fs_info,
670 "block=%llu read time tree block corruption detected",
671 eb->start);
ce9adaa5 672err:
79fb65a1
JB
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
d48d71aa 675 btree_readahead_hook(eb, ret);
4bb31e92 676
53b381b3
DW
677 if (ret) {
678 /*
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
682 */
683 atomic_inc(&eb->io_pages);
0b32f4bb 684 clear_extent_buffer_uptodate(eb);
53b381b3 685 }
0b32f4bb 686 free_extent_buffer(eb);
ce9adaa5 687out:
f188591e 688 return ret;
ce9adaa5
CM
689}
690
4246a0b6 691static void end_workqueue_bio(struct bio *bio)
ce9adaa5 692{
97eb6b69 693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 694 struct btrfs_fs_info *fs_info;
9e0af237 695 struct btrfs_workqueue *wq;
ce9adaa5 696
ce9adaa5 697 fs_info = end_io_wq->info;
4e4cbee9 698 end_io_wq->status = bio->bi_status;
d20f7043 699
37226b21 700 if (bio_op(bio) == REQ_OP_WRITE) {
a0cac0ec 701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
9e0af237 702 wq = fs_info->endio_meta_write_workers;
a0cac0ec 703 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
9e0af237 704 wq = fs_info->endio_freespace_worker;
a0cac0ec 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 706 wq = fs_info->endio_raid56_workers;
a0cac0ec 707 else
9e0af237 708 wq = fs_info->endio_write_workers;
d20f7043 709 } else {
5c047a69 710 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
9e0af237 711 wq = fs_info->endio_raid56_workers;
a0cac0ec 712 else if (end_io_wq->metadata)
9e0af237 713 wq = fs_info->endio_meta_workers;
a0cac0ec 714 else
9e0af237 715 wq = fs_info->endio_workers;
d20f7043 716 }
9e0af237 717
a0cac0ec 718 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
9e0af237 719 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
720}
721
4e4cbee9 722blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 723 enum btrfs_wq_endio_type metadata)
0b86a832 724{
97eb6b69 725 struct btrfs_end_io_wq *end_io_wq;
8b110e39 726
97eb6b69 727 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5 728 if (!end_io_wq)
4e4cbee9 729 return BLK_STS_RESOURCE;
ce9adaa5
CM
730
731 end_io_wq->private = bio->bi_private;
732 end_io_wq->end_io = bio->bi_end_io;
22c59948 733 end_io_wq->info = info;
4e4cbee9 734 end_io_wq->status = 0;
ce9adaa5 735 end_io_wq->bio = bio;
22c59948 736 end_io_wq->metadata = metadata;
ce9adaa5
CM
737
738 bio->bi_private = end_io_wq;
739 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
740 return 0;
741}
742
4a69a410
CM
743static void run_one_async_start(struct btrfs_work *work)
744{
4a69a410 745 struct async_submit_bio *async;
4e4cbee9 746 blk_status_t ret;
4a69a410
CM
747
748 async = container_of(work, struct async_submit_bio, work);
c6100a4b 749 ret = async->submit_bio_start(async->private_data, async->bio,
79787eaa
JM
750 async->bio_offset);
751 if (ret)
4e4cbee9 752 async->status = ret;
4a69a410
CM
753}
754
06ea01b1
DS
755/*
756 * In order to insert checksums into the metadata in large chunks, we wait
757 * until bio submission time. All the pages in the bio are checksummed and
758 * sums are attached onto the ordered extent record.
759 *
760 * At IO completion time the csums attached on the ordered extent record are
761 * inserted into the tree.
762 */
4a69a410 763static void run_one_async_done(struct btrfs_work *work)
8b712842 764{
8b712842 765 struct async_submit_bio *async;
06ea01b1
DS
766 struct inode *inode;
767 blk_status_t ret;
8b712842
CM
768
769 async = container_of(work, struct async_submit_bio, work);
06ea01b1 770 inode = async->private_data;
4854ddd0 771
bb7ab3b9 772 /* If an error occurred we just want to clean up the bio and move on */
4e4cbee9
CH
773 if (async->status) {
774 async->bio->bi_status = async->status;
4246a0b6 775 bio_endio(async->bio);
79787eaa
JM
776 return;
777 }
778
ec39f769
CM
779 /*
780 * All of the bios that pass through here are from async helpers.
781 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
782 * This changes nothing when cgroups aren't in use.
783 */
784 async->bio->bi_opf |= REQ_CGROUP_PUNT;
08635bae 785 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
06ea01b1
DS
786 if (ret) {
787 async->bio->bi_status = ret;
788 bio_endio(async->bio);
789 }
4a69a410
CM
790}
791
792static void run_one_async_free(struct btrfs_work *work)
793{
794 struct async_submit_bio *async;
795
796 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
797 kfree(async);
798}
799
8c27cb35
LT
800blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801 int mirror_num, unsigned long bio_flags,
802 u64 bio_offset, void *private_data,
e288c080 803 extent_submit_bio_start_t *submit_bio_start)
44b8bd7e
CM
804{
805 struct async_submit_bio *async;
806
807 async = kmalloc(sizeof(*async), GFP_NOFS);
808 if (!async)
4e4cbee9 809 return BLK_STS_RESOURCE;
44b8bd7e 810
c6100a4b 811 async->private_data = private_data;
44b8bd7e
CM
812 async->bio = bio;
813 async->mirror_num = mirror_num;
4a69a410 814 async->submit_bio_start = submit_bio_start;
4a69a410 815
a0cac0ec
OS
816 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
817 run_one_async_free);
4a69a410 818
eaf25d93 819 async->bio_offset = bio_offset;
8c8bee1d 820
4e4cbee9 821 async->status = 0;
79787eaa 822
67f055c7 823 if (op_is_sync(bio->bi_opf))
5cdc7ad3 824 btrfs_set_work_high_priority(&async->work);
d313d7a3 825
5cdc7ad3 826 btrfs_queue_work(fs_info->workers, &async->work);
44b8bd7e
CM
827 return 0;
828}
829
4e4cbee9 830static blk_status_t btree_csum_one_bio(struct bio *bio)
ce3ed71a 831{
2c30c71b 832 struct bio_vec *bvec;
ce3ed71a 833 struct btrfs_root *root;
2b070cfe 834 int ret = 0;
6dc4f100 835 struct bvec_iter_all iter_all;
ce3ed71a 836
c09abff8 837 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 838 bio_for_each_segment_all(bvec, bio, iter_all) {
ce3ed71a 839 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 840 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
841 if (ret)
842 break;
ce3ed71a 843 }
2c30c71b 844
4e4cbee9 845 return errno_to_blk_status(ret);
ce3ed71a
CM
846}
847
d0ee3934 848static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
8c27cb35 849 u64 bio_offset)
22c59948 850{
8b712842
CM
851 /*
852 * when we're called for a write, we're already in the async
5443be45 853 * submission context. Just jump into btrfs_map_bio
8b712842 854 */
79787eaa 855 return btree_csum_one_bio(bio);
4a69a410 856}
22c59948 857
9b4e675a
DS
858static int check_async_write(struct btrfs_fs_info *fs_info,
859 struct btrfs_inode *bi)
de0022b9 860{
6300463b
LB
861 if (atomic_read(&bi->sync_writers))
862 return 0;
9b4e675a 863 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
de0022b9 864 return 0;
de0022b9
JB
865 return 1;
866}
867
a56b1c7b 868static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
869 int mirror_num,
870 unsigned long bio_flags)
44b8bd7e 871{
0b246afa 872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9b4e675a 873 int async = check_async_write(fs_info, BTRFS_I(inode));
4e4cbee9 874 blk_status_t ret;
cad321ad 875
37226b21 876 if (bio_op(bio) != REQ_OP_WRITE) {
4a69a410
CM
877 /*
878 * called for a read, do the setup so that checksum validation
879 * can happen in the async kernel threads
880 */
0b246afa
JM
881 ret = btrfs_bio_wq_end_io(fs_info, bio,
882 BTRFS_WQ_ENDIO_METADATA);
1d4284bd 883 if (ret)
61891923 884 goto out_w_error;
08635bae 885 ret = btrfs_map_bio(fs_info, bio, mirror_num);
de0022b9
JB
886 } else if (!async) {
887 ret = btree_csum_one_bio(bio);
888 if (ret)
61891923 889 goto out_w_error;
08635bae 890 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
891 } else {
892 /*
893 * kthread helpers are used to submit writes so that
894 * checksumming can happen in parallel across all CPUs
895 */
c6100a4b 896 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
e68f2ee7 897 0, inode, btree_submit_bio_start);
44b8bd7e 898 }
d313d7a3 899
4246a0b6
CH
900 if (ret)
901 goto out_w_error;
902 return 0;
903
61891923 904out_w_error:
4e4cbee9 905 bio->bi_status = ret;
4246a0b6 906 bio_endio(bio);
61891923 907 return ret;
44b8bd7e
CM
908}
909
3dd1462e 910#ifdef CONFIG_MIGRATION
784b4e29 911static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
912 struct page *newpage, struct page *page,
913 enum migrate_mode mode)
784b4e29
CM
914{
915 /*
916 * we can't safely write a btree page from here,
917 * we haven't done the locking hook
918 */
919 if (PageDirty(page))
920 return -EAGAIN;
921 /*
922 * Buffers may be managed in a filesystem specific way.
923 * We must have no buffers or drop them.
924 */
925 if (page_has_private(page) &&
926 !try_to_release_page(page, GFP_KERNEL))
927 return -EAGAIN;
a6bc32b8 928 return migrate_page(mapping, newpage, page, mode);
784b4e29 929}
3dd1462e 930#endif
784b4e29 931
0da5468f
CM
932
933static int btree_writepages(struct address_space *mapping,
934 struct writeback_control *wbc)
935{
e2d84521
MX
936 struct btrfs_fs_info *fs_info;
937 int ret;
938
d8d5f3e1 939 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
940
941 if (wbc->for_kupdate)
942 return 0;
943
e2d84521 944 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 945 /* this is a bit racy, but that's ok */
d814a491
EL
946 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
947 BTRFS_DIRTY_METADATA_THRESH,
948 fs_info->dirty_metadata_batch);
e2d84521 949 if (ret < 0)
793955bc 950 return 0;
793955bc 951 }
0b32f4bb 952 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
953}
954
b2950863 955static int btree_readpage(struct file *file, struct page *page)
5f39d397 956{
71ad38b4 957 return extent_read_full_page(page, btree_get_extent, 0);
5f39d397 958}
22b0ebda 959
70dec807 960static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 961{
98509cfc 962 if (PageWriteback(page) || PageDirty(page))
d397712b 963 return 0;
0c4e538b 964
f7a52a40 965 return try_release_extent_buffer(page);
d98237b3
CM
966}
967
d47992f8
LC
968static void btree_invalidatepage(struct page *page, unsigned int offset,
969 unsigned int length)
d98237b3 970{
d1310b2e
CM
971 struct extent_io_tree *tree;
972 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
973 extent_invalidatepage(tree, page, offset);
974 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 975 if (PagePrivate(page)) {
efe120a0
FH
976 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
977 "page private not zero on page %llu",
978 (unsigned long long)page_offset(page));
d1b89bc0 979 detach_page_private(page);
9ad6b7bc 980 }
d98237b3
CM
981}
982
0b32f4bb
JB
983static int btree_set_page_dirty(struct page *page)
984{
bb146eb2 985#ifdef DEBUG
0b32f4bb
JB
986 struct extent_buffer *eb;
987
988 BUG_ON(!PagePrivate(page));
989 eb = (struct extent_buffer *)page->private;
990 BUG_ON(!eb);
991 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
992 BUG_ON(!atomic_read(&eb->refs));
993 btrfs_assert_tree_locked(eb);
bb146eb2 994#endif
0b32f4bb
JB
995 return __set_page_dirty_nobuffers(page);
996}
997
7f09410b 998static const struct address_space_operations btree_aops = {
d98237b3 999 .readpage = btree_readpage,
0da5468f 1000 .writepages = btree_writepages,
5f39d397
CM
1001 .releasepage = btree_releasepage,
1002 .invalidatepage = btree_invalidatepage,
5a92bc88 1003#ifdef CONFIG_MIGRATION
784b4e29 1004 .migratepage = btree_migratepage,
5a92bc88 1005#endif
0b32f4bb 1006 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1007};
1008
2ff7e61e 1009void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
090d1875 1010{
5f39d397 1011 struct extent_buffer *buf = NULL;
537f38f0 1012 int ret;
090d1875 1013
2ff7e61e 1014 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2 1015 if (IS_ERR(buf))
6197d86e 1016 return;
537f38f0 1017
c2ccfbc6 1018 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
537f38f0
NB
1019 if (ret < 0)
1020 free_extent_buffer_stale(buf);
1021 else
1022 free_extent_buffer(buf);
090d1875
CM
1023}
1024
2ff7e61e
JM
1025struct extent_buffer *btrfs_find_create_tree_block(
1026 struct btrfs_fs_info *fs_info,
1027 u64 bytenr)
0999df54 1028{
0b246afa
JM
1029 if (btrfs_is_testing(fs_info))
1030 return alloc_test_extent_buffer(fs_info, bytenr);
1031 return alloc_extent_buffer(fs_info, bytenr);
0999df54
CM
1032}
1033
581c1760
QW
1034/*
1035 * Read tree block at logical address @bytenr and do variant basic but critical
1036 * verification.
1037 *
1038 * @parent_transid: expected transid of this tree block, skip check if 0
1039 * @level: expected level, mandatory check
1040 * @first_key: expected key in slot 0, skip check if NULL
1041 */
2ff7e61e 1042struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
581c1760
QW
1043 u64 parent_transid, int level,
1044 struct btrfs_key *first_key)
0999df54
CM
1045{
1046 struct extent_buffer *buf = NULL;
0999df54
CM
1047 int ret;
1048
2ff7e61e 1049 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
1050 if (IS_ERR(buf))
1051 return buf;
0999df54 1052
5ab12d1f 1053 ret = btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 1054 level, first_key);
0f0fe8f7 1055 if (ret) {
537f38f0 1056 free_extent_buffer_stale(buf);
64c043de 1057 return ERR_PTR(ret);
0f0fe8f7 1058 }
5f39d397 1059 return buf;
ce9adaa5 1060
eb60ceac
CM
1061}
1062
6a884d7d 1063void btrfs_clean_tree_block(struct extent_buffer *buf)
ed2ff2cb 1064{
6a884d7d 1065 struct btrfs_fs_info *fs_info = buf->fs_info;
55c69072 1066 if (btrfs_header_generation(buf) ==
e2d84521 1067 fs_info->running_transaction->transid) {
b9447ef8 1068 btrfs_assert_tree_locked(buf);
b4ce94de 1069
b9473439 1070 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
104b4e51
NB
1071 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1072 -buf->len,
1073 fs_info->dirty_metadata_batch);
ed7b63eb 1074 /* ugh, clear_extent_buffer_dirty needs to lock the page */
8bead258 1075 btrfs_set_lock_blocking_write(buf);
ed7b63eb
JB
1076 clear_extent_buffer_dirty(buf);
1077 }
925baedd 1078 }
5f39d397
CM
1079}
1080
da17066c 1081static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1082 u64 objectid)
d97e63b6 1083{
7c0260ee 1084 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
96dfcb46 1085 root->fs_info = fs_info;
cfaa7295 1086 root->node = NULL;
a28ec197 1087 root->commit_root = NULL;
27cdeb70 1088 root->state = 0;
d68fc57b 1089 root->orphan_cleanup_state = 0;
0b86a832 1090
0f7d52f4 1091 root->last_trans = 0;
13a8a7c8 1092 root->highest_objectid = 0;
eb73c1b7 1093 root->nr_delalloc_inodes = 0;
199c2a9c 1094 root->nr_ordered_extents = 0;
6bef4d31 1095 root->inode_tree = RB_ROOT;
16cdcec7 1096 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1097 root->block_rsv = NULL;
0b86a832
CM
1098
1099 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1100 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1101 INIT_LIST_HEAD(&root->delalloc_inodes);
1102 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1103 INIT_LIST_HEAD(&root->ordered_extents);
1104 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 1105 INIT_LIST_HEAD(&root->reloc_dirty_list);
2ab28f32
JB
1106 INIT_LIST_HEAD(&root->logged_list[0]);
1107 INIT_LIST_HEAD(&root->logged_list[1]);
5d4f98a2 1108 spin_lock_init(&root->inode_lock);
eb73c1b7 1109 spin_lock_init(&root->delalloc_lock);
199c2a9c 1110 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1111 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1112 spin_lock_init(&root->log_extents_lock[0]);
1113 spin_lock_init(&root->log_extents_lock[1]);
8287475a 1114 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 1115 mutex_init(&root->objectid_mutex);
e02119d5 1116 mutex_init(&root->log_mutex);
31f3d255 1117 mutex_init(&root->ordered_extent_mutex);
573bfb72 1118 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1119 init_waitqueue_head(&root->log_writer_wait);
1120 init_waitqueue_head(&root->log_commit_wait[0]);
1121 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1122 INIT_LIST_HEAD(&root->log_ctxs[0]);
1123 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1124 atomic_set(&root->log_commit[0], 0);
1125 atomic_set(&root->log_commit[1], 0);
1126 atomic_set(&root->log_writers, 0);
2ecb7923 1127 atomic_set(&root->log_batch, 0);
0700cea7 1128 refcount_set(&root->refs, 1);
8ecebf4d 1129 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 1130 atomic_set(&root->nr_swapfiles, 0);
7237f183 1131 root->log_transid = 0;
d1433deb 1132 root->log_transid_committed = -1;
257c62e1 1133 root->last_log_commit = 0;
e289f03e 1134 if (!dummy) {
43eb5f29
QW
1135 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1136 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
e289f03e
FM
1137 extent_io_tree_init(fs_info, &root->log_csum_range,
1138 IO_TREE_LOG_CSUM_RANGE, NULL);
1139 }
017e5369 1140
3768f368
CM
1141 memset(&root->root_key, 0, sizeof(root->root_key));
1142 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1143 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
4d775673 1144 root->root_key.objectid = objectid;
0ee5dc67 1145 root->anon_dev = 0;
8ea05e3a 1146
5f3ab90a 1147 spin_lock_init(&root->root_item_lock);
370a11b8 1148 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
1149#ifdef CONFIG_BTRFS_DEBUG
1150 INIT_LIST_HEAD(&root->leak_list);
1151 spin_lock(&fs_info->fs_roots_radix_lock);
1152 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1153 spin_unlock(&fs_info->fs_roots_radix_lock);
1154#endif
3768f368
CM
1155}
1156
74e4d827 1157static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 1158 u64 objectid, gfp_t flags)
6f07e42e 1159{
74e4d827 1160 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 1161 if (root)
96dfcb46 1162 __setup_root(root, fs_info, objectid);
6f07e42e
AV
1163 return root;
1164}
1165
06ea65a3
JB
1166#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1167/* Should only be used by the testing infrastructure */
da17066c 1168struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
1169{
1170 struct btrfs_root *root;
1171
7c0260ee
JM
1172 if (!fs_info)
1173 return ERR_PTR(-EINVAL);
1174
96dfcb46 1175 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
1176 if (!root)
1177 return ERR_PTR(-ENOMEM);
da17066c 1178
b9ef22de 1179 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 1180 root->alloc_bytenr = 0;
06ea65a3
JB
1181
1182 return root;
1183}
1184#endif
1185
20897f5c 1186struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
1187 u64 objectid)
1188{
9b7a2440 1189 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
1190 struct extent_buffer *leaf;
1191 struct btrfs_root *tree_root = fs_info->tree_root;
1192 struct btrfs_root *root;
1193 struct btrfs_key key;
b89f6d1f 1194 unsigned int nofs_flag;
20897f5c 1195 int ret = 0;
20897f5c 1196
b89f6d1f
FM
1197 /*
1198 * We're holding a transaction handle, so use a NOFS memory allocation
1199 * context to avoid deadlock if reclaim happens.
1200 */
1201 nofs_flag = memalloc_nofs_save();
96dfcb46 1202 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 1203 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
1204 if (!root)
1205 return ERR_PTR(-ENOMEM);
1206
20897f5c
AJ
1207 root->root_key.objectid = objectid;
1208 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1209 root->root_key.offset = 0;
1210
4d75f8a9 1211 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1212 if (IS_ERR(leaf)) {
1213 ret = PTR_ERR(leaf);
1dd05682 1214 leaf = NULL;
20897f5c
AJ
1215 goto fail;
1216 }
1217
20897f5c 1218 root->node = leaf;
20897f5c
AJ
1219 btrfs_mark_buffer_dirty(leaf);
1220
1221 root->commit_root = btrfs_root_node(root);
27cdeb70 1222 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1223
1224 root->root_item.flags = 0;
1225 root->root_item.byte_limit = 0;
1226 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1227 btrfs_set_root_generation(&root->root_item, trans->transid);
1228 btrfs_set_root_level(&root->root_item, 0);
1229 btrfs_set_root_refs(&root->root_item, 1);
1230 btrfs_set_root_used(&root->root_item, leaf->len);
1231 btrfs_set_root_last_snapshot(&root->root_item, 0);
1232 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 1233 if (is_fstree(objectid))
807fc790
AS
1234 generate_random_guid(root->root_item.uuid);
1235 else
1236 export_guid(root->root_item.uuid, &guid_null);
20897f5c
AJ
1237 root->root_item.drop_level = 0;
1238
1239 key.objectid = objectid;
1240 key.type = BTRFS_ROOT_ITEM_KEY;
1241 key.offset = 0;
1242 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1243 if (ret)
1244 goto fail;
1245
1246 btrfs_tree_unlock(leaf);
1247
1dd05682
TI
1248 return root;
1249
20897f5c 1250fail:
8c38938c 1251 if (leaf)
1dd05682 1252 btrfs_tree_unlock(leaf);
00246528 1253 btrfs_put_root(root);
20897f5c 1254
1dd05682 1255 return ERR_PTR(ret);
20897f5c
AJ
1256}
1257
7237f183
YZ
1258static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1259 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1260{
1261 struct btrfs_root *root;
7237f183 1262 struct extent_buffer *leaf;
e02119d5 1263
96dfcb46 1264 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 1265 if (!root)
7237f183 1266 return ERR_PTR(-ENOMEM);
e02119d5 1267
e02119d5
CM
1268 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1269 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1271
7237f183 1272 /*
92a7cc42 1273 * DON'T set SHAREABLE bit for log trees.
27cdeb70 1274 *
92a7cc42
QW
1275 * Log trees are not exposed to user space thus can't be snapshotted,
1276 * and they go away before a real commit is actually done.
1277 *
1278 * They do store pointers to file data extents, and those reference
1279 * counts still get updated (along with back refs to the log tree).
7237f183 1280 */
e02119d5 1281
4d75f8a9
DS
1282 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1283 NULL, 0, 0, 0);
7237f183 1284 if (IS_ERR(leaf)) {
00246528 1285 btrfs_put_root(root);
7237f183
YZ
1286 return ERR_CAST(leaf);
1287 }
e02119d5 1288
7237f183 1289 root->node = leaf;
e02119d5 1290
e02119d5
CM
1291 btrfs_mark_buffer_dirty(root->node);
1292 btrfs_tree_unlock(root->node);
7237f183
YZ
1293 return root;
1294}
1295
1296int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1297 struct btrfs_fs_info *fs_info)
1298{
1299 struct btrfs_root *log_root;
1300
1301 log_root = alloc_log_tree(trans, fs_info);
1302 if (IS_ERR(log_root))
1303 return PTR_ERR(log_root);
1304 WARN_ON(fs_info->log_root_tree);
1305 fs_info->log_root_tree = log_root;
1306 return 0;
1307}
1308
1309int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1310 struct btrfs_root *root)
1311{
0b246afa 1312 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
1313 struct btrfs_root *log_root;
1314 struct btrfs_inode_item *inode_item;
1315
0b246afa 1316 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1317 if (IS_ERR(log_root))
1318 return PTR_ERR(log_root);
1319
1320 log_root->last_trans = trans->transid;
1321 log_root->root_key.offset = root->root_key.objectid;
1322
1323 inode_item = &log_root->root_item.inode;
3cae210f
QW
1324 btrfs_set_stack_inode_generation(inode_item, 1);
1325 btrfs_set_stack_inode_size(inode_item, 3);
1326 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1327 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1328 fs_info->nodesize);
3cae210f 1329 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1330
5d4f98a2 1331 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1332
1333 WARN_ON(root->log_root);
1334 root->log_root = log_root;
1335 root->log_transid = 0;
d1433deb 1336 root->log_transid_committed = -1;
257c62e1 1337 root->last_log_commit = 0;
e02119d5
CM
1338 return 0;
1339}
1340
62a2c73e
JB
1341struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1342 struct btrfs_key *key)
e02119d5
CM
1343{
1344 struct btrfs_root *root;
1345 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1346 struct btrfs_path *path;
84234f3a 1347 u64 generation;
cb517eab 1348 int ret;
581c1760 1349 int level;
0f7d52f4 1350
cb517eab
MX
1351 path = btrfs_alloc_path();
1352 if (!path)
0f7d52f4 1353 return ERR_PTR(-ENOMEM);
cb517eab 1354
96dfcb46 1355 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
cb517eab
MX
1356 if (!root) {
1357 ret = -ENOMEM;
1358 goto alloc_fail;
0f7d52f4
CM
1359 }
1360
cb517eab
MX
1361 ret = btrfs_find_root(tree_root, key, path,
1362 &root->root_item, &root->root_key);
0f7d52f4 1363 if (ret) {
13a8a7c8
YZ
1364 if (ret > 0)
1365 ret = -ENOENT;
cb517eab 1366 goto find_fail;
0f7d52f4 1367 }
13a8a7c8 1368
84234f3a 1369 generation = btrfs_root_generation(&root->root_item);
581c1760 1370 level = btrfs_root_level(&root->root_item);
2ff7e61e
JM
1371 root->node = read_tree_block(fs_info,
1372 btrfs_root_bytenr(&root->root_item),
581c1760 1373 generation, level, NULL);
64c043de
LB
1374 if (IS_ERR(root->node)) {
1375 ret = PTR_ERR(root->node);
8c38938c 1376 root->node = NULL;
cb517eab
MX
1377 goto find_fail;
1378 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1379 ret = -EIO;
64c043de 1380 goto find_fail;
416bc658 1381 }
5d4f98a2 1382 root->commit_root = btrfs_root_node(root);
13a8a7c8 1383out:
cb517eab
MX
1384 btrfs_free_path(path);
1385 return root;
1386
cb517eab 1387find_fail:
00246528 1388 btrfs_put_root(root);
cb517eab
MX
1389alloc_fail:
1390 root = ERR_PTR(ret);
1391 goto out;
1392}
1393
a98db0f3 1394static int btrfs_init_fs_root(struct btrfs_root *root)
cb517eab
MX
1395{
1396 int ret;
dcc3eb96 1397 unsigned int nofs_flag;
cb517eab
MX
1398
1399 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1400 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1401 GFP_NOFS);
1402 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1403 ret = -ENOMEM;
1404 goto fail;
1405 }
1406
dcc3eb96
NB
1407 /*
1408 * We might be called under a transaction (e.g. indirect backref
1409 * resolution) which could deadlock if it triggers memory reclaim
1410 */
1411 nofs_flag = memalloc_nofs_save();
1412 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1413 memalloc_nofs_restore(nofs_flag);
1414 if (ret)
8257b2dc 1415 goto fail;
8257b2dc 1416
aeb935a4
QW
1417 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1418 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
92a7cc42 1419 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1420 btrfs_check_and_init_root_item(&root->root_item);
1421 }
1422
cb517eab 1423 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1424 spin_lock_init(&root->ino_cache_lock);
1425 init_waitqueue_head(&root->ino_cache_wait);
cb517eab 1426
851fd730
QW
1427 /*
1428 * Don't assign anonymous block device to roots that are not exposed to
1429 * userspace, the id pool is limited to 1M
1430 */
1431 if (is_fstree(root->root_key.objectid) &&
1432 btrfs_root_refs(&root->root_item) > 0) {
1433 ret = get_anon_bdev(&root->anon_dev);
1434 if (ret)
1435 goto fail;
1436 }
f32e48e9
CR
1437
1438 mutex_lock(&root->objectid_mutex);
1439 ret = btrfs_find_highest_objectid(root,
1440 &root->highest_objectid);
1441 if (ret) {
1442 mutex_unlock(&root->objectid_mutex);
876d2cf1 1443 goto fail;
f32e48e9
CR
1444 }
1445
1446 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1447
1448 mutex_unlock(&root->objectid_mutex);
1449
cb517eab
MX
1450 return 0;
1451fail:
84db5ccf 1452 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1453 return ret;
1454}
1455
a98db0f3
JB
1456static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1457 u64 root_id)
cb517eab
MX
1458{
1459 struct btrfs_root *root;
1460
1461 spin_lock(&fs_info->fs_roots_radix_lock);
1462 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1463 (unsigned long)root_id);
bc44d7c4 1464 if (root)
00246528 1465 root = btrfs_grab_root(root);
cb517eab
MX
1466 spin_unlock(&fs_info->fs_roots_radix_lock);
1467 return root;
1468}
1469
1470int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1471 struct btrfs_root *root)
1472{
1473 int ret;
1474
e1860a77 1475 ret = radix_tree_preload(GFP_NOFS);
cb517eab
MX
1476 if (ret)
1477 return ret;
1478
1479 spin_lock(&fs_info->fs_roots_radix_lock);
1480 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1481 (unsigned long)root->root_key.objectid,
1482 root);
af01d2e5 1483 if (ret == 0) {
00246528 1484 btrfs_grab_root(root);
27cdeb70 1485 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1486 }
cb517eab
MX
1487 spin_unlock(&fs_info->fs_roots_radix_lock);
1488 radix_tree_preload_end();
1489
1490 return ret;
1491}
1492
bd647ce3
JB
1493void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1494{
1495#ifdef CONFIG_BTRFS_DEBUG
1496 struct btrfs_root *root;
1497
1498 while (!list_empty(&fs_info->allocated_roots)) {
1499 root = list_first_entry(&fs_info->allocated_roots,
1500 struct btrfs_root, leak_list);
1501 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1502 root->root_key.objectid, root->root_key.offset,
1503 refcount_read(&root->refs));
1504 while (refcount_read(&root->refs) > 1)
00246528
JB
1505 btrfs_put_root(root);
1506 btrfs_put_root(root);
bd647ce3
JB
1507 }
1508#endif
1509}
1510
0d4b0463
JB
1511void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1512{
141386e1
JB
1513 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1514 percpu_counter_destroy(&fs_info->delalloc_bytes);
1515 percpu_counter_destroy(&fs_info->dio_bytes);
1516 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1517 btrfs_free_csum_hash(fs_info);
1518 btrfs_free_stripe_hash_table(fs_info);
1519 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1520 kfree(fs_info->balance_ctl);
1521 kfree(fs_info->delayed_root);
00246528
JB
1522 btrfs_put_root(fs_info->extent_root);
1523 btrfs_put_root(fs_info->tree_root);
1524 btrfs_put_root(fs_info->chunk_root);
1525 btrfs_put_root(fs_info->dev_root);
1526 btrfs_put_root(fs_info->csum_root);
1527 btrfs_put_root(fs_info->quota_root);
1528 btrfs_put_root(fs_info->uuid_root);
1529 btrfs_put_root(fs_info->free_space_root);
1530 btrfs_put_root(fs_info->fs_root);
aeb935a4 1531 btrfs_put_root(fs_info->data_reloc_root);
bd647ce3 1532 btrfs_check_leaked_roots(fs_info);
3fd63727 1533 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1534 kfree(fs_info->super_copy);
1535 kfree(fs_info->super_for_commit);
1536 kvfree(fs_info);
1537}
1538
1539
c00869f1 1540struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
56e9357a 1541 u64 objectid, bool check_ref)
5eda7b5e
CM
1542{
1543 struct btrfs_root *root;
381cf658 1544 struct btrfs_path *path;
1d4c08e0 1545 struct btrfs_key key;
5eda7b5e
CM
1546 int ret;
1547
56e9357a 1548 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
00246528 1549 return btrfs_grab_root(fs_info->tree_root);
56e9357a 1550 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
00246528 1551 return btrfs_grab_root(fs_info->extent_root);
56e9357a 1552 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
00246528 1553 return btrfs_grab_root(fs_info->chunk_root);
56e9357a 1554 if (objectid == BTRFS_DEV_TREE_OBJECTID)
00246528 1555 return btrfs_grab_root(fs_info->dev_root);
56e9357a 1556 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
00246528 1557 return btrfs_grab_root(fs_info->csum_root);
56e9357a 1558 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
00246528 1559 return btrfs_grab_root(fs_info->quota_root) ?
bc44d7c4 1560 fs_info->quota_root : ERR_PTR(-ENOENT);
56e9357a 1561 if (objectid == BTRFS_UUID_TREE_OBJECTID)
00246528 1562 return btrfs_grab_root(fs_info->uuid_root) ?
bc44d7c4 1563 fs_info->uuid_root : ERR_PTR(-ENOENT);
56e9357a 1564 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
00246528 1565 return btrfs_grab_root(fs_info->free_space_root) ?
bc44d7c4 1566 fs_info->free_space_root : ERR_PTR(-ENOENT);
4df27c4d 1567again:
56e9357a 1568 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1569 if (root) {
bc44d7c4 1570 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1571 btrfs_put_root(root);
48475471 1572 return ERR_PTR(-ENOENT);
bc44d7c4 1573 }
5eda7b5e 1574 return root;
48475471 1575 }
5eda7b5e 1576
56e9357a
DS
1577 key.objectid = objectid;
1578 key.type = BTRFS_ROOT_ITEM_KEY;
1579 key.offset = (u64)-1;
1580 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1581 if (IS_ERR(root))
1582 return root;
3394e160 1583
c00869f1 1584 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1585 ret = -ENOENT;
581bb050 1586 goto fail;
35a30d7c 1587 }
581bb050 1588
cb517eab 1589 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1590 if (ret)
1591 goto fail;
3394e160 1592
381cf658
DS
1593 path = btrfs_alloc_path();
1594 if (!path) {
1595 ret = -ENOMEM;
1596 goto fail;
1597 }
1d4c08e0
DS
1598 key.objectid = BTRFS_ORPHAN_OBJECTID;
1599 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1600 key.offset = objectid;
1d4c08e0
DS
1601
1602 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1603 btrfs_free_path(path);
d68fc57b
YZ
1604 if (ret < 0)
1605 goto fail;
1606 if (ret == 0)
27cdeb70 1607 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1608
cb517eab 1609 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1610 if (ret) {
00246528 1611 btrfs_put_root(root);
4785e24f 1612 if (ret == -EEXIST)
4df27c4d 1613 goto again;
4df27c4d 1614 goto fail;
0f7d52f4 1615 }
edbd8d4e 1616 return root;
4df27c4d 1617fail:
8c38938c 1618 btrfs_put_root(root);
4df27c4d 1619 return ERR_PTR(ret);
edbd8d4e
CM
1620}
1621
04160088
CM
1622static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1623{
1624 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1625 int ret = 0;
04160088
CM
1626 struct btrfs_device *device;
1627 struct backing_dev_info *bdi;
b7967db7 1628
1f78160c
XG
1629 rcu_read_lock();
1630 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1631 if (!device->bdev)
1632 continue;
efa7c9f9 1633 bdi = device->bdev->bd_bdi;
ff9ea323 1634 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1635 ret = 1;
1636 break;
1637 }
1638 }
1f78160c 1639 rcu_read_unlock();
04160088
CM
1640 return ret;
1641}
1642
8b712842
CM
1643/*
1644 * called by the kthread helper functions to finally call the bio end_io
1645 * functions. This is where read checksum verification actually happens
1646 */
1647static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1648{
ce9adaa5 1649 struct bio *bio;
97eb6b69 1650 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1651
97eb6b69 1652 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1653 bio = end_io_wq->bio;
ce9adaa5 1654
4e4cbee9 1655 bio->bi_status = end_io_wq->status;
8b712842
CM
1656 bio->bi_private = end_io_wq->private;
1657 bio->bi_end_io = end_io_wq->end_io;
4246a0b6 1658 bio_endio(bio);
9be490f1 1659 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
44b8bd7e
CM
1660}
1661
a74a4b97
CM
1662static int cleaner_kthread(void *arg)
1663{
1664 struct btrfs_root *root = arg;
0b246afa 1665 struct btrfs_fs_info *fs_info = root->fs_info;
d0278245 1666 int again;
a74a4b97 1667
d6fd0ae2 1668 while (1) {
d0278245 1669 again = 0;
a74a4b97 1670
fd340d0f
JB
1671 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1672
d0278245 1673 /* Make the cleaner go to sleep early. */
2ff7e61e 1674 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1675 goto sleep;
1676
90c711ab
ZB
1677 /*
1678 * Do not do anything if we might cause open_ctree() to block
1679 * before we have finished mounting the filesystem.
1680 */
0b246afa 1681 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1682 goto sleep;
1683
0b246afa 1684 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1685 goto sleep;
1686
dc7f370c
MX
1687 /*
1688 * Avoid the problem that we change the status of the fs
1689 * during the above check and trylock.
1690 */
2ff7e61e 1691 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1692 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1693 goto sleep;
76dda93c 1694 }
a74a4b97 1695
2ff7e61e 1696 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1697
d0278245 1698 again = btrfs_clean_one_deleted_snapshot(root);
0b246afa 1699 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1700
1701 /*
05323cd1
MX
1702 * The defragger has dealt with the R/O remount and umount,
1703 * needn't do anything special here.
d0278245 1704 */
0b246afa 1705 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1706
1707 /*
1708 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1709 * with relocation (btrfs_relocate_chunk) and relocation
1710 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1711 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1712 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1713 * unused block groups.
1714 */
0b246afa 1715 btrfs_delete_unused_bgs(fs_info);
d0278245 1716sleep:
fd340d0f 1717 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1718 if (kthread_should_park())
1719 kthread_parkme();
1720 if (kthread_should_stop())
1721 return 0;
838fe188 1722 if (!again) {
a74a4b97 1723 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1724 schedule();
a74a4b97
CM
1725 __set_current_state(TASK_RUNNING);
1726 }
da288d28 1727 }
a74a4b97
CM
1728}
1729
1730static int transaction_kthread(void *arg)
1731{
1732 struct btrfs_root *root = arg;
0b246afa 1733 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1734 struct btrfs_trans_handle *trans;
1735 struct btrfs_transaction *cur;
8929ecfa 1736 u64 transid;
a944442c 1737 time64_t now;
a74a4b97 1738 unsigned long delay;
914b2007 1739 bool cannot_commit;
a74a4b97
CM
1740
1741 do {
914b2007 1742 cannot_commit = false;
0b246afa
JM
1743 delay = HZ * fs_info->commit_interval;
1744 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1745
0b246afa
JM
1746 spin_lock(&fs_info->trans_lock);
1747 cur = fs_info->running_transaction;
a74a4b97 1748 if (!cur) {
0b246afa 1749 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1750 goto sleep;
1751 }
31153d81 1752
afd48513 1753 now = ktime_get_seconds();
3296bf56 1754 if (cur->state < TRANS_STATE_COMMIT_START &&
a514d638 1755 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
8b87dc17 1756 (now < cur->start_time ||
0b246afa
JM
1757 now - cur->start_time < fs_info->commit_interval)) {
1758 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1759 delay = HZ * 5;
1760 goto sleep;
1761 }
8929ecfa 1762 transid = cur->transid;
0b246afa 1763 spin_unlock(&fs_info->trans_lock);
56bec294 1764
79787eaa 1765 /* If the file system is aborted, this will always fail. */
354aa0fb 1766 trans = btrfs_attach_transaction(root);
914b2007 1767 if (IS_ERR(trans)) {
354aa0fb
MX
1768 if (PTR_ERR(trans) != -ENOENT)
1769 cannot_commit = true;
79787eaa 1770 goto sleep;
914b2007 1771 }
8929ecfa 1772 if (transid == trans->transid) {
3a45bb20 1773 btrfs_commit_transaction(trans);
8929ecfa 1774 } else {
3a45bb20 1775 btrfs_end_transaction(trans);
8929ecfa 1776 }
a74a4b97 1777sleep:
0b246afa
JM
1778 wake_up_process(fs_info->cleaner_kthread);
1779 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1780
4e121c06 1781 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
0b246afa 1782 &fs_info->fs_state)))
2ff7e61e 1783 btrfs_cleanup_transaction(fs_info);
ce63f891 1784 if (!kthread_should_stop() &&
0b246afa 1785 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1786 cannot_commit))
bc5511d0 1787 schedule_timeout_interruptible(delay);
a74a4b97
CM
1788 } while (!kthread_should_stop());
1789 return 0;
1790}
1791
af31f5e5 1792/*
01f0f9da
NB
1793 * This will find the highest generation in the array of root backups. The
1794 * index of the highest array is returned, or -EINVAL if we can't find
1795 * anything.
af31f5e5
CM
1796 *
1797 * We check to make sure the array is valid by comparing the
1798 * generation of the latest root in the array with the generation
1799 * in the super block. If they don't match we pitch it.
1800 */
01f0f9da 1801static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1802{
01f0f9da 1803 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1804 u64 cur;
af31f5e5
CM
1805 struct btrfs_root_backup *root_backup;
1806 int i;
1807
1808 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1809 root_backup = info->super_copy->super_roots + i;
1810 cur = btrfs_backup_tree_root_gen(root_backup);
1811 if (cur == newest_gen)
01f0f9da 1812 return i;
af31f5e5
CM
1813 }
1814
01f0f9da 1815 return -EINVAL;
af31f5e5
CM
1816}
1817
af31f5e5
CM
1818/*
1819 * copy all the root pointers into the super backup array.
1820 * this will bump the backup pointer by one when it is
1821 * done
1822 */
1823static void backup_super_roots(struct btrfs_fs_info *info)
1824{
6ef108dd 1825 const int next_backup = info->backup_root_index;
af31f5e5 1826 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1827
1828 root_backup = info->super_for_commit->super_roots + next_backup;
1829
1830 /*
1831 * make sure all of our padding and empty slots get zero filled
1832 * regardless of which ones we use today
1833 */
1834 memset(root_backup, 0, sizeof(*root_backup));
1835
1836 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1837
1838 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1839 btrfs_set_backup_tree_root_gen(root_backup,
1840 btrfs_header_generation(info->tree_root->node));
1841
1842 btrfs_set_backup_tree_root_level(root_backup,
1843 btrfs_header_level(info->tree_root->node));
1844
1845 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1846 btrfs_set_backup_chunk_root_gen(root_backup,
1847 btrfs_header_generation(info->chunk_root->node));
1848 btrfs_set_backup_chunk_root_level(root_backup,
1849 btrfs_header_level(info->chunk_root->node));
1850
1851 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1852 btrfs_set_backup_extent_root_gen(root_backup,
1853 btrfs_header_generation(info->extent_root->node));
1854 btrfs_set_backup_extent_root_level(root_backup,
1855 btrfs_header_level(info->extent_root->node));
1856
7c7e82a7
CM
1857 /*
1858 * we might commit during log recovery, which happens before we set
1859 * the fs_root. Make sure it is valid before we fill it in.
1860 */
1861 if (info->fs_root && info->fs_root->node) {
1862 btrfs_set_backup_fs_root(root_backup,
1863 info->fs_root->node->start);
1864 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1865 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1866 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1867 btrfs_header_level(info->fs_root->node));
7c7e82a7 1868 }
af31f5e5
CM
1869
1870 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1871 btrfs_set_backup_dev_root_gen(root_backup,
1872 btrfs_header_generation(info->dev_root->node));
1873 btrfs_set_backup_dev_root_level(root_backup,
1874 btrfs_header_level(info->dev_root->node));
1875
1876 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1877 btrfs_set_backup_csum_root_gen(root_backup,
1878 btrfs_header_generation(info->csum_root->node));
1879 btrfs_set_backup_csum_root_level(root_backup,
1880 btrfs_header_level(info->csum_root->node));
1881
1882 btrfs_set_backup_total_bytes(root_backup,
1883 btrfs_super_total_bytes(info->super_copy));
1884 btrfs_set_backup_bytes_used(root_backup,
1885 btrfs_super_bytes_used(info->super_copy));
1886 btrfs_set_backup_num_devices(root_backup,
1887 btrfs_super_num_devices(info->super_copy));
1888
1889 /*
1890 * if we don't copy this out to the super_copy, it won't get remembered
1891 * for the next commit
1892 */
1893 memcpy(&info->super_copy->super_roots,
1894 &info->super_for_commit->super_roots,
1895 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1896}
1897
bd2336b2
NB
1898/*
1899 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1900 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1901 *
1902 * fs_info - filesystem whose backup roots need to be read
1903 * priority - priority of backup root required
1904 *
1905 * Returns backup root index on success and -EINVAL otherwise.
1906 */
1907static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1908{
1909 int backup_index = find_newest_super_backup(fs_info);
1910 struct btrfs_super_block *super = fs_info->super_copy;
1911 struct btrfs_root_backup *root_backup;
1912
1913 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1914 if (priority == 0)
1915 return backup_index;
1916
1917 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1918 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1919 } else {
1920 return -EINVAL;
1921 }
1922
1923 root_backup = super->super_roots + backup_index;
1924
1925 btrfs_set_super_generation(super,
1926 btrfs_backup_tree_root_gen(root_backup));
1927 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1928 btrfs_set_super_root_level(super,
1929 btrfs_backup_tree_root_level(root_backup));
1930 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1931
1932 /*
1933 * Fixme: the total bytes and num_devices need to match or we should
1934 * need a fsck
1935 */
1936 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1937 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1938
1939 return backup_index;
1940}
1941
7abadb64
LB
1942/* helper to cleanup workers */
1943static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1944{
dc6e3209 1945 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1946 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1947 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86 1948 btrfs_destroy_workqueue(fs_info->endio_workers);
fccb5d86 1949 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 1950 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
1951 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1952 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1953 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1954 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 1955 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 1956 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1957 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1958 if (fs_info->discard_ctl.discard_workers)
1959 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1960 /*
1961 * Now that all other work queues are destroyed, we can safely destroy
1962 * the queues used for metadata I/O, since tasks from those other work
1963 * queues can do metadata I/O operations.
1964 */
1965 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1966 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
7abadb64
LB
1967}
1968
2e9f5954
R
1969static void free_root_extent_buffers(struct btrfs_root *root)
1970{
1971 if (root) {
1972 free_extent_buffer(root->node);
1973 free_extent_buffer(root->commit_root);
1974 root->node = NULL;
1975 root->commit_root = NULL;
1976 }
1977}
1978
af31f5e5 1979/* helper to cleanup tree roots */
4273eaff 1980static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1981{
2e9f5954 1982 free_root_extent_buffers(info->tree_root);
655b09fe 1983
2e9f5954
R
1984 free_root_extent_buffers(info->dev_root);
1985 free_root_extent_buffers(info->extent_root);
1986 free_root_extent_buffers(info->csum_root);
1987 free_root_extent_buffers(info->quota_root);
1988 free_root_extent_buffers(info->uuid_root);
8c38938c 1989 free_root_extent_buffers(info->fs_root);
aeb935a4 1990 free_root_extent_buffers(info->data_reloc_root);
4273eaff 1991 if (free_chunk_root)
2e9f5954 1992 free_root_extent_buffers(info->chunk_root);
70f6d82e 1993 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
1994}
1995
8c38938c
JB
1996void btrfs_put_root(struct btrfs_root *root)
1997{
1998 if (!root)
1999 return;
2000
2001 if (refcount_dec_and_test(&root->refs)) {
2002 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 2003 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
2004 if (root->anon_dev)
2005 free_anon_bdev(root->anon_dev);
2006 btrfs_drew_lock_destroy(&root->snapshot_lock);
923eb523 2007 free_root_extent_buffers(root);
8c38938c
JB
2008 kfree(root->free_ino_ctl);
2009 kfree(root->free_ino_pinned);
2010#ifdef CONFIG_BTRFS_DEBUG
2011 spin_lock(&root->fs_info->fs_roots_radix_lock);
2012 list_del_init(&root->leak_list);
2013 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2014#endif
2015 kfree(root);
2016 }
2017}
2018
faa2dbf0 2019void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2020{
2021 int ret;
2022 struct btrfs_root *gang[8];
2023 int i;
2024
2025 while (!list_empty(&fs_info->dead_roots)) {
2026 gang[0] = list_entry(fs_info->dead_roots.next,
2027 struct btrfs_root, root_list);
2028 list_del(&gang[0]->root_list);
2029
8c38938c 2030 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
cb517eab 2031 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
dc9492c1 2032 btrfs_put_root(gang[0]);
171f6537
JB
2033 }
2034
2035 while (1) {
2036 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2037 (void **)gang, 0,
2038 ARRAY_SIZE(gang));
2039 if (!ret)
2040 break;
2041 for (i = 0; i < ret; i++)
cb517eab 2042 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
2043 }
2044}
af31f5e5 2045
638aa7ed
ES
2046static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2047{
2048 mutex_init(&fs_info->scrub_lock);
2049 atomic_set(&fs_info->scrubs_running, 0);
2050 atomic_set(&fs_info->scrub_pause_req, 0);
2051 atomic_set(&fs_info->scrubs_paused, 0);
2052 atomic_set(&fs_info->scrub_cancel_req, 0);
2053 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 2054 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
2055}
2056
779a65a4
ES
2057static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2058{
2059 spin_lock_init(&fs_info->balance_lock);
2060 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
2061 atomic_set(&fs_info->balance_pause_req, 0);
2062 atomic_set(&fs_info->balance_cancel_req, 0);
2063 fs_info->balance_ctl = NULL;
2064 init_waitqueue_head(&fs_info->balance_wait_q);
2065}
2066
6bccf3ab 2067static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
f37938e0 2068{
2ff7e61e
JM
2069 struct inode *inode = fs_info->btree_inode;
2070
2071 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2072 set_nlink(inode, 1);
f37938e0
ES
2073 /*
2074 * we set the i_size on the btree inode to the max possible int.
2075 * the real end of the address space is determined by all of
2076 * the devices in the system
2077 */
2ff7e61e
JM
2078 inode->i_size = OFFSET_MAX;
2079 inode->i_mapping->a_ops = &btree_aops;
f37938e0 2080
2ff7e61e 2081 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29
QW
2082 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2083 IO_TREE_INODE_IO, inode);
7b439738 2084 BTRFS_I(inode)->io_tree.track_uptodate = false;
2ff7e61e 2085 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 2086
2ff7e61e 2087 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
f37938e0 2088
5c8fd99f 2089 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2ff7e61e
JM
2090 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2091 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2092 btrfs_insert_inode_hash(inode);
f37938e0
ES
2093}
2094
ad618368
ES
2095static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2096{
ad618368 2097 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 2098 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 2099 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
2100}
2101
f9e92e40
ES
2102static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2103{
2104 spin_lock_init(&fs_info->qgroup_lock);
2105 mutex_init(&fs_info->qgroup_ioctl_lock);
2106 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
2107 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2108 fs_info->qgroup_seq = 1;
f9e92e40 2109 fs_info->qgroup_ulist = NULL;
d2c609b8 2110 fs_info->qgroup_rescan_running = false;
f9e92e40
ES
2111 mutex_init(&fs_info->qgroup_rescan_lock);
2112}
2113
2a458198
ES
2114static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2115 struct btrfs_fs_devices *fs_devices)
2116{
f7b885be 2117 u32 max_active = fs_info->thread_pool_size;
6f011058 2118 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2119
2120 fs_info->workers =
cb001095
JM
2121 btrfs_alloc_workqueue(fs_info, "worker",
2122 flags | WQ_HIGHPRI, max_active, 16);
2a458198
ES
2123
2124 fs_info->delalloc_workers =
cb001095
JM
2125 btrfs_alloc_workqueue(fs_info, "delalloc",
2126 flags, max_active, 2);
2a458198
ES
2127
2128 fs_info->flush_workers =
cb001095
JM
2129 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2130 flags, max_active, 0);
2a458198
ES
2131
2132 fs_info->caching_workers =
cb001095 2133 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 2134
2a458198 2135 fs_info->fixup_workers =
cb001095 2136 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2a458198
ES
2137
2138 /*
2139 * endios are largely parallel and should have a very
2140 * low idle thresh
2141 */
2142 fs_info->endio_workers =
cb001095 2143 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2a458198 2144 fs_info->endio_meta_workers =
cb001095
JM
2145 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2146 max_active, 4);
2a458198 2147 fs_info->endio_meta_write_workers =
cb001095
JM
2148 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2149 max_active, 2);
2a458198 2150 fs_info->endio_raid56_workers =
cb001095
JM
2151 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2152 max_active, 4);
2a458198 2153 fs_info->rmw_workers =
cb001095 2154 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2a458198 2155 fs_info->endio_write_workers =
cb001095
JM
2156 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2157 max_active, 2);
2a458198 2158 fs_info->endio_freespace_worker =
cb001095
JM
2159 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2160 max_active, 0);
2a458198 2161 fs_info->delayed_workers =
cb001095
JM
2162 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2163 max_active, 0);
2a458198 2164 fs_info->readahead_workers =
cb001095
JM
2165 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2166 max_active, 2);
2a458198 2167 fs_info->qgroup_rescan_workers =
cb001095 2168 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
b0643e59
DZ
2169 fs_info->discard_ctl.discard_workers =
2170 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2a458198
ES
2171
2172 if (!(fs_info->workers && fs_info->delalloc_workers &&
ba8a9d07 2173 fs_info->flush_workers &&
2a458198
ES
2174 fs_info->endio_workers && fs_info->endio_meta_workers &&
2175 fs_info->endio_meta_write_workers &&
2a458198
ES
2176 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2177 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2178 fs_info->caching_workers && fs_info->readahead_workers &&
2179 fs_info->fixup_workers && fs_info->delayed_workers &&
b0643e59
DZ
2180 fs_info->qgroup_rescan_workers &&
2181 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2182 return -ENOMEM;
2183 }
2184
2185 return 0;
2186}
2187
6d97c6e3
JT
2188static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2189{
2190 struct crypto_shash *csum_shash;
b4e967be 2191 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2192
b4e967be 2193 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2194
2195 if (IS_ERR(csum_shash)) {
2196 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2197 csum_driver);
6d97c6e3
JT
2198 return PTR_ERR(csum_shash);
2199 }
2200
2201 fs_info->csum_shash = csum_shash;
2202
2203 return 0;
2204}
2205
63443bf5
ES
2206static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2207 struct btrfs_fs_devices *fs_devices)
2208{
2209 int ret;
63443bf5
ES
2210 struct btrfs_root *log_tree_root;
2211 struct btrfs_super_block *disk_super = fs_info->super_copy;
2212 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2213 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2214
2215 if (fs_devices->rw_devices == 0) {
f14d104d 2216 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2217 return -EIO;
2218 }
2219
96dfcb46
JB
2220 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2221 GFP_KERNEL);
63443bf5
ES
2222 if (!log_tree_root)
2223 return -ENOMEM;
2224
2ff7e61e 2225 log_tree_root->node = read_tree_block(fs_info, bytenr,
581c1760
QW
2226 fs_info->generation + 1,
2227 level, NULL);
64c043de 2228 if (IS_ERR(log_tree_root->node)) {
f14d104d 2229 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2230 ret = PTR_ERR(log_tree_root->node);
8c38938c 2231 log_tree_root->node = NULL;
00246528 2232 btrfs_put_root(log_tree_root);
0eeff236 2233 return ret;
64c043de 2234 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2235 btrfs_err(fs_info, "failed to read log tree");
00246528 2236 btrfs_put_root(log_tree_root);
63443bf5
ES
2237 return -EIO;
2238 }
2239 /* returns with log_tree_root freed on success */
2240 ret = btrfs_recover_log_trees(log_tree_root);
2241 if (ret) {
0b246afa
JM
2242 btrfs_handle_fs_error(fs_info, ret,
2243 "Failed to recover log tree");
00246528 2244 btrfs_put_root(log_tree_root);
63443bf5
ES
2245 return ret;
2246 }
2247
bc98a42c 2248 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2249 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2250 if (ret)
2251 return ret;
2252 }
2253
2254 return 0;
2255}
2256
6bccf3ab 2257static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2258{
6bccf3ab 2259 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2260 struct btrfs_root *root;
4bbcaa64
ES
2261 struct btrfs_key location;
2262 int ret;
2263
6bccf3ab
JM
2264 BUG_ON(!fs_info->tree_root);
2265
4bbcaa64
ES
2266 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2267 location.type = BTRFS_ROOT_ITEM_KEY;
2268 location.offset = 0;
2269
a4f3d2c4 2270 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2271 if (IS_ERR(root)) {
2272 ret = PTR_ERR(root);
2273 goto out;
2274 }
a4f3d2c4
DS
2275 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2276 fs_info->extent_root = root;
4bbcaa64
ES
2277
2278 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2279 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2280 if (IS_ERR(root)) {
2281 ret = PTR_ERR(root);
2282 goto out;
2283 }
a4f3d2c4
DS
2284 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2285 fs_info->dev_root = root;
4bbcaa64
ES
2286 btrfs_init_devices_late(fs_info);
2287
2288 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4 2289 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2290 if (IS_ERR(root)) {
2291 ret = PTR_ERR(root);
2292 goto out;
2293 }
a4f3d2c4
DS
2294 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2295 fs_info->csum_root = root;
4bbcaa64 2296
aeb935a4
QW
2297 /*
2298 * This tree can share blocks with some other fs tree during relocation
2299 * and we need a proper setup by btrfs_get_fs_root
2300 */
56e9357a
DS
2301 root = btrfs_get_fs_root(tree_root->fs_info,
2302 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4
QW
2303 if (IS_ERR(root)) {
2304 ret = PTR_ERR(root);
2305 goto out;
2306 }
2307 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2308 fs_info->data_reloc_root = root;
2309
4bbcaa64 2310 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2311 root = btrfs_read_tree_root(tree_root, &location);
2312 if (!IS_ERR(root)) {
2313 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
afcdd129 2314 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
a4f3d2c4 2315 fs_info->quota_root = root;
4bbcaa64
ES
2316 }
2317
2318 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2319 root = btrfs_read_tree_root(tree_root, &location);
2320 if (IS_ERR(root)) {
2321 ret = PTR_ERR(root);
4bbcaa64 2322 if (ret != -ENOENT)
f50f4353 2323 goto out;
4bbcaa64 2324 } else {
a4f3d2c4
DS
2325 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2326 fs_info->uuid_root = root;
4bbcaa64
ES
2327 }
2328
70f6d82e
OS
2329 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2330 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2331 root = btrfs_read_tree_root(tree_root, &location);
f50f4353
LB
2332 if (IS_ERR(root)) {
2333 ret = PTR_ERR(root);
2334 goto out;
2335 }
70f6d82e
OS
2336 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337 fs_info->free_space_root = root;
2338 }
2339
4bbcaa64 2340 return 0;
f50f4353
LB
2341out:
2342 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2343 location.objectid, ret);
2344 return ret;
4bbcaa64
ES
2345}
2346
069ec957
QW
2347/*
2348 * Real super block validation
2349 * NOTE: super csum type and incompat features will not be checked here.
2350 *
2351 * @sb: super block to check
2352 * @mirror_num: the super block number to check its bytenr:
2353 * 0 the primary (1st) sb
2354 * 1, 2 2nd and 3rd backup copy
2355 * -1 skip bytenr check
2356 */
2357static int validate_super(struct btrfs_fs_info *fs_info,
2358 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2359{
21a852b0
QW
2360 u64 nodesize = btrfs_super_nodesize(sb);
2361 u64 sectorsize = btrfs_super_sectorsize(sb);
2362 int ret = 0;
2363
2364 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2365 btrfs_err(fs_info, "no valid FS found");
2366 ret = -EINVAL;
2367 }
2368 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2369 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2370 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2371 ret = -EINVAL;
2372 }
2373 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2374 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2375 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2376 ret = -EINVAL;
2377 }
2378 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2379 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2380 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2381 ret = -EINVAL;
2382 }
2383 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2384 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2385 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2386 ret = -EINVAL;
2387 }
2388
2389 /*
2390 * Check sectorsize and nodesize first, other check will need it.
2391 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2392 */
2393 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2394 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2395 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2396 ret = -EINVAL;
2397 }
2398 /* Only PAGE SIZE is supported yet */
2399 if (sectorsize != PAGE_SIZE) {
2400 btrfs_err(fs_info,
2401 "sectorsize %llu not supported yet, only support %lu",
2402 sectorsize, PAGE_SIZE);
2403 ret = -EINVAL;
2404 }
2405 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2406 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2408 ret = -EINVAL;
2409 }
2410 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2411 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2412 le32_to_cpu(sb->__unused_leafsize), nodesize);
2413 ret = -EINVAL;
2414 }
2415
2416 /* Root alignment check */
2417 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2418 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2419 btrfs_super_root(sb));
2420 ret = -EINVAL;
2421 }
2422 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2423 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2424 btrfs_super_chunk_root(sb));
2425 ret = -EINVAL;
2426 }
2427 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2428 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2429 btrfs_super_log_root(sb));
2430 ret = -EINVAL;
2431 }
2432
de37aa51 2433 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
7239ff4b 2434 BTRFS_FSID_SIZE) != 0) {
21a852b0 2435 btrfs_err(fs_info,
7239ff4b 2436 "dev_item UUID does not match metadata fsid: %pU != %pU",
de37aa51 2437 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
21a852b0
QW
2438 ret = -EINVAL;
2439 }
2440
2441 /*
2442 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2443 * done later
2444 */
2445 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2446 btrfs_err(fs_info, "bytes_used is too small %llu",
2447 btrfs_super_bytes_used(sb));
2448 ret = -EINVAL;
2449 }
2450 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2451 btrfs_err(fs_info, "invalid stripesize %u",
2452 btrfs_super_stripesize(sb));
2453 ret = -EINVAL;
2454 }
2455 if (btrfs_super_num_devices(sb) > (1UL << 31))
2456 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2457 btrfs_super_num_devices(sb));
2458 if (btrfs_super_num_devices(sb) == 0) {
2459 btrfs_err(fs_info, "number of devices is 0");
2460 ret = -EINVAL;
2461 }
2462
069ec957
QW
2463 if (mirror_num >= 0 &&
2464 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2465 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2466 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2467 ret = -EINVAL;
2468 }
2469
2470 /*
2471 * Obvious sys_chunk_array corruptions, it must hold at least one key
2472 * and one chunk
2473 */
2474 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2475 btrfs_err(fs_info, "system chunk array too big %u > %u",
2476 btrfs_super_sys_array_size(sb),
2477 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2478 ret = -EINVAL;
2479 }
2480 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2481 + sizeof(struct btrfs_chunk)) {
2482 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2483 btrfs_super_sys_array_size(sb),
2484 sizeof(struct btrfs_disk_key)
2485 + sizeof(struct btrfs_chunk));
2486 ret = -EINVAL;
2487 }
2488
2489 /*
2490 * The generation is a global counter, we'll trust it more than the others
2491 * but it's still possible that it's the one that's wrong.
2492 */
2493 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2494 btrfs_warn(fs_info,
2495 "suspicious: generation < chunk_root_generation: %llu < %llu",
2496 btrfs_super_generation(sb),
2497 btrfs_super_chunk_root_generation(sb));
2498 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2499 && btrfs_super_cache_generation(sb) != (u64)-1)
2500 btrfs_warn(fs_info,
2501 "suspicious: generation < cache_generation: %llu < %llu",
2502 btrfs_super_generation(sb),
2503 btrfs_super_cache_generation(sb));
2504
2505 return ret;
2506}
2507
069ec957
QW
2508/*
2509 * Validation of super block at mount time.
2510 * Some checks already done early at mount time, like csum type and incompat
2511 * flags will be skipped.
2512 */
2513static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2514{
2515 return validate_super(fs_info, fs_info->super_copy, 0);
2516}
2517
75cb857d
QW
2518/*
2519 * Validation of super block at write time.
2520 * Some checks like bytenr check will be skipped as their values will be
2521 * overwritten soon.
2522 * Extra checks like csum type and incompat flags will be done here.
2523 */
2524static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2525 struct btrfs_super_block *sb)
2526{
2527 int ret;
2528
2529 ret = validate_super(fs_info, sb, -1);
2530 if (ret < 0)
2531 goto out;
e7e16f48 2532 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2533 ret = -EUCLEAN;
2534 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2535 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2536 goto out;
2537 }
2538 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2539 ret = -EUCLEAN;
2540 btrfs_err(fs_info,
2541 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2542 btrfs_super_incompat_flags(sb),
2543 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2544 goto out;
2545 }
2546out:
2547 if (ret < 0)
2548 btrfs_err(fs_info,
2549 "super block corruption detected before writing it to disk");
2550 return ret;
2551}
2552
6ef108dd 2553static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2554{
6ef108dd 2555 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2556 struct btrfs_super_block *sb = fs_info->super_copy;
2557 struct btrfs_root *tree_root = fs_info->tree_root;
2558 bool handle_error = false;
2559 int ret = 0;
2560 int i;
2561
2562 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2563 u64 generation;
2564 int level;
2565
2566 if (handle_error) {
2567 if (!IS_ERR(tree_root->node))
2568 free_extent_buffer(tree_root->node);
2569 tree_root->node = NULL;
2570
2571 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2572 break;
2573
2574 free_root_pointers(fs_info, 0);
2575
2576 /*
2577 * Don't use the log in recovery mode, it won't be
2578 * valid
2579 */
2580 btrfs_set_super_log_root(sb, 0);
2581
2582 /* We can't trust the free space cache either */
2583 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2584
2585 ret = read_backup_root(fs_info, i);
6ef108dd 2586 backup_index = ret;
b8522a1e
NB
2587 if (ret < 0)
2588 return ret;
2589 }
2590 generation = btrfs_super_generation(sb);
2591 level = btrfs_super_root_level(sb);
2592 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2593 generation, level, NULL);
2594 if (IS_ERR(tree_root->node) ||
2595 !extent_buffer_uptodate(tree_root->node)) {
2596 handle_error = true;
2597
0465337c 2598 if (IS_ERR(tree_root->node)) {
b8522a1e 2599 ret = PTR_ERR(tree_root->node);
0465337c
JB
2600 tree_root->node = NULL;
2601 } else if (!extent_buffer_uptodate(tree_root->node)) {
b8522a1e 2602 ret = -EUCLEAN;
0465337c 2603 }
b8522a1e
NB
2604
2605 btrfs_warn(fs_info, "failed to read tree root");
2606 continue;
2607 }
2608
2609 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2610 tree_root->commit_root = btrfs_root_node(tree_root);
2611 btrfs_set_root_refs(&tree_root->root_item, 1);
2612
336a0d8d
NB
2613 /*
2614 * No need to hold btrfs_root::objectid_mutex since the fs
2615 * hasn't been fully initialised and we are the only user
2616 */
b8522a1e
NB
2617 ret = btrfs_find_highest_objectid(tree_root,
2618 &tree_root->highest_objectid);
2619 if (ret < 0) {
b8522a1e
NB
2620 handle_error = true;
2621 continue;
2622 }
2623
2624 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2625
2626 ret = btrfs_read_roots(fs_info);
2627 if (ret < 0) {
2628 handle_error = true;
2629 continue;
2630 }
2631
2632 /* All successful */
2633 fs_info->generation = generation;
2634 fs_info->last_trans_committed = generation;
6ef108dd
NB
2635
2636 /* Always begin writing backup roots after the one being used */
2637 if (backup_index < 0) {
2638 fs_info->backup_root_index = 0;
2639 } else {
2640 fs_info->backup_root_index = backup_index + 1;
2641 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2642 }
b8522a1e
NB
2643 break;
2644 }
2645
2646 return ret;
2647}
2648
8260edba 2649void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2650{
76dda93c 2651 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2652 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2653 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2654 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2655 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2656 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2657 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2658 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2659 spin_lock_init(&fs_info->trans_lock);
76dda93c 2660 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2661 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2662 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2663 spin_lock_init(&fs_info->super_lock);
f28491e0 2664 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2665 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2666 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2667 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2668 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2669 mutex_init(&fs_info->reloc_mutex);
573bfb72 2670 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2671 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2672
0b86a832 2673 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2674 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2675 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2676 INIT_LIST_HEAD(&fs_info->unused_bgs);
bd647ce3
JB
2677#ifdef CONFIG_BTRFS_DEBUG
2678 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2679 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2680 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2681#endif
c8bf1b67 2682 extent_map_tree_init(&fs_info->mapping_tree);
66d8f3dd
MX
2683 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2684 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2685 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2686 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2687 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2688 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2689 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2690 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2691 BTRFS_BLOCK_RSV_DELREFS);
2692
771ed689 2693 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2694 atomic_set(&fs_info->defrag_running, 0);
2fefd558 2695 atomic_set(&fs_info->reada_works_cnt, 0);
034f784d 2696 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2697 atomic64_set(&fs_info->tree_mod_seq, 0);
95ac567a 2698 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2699 fs_info->metadata_ratio = 0;
4cb5300b 2700 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2701 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2702 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2703 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2704 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2705 /* readahead state */
d0164adc 2706 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2707 spin_lock_init(&fs_info->reada_lock);
fd708b81 2708 btrfs_init_ref_verify(fs_info);
c8b97818 2709
b34b086c
CM
2710 fs_info->thread_pool_size = min_t(unsigned long,
2711 num_online_cpus() + 2, 8);
0afbaf8c 2712
199c2a9c
MX
2713 INIT_LIST_HEAD(&fs_info->ordered_roots);
2714 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2715
638aa7ed 2716 btrfs_init_scrub(fs_info);
21adbd5c
SB
2717#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2718 fs_info->check_integrity_print_mask = 0;
2719#endif
779a65a4 2720 btrfs_init_balance(fs_info);
21c7e756 2721 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2722
0f9dd46c 2723 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2724 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2725 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2726
fe119a6e
NB
2727 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2728 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
afcdd129 2729 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
39279cc3 2730
5a3f23d5 2731 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2732 mutex_init(&fs_info->tree_log_mutex);
925baedd 2733 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2734 mutex_init(&fs_info->transaction_kthread_mutex);
2735 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2736 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2737 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2738 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2739 init_rwsem(&fs_info->subvol_sem);
803b2f54 2740 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2741
ad618368 2742 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2743 btrfs_init_qgroup(fs_info);
b0643e59 2744 btrfs_discard_init(fs_info);
416ac51d 2745
fa9c0d79
CM
2746 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2747 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2748
e6dcd2dc 2749 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2750 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2751 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2752 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2753 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2754
da17066c
JM
2755 /* Usable values until the real ones are cached from the superblock */
2756 fs_info->nodesize = 4096;
2757 fs_info->sectorsize = 4096;
2758 fs_info->stripesize = 4096;
2759
eede2bf3
OS
2760 spin_lock_init(&fs_info->swapfile_pins_lock);
2761 fs_info->swapfile_pins = RB_ROOT;
2762
9e967495 2763 fs_info->send_in_progress = 0;
8260edba
JB
2764}
2765
2766static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2767{
2768 int ret;
2769
2770 fs_info->sb = sb;
2771 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2772 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2773
ae18c37a
JB
2774 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2775 if (ret)
c75e8394 2776 return ret;
ae18c37a
JB
2777
2778 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2779 if (ret)
c75e8394 2780 return ret;
ae18c37a
JB
2781
2782 fs_info->dirty_metadata_batch = PAGE_SIZE *
2783 (1 + ilog2(nr_cpu_ids));
2784
2785 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2786 if (ret)
c75e8394 2787 return ret;
ae18c37a
JB
2788
2789 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2790 GFP_KERNEL);
2791 if (ret)
c75e8394 2792 return ret;
ae18c37a
JB
2793
2794 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2795 GFP_KERNEL);
c75e8394
JB
2796 if (!fs_info->delayed_root)
2797 return -ENOMEM;
ae18c37a
JB
2798 btrfs_init_delayed_root(fs_info->delayed_root);
2799
c75e8394 2800 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2801}
2802
97f4dd09
NB
2803static int btrfs_uuid_rescan_kthread(void *data)
2804{
2805 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2806 int ret;
2807
2808 /*
2809 * 1st step is to iterate through the existing UUID tree and
2810 * to delete all entries that contain outdated data.
2811 * 2nd step is to add all missing entries to the UUID tree.
2812 */
2813 ret = btrfs_uuid_tree_iterate(fs_info);
2814 if (ret < 0) {
c94bec2c
JB
2815 if (ret != -EINTR)
2816 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2817 ret);
97f4dd09
NB
2818 up(&fs_info->uuid_tree_rescan_sem);
2819 return ret;
2820 }
2821 return btrfs_uuid_scan_kthread(data);
2822}
2823
2824static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2825{
2826 struct task_struct *task;
2827
2828 down(&fs_info->uuid_tree_rescan_sem);
2829 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2830 if (IS_ERR(task)) {
2831 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2832 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2833 up(&fs_info->uuid_tree_rescan_sem);
2834 return PTR_ERR(task);
2835 }
2836
2837 return 0;
2838}
2839
ae18c37a
JB
2840int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2841 char *options)
2842{
2843 u32 sectorsize;
2844 u32 nodesize;
2845 u32 stripesize;
2846 u64 generation;
2847 u64 features;
2848 u16 csum_type;
ae18c37a
JB
2849 struct btrfs_super_block *disk_super;
2850 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2851 struct btrfs_root *tree_root;
2852 struct btrfs_root *chunk_root;
2853 int ret;
2854 int err = -EINVAL;
2855 int clear_free_space_tree = 0;
2856 int level;
2857
8260edba 2858 ret = init_mount_fs_info(fs_info, sb);
53b381b3 2859 if (ret) {
83c8266a 2860 err = ret;
ae18c37a 2861 goto fail;
53b381b3
DW
2862 }
2863
ae18c37a
JB
2864 /* These need to be init'ed before we start creating inodes and such. */
2865 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2866 GFP_KERNEL);
2867 fs_info->tree_root = tree_root;
2868 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2869 GFP_KERNEL);
2870 fs_info->chunk_root = chunk_root;
2871 if (!tree_root || !chunk_root) {
2872 err = -ENOMEM;
c75e8394 2873 goto fail;
ae18c37a
JB
2874 }
2875
2876 fs_info->btree_inode = new_inode(sb);
2877 if (!fs_info->btree_inode) {
2878 err = -ENOMEM;
c75e8394 2879 goto fail;
ae18c37a
JB
2880 }
2881 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2882 btrfs_init_btree_inode(fs_info);
2883
3c4bb26b 2884 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2885
2886 /*
2887 * Read super block and check the signature bytes only
2888 */
8f32380d
JT
2889 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2890 if (IS_ERR(disk_super)) {
2891 err = PTR_ERR(disk_super);
16cdcec7 2892 goto fail_alloc;
20b45077 2893 }
39279cc3 2894
8dc3f22c
JT
2895 /*
2896 * Verify the type first, if that or the the checksum value are
2897 * corrupted, we'll find out
2898 */
8f32380d 2899 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 2900 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 2901 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 2902 csum_type);
8dc3f22c 2903 err = -EINVAL;
8f32380d 2904 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
2905 goto fail_alloc;
2906 }
2907
6d97c6e3
JT
2908 ret = btrfs_init_csum_hash(fs_info, csum_type);
2909 if (ret) {
2910 err = ret;
8f32380d 2911 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
2912 goto fail_alloc;
2913 }
2914
1104a885
DS
2915 /*
2916 * We want to check superblock checksum, the type is stored inside.
2917 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2918 */
8f32380d 2919 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
05135f59 2920 btrfs_err(fs_info, "superblock checksum mismatch");
1104a885 2921 err = -EINVAL;
8f32380d 2922 btrfs_release_disk_super(disk_super);
141386e1 2923 goto fail_alloc;
1104a885
DS
2924 }
2925
2926 /*
2927 * super_copy is zeroed at allocation time and we never touch the
2928 * following bytes up to INFO_SIZE, the checksum is calculated from
2929 * the whole block of INFO_SIZE
2930 */
8f32380d
JT
2931 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2932 btrfs_release_disk_super(disk_super);
5f39d397 2933
fbc6feae
NB
2934 disk_super = fs_info->super_copy;
2935
de37aa51
NB
2936 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2937 BTRFS_FSID_SIZE));
2938
7239ff4b 2939 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
de37aa51
NB
2940 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2941 fs_info->super_copy->metadata_uuid,
2942 BTRFS_FSID_SIZE));
7239ff4b 2943 }
0b86a832 2944
fbc6feae
NB
2945 features = btrfs_super_flags(disk_super);
2946 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2947 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2948 btrfs_set_super_flags(disk_super, features);
2949 btrfs_info(fs_info,
2950 "found metadata UUID change in progress flag, clearing");
2951 }
2952
2953 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2954 sizeof(*fs_info->super_for_commit));
de37aa51 2955
069ec957 2956 ret = btrfs_validate_mount_super(fs_info);
1104a885 2957 if (ret) {
05135f59 2958 btrfs_err(fs_info, "superblock contains fatal errors");
1104a885 2959 err = -EINVAL;
141386e1 2960 goto fail_alloc;
1104a885
DS
2961 }
2962
0f7d52f4 2963 if (!btrfs_super_root(disk_super))
141386e1 2964 goto fail_alloc;
0f7d52f4 2965
acce952b 2966 /* check FS state, whether FS is broken. */
87533c47
MX
2967 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2968 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2969
75e7cb7f
LB
2970 /*
2971 * In the long term, we'll store the compression type in the super
2972 * block, and it'll be used for per file compression control.
2973 */
2974 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2975
2ff7e61e 2976 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2b82032c
YZ
2977 if (ret) {
2978 err = ret;
141386e1 2979 goto fail_alloc;
2b82032c 2980 }
dfe25020 2981
f2b636e8
JB
2982 features = btrfs_super_incompat_flags(disk_super) &
2983 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2984 if (features) {
05135f59
DS
2985 btrfs_err(fs_info,
2986 "cannot mount because of unsupported optional features (%llx)",
2987 features);
f2b636e8 2988 err = -EINVAL;
141386e1 2989 goto fail_alloc;
f2b636e8
JB
2990 }
2991
5d4f98a2 2992 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2993 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
0b246afa 2994 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2995 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
5c1aab1d
NT
2996 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2997 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
727011e0 2998
3173a18f 2999 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
05135f59 3000 btrfs_info(fs_info, "has skinny extents");
3173a18f 3001
727011e0
CM
3002 /*
3003 * flag our filesystem as having big metadata blocks if
3004 * they are bigger than the page size
3005 */
09cbfeaf 3006 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
727011e0 3007 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
05135f59
DS
3008 btrfs_info(fs_info,
3009 "flagging fs with big metadata feature");
727011e0
CM
3010 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3011 }
3012
bc3f116f 3013 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f 3014 sectorsize = btrfs_super_sectorsize(disk_super);
b7f67055 3015 stripesize = sectorsize;
707e8a07 3016 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 3017 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f 3018
da17066c
JM
3019 /* Cache block sizes */
3020 fs_info->nodesize = nodesize;
3021 fs_info->sectorsize = sectorsize;
3022 fs_info->stripesize = stripesize;
3023
bc3f116f
CM
3024 /*
3025 * mixed block groups end up with duplicate but slightly offset
3026 * extent buffers for the same range. It leads to corruptions
3027 */
3028 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 3029 (sectorsize != nodesize)) {
05135f59
DS
3030 btrfs_err(fs_info,
3031"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3032 nodesize, sectorsize);
141386e1 3033 goto fail_alloc;
bc3f116f
CM
3034 }
3035
ceda0864
MX
3036 /*
3037 * Needn't use the lock because there is no other task which will
3038 * update the flag.
3039 */
a6fa6fae 3040 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 3041
f2b636e8
JB
3042 features = btrfs_super_compat_ro_flags(disk_super) &
3043 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
bc98a42c 3044 if (!sb_rdonly(sb) && features) {
05135f59
DS
3045 btrfs_err(fs_info,
3046 "cannot mount read-write because of unsupported optional features (%llx)",
c1c9ff7c 3047 features);
f2b636e8 3048 err = -EINVAL;
141386e1 3049 goto fail_alloc;
f2b636e8 3050 }
61d92c32 3051
2a458198
ES
3052 ret = btrfs_init_workqueues(fs_info, fs_devices);
3053 if (ret) {
3054 err = ret;
0dc3b84a
JB
3055 goto fail_sb_buffer;
3056 }
4543df7e 3057
9e11ceee
JK
3058 sb->s_bdi->congested_fn = btrfs_congested_fn;
3059 sb->s_bdi->congested_data = fs_info;
3060 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
b5420237 3061 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
9e11ceee
JK
3062 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3063 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3064
a061fc8d
CM
3065 sb->s_blocksize = sectorsize;
3066 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3067 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3068
925baedd 3069 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3070 ret = btrfs_read_sys_array(fs_info);
925baedd 3071 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3072 if (ret) {
05135f59 3073 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3074 goto fail_sb_buffer;
84eed90f 3075 }
0b86a832 3076
84234f3a 3077 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3078 level = btrfs_super_chunk_root_level(disk_super);
0b86a832 3079
2ff7e61e 3080 chunk_root->node = read_tree_block(fs_info,
0b86a832 3081 btrfs_super_chunk_root(disk_super),
581c1760 3082 generation, level, NULL);
64c043de
LB
3083 if (IS_ERR(chunk_root->node) ||
3084 !extent_buffer_uptodate(chunk_root->node)) {
05135f59 3085 btrfs_err(fs_info, "failed to read chunk root");
e5fffbac 3086 if (!IS_ERR(chunk_root->node))
3087 free_extent_buffer(chunk_root->node);
95ab1f64 3088 chunk_root->node = NULL;
af31f5e5 3089 goto fail_tree_roots;
83121942 3090 }
5d4f98a2
YZ
3091 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3092 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 3093
e17cade2 3094 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3095 offsetof(struct btrfs_header, chunk_tree_uuid),
3096 BTRFS_UUID_SIZE);
e17cade2 3097
5b4aacef 3098 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3099 if (ret) {
05135f59 3100 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3101 goto fail_tree_roots;
2b82032c 3102 }
0b86a832 3103
8dabb742 3104 /*
9b99b115
AJ
3105 * Keep the devid that is marked to be the target device for the
3106 * device replace procedure
8dabb742 3107 */
9b99b115 3108 btrfs_free_extra_devids(fs_devices, 0);
dfe25020 3109
a6b0d5c8 3110 if (!fs_devices->latest_bdev) {
05135f59 3111 btrfs_err(fs_info, "failed to read devices");
a6b0d5c8
CM
3112 goto fail_tree_roots;
3113 }
3114
b8522a1e 3115 ret = init_tree_roots(fs_info);
4bbcaa64 3116 if (ret)
b8522a1e 3117 goto fail_tree_roots;
8929ecfa 3118
75ec1db8
JB
3119 /*
3120 * If we have a uuid root and we're not being told to rescan we need to
3121 * check the generation here so we can set the
3122 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3123 * transaction during a balance or the log replay without updating the
3124 * uuid generation, and then if we crash we would rescan the uuid tree,
3125 * even though it was perfectly fine.
3126 */
3127 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3128 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3129 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3130
cf90d884
QW
3131 ret = btrfs_verify_dev_extents(fs_info);
3132 if (ret) {
3133 btrfs_err(fs_info,
3134 "failed to verify dev extents against chunks: %d",
3135 ret);
3136 goto fail_block_groups;
3137 }
68310a5e
ID
3138 ret = btrfs_recover_balance(fs_info);
3139 if (ret) {
05135f59 3140 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3141 goto fail_block_groups;
3142 }
3143
733f4fbb
SB
3144 ret = btrfs_init_dev_stats(fs_info);
3145 if (ret) {
05135f59 3146 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3147 goto fail_block_groups;
3148 }
3149
8dabb742
SB
3150 ret = btrfs_init_dev_replace(fs_info);
3151 if (ret) {
05135f59 3152 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3153 goto fail_block_groups;
3154 }
3155
9b99b115 3156 btrfs_free_extra_devids(fs_devices, 1);
8dabb742 3157
c6761a9e 3158 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3159 if (ret) {
05135f59
DS
3160 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3161 ret);
b7c35e81
AJ
3162 goto fail_block_groups;
3163 }
3164
96f3136e 3165 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3166 if (ret) {
05135f59 3167 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3168 goto fail_fsdev_sysfs;
c59021f8 3169 }
3170
c59021f8 3171 ret = btrfs_init_space_info(fs_info);
3172 if (ret) {
05135f59 3173 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3174 goto fail_sysfs;
c59021f8 3175 }
3176
5b4aacef 3177 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3178 if (ret) {
05135f59 3179 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3180 goto fail_sysfs;
1b1d1f66 3181 }
4330e183 3182
6528b99d 3183 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3184 btrfs_warn(fs_info,
52042d8e 3185 "writable mount is not allowed due to too many missing devices");
2365dd3c 3186 goto fail_sysfs;
292fd7fc 3187 }
9078a3e1 3188
a74a4b97
CM
3189 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3190 "btrfs-cleaner");
57506d50 3191 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3192 goto fail_sysfs;
a74a4b97
CM
3193
3194 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3195 tree_root,
3196 "btrfs-transaction");
57506d50 3197 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3198 goto fail_cleaner;
a74a4b97 3199
583b7231 3200 if (!btrfs_test_opt(fs_info, NOSSD) &&
c289811c 3201 !fs_info->fs_devices->rotating) {
583b7231 3202 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
c289811c
CM
3203 }
3204
572d9ab7 3205 /*
01327610 3206 * Mount does not set all options immediately, we can do it now and do
572d9ab7
DS
3207 * not have to wait for transaction commit
3208 */
3209 btrfs_apply_pending_changes(fs_info);
3818aea2 3210
21adbd5c 3211#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 3212 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2ff7e61e 3213 ret = btrfsic_mount(fs_info, fs_devices,
0b246afa 3214 btrfs_test_opt(fs_info,
21adbd5c
SB
3215 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3216 1 : 0,
3217 fs_info->check_integrity_print_mask);
3218 if (ret)
05135f59
DS
3219 btrfs_warn(fs_info,
3220 "failed to initialize integrity check module: %d",
3221 ret);
21adbd5c
SB
3222 }
3223#endif
bcef60f2
AJ
3224 ret = btrfs_read_qgroup_config(fs_info);
3225 if (ret)
3226 goto fail_trans_kthread;
21adbd5c 3227
fd708b81
JB
3228 if (btrfs_build_ref_tree(fs_info))
3229 btrfs_err(fs_info, "couldn't build ref tree");
3230
96da0919
QW
3231 /* do not make disk changes in broken FS or nologreplay is given */
3232 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3233 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3234 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3235 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3236 if (ret) {
63443bf5 3237 err = ret;
28c16cbb 3238 goto fail_qgroup;
79787eaa 3239 }
e02119d5 3240 }
1a40e23b 3241
6bccf3ab 3242 ret = btrfs_find_orphan_roots(fs_info);
79787eaa 3243 if (ret)
28c16cbb 3244 goto fail_qgroup;
76dda93c 3245
bc98a42c 3246 if (!sb_rdonly(sb)) {
d68fc57b 3247 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3248 if (ret)
28c16cbb 3249 goto fail_qgroup;
90c711ab
ZB
3250
3251 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3252 ret = btrfs_recover_relocation(tree_root);
90c711ab 3253 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843 3254 if (ret < 0) {
05135f59
DS
3255 btrfs_warn(fs_info, "failed to recover relocation: %d",
3256 ret);
d7ce5843 3257 err = -EINVAL;
bcef60f2 3258 goto fail_qgroup;
d7ce5843 3259 }
7c2ca468 3260 }
1a40e23b 3261
56e9357a 3262 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3
DC
3263 if (IS_ERR(fs_info->fs_root)) {
3264 err = PTR_ERR(fs_info->fs_root);
f50f4353 3265 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
315bf8ef 3266 fs_info->fs_root = NULL;
bcef60f2 3267 goto fail_qgroup;
3140c9a3 3268 }
c289811c 3269
bc98a42c 3270 if (sb_rdonly(sb))
2b6ba629 3271 return 0;
59641015 3272
f8d468a1
OS
3273 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3274 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
6675df31
OS
3275 clear_free_space_tree = 1;
3276 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3277 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3278 btrfs_warn(fs_info, "free space tree is invalid");
3279 clear_free_space_tree = 1;
3280 }
3281
3282 if (clear_free_space_tree) {
f8d468a1
OS
3283 btrfs_info(fs_info, "clearing free space tree");
3284 ret = btrfs_clear_free_space_tree(fs_info);
3285 if (ret) {
3286 btrfs_warn(fs_info,
3287 "failed to clear free space tree: %d", ret);
6bccf3ab 3288 close_ctree(fs_info);
f8d468a1
OS
3289 return ret;
3290 }
3291 }
3292
0b246afa 3293 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
511711af 3294 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
05135f59 3295 btrfs_info(fs_info, "creating free space tree");
511711af
CM
3296 ret = btrfs_create_free_space_tree(fs_info);
3297 if (ret) {
05135f59
DS
3298 btrfs_warn(fs_info,
3299 "failed to create free space tree: %d", ret);
6bccf3ab 3300 close_ctree(fs_info);
511711af
CM
3301 return ret;
3302 }
3303 }
3304
2b6ba629
ID
3305 down_read(&fs_info->cleanup_work_sem);
3306 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3307 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3308 up_read(&fs_info->cleanup_work_sem);
6bccf3ab 3309 close_ctree(fs_info);
2b6ba629
ID
3310 return ret;
3311 }
3312 up_read(&fs_info->cleanup_work_sem);
59641015 3313
2b6ba629
ID
3314 ret = btrfs_resume_balance_async(fs_info);
3315 if (ret) {
05135f59 3316 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
6bccf3ab 3317 close_ctree(fs_info);
2b6ba629 3318 return ret;
e3acc2a6
JB
3319 }
3320
8dabb742
SB
3321 ret = btrfs_resume_dev_replace_async(fs_info);
3322 if (ret) {
05135f59 3323 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
6bccf3ab 3324 close_ctree(fs_info);
8dabb742
SB
3325 return ret;
3326 }
3327
b382a324 3328 btrfs_qgroup_rescan_resume(fs_info);
b0643e59 3329 btrfs_discard_resume(fs_info);
b382a324 3330
4bbcaa64 3331 if (!fs_info->uuid_root) {
05135f59 3332 btrfs_info(fs_info, "creating UUID tree");
f7a81ea4
SB
3333 ret = btrfs_create_uuid_tree(fs_info);
3334 if (ret) {
05135f59
DS
3335 btrfs_warn(fs_info,
3336 "failed to create the UUID tree: %d", ret);
6bccf3ab 3337 close_ctree(fs_info);
f7a81ea4
SB
3338 return ret;
3339 }
0b246afa 3340 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
4bbcaa64
ES
3341 fs_info->generation !=
3342 btrfs_super_uuid_tree_generation(disk_super)) {
05135f59 3343 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3344 ret = btrfs_check_uuid_tree(fs_info);
3345 if (ret) {
05135f59
DS
3346 btrfs_warn(fs_info,
3347 "failed to check the UUID tree: %d", ret);
6bccf3ab 3348 close_ctree(fs_info);
70f80175
SB
3349 return ret;
3350 }
f7a81ea4 3351 }
afcdd129 3352 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3353
8dcddfa0
QW
3354 /*
3355 * backuproot only affect mount behavior, and if open_ctree succeeded,
3356 * no need to keep the flag
3357 */
3358 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3359
ad2b2c80 3360 return 0;
39279cc3 3361
bcef60f2
AJ
3362fail_qgroup:
3363 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3364fail_trans_kthread:
3365 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3366 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3367 btrfs_free_fs_roots(fs_info);
3f157a2f 3368fail_cleaner:
a74a4b97 3369 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3370
3371 /*
3372 * make sure we're done with the btree inode before we stop our
3373 * kthreads
3374 */
3375 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3376
2365dd3c 3377fail_sysfs:
6618a59b 3378 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3379
b7c35e81
AJ
3380fail_fsdev_sysfs:
3381 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3382
1b1d1f66 3383fail_block_groups:
54067ae9 3384 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3385
3386fail_tree_roots:
4273eaff 3387 free_root_pointers(fs_info, true);
2b8195bb 3388 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3389
39279cc3 3390fail_sb_buffer:
7abadb64 3391 btrfs_stop_all_workers(fs_info);
5cdd7db6 3392 btrfs_free_block_groups(fs_info);
16cdcec7 3393fail_alloc:
586e46e2
ID
3394 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3395
4543df7e 3396 iput(fs_info->btree_inode);
7e662854 3397fail:
586e46e2 3398 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3399 return err;
eb60ceac 3400}
663faf9f 3401ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3402
314b6dd0 3403static void btrfs_end_super_write(struct bio *bio)
f2984462 3404{
314b6dd0
JT
3405 struct btrfs_device *device = bio->bi_private;
3406 struct bio_vec *bvec;
3407 struct bvec_iter_all iter_all;
3408 struct page *page;
3409
3410 bio_for_each_segment_all(bvec, bio, iter_all) {
3411 page = bvec->bv_page;
3412
3413 if (bio->bi_status) {
3414 btrfs_warn_rl_in_rcu(device->fs_info,
3415 "lost page write due to IO error on %s (%d)",
3416 rcu_str_deref(device->name),
3417 blk_status_to_errno(bio->bi_status));
3418 ClearPageUptodate(page);
3419 SetPageError(page);
3420 btrfs_dev_stat_inc_and_print(device,
3421 BTRFS_DEV_STAT_WRITE_ERRS);
3422 } else {
3423 SetPageUptodate(page);
3424 }
3425
3426 put_page(page);
3427 unlock_page(page);
f2984462 3428 }
314b6dd0
JT
3429
3430 bio_put(bio);
f2984462
CM
3431}
3432
8f32380d
JT
3433struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3434 int copy_num)
29c36d72 3435{
29c36d72 3436 struct btrfs_super_block *super;
8f32380d 3437 struct page *page;
29c36d72 3438 u64 bytenr;
8f32380d 3439 struct address_space *mapping = bdev->bd_inode->i_mapping;
29c36d72
AJ
3440
3441 bytenr = btrfs_sb_offset(copy_num);
3442 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
8f32380d 3443 return ERR_PTR(-EINVAL);
29c36d72 3444
8f32380d
JT
3445 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3446 if (IS_ERR(page))
3447 return ERR_CAST(page);
29c36d72 3448
8f32380d 3449 super = page_address(page);
29c36d72
AJ
3450 if (btrfs_super_bytenr(super) != bytenr ||
3451 btrfs_super_magic(super) != BTRFS_MAGIC) {
8f32380d
JT
3452 btrfs_release_disk_super(super);
3453 return ERR_PTR(-EINVAL);
29c36d72
AJ
3454 }
3455
8f32380d 3456 return super;
29c36d72
AJ
3457}
3458
3459
8f32380d 3460struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3461{
8f32380d 3462 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3463 int i;
3464 u64 transid = 0;
a512bbf8
YZ
3465
3466 /* we would like to check all the supers, but that would make
3467 * a btrfs mount succeed after a mkfs from a different FS.
3468 * So, we need to add a special mount option to scan for
3469 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3470 */
3471 for (i = 0; i < 1; i++) {
8f32380d
JT
3472 super = btrfs_read_dev_one_super(bdev, i);
3473 if (IS_ERR(super))
a512bbf8
YZ
3474 continue;
3475
a512bbf8 3476 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3477 if (latest)
3478 btrfs_release_disk_super(super);
3479
3480 latest = super;
a512bbf8 3481 transid = btrfs_super_generation(super);
a512bbf8
YZ
3482 }
3483 }
92fc03fb 3484
8f32380d 3485 return super;
a512bbf8
YZ
3486}
3487
4eedeb75 3488/*
abbb3b8e 3489 * Write superblock @sb to the @device. Do not wait for completion, all the
314b6dd0 3490 * pages we use for writing are locked.
4eedeb75 3491 *
abbb3b8e
DS
3492 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3493 * the expected device size at commit time. Note that max_mirrors must be
3494 * same for write and wait phases.
4eedeb75 3495 *
314b6dd0 3496 * Return number of errors when page is not found or submission fails.
4eedeb75 3497 */
a512bbf8 3498static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3499 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3500{
d5178578 3501 struct btrfs_fs_info *fs_info = device->fs_info;
314b6dd0 3502 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
d5178578 3503 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3504 int i;
a512bbf8 3505 int errors = 0;
a512bbf8 3506 u64 bytenr;
a512bbf8
YZ
3507
3508 if (max_mirrors == 0)
3509 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3510
d5178578
JT
3511 shash->tfm = fs_info->csum_shash;
3512
a512bbf8 3513 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3514 struct page *page;
3515 struct bio *bio;
3516 struct btrfs_super_block *disk_super;
3517
a512bbf8 3518 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3519 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3520 device->commit_total_bytes)
a512bbf8
YZ
3521 break;
3522
abbb3b8e 3523 btrfs_set_super_bytenr(sb, bytenr);
4eedeb75 3524
fd08001f
EB
3525 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3526 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3527 sb->csum);
4eedeb75 3528
314b6dd0
JT
3529 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3530 GFP_NOFS);
3531 if (!page) {
abbb3b8e 3532 btrfs_err(device->fs_info,
314b6dd0 3533 "couldn't get super block page for bytenr %llu",
abbb3b8e
DS
3534 bytenr);
3535 errors++;
4eedeb75 3536 continue;
abbb3b8e 3537 }
634554dc 3538
314b6dd0
JT
3539 /* Bump the refcount for wait_dev_supers() */
3540 get_page(page);
a512bbf8 3541
314b6dd0
JT
3542 disk_super = page_address(page);
3543 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3544
314b6dd0
JT
3545 /*
3546 * Directly use bios here instead of relying on the page cache
3547 * to do I/O, so we don't lose the ability to do integrity
3548 * checking.
3549 */
3550 bio = bio_alloc(GFP_NOFS, 1);
3551 bio_set_dev(bio, device->bdev);
3552 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3553 bio->bi_private = device;
3554 bio->bi_end_io = btrfs_end_super_write;
3555 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3556 offset_in_page(bytenr));
a512bbf8 3557
387125fc 3558 /*
314b6dd0
JT
3559 * We FUA only the first super block. The others we allow to
3560 * go down lazy and there's a short window where the on-disk
3561 * copies might still contain the older version.
387125fc 3562 */
314b6dd0 3563 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
1b9e619c 3564 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0
JT
3565 bio->bi_opf |= REQ_FUA;
3566
3567 btrfsic_submit_bio(bio);
a512bbf8
YZ
3568 }
3569 return errors < i ? 0 : -1;
3570}
3571
abbb3b8e
DS
3572/*
3573 * Wait for write completion of superblocks done by write_dev_supers,
3574 * @max_mirrors same for write and wait phases.
3575 *
314b6dd0 3576 * Return number of errors when page is not found or not marked up to
abbb3b8e
DS
3577 * date.
3578 */
3579static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3580{
abbb3b8e
DS
3581 int i;
3582 int errors = 0;
b6a535fa 3583 bool primary_failed = false;
abbb3b8e
DS
3584 u64 bytenr;
3585
3586 if (max_mirrors == 0)
3587 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3588
3589 for (i = 0; i < max_mirrors; i++) {
314b6dd0
JT
3590 struct page *page;
3591
abbb3b8e
DS
3592 bytenr = btrfs_sb_offset(i);
3593 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3594 device->commit_total_bytes)
3595 break;
3596
314b6dd0
JT
3597 page = find_get_page(device->bdev->bd_inode->i_mapping,
3598 bytenr >> PAGE_SHIFT);
3599 if (!page) {
abbb3b8e 3600 errors++;
b6a535fa
HM
3601 if (i == 0)
3602 primary_failed = true;
abbb3b8e
DS
3603 continue;
3604 }
314b6dd0
JT
3605 /* Page is submitted locked and unlocked once the IO completes */
3606 wait_on_page_locked(page);
3607 if (PageError(page)) {
abbb3b8e 3608 errors++;
b6a535fa
HM
3609 if (i == 0)
3610 primary_failed = true;
3611 }
abbb3b8e 3612
314b6dd0
JT
3613 /* Drop our reference */
3614 put_page(page);
abbb3b8e 3615
314b6dd0
JT
3616 /* Drop the reference from the writing run */
3617 put_page(page);
abbb3b8e
DS
3618 }
3619
b6a535fa
HM
3620 /* log error, force error return */
3621 if (primary_failed) {
3622 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3623 device->devid);
3624 return -1;
3625 }
3626
abbb3b8e
DS
3627 return errors < i ? 0 : -1;
3628}
3629
387125fc
CM
3630/*
3631 * endio for the write_dev_flush, this will wake anyone waiting
3632 * for the barrier when it is done
3633 */
4246a0b6 3634static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3635{
e0ae9994 3636 complete(bio->bi_private);
387125fc
CM
3637}
3638
3639/*
4fc6441a
AJ
3640 * Submit a flush request to the device if it supports it. Error handling is
3641 * done in the waiting counterpart.
387125fc 3642 */
4fc6441a 3643static void write_dev_flush(struct btrfs_device *device)
387125fc 3644{
c2a9c7ab 3645 struct request_queue *q = bdev_get_queue(device->bdev);
e0ae9994 3646 struct bio *bio = device->flush_bio;
387125fc 3647
c2a9c7ab 3648 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4fc6441a 3649 return;
387125fc 3650
e0ae9994 3651 bio_reset(bio);
387125fc 3652 bio->bi_end_io = btrfs_end_empty_barrier;
74d46992 3653 bio_set_dev(bio, device->bdev);
8d910125 3654 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
387125fc
CM
3655 init_completion(&device->flush_wait);
3656 bio->bi_private = &device->flush_wait;
387125fc 3657
43a01111 3658 btrfsic_submit_bio(bio);
1c3063b6 3659 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3660}
387125fc 3661
4fc6441a
AJ
3662/*
3663 * If the flush bio has been submitted by write_dev_flush, wait for it.
3664 */
8c27cb35 3665static blk_status_t wait_dev_flush(struct btrfs_device *device)
4fc6441a 3666{
4fc6441a 3667 struct bio *bio = device->flush_bio;
387125fc 3668
1c3063b6 3669 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
58efbc9f 3670 return BLK_STS_OK;
387125fc 3671
1c3063b6 3672 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
2980d574 3673 wait_for_completion_io(&device->flush_wait);
387125fc 3674
8c27cb35 3675 return bio->bi_status;
387125fc 3676}
387125fc 3677
d10b82fe 3678static int check_barrier_error(struct btrfs_fs_info *fs_info)
401b41e5 3679{
6528b99d 3680 if (!btrfs_check_rw_degradable(fs_info, NULL))
401b41e5 3681 return -EIO;
387125fc
CM
3682 return 0;
3683}
3684
3685/*
3686 * send an empty flush down to each device in parallel,
3687 * then wait for them
3688 */
3689static int barrier_all_devices(struct btrfs_fs_info *info)
3690{
3691 struct list_head *head;
3692 struct btrfs_device *dev;
5af3e8cc 3693 int errors_wait = 0;
4e4cbee9 3694 blk_status_t ret;
387125fc 3695
1538e6c5 3696 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3697 /* send down all the barriers */
3698 head = &info->fs_devices->devices;
1538e6c5 3699 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3700 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3701 continue;
cea7c8bf 3702 if (!dev->bdev)
387125fc 3703 continue;
e12c9621 3704 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3705 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3706 continue;
3707
4fc6441a 3708 write_dev_flush(dev);
58efbc9f 3709 dev->last_flush_error = BLK_STS_OK;
387125fc
CM
3710 }
3711
3712 /* wait for all the barriers */
1538e6c5 3713 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3714 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3715 continue;
387125fc 3716 if (!dev->bdev) {
5af3e8cc 3717 errors_wait++;
387125fc
CM
3718 continue;
3719 }
e12c9621 3720 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3721 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3722 continue;
3723
4fc6441a 3724 ret = wait_dev_flush(dev);
401b41e5
AJ
3725 if (ret) {
3726 dev->last_flush_error = ret;
66b4993e
DS
3727 btrfs_dev_stat_inc_and_print(dev,
3728 BTRFS_DEV_STAT_FLUSH_ERRS);
5af3e8cc 3729 errors_wait++;
401b41e5
AJ
3730 }
3731 }
3732
cea7c8bf 3733 if (errors_wait) {
401b41e5
AJ
3734 /*
3735 * At some point we need the status of all disks
3736 * to arrive at the volume status. So error checking
3737 * is being pushed to a separate loop.
3738 */
d10b82fe 3739 return check_barrier_error(info);
387125fc 3740 }
387125fc
CM
3741 return 0;
3742}
3743
943c6e99
ZL
3744int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3745{
8789f4fe
ZL
3746 int raid_type;
3747 int min_tolerated = INT_MAX;
943c6e99 3748
8789f4fe
ZL
3749 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3750 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3751 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3752 btrfs_raid_array[BTRFS_RAID_SINGLE].
3753 tolerated_failures);
943c6e99 3754
8789f4fe
ZL
3755 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3756 if (raid_type == BTRFS_RAID_SINGLE)
3757 continue;
41a6e891 3758 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 3759 continue;
8c3e3582 3760 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3761 btrfs_raid_array[raid_type].
3762 tolerated_failures);
3763 }
943c6e99 3764
8789f4fe 3765 if (min_tolerated == INT_MAX) {
ab8d0fc4 3766 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
3767 min_tolerated = 0;
3768 }
3769
3770 return min_tolerated;
943c6e99
ZL
3771}
3772
eece6a9c 3773int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 3774{
e5e9a520 3775 struct list_head *head;
f2984462 3776 struct btrfs_device *dev;
a061fc8d 3777 struct btrfs_super_block *sb;
f2984462 3778 struct btrfs_dev_item *dev_item;
f2984462
CM
3779 int ret;
3780 int do_barriers;
a236aed1
CM
3781 int max_errors;
3782 int total_errors = 0;
a061fc8d 3783 u64 flags;
f2984462 3784
0b246afa 3785 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
3786
3787 /*
3788 * max_mirrors == 0 indicates we're from commit_transaction,
3789 * not from fsync where the tree roots in fs_info have not
3790 * been consistent on disk.
3791 */
3792 if (max_mirrors == 0)
3793 backup_super_roots(fs_info);
f2984462 3794
0b246afa 3795 sb = fs_info->super_for_commit;
a061fc8d 3796 dev_item = &sb->dev_item;
e5e9a520 3797
0b246afa
JM
3798 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3799 head = &fs_info->fs_devices->devices;
3800 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 3801
5af3e8cc 3802 if (do_barriers) {
0b246afa 3803 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
3804 if (ret) {
3805 mutex_unlock(
0b246afa
JM
3806 &fs_info->fs_devices->device_list_mutex);
3807 btrfs_handle_fs_error(fs_info, ret,
3808 "errors while submitting device barriers.");
5af3e8cc
SB
3809 return ret;
3810 }
3811 }
387125fc 3812
1538e6c5 3813 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3814 if (!dev->bdev) {
3815 total_errors++;
3816 continue;
3817 }
e12c9621 3818 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3819 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3820 continue;
3821
2b82032c 3822 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3823 btrfs_set_stack_device_type(dev_item, dev->type);
3824 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3825 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3826 dev->commit_total_bytes);
ce7213c7
MX
3827 btrfs_set_stack_device_bytes_used(dev_item,
3828 dev->commit_bytes_used);
a061fc8d
CM
3829 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3830 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3831 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3832 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
3833 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3834 BTRFS_FSID_SIZE);
a512bbf8 3835
a061fc8d
CM
3836 flags = btrfs_super_flags(sb);
3837 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3838
75cb857d
QW
3839 ret = btrfs_validate_write_super(fs_info, sb);
3840 if (ret < 0) {
3841 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3842 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3843 "unexpected superblock corruption detected");
3844 return -EUCLEAN;
3845 }
3846
abbb3b8e 3847 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
3848 if (ret)
3849 total_errors++;
f2984462 3850 }
a236aed1 3851 if (total_errors > max_errors) {
0b246afa
JM
3852 btrfs_err(fs_info, "%d errors while writing supers",
3853 total_errors);
3854 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 3855
9d565ba4 3856 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
3857 btrfs_handle_fs_error(fs_info, -EIO,
3858 "%d errors while writing supers",
3859 total_errors);
9d565ba4 3860 return -EIO;
a236aed1 3861 }
f2984462 3862
a512bbf8 3863 total_errors = 0;
1538e6c5 3864 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
3865 if (!dev->bdev)
3866 continue;
e12c9621 3867 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3868 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
3869 continue;
3870
abbb3b8e 3871 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
3872 if (ret)
3873 total_errors++;
f2984462 3874 }
0b246afa 3875 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 3876 if (total_errors > max_errors) {
0b246afa
JM
3877 btrfs_handle_fs_error(fs_info, -EIO,
3878 "%d errors while writing supers",
3879 total_errors);
79787eaa 3880 return -EIO;
a236aed1 3881 }
f2984462
CM
3882 return 0;
3883}
3884
cb517eab
MX
3885/* Drop a fs root from the radix tree and free it. */
3886void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3887 struct btrfs_root *root)
2619ba1f 3888{
4785e24f
JB
3889 bool drop_ref = false;
3890
4df27c4d 3891 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3892 radix_tree_delete(&fs_info->fs_roots_radix,
3893 (unsigned long)root->root_key.objectid);
af01d2e5 3894 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 3895 drop_ref = true;
4df27c4d 3896 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 3897
1c1ea4f7 3898 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
ef67963d 3899 ASSERT(root->log_root == NULL);
1c1ea4f7 3900 if (root->reloc_root) {
00246528 3901 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
3902 root->reloc_root = NULL;
3903 }
3904 }
3321719e 3905
faa2dbf0
JB
3906 if (root->free_ino_pinned)
3907 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3908 if (root->free_ino_ctl)
3909 __btrfs_remove_free_space_cache(root->free_ino_ctl);
0e996e7f
JB
3910 if (root->ino_cache_inode) {
3911 iput(root->ino_cache_inode);
3912 root->ino_cache_inode = NULL;
3913 }
4785e24f
JB
3914 if (drop_ref)
3915 btrfs_put_root(root);
2619ba1f
CM
3916}
3917
c146afad 3918int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3919{
c146afad
YZ
3920 u64 root_objectid = 0;
3921 struct btrfs_root *gang[8];
65d33fd7
QW
3922 int i = 0;
3923 int err = 0;
3924 unsigned int ret = 0;
e089f05c 3925
c146afad 3926 while (1) {
efc34534 3927 spin_lock(&fs_info->fs_roots_radix_lock);
c146afad
YZ
3928 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3929 (void **)gang, root_objectid,
3930 ARRAY_SIZE(gang));
65d33fd7 3931 if (!ret) {
efc34534 3932 spin_unlock(&fs_info->fs_roots_radix_lock);
c146afad 3933 break;
65d33fd7 3934 }
5d4f98a2 3935 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3936
c146afad 3937 for (i = 0; i < ret; i++) {
65d33fd7
QW
3938 /* Avoid to grab roots in dead_roots */
3939 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3940 gang[i] = NULL;
3941 continue;
3942 }
3943 /* grab all the search result for later use */
00246528 3944 gang[i] = btrfs_grab_root(gang[i]);
65d33fd7 3945 }
efc34534 3946 spin_unlock(&fs_info->fs_roots_radix_lock);
66b4ffd1 3947
65d33fd7
QW
3948 for (i = 0; i < ret; i++) {
3949 if (!gang[i])
3950 continue;
c146afad 3951 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3952 err = btrfs_orphan_cleanup(gang[i]);
3953 if (err)
65d33fd7 3954 break;
00246528 3955 btrfs_put_root(gang[i]);
c146afad
YZ
3956 }
3957 root_objectid++;
3958 }
65d33fd7
QW
3959
3960 /* release the uncleaned roots due to error */
3961 for (; i < ret; i++) {
3962 if (gang[i])
00246528 3963 btrfs_put_root(gang[i]);
65d33fd7
QW
3964 }
3965 return err;
c146afad 3966}
a2135011 3967
6bccf3ab 3968int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 3969{
6bccf3ab 3970 struct btrfs_root *root = fs_info->tree_root;
c146afad 3971 struct btrfs_trans_handle *trans;
a74a4b97 3972
0b246afa 3973 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 3974 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
3975 mutex_unlock(&fs_info->cleaner_mutex);
3976 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
3977
3978 /* wait until ongoing cleanup work done */
0b246afa
JM
3979 down_write(&fs_info->cleanup_work_sem);
3980 up_write(&fs_info->cleanup_work_sem);
c71bf099 3981
7a7eaa40 3982 trans = btrfs_join_transaction(root);
3612b495
TI
3983 if (IS_ERR(trans))
3984 return PTR_ERR(trans);
3a45bb20 3985 return btrfs_commit_transaction(trans);
c146afad
YZ
3986}
3987
b105e927 3988void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 3989{
c146afad
YZ
3990 int ret;
3991
afcdd129 3992 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
d6fd0ae2
OS
3993 /*
3994 * We don't want the cleaner to start new transactions, add more delayed
3995 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3996 * because that frees the task_struct, and the transaction kthread might
3997 * still try to wake up the cleaner.
3998 */
3999 kthread_park(fs_info->cleaner_kthread);
c146afad 4000
7343dd61 4001 /* wait for the qgroup rescan worker to stop */
d06f23d6 4002 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4003
803b2f54
SB
4004 /* wait for the uuid_scan task to finish */
4005 down(&fs_info->uuid_tree_rescan_sem);
4006 /* avoid complains from lockdep et al., set sem back to initial state */
4007 up(&fs_info->uuid_tree_rescan_sem);
4008
837d5b6e 4009 /* pause restriper - we want to resume on mount */
aa1b8cd4 4010 btrfs_pause_balance(fs_info);
837d5b6e 4011
8dabb742
SB
4012 btrfs_dev_replace_suspend_for_unmount(fs_info);
4013
aa1b8cd4 4014 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4015
4016 /* wait for any defraggers to finish */
4017 wait_event(fs_info->transaction_wait,
4018 (atomic_read(&fs_info->defrag_running) == 0));
4019
4020 /* clear out the rbtree of defraggable inodes */
26176e7c 4021 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4022
21c7e756
MX
4023 cancel_work_sync(&fs_info->async_reclaim_work);
4024
b0643e59
DZ
4025 /* Cancel or finish ongoing discard work */
4026 btrfs_discard_cleanup(fs_info);
4027
bc98a42c 4028 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4029 /*
d6fd0ae2
OS
4030 * The cleaner kthread is stopped, so do one final pass over
4031 * unused block groups.
e44163e1 4032 */
0b246afa 4033 btrfs_delete_unused_bgs(fs_info);
e44163e1 4034
f0cc2cd7
FM
4035 /*
4036 * There might be existing delayed inode workers still running
4037 * and holding an empty delayed inode item. We must wait for
4038 * them to complete first because they can create a transaction.
4039 * This happens when someone calls btrfs_balance_delayed_items()
4040 * and then a transaction commit runs the same delayed nodes
4041 * before any delayed worker has done something with the nodes.
4042 * We must wait for any worker here and not at transaction
4043 * commit time since that could cause a deadlock.
4044 * This is a very rare case.
4045 */
4046 btrfs_flush_workqueue(fs_info->delayed_workers);
4047
6bccf3ab 4048 ret = btrfs_commit_super(fs_info);
acce952b 4049 if (ret)
04892340 4050 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4051 }
4052
af722733
LB
4053 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4054 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
2ff7e61e 4055 btrfs_error_commit_super(fs_info);
0f7d52f4 4056
e3029d9f
AV
4057 kthread_stop(fs_info->transaction_kthread);
4058 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4059
e187831e 4060 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4061 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4062
5958253c
QW
4063 if (btrfs_check_quota_leak(fs_info)) {
4064 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4065 btrfs_err(fs_info, "qgroup reserved space leaked");
4066 }
4067
04892340 4068 btrfs_free_qgroup_config(fs_info);
fe816d0f 4069 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4070
963d678b 4071 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4072 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4073 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4074 }
bcc63abb 4075
4297ff84
JB
4076 if (percpu_counter_sum(&fs_info->dio_bytes))
4077 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4078 percpu_counter_sum(&fs_info->dio_bytes));
4079
6618a59b 4080 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4081 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4082
1a4319cc
LB
4083 btrfs_put_block_group_cache(fs_info);
4084
de348ee0
WS
4085 /*
4086 * we must make sure there is not any read request to
4087 * submit after we stopping all workers.
4088 */
4089 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4090 btrfs_stop_all_workers(fs_info);
4091
afcdd129 4092 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4093 free_root_pointers(fs_info, true);
8c38938c 4094 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4095
4e19443d
JB
4096 /*
4097 * We must free the block groups after dropping the fs_roots as we could
4098 * have had an IO error and have left over tree log blocks that aren't
4099 * cleaned up until the fs roots are freed. This makes the block group
4100 * accounting appear to be wrong because there's pending reserved bytes,
4101 * so make sure we do the block group cleanup afterwards.
4102 */
4103 btrfs_free_block_groups(fs_info);
4104
13e6c37b 4105 iput(fs_info->btree_inode);
d6bfde87 4106
21adbd5c 4107#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
0b246afa 4108 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
2ff7e61e 4109 btrfsic_unmount(fs_info->fs_devices);
21adbd5c
SB
4110#endif
4111
0b86a832 4112 btrfs_mapping_tree_free(&fs_info->mapping_tree);
68c94e55 4113 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4114}
4115
b9fab919
CM
4116int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4117 int atomic)
5f39d397 4118{
1259ab75 4119 int ret;
727011e0 4120 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 4121
0b32f4bb 4122 ret = extent_buffer_uptodate(buf);
1259ab75
CM
4123 if (!ret)
4124 return ret;
4125
4126 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
4127 parent_transid, atomic);
4128 if (ret == -EAGAIN)
4129 return ret;
1259ab75 4130 return !ret;
5f39d397
CM
4131}
4132
5f39d397
CM
4133void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4134{
0b246afa 4135 struct btrfs_fs_info *fs_info;
06ea65a3 4136 struct btrfs_root *root;
5f39d397 4137 u64 transid = btrfs_header_generation(buf);
b9473439 4138 int was_dirty;
b4ce94de 4139
06ea65a3
JB
4140#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4141 /*
4142 * This is a fast path so only do this check if we have sanity tests
52042d8e 4143 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4144 * outside of the sanity tests.
4145 */
b0132a3b 4146 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4147 return;
4148#endif
4149 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b246afa 4150 fs_info = root->fs_info;
b9447ef8 4151 btrfs_assert_tree_locked(buf);
0b246afa 4152 if (transid != fs_info->generation)
5d163e0e 4153 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
0b246afa 4154 buf->start, transid, fs_info->generation);
0b32f4bb 4155 was_dirty = set_extent_buffer_dirty(buf);
e2d84521 4156 if (!was_dirty)
104b4e51
NB
4157 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4158 buf->len,
4159 fs_info->dirty_metadata_batch);
1f21ef0a 4160#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
69fc6cbb
QW
4161 /*
4162 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4163 * but item data not updated.
4164 * So here we should only check item pointers, not item data.
4165 */
4166 if (btrfs_header_level(buf) == 0 &&
cfdaad5e 4167 btrfs_check_leaf_relaxed(buf)) {
a4f78750 4168 btrfs_print_leaf(buf);
1f21ef0a
FM
4169 ASSERT(0);
4170 }
4171#endif
eb60ceac
CM
4172}
4173
2ff7e61e 4174static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4175 int flush_delayed)
16cdcec7
MX
4176{
4177 /*
4178 * looks as though older kernels can get into trouble with
4179 * this code, they end up stuck in balance_dirty_pages forever
4180 */
e2d84521 4181 int ret;
16cdcec7
MX
4182
4183 if (current->flags & PF_MEMALLOC)
4184 return;
4185
b53d3f5d 4186 if (flush_delayed)
2ff7e61e 4187 btrfs_balance_delayed_items(fs_info);
16cdcec7 4188
d814a491
EL
4189 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4190 BTRFS_DIRTY_METADATA_THRESH,
4191 fs_info->dirty_metadata_batch);
e2d84521 4192 if (ret > 0) {
0b246afa 4193 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4194 }
16cdcec7
MX
4195}
4196
2ff7e61e 4197void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4198{
2ff7e61e 4199 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4200}
585ad2c3 4201
2ff7e61e 4202void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4203{
2ff7e61e 4204 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4205}
6b80053d 4206
581c1760
QW
4207int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4208 struct btrfs_key *first_key)
6b80053d 4209{
5ab12d1f 4210 return btree_read_extent_buffer_pages(buf, parent_transid,
581c1760 4211 level, first_key);
6b80053d 4212}
0da5468f 4213
2ff7e61e 4214static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4215{
fe816d0f
NB
4216 /* cleanup FS via transaction */
4217 btrfs_cleanup_transaction(fs_info);
4218
0b246afa 4219 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4220 btrfs_run_delayed_iputs(fs_info);
0b246afa 4221 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4222
0b246afa
JM
4223 down_write(&fs_info->cleanup_work_sem);
4224 up_write(&fs_info->cleanup_work_sem);
acce952b 4225}
4226
ef67963d
JB
4227static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4228{
4229 struct btrfs_root *gang[8];
4230 u64 root_objectid = 0;
4231 int ret;
4232
4233 spin_lock(&fs_info->fs_roots_radix_lock);
4234 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4235 (void **)gang, root_objectid,
4236 ARRAY_SIZE(gang))) != 0) {
4237 int i;
4238
4239 for (i = 0; i < ret; i++)
4240 gang[i] = btrfs_grab_root(gang[i]);
4241 spin_unlock(&fs_info->fs_roots_radix_lock);
4242
4243 for (i = 0; i < ret; i++) {
4244 if (!gang[i])
4245 continue;
4246 root_objectid = gang[i]->root_key.objectid;
4247 btrfs_free_log(NULL, gang[i]);
4248 btrfs_put_root(gang[i]);
4249 }
4250 root_objectid++;
4251 spin_lock(&fs_info->fs_roots_radix_lock);
4252 }
4253 spin_unlock(&fs_info->fs_roots_radix_lock);
4254 btrfs_free_log_root_tree(NULL, fs_info);
4255}
4256
143bede5 4257static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4258{
acce952b 4259 struct btrfs_ordered_extent *ordered;
acce952b 4260
199c2a9c 4261 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4262 /*
4263 * This will just short circuit the ordered completion stuff which will
4264 * make sure the ordered extent gets properly cleaned up.
4265 */
199c2a9c 4266 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4267 root_extent_list)
4268 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4269 spin_unlock(&root->ordered_extent_lock);
4270}
4271
4272static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4273{
4274 struct btrfs_root *root;
4275 struct list_head splice;
4276
4277 INIT_LIST_HEAD(&splice);
4278
4279 spin_lock(&fs_info->ordered_root_lock);
4280 list_splice_init(&fs_info->ordered_roots, &splice);
4281 while (!list_empty(&splice)) {
4282 root = list_first_entry(&splice, struct btrfs_root,
4283 ordered_root);
1de2cfde
JB
4284 list_move_tail(&root->ordered_root,
4285 &fs_info->ordered_roots);
199c2a9c 4286
2a85d9ca 4287 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4288 btrfs_destroy_ordered_extents(root);
4289
2a85d9ca
LB
4290 cond_resched();
4291 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4292 }
4293 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4294
4295 /*
4296 * We need this here because if we've been flipped read-only we won't
4297 * get sync() from the umount, so we need to make sure any ordered
4298 * extents that haven't had their dirty pages IO start writeout yet
4299 * actually get run and error out properly.
4300 */
4301 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4302}
4303
35a3621b 4304static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2ff7e61e 4305 struct btrfs_fs_info *fs_info)
acce952b 4306{
4307 struct rb_node *node;
4308 struct btrfs_delayed_ref_root *delayed_refs;
4309 struct btrfs_delayed_ref_node *ref;
4310 int ret = 0;
4311
4312 delayed_refs = &trans->delayed_refs;
4313
4314 spin_lock(&delayed_refs->lock);
d7df2c79 4315 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4316 spin_unlock(&delayed_refs->lock);
b79ce3dd 4317 btrfs_debug(fs_info, "delayed_refs has NO entry");
acce952b 4318 return ret;
4319 }
4320
5c9d028b 4321 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4322 struct btrfs_delayed_ref_head *head;
0e0adbcf 4323 struct rb_node *n;
e78417d1 4324 bool pin_bytes = false;
acce952b 4325
d7df2c79
JB
4326 head = rb_entry(node, struct btrfs_delayed_ref_head,
4327 href_node);
3069bd26 4328 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4329 continue;
3069bd26 4330
d7df2c79 4331 spin_lock(&head->lock);
e3d03965 4332 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4333 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4334 ref_node);
d7df2c79 4335 ref->in_tree = 0;
e3d03965 4336 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4337 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4338 if (!list_empty(&ref->add_list))
4339 list_del(&ref->add_list);
d7df2c79
JB
4340 atomic_dec(&delayed_refs->num_entries);
4341 btrfs_put_delayed_ref(ref);
e78417d1 4342 }
d7df2c79
JB
4343 if (head->must_insert_reserved)
4344 pin_bytes = true;
4345 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4346 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4347 spin_unlock(&head->lock);
4348 spin_unlock(&delayed_refs->lock);
4349 mutex_unlock(&head->mutex);
acce952b 4350
f603bb94
NB
4351 if (pin_bytes) {
4352 struct btrfs_block_group *cache;
4353
4354 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4355 BUG_ON(!cache);
4356
4357 spin_lock(&cache->space_info->lock);
4358 spin_lock(&cache->lock);
4359 cache->pinned += head->num_bytes;
4360 btrfs_space_info_update_bytes_pinned(fs_info,
4361 cache->space_info, head->num_bytes);
4362 cache->reserved -= head->num_bytes;
4363 cache->space_info->bytes_reserved -= head->num_bytes;
4364 spin_unlock(&cache->lock);
4365 spin_unlock(&cache->space_info->lock);
4366 percpu_counter_add_batch(
4367 &cache->space_info->total_bytes_pinned,
4368 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4369
4370 btrfs_put_block_group(cache);
4371
4372 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4373 head->bytenr + head->num_bytes - 1);
4374 }
31890da0 4375 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4376 btrfs_put_delayed_ref_head(head);
acce952b 4377 cond_resched();
4378 spin_lock(&delayed_refs->lock);
4379 }
81f7eb00 4380 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4381
4382 spin_unlock(&delayed_refs->lock);
4383
4384 return ret;
4385}
4386
143bede5 4387static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4388{
4389 struct btrfs_inode *btrfs_inode;
4390 struct list_head splice;
4391
4392 INIT_LIST_HEAD(&splice);
4393
eb73c1b7
MX
4394 spin_lock(&root->delalloc_lock);
4395 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4396
4397 while (!list_empty(&splice)) {
fe816d0f 4398 struct inode *inode = NULL;
eb73c1b7
MX
4399 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4400 delalloc_inodes);
fe816d0f 4401 __btrfs_del_delalloc_inode(root, btrfs_inode);
eb73c1b7 4402 spin_unlock(&root->delalloc_lock);
acce952b 4403
fe816d0f
NB
4404 /*
4405 * Make sure we get a live inode and that it'll not disappear
4406 * meanwhile.
4407 */
4408 inode = igrab(&btrfs_inode->vfs_inode);
4409 if (inode) {
4410 invalidate_inode_pages2(inode->i_mapping);
4411 iput(inode);
4412 }
eb73c1b7 4413 spin_lock(&root->delalloc_lock);
acce952b 4414 }
eb73c1b7
MX
4415 spin_unlock(&root->delalloc_lock);
4416}
4417
4418static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4419{
4420 struct btrfs_root *root;
4421 struct list_head splice;
4422
4423 INIT_LIST_HEAD(&splice);
4424
4425 spin_lock(&fs_info->delalloc_root_lock);
4426 list_splice_init(&fs_info->delalloc_roots, &splice);
4427 while (!list_empty(&splice)) {
4428 root = list_first_entry(&splice, struct btrfs_root,
4429 delalloc_root);
00246528 4430 root = btrfs_grab_root(root);
eb73c1b7
MX
4431 BUG_ON(!root);
4432 spin_unlock(&fs_info->delalloc_root_lock);
4433
4434 btrfs_destroy_delalloc_inodes(root);
00246528 4435 btrfs_put_root(root);
eb73c1b7
MX
4436
4437 spin_lock(&fs_info->delalloc_root_lock);
4438 }
4439 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4440}
4441
2ff7e61e 4442static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
acce952b 4443 struct extent_io_tree *dirty_pages,
4444 int mark)
4445{
4446 int ret;
acce952b 4447 struct extent_buffer *eb;
4448 u64 start = 0;
4449 u64 end;
acce952b 4450
4451 while (1) {
4452 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4453 mark, NULL);
acce952b 4454 if (ret)
4455 break;
4456
91166212 4457 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4458 while (start <= end) {
0b246afa
JM
4459 eb = find_extent_buffer(fs_info, start);
4460 start += fs_info->nodesize;
fd8b2b61 4461 if (!eb)
acce952b 4462 continue;
fd8b2b61 4463 wait_on_extent_buffer_writeback(eb);
acce952b 4464
fd8b2b61
JB
4465 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4466 &eb->bflags))
4467 clear_extent_buffer_dirty(eb);
4468 free_extent_buffer_stale(eb);
acce952b 4469 }
4470 }
4471
4472 return ret;
4473}
4474
2ff7e61e 4475static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
fe119a6e 4476 struct extent_io_tree *unpin)
acce952b 4477{
acce952b 4478 u64 start;
4479 u64 end;
4480 int ret;
4481
acce952b 4482 while (1) {
0e6ec385
FM
4483 struct extent_state *cached_state = NULL;
4484
fcd5e742
LF
4485 /*
4486 * The btrfs_finish_extent_commit() may get the same range as
4487 * ours between find_first_extent_bit and clear_extent_dirty.
4488 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4489 * the same extent range.
4490 */
4491 mutex_lock(&fs_info->unused_bg_unpin_mutex);
acce952b 4492 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 4493 EXTENT_DIRTY, &cached_state);
fcd5e742
LF
4494 if (ret) {
4495 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4496 break;
fcd5e742 4497 }
acce952b 4498
0e6ec385
FM
4499 clear_extent_dirty(unpin, start, end, &cached_state);
4500 free_extent_state(cached_state);
2ff7e61e 4501 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4502 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4503 cond_resched();
4504 }
4505
4506 return 0;
4507}
4508
32da5386 4509static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4510{
4511 struct inode *inode;
4512
4513 inode = cache->io_ctl.inode;
4514 if (inode) {
4515 invalidate_inode_pages2(inode->i_mapping);
4516 BTRFS_I(inode)->generation = 0;
4517 cache->io_ctl.inode = NULL;
4518 iput(inode);
4519 }
4520 btrfs_put_block_group(cache);
4521}
4522
4523void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4524 struct btrfs_fs_info *fs_info)
c79a1751 4525{
32da5386 4526 struct btrfs_block_group *cache;
c79a1751
LB
4527
4528 spin_lock(&cur_trans->dirty_bgs_lock);
4529 while (!list_empty(&cur_trans->dirty_bgs)) {
4530 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4531 struct btrfs_block_group,
c79a1751 4532 dirty_list);
c79a1751
LB
4533
4534 if (!list_empty(&cache->io_list)) {
4535 spin_unlock(&cur_trans->dirty_bgs_lock);
4536 list_del_init(&cache->io_list);
4537 btrfs_cleanup_bg_io(cache);
4538 spin_lock(&cur_trans->dirty_bgs_lock);
4539 }
4540
4541 list_del_init(&cache->dirty_list);
4542 spin_lock(&cache->lock);
4543 cache->disk_cache_state = BTRFS_DC_ERROR;
4544 spin_unlock(&cache->lock);
4545
4546 spin_unlock(&cur_trans->dirty_bgs_lock);
4547 btrfs_put_block_group(cache);
ba2c4d4e 4548 btrfs_delayed_refs_rsv_release(fs_info, 1);
c79a1751
LB
4549 spin_lock(&cur_trans->dirty_bgs_lock);
4550 }
4551 spin_unlock(&cur_trans->dirty_bgs_lock);
4552
45ae2c18
NB
4553 /*
4554 * Refer to the definition of io_bgs member for details why it's safe
4555 * to use it without any locking
4556 */
c79a1751
LB
4557 while (!list_empty(&cur_trans->io_bgs)) {
4558 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4559 struct btrfs_block_group,
c79a1751 4560 io_list);
c79a1751
LB
4561
4562 list_del_init(&cache->io_list);
4563 spin_lock(&cache->lock);
4564 cache->disk_cache_state = BTRFS_DC_ERROR;
4565 spin_unlock(&cache->lock);
4566 btrfs_cleanup_bg_io(cache);
4567 }
4568}
4569
49b25e05 4570void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4571 struct btrfs_fs_info *fs_info)
49b25e05 4572{
bbbf7243
NB
4573 struct btrfs_device *dev, *tmp;
4574
2ff7e61e 4575 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4576 ASSERT(list_empty(&cur_trans->dirty_bgs));
4577 ASSERT(list_empty(&cur_trans->io_bgs));
4578
bbbf7243
NB
4579 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4580 post_commit_list) {
4581 list_del_init(&dev->post_commit_list);
4582 }
4583
2ff7e61e 4584 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4585
4a9d8bde 4586 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4587 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4588
4a9d8bde 4589 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4590 wake_up(&fs_info->transaction_wait);
49b25e05 4591
ccdf9b30 4592 btrfs_destroy_delayed_inodes(fs_info);
49b25e05 4593
2ff7e61e 4594 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4595 EXTENT_DIRTY);
fe119a6e 4596 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4597
4a9d8bde
MX
4598 cur_trans->state =TRANS_STATE_COMPLETED;
4599 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4600}
4601
2ff7e61e 4602static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4603{
4604 struct btrfs_transaction *t;
acce952b 4605
0b246afa 4606 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4607
0b246afa
JM
4608 spin_lock(&fs_info->trans_lock);
4609 while (!list_empty(&fs_info->trans_list)) {
4610 t = list_first_entry(&fs_info->trans_list,
724e2315
JB
4611 struct btrfs_transaction, list);
4612 if (t->state >= TRANS_STATE_COMMIT_START) {
9b64f57d 4613 refcount_inc(&t->use_count);
0b246afa 4614 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4615 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4616 btrfs_put_transaction(t);
0b246afa 4617 spin_lock(&fs_info->trans_lock);
724e2315
JB
4618 continue;
4619 }
0b246afa 4620 if (t == fs_info->running_transaction) {
724e2315 4621 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4622 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4623 /*
4624 * We wait for 0 num_writers since we don't hold a trans
4625 * handle open currently for this transaction.
4626 */
4627 wait_event(t->writer_wait,
4628 atomic_read(&t->num_writers) == 0);
4629 } else {
0b246afa 4630 spin_unlock(&fs_info->trans_lock);
724e2315 4631 }
2ff7e61e 4632 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4633
0b246afa
JM
4634 spin_lock(&fs_info->trans_lock);
4635 if (t == fs_info->running_transaction)
4636 fs_info->running_transaction = NULL;
acce952b 4637 list_del_init(&t->list);
0b246afa 4638 spin_unlock(&fs_info->trans_lock);
acce952b 4639
724e2315 4640 btrfs_put_transaction(t);
2ff7e61e 4641 trace_btrfs_transaction_commit(fs_info->tree_root);
0b246afa 4642 spin_lock(&fs_info->trans_lock);
724e2315 4643 }
0b246afa
JM
4644 spin_unlock(&fs_info->trans_lock);
4645 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4646 btrfs_destroy_delayed_inodes(fs_info);
4647 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4648 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4649 btrfs_drop_all_logs(fs_info);
0b246afa 4650 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4651
4652 return 0;
4653}
4654
e8c9f186 4655static const struct extent_io_ops btree_extent_io_ops = {
4d53dddb 4656 /* mandatory callbacks */
0b86a832 4657 .submit_bio_hook = btree_submit_bio_hook,
4d53dddb 4658 .readpage_end_io_hook = btree_readpage_end_io_hook,
0da5468f 4659};